
 
Mitchell Adair

1/22/2013

 Know Owen from our time at Sandia National Labs

 Currently work for Raytheon

 Founded UTDallas’s Computer Security Group (CSG) in

Spring 2010

 Reversing, binary auditing, fuzzing, exploit dev, pen testing…

 Python

 At the end of this, you should feel comfortable

o Being handed a binary

o Examining a binaries sections, imports, strings

o Renaming and simplifying the disassembly

o Converting from assembly to source, where needed

o Understanding process memory layout

o Figuring out function arguments and local variables

• How many and what types

o Using a debugger to fill in the gaps or manipulate program execution

 Static vs Dynamic (overview)

 PE and ELF

 Assembly

 Registers

 The Stack

 Functions

 IDA

 Debugging

 Note on Bytecode

 Conclusion

Try to reverse

Learn
something new

Apply the new
knowledge

 

 Static

o Looking at the code, figure things out

o It’s all there, but possibly more complicated

o A safer approach

• Not running the code!

 Dynamic

o Examine the process during execution

o Can see the values in real time

• Registers, memory contents, etc.

o Allows manipulation of the process

o Should run in a VM!

 Disassemblers are usually the tool of choice for static

o IDA Pro, objdump, etc.

 Debuggers are used for dynamic analysis

o Windows

• WinDBG, Immunity, OllyDBG, IDA

o Linux

• GDB

 A good disassembler will have several useful features

o Commenting

o Renaming variables

o Changing function prototypes

o Coloring, grouping and renaming nodes (IDA)

o …

 A good debugger will have several useful features

o Set breakpoints

o Step into / over

o Show loaded modules, SEH chain, etc.

o Memory searching

o …

 Okay, no more!

 We’ll be going into each of these heavily.

 That was just a high level overview to understand

o The difference between static and dynamic analysis

o The general approach taken between the two

 

 PE (Portable Executable)

o “File format for executables, object code and DLLs, used in 32-bit

and 64-bit versions of Windows operating systems” – wikipedia

 ELF (Executable and Linkable Format)

o “A common standard file format for executables, object code,

shared libraries, and core dumps” – wikipedia

o Linux, Unix, Apple OS

Image from http://software.intel.com/sites/default/files/m/d/4/1/d/8/keep-memory-002.gif

 We could go very, very deep into file formats… but let’s not

 Each format is just a big collection of fields and sections

 Fields will have a particular meaning and hold a particular

value

o Date created, last modified, number of sections, image base, etc.

 A section is, generally, a logical collection of code or data

o Has permissions (read/write/execute)

o Has a name (.text, .bss, etc.)

 Okay, so what? Why is this useful?

 Can get an overview of what the binary is doing

o Can look at what libraries the binary is loading

o Can look at what functions are used in a library

• Find vulns

o Can parse data sections for strings

• Very helpful on CTFs

o Can help determine if a binary is packed

• Weird section names or sizes, lack of strings, lack of imports

 How do we analyze them?

o PE : CFF Explorer, IDA, pefile (python library), …

o ELF : readelf, objdump, file, …

 This is CFF Explorer looking at calc.exe’s sections headers

Represent

permissions

 This is CFF Explorer looking at a UPX packed executable

from a recent CTF

 Huge red flag with section names like this

 This is using readelf to look at section headers

 This is IDA exemaning what functions are imported

 I have filtered using the regular expression .*str.*

Probably

worth

investigating ;)

 This is IDA examining strings it has found for a recent CTF
problem

 Probably want to start from the “Get your flag %s\n” string and
work backwards ;)

 Open number_checker.exe and

number_checker_packed.exe

 Compare these two!

 In CFF Explorer

o Look at different fields in the PE format

o Look at sections

o Just explore

 In IDA

o Look at strings (shift+f12)

o Look at imports (view->open subviews->imports)

o Look at sections (shift+f7)

 

 Two syntax options

o ATT

o Intel

 ATT

o instruction source, dest

o mov %eax, %edx

o “Move eax into edx”

 Intel

o instruction dest, source

o mov edx, eax

o “Move into edx, eax”

 It’s a known fact that Intel’s syntax > ATT’s, so we’ll be using

Intels ;)

 mov eax, ecx

o Move into eax, the contents of ecx

 mov eax, [ecx]

o Move into eax, the contents of what ecx points to

o The brackets, […], mean dereference the value between them

o In C, this is like a pointer dereference

o eax = *ecx

 Memory values and immediates can be used as well

 mov eax, 5

o Move into eax, the value 5

 mov edx, [0x12345678]

o Move into edx, what 0x12345678 points to

 A very small handful of instructions will get you a long way

o call, mov, cmp, jmp

 call 0x12345678

o Call the function at 0x12345678

 cmp eax, 8

o Compare eax to 8

o Compare left to right

 jmp 0x12345678

o Unconditional jump to 0x12345678

 jle 0x12345678

o Jump to 0x12345678 if eax is less than or equal to 8

 jg 0x12345678

o Jump to 0x112345678 if eax is greater than 8

 Let’s focus on the instructions we know

o mov, cmp, jmp, call

 [ebp-0x4] = 0x4

 [ebp-0x8] = 0xa

 eax = [ebp-0x4]

 Two values, relative to the

pointer contained in ebp

have been assigned values

 One register has been

assigned a value

 [ebp-0x4] = 0x4

 [ebp-0x8] = 0xa

 eax = [ebp-0x4]

 cmp eax, [ebp-0x8]

o eax == [ebp-0x8] ?

o 4 == 10 ?

 jge 0x80483d7

o If 4 was >= 10, jmp

o Else, continue execution

 [ebp-0x4] = 0x4

 [ebp-0x8] = 0xa

 eax = [ebp-0x4]

 cmp eax, [ebp-0x8]

o eax == [ebp-0x8] ?

o 4 == 10 ?

 jge 0x80483d7

o If 4 was >= 10, jmp

o Else, continue execution False, so execution just

continues to the next

instruction

 [ebp-0x4] = 0x4

 [ebp-0x8] = 0xa

 eax = [ebp-0x4]

 cmp eax, [ebp-0x8]

 jge 0x80483d7

 mov eax, 0x1

o eax = 1

 jmp over the mov eax, 0

 leave and return

 So two memory addresses, relative to the pointer contained

in ebp, have values. One has 4, one has 10.

 There is a comparison

 If operand 1 >= operand 2, take the jump

 If not, continue execution

 Eax gets assigned the value of 1

 The function returns

 Let’s dig deeper

 Everything shown in the disassembly has a purpose

 mov DWORD PTR [ebp-0x4], 0x4

o What does DWORT PTR mean?

 We know the brackets […] mean get the value held at the

dereferenced value between them… but DWORD PTR?

 mov DWORD PTR [ebp-0x4], 0x4

 DWORD PTR

o DWORD = the size

o PTR = dereference the value, accompanied by the brackets

 We have a few number of sizes allowed

Type Size (bytes) Size (bits) ASM Example

char 1 byte 8 bits BYTE char c;

short 2 bytes 16 bits WORD short s;

int 4 bytes 32 bits DWORD int i;

long long 8 bytes 64 bits QWORD long long l;

 So…

 mov DWORD PTR [ebp-0x4], 0x4

 The address pointed to by the dereferenced value of [ebp-4]

is getting 4 bytes moved into it, with the value of 4.

 [ebp-4] is an int

 So our source code probably has some int value and hard

codes a value of 4 to it

 mov DWORD PTR [ebp-0x4], 0x4

 mov DWORD PTR [ebp-0x8], 0xa

 This leaves us with 2 ints being assigned a hard coded

value

o int x = 4;

o int y = 10;

 Are these locals, globals, static variables???

 We need a little background on process memory layout.

 int x = 4;

 int y = 10;
o We don’t know where these are

declared

 if (4 >= 10)
o jmp to main+0x23

 eax = 1

 jmp to main+0x28

 main+0x23 :
o eax = 0

 main+0x28:
o ret

 We don’t take the jmp as already
discussed.

 It’s starting to look like source
code!

 Let’s do a quick introduction to process memory layout,

then we’ll continue with the first example

 We want to know

o Why things are relative to esp/ebp?

o What are the push/pop instructions doing?

o What about the leave/ret instructions?

Image from https://www.corelan.be/wp-

content/uploads/2010/08/image_thumb3.png

Image from

http://www.tenouk.com/Bufferoverflowc/Bufferoverflow1_fil

es/image022.png

 

Register Name Description

EIP Next instruction executed

*Want to hijack during exploitation

ESP Stack pointer

EBP Base pointer

EAX Accumulation

*Holds the return value, usually.

EBX Base

ECX Counter

EDX Data

ESI Source index

EDI Destination index

 

 Okay, we have some background on the registers, the stack,

and process layout

 Let’s try to figure out what this code’s stack layout would

look like

 Then, we’ll look back at the code and what we know

 sub esp, 0x10

o There is room for 16 bytes of

locals, or 4 ints

 [ebp-4] is a local

 [ebp-8] is a local

 Return value, eax, is either

1 or 0 depending on the

comparison

…

RET

EBP

ESP

EBP-4

EBP-8

4

10

No [ebp+x], no arguments to

the function

EBP-16

args start at

EBP+8

 int someFunction() {

 int x = 4;

 int y = 10;

 if (4 >= 10)

o jmp to main+0x23

 eax = 1

 jmp to main+0x28

 main+0x23 :

o eax = 0

 main+0x28:

o return

 ‘if’ comparisons get translated opposite from source to

assembly

 if x > y

 Will become

o cmp x, y

o jle 0x12345678 (jump less than or equal)

o If some condition is *not true*, jump over it

 If x <= y

 Will become

o cmp x, y

o ja 0x12345678 (jmp above)

 int someFunction() {

 int x = 4;

 int y = 10;

 if (4 < 10)

o Return 1

 Return 0

 }

 Hey, that’s source code!

 Produce the source code for the following function

 How many local variables, how many arguments, what

types?

 Hint: lea eax, [edx+eax*1] is the same thing as

o eax = edx+eax

 What we just saw was the
sum function.

 The compiler used lea
edx+eax for efficiency

 It could have similarly used
the add instruction

 eax contains the return
value

 No local variables were
used (no [ebp-x]), just
arguments ([ebp+x])

 

 Looking at the previous exercise introduces a question

about how function calls are handled

 We know

o eax holds the return value

o Arguments (from the functions point of view) begin at ebp+8

 But how do those arguments get there, and how are they

removed?

 Two main calling conventions are commonly used

 CDECL

o Originates from C

o Args pushed on the stack, right to left (reverse)

o Calling function cleans up

 STDCall

o Orignates from Microsoft

o Args pushed on the stack, right to left (reverse)

o Called function cleans up

• Must know how many bytes ahead of time

 GCC tends to use : move [esp+x], arg

 Visual studio tents to use : push arg

 Regardless, we’re putting args on top of the stack

…

RET

EBP

7

5 ESP EBP + 8

 Now that the stack is setup, sum is called

 Functions reference local variables and arguments via their

stack frame pointers, esp and ebp

 So, every function has it’s own prolog and epilog to adjust

esp and ebp to contain the correct values

 Prolog – push ebp to save it on the stack, then move ebp to the
top of the stack, then make room for locals

o Push ebp

o mov ebp, esp

o sub esp, x

 Epilog – move esp back to ebp, pop the top of the stack into ebp,
return to the address on top of the stack

o add esp, x

o pop ebp

o ret

 Epilog 2 – leave is equivalent to : mov esp, ebp; pop ebp

o leave

o ret

…

RET

EBP

7

5

 The call instruction pushes EIP onto the stack

RET

ESP

EBP

…

RET

EBP

7

5

 EBP is saved

RET

EBP

ESP

EBP

…

RET

EBP

7

5

 EBP has the same value as ESP now

RET

EBP

ESP

EBP

…

RET

EBP

7

5

 EAX gets the value of arg 2

RET

EBP

ESP

EBP

EAX = 7

…

RET

EBP

7

5

 EDX gets the value of arg 1

RET

EBP

ESP

EBP

EAX = 7

EDX = 5

…

RET

EBP

7

5

 EAX contains a new value now, not what was in arg2

RET

EBP

ESP

EBP

EAX = 12

EDX = 5

…

RET

EBP

7

5

 In the epilog now, set EBP back to the callers value

RET

ESP

EBP

EAX = 12

EDX = 5

…

RET

EBP

7

5

 Ret is the same as : pop EIP

 Control flow returns to the next instruction in the caller

ESP

EBP

EAX = 12

EDX = 5

 What is the stack going to look like at the printf call?

…
RET

EBP

Sally

29

RET

EBP

real_age

real_age

name

Main

function1

ESP

EBP

.data section char *

 for(i = 0; i < 10; i++)

 Without a single

instruction, it’s clear what

is happening at a high

level here

 This common “stair step”

graph structure is a series

of calls/checks that error

out on failure

 IDA rocks…

 We can do many things, including grouping a set of nodes,

color coding them, and renaming them

 Knowing that all these checks error out on failure we can

simplify the graph

 I could spend on all day on IDA, too much information to put

into slides without making it a pure IDA talk

 *Live demo goes here*

o How to use IDA

o Go over variable renaming, function protocol modification,

comments, coloring, grouping, sections, string, imports, etc.

 Can you figure out the correct input to get the key program

to print the key?

 Use the executable number_checker.exe

 

 Everything covered so far has been static analysis

 Now we’ll cover dynamic analysis through debugging

 Remember

 A good debugger will have several useful features

o Set breakpoints

o Step into / over

o Show loaded modules, SEH chain, etc.

o Memory searching

o …

 WinDBG, OllyDBG, Immunity, IDA, GDB, etc. are good

debuggers

 Keep in mind…

 You control everything!

 If you want to skip over an instruction, or a function call, do

it!

 If you want to bypass the “authentication” method or make

it return true… you can!

 You can change register contents and memory values,

whatever you want.

 You can even patch programs (make changes and save it to

a new executable).

 F2 will set a breakpoint in IDA, Olly, Immunity

 The breakpoint has been hit, execution is stopped

• The registers

• The stack

 The breakpoint has been hit, execution is stopped

• The registers

• The stack

args

 We can now see the function call is

 InterlockedCompareExchange(__native_startup_lock,

0x47000, 0)

 Looking at the MSDN site for the prototype :

 Knowing the data types of the parameters, we can trace

back up through the program where the values in ebx, esi

and edi came from

 Then we can rename those values to something useful

 Just looking at calls, figuring out their arguments, and

tracing back to fill in the data types can really help figure

out most of the functions

 We’ll again use the number_checker.exe binary for this

exercise

 Can you bypass the key check entirely?

 In CTFs a lot of times we can see where the key get’s

printed, and we’ll try to just jump directly to that function, or

make checks return True/False depending on where we

want to go.

o Usually can get a quick low point problem this way ;)

 Set a breakpoint at the beginning of the function (f2)

 When execution is stopped, find where you want to jump to,

and right click -> set ip

 Most of the Windows debuggers are similar

o Same windows, same hotkeys, etc.

o Except WinDBG, WinDBG is more GDB like

 GDB is similar, but is command line

 We’ll cover some simple GDB usage

Command Description

gdb ./my_program Launch gdb, debug my_program

gdb --args ./my_program arg1 arg2 Launch gdb, debug my_program,

passing two arguments

run Run the application

run arg1 arg2 Run the application, pass two args

run $(python –c “print ‘A’*1000”) Run the application, pass one arg, just

like regular shell execution

 Starting GDB and launching the application

o With and without arguments

 1. Launch GDB with the program we want to debug

 2. Run it

 Hmm… we need more information

o (I would just open it in IDA, but we’re trying to learn GDB here!)

2

1

Command Description

set disassembly-flavor intel Use Intel syntax

disas [function_name] Disassemple the chosen function

Command Description

break main Set a breakpoint on the function “main”

break *0x12345678 Set a breakpoint on the address 0x…

info breakpoints Show information regarding breakpoints

delete breakpoint 2 Delete breakpoint 2

delete breakpoints Delete all breakpoints

Commands Description

si Step Instruction. Execute to next

instruction, go *into* functions

ni Next Instruction. Execute to next

instruction, go *over* functions

• Look at the

addresses

• We’re manually

stepping through

the instructions

Commands Description

si Step Instruction. Execute to next

instruction, go *into* functions

ni Next Instruction. Execute to next

instruction, go *over* functions

• Look at the

addresses

• We’re manually

stepping through

the instructions

This still

isn’t

helping us

though!

 We can disassemble, set breakpoints, and step through the

program… but

 We need to

o See the contents of registers

o See the contents of memory

o Modify (if desired)

Image from http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Command Description

x/5i $eip Examine 5 instructions at EIP

x/4xw $esp Examine 4 hex words at ESP

x/s 0x12345678 Examine the string at 0x12345678

x/5b $ecx Examine 5 bytes at ECX

i r “info register”, show the values of all

registers

i r esp ebp ecx Show the values of registers ESP, EBP,

and ECX

 x/nfu <address|register>

1 1. Run the program

1 1. Run the program

2. Where are we? Check

out EIP
2

1 1. Run the program

2. Where are we? Check

out EIP

3. Continue until we hit an

instruction of interest

2

3

1 1. Run the program

2. Where are we? Check

out EIP

3. Continue until we hit an

instruction of interest

4. Let’s see what’s being

compared – we can see

this jump is not taken

2

3

4

1 1. Run the program

2. Where are we? Check

out EIP

3. Continue until we hit an

instruction of interest

4. Let’s see what’s being

compared – we can see

this jump is not taken

5. Check out the argument

passed to puts

2

3

4

5

1 1. Run the program

2. Where are we? Check

out EIP

3. Continue until we hit an

instruction of interest

4. Let’s see what’s being

compared – we can see

this jump is not taken

5. Check out the argument

passed to puts

2

3

4

5

Aha! We don’t satisfy the

compare (1 != 3), and

call puts, then exit!

 Think about the function protocol for main

o int main (int argc, char *argv[])

 In main, [ebp+8] would reference the first argument, argc

 We aren’t passing any arguments, besides argv[0], the

program name, hence why [ebp+8] has the value 1

 Haha, passing the program 2 more arguments (3 total)

does in fact satisfy the first cmp instruction

 A new code path is taken!

 Try to figure out the correct input that will cause the

program to print message, "Congrats, you did it!“

 Use IDA and GDB!

• Hey, we’ve seen this graph

pattern before!

 Everyone has their own preferences

 But the combination of the two will undoubtedly yield the

best results

 IDA, WinDBG, Immunity, GDB all have scripting

o In fact, they all use Python except WinDBG*

o There are awesome scripts that will import results from debuggers

into IDA’s view, filling in all the registers/operands for each

instruction.

 key_checker.exe or

 We’ll do a real crackme

 Crackme at

o http://www.woodmann.com/RCE-CD-

SITES/Quantico/mib/crackme2.zip

 This might be a little tricky, that’s okay.

http://www.woodmann.com/RCE-CD-SITES/Quantico/mib/crackme2.zip
http://www.woodmann.com/RCE-CD-SITES/Quantico/mib/crackme2.zip
http://www.woodmann.com/RCE-CD-SITES/Quantico/mib/crackme2.zip
http://www.woodmann.com/RCE-CD-SITES/Quantico/mib/crackme2.zip
http://www.woodmann.com/RCE-CD-SITES/Quantico/mib/crackme2.zip
http://www.woodmann.com/RCE-CD-SITES/Quantico/mib/crackme2.zip
http://www.woodmann.com/RCE-CD-SITES/Quantico/mib/crackme2.zip

 What about bytecode?

o .NET applications, java, python, etc.

 Just download a disassembler

 You’ll get near complete source code back

 It’s really that easy…

 Hopefully you feel comfortable

o Opening up and examining a binary and looking at it’s sections to

get a feel for it

o Renaming and simplifying the disassembly

o Converting back to source code where needed

o Using a debugger to fill in the gaps or manipulate program execution

 Fantastic books

o Reversing: The secrets of reverse engineering

o The IDA Pro book

o The Art of Exploitation

 Challenges

o Crackmes.de

o Woodmann.com

o Smashthestack.org (plenty of debugging involved ;))

 Links

o CSG : csg.utdallas.edu and irc.oftc.net #utdcsg (everyone is welcome)

o IDA : hex-rays.com

o CFF Explorer : ntcore.com/exsuite.php

o Immunity Debugger : immunityinc.com

