

i

CONTENTS

Overview of Last BEH Issue: Footprinting or information Gathering Techniques 3

Search Engine discovery ... 3

Dorks ... 5

Spiders, Crawlers or Robots discovery .. 9

Web Data Extraction or Web Scraping ... 11

Fetching the Data ... 12

Dealing with Pagination .. 12

AJAX CONTENT EXTRACTION! .. 13

Use CSS Hooks ... 13

Get a Good HTML Parsing Library ... 14

When In Doubt, Spoof Headers .. 14

Content behind a Login .. 15

Rate Limiting ... 15

Poorly Formed Markup ... 15

Reviewing Metadata and JavaScript’s .. 16

Parser and Markup information .. 16

Using Page Speed to Dig Critical Information about website 18

Automated Data Extraction using Hack tools .. 20

Exiftool ... 20

FOCA ... 22

Web Application OR WEB SERVER Fingerprint .. 23

Manual Fingerprinting... 23

Automated Fingerprinting ... 25

People Search: Prepare Social Engineering Attack Profile 27

References: ... 35

 OVERVIEW OF LAST BEH ISSUE: FOOTPRINTING OR IN-

FORMATION GATHERING TECHNIQUES

In our last issue we have started learning about preparatory phase of any hacking

attempt i.e. Information gathering or Footprinting. Let’s have a brief overview what

we have covered in our last BEHC issue. We have started with the introduction part

of Footprinting or information gathering and then we have covered several Foot-

printing and information gathering techniques namely how to get an IP address of

victim, different techniques to steal IP address, Ping sweep, Flood Ping DDOS at-

tack, Trace route, WHOIS information gathering, extracting history details of any

domain, owner contact information extraction, DNS queries and DNS health check

to discover domain level bugs. This was all what we covered in our last issue. In

this issue we will continue learning about other information gathering techniques.

The techniques that we learn in this issue are mentioned below:

1. Search Engine discovery or Reconnaissance

2. Spiders, Crawlers or Robots discovery

3. Web data Extraction

4. Reviewing Metadata and JavaScript’s

5. Web application fingerprint

6. Web server fingerprint

7. People Search

So without wasting much time let’s continue our learning.

SEARCH ENGINE DISCOVERY

As we all know search engine is the best friend of Hackers. How so? Either its per-

sonal information search or searching for details about organization or simply

searching for vulnerable websites or more technically extracting our victims, search

engine is the best friend. Search engine discovery consists of some technical terms

like dorks, Google operators, Google indexing dumps and much more. Let’s learn all

these things one by one.

Google Operators: Most of us might have tried these but for sure they are una-

ware of its real strength i.e. up to which extent these operators can be used. For

newbie’s, Google has provided a list of Google operators i.e. nothing just filters, so

that we can minimize or maximize or better call manipulate our searching scope on

Google. For Example: If I want to search something specific on Hackingloops like

Hacking Email account. Then what we write in Google search box:

Site:www.hackingloops.com Hacking Email account

Now I want to filter only those results which contain email in the URL. So the

search query will become:

Site:www.hackingloops.com inurl:email Hacking Email account

Note: Spaces above means Logical OR search. Now search results will contain all

those results which contain either Hackingloops.com or email in the URL or Hacking

or Email or Account. But first page results will be accurate as Google first gives pri-

ority to complete search string, then it break the complete string into parts sepa-

rated by spaces. If you want only Hackingloops search results having email in the

URL and text or title contains Hacking email account then your search result will be:

Site:www.hackingloops.com + inurl:email + “Hacking Email Account”

This was just the small example of smart searching techniques. Below is the list of

all operators provided by Google to filter our search results and make our searching

specific and accurate.

DORKS

Dorks or Google Dorks is nothing but just a combination of Google operators whose

sole purpose is to filter the vulnerable websites or results based on dork query. How

a dork query works? Working is quite similar to normal Google operator but Google

dorks exploits the Google indexing facts. Normally Google indexes all the URL’s or

data on any web server i.e. say I made a PHP website which has functionality of

Admin Controls, Upload files to server and some dynamic URL’s. Now when I sub-

mit my website to Google for indexing, what it will do; it will explore the complete

structure of the website and index all the Webpages including admin panel and Up-

load URL’s or dynamically generated URL’s until and unless we specify no-index on

in the META data. Now dorks is what we used to extract these type of vulnerable

URL’s and websites from the Search Engine.

Few examples of dork queries are:

filetype:inc OR filetype:bak OR filetype:old mysql_connect OR mysql_pconnect

http://www.google.com/search?q=filetype:inc%20OR%20filetype:bak%20OR%20filetype:old%20mysql_connect%20OR%20mysql_pconnect

Now when you put the above dork in Google, you will get the database connection

credentials (username and passwords) in plaintext as shown below:

Now open any link say first one, see what u will get:

So we have seen that using dorks we can extract very critical information with

ease.

Here is another dork which extracts the password hacked by other hackers, it simp-

ly extract all phishing page password files :P it’s better to use others effort :D :

inurl:"passes" OR inurl:"passwords" OR inurl:"credentials" -search -download -

techsupt -git -games -gz -bypass -exe filetype:txt @yahoo.com OR @gmail OR

@hotmail OR @rediff

You will see results like this:

Now open the link, you will see awesome things :D

http://www.google.com/search?q=inurl:%22passes%22%20OR%20inurl:%22passwords%22%20OR%20inurl:%22credentials%22%20-search%20-download%20-techsupt%20-git%20-games%20-gz%20-bypass%20-exe%20filetype:txt%20@yahoo.com%20OR%20@gmail%20OR%20@hotmail%20OR%20@rediff
http://www.google.com/search?q=inurl:%22passes%22%20OR%20inurl:%22passwords%22%20OR%20inurl:%22credentials%22%20-search%20-download%20-techsupt%20-git%20-games%20-gz%20-bypass%20-exe%20filetype:txt%20@yahoo.com%20OR%20@gmail%20OR%20@hotmail%20OR%20@rediff
http://www.google.com/search?q=inurl:%22passes%22%20OR%20inurl:%22passwords%22%20OR%20inurl:%22credentials%22%20-search%20-download%20-techsupt%20-git%20-games%20-gz%20-bypass%20-exe%20filetype:txt%20@yahoo.com%20OR%20@gmail%20OR%20@hotmail%20OR%20@rediff

Now you all must have understood the power of Google dorks. Still not? Try your-

self, here is the list of Google dorks which extracts passwords from Google.

 Google Dork Description
filetype:inc OR filetype:bak OR file-

type:old mysql_connect OR
mysql_pconnect

Aggregates previous mysql_(p)connect

google dorks and adds a new filetype.
Searches common file extensions used
as backups by PHP developers. These

extensions are normally not interpreted
as code by their server, so their

database connection credentials can be
viewed in plaintext.

ext:xml ("proto='prpl-'" | "prpl-yahoo" |
"prpl-silc" | "prpl-icq")

Find Accounts and Passwords from Pidg-
in Users.
Google limit queries to 32 words so it?s

impossible to search for all
Account-Types in one query!

List of all Params: Feel free to build your
own search query.
proto='prpl-'; prpl-silc; prpl-simple;

prpl-zephyr; prpl-bonjour;
prpl-qq; prpl-meanwhile; prpl-novell;

prpl-gg; prpl-myspace; prpl-msn;
prpl-gtalk; prpl-icq; prpl-aim; prpl-
yahoo; prpl-yahoojp; prpl-yah;

prpl-irc; prpl-yabber

allinurl:"User_info/auth_user_file.txt" Google dork for find user info and con-

figuration password of DCForum
allinurl:"User_info/auth_user_file.txt"

inurl:"/dbman/default.pass" A path to a DES encrypted password for
DBMan (

http://www.gossamer-
threads.com/products/archive.html)
ranging from Guest

to Admin account, this is often found
coupled with cgi-telnet.pl (

http://www.rohitab.com/cgi-telnet)
which provides an admin login, by
default and the password provided by

DBMan's path /dbman/default.pass

"parent directory" proftpdpasswd inti-

tle:"index of" -google

This dork is based on this:

http://www.exploit-db.com/ghdb/1212/
but improved cause that is useless, in-

stead of this:
"parent directory" proftpdpasswd inti-
tle:"index of" -google

filetype:xls "username | password" filetype:xls "username | password" This

search reveals usernames and/or pass-

words of the xls documents.

ext:xml

("mode_passive"|"mode_default")

This dork finds Filezilla XML files. To be

more specific;

recentservers.xml

sitemanager.xml
filezilla.xml

These files contain clear text usernames
and passwords. They also contain the

hostname or IP to connect to as well as
the port. Most of these results will be for

FTP however, you can also get port 22 to
SSH in. This dork of course can be modi-
fied to target a specific website by ap-

pending site:whateversite.com. You can
also look for a specific username like

root by appending "root" to the dork.

intext:charset_test= email= de-

fault_persistent=

Find Facebook email and password ;)

inurl:"passes" OR inurl:"passwords" OR

inurl:"credentials" -search -download -
techsupt -git -games -gz -bypass -exe
filetype:txt @yahoo.com OR @gmail OR

@hotmail OR @rediff

There are a lot of Phishing pages hosted

on internet; this dork will
provide you with their password files.
Clean and Simple

filetype:cfg "radius"

(pass|passwd|password)

Find config files with radius configs and

passwords and secrets...

These are just samples, for extensive list visit below links:

For Extensive list of Google dorks till date:

http://www.exploit-db.com/google-dorks/

SPIDERS, CRAWLERS OR RO-

BOTS DISCOVERY

A Web crawler is an Internet bot that systematically browses the World Wide Web,

typically for the purpose of Web indexing. A Web crawler may also be called a Web

http://www.exploit-db.com/google-dorks/

spider, an ant, an automatic indexer, or (in the FOAF software context) a Web scut-

ter. Web search engines and some other sites use Web crawling or spidering soft-

ware to update their web content or indexes of others sites' web content. Web

crawlers can copy all the pages they visit for later processing by a search engine

that indexes the downloaded pages so that users can search them much more

quickly.

Crawlers can validate hyperlinks and HTML code. They can also be can be used for

web scraping. Now you all will be thinking what is web scraping. Well, Web scraping

(web harvesting or web data extraction) is a technique of extracting information

from websites that we will discuss in next topic.

Now how web crawlers or spider or robots or simply bots can play a handy role in

information gathering. As we all know crawlers indexes our website under some

protocols (rules) and these rules are defined by file called robot.txt. A robots.txt file

restricts access to your site by search engine robots that crawl the web. These bots

are automated, and before they access pages of a site, they check to see if a ro-

bots.txt file exists that prevents them from accessing certain pages. (All respecta-

ble robots will respect the directives in a robots.txt file, although some may inter-

pret them differently. However, a robots.txt is not enforceable, and some

spammers and other troublemakers may ignore it.)

You need a robots.txt file only if your site includes content that you don't want

search engines to index. If you want search engines to index everything in your

site, you don't need a robots.txt file (not even an empty one). And here the bug

lies. Most of newbie coders don’t understand the significance of robot.txt file and

hence allows Google or other search engine web crawlers to index their website

completely. Completely means completely i.e. everything, even the upload url’s,

FTP urls, database files and other critical information. This is only responsible for

the success of Google Dorks. People leave loopholes while designing and when web

crawlers index them, they are visible for everyone by just hitting a simple Google

dork in search.

If you are a good hacker then you can even search the bugs in the robot.txt also.

How? Newbie programmers or web developers uses their robot.txt file to block ac-

cess to URL patterns and most funny part is that, now it becomes more predictable

for hackers that something important is hidden behind is URL pattern. Here is sam-

ple of robot.txt file:

User-agent: *

Disallow: /folder1/

User-Agent: Googlebot

Disallow: /folder2/

Now User agent * means it allows all user agents to crawl their website and disal-

low /folder1/ means robot.txt is giving instruction to web crawl bot not to index

things inside /folder1/. And next instruction means it’s blocking Googlebot to crawl

/folder/ pattern i.e. URL like below will not be indexed:

www.victimwebsite.com/folder1/*.php

www.victimwebsite.com/foder2/*/..

But now it’s become more predictable for hacker that something private or im-

portant is hidden behind this URL. Now as we all know most web crawler robots fol-

low robots.txt file but some are still there in market which does not follow it. So

what hackers do they will go to other search engines like altavista, ask, yahoo or

bing to check that any URL with above pattern is crawled. If yes, then victim will be

doomed for sure.

Oops I forgot to share how to find robot.txt file of any website if exists. It’s simple,

robot.txt file is always stored at root of any website. So It can be accessed by be-

low pattern:

www.anywebsite.com/robots.txt

Have fun with it. Also there are several web crawl bots available in market which

can be used to index websites restricted URL’s.

WEB DATA EXTRACTION OR

WEB SCRAPING

Web scraping (web harvesting or web data extraction) is a computer software

technique of extracting information from websites. In web scraping, Hackers run

website grabber or scraping programs which exactly simulates the website but it’s

in HTTP format. After extracting all the web pages, Hackers can easily find URL pat-

terns, website general web logic. Now this information can be used to extract quite

juicy information from the websites like:

1. Extracting URL’s which accepts data from users (dynamically/statically). Now

we can test all these URL’s for SQL injection or cross site scripting attacks.

2. If Hacker is smart enough then they can even use it to create Phish Pages

and use these Phish pages to trap victims using Tabnabbing technique.

http://www.victimwebsite.com/folder1/*.php
http://www.victimwebsite.com/foder2/*/
http://www.anywebsite.com/robots.txt

Just like reading API docs, it takes a bit of work up front to figure out how the data

is structured and how you can access it. Unlike APIs however, there’s really no doc-

umentation so you have to be a little clever about it.

I’ll share some of the tips I’ve learned along the way.

FETCHING THE DATA

So the first thing you’re going to need to do is fetch the data. You’ll need to start by

finding your “endpoints” — the URL or URLs that return the data you need.

If you know you need your information organized in a certain way — or only need a

specific subset of it — you can browse through the site using their navigation. Pay

attention to the URLs and how they change as you click between sections and drill

down into sub-sections.

The other option for getting started is to go straight to the site’s search functionali-

ty. Try typing in a few different terms and again, pay attention to the URL and how

it changes depending on what you search for. You’ll probably see a GET parameter

like q= that always changes based on you search term.

Try removing other unnecessary GET parameters from the URL, until you’re left

with only the ones you need to load your data. Make sure that there’s always a be-

ginning? To start the query string and a & between each key/value pair.

DEALING WITH PAGINATION

At this point, you should be starting to see the data you want access to, but there’s

usually some sort of pagination issue keeping you from seeing all of it at once. Most

regular APIs do this as well, to keep single requests from slamming the database.

Usually, clicking to page 2 adds some sort of offset= parameter to the URL, which

is usually either the page number or else the number of items displayed on the

page. Try changing this to some really high number and see what response you get

when you “fall off the end” of the data.

With this information, you can now iterate over every page of results, incrementing

the offset parameter as necessary, until you hit that “end of data” condition.

The other thing you can try doing is changing the “Display X per Page” which most

pagination UIs now have. Again, look for a new GET parameter to be appended to

the URL which indicates how many items are on the page. Try setting this to some

arbitrarily large number to see if the server will return all the information you need

in a single request. Sometimes there’ll be some limits enforced server-side that you

can’t get around by tampering with this, but it’s still worth a shot since it can cut

down on the number of pages you must paginate through to get all the data you

need.

AJAX CONTENT EXTRACTION!

Sometimes people see web pages with URL fragments # and AJAX content loading

and think a site can’t be scraped. On the contrary! If a site is using AJAX to load the

data, that probably makes it even easier to pull the information you need. The AJAX

response is probably coming back in some nicely-structured way (probably JSON!)

in order to be rendered on the page with JavaScript.

All you have to do is pull up the network tab in Web Inspector or Firebug and look

through the XHR requests for the ones that seem to be pulling in your data. Once

you find it, you can leave the crafty HTML behind and focus instead on this end-

point, which is essentially an undocumented API.

(UN) structured Data?

Now that you’ve figured out how to get the data you need from the server, the

somewhat tricky part is getting the data you need out of the page’s markup.

USE CSS HOOKS

In my experience, this is usually straightforward since most web designers litter the

markup with tons of classes and ids to provide hooks for their CSS. You can piggy-

back on these to jump to the parts of the markup that contain the data you need.

Just right click on a section of information you need and pull up the Web Inspector

or Firebug to look at it. Zoom up and down through the DOM tree until you find the

outermost <div> around the item you want.

This <div> should be the outer wrapper around a single item you want access to. It

probably has some class attribute which you can use to easily pull out all of the

other wrapper elements on the page. You can then iterate over these just as you

would iterate over the items returned by an API response.

Note: The DOM tree that is presented by the inspector isn’t always the same as the

DOM tree represented by the HTML sent back by the website. It’s possible that the

DOM you see in the inspector has been modified by JavaScript — or sometime even

the browser, if it’s in quirks mode.

Once you find the right node in the DOM tree, you should always view the source of

the page (“right click” > “View Source”) to make sure the elements you need are

actually showing up in the raw HTML.

This issue has caused me a number of head-scratchers.

GET A GOOD HTML PARSING LIBRARY

It is probably a horrible idea to try parsing the HTML of the page as a long string

(although there are times I’ve needed to fall back on that). Spend some time doing

research for a good HTML parsing library in your language of choice.

You’re going to have a bad time if you try to use an XML parser since most websites

out there don’t actually validate as properly formed XML (sorry XHTML!) and will

give you a ton of errors.

A good library will read in the HTML that you pull in using some HTTP library (hat

tip to the Requests library if you’re writing Python) and turn it into an object that

you can traverse and iterate over to your heart’s content, similar to a JSON object.

Some Traps to Know About

I should mention that some websites explicitly prohibit the use of automated scrap-

ing, so it’s a good idea to read your target site’s Terms of Use to see if you’re going

to make anyone upset by scraping.

For two-thirds of the website I’ve scraped, the above steps are all you need. Just

fire off a request to your “endpoint” and parse the returned data.

But sometimes, you’ll find that the response you get when scraping isn’t what you

saw when you visited the site yourself.

WHEN IN DOUBT, SPOOF HEADERS

Some websites require that your User Agent string is set to something they allow,

or you need to set certain cookies or other headers in order to get a proper re-

sponse.

Depending on the HTTP library you’re using to make requests, this is usually pretty

straightforward. I just browse the site in my web browser and then grab all of the

headers that my browser is automatically sending. Then I put those in a dictionary

and send them along with my request.

Note that this might mean grabbing some login or other session cookie, which

might identify you and make your scraping less anonymous. It’s up to you how se-

rious of a risk that is.

CONTENT BEHIND A LOGIN

Sometimes you might need to create an account and login to access the infor-

mation you need. If you have a good HTTP library that handles logins and automat-

ically sending session cookies (did I mention how awesome Requests is?), then you

just need your scraper login before it gets to work. Note that this obviously makes

you totally non-anonymous to the third party website so all of your scraping behav-

ior is probably pretty easy to trace back to you if anyone on their side cared to

look.

RATE LIMITING

I’ve never actually run into this issue myself, although I did have to plan for it one

time. I was using a web service that had a strict rate limit that I knew I’d exceed

fairly quickly.

Since the third party service conducted rate-limiting based on IP address (stated in

their docs), my solution was to put the code that hit their service into some client-

side JavaScript, and then send the results back to my server from each of the cli-

ents.

This way, the requests would appear to come from thousands of different places,

since each client would presumably have their own unique IP address, and none of

them would individually be going over the rate limit. Depending on your application,

this could work for you.

POORLY FORMED MARKUP

Sadly, this is the one condition that there really is no cure for. If the markup

doesn’t come close to validating, then the site is not only keeping you out, but also

serving a degraded browsing experience to all of their visitors.

It’s worth digging into your HTML parsing library to see if there’s any setting for er-

ror tolerance. Sometimes this can help.

If not, you can always try falling back on treating the entire HTML document as a

long string and do all of your parsing as string.

REVIEWING METADATA AND

JAVASCRIPT’S

This is quite simple task but sometimes it proves quite effective. Sometimes what

happens when designers write’s JavaScript’s they leave some useful information

commented there like hidden links or URL patterns or sometimes Web Designers

use JavaScript’s to Spoof Exact URL’s to avoid injection attacks. What Hacker has to

do is just debug the source code of webpage and search of commented links or de-

bug the JavaScript’s to find why it is used for. Its pity sure you will end up with crit-

ical information Extraction.

Also Metadata is too important. Meta information is stored in headers of web pages

and it contains critical information like indexing information, parser information,

Unicode format etc. Indexing information can be extracting by checking the Meta

tag of Index. Usually people use index all tag and this enables Google to crawl each

and every URL of the website wherever the header is used. Now if you own website

then you might be aware of URL patterns like Upload forms, plugin forms, Override

forms etc. Just what you have to use Google dorks to extract required information.

I have already discussed same above so no need to go in detail now.

PARSER AND MARKUP INFORMATION

 There are two Meta Tags namely Parser and Generator, with help of these you can

query Parsing Information. In this I have some smart tricks that really help us to

dig really critical information from the website which help us to launch CSS Hook

attacks and also help in launching Cross Site Scripting Attacks.

Go to website http://validator.w3.org/ for Markup validation service and put the

URL in the address box given below Validate by URI as shown below and do the be-

low shown settings.

http://validator.w3.org/

Now click on check (document type default for first run) and then choose different

document type every time and most funny part, every time you will end up with

finding some bug in the website which can help you in executing CSS hooks. Actu-

ally it’s my luck that every time it does.

Note: My website is a blog (Google blog), so this technique will not work on it. Be-

cause of security reasons I cannot show someone else website :P. Also this tech-

nique will not work on Google Blogger blogs but other than that it works every-

where.

Go through all of them you will end with List of bugs you can use against victim.

There is another smart technique for extracting Juicy information regarding web-

sites i.e. Page Speed API by Google.

USING PAGE SPEED TO DIG CRITICAL INFORMATION ABOUT WEBSITE

Page speed is a great tool for analyzing the performance of website. But same thing

can also be used to get CRITICAL information. Let me show you how?

Open page Speed: https://developers.google.com/speed/pagespeed/insights

Now check the report: Overview

Now to explore URL patterns: Critical path Explorer (It shows all the URL Patterns

that a website loads during start up). More we know, better the chances to hack.

https://developers.google.com/speed/pagespeed/insights

Similarly go through all options one by one to analyze the website. Using this tech-

nique we can extract quite juicy information.

AUTOMATED DATA EXTRACTION USING

HACK TOOLS

EXIFTOOL

One of the tools that can extract Metadata information is the exiftool. This tool is

found in Backtrack distribution and can extract information from various file types

like DOC, XLS, PPT, PNG and JPEG. Typically the information that we would look for

are:

Title

Subject

Author

Comments

Software

Company

Manager

Hyperlinks

Current User

Below is the information that we have obtained from an image and the metadata

from a doc file.

FOCA

FOCA is another great tool for analyzing metadata in documents. It is a GUI based

tool which makes the process a lot of easier. The only thing that we have to do is to

specify the domain that we want to search for files and the file type (doc, xls,

pdf) and FOCA will perform the job for us very easily. Below you can see

a screenshot of the metadata that we have extracted from a doc file. As you can

see we have obtained a username an internal path and the operating system that

the file has created.

WEB APPLICATION OR WEB

SERVER FINGERPRINT

One of the first tasks when conducting a web application penetration test is to try

to identify the version of the web server and the web application. The reason for

that is that it allows us to discover all the well-known vulnerabilities that are affect-

ing the web server and the application. This process is called web application fin-

gerprinting and in this article we will see how to perform it.

The web application fingerprinting can be done with the use of a variety of tools or

manually.

MANUAL FINGERPRINTING

This can be done with the use of different utilities such as the telnet or the netcat.

For example we can try to connect with netcat to the remote webserver that is run-

ning on port 80.We will send an HTTP request by using the HEAD method and we

will wait for the response of the web server.

As we can see from the HTTP response header the type of the web server is

Apache. Also we have managed to identify the technology from the X-Powered-By

field name along with the version that supports the application which is PHP/5.3.5

and also the web application that is running on the web server which is a Zend-

Server. Alternatively if we don’t want to use the netcat utility we can use the telnet

in order to obtain the header information from the web server. The image below is

showing the usage of telnet in obtaining the HTTP Response Header from the same

web server.

Another way is while we are performing our port scan with Nmap on the remote

host to use the command -sV which will obtain as well the type and the version of

the web server that is running. For example in the image below we can see from

the output that Nmap discovered that the web server is IIS version 6.0.

Another method is to send a malformed request to the web server that will cause

the web server to produce an error page which will contain in the response header

the version of the web server. Sample malformed request is shown below.

In some cases the version of the application can be discovered through source code

inspection. So it is always a good practice to look there as well. You can see in the

following example that we have discovered that the application is WordPress 3.3.2

version by looking at the Meta tag.

AUTOMATED FINGERPRINTING

Web application fingerprinting can be done as well with the use of automated tools

that have been designed for that purpose. One of the most famous tools is of

course the httprint. This tool comes with Backtrack but there is a version as well for

windows. In the example below we will use a .txt file that contains signatures of dif-

ferent versions of web servers. So the httprint will try to match the signature of the

target web server with the list of known signatures that the signature file contains

in order to produce an accurate result.

 Another tool that performs pretty much the same job with the httprint is the

httprecon. This tool is for windows platforms and it basically sends different kind of

request to the target web server in order to identify its version. The image below is

showing that we have a match 100% that host that we have scanned is running

Apache 2.2.3 version.

Also if we are performing an external web application penetration test then might

also want to use an online tool which is called netcraft. This tool can retrieve also

the headers of the web server and it can provide us with much more information

including the operating system, the nameserver and the netblock owner and much

more.

PEOPLE SEARCH: PREPARE

SOCIAL ENGINEERING ATTACK

PROFILE

Without wasting time, I think it’s better to show practically how to extract people

information. Let’s say that our client is the MIT (Massachusetts Institute of Technol-

ogy) and we don’t have any information about them. As a first step is to discover

email addresses and profiles that exist on social media networks. We have two op-

tions in this step. We can use either the tool theHarvester or we can use the

metasploit module called search_email_collector.

The use of the email collector module of the metasploit framework is pretty simple.

We just need to set the domain of our target and it will automatically search

through Bing, Yahoo and Google for valid email addresses.

Our target in this case is the MIT so the domain that we want to set is the mit.edu.

Below is a sample of our results.

From the other hand the tool theHarvester is providing us with more options. So

except of the fact that we can scan for email addresses, we can scan also for pro-

files in social media like Google+ and Linkedin. In the next image you can see the

command that we have executed in the tool.

Below is a sample of the email addresses that the tool theHarvester has discovered.

Of course we can combine the results with the module of the metasploit if we wish.

We can try also to scan for profiles related to the mit.edu into professional social

networks like LinkedIn. We have discovered 2 profiles.

So we have a lot of email addresses and two names. Comparing the results with the

metasploit module email collector we have identify that there is an email address

that is probably corresponds to the Walter Lewin profile. The email address is lew-

in@mit.edu and you can see it in the results below.

 Now that we have a name and an email address it is much easier to search the

web in order to collect as much information as possible about this particular person.

For example we can start by checking his Linkedin profile.

We can use the email address lewin@mit.edu to discover his Facebook profile.

The information that we can retrieve without being friends on Facebook with is lim-

ited. However if we impersonate ourselves as a teacher of MIT we can send a friend

request and we might be able to convince him with this way to add us to his friend

list so we can have access to much more personal information. Another good tool

for obtaining information is through the website pipl.com.

As you can see we have discovered information about the age, the job, the personal

web space, his Amazon wish list and a website that contains the profile about this

professor. Also from the same search we have manage to find his work phone

number and his office room.

We can verify the above details by simply discovering his personal web page of the

MIT.

From the above image except of the phone numbers and the addresses we have

discovered also and the assistant of this professor. This can help us in many ways

like: we are sending him an email pretending that it comes from his assistant. The

professor will think that it came from a person that he trusts so he will respond to

our questions more easily. Basically the idea when constructing a profile of the per-

son that you will use your social engineering skills is to have as much information

as possible about his interests and activities, his friends and colleagues, emails and

phone numbers etc. Keeping all that information on your notebook will help you to

construct an ideal scenario that will work.

Disclaimer

BEH appreciates highly the professor Mr. Walter Lewin and respects his work and

contribution to the science and doesn’t encourage in any way his readers to use this

personal information in order to perform illegal activities against this person.

We hope you all Enjoyed Learning Hacking.

Happy Learn. Let’s wait for our Next Issue.

TOPIC OF NEXT ISSUE: INFORMATION

GETTING – BACKTRACK SPECIAL

REFERENCES:

1. Wikipedia : Footprinting

2. Penetration test Lab

3. Backtrack Linux

4. OWASP: Information gathering

i If a Hacker wants to get into your system then he will, what all you can do is that make his

entry harder.

http://en.wikipedia.org/wiki/Footprinting
https://www.owasp.org/index.php/Testing:_Information_Gathering
https://www.owasp.org/index.php/Testing:_Information_Gathering

