
© nCircle 2010. All rights reserved.

Sebastien Doucet <sdoucet@ncircle.com>

64-bit Imports Rebuilding and Unpacking

2 © nCircle 2010 All rights reserved.

Who am I?

• Security Research Engineer at nCircle in Toronto

• My accent is from Montreal

• Used to be involved in the online reverse-engineering

community

– Moderator at reverse-engineering.net forum

– Co-founder of video.reverse-engineering.net (defunct)

– Most evil moderator at crackmes.de

– Member of ARTeam

3 © nCircle 2010 All rights reserved.

Warning

• Used to be a 60-minutes presentation

• Had to take away all the jokes

• Only dry technical stuff left

• Focus is on the unpacking process instead of the tool

• For more information or the full deck of slides,

come see me at the nCircle booth

4 © nCircle 2010 All rights reserved.

Looking at the Bigger Picture

• More 64-bit malware is appearing every day

• Next generation of Windows will probably be 64-bit only

like Windows Server 2008 R2

• Programming languages limited to a specific architecture

like C and C++ increase the difficulty in dealing with

cross-architecture tasks like unpacking

• Platform-independent languages like Python simplify

things but still require you to know what you are doing

when dealing with the PE format and headers

• If I had to redo it today, I would do it in C#

5 © nCircle 2010 All rights reserved.

Overview

• Part 1: What is unpacking?

• Part 2: What is ImpREC? (original tool)

• Part 3: What is CHimpREC? (my tool)

• Part 4: Inner workings of an imports rebuilder

• Part 5: Live 64-bit unpacking session

6 © nCircle 2010 All rights reserved.

Part 1: What is unpacking?

• Packers are designed to protect the content of an

executable binary or library

– Commercial software (game copy protection)

– Malware

• Most packers use encryption or compression

• Original assembly code not accessible

• Make static analysis impossible or at least, very hard

• Called a “shell” in Chinese

7 © nCircle 2010 All rights reserved.

Import Directory

Unpacker IAT

Unpacker Stub

Import Directory

How simple packers work

IAT

ProgramEntry Point

8 © nCircle 2010 All rights reserved.

Import Directory

Import Directory

Unpacker IAT

Unpacker Stub

Import Directory

General unpacking theory

IAT

Program

Entry Point

9 © nCircle 2010 All rights reserved.

Part 2: What is ImpREC?

• 32-bit only imports rebuilder

• Saves a lot of time over the manual rebuilding method

• Wasn’t designed to deal with “features” of Vista

• No documentation or source code was available

• It did its job really well though

10 © nCircle 2010 All rights reserved.

Part 2: What is ImpREC?

11 © nCircle 2010 All rights reserved.

Why do this project?

• ImpREC was getting older.

• There were no public 64-bit imports rebuilder

freely available on the internet at the time.

• Some functionality was missing (process dumper)

• I was curious.

I am a reverser.

It’s what I do.

• Got tired of waiting for somebody else to do it.

So I made it by myself.

12 © nCircle 2010 All rights reserved.

Part 3: What is CHimpREC?

• 32 and 64-bit imports rebuilder

• Improved version of ImpREC

• Fixes many existing bugs

• Introduces new features

• Made especially for WoW64 compatibility

• Allows for an all-in-one version

• Chinese version available (unexpectedly)

• Done entirely through black box reverse-engineering

• Done by making up equivalent operations that yield

exactly the same results in all possible scenarios

13 © nCircle 2010 All rights reserved.

Part 3: What is CHimpREC?

14 © nCircle 2010 All rights reserved.

What is CHimpREC? (Chinese)

15 © nCircle 2010 All rights reserved.

Limitations of ImpREC

XP or Vista w/o ASLR

16 © nCircle 2010 All rights reserved.

Limitations of ImpREC

Vista ASLR

17 © nCircle 2010 All rights reserved.

Limitations of ImpREC

Vista ASLR

18 © nCircle 2010 All rights reserved.

KERNEL32GDI32 USER32

Limitations of ImpREC

Vista ASLR

19 © nCircle 2010 All rights reserved.

Limitations of ImpREC

Buffer Overflow Vulnerabilities

www.IITAC.org19

20 © nCircle 2010 All rights reserved.

Limitations of ImpREC

Buffer Overflow Vulnerabilities

www.IITAC.org20

21 © nCircle 2010 All rights reserved.

Part 4: Inner workings of an import rebuilder

• API families: Toolhelp32 vs. PSAPI

• How planning efficiently can save time

• 5-steps of the process:

– Dump

– IAT AutoSearch

– Get Imports (Unforwarding)

– Show Invalid

– Fix Dump

22 © nCircle 2010 All rights reserved.

Toolhelp32 vs. PSAPI

• Toolhelp32 APIs

– CreateToolhelp32Snapshot

– Process32First

– Process32Next

– Module32First

– Module32Next

– ToolHelp32ReadProcessMemory

23 © nCircle 2010 All rights reserved.

Toolhelp32 vs. PSAPI

• PSAPI APIs

– EnumProcesses

– EnumProcessModules

– EnumProcessModulesEx

– GetModuleInformation

– GetModuleBaseName

– GetModuleFileNameEx

24 © nCircle 2010 All rights reserved.

Toolhelp32 vs. PSAPI

Windows Version Compatibility
95 98 Me NT4 2000 2003 XP Vista

CreateToolhelp32Snapshot X X X X X X X

EnumProcessModules X X X X X

EnumProcessModulesEx X

25 © nCircle 2010 All rights reserved.

How planning efficiently can save time

• 2 Single-Architecture versions (x86 OR x64)

– To each his own

– APIs: CreateToolhelp32Snapshot

– Best OS compatibility range

– Allows for common project source and headers

– Coded in 32-bit then ported to 64-bit

• Cross-Architecture All-in-one version (x86 AND x64)

– Made from a different x64 project

– Requires 64-bit OS

– EnumProcessModules & Ex

– Runs on Vista x64 and Windows 7 only (not XP)

26 © nCircle 2010 All rights reserved.

Step 1: Dump

• Copying the memory area of a process to a file

• When the process has reached its Original Entry Point

• Each section is dumped individually

• Each section RawSize must be realigned from

FileAlignment to SectionAlignment

• RawAddress matches VirtualAddress

• All sections are made writable by adding the flag:

– IMAGE_SCN_MEM_WRITE

• VirtualProtectEx to change the process memory to:

– PAGE_EXECUTE_READWRITE

27 © nCircle 2010 All rights reserved.

Step 1: Dump

28 © nCircle 2010 All rights reserved.

Step 2: IAT AutoSearch

• Binary search looking for indirect call opcodes:

– 8B0D MOV ECX,[ADDRESS]

– 8B15 MOV EDX,[ADDRESS]

– 8B1D MOV EBX,[ADDRESS]

– 8B25 MOV ESP,[ADDRESS]

– 8B2D MOV EBP,[ADDRESS]

– 8B35 MOV ESI,[ADDRESS]

– 8B3D MOV EDI,[ADDRESS]

– A1 MOV EAX,[ADDRESS]

29 © nCircle 2010 All rights reserved.

Step 2: IAT AutoSearch

• Binary search looking for direct call opcodes:

– FF15 CALL [ADDRESS]

– FF25 JMP [ADDRESS]

– FF35 PUSH [ADDRESS]

• Binary search ignores relative calls in 32-bit

• Starting from ImageBase or EntryPoint

• Found call must lead to a valid import

• Search up for the beginning of the IAT

• Search down for the end of the IAT

• Just like trying to identify a weird object in the dark

30 © nCircle 2010 All rights reserved.

Step 2: IAT AutoSearch

31 © nCircle 2010 All rights reserved.

Step 2: IAT AutoSearch

32 © nCircle 2010 All rights reserved.

Step 3: Get Imports

• Identify the elements of the IAT in the specified range

• Exactly the contrary of GetProcAddress

• Using custom-made reusable functions:

– GetProcModuleName

– GetProcName

– GetProcOrdinal

– GetProcNameAndOrdinal

– GetProcInfo

– Unforward

33 © nCircle 2010 All rights reserved.

Step 3: Get Imports (Unforwarding)

• The Entry Point of the function is not code but a string

• Imports are forwarded for compatibility between all the

different versions of Windows

• If an import can be unforwarded, it doesn’t mean that it

really was forwarded

• There are many false-positives

• Must analyze the context with some fuzzy logic

• Could be called guessing too

34 © nCircle 2010 All rights reserved.

Step 3: Get Imports (Unforwarding)

35 © nCircle 2010 All rights reserved.

Step 3: Get Imports (Unforwarding)

36 © nCircle 2010 All rights reserved.

False-positives

Step 3: Get Imports (Unforwarding)

37 © nCircle 2010 All rights reserved.

Forwarding by ordinal

Step 3: Get Imports (Unforwarding)

38 © nCircle 2010 All rights reserved.

Step 4: Show Invalid

• Display unidentified IAT entries

• Text search through the interface

• Check all imports one by one for validity

• Simplest step to implement

39 © nCircle 2010 All rights reserved.

• Recreate the Import Directory to satisfy the loader

• Restore the original IAT

• Assemble structures that point to each other

– IMAGE_IMPORT_DESCRIPTOR

– IMAGE_IMPORT_BY_NAME

• Like gears in a clock

Step 5: Fix dump

40 © nCircle 2010 All rights reserved.

Changes from PE to PE32+ format

• All registers extended to QWORDs

– EAX -> RAX

– ESP -> RSP

• New registers

– R8X-R15X

• All DLLs used must be 64-bit

• BaseOfData has disappeared

• New calling convention for APIs

41 © nCircle 2010 All rights reserved.

Changes in the imports rebuilding process

• IAT elements are QWORDs

• Pointer to Original First Thunk is a QWORD

• ImageBase is a QWORD

• Exception Handlers are now stored as structures in the

new PE32+ Exception Directory

42 © nCircle 2010 All rights reserved.

Part 5: Live 64-bit unpacking session

• Tools used:

– IDA Pro Advanced 64

– CHimpREC-64

• Example: MPRESS 1.07

– Simple UPX-like packer

© nCircle 2010. All rights reserved.

Do you have any questions?

© nCircle 2010. All rights reserved.

For more information or the full deck of
slides, come see me at the nCircle booth.

