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Introduction 
 
In recent years, the web browser has likely become the single most ubiquitous 
computing application. Web browsers can be found everywhere, from being 
embedded in video game consoles and handheld devices to being installed on large 
servers supporting the enterprise. As with any widely deployed type of software, web 
browsers have become an increasingly popular target for attack. This trend will only 
continue. Today’s browsers represent a complex application stack foisted atop the 
Operating System’s (OS) stack. Putting aside the complexity of achieving robust, cross-
browser compatibility, web developers are essentially coding to the browser’s stack, 
with the goal of portability across both browsers and OS platforms. The growth in 
popularity of “Web 2.0” sites that leverage the most advanced capabilities of the 
browser stack has contributed to blurring the distinction between data and executable 
code. This is especially apparent when considering support for dynamically interpreted 
scripting, in particular JavaScript. Due to the nature of dynamic script interpretation in 
the browser, it is difficult for many widely adopted security technologies to mitigate the 
client-side browser attack vector. 

In our research, we examined the current state of JavaScript obfuscation and evasion 
techniques, approaches for collecting JavaScript samples from the wild, and methods 
for analyzing the collected scripts. We developed a suite of tools for collecting and 
indexing JavaScript, interpreting the scripting in a sandboxed environment, and 
performing functional analysis for manual, as well as automated detection mechanisms. 

At the outset, we believed that investigating new approaches was warranted. Current 
methods tend to fall into two large categories: fully automated client honeypot systems 
or manual human analysis. Client honeypot technology offers a powerful way to 
actively identify sites attempting to exploit the browser, and has reportedly been used 
to find a number of zero-day attacks. However there are significant drawbacks to 
typical, high-interaction client honeypots, as they tend to result in a lot of overhead. In 
general, a client honeypot requires heavy-weight processing in order to detect exploits 
and recreate the virtual machine after each completed test. These systems usually 
produce very good results, but may not be feasible for the independent researcher or 
small organization to deploy and maintain. Additional processing is still required to 
move beyond elementary behavioral analysis. For example, if a malicious JavaScript 
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sample only affects a particular version of Internet Explorer which is not being tested 
against, a previously unknown exploit could go undetected. 

On the other side of the spectrum is the manual analysis performed by human 
researchers. These tedious techniques include walking through each layer of 
obfuscation, wrapping the sample script in a <textarea> HTML tag, or replacing 
document.write() with alert(). Some of the more recently crafted malicious 
scripts are explicitly designed to bypass these manual analysis techniques. Using these 
techniques can be both labor intensive and dangerous. With the increasing number of 
browser attacks, analysts run the risk of being exploited themselves. While these 
methods still have a useful place in the analyst’s toolbox, we felt that a hybrid approach 
might prove to be more valuable.  

Thus was born the Caffeine Monkey system. The core JavaScript engine, a safe 
JavaScript deobfuscator, logger and profiler, is based on extensions to the open source 
SpiderMonkey JavaScript implementation. The Monkey was hungry and needed to be 
fed, so we deployed an open source web crawling solution. A MySQL database served 
to organize the crawls, the retrieved documents, and our analysis results. The other 
assorted processing tasks were handled by a collection of custom Python, Perl, and shell 
scripting. 

The source code and documentation for the Caffeine Monkey system will be made 
available during Black Hat USA 2007 at 
http://www.secureworks.com/research/tools/. All code will be released under an as-
yet-to-be-determined OSI approved open source license. 

This paper will explore the predominant obfuscation techniques and how Caffeine 
Monkey can find them, dissect them, and reveal their true functionality. We will also 
share our thoughts for future research in this area. 

 

JavaScript Obfuscation & Evasion Techniques 
 
To begin, we will examine some of the basic forms of obfuscation, going from the least 
effective, and most easily detected, to the most effective. While we are looking at these 
techniques in the context of the JavaScript language, in many case these same concepts 
are applicable to other scripting languages. 

Whitespace randomization is likely the simplest obfuscation technique to implement. 
Taking advantage of the fact that JavaScript ignores whitespace, an attacker can 
strategically scatter whitespace characters throughout their code. Without changing the 
semantics of the JavaScript, this technique will yield large changes in the script’s on-the-
wire binary representation. It is trivial at runtime to determine the behavior of a script. 
However, many security technologies rely on content matching for detection and 
would be blinded by this obfuscation technique. Whitespace randomization is 
demonstrated by the following scripting: 
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As you can see, the on-the-wire binary representation is significantly different but the 
semantics of the scripts are identical. 

Another basic evasion technique involves the addition of random comments and the 
manipulation of existing comments in scripting. Just like whitespace, comments are 
ignored by JavaScript. This is very similar to whitespace randomization, in that the 
actual code remains unchanged while the on-the-wire binary representation is 
dramatically altered. Manipulation of comments can also be effective in confusing an 
analyst. Just as in the case of whitespace randomization, runtime analysis of the script’s 
behavior is straightforward. However, content matching would have difficulty 
determining the runtime behavior. 

Other, more sophisticated obfuscation techniques exist offering even better abilities of 
evasion. String obfuscation usually involves a custom decoder, anywhere from a simple 
XOR function to a more complex Caesar cipher or even more elaborate methods.  
Although this technique is normally not needed to bypass detection mechanisms, it can 
make analysis much more difficult for the researcher and help maintain the script’s 
effectiveness over a longer period of time. This technique can also be as simple as 
splitting the string into multiple variables and concatenating them later in the script, 
perhaps using the document.write() method in combination with 
String.fromCharCode(). These strings can also be encoded using various 
hexadecimal and Unicode representations. The following example shows several ways 
in which the string “we’ve got a problem” can be represented. 
 

 

As you can see, there are many ways to represent this textual phrase, making purely 
signature based detection impractical due to the large number of different variations.  
With just the example string and the few encoding forms we’ve mentioned there are 
more than 519 possible combinations! 

“we%27ve%20got%20a%20problem” 

“%77%65%27%76%65%20%67%6F%74%20%61%20%70%72%6F%62%6C%65%6D” 

“\x77\x65\x27\x76\x65\x20\x67\x6F” + 
“\x74\x20\x61\x20\x70\x72\x6F\x62\x6C\x65\x6D” 

“%u0077\u0065\x27%76%65%20\x67%6F%74\u0020%61%20%70%72%u006F%62\x6C%65\x
6D” 

ASCII: var i = “foooo”; 

Hex: 7661 7220 6920 3d20 2266 6f6f 6f6f 223b 0a 

ASCII: var  i = “foooo”; 

Hex: 7661 7209 2069 2009 2020 3d20 2020 2020 2022 666f 6f6f 6f22 3b 

Figure 1 

Figure 2 
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Another obfuscation technique is variable name randomization and function pointer 
reassignment. A variable or function can be reassigned to another variable or function, 
potentially misleading analysts trying to decipher the code. This technique has also 
proved effective at bypassing a variety of security technologies. Short of keeping track 
of all the variable and function assignments at runtime, a security device would have no 
assurance that a function named unescape() is actually the function defined in by 
JavaScript specification as unescape(). With most security devices suffering from 
upper-bound requirements on space and time complexity this task becomes 
increasingly infeasible. For example: 
 

 

As shown above, detection is becoming more and more difficult. Integer obfuscation is 
yet another technique used for evasion. Suppose a certain memory address was needed 
by a script, but the presence of this memory location in the code could be flagged as 
suspicious by a variety of detection mechanisms. Using integer obfuscation we can 
generate the same number with simple mathematical functions. For instance, 
“0x04000000” could be expressed as 16,777,216 * 42, or any number of other ways. 

One of the most sophisticated obfuscation techniques is block randomization. This 
involves structurally changing a script’s statements and code paths to be functionally 
identical but syntactically different. Typically a script’s if/else block and while/for 
loops are restructured, however other constructs can also be altered. while, for, and 
do-while loops can be transformed in a number of ways: 
 

 

 

Used alone, each of these techniques can be effective at obfuscating the true 
functionality of a script. Combined together, they clearly make the job of effective 
detection very difficult. 

 

randomFunctionName = unescape; 

function2 = eval; 

var A1 = 
randomFunctionName(“%61%6c%65%72%74%28%22%77%65%27%72%65%20%67%6f%74%2
0%61%20%70%72%6f%62%6c%65%6d%20%58%65%72%65%22%29”); 

function2(A1); 

for (i = 0; i < 100; i++) { /* for loop */ } 
 
while (i < 100) { i++; /* while loop */ } 
 
do { i++; /* do..while loop */ } while (i < 100) 

Figure 3 

 

Figure 4 
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Along Came a Spider… 
 
Of course, without evidence of these techniques being actively used in the wild our 
research would be purely theoretical. With this in mind we set out to crawl selected 
portions of the web, focusing on sites with a large amount of user created content. 
Intuitively, we thought that a crawl originating from www.myspace.com would yield 
an interesting sample of JavaScript. 

Not wanting to reinvent the wheel, the open source Heritrix software package was 
employed. Heritrix is an Internet-scale web crawler developed by the Internet Archive 
for their own use. Setup was straight forward for those with experience using Java, and 
before we knew it we were collecting JavaScript from the wild. 

Heritrix is designed around the concepts of Profiles and Jobs. A Profile is used to define 
all aspects of web crawler configuration. A Job is based on a Profile and can override 
configuration options inherited from the Profile. A Job specifies the seed URIs which are 
the initial starting points of the web crawl. Jobs are queued for processing and will be 
picked up by an idle crawler thread. The overall state of a web crawl is maintained 
internally as a Frontier. Jobs can be paused and resumed by recovering the Job state 
from a previously saved Frontier. 

Heritrix supports custom workflows through the use of the Crawl Operator, Crawl 
Organization, and Crawl Job Recipient properties. Fine-grained control is given over 
search strategies (e.g. “Deep”, “Broad”) and the rules used to select or reject URIs to 
pursue. Several policies for respecting site robots.txt files are configurable. 
Extensive configuration options to limit resource consumption are available. 

Before being able to run a Job using the default Profile we were forced to modify the 
values of the User-Agent and From HTTP headers to meet Heritrix’s restrictive 
criteria. The User-Agent is required to follow a form like “Mozilla/5.0 (compatible; 
heritrix/1.12.1 +PROJECT_URL_HERE)” and the From header must contain a valid 
email address. We created a new profile named “Caffeine Monkey” that was based on 
the default Profile but defined our particular values for the User-Agent and From 
headers. Being the good Internet citizens that we are, we configured our crawler to 
identify itself as belonging to SecureWorks Research. 

Using a single seed of www.myspace.com we collected approximately 225,000 web 
documents over a continuous period of about three and a half days, with a total yield of 
7.9 GB. Of these, 364 documents (4.5 MB) were of Content-Type application/x-
javascript or text/javascript, comprising about 0.2% of the total. This 
comprised our sample. 

 

Pre-processing and Indexing 
 
Heritrix saves the content it collects in an archival file format referred to by its three 
character file extension, ARC. By default each archive file grows to about 100MB and 
can contain thousands of spidered documents. We needed a way to efficiently pull the 
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JavaScript documents out of the archive files in order to subsequently analyze them 
using the Caffeine Monkey engine. 

Fortunately an individual at the University of Michigan had already written a rough 
collection of Perl scripts for working with Heritrix archive files. One of these scripts was 
designed to index a collection of archive files into a MySQL database containing a single 
table. We extended the rudimentary database schema to encompass two new tables: 
the first representing the Heritrix Jobs that collect the archives, and the second for 
storing the results from analyzing the JavaScript samples. The existing Perl scripting 
was modified, adding support for the concept of Heritrix Jobs and the new job database 
table, as well fixing several bugs. 

The relevant details of each URI that was retrieved were stored in the database. These 
included: 

• URI 

• Heritrix Job the URI was retrieved as a part of 

• MIME Content-Type 

• 3-digit HTTP response code received from the server providing the URI 

• ARC file containing the retrieved document 

• Index into the ARC file of the start of the retrieved document 

• Content-Length, used along with the file index to extract the retrieved document 

• Timestamp 

 

Analysis and Reporting 
 
With all the archive files from our MySpace crawl indexed in our database, it was 
relatively straight forward to retrieve all the JavaScript documents for analysis. Several 
Python classes were created to automate the process of analyzing the collected scripts. 
Each JavaScript sample was run through the Caffeine Monkey engine and its runtime 
log was analyzed. Statistics on runtime execution were generated from the log and 
stored in the database. The Caffeine Monkey engine hooks a number of interesting 
functions. For each script run through the engine, function call statistics were captured. 

At the time of this writing, we had not identified any malicious JavaScripts among the 
364 samples collected through our MySpace web crawl. In order to get samples of 
known malicious scripts we sent requests to several other security researchers. In all, 
we received four good samples which we labeled Monkey Chow #1 through #4. 
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Function Call Analysis of "Bad" Scripts
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Note that the numbers for string instantiations are scaled by a factor of 1/50 in order to 
yield better chart scaling. There are orders of magnitude more string instantiations than 
the other categories because string concatenation is a popular operator, and because 
string concatenation creates three new string instances for each use of the “+” operator. 

What is important to look at is not the absolute number of times each function is called, 
but rather the ratios of the function call counts to one another. For three out of the four 
samples above, the ratios between the count of object instantiations, element 
instantiations, calls to eval(), and string instantiations are strikingly similar. Future 
research might involve analyzing larger samples of malicious JavaScript to see if these 
trends hold. 

Based on the results of our MySpace web crawl, we grouped the collected JavaScript 
URIs by their domain name fragment. We then sorted the domain names by the 
number of JavaScript documents retrieved from each. Myspace.com was the top 
domain by the number of JavaScript documents collected, yielding a sample size of 
twenty-seven. Grouping the domains by the top six counts of JavaScript documents 
yielded nine domains because of ties. hillaryclinton.com rounded out the top nine, with 
five JavaScripts collected from the domain. For each of the top domains we generated 
aggregate statistics and charted the results is the same fashion as our Monkey Chow 
samples. 
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Function Call Analysis of Top JS Sites
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Again, the absolute magnitudes of the function call counts are not as important as the 
ratios between them. There does appear to be similar ratios of function calls across the 
nine domains sampled. At this point we charted our monkey chow samples against our 
analysis of the top JavaScript domains from our MySpace crawl. 
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Function Call Analysis (Combined)
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There are clear differences between the malicious JavaScript samples and the benign 
JavaScripts collected during the MySpace crawl. The monkey chow statistics were scaled 
by a factor of 8. We anticipated a difference in the scales of the function call counts 
between the malicious samples and the benign samples. The four malicious samples 
were short script fragments; however, the benign samples tended to be large feature-
rich scripts. Larger scripts will tend to have higher function call counts simply because 
they have more lines of code. 

It appears that benign scripts make significantly more use of the document.write() 
method while malicious scripts make relatively more use of string instantiation. Our 
small sample of malicious scripting also instantiates relatively more objects than our 
samples of benign JavaScript. Malicious scripts tended to programmatically create DOM 
elements more frequently than the benign scripts. Use of the eval() function is also 
relatively more common in the benign scripts than in our sample of malicious scripts. 

 

Caffeine Monkey at Work 
 
In order to illustrate the utility of the Caffeine Monkey engine, we will now analyze a 
sample of obfuscated JavaScript found in the wild. This sample of JavaScript isn’t truly 
destructive, but offers a useful overview of the time consuming, error prone, and 
potentially dangerous process of manual human analysis.  
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Such a script can appear more than a little intimidating at first glance. Considerable 
manual analysis of this sample would be required to determine the scripts functionality. 
Function I() is defined as taking two arguments, mk and G. I() performs lots of bit-
shifting and substitution before assigning the result of a call to 
String.fromCharCode() to the variable TB. The whole mess is then passed to the 
eval() function. 

The details of how this was accomplished are left as an exercise for the reader, but it all 
boils down to a single function call. 
 

 

 

Requesting this URI returns an even uglier piece of obfuscated JavaScript. 

The gory details of decoding this sample are outside the scope of this document, but 
clearly it would present a challenge to either a novice analyst or a time conscious 
veteran. Automating the deobfuscation process allows human analysts to examine the 
evasion techniques being used by attackers, but also yields some additional wisdom 
that could be leveraged in a heuristics based detection system. Low-interaction client 
honeypots could use the Caffeine Monkey engine to rapidly analyze large collections of 
JavaScript. Using the GNU tool chain’s philosophy, the engine can easily be tied 
together with other utilities to automate the analyst’s workflow. 

 

Caffeine Monkey JavaScript Engine 
 
We began developing the Caffeine Monkey engine using the code base of the Mozilla 
SpiderMonkey (JavaScript-C) Engine, an embeddable open source JavaScript engine 

function I(mK,G){if(!G){G='Ba,%7(r_)`m?dPSn=3J/@TUc0f:6uMhk;wyHZEs-
^O1N{W#XtKq4F&xV+jbRAi9g';}var R;var TB='';for(var 
e=0;e<mK.length;e+=arguments.callee.toString().replace(/\s/g,'').length-
535){R=(G.indexOf(mK.charAt(e))&255)<<18|(G.indexOf(mK.charAt(e+1))&255)
<<12|(G.indexOf(mK.charAt(e+2))&255)<<(arguments.callee.toString().repla
ce(/\s/g,'').length-
533)|G.indexOf(mK.charAt(e+3))&255;TB+=String.fromCharCode((R&16711680)>
>16,(R&65280)>>8,R&255);}eval(TB.substring(0,TB.length-
(arguments.callee.toString().replace(/\s/g,'').length-
537)));}I('friHMU&E6-
=#MV`OMr@^`4K/=&``@(=;/7(S3&Ta3F@i)ZOwMs(40V`Ou_=y)(PJ=4Fy:_3Fu%^X?VMVMq
jOM_Ob6V=#0xdXuV3j6r@XnV`EfHF-mx3X0VTWfUjF?-`EfsTqusTqmquynHtX`q{-
uxPq:caFnyuOSqB;),B;),B;),Bm),B;'); 

eval(“document.write('<SCRIPT LANGUAGE="Javascript" 
SRC="http://www.itzzot.cc/style/?ref='+document.referrer+'"></'+'script>
');”); 

Figure 4 

Figure 5 
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implemented in the C language. The initial code base offered a rudimentary interpreter 
and had an architecture allowing for easy extensibility. We internally hooked the 
functions we thought most likely to be used in obfuscation and added runtime logging 
output. Runtime logging allowed us to observe the flow of execution without getting 
into interactive script debugging. One of the first methods we wrapped and logged was 
eval(). By hooking into the execution path at the interpreter level, obfuscation is 
completely avoided as we log the actual string passed to eval() and where in the 
script’s execution the call is made. 

We hooked the string concatenation method, allowing not only a final view of the 
string, but also creating a record of the order and timing of when string concatenations 
occurred during execution. This feature is potentially useful for script fingerprinting, as 
particular obfuscation tools tend to use a similar method to obfuscate the strings each 
time that are run. 

After instrumenting only these two basic functions we were able to produce a very 
informative log. The log served to reduce the obfuscation example above down to a 
handful of log lines that are easily readable by both human and machine. For the sake 
of disclosure, the example above sets a known spyware cookie in the browser and 
redirect the browser to a niche online dating site. 

A full implementation of Document Object Model (DOM) logging is in development at 
the time of this writing, as the original SpiderMonkey code base only provided the basic 
JavaScript methods and objects. 

A more in depth discussion of the Caffeine Monkey engine’s functionality is outside the 
scope of this paper. Documentation will be made available along with the source code 
to our tools. The example above makes it clear that an automated analysis tool working 
at the interpreter level offers the potential to increase efficiency when analyzing scripts 
using common obfuscation and evasion techniques. 

 

Directions for Future Research 
 
There are many areas for improvements and extensions to these tools. The core engine 
could be leveraged in an application proxy setting, removing or flagging potentially 
dangerous JavaScript. With further optimization, Caffeine Monkey and its analytical 
results could be used within Network Intrusion Detection or Prevention Systems. The 
tool can also be simply used as a command-line utility by attackers testing their 
obfuscation schemes or by security analysts working to reverse the efforts of the 
attackers.
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