The golden age of
hacking

OS
UNIX
GNU/Linux
UNIX access control

What Security Goals Does
an Operating System Provide?

Goal 1: Enabling multiple users securely share a computer

— Separation and sharing of processes, memory, files, devices, etc.
How to achieve it?

— Memory protection

— Processor modes

— Authentication

— File access control

Goal 2: Ensure secure operation in networked environment
How to achieve it?

— Authentication

— Access Control

— Secure Communication (using cryptography and/or signatures)

— Logging and Auditing

— Intrusion Prevention and Detection (IPS/IDS)

— Recovery

Memory Protection:
access control to memory

* Ensures that one user’s process cannot access
other’'s memory
— http://en.wikipedia.org/wiki/Memory_protection
— Segmentation of memory
* CS, DS, SS, etc.
— Paged virtual memory
— Protection keys

— ... With resource partitioning, a system designer
can place software processes into separate

? compartments and allocate each compartment

* Ope ratl ng SySte m a nd use r & guaranteed portion of memory and CPU time.
This approach prevents malicious or poorly written

p rocesses n eed to h ave processes from monopolizing resources needed

by other processes.

different privileges

* User example: priorities, scheduling etc.
— Static vs. dynamic priority

N e M

'i_=:||_—|-—l-—q|:||—l-—-g|-:|

Linux priorities and polices

Dynamic range goes from -20 (highest priority) to 19 (lowest)
Default is 0

Console commands nice and renice (only root can rise priority)

nice - run a program with modified scheduling priority

renice - alter the priority of running processes

19

SCHED FIFO sCHED RR
. Eealtime processes
| Mormal processes

Dimm 1 Eriuritﬁ

-20 N 19
S .
]

Higher

A

Least privileged

CPU Modes
(a.k.a. processor modes

or privilege)

¢ USGI’ mOde Applications

— Access to memory is limited, cannot execute some instructions,

e.g., disable interrupts, change arbitrary processor state, access
memory management units

System mode (privileged mode, master mode, supervisor
mode, kernel mode)

— Can execute any instruction and access any memory location,
e.g., accessing hardware devices, enabling and disabling

interrupts, changing privileged processor state, accessing

memory management units, modifying reglsters for various
descriptor tables

Transition from user mode to system mode must be done
through well defined call gates (system calls)

Reading:

Ring 1

Ring 0

Kernel

: - Most privileged
Device drivers

Device drivers

http://en.wikipedia.org/wiki/CPU_modes

System Calls

* Guarded gates from user mode (space, land) into kernel
mode (space, land)

— Use a special CPU instruction (often an interruption), transfers
control to predefined entry point in more privileged code; allows
the more privileged code to specify where it will be entered as
well as important processor state at the time of entry

— The higher privileged code, by examining processor state set by
the less privileged code and/or its stack, determines what is
being requested and whether to allow it

— Reading:
* Linux 2.6 vmsplice() system call - Local Root Exploit!

— Basically a kernel buffer overflow
— Affects Linux 2.6.17 - 2.6.24 .1
— man vmsplice > splice user memory pages into a pipe

http://en.wikipedia.org/wiki/System_call
http://it.slashdot.org/article.pl?sid=08/02/10/2011257
http://lwn.net/Articles/268783/

Kernel space vs. User space

 Part of the OS runs in the kernel mode
— Known as the OS kernel

* Other parts of the OS run in the user mode,
including service programs (daemon programs),

user applications, etc. UNIX or Linux System

— They run as processes

— They form the user space
(or the user land)

The Kernel

Hardware (disks,
network interfaces, etc.)

* Difference between kernel mode and processes
running as root (or superuser, administrator)?

Processes, threads and CPU

-

18 Windows Task Manager | = | =] |&r

File Options View Help
Applications | Processes | Services Performance Metworking | Users

CPU Usage CPU Usage History

Memory Physical Memory Usage History

Physical Memory (MB) System

Total a072 Handles 28743

Cached 2635 Threads 1147

Available 4324 Processes 105

Free 2249 Up Tirne 1:17:43:03
Commit (GB) 5/15

Kernel Memary (MB)

Paged 265

MNonpaged 111 E [Resource Monitor, .. {

Processes: 105 CPU Usage: 2% Physical Memony: 40%
N ———————— |

Process

Heap

Static

Thread

Registers

Stack

Thread Thread
Registers Registers
Stack Stack

Monolithic kernel

* One big kernel provides all services, e.g., file
system, network services, device drivers, etc.

— All kernel code run in one address space and can
directly affect each other

— E.g., Linux 2.6.x kernel has about 6 millions of code
— Pros: efficiency
— Cons: complexity, bugs in one part affects all

* Examples
— UNIX-variants

* Kernels with loadable kernel modules are still
monolithic

History of UNIX Family of Operating Systems

1970 1980 1990 2000 Time
— ———————————— — — p—— e ———

— FreeBSD 6.2
. ——=| NetBSD 3l

BSD family
—— = OpenBSD 4.1

—m= BSD (Berkeley Software Distribution)
Bill Joy
—e| SUNOS (Stanford) Solaris (SUMN) 10
Darwin
»[NextStep 3.3 IFFII IR IS ST il
* = Mac OS 10.4.6
! Xenix OS
Microsoft/SCO
GNU Project GMU
Richard Stallman |—|-
I_.__Llnux
Minix | Linus Torvalds 3.1.7a
Andrew S, Tanenbaum C T T T ° -
Unix Time-5haring Systemn (Bell Labs) 10

Ken Thompson

Dennis Ritchie (C language) M
ALK (1B S5 2

- Llnixwiregl.lnlveliﬁcl}‘ 7.1.4 MP2|
>| IRIX IILSGI! 6.5.30 i

System Il & V family

daNn>=0ID

What is GNU/Linux?

GNU system tools and applications
— System programs, user programs, compilers, etc. "“
GNU common system libraries

— Contains functions that applications use system calls on to communicate
with the kernel, example: libc, pthread

— Tip! Idd <executable file> shows which shared libraries are compiled in
Linux (kernel)

— 1991 Linus Torvalds, Intel 80386 processor
— Learn more:

Open Source (GNU) + free UNIX-clone = GNU/Linux
Advantages

- Stable, scalable, “swiss armyknife”, modular
Performance, economical on resources

- Open source, large number of free software/drivers

- Programming development, network handling

- Embedded possibilities, 10MB - http://tinycorelinux.com/
Disadvantages

- Support? Drivers? Security? No unified distributions...

- High learning threshold?
Windows is for sure far more complex under the hood!

http://kernelnewbies.org/

Yet Another Linux Distribution Timeline

I 1991 1 1992 I 1993 I 1994 1 1995 I 1998 I

g
§
g
3
i
g
§
§

. eptember , 2001 D145:40 UTC|

e
Linspire
Cp

o
EE
Yoo o Uk
- Wov. 25, 1992 Alpha. d Oci 20 2004
Debian V&
DEBIAN-T1 s { Jwowmemr ey +

SImplyMEPIS

: B i

\ Way 75, 2002
3 amn S x (0!
i [=ErET

: = 1 T
Corel yt" Xandros buys Corel
v 1.0 Now 15, 1890 o Aug. 29, 2001

I muLinux
LRSSy e

Mard Deve anct

cabar demegs

g 18 001 Amouscsd

ept. 17 001 Seurce avatatie
0 binarias.

AL g
L <Frrr
“ o) =) A / ;

otz 02 Bash, goe and ethars

T 1 f T T S T v ST 3 e VIR
Py 22 035 % Widows, Puog
003 was preny ueabie® H e o)
1130 basted ! o1 M 1, 2002
OE Jun 20, BT
Interim) Linux From Scratch (LFS)
= ez f H oo e
ES i Enoen : : |
Avp 2, 1901 b 07 O 18, 9 T A
Stampade ;
Toc o, 1697 =
(LST) Distribution i
1 s
aldera “The SCO Group Bty o B
¥ 10 Natwork Deskiog Fo 5 199 = SC;'O"W“ s suspercs L actes My
Ya scnees by s e 15,205
Dec, 2001 T e an 200
Conectiva . 24, 2005 ManceakosoR aires Conechia
G 1197
B Mandake (
[eeET o [rams changos: A 7, 2668
PCLInux0S
/ VLo a2z G0
Trustix
V101 Wiy 73, 2000
nGarde
TTB T
e SELinux }
(Sl oy H
Flod Hat Linuz Fi i
e AR T 1 T =
: \ contos
Deutsche Linuz Distribution (DLD) | \ Ao Hat acqures Dot . \ '.!.,o—
S zovarae
3 T \! Do 1968 H
; [
Red Flag &
IO BT H
ke H \ o) | atinux
1| ri ¥ 1.1 g, 18, 108 4 O | o changed . 20, 2008
vetiow Dog U /|~y : e
Turbotinux . =
VN5, T :
consetum smnounced 5~ UnitodLinux
= oz L
i [Jg Frugatware
i Vot E
H slack d, Zenwaik
H VoI T o AL
ol ‘a‘numm-mma
5:
g Movel buys SUSE
$SE = VTR ¥ e 260 “Psuse
Juriz u s | Noveil SLED
et i g 10 Mov, 5, 2004 (SUSE U Enteorie Doop)
! SuN DS vzoEOL
e Sop. 30,2007 T 25 2006
1391 1 1982 1 1383 1 1384 1 1585 1 1396 1 1387 1 1 1589 1 2000 1 [I S | 2002 1 2003 1 2004 1 2005 1 2008]

Varsion 101 by P@esenl s (Opan Soucs Merations)
inspred by A Sandovars Linas asi bampo Cidrucienss Linia”
A i micrbtskniogias o and Ly st el by
- oS3l Zom AR e ks o1 eete i shom ph Tcardant=b4218

http://www.kde-files.org/content/show.php?content=46315

Linux kernel config

config — Linux-i386 2.6.39.4 Kernel Configuration

Linux-i386 2.6.39.4 Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus —>». Highlighted letters are hotkeys.
Preszzing <Y> includes, <N> excludes, <M> modularizes features. Press <{Esc><{Esc?> to exit, <{7> for
Help, <-> for 3earch. Legend: [=] built-in [1 excluded <M> module < > module capable

General setup -—>
[#]1 Enable loadable module support -—1>
[+#]1 Enable the block layer -—1>

Irocessor type and features —7>

Fower management and ACPI options —3

Bus options (PCI etc.) —7>

Executable file formats ~ Emulations —23>

Metworking support —3

Device Drivers —3>

Firmware Drivers —3>

File systems —1>

Kernel hacking -—3>

Security options —>

Cryptographic API —>

Uirtualization -——2>

Library routines -—3>

Load an Alternate Configuration File
Save an Alternate Configuration File

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+

¢ Exit > < Help >

e —

Unix GNU/Linux folder tree

* Almost everything is referenced as a file in Linux/Unix

* /bin - Common binary files

* /boot - Linux kernel, boot loader etc.

* /dev - Device files, interface to all hardware in the system

* /etc - All configuration files for hardware, programs och start up scripts lies here

* /home - Home folder for users on the system lies here

* /lib - Place where library files (*.so, *.dll in Windows) and kernel modules is located

* /proc - Peek into the kernel, information about running programs and installed
hardware

* /sbin - Superuser (root) users binaries that only he/she should be able to run
* /usr - Folder where all installed programs are put, mirror of the folder root /"

. /var)- Folder for variable files as /var/log (log files) and /var/spool (print que, mail
etc.).

/

bin dev etc home Tib mnt proc tmp wusr var sbin

,/’//rﬁ\“xﬁ //’/THH““\:H\“E\

passwd group shadow bin man sbin log

Daemons and enviroment

/etc/init.d scripts and symbolic links in /etc/rc?.d
— Start up (S#) and stop scripts (K#), run-levels (the ?: 0-6, S)
— S = single user mode

Inetd, Xinetd

— The Internet super server that run other daemons
UNIX or Linux System

— Port numbers defined

in /etc/services o
— Inetd config in nit st
- /etc/(x)inetd.conf Cﬁ%ﬁ?ﬁ{ﬁ%ﬁ&% { e
including
ron daemon Listens for network Qg\‘;}gl(and
—_ Crontab -e / -I traffic for nu;‘gre\ri%gz{ xinetd
e n V When t][afﬁc
— set/unset variables etc. e tening
_ D t t () - th' for, xinetd starts
o not put “.’ in path! g process

Most used commands

Is list all files, Isof list all open files (will list almost everything!)

cd .. go up one level in the directory structure. Using <directory>
instead goes to that directory

cp -r (recursive) directory name copies a whole directory
mkdir make directory

rmdir remove directory

rm -r removes all underlaying directories and files

pico, nano or vi <filename>, edits the file flename

mv move or rename a file or directory

df -h shows free disc space in megabyte

du -h shows disc usage

less <filename>, shows what a file contain

kill -HUP pidnr terminates a process, killall <process name>
ps -aux list processes

man <command name> shows the manual for the command
locate -b <filename> find a file by name (which match a pattern)

Accounts and groups

* /etc/passwd

— Login name, uid, gid, GECOS info (full name, extra info etc.),
home directory, login shell

— /etc/shadow vivek:1fnfffc$pGteyHdicpGOfffXX4ow#5:13064:0:99999:7:::

* Guarded file T Jv Jr J' i' I

1. user name, 2. hashed password, 3. last changed, 4. minimum days
valid, 5. maximum ..., 6. warn days passwd expire, (7. inactive, 8. expire)

“1’=MD5, “$5%$"=sha-256, “$6%$"=sha-512, (man shadow, crypt (3))

¢ /etC/group cdrom:x: 24 vivek,studentl3, raj
— 1. Group name, 2. Password, 3. gid, ' 0
4. Group members 1 |
1 2 3 4

* Important configuration files
— /boot/grub/grub.conf (/etc/lilo.conf), /etc/fstab, /etc/modules

Trusts, remote access and logs

Trusts
— Based on IP-address

— Use r-commands without passwd
Remote access BOB ALICE

Alice’s name is in

— Do not use rlogin, rcp, rsh, telnet, NFS Bob’s /etc/hosts. equiv

— Use ssh (SSh2), scp instead or ~/.rhosts file

Logs and auditing

— /var/log/auth.log
— /var/log/messages /etc/syslog.conf - configuration file for syslogd

— Ivar/log/syslog e.g. messages and syslog
— /var/log/*appliction*/***
Commands that operate on some of the log files
— w — who is logged in and what they are doing
— last — list of last logged in users

— lastlog - report last login for all users
— dmesg - print or control the kernel ring buffer

Basic Concepts of UNIX Access Control:
Users, Groups, Files, Processes

Each user has a unique UID
Root (super user) account always got UID 0
Users can belong to multiple groups

Processes are subjects
— Associated with uid/gid pairs, e.g., (euid, egid), (ruid, rgid), (suid,
sgid) - Effective, Real and Saved
Objects are files: each file has the following information
— owner (user account)
— group (owner group)
— 12 permission bits
* read/write/execute for owner, group and everyone else
* setuid, setgid, sticky bit

Unix GNU/Linux files and dirs

* Upper & lower case matters in directories and filenames
Is -al show all user rights in a directory, example:
-rwxr--rw- 1 hjo users 4746 9 jan 10 13:46 test
r = read access, w = write access, x = execute access
— Change owner rights (order is UserGroupOther)

chmod g+w test

-rwxrw-rw- 1 hjo users 4766 9 jan 10 13:46 test

chmod 766 test
(faster way to do it)

— Change owner:group
chown hjo:hjo test

FWX FWX rwX

Permissions Permissions Permissions

asslociated ass'ociated 'associated
with the with the with everyone
owner owner with an account

account group on the system

Permissions Bits on Files & Directories

A%\EVOBIJJEBTT %‘EJCI)“IEIE EVERYONE
Read controls reading th ntent of a fil
. ols reading the content of a file W X rW X rw X
— i.e., the read system call ' ‘ ‘
Write controls changing the content of a file |
Converted to octal Converted to octal Converted to octal
— i_e_’ the Write System Ca” (O through 7) (0 through 7) (0 through 7)

Execute controls loading the file in memory and execute
— i.e., the execve system call
Many operations can be performed only by the owner of the file

Read bit allows one to show file names in a directory

The execution bit controls traversing a directory

— Does a lookup, allows one to find the inode # from a file name

— chdir(path) system call to a directory requires execution rights
Write + execution control creating/deleting files in the directory

Accessing a file identified by a path name requires execution to all
directories along the path

In UNIX, access rights on directories are not inherited

The setuid, setgid and sticky bits

* Change an executable file to be setuid for a specific user
chmod 4755 filename
« X for owner will be changed to S as: -rwsrw-rw-
find / -uid 0 -perm -4000 -print (find all setuid programs)
* Extreme care must be taken writing/having setuid root programs!

Non- no effect affect locking not used anymore
executable
files
executable change euid change egid not used anymore? Or
files when executing when executing let .text stay in

the file the file memory (faster load)
directories no effect new files inherit only the owner of a file

group of the can rename or delete

directory drwxrwxrwT /tmp

http://en.wikipedia.org/wiki/Setuid

Process User ID Model in Modern UNIX
Systems

Each process has three user IDs
— Real user ID (ruid) — owner of the process
— Effective user ID (euid) — used in most access control decisions
— Saved user ID (suid) — used for save and restore of the uid

And three group IDs

— Real group ID http://en.wikipedia.org/wiki/User _identifier
— Effective group ID

— Saved group ID

When a process is created by fork
— It inherits all three users IDs from its parent process

When a process executes a file by exec

— It keeps its three user IDs unless the set-user-ID bit of the file is
set, in which case the effective uid and saved uid are assigned
the user ID of the owner of the file

D e m O http://en.wikipedia.org/wiki/Setuid

[bob@foo]$ cat /etc/passwd
alice:x:1007:1007::/home/alice:/bin/bash
bob:x:1008:1008::/home/bob:/bin/bash
[bob@foo]$ cat printid.c

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
int main(void) {
printf(
"Real UID = %d\n"
"Effective UID = %d\n"
"Real GID = %d\n"
"Effective GID = %d\n",
getuid (),
geteuid(),

getgid (),

A

getegid()
);

return O;

[bob@foo]$ gcc -Wall printid.c -o printid
[bob@foo]$ chmod ug+s printid
[bob@foo]$ su alice

Password:

[alice@foo0]$ Is -I

-rwsr-sr-x 1 bob bob 6944 2007-11-06 10:22 printid
[alice@foo]$./printid

Real UID =1007

Effective UID = 1008

Real GID =1007

Effective GID = 1008

[alice@foO]

The Need for setuid/setgid Bits

* Some operations are not modeled as files and
require userid =0
— Halting the system
— Bind/listen on “privileged ports” (TCP/UDP ports below

1024)
— Change password
— Non-root users need some if these privileges
* File level access control is not fine-grained
enough

* System integrity requires more than controlling
who can write, but also how it is written

Security Problems of Programs with
setuid/setgid

* Problem programs are typically setuid root

* Violates the least privilege principle

—Every program and every user should operate
using the least privilege necessary to
complete the job

* Why is this bad?

* How would an attacker exploit this
problem?

* How to solve this problem?

Password recovery with physical access
in GNU/Linux (single user mode)

1. Reboot (try [Ctrl]+[Alt]+[Delete] or other harder technique)
2. During the LILO prompt (press ctrl) type: (kernel/image name) init=/bin/sh rw
boot: linux init=/bin/bash rw

3. This should start the Linux kernel, with the root file system mounted in
read/write mode. The cool thing is that none of your normal init processes (like
the gettys that ask for your name and call the login program) will be started.

4. (Maybe) mount your /usr file system with a command like: # mount /usr
5. Change your root password with a command like: # passwd

6. Flush the cache buffers: # sync; sync; sync

7. (Maybe) unmount /usr: # umount /usr

8. Remount the root fs in read-only mode: # mount -o remount,ro /

9. Let init clean up and reboot the system: # exec /sbin/init 6

Works with GRUB as well (press e in boot menus until you can
edit)
— boot: /boot/linuxkernel root=/dev/sdal rw single init=/bin/bash
— http://linuxgazette.net/107/tomar.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

