
The golden age of
hacking

Parallel Computing
GPGPU and

password/hash/crypto
attacks

CrypTool (Freeware)
Crypt methods
Analysis
Visualisations
Etc. etc....
http://www.cryptool.org/

Recommended!

http://www.cryptool.org/

Password attacks I
http://en.wikipedia.org/wiki/Password_cracking

• Topic is already rather known by most of you!
– At least the cracking part

• Default built in passwords in systems
• Network login tools (password guessing)

– Brutus
– THC Hydra

• Supported services includes: TELNET, FTP, HTTP, HTTPS, HTTP-
PROXY, SMB, SMBNT, MS-SQL, MYSQL, REXEC, RSH, RLOGIN,
CVS, SNMP, SMTP-AUTH, SOCKS5, VNC, POP3, IMAP, NNTP,
PCNFS, ICQ, SAP/R3, LDAP, PostgreSQL, Teamspeak, Cisco auth,
Cisco enable, and Cisco AAA.

– Reset attack
• Account lockout (DoS)

• Passwords are either
– Hashed or encrypted
– Flaw in algorithm?
– Entropy?

http://en.wikipedia.org/wiki/Password_cracking

Network login tools

• THC (The Hackers Choice) Hydra Xhydra, #3

• Brutus, old, #10 on http://sectools.org

Entropy (password entropy)
• Measuring password strength (disorder)
• For a completely random password, each character is worth

approximately 6.56 bits
• With a user-chosen, first sign give 4 bits, characters 2-8 gives 2 bits,

characters 9-20 gives 1.5 and 21-... provides 1 bit per character
• Entropy (bits) table for various lengths of passwords

• The number of variations for a password is 2^(number of bits)
• However (number of possible characters)^(number of characters) is

basically flawed because a short passwords can be complex and
long passwords can be of an easily guessable character

● http://en.wikipedia.org/wiki/Password_strength

2^6,56=95

 User-choosen
 (according to rules)

 Length (chars)

 User-choosen
 (freely choosen)

 Random

Password attacks II
• Dictionary → Wordlists

– Google search ”wordlist compilation”
• Wordlists vs brute-force

– keyspace_password.xls
– Hybrid attacks (permutations)
– Distributed attacks - botnets

• The best free tools
– Cain & Abel (#1)

• Swiss army knife
– John the ripper (#2)

• Multi platform, permutation

• SAM registry/DB file attacks
– Online

• Cain, fgdump, etc.
– Offline
– Bootdisks

• Ophcrack (Vista/7)
– Reset

Offline extraction of credentials

http://www.insidepro.com/

http://www.irongeek.com/i.php?
page=security/cracking-windows-vista-xp-2000-nt-
passwords-via-sam-and-syskey-with-cain-
ophcrack-saminside-bkhive-etc

• Hash encryption in article “Syskey and SAM” at:
http://moyix.blogspot.com/2008/02/syskey-and-sam.html

• Creddump (Python scripts)

– LM and NT hashes (Syskey protected – 128 bits)

– Cached domain credentials and LSA secrets

– http://code.google.com/p/creddump/

• Other tools

– Cain – from Forensic 1, lab 4.8

• Add NT Hashes, Syskey Decoder (System), ...

– SAMInside

– Bkhive (dump syskey), Samdump2 etc.

• Tutorials: IronGeek

syskey.exe

Cain and
Windows hashes
• Microsoft LM or

LanMan
– The weak

uppercase fixed 14
digit chopped …

• Windows NT(LM) hash
– Much stronger than LM (MD4 x 3)

• Network sniffed authentication packets
– LM challenge-response
– NTLMv1 challenge-response

• Stronger than LM challenge
– NTLMv2 challenge-response

• Stronger than NTLMv1
– MS-Kerberos5 pre auth

• The MS version used in
most AD networks

• CHR page 137 and 386 – 396

Cain and Windows hashes cont.

Cain LSA secrets
• Decrypting Local Security Authority (LSA) secrets you may find

– DefaultPassword – used if auto-login is enabled

– NL$KM – secret key used to encrypt cached domain passwords

– Various service account secrets, $MACHINE.ACC, etc...

• DPAPI_SYSTEM is a legacy backup key that is used to
recover DPAPI (Data Protection Application Programming
Interface) data

• Very good book describing
algorithms

Unix passwd and shadow files
• Salt (a small extension, 2-8 byte) often used to complicate rainbow attacks

hash = OWF(password + salt) - Unix use salt, Windows does not

http://en.wikipedia.org/wiki/Salt_%28cryptography%29

“1”=MD5, “5”=sha-256, “6”=sha-512, (man shadow, crypt (3))

Rainbow tables
• A refinement (by Philippe Oechslin) of an earlier, simpler algorithm by

Martin Hellman that used the inversion of hashes by looking up
precomputed hash chains – note! not as in: h(h(h(password)))
– Cryptoanalytic time-memory trade-off (fast attack but use more memory)
– Reduction functions - only the first and last password of a chain stored in table
– A hit means that chain contains hash - not 100% guarantee to crack password

• Ophcrack – Multi platform/core, special tools as live CD etc.
• Free Rainbow Tables – Windows (src), multi core support, slow updates
• RainbowCrack – Multi platform/core and GPU (CUDA) accelerated
• Cain – Winrtgen, can use other tables as well

Rainbow Tables (NT hashes)

Rainbow table example
http://en.wikipedia.org/wiki/Rainbow_table

• A simplified rainbow table with 3 reduction functions
• Chain length is usually up to around 3 – 4 thousand and

number of rows is usually around 40 million when
expanded fully - if needed

• Functions
– H = hash function, R = reduction function

http://en.wikipedia.org/wiki/Rainbow_table

Rainbow table example cont.
http://en.wikipedia.org/wiki/Rainbow_table

We have a hash (re3xes) and we want to find the password that produced that hash

1. Starting from the hash ("re3xes"), one computes the last reduction used in the table and checks whether
the password appears in the last column of the table (step 1).

2. If the test fails (rambo doesn't appear in the table), one computes a chain with the two last reductions
(these two reductions are represented at step 2)
Note: If this new test fails again, one continues with 3 reductions, 4 reductions, etc. until the
password is found. If no chain contains the password, then the attack has failed.

3. If this test (step1) is positive (as in step 3, linux23 appears at the end of the chain and in the table), the
password is retrieved at the beginning of the chain that produces linux23. Here we find passwd at
the beginning of the corresponding chain stored in the table.

4. At this point (step 4), one generates a chain and compares at each iteration the hash with the target hash.
In this case the test is valid and we find the hash re3xes in the chain (step 5). The current password
(culture) is the one that produced the whole chain : the attack was successful!

Functions
H = hash
R = reduction

Table with
only first
and last
password
stored in
chain for
every row

http://en.wikipedia.org/wiki/Rainbow_table

Cain Winrtgen v2.9

• Rainbow Table properties

Password attack defense
• Strong password policy
• User awareness

• Password filter
– Force the use of strong passwords

• Do password-cracking tests
• Protect the hashed password files
• Get rid of LM hashes

– HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa
NoLMHash = 1

• Two-factor (or even three) authentication - strong authentication
– http://en.wikipedia.org/wiki/Two-factor_authentication
– Something you have (token), you know (passwd), you is or does (fingerprint)
– SecurID server connected to AD etc.
– Pin code (number) is generated which matches the RSA SecureID token
– Token is syncronized with SecurID server
– Login with both pin code and pass code (displayed in token for limited time)
– http://en.wikipedia.org/wiki/SecurID

http://en.wikipedia.org/wiki/Two-factor_authentication

Password reuse
http://xkcd.com/792/

http://www.xkcd.com/1286/

Death of the web user/password?
http://en.wikipedia.org/wiki/OpenID

Authenticate with Google, FB, etc.

• OpenID is a decentralized single sign-on system
– Authenticate once and gain access to the resources of multiple software systems

• Builds on digital identity from a OpenID provider
– URL or XRI (eXtensible Resource Identifier)

– Log in with for example: http://alice.myopenid.com
– Web site will check with OpenID provider if valid (or my own domain which redirects)

• There are two modes in which the relying party can communicate with the identity
provider:

– checkid_immediate, which is machine-oriented and in which the relying party requests
that the provider not interact with the user. All communication is relayed through the
user's browser, but presumably without the user's knowledge;

– checkid_setup, in which the user communicates with the provider server directly using the
very same web browser used to access the relying party site.

• OpenID does not provide its own form of authentication, but if an identity provider
uses strong authentication, OpenID can be used for secure transactions such as
banking and e-commerce (a token or other hardware is needed)

• More reading
– http://stacktrace.se/2007/10/04/openid-en-introduktion/
– http://www.intertwingly.net/blog/2007/01/03/OpenID-for-non-SuperUsers
– http://www.idg.se/2.1085/1.338358/google-oppnar-for-openid (2010-09-08)

http://en.wikipedia.org/wiki/OpenID
http://stacktrace.se/2007/10/04/openid-en-introduktion/
http://www.intertwingly.net/blog/2007/01/03/OpenID-for-non-SuperUsers
http://www.idg.se/2.1085/1.338358/google-oppnar-for-openid

Death of the web user/password?

YubiKey Core features
- two-factor authentication with one-time passwords

- Works instantly, no need to re-type pass codes from a device

- Works on Windows, Mac, Linux, iPad, Firefox, Chrome, etc

- Identified as a USB-keyboard, no client software or drivers needed

- Minimized size; 2 mm thin, 3 grams

- Practically indestructible; waterproof, crush safe, no battery

- Integration within minutes with free and open source server software

- Two slots for multiple configurations: OATH*, Challenge-Response etc.

- Also available with NFC (NEO) and minimized form factor (Nano)

- Lowest total cost of ownership for strong two-factor authentication

* OATH (Open Authentication) open standard from VeriSign

How it works
With a simple touch of the gold disc, the YubiKey sends a One Time Password
(OTP) as if it was typed in from a keyboard. The unique passcode is verified by a
YubiKey compliant application.

Parallel computing 1
• Good intro to parallel computing

– https://computing.llnl.gov/tutorials/parallel_comp/

• FASTRA II = 12 TFLOPS, 13x GPU (6 NVIDIA GTX295 dual-GPU cards and one
GTX275 single-GPU card) – GT200, 6000 € (2009)

– http://en.wikipedia.org/wiki/Fastra_II

• 46 TFLOP - 2008-06, 14 mil. SEK - http://www.hpc2n.umu.se/resources/akka/

Parallelism
• Data parallelism

– http://en.wikipedia.org/wiki/Data_parallelism

• Task parallelism
– http://en.wikipedia.org/wiki/Task_parallelism

Data parallelism

Task parallelism

Software threads vs.
hardware threads

Parallel computing 2

Just now 6, 8, 10 and 12 ”many core” CPUs can be bought

Parallel computing 3

Fusion → APU (Accelerated Processing Unit), CPU + GPU

AMD Llano
X4 CPU, 400 SP

Radeon HD 6450 in room 348 have 160 SP

 Tools for multicore development
• Writing native threads is now considered a relic from the early days of

parallelism

• Over 40% of all programmers now work on data parallel applications
according to ZDNet (2011)

– A popular solution then were Intel Threading Building Blocks (& OpenMP)

• Most of the new libraries and extensions builds on the work-stealing
algorithm pioneered by the Cilk project (now Cilk++)

– http://en.wikipedia.org/wiki/Cilk - http://www.cilk.com/

• Work-stealing algorithm in short
– Each worker thread maintains runnable tasks in its own scheduling queue

– When a worker thread has no local tasks to run, it attempts to take("steal") a task
from another randomly chosen worker thread, using FIFO (oldest first) rule

– When a worker thread encounters a join operation, it processes other tasks, if
available, until the target task is noticed to have completed

– When a worker thread has no work and fails to steal any from others, it backs off
(via yield, sleep, and/or priority adjustment)

(Open Multi-Processing) API
• Supports multi-platform shared memory multiprocessing programming in C/C+

+/Fortran with both task and data parallelism via preprocessor pragma directives

– Threads usually joins (barrier) with the master thread which got id=0

– Makes it simple to add multi-core support into existing programs

– MSDN Magazine article: ”Reap the Benefits of Multithreading without All the Work”

http://openmp.org

// compile with: /openmp to enable OpenMP 2.0 language extensions

// http://msdn.microsoft.com/en-us/library/tt15eb9t.aspx

#include <stdio.h>

#include <omp.h>

int main()

{
 printf("OMP Max Threads: %d\n", omp_get_max_threads());
 printf("OMP Num Cores: %d\n", omp_get_num_procs());

 #pragma omp parallel sections num_threads(2)

 {

#pragma omp section
printf_s("Hello from thread %d\n", omp_get_thread_num());
#pragma omp section
printf_s("Hello from thread %d\n", omp_get_thread_num());

 }

}

// output

OMP Max Threads: 2

OMP Num Cores: 2

Hello from thread 0

Hello from thread 1

// Implicit barrier syncronize the threads

http://en.wikipedia.org/wiki/OpenMP

MS VS 2010 and Parallel Computing
• .NET4.0 have Parallel Extensions as a key part of the framework

– Use of a ThreadPool as in OpenMP eliminate costly thread creation

• Parallel Programming in Native Code (with PPL)

– http://blogs.msdn.com/nativeconcurrency/

• Concurrency Runtime

– http://msdn.microsoft.com/en-us/library/dd504870%28VS.100%29.aspx

• Parallel Programming with .NET

– http://blogs.msdn.com/pfxteam/

• Parallel Computing Developer Center

– http://msdn.microsoft.com/en-us/concurrency/default.aspx

using System.Threading; // C# - Parallel Ext. work in VB and F# as well

// Equivalent to: for(int i = 0; i < 10; i++)

Parallel.For(0, 10, int i => {

 Console.WriteLine(i);

}); // starting 3 parallel operations

Parallel.Invoke(() => MethodA(), () => MethodB(), () => MethodC());

// Sequential version of foreach

foreach(var item in sourceCollection) { Process(item); }

// Parallel equivalent of foreach

Parallel.ForEach(sourceCollection, item => Process(item));

MSDN sites got all info!

Parallel Patterns Library,
C++ templates

Parallel Java
• Parallel Java has arrived with the Java JDK7 (1.7) release

– Java has coarse-grained concurrency since JDK5 and threads since start

– Fork/join framework (fine-grained parallelism)

• java.util.concurrent.ForkJoin* – JSR166y/z (updated revisions)

– http://www.javac.info/jsr166z/ - http://gee.cs.oswego.edu/dl/jsr166/dist/

• Base class examples

– RecursiveAction

– RecursiveTask

– CyclicAction

– Parallel***Array

– AsyncAction

http://www.oracle.com/technetwork/java/7-138633.html

http://developers.sun.com/learning/javaoneonline/2008/pdf/TS-5515.pdf

http://www.ddj.com/go-parallel/blog/archives/2009/04/java_7_will_evo.html

/* Creates a ForkJoinPool with a pool size equal to the number
of processors available on the system and using the default
ForkJoinWorkerThreadFactory */

ForkJoinPool fjpool = new ForkJoinPool();

// Creates a new parallel array with given array and executor

ParallelLongArray lparray =
ParallelLongArray.createUsingHandoff(array, fjpool);

long max = lparray.max();

ShmooCon 2010

http://www.shmoocon.org

GPGPU
General-Purpose computation on Graphics Processing Units

• The GPU is a massively parallel device – cores / shaders
– ATI 5970 got 1600x2 SP (Stream Processors) - 2320x2 GFLOPs single precision

– A 2.66 GHz Intel Core 2 duo can perform about 25 GFLOPs single precision

NVIDIA Tesla/Fermi - 512x4 SM(Stream Multiprocessors) - 1200x4 GFLOPs single precision

We are way off the slide now!

CPU/GPU architecture
• Parallel processor architecture

– Instruction Level Parallelism (ILP)

• Scalar vs. Superscalar vs.
Very Long Instruction Word (VLIW)

• Instruction pipelining, out-of-order
execution, branch prediction, etc.

– Streaming SIMD Extensions (SSE*)

• Flynn's taxanomy
– SISD vs. SIMD vs. MISD vs. MIMD

– http://en.wikipedia.org/wiki/Flynn%27s_taxonomy

• NVIDIA – scalar SIMT (Single Instruction Multiple Thread)

– Brute force approach, simpler compilers, stabler performance

• AMD/ATI - VLIW MIMD (Multiple Instruction Multiple Data)

– More advanced/efficient, needs advanced compilers, fall back to SIMD

http://en.wikipedia.org/wiki/Instruction_level_parallelism

Intel Larrabee
• Differences with current GPUs

– Very little specialized graphics hardware

– Use of x86 instruction set, cache coherency across all its cores

• Differences with current CPUs

– Pentium design with updated features as x64 etc. using at least 32 cores

– 512 bit SIMD vector processing unit (4x SSE)

http://software.intel.com/en-us/articles/larrabee/

NVIDIA CUDA Zone

Fermi: http://www.youtube.com/watch?v=fYuH2Kl_b98

* Fermi contains 512 CUDA-cores/SM:s
 (16 SIMT units with 32 cores each).
* 1 warp = 32 threads which use a
 minimum of 2 clock cycles.
* Each SM can handle a maximum of 48
 warps and schedule them freely.
* Track max 512 * 48 = 24576
 threads/GPU!

GPGPU Frameworks - with regard to simplicity

• Legacy
– OpenGL, Direct3D

• Early high level
– Sh/Rapidmind

(Intel Ct now)

– BrookGPU (free)

– PeakStream (Google renderscript)

– NVIDIA CUDA (NVCC) - C/C++, Nexus VS plugin

– AMD CAL (CTM, Brook+) - C/C++

• Now
– OpenCL (Open Computing Language) - C (C99) with extensions

• Platform and hardware independent GP parallel programming

– Microsoft DirectCompute, part of DirectX 11 (10.x will run to)

Simplified AMD Stream Computing
Programming Model

GPU

* AMD 5870 got 20 compute units
 with 16 TPs each, which have a
 execute unit that can execute 5
 different instructions in 1 cycle
 in a packed VLIW = 1600 SPs
* 1 wavefront=64 threads @ 4 cycles

MIMD if possible
else SIMD

OpenCL programming model
• Develop your program with normal source code

• For the parts where you want GPU support you create
*_kernel.cl files with OpenCL C-source code

– The OpenCL code can be embedded in program image as well

• When the program executes the OpenCL driver loads and
compile the .cl sources on-demand

– Binaries can be cached or written to
disk avoiding lengthy loads

– OpenCL scale apps automatically,
1-n CPUs/GPUs etc.

• AMD, nVidia and Intel support
OpenCL via the graphics driver

– Since 2009 - 2011

http://www.youtube.com/watch?v=7PAiCinmP9Y

Same as in OpenCL

OpenCL ”Hello World” (AMD/Apple)

/* Simple compute kernel which computes the
square of an input array */

__kernel void square(

 __global float* input,

 __global float* output,

 const unsigned int count)

{/* Returns the unique global work-item ID
value for dimension identified by dimindx */

 int i = get_global_id(0);

 if(i < count)

 output[i] = input[i] * input[i];

}

// complement code to the compute kernel

1. Get and select the devices to execute on

2. Create and open an OpenCL context

3. Create a command queue to accept the
execution and memory requests

4. Allocate OpenCL memory objects to hold
the inputs and outputs for the compute
kernel

5. Online LLVM (Low Level Virtual Machine)
compile and build the compute kernel code

6. Set up the arguments and execution
domain

7. Kick off compute kernel execution

8. Collect the results

9. Shutdown and cleanup

// Note! 6, 7 and 8 may need to iterate if job is
big – i.e. have a chance to stop the job...

Runs on: high-performance compute servers,
desktop computer systems and handheld
devices using a diverse mix of multi-core
CPUs, GPUs, Cell-type architectures and other
parallel processors such as DSPs.

https://developer.apple.com/search/?q=opencl

http://developer.amd.com/gpu/ATIStreamSDK/pa
ges/TutorialOpenCL.aspx

PyOpenCL
Python bindings/wrappers

Example with kernel right

Benchmark test with CPU
C:\pyopencl-0.91.4\examples>python benchmark-all.py

Execution time of test without OpenCL: 23.0160000324 s

==

Platform name: ATI Stream

Platform profile: FULL_PROFILE

Platform vendor: Advanced Micro Devices, Inc.

Platform version: OpenCL 1.0 ATI-Stream-v2.0.1

Device name: AMD Turion(tm) 64 X2 Mobile Technology TL-60

Device type: CPU

Device memory: 1024 MB

Device max clock speed: 1995 MHz

Device compute units: 2

Execution time of test: 0.00329344 s

Results OK

http://mathema.tician.de/software/pyopencl

AMD CodeXL
http://developer.amd.com/community/blog/2013/11/08/codexl-1-3-released/

GPGPU testing 1
• IGHASHGPU (Brook+/CUDA), recover/crack SHA1, MD5 & MD4 hashes

– Supports salted hashes, NTLM, MySQL*, Oracle 11g, ..., etc.

– Plain MD5, 8 chars, lowercase

– Windows 7 x64, AMD Phenom x4 @ 2.2GHz

– ATI 4850 - 800SP, Catalyst 9.12, Stream SDK v2.0

– Count down time (ETA) started at almost 4 minutes

http://golubev.com
Intresting discussion
RAR GPU as well

BF NT hash crack
7 char pass a-z,0-9
ETA:
Cain, 3.5h
IGHASHGPU, 1 min

Current GPU
generation is
more than 10
times faster!

http://golubev.com/

GPGPU testing 2
• BarsWF (Brook+/CUDA/SSE), recover/crack MD5

– Same settings as for IGHASHGPU

• Others
• OCLCrack (OpenCL) with source

• http://sghctoma.extra.hu/index.php?p=entry&id=11

• Multihash Bruteforcer CUDA

• http://www.cryptohaze.com/

• Extreme GPU Bruteforcer CUDA

• http://www.insidepro.com/eng/egb.shtml

DirectCompute
Benchmark v0.44b

MD5 Software Benchmark
• From the Code Breaker blog

Marc Bevand have
some intersting
articles about
breaking crypto
using ATI CAL IL
and Sony PS3

http://www.zorinaq.com/

RainbowCrack performance

Around 200 times faster
than brute force with
GPU

Run tables with CPU?

million plaintexts/sec

GPU limitations
• System to GPU bandwith is limited

– Around 1 byte per clock tick

– A CPU will be able to perform A LOT of instructions during the copy of
input and output data to/from the compute kernel

• Error control handling and debugging can be difficult to
perform

• GPUs like their data arranged in
specific ways/formats etc.

• Not all problems/algorithms are
optimal to run on a GPU

• Amdahls law
– How much in a program can be

parallelized?
http://en.wikipedia.org/wiki/Amdahl%27s_law

where P = parallel fraction, N = number
of processors and S = serial fraction

GPGPU references/resources

http://www.password-crackers.com/en/

• Blogs

– Speed Junkie - http://gpgpu-computing.blogspot.com/

– Code Breaker - http://jchblue.blogspot.com/

– GPU computing - http://oscarbg.blogspot.com/

• OpenCL tutorials etc.

– http://www.macresearch.org/opencl

– http://gpgpu.org/

– http://en.wikipedia.org/wiki/DirectCompute

– http://developer.amd.com

– http://developer.nvidia.com

– http://www.khronos.org/developers/

– http://www.geeks3d.com/

• C# bindings/wrappers - http://sourceforge.net/projects/cloo/

• Java bindings/wrappers - http://www.jocl.org/

Field-programmable gate array (FPGA)

Rack-A-TACK 2U module, $20000

• Tableau TACC1441 Hardware Accelerator $3900

– http://www.tableau.com/

– AccessData PRTK support - TACC_Install.pdf

– http://www.digitalintelligence.com/products/rack-a-tacc/

• Bruce Schneier - Secure Passwords Keep You Safer

– http://www.schneier.com/essay-148.html

• NSA (at) Home

– Breaks 800 hashes concurrently

– http://nsa.unaligned.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

