Server-side approaches to
clickjacking detection

Brad Hill, PayPal
WebAppSec WG F2F, 3 April 2012



Drawbacks of X-Frame-Options

* |[FRAMES desirable for many key clickjacking
attack cases. (Like, Pay, Follow, +1) Users
want in-context information without
disclosure to embedding origin

* Allow-From doesn’t help — adversary is
potentially the same as the “legitimate” origin

* Also doesn’t stop pop-under-and-close attacks



Drawbacks of client-enforced
screenshot approach

Incomplete coverage of attack scenarios
— Fake mouse cursor, attention stealing attacks

False positives
User-interaction to resolve false positives

Low deployment rates



Server side approaches?

 What can we do today without user-agent
support?

e Can we profitably combine these techniques
with user-agent mechanisms?



Adaptive Ul Randomization

* Clickjacking attacks are still subject to the read
restrictions of the same-origin policy

e Attack setup relies on a consistent layout of
the victim page

e What if we randomize the location of the
button?



Naive Randomization

e Attacker can send multiple clicks to possible
locations

* Attacker can profit even at a small success rate

* Few interfaces allow randomization among a
large number of locations without creating a
Very poor user experience



Refining Randomization

* Among a set of possible locations for a
randomized placement:

— Record missed clicks (to locations where the
button is not)

— Record just the first click, hit or miss

— Group first-click statistics by the target of the
action (“bucketize”)



Detect Clickjack Detect Clickjack

b e e




“Bucketizing”

* Associate possible clickjacking targets with a
beneficiary or beneficiaries

* Perform back-end fraud analysis based on
these buckets

 Examples:
_ llpay” _> payee

— “like, +1, etc.” -> social graph node



Look at first-click miss rates,
bucket-by-bucket

* A given interface will have a discoverable

natural rate of missed clicks, but it should be
small

* |f clickjacking attempts are made on that
interface, miss rate will be (1 - 1/N) where N is
the number of possible randomized
placements

(also works for pop-under-and-close attacks)



Campaignh detection

* Can’t distinguish individual clickjacking
attempts

* But a campaign of clickjacking will quickly
show up — the missed click rate for that bucket
will rise above the natural missed click rate



Sensitivity of Detection

100(M + 26) = M(100 — x) + (x * (1 - 1/N))

Where:

o = standard deviation for natural missed click
distribution

M = natural miss rate
N = number of randomized locations
x = clickjacking attempts per 100 clicks



Sensitivity of Clickjacking Detection
at two standard deviations from natural missed click rate

Clickjacking attempts per 100 clicks

16

14

12

10

3 4

5

6

N (number of randomized locations)

e M=3%, 0=1%

M=25%, 06=2%



Pretty good...

e And it’s better than it looks.

* As N increases, the chances of the success of
each attempt goes down.

* Increase in natural conversion rate possible
before detection is even lower:



Percentage increase in conversion

10

Conversion Rate Improvement
with clickjacking before detection at 20

3 4 5
N (number of randomized locations)

e M=3%, 0=1% M=25%, 0=2%

6



Results

 Randomizing among as few as 3 locations, if
the natural missed click rate is low, we can put
the attacker at risk of detection if they
attempt to increase their natural conversion
rate as little as 1% through clickjacking.



Adaptive Response

 What if rivals mount clickjacking campaigns
against their competition to cause a DoS

* |Instead of turning off service, can trigger a switch
to a functional, if less optimal, interface that is
more clickjacking resistant

— Popup in dedicated context with X-Frame-Options
— Add a CAPTCHA or re-verify credentials

— These responses can be completely automated, and
combined with manual investigation according to
standard anti-fraud practices



Weaknesses

Doesn’t work for complex Uls with lots of buttons
(webmail, etc) or no room for randomization
(“NASCAR” interfaces)

Doesn’t work where bucketization isn’t possible
(privacy attacks like Flash camera settings)

Needs sophisticated back-end analysis and fraud
response processes

Can’t stop targeted or small-scale attacks

Attacker can try to pollute the natural missed
click rate of their own or a large population of
buckets at low cost



Attacks: The Sleepy Frog

Click the Sleepy Frog to WIN!




Click the Sleepy Frog to WIN!
roooN N Pa OW




Combining with Client-Side Screenshot
Approaches

* “Sleepy Frog” attack easily detected by
screenshot approaches

* Ul Randomization effective against attention
stealing and phantom cursor attacks



Combining with Client-Side Screenshot
Approaches

* Add a feedback loop to apply statistical
approach to client-side enforcement

e Resource advertises a feedback URI for
suspected clickjacking

* Front-end screenshot technology allows clicks
to go through, but reports to the target server
that it suspects a clickjacking attack



Advantages:

* False positive problem disappears

— Each site can find its own rate of false positives and
use back-end fraud response processes to deal with
suspected clickjacking

— No need to pop-up a confusing dialog to the user

* Small install base can help protect everyone

— Suspected clickjacking from a small install base of
user-agent support can add good evidence to buckets

— Detecting and disabling attackers protects even users
that can’t detect or prevent the attacks



Conclusions

 Randomization isn’t for everyone
— High cost, only usable in certain Uls
— But the primary attack targets are in its “sweet
spot”
 Combines well with client-side techniques

* Areporting loop + back-end fraud analysis
approach can remove some weaknesses of
heuristic client-side techniques, even if no
randomization is applied



