
The golden age of
hacking

OS

UNIX

GNU/Linux

UNIX access control

What Security Goals Does
an Operating System Provide?

• Goal 1: Enabling multiple users securely share a computer
– Separation and sharing of processes, memory, files, devices, etc.

• How to achieve it?
– Memory protection
– Processor modes
– Authentication
– File access control

• Goal 2: Ensure secure operation in networked environment
• How to achieve it?

– Authentication
– Access Control
– Secure Communication (using cryptography and/or signatures)
– Logging and Auditing
– Intrusion Prevention and Detection (IPS/IDS)
– Recovery

Memory Protection:
access control to memory

• Ensures that one user’s process cannot access
other’s memory
– http://en.wikipedia.org/wiki/Memory_protection
– Segmentation of memory

• CS, DS, SS, etc.
– Paged virtual memory
– Protection keys
– …

• Operating system and user
processes need to have
different privileges

• User example: priorities, scheduling etc.
– Static vs. dynamic priority

Linux priorities and polices

19-20

1

Higher

 Dynamic range goes from -20 (highest priority) to 19 (lowest)

 Default is 0

 Console commands nice and renice (only root can rise priority)

 nice - run a program with modified scheduling priority

 renice - alter the priority of running processes

CPU Modes
(a.k.a. processor modes

or privilege)
• User mode

– Access to memory is limited, cannot execute some instructions,
e.g., disable interrupts, change arbitrary processor state, access
memory management units

• System mode (privileged mode, master mode, supervisor
mode, kernel mode)

– Can execute any instruction and access any memory location,
e.g., accessing hardware devices, enabling and disabling
interrupts, changing privileged processor state, accessing
memory management units, modifying registers for various
descriptor tables

• Transition from user mode to system mode must be done
through well defined call gates (system calls)

• Reading: http://en.wikipedia.org/wiki/CPU_modes

http://en.wikipedia.org/wiki/CPU_modes

System Calls

• Guarded gates from user mode (space, land) into kernel
mode (space, land)

– Use a special CPU instruction (often an interruption), transfers
control to predefined entry point in more privileged code; allows
the more privileged code to specify where it will be entered as
well as important processor state at the time of entry

– The higher privileged code, by examining processor state set by
the less privileged code and/or its stack, determines what is
being requested and whether to allow it

– Reading: http://en.wikipedia.org/wiki/System_call

• Linux 2.6 vmsplice() system call - Local Root Exploit!
– Basically a kernel buffer overflow
– Affects Linux 2.6.17 - 2.6.24.1
– man vmsplice > splice user memory pages into a pipe

• http://it.slashdot.org/article.pl?sid=08/02/10/2011257#
• http://lwn.net/Articles/268783/

http://en.wikipedia.org/wiki/System_call
http://it.slashdot.org/article.pl?sid=08/02/10/2011257
http://lwn.net/Articles/268783/

Kernel space vs. User space

• Part of the OS runs in the kernel mode
– Known as the OS kernel

• Other parts of the OS run in the user mode,
including service programs (daemon programs),
user applications, etc.
– They run as processes

– They form the user space
(or the user land)

• Difference between kernel mode and processes
running as root (or superuser, administrator)?

Processes, threads and CPU

Monolithic kernel

• One big kernel provides all services, e.g., file
system, network services, device drivers, etc.
– All kernel code run in one address space and can

directly affect each other
– E.g., Linux 2.6.x kernel has about 6 millions of code
– Pros: efficiency
– Cons: complexity, bugs in one part affects all

• Examples
– UNIX-variants

• Kernels with loadable kernel modules are still
monolithic

History of UNIX Family of Operating Systems

What is GNU/Linux?
• GNU system tools and applications

– System programs, user programs, compilers, etc.
• GNU common system libraries

– Contains functions that applications use system calls on to communicate
with the kernel, example: libc, pthread

– Tip! ldd <executable file> shows which shared libraries are compiled in
• Linux (kernel)

– 1991 Linus Torvalds, Intel 80386 processor
– Learn more: http://kernelnewbies.org

• Open Source (GNU) + free UNIX-clone = GNU/Linux
• Advantages

– Stable, scalable, “swiss armyknife”, modular
– Performance, economical on resources
– Open source, large number of free software/drivers
– Programming development, network handling
– Embedded possibilities, 10MB - http://tinycorelinux.com/

• Disadvantages
– Support? Drivers? Security? No unified distributions…
– High learning threshold?

• Windows is for sure far more complex under the hood!

http://kernelnewbies.org/

http://www.kde-files.org/content/show.php?content=46315

http://www.kde-files.org/content/show.php?content=46315

Linux kernel config

Unix GNU/Linux folder tree
• Almost everything is referenced as a file in Linux/Unix

• /bin - Common binary files
• /boot - Linux kernel, boot loader etc.
• /dev - Device files, interface to all hardware in the system
• /etc - All configuration files for hardware, programs och start up scripts lies here
• /home - Home folder for users on the system lies here
• /lib - Place where library files (*.so, *.dll in Windows) and kernel modules is located
• /proc - Peek into the kernel, information about running programs and installed

hardware
• /sbin - Superuser (root) users binaries that only he/she should be able to run
• /usr - Folder where all installed programs are put, mirror of the folder root ”/”
• /var - Folder for variable files as /var/log (log files) and /var/spool (print que, mail

etc.).

sbin

Daemons and enviroment
• /etc/init.d scripts and symbolic links in /etc/rc?.d

– Start up (S#) and stop scripts (K#), run-levels (the ?: 0-6, S)
– S = single user mode

• Inetd, Xinetd
– The Internet super server that run other daemons
– Port numbers defined

in /etc/services
– Inetd config in

/etc/(x)inetd.conf
• Cron daemon

– crontab -e / -l
• env

– set/unset variables etc.
– Do not put ‘.’ in path!

Most used commands
• ls list all files, lsof list all open files (will list almost everything!)
• cd .. go up one level in the directory structure. Using <directory>

instead goes to that directory
• cp -r (recursive) directory name copies a whole directory
• mkdir make directory
• rmdir remove directory
• rm -r removes all underlaying directories and files
• pico, nano or vi <filename>, edits the file filename
• mv move or rename a file or directory
• df -h shows free disc space in megabyte
• du -h shows disc usage
• less <filename>, shows what a file contain
• kill -HUP pidnr terminates a process, killall <process name>
• ps -aux list processes
• man <command name> shows the manual for the command
• locate -b <filename> find a file by name (which match a pattern)

Accounts and groups
• /etc/passwd

– Login name, uid, gid, GECOS info (full name, extra info etc.),
home directory, login shell

– /etc/shadow
• Guarded file

1. user name, 2. hashed password, 3. last changed, 4. minimum days
valid, 5. maximum …, 6. warn days passwd expire, (7. inactive, 8. expire)

“1”=MD5, “5”=sha-256, “6”=sha-512, (man shadow, crypt (3))

• /etc/group
– 1. Group name, 2. Password, 3. gid,

4. Group members

• Important configuration files
– /boot/grub/grub.conf (/etc/lilo.conf), /etc/fstab, /etc/modules

Trusts, remote access and logs
• Trusts

– Based on IP-address
– Use r-commands without passwd

• Remote access
– Do not use rlogin, rcp, rsh, telnet, NFS
– Use ssh (ssh2), scp instead

• Logs and auditing
– /var/log/auth.log
– /var/log/messages
– /var/log/syslog
– /var/log/*appliction*/***

• Commands that operate on some of the log files
– w – who is logged in and what they are doing
– last – list of last logged in users
– lastlog - report last login for all users
– dmesg - print or control the kernel ring buffer

/etc/syslog.conf - configuration file for syslogd
e.g. messages and syslog

Basic Concepts of UNIX Access Control:
Users, Groups, Files, Processes

• Each user has a unique UID
• Root (super user) account always got UID 0
• Users can belong to multiple groups

• Processes are subjects
– Associated with uid/gid pairs, e.g., (euid, egid), (ruid, rgid), (suid,

sgid) - Effective, Real and Saved

• Objects are files: each file has the following information
– owner (user account)
– group (owner group)
– 12 permission bits

• read/write/execute for owner, group and everyone else
• setuid, setgid, sticky bit

Unix GNU/Linux files and dirs

• Upper & lower case matters in directories and filenames

ls -al show all user rights in a directory, example:

-rwxr--rw- 1 hjo users 4746 9 jan 10 13:46 test

r = read access, w = write access, x = execute access
– Change owner rights (order is UserGroupOther)

chmod g+w test
-rwxrw-rw- 1 hjo users 4766 9 jan 10 13:46 test

chmod 766 test
(faster way to do it)

– Change owner:group

chown hjo:hjo test

Permissions Bits on Files & Directories

• Read controls reading the content of a file
– i.e., the read system call

• Write controls changing the content of a file
– i.e., the write system call

• Execute controls loading the file in memory and execute
– i.e., the execve system call

• Many operations can be performed only by the owner of the file

• Read bit allows one to show file names in a directory
• The execution bit controls traversing a directory

– Does a lookup, allows one to find the inode # from a file name
– chdir(path) system call to a directory requires execution rights

• Write + execution control creating/deleting files in the directory
• Accessing a file identified by a path name requires execution to all

directories along the path
• In UNIX, access rights on directories are not inherited

The setuid, setgid and sticky bits
http://en.wikipedia.org/wiki/Setuid

• Change an executable file to be setuid for a specific user
chmod 4755 filename

• X for owner will be changed to S as: -rwsrw-rw-
find / -uid 0 -perm -4000 -print (find all setuid programs)

• Extreme care must be taken writing/having setuid root programs!

http://en.wikipedia.org/wiki/Setuid

Process User ID Model in Modern UNIX
Systems

• Each process has three user IDs
– Real user ID (ruid) → owner of the process
– Effective user ID (euid) → used in most access control decisions
– Saved user ID (suid) → used for save and restore of the uid

• And three group IDs
– Real group ID
– Effective group ID
– Saved group ID

• When a process is created by fork
– It inherits all three users IDs from its parent process

• When a process executes a file by exec
– It keeps its three user IDs unless the set-user-ID bit of the file is

set, in which case the effective uid and saved uid are assigned
the user ID of the owner of the file

http://en.wikipedia.org/wiki/User_identifier

Demo http://en.wikipedia.org/wiki/Setuid

[bob@foo]$ cat /etc/passwd

alice:x:1007:1007::/home/alice:/bin/bash

bob:x:1008:1008::/home/bob:/bin/bash

[bob@foo]$ cat printid.c

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

int main(void) {

 printf(

 "Real UID = %d\n"

 "Effective UID = %d\n"

 "Real GID = %d\n"

 "Effective GID = %d\n",

 getuid (),

 geteuid(),

 getgid (),

 getegid()

);

 return 0;

}

[bob@foo]$ gcc -Wall printid.c -o printid

[bob@foo]$ chmod ug+s printid

[bob@foo]$ su alice

Password:

[alice@foo]$ ls -l

-rwsr-sr-x 1 bob bob 6944 2007-11-06 10:22 printid

[alice@foo]$./printid

Real UID = 1007

Effective UID = 1008

Real GID = 1007

Effective GID = 1008

[alice@foo]

The Need for setuid/setgid Bits

• Some operations are not modeled as files and
require user id = 0
– Halting the system
– Bind/listen on “privileged ports” (TCP/UDP ports below

1024)
– Change password
– Non-root users need some if these privileges

• File level access control is not fine-grained
enough

• System integrity requires more than controlling
who can write, but also how it is written

Security Problems of Programs with
setuid/setgid

• Problem programs are typically setuid root

• Violates the least privilege principle
– Every program and every user should operate

using the least privilege necessary to
complete the job

• Why is this bad?

• How would an attacker exploit this
problem?

• How to solve this problem?

Password recovery with physical access
in GNU/Linux (single user mode)

1. Reboot (try [Ctrl]+[Alt]+[Delete] or other harder technique)
 2. During the LILO prompt (press ctrl) type: (kernel/image name) init=/bin/sh rw

boot: linux init=/bin/bash rw
 3. This should start the Linux kernel, with the root file system mounted in

read/write mode. The cool thing is that none of your normal init processes (like
the gettys that ask for your name and call the login program) will be started.

 4. (Maybe) mount your /usr file system with a command like: # mount /usr
 5. Change your root password with a command like: # passwd
 6. Flush the cache buffers: # sync; sync; sync
 7. (Maybe) unmount /usr: # umount /usr
 8. Remount the root fs in read-only mode: # mount -o remount,ro /
 9. Let init clean up and reboot the system: # exec /sbin/init 6

• Works with GRUB as well (press e in boot menus until you can
edit)

– boot: /boot/linuxkernel root=/dev/sda1 rw single init=/bin/bash
– http://linuxgazette.net/107/tomar.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

