
Binary Obfuscation
from the Top Down
How to make your compiler do your dirty work.

Binary Obfuscation
Why Top Down?

• Assembly, while “simple,” is tedious.

• It’s easier for us to write higher-level code.

• Some of us.

• Why do it by hand when you can be lazy?

Binary Obfuscation
What’s the purpose of obfuscation?

• To waste time.

• To intimidate.

• To be a total jerk.

Binary Obfuscation
What tools will be used?

• C and C++

• MSVC++ for compilation (sorry)

Binary Obfuscation
What will not be covered?

• Anti-debug

• Source obfuscation where it does not
relate to binary transformations

• Obfuscation effectiveness

• Post-compilation obfuscation

Important Basics
Hopefully we can get through this really quickly.

Fun With Pointers
car cdr cadr cdar cdadr cdddr caar caaar caaaar

caaaaaar

Binary Obfuscation
Function Pointers

• Like string-format vulnerabilities, function
pointers are ancient Voodoo.

• I honestly don’t know who thought these
were a good idea, but I freakin’ love ‘em.

• See src/funcptr.c

Binary Obfuscation
Function Pointers

int foo (void) {
return 949;

}

int bar (void) {
int (*fooPtr)(void);
fooPtr = foo;
return fooPtr();

}

Binary Obfuscation
Method Pointers

• Abuse of method pointers would probably
make Bjarne Stroustrup really angry.

• There is also one thing uglier than function
pointers. That’s method pointers.

• See src/methodptr.cpp

Binary Obfuscation
Method Pointers
int MyClass::foo(void) {
 return 310;
}

int bar (void) {
MyClass baz;
int (MyClass::*fooPtr)(void);
fooPtr = &MyClass::foo;
return (MyClass.*baz)fooPtr();

}

Calling Conventions
I really want to write a clever pun about payphones and

DEFCON, but I just can’t.

Binary Obfuscation
Calling Conventions

• When making a function call, there are a
few ways to do it:

• stdcall

• cdecl

• fastcall

• thiscall

Binary Obfuscation
Calling Conventions

• stdcall

• Push arguments onto stack

• Called function pops from stack

• Cleans up its own mess.

Binary Obfuscation
Calling Conventions

• cdecl

• Push arguments onto stack

• Called function pops from stack

• Called function cleans up the mess

Binary Obfuscation
Calling Conventions

• fastcall

• First two arguments less than a DWORD
moved into ecx and edx respectively

• Rest are pushed onto the stack

• Called function pops from the stack

• Called function cleans up the mess

Binary Obfuscation
Calling Conventions

• thiscall

• Used when a function within a class
object is called

• “this” pointer moved into ecx

• Function arguments pushed onto stack

• Called function pops from stack

• Cleans up its own mess

Compiler
Optimizations

The Dragon Book: Not Just for Furries Anymore

Binary Obfuscation
Compiler Optimizations

• Control-flow analysis

• Variable analysis

• Reach-of-use

• The volatile keyword

Binary Obfuscation
Compiler Optimizations

• At compile time, your code is separated
into multiple blocks.

• A “block” consists of code separated by
conditional (e.g. JLE, JNE, etc.) and
unconditional jumps (e.g. CALL and JMP).

• How this code is organized and how the
jumps occur affects the optimization of the
program.

Binary Obfuscation
Compiler Optimizations

MOV EAX,949
XOR EAX,310
CMP EAX,0
JNE z0r

z0r:
XOR EAX,310
PUSH EAX

XOR EAX,949
LEAVE
RETN

Binary Obfuscation
Compiler Optimizations

MOV EAX,949
XOR EAX,310
CMP EAX,0
JNE z0r

z0r:
XOR EAX,310
PUSH EAX

XOR EAX,949
LEAVE
RETN

lol lemme
fix this

Binary Obfuscation
Compiler Optimizations

MOV EAX,949
XOR EAX,310
XOR EAX,310
PUSH EAX

Binary Obfuscation
Compiler Optimizations

• The compiler also looks at your variables
to make sure you’re not doing anything
repetitive or inconsequential.

• Algorithms like the directed acyclic graph
(DAG) algorithm and static variable analysis
make sure memory and math are fully
optimized.

Binary Obfuscation
Compiler Optimizations

MOV EAX,949
XOR EAX,310
XOR EAX,310
PUSH EAX

Binary Obfuscation
Compiler Optimizations

MOV EAX,949
XOR EAX,310
XOR EAX,310
PUSH EAX

lol seriously?

Binary Obfuscation
Compiler Optimizations

MOV EAX,949
PUSH EAX

Binary Obfuscation
Compiler Optimizations

MOV EAX,949
XOR EAX,310
CMP EAX,0
JNE z0r

z0r:
XOR EAX,310
PUSH EAX

XOR EAX,949
LEAVE
RETN

MOV EAX,949
PUSH EAX

Binary Obfuscation
Compiler Optimizations

• Your compiler is a neat-freak.

• If the compiler notices it doesn’t need a
variable anymore, it’s just going to get rid of
it, no matter what else you do to it.

Binary Obfuscation
Compiler Optimizations

MOV EAX,949
MOV EBX,310
MOV ECX,213
XOR EAX,EBX
ADD EBX,EAX
SUB EAX,EAX
PUSH EBX
PUSH EAX

Binary Obfuscation
Compiler Optimizations

MOV EAX,949
MOV EBX,310
MOV ECX,213
XOR EAX,EBX
ADD EBX,EAX
SUB EAX,EAX
PUSH EBX
PUSH EAX

Binary Obfuscation
Compiler Optimizations

MOV EAX,949
MOV EBX,310
XOR EAX,EBX
ADD EBX,EAX
SUB EAX,EAX
PUSH EBX
PUSH EAX

Binary Obfuscation
Compiler Optimizations

• There exist cases (mostly in hardware
development) where you do NOT want
your compiler to optimize your variable.

• This is where the volatile keyword
comes in.

• Making your variable volatile tells the
compiler not to do any optimizations to it.

Binary Obfuscation
Compiler Optimizations

volatile int foo;
volatile char bar;
volatile uint32_t baz;

Binary Obfuscation
Compiler Optimizations

int x;
x = 7;
x <<= 2;
x *= 2;
x -= 12;
x += (x*x)<<2;
printf("%d\n", x);

Binary Obfuscation
Compiler Optimizations

PUSH 1E6C
PUSH “%d\n”
CALL $PRINTF

int x;
x = 7;
x <<= 2;
x *= 2;
x -= 12;
x += (x*x)<<2;
printf("%d\n", x);

Binary Obfuscation
Compiler Optimizations

volatile int x;
x = 7;
x <<= 2;
x *= 2;
x -= 12;
x += (x*x)<<2;
printf("%d\n", x);

Binary Obfuscation
Compiler Optimizations

MOV [ESP],7
SHL [ESP],2
MOV EAX,[ESP]
ADD EAX,EAX
MOV [ESP],EAX
ADD [ESP],-0C
MOV ECX,[ESP]
MOV EDX,[ESP]
MOV EAX,[ESP]
IMUL ECX,EDX
...

volatile int x;
x = 7;
x <<= 2;
x *= 2;
x -= 12;
x += (x*x)<<2;
printf("%d\n", x);

Binary Formats
Everything is a file.

Binary Obfuscation
Binary Formats

• The most common formats you’ll likely
come across are the PE file format
(Windows) and the ELF format (Linux).

• Both of these formats have a “table” they
use for external library calls such as
printf, execv, etc.

• For Windows it’s called the IAT. For Linux
it’s the PLT.

Binary Obfuscation
Binary Formats

• If you obfuscate function pointers, they will
likely not show up in those lists and
therefore cause your library calls to fail.

• Circumventing this issue will be covered
later.

Methods of Analysis
Know your opponent!

Binary Obfuscation
Methods of Analysis

• Someone can easily figure out the gist of
what your program is doing by analyzing
any of the API calls you make.

• There exist a few programs out there that
already do this for you: VirusTotal and
ZeroWine.

Binary Obfuscation
Methods of Analysis

• VirusTotal (virustotal.com) is a website that
allows you to upload suspected malware
files and analyze them against over thirty
different scanners.

• At the end of the analysis is a list of all
recognized Windows API calls made by the
program, as well as various data sections
within.

Binary Obfuscation
Methods of Analysis

• ZeroWine (zerowine.sourceforge.net) is a
malware analysis tool that executes a
program in a controlled environment and
collects data.

• This, too, collects and reports on API calls
made by the program, as well as any
possible servers it may have contacted or
files it may have written.

Binary Obfuscation
Methods of Analysis

• When analyzing a binary, there are two
schools of analysis: live-code and dead-
code.

• Dead-code is exactly how it sounds: you
look at the binary, as-is, without executing.

• Live-code is the opposite: you run the
program and watch what it does.

Binary Obfuscation
Methods of Analysis

• VirusTotal employs dead-code analysis. It
simply reads the binaries uploaded to it,
scans it with various virus scanners and
reports.

• ZeroWine, however, employs live-code
analysis. It runs the suspected program in a
controlled environment and watches what
happens.

Binary Obfuscation
Methods of Analysis

• Dead-code analysis can be frustrated
through polymorphism.

• Live-code analysis can be frustrated
through hiding, obfuscating and redirecting
data and control-flow under the eyes of the
reverser.

Obfuscation
We’re almost at the fun part, I promise!

Binary Obfuscation
Obfuscation

• There are three separate classes of
obfuscation.

• Layout

• Control-flow

• Data

Binary Obfuscation
Obfuscation

• Layout obfuscation essentially means
scrambling the program around at the
source-level.

• The International Obfuscated C Contest
(ioccc.org) is a perfect example of this.

Binary Obfuscation
Obfuscation

X=1024; Y=768; A=3;

J=0;K=-10;L=-7;M=1296;N=36;O=255;P=9;_=1<<15;E;S;C;D;F(b){E="1""111886:6:??AAF"
"FHHMMOO55557799@@>>>BBBGGIIKK"[b]-64;C="C@=::C@@==@=:C@=:C@=:C5""31/513/5131/"
"31/531/53"[b]-64;S=b<22?9:0;D=2;}I(x,Y,X){Y?(X^=Y,X*X>x?(X^=Y):0, I (x,Y/2,X
)):(E=X); }H(x){I(x, _,0);}p;q(c,x,y,z,k,l,m,a, b){F(c
);x-=E*M ;y-=S*M ;z-=C*M ;b=x* x/M+ y*y/M+z
*z/M-D*D *M;a=-x *k/M -y*l/M-z *m/M; p=((b=a*a/M-
b)>=0?(I (b*M,_ ,0),b =E, a+(a>b ?-b:b)): -1.0);}Z;W;o
(c,x,y, z,k,l, m,a){Z=! c? -1:Z;c <44?(q(c,x ,y,z,k,
l,m,0,0),(p> 0&&c!= a&& (p<W ||Z<0))?(W=
p,Z=c): 0,o(c+ 1, x,y,z, k,l, m,a)):0 ;}Q;T;
U;u;v;w ;n(e,f,g, h,i,j,d,a, b,V){o(0 ,e,f,g,h,i,j,a);d>0
&&Z>=0? (e+=h*W/M,f+=i*W/M,g+=j*W/M,F(Z),u=e-E*M,v=f-S*M,w=g-C*M,b=(-2*u-2*v+w)
/3,H(u*u+v*v+w*w),b/=D,b*=b,b*=200,b/=(M*M),V=Z,E!=0?(u=-u*M/E,v=-v*M/E,w=-w*M/
E):0,E=(h*u+i*v+j*w)/M,h-=u*E/(M/2),i-=v*E/(M/2),j-=w*E/(M/2),n(e,f,g,h,i,j,d-1
,Z,0,0),Q/=2,T/=2, U/=2,V=V<22?7: (V<30?1:(V<38?2:(V<44?4:(V==44?6:3))))
,Q+=V&1?b:0,T +=V&2?b :0,U+=V &4?b:0) :(d==P?(g+=2
,j=g>0?g/8:g/ 20):0,j >0?(U= j *j/M,Q =255- 250*U/M,T=255
-150*U/M,U=255 -100 *U/M):(U =j*j /M,U<M /5?(Q=255-210*U
/M,T=255-435*U /M,U=255 -720* U/M):(U -=M/5,Q=213-110*U
/M,T=168-113*U / M,U=111 -85*U/M)),d!=P?(Q/=2,T/=2
,U/=2):0);Q=Q< 0?0: Q>O? O: Q;T=T<0? 0:T>O?O:T;U=U<0?0:
U>O?O:U;}R;G;B ;t(x,y ,a, b){n(M*J+M *40*(A*x +a)/X/A-M*20,M*K,M
*L-M*30*(A*y+b)/Y/A+M*15,0,M,0,P, -1,0,0);R+=Q ;G+=T;B +=U;++a<A?t(x,y,a,
b):(++b<A?t(x,y,0,b):0);}r(x,y){R=G=B=0;t(x,y,0,0);x<X?(printf("%c%c%c",R/A/A,G
/A/A,B/A/A),r(x+1,y)):0;}s(y){r(0,--y?s(y),y:y);}main(){printf("P6\n%i %i\n255"
"\n",X,Y);s(Y);}

Anders Gavare, http://www0.us.ioccc.org/2004/gavare.c

http://www0.us.iocc.org/2004/gavare.c
http://www0.us.iocc.org/2004/gavare.c

Binary Obfuscation
Obfuscation

• Control-flow obfuscation involves twisting
the typical downward-flow of a program to
into spaghetti code.

• It has the added benefit of obfuscating
source while simultaneously upsetting the
normal flow a reverse-engineer is used to.

Binary Obfuscation
Obfuscation

• Data obfuscation involves masking
whatever data you have in your program by
any means.

• Strings, numbers, even functions within your
program can be masked, obfuscated,
interwoven or encrypted without hand-
writing any assembly.

Obfuscation
Techniques

Now the fun begins.

Binary Obfuscation
Obfuscation Techniques

• The goal is to obfuscate the binary without
doing binary transformations.

• We know how the compiler optimizes,
what it does to our data and how it stores
some information important for
programmatic logic.

• With this in mind, we can now leverage our
code against the compiler.

Binary Obfuscation
Obfuscation Techniques

• Layout obfuscation is essentially useless.

• Renaming variables, removing whitespace
and using #define routines for functions
typically has very little impact on the
underlying program.

• Sure you can do layout obfuscation on your
code, and some of it MAY translate to
obfuscated code, but the signal-to-noise
ratio is much too low for to be useful.

Control-Flow
Obfuscation

Turn that boring linear NOP sled into something
worthy of Raging Waters.

Binary Obfuscation
Control-Flow Obfuscation

• With function pointers, method pointers,
the volatile keyword and the goto
keyword on our side, we can do some
really fun stuff.

Binary Obfuscation
Control-Flow Obfuscation

• Opaque predicates are tautological IF
statements.

• An opaque predicate cannot be optimized
because the compiler cannot determine the
outcome.

• You see this frequently in obfuscated
JavaScript.

Binary Obfuscation
Control-Flow Obfuscation

int a=7,b=2,c=8,d=9;
if (a+b+c*d > 0)
{
 puts(“yes”);
 exit(0);
}
puts(“no”);

Binary Obfuscation
Control-Flow Obfuscation

PUSH “yes”
CALL $PUTS
PUSH 0
CALL $EXIT

int a=7,b=2,c=8,d=9;
if (a+b+c*d > 0)
{
 puts(“yes”);
 exit(0);
}
puts(“no”);

Binary Obfuscation
Control-Flow Obfuscation

int a,b,c,d;
srand(time(0));
a=rand()+1;b=rand()+1;
c=rand()+1;d=rand()+1;
if (a+b+c*d > 0)
{
 puts(“yes”);
 exit(0);
}
puts(“no”);

Binary Obfuscation
Control-Flow Obfuscation

...
TEST EAX,EAX
JLE SHORT :NO
PUSH “yes”
CALL $PUTS
PUSH 0
CALL $EXIT
NO: PUSH “no”
CALL $PUTS

int a,b,c,d;
srand(time(0));
a=rand()+1;b=rand()+1;
c=rand()+1;d=rand()+1;
if (a+b+c*d > 0)
{
 puts(“yes”);
 exit(0);
}
puts(“no”);

Binary Obfuscation
Control-Flow Obfuscation

• Control-flow flattening involves, quite
literally, flattening the graphical
representation of your program.

• Typically you have a top-down flow with
program graphs. With flattening, you cause
a central piece of code to control the flow
of the program.

• Control-flow obfuscation is employed by
bin/crackmes/leetkey.exe

Binary Obfuscation
Control-Flow Obfuscation

Flattened: Normal:

Binary Obfuscation
Control-Flow Obfuscation

Binary Obfuscation
Control-Flow Obfuscation

doThis();
doThat();
doMore();

int x=2;
sw: switch(x) {
 case 0: doThat();
 x = 1;
 goto sw;
 case 1: doMore();
 break;
 case 2: doThis();
 x = 0;
 goto sw;
}

Binary Obfuscation
Control-Flow Obfuscation

• This technique of obfuscation can be
applied very creatively.

• See src/cflow-flatlist.c and
src/cflow-flattree.c

Binary Obfuscation
Control-Flow Obfuscation

• Most programs are reducible-- meaning
they can easily be optimized.

• If a program is irreducible, then it cannot be
optimized, thus translating spaghetti code
into spaghetti assembly.

• A good example by Madou et. al. is making
a loop irreducible.

• See src/cflow-irreducible.c

Binary Obfuscation
Control-Flow Obfuscation

• Raising bogus exceptions is a common way
for malware to obfuscate and frustrate
reverse engineering.

• This is easily accomplished by setting up a
try block, intentionally triggering the
exception, then resuming at the caught
section.

• For Linux, you can do the same with signals.

• See src/cflow-exceptions.cpp

Binary Obfuscation
Control-Flow Obfuscation

try {
 volatile int trigger=20;
 doThis();
 doThat();
 /* trigger divide-by-zero exception */
 trigger=trigger/(trigger-trigger);
 neverExecutes();
} catch (...) {
 doMore();
 doTonsMore();
}

Data Obfuscation

Binary Obfuscation
Data Obfuscation

• Data obfuscation takes a little more care
than control-flow obfuscation.

• The data must be obfuscated before the
compilation process, then de-obfuscated at
run-time.

• If the data is not obfuscated before run-
time, dead-code analysis is made trivial and
your obfuscation is useless.

Binary Obfuscation
Data Obfuscation

• One of the more obvious techniques is to
encrypt your strings.

• Even though strings don’t technically lead
to knowledge of the program, it can help
aide in reverse-engineering more often than
you think.

Binary Obfuscation
Data Obfuscation

• Recall the explanation of volatile:

• With enough annoyances, this can be used
to frustrate analysis.

volatile int x;
x = 7;
x <<= 2;
x *= 2;
x -= 12;
x += (x*x)<<2;
printf("%d\n", x);

Binary Obfuscation
Data Obfuscation

• Data aggregation can be used to make
dead-code analysis confusing.

char aggr[7] = “fboaor”;
char foo[3], bar[3];
int i;
for (i=0;i<3;++i) {
 foo[i]=aggr[i*2];
 bar[i]=aggr[i*2+1];
}
/* foo = “foo” / bar = “bar” */

Binary Obfuscation
Data Obfuscation

• Functions in the PLT/IAT are certainly
considered data.

• To prevent dead-code analysis from
discovering our library calls, we can easily
“create” functions at run-time by using
system calls such as LoadLibrary and
GetProcAddress (Windows) and
dlopen and dlsym (Linux).

• See src/data-loadlib.c, src/data-dlopen.c and
src/mdl.cpp

Poor Man’s Packer
How to simulate a packer in a humorous manner.

Binary Obfuscation
Poor Man’s Packer

• Combines control-flow and data
obfuscation to cause all sorts of headaches.

• Revolves around compiling, copying data
and applying function pointers to
obfuscated or encrypted data.

• See bin/crackmes/manifest.exe

• If you have problems with this binary, ask
a DC949 member what the group motto
is.

Binary Obfuscation
Poor Man’s Packer

• Compile

• Disassemble

• Copy bytes of function, make an array

• Apply encryption, aggregation, etc.

• Recompile

• Decipher at run-time

• Cast as function-pointer

• Execute

• See src/pmp-concept.c

Binary Obfuscation
Poor Man’s Packer

• Problems

• Functions are broken because they are
no longer in the PLT/IAT.

• Data offsets are completely messed up.

• Functions in C++ objects cause
segmentation faults (due to broken
thiscall).

• Compiler might change calling
conventions.

• void pointers are scary.

Binary Obfuscation
Poor Man’s Packer

• If you pass a data structure containing data
required by the function (function offsets,
strings, etc.), you can circumvent the issue
caused by relative jumps and offsets.

• This also applies to method pointers and
C++ objects.

• This gives you the opportunity to
dynamically add and remove necessary
program data as you see fit.

Binary Obfuscation
Poor Man’s Packer

• Be sure your calling conventions match
after each step of compilation and byte-
copying!

• cdecl is the calling convention used by
vararg functions such as printf.

• fastcall and stdcall should be fine for all
other functions.

• Mismatched calling conventions will cause
headaches and segmentation faults.

Binary Obfuscation
Poor Man’s Packer

• Why is this beneficial?

• Ultimate control of all data

• Code is still portable and executable

• Adds a bizarre layer of obfuscation

• When done enough, severely obfuscates
source

Binary Obfuscation
Poor Man’s Packer

• Why does this suck?

• Makes binaries huge if you don’t
compress your functions due to enlarged
data-sections

• Takes a lot of work to accomplish

• It can be extremely frustrating to craft
the write code with the right keywords
with full optimization

Additional Info
Some stuff to help you out with obfuscation

Binary Obfuscation
Tools

• Code transformers

• TXL (txl.ca)

• SUIF (suif.standford.edu)

• TXL and SUIF are used to transform
source-code by a certain set of given rules
(such as regular expressions).

Binary Obfuscation
Sources

• M. Madou, B. Anckaert, B. De Bus, K. De
Bosschere, J. Cappaert, and B. Preneel, "On
the Effectiveness of Source Code
Transformations for Binary Obfuscation"

• B. M. Prasad, T. Chiueh, "A Binary Rewriting
Defense against Stack based Buffer
Overflows"

• C. I. Popov, S. Debray, G. Andrews, "Binary
Obfuscation Using Signals"

The End

