solution for elfZ crackme 2 by sghctoma

.intro

First of all, | want to thank elfZ for this crackme. This is exactly the kind of stuff a newbie like me can
learn from. I've never encountered the SetUnhandledExceptionFilter trick before, so | had to do a
little digging to be able to find the magic word. Digging means learning which is always a good thing
to do, so I've enjoyed this crackme a lot.

One more thing: | know it's 6 years old now, and probably lots of people solved it, but it taught me
something new. That's why I've decided to write a tutorial about how | solved it. Besides, two of the
three submitted solutions use SoftICE, and one of them simply grabs all referenced strings and
bruteforces the magic word. In my solution | will show how to do deal with this kind of trick in
OllyDbg.

start

I've loaded the target in Olly, and started it to see what it does. A dialog box appeared, asking for a
string. | gave it one, pressed the "check!" button, and the program stopped at 0x0040106B. Hmm,
what the frak? The instruction at that address writes EAX to 0x00401113.

HEdEiEcs || . EE BFEBROGEE CALL <JMP.LUSERZ2.GetDlaltemTentH:
BE4E185E ||« A3 13114068 MOV DWORD PTR D3:[4811121,ERR

FeTe R e e Rl B = T = i =1 e = | = ==

At least, it tries to write there. That address is in the .text section, which is non-writeable, so an
access violation is generated here. And it is generated on purpose, by the creator of the crackme!
The crackme runs fine outside of Olly, so the exception generated by the access violation has to be
handled somewhere. It is obvious, that this handler does not run while debugging the program in
Olly (because it crashes).

thetrick

OK, this was a start, but | had no clue, how exception handling actually works (which is a shame btw,
because I've used exception handling in my C++ programs, but never thought about how it works on
Windows). So I've decided to look further in the code first, and later make some search on exception
handling. Well, there is some sort of string compare at 0x00401084, and just after that, there is a JE,
which jumps over the badboy message. After that there are several GetDlIgltems and ShowWindows.
Near the end, at 0x00401108 there is something interesting: a SetUnhandledExceptionFilter API call.
A quick search on MSDN reveals this:

SetUnhandledExceptionFilter Function

Enables an application to supersede the top-level exception handler of each thread of a process.

After calling this function, if an exception occurs in a process that is not being debugged, and the exception makes it to the
unhandled exception filter, that filter will call the exception filter function specified by the ipTopLevelExceptionFilter parameter.

Syntax

LPTOP_LEVEL_EXCEPTION_FILTER WINAPI SetUnhandledExceptionFilter(
__in LPTOP_LEVEL_EXCEPTION_FILTER lpToplevelExceptionFilter
E

After reading the info from MSDN, it was obvious why the program crashes inside Olly, and why it
works outside the debugger. The author superseded the top-level exception handler with his/her
(sorry elfz, | have no clue if you are a man or a woman ©) own function, but this function is called
only if the process is not being debugged.

The one and only parameter of the SetUnhandledExceptionFilter API is the address of the exception
handler function. I've followed the address (with CTRL+G), and there was definitely something there
that looked like a function. | did not know what the values of registers are when this piece of code
runs, so | could not determine what it does exactly. | have put a breakpoint on the function’s entry
point just in case.

I’'ve read lots of things about exception handling while | was trying to solve this crackme, and I've
learned something useful: the decision about the process is being debugged or not takes place in
Kernel32.dll's UnhandledExceptionFilter function. I've also read that inside
UnhandledExceptionFilter, the NtQuerylnformationProcess function makes the actual decision.

| fired up PEditor to determine the RVA of UnhandledExceptionFilter. I've found that the RVA is
0x0007EBB9. | went back to Olly, pressed ALT+M (Memory map), and | have found that Kernel32.dll
is loaded at address 0x75A20000. O0x75A20000 + OxO007EBB9 = O0x75A9EBB9, so
UnhandledExceptionFilter should be at that address. | switched to Kernel32.dll in Olly (CTRL+E, and
double click on the dll), and went to 0Ox75A9EBB9. There was a function epilogue and a JMP there:

FSASEEEY SEFF MOY EDTI,EOI

TSA2EEEE 55 PUSH EEBP

7SAZEEEC SEEC MOY EEF,ESF

TESAEEEE 50 FOF EEF

YEASEEEF |- E9 93286280 JHMP kernel22.Unhand ledERcept ionFi lter
] = w L | =l =T | [=Tr] |3 =]

The JMP lead me to another JMP, and that JMP lead me where | wanted to go. It turned out, that the
function is in KernelBase.dll, btw. OK, as | have said, the decision about the process being debugged
or not is in the hand of the NtQuerylnformationProcess function. | started to look for it, but | did not
find anything like that. | could think of two possible things about the missing
NtQuerylnformationProcess. Either | am at the wrong place or Windows 7 Betal handles this thing
differently than XP (everything I've read about exception handling was quite old, so maybe Vista or
even XPSP3 does this differently, too). | looked around a bit, and | found an interesting call:

T Tr—r—rr T T T
TE48F2EF 23F2 FF CHP ERH, -1

TE4EFE92 |~ BF84 BAC220888 JE KERHELEA. PE492@A4

TE4BFE9E EZ 2401660656 CALL KERMELEA.BaseplsDebugFPortPresent
TE48F290 SECA TEST ERX,ERX

Co4oFooF |- BFZS SD2ToaEE JHF EERHELER, FE49284

That CALL BaseplsDebugPortPresent looked promising, so | put a hardware breakpoint on it. | let the
crackme run, gave it a string, and pushed the “check!” button. Olly stopped on the hardware bp. |
stepped over the instruction (F8), so | landed on the TEST EAX, EAX. The value of EAX was
0x00000001, which is indeed means that the process is being run in the context of a debugger. |
changed it to 0x00000000 and let the program run. Olly paused at the address 0x0040334A.
Remember that address? Yepp, it was the one that the author used with the

SetUnhandledExceptionFilter API. That meant that | was at the good place! It looked like this:

| . Lo oooood EFATER &, 0
HE4E224E . E& FUSH ESI
HE4E224F . BBFE B2 MO ESI,[ARG. 11
aa4@2352 || . AD LODS OWORD FTR DS:[ESIT
aE4a2252 || . SEee MOU EAX,OWORD FTR DS:[EAX]
AE4a2255 || . 25 FFADDEE® AND EAX, BOEADFF
aa4a225A || . ClEE B8 SHL ERAX,S
@aa4a3350 || . SEDE HOU EEX, EAX
AE4E335F || . 2088 AEZF4@Ea LEA EAX,OWORD FTR OS: [EAR+4E2FAE]
HE4E3 2G5 . 2B3% Mol ESI,DOWORD PTR D5:[ESI]
HE4E3 26T . 29984 FCHEEEEE HMOL DWORD PTR OS: CESI+9C],ERS
HE4E3 260 . HBE DCAzEEEE AOO EAX, 20C
HE4E3372 . 9984332 MOL OWORD PTR DS:[EBS+ESI], ERX
HE4E337E . B2 DFaF4888 MOW ERK, e lf_cmz. 88486F0F
HE4E227A . B3Cz2 AOO EAX, EE
HE4E227C . 9925 BEOEEEEE MOL DWORD FTR DS:[CESI+ES]1,EARX
pad@zzzz || . S3ce ®OR ERAX,EAX
aad@zzad || . a8 DEC EAX
aa463325 || . SE FOF ESI
Aa4az3a6 || . C9 LEALE
AR4Az33E7 (k. C2 AdE@ RETH <

| stepped through the code, and found that the LEA at 0x0040335F loads the address of the string
“magic” into EAX. | quickly fired up another instance of the crackme, and tried “magic” as the magic
word, and it was the right one!

.end

Thank you for reading this tutorial. It is a little bit long | think, but my intention was to explain
everything | did, so maybe somebody somewhere can learn from this stuff. | really enjoyed solving
this crackme, | hope you enjoyed my tut, as well ©

Best regards,

sghctoma /*sghctoma@gmail.com*/
January 21, 2009

