
Reversing a Simple Virtual Machine - Tutorial

1. Retrieving instructions and registers

Well, tonight I'm tired, I've downloaded a bunch of nice music songs that I like a lot, and it's time to
reverse. Having received requests about this tutorial, contrary to my attitudes I'll write a small
tutorial.

I've heard talking over and over of the HyperUnpackMe2, so at end, I opened it. I fired my IDA 4.3
-yeah, I don't use the cracked one... toolz are, after all, for those that can't do things without...

So, I opened the crackme. It starts with a lot of ugly anti-IDA tricks, which requires to un-define (U
key) the jump/call pointers, and then redefine the pointed area as 'code' (C key). It hides the pointer
to LoadLibrary and strings like i.e. “VirtualAlloc” this way. Ok, funny but not interesting, we want
to see the virtual machine. Hoping it is not encrypted, otherwise we have to fire Olly and unpack the
packer until the VM is in clear...

So, how do we search a VM in the code, using IDA 4.3? Simple: use the scrollbar and the most
ancient of reversing tools: Zen.

What are we looking for, what could be a 'Zen' point? Well, When I browsed aspr 1.2 dll I found the
push sequence followed by a ret to be 'Zen' point -indeed it was the to-do list of that packer. And
for a VM? Well, a VM is formed by instruction emulation, which are usually function or addresses
to which a common loop of code jumps to. In this case, we look for pointers/functions list. Yes,
such lists can be many things. They could be objects, for example, which are stored this way. How
can we distinguish them from a VM -or, what if the VM is coded with an object in HL?

The answer is rather simple. Start examining these procedures, and look for recurrent patterns. For
example, if they refer to the same parameters, and the same parameter seems to contain/be used in a
pattern among more than one of these functions, you might be in presence of a VM. Personally, I
always try to find references to common attack points, as the program counter (the EIP equivalent).
This might not be always simple -i.e. binded flow VMs like *F are fairly complex (btw you can log
it with various techniques).

But let's get back to the crackme. Let's say that scrolling, looking around and following randomly
jumps and procs we found an interesting list, such the next one:

Does not it seem interesting? A long table of pointers. Let's then explore one of those secondary
links (the first table of links just point to the head of seconds -mmh!)

IDA gives us this stuff as data, but after pressing C for marking it as code it becomes...

Interesting, no? An XOR operation followed by a jump. Let's press 'C' on all the chunks, to see
what's happen:

These are the first place were I originally pressed 'C'. Examine the code. All these snippets jump to
the same address, which means they have a common epilogue.

Notice the first instruction: a repeating mov ecx, esi in all the entries! Does it not sound as a pattern
to you -maybe the same logical parameter is passed in esi? Clearly, it is the shift count used in the
next instruction, a shl. They also uses the [edi] register as target area of the shl instruction in all the
snippets. And all the three code blocks present the same structure, changing only the memory
reference of the core (the 'acting') instruction: byte ptr, word ptr, dword ptr. Does this might be a
virtual shl instruction in the three referencing possibilities? Yeah!

So we have understood that here the source parameter for SHL is passed in esi, the destination
clearly in edi, and we have a sequence of shl on byte /shl on word/shl on dword.

We have been lucky, however. VMs are often more complex from the structural point of the
instruction set. This VM does not implements many of the complexities related to the different kind
of register/memory/displacement references within the instructions, as it seems to use a fixed
source/destination mark for the instruction: esi is a generic pointer to source, and edi is a generic
pointer to the destination result (as we can see by reversing more, generic VM registers are passed
to the VM instructions by memory reference -i.e. If the destination of a SHL is the generic VM
register R1, edi would contain the pointer to R1).
An usual and pretty standard attack point in VMs are the NOP instruction equivalents. How can you
discover them? Simple. They do nothing but update the internal status of the VM. So, an instruction
that just update a register which seems to be used as program counter can be very probably our
NOP in such VM. This crackme's virtual machine is pretty straightforward, however, so we just
attacked it recognizing complex instructions directly.

Now, it is time to reverse all these instruction blocks and name them. The result will lead to
something like this:

All these instructions are structured exactly (more or less) like the shl one. One interesting point to
observe is the idiv instruction. As you may notice, it has divided in IDIV and IDIV_REST. As you
remember, IDIV return also the remainder of the division. If you examine how the the 2 virtual
opcode are implemented, you'll notice:

the idiv return in EDI a different register. This should make you think -why? Simple. One is the
result, the other the remainder. Being the VM instruction structured to work on binary set
(source/destination), the author needed to duplicate the work of ternary instructions.

Notice that, before rebuilding a VM, I usually look to all the instruction set, trying to figure out
something important we haven't talked yet about. I always look for hints about the VM register's
structure. For example, when I found the following instructions, I first thought:

“PUSHF”??? Why do he need a PUSHF instruction here? He is saving the flags after a comparison.
Mmh... and then pops them on a structure related to the EAX register. Is EAX register's used with
displacements in other VM code snippets? Yes, of course.

At this point ask yourself: why one should save the flags after a comparison within a relative
structure? In case you did not understand this yet, the [EAX+0Ch] clearly points to the virtual
EFLAGS register. So we can open the IDA structure page, create a structure and add doublewords
until we create the “field_0Ch”. Which we'll rename in VM_EFLAGS or such.

As in the sample above.

Now we have identified our first VM register! Let's hunt the other, while reversing opcodes. Among
instructions, we find also the next one:

When I saw it I noted: it takes a fixed VM register (fixed because the offset from the VM structure
base, eax, is fixed, 10h) and subtract 4. Take the operand from edi mask out the last 2 bytes and
then store them. What asm operation do you know that decreases a register when writing?

C'mon... maybe it is more clear now...

...I hope I needed not to comment it. This is PUSH DWORD.

And another VM register is uncovered. Let's go on, we still miss the EIP, the generic registers...
Let's find them. Browsing the instructions, we can find:

Now, this instruction has the same layout of the CMP, but it features a JZ instruction. It is a jump,
good. EIP must be used here, as we jump somewhere, so we must alter the EIP register somehow.
We already know what EAX+0Ch is, it is our VM_EFLAGS. So, here the virtual eflags gets moved
in CPU eflags, and JZ is executed. If the jump is NOT taken, the edi parameter is moved within
eax+8. We know that eax contains our VM context, so we can bet that the instruction parameters
that gets copied there is... our new EIP after the jump (technically, this means that the instruction is
JNZ, not JZ!).

So...

We found the VM EIP register. Now, try yourself to identify the next instruction:

I won't give you any hint, except that is clearly an instruction that uses ESP and EIP. Think please.

Another last interesting point. You should always keep in mind that the VM author is not ties to
follow an 'rule' when coding a VM. So, instruction are not needed to be 'standard'. They can do
anything their creator wishes. For example, one instruction does this:

You should notice this: it uses the real ESP register! Why? It saves the real ESP, than take the
virtual stack and set it as the REAL stack. And call a function via EDX. This means that this virtual
machine is capable of making calls in real CPU space, by pushing virtual parameters in the virtual
stack and then calling this instruction, which swaps the stacks (it reminds a bit the stack switching
with parameters copying between inter-privilege gates, if you know well processors). Also note that
the return value of the real-cpu executed function is saved within our VM context, somewhere...

I reversed almost all the VM set and registers in half an hour, and you can do the same, with little
effort. There are only a bunch of instructions that are more complex, but they are not important for
VM reversing (I mean, for understanding the general structure).

Well, it is time for me to go to sleep, very very late! Hope you appreciated the small tute.

Maximus

2. General VM Structure

...next time ;-)

...Well, next time has come, let's fire the mp3 player with 'Liga' :-)

If we examine the general structure of a VM, we usually find a big cycle that takes care of running
the VM across the virtual assembler, emulating this way the complex stages the processors execute
when fetching, decoding and executing instructions. The HyperCrackme2 uses this generic VM
structure:

1. Setup the VM Context.

2. Enter the VM loop.

3. Read byte at VM.EIP address and check the instruction type, supporting various instruction
types:

1. Binary Instructions.

2. Unary Instructions.

3. Flow Control Instructions.

4. Special Instructions.

5. Debug Instructions.

6. NOP and HLT (alias “Quit VM”) instruction -the latter ending the VM loop.

4. Jump at start of the VM Loop.

This structure is general enough to be kept in mind. From a generic point of view, each VM
contains the following elements:

● The initialization block/function of the Virtual Machine

● A loop block/function that scan and executes the instructions of the VM program.

● A generic block/function that decodes the VM instruction's opcode, with its parameters,
registers, indexing modes and anything the VM creator wanted to place on.

● A list of VM instruction code blocks, which perform each an instruction duty. They are
roughly the equivalent of the micro-code modern CPU's uses for decomposing and
executing common ASM instructions.

● A set of macro-instructions, specific to the VM and not easily mappable to ASM opcodes.
These instructions might be harder to understand.

An example of the HyperCrackme2 initial structure elements can be seen by examining the
following commented IDA snip:

As you can see, the RESTART_VM_PROCESS is the point (2) of the above description, whereas the
part under the ja short IS_UNARY_INSTR is equivalent to the (3.1) point. The code in this snippet,
apart cleansing the registers, prefetch the first instruction Opcode (the byte pointed by VM.EIP) and
analyse it for choosing which 'execution unit' of the VM should be utilised for the instruction type
being fetched.

Let's now examine one of the 'building block' of this VM, the Setup_Binary_Instruction_Params
function, which takes care of processing the binary VM opcodes. For examining the next fragment,
remember that EAX contains our VM_CONTEXT. So, we already know that eax+8 refers to our
VM.IEP.

I think it is important now to understand what we are looking for, or analysis will be useless. We
are trying to recover the VM Instruction structure, together with a more detailed description of the
Virtual Machine structure. The procedure that fills up the parameters for the binary instructions
must know how to decode the binary instructions, so by examining how the bytes that makes an
opcode we can rebuild the VM instruction format. What should we expect to find? It depends
heavily on the complexity of the instruction set, as it depends entirely by the author choices. Which
we must reverse. So, we must always examine carefully how the instruction's byte are utilised, as
they can change from instruction type to instruction type. And please remember that VM instruction
are not compelled to be always of the same size, as x86 instruction's are not all of the same size...

You won't be able to apply the method used below to other VMs. Each VM uses its own opcode
and VM structure, so you should try to understand what fragments are used to hint its
reconstruction.

Let's start by examining this code:

This snippet should be clear: we load the second byte pointed by our virtual EIP, [eax+1], then we
move it on the dl register. Before commenting in detail this point, we should keep notice we've just
used one of the byes that makes an instruction. Let's move over.

This snippet is pretty similar (conceptually) to the prior one. EAX still contains our VM.EIP address,
and now the third byte forming the opcode is loaded in memory and tested (technically, only the
high nibble of it is tested, as you can notice by the and/shr pair). And notice the instruction that
follows. EDI contains our VM_CONTEXT pointer here. So, the ECX register contains a dword
index, which is applied to the VM_CONTEXT for retrieving a dword pointer, which is then
offseted by 10h. But do you remember? VM_CONTEXT+10h == VM_ESP. This means that when
ECX is 0h here, we got the ESP register addressed. And when it is 1h, the dword after it is
addressed, until the 15th DWORD after ESP (a nibble ranges 0-15, you'd know...). So, we detected
right now a possible usage of the third byte of the binary opcodes -at least of its upper nibble. The
snippet below is the area where we jump if we are successful in the jz instruction used in the code
above.

As you can notice, it takes the value that follows the first dword from EAX (which is our VM.EIP)
and places it in EDI. And we know that EDI will contain at end the destination parameter of VM
opcode! This help us understanding that the first dword is used only for the opcode purposes, and
after it we have opcode parameters.

This is what we know of our VM_CONTEXT right now:

Let's continue our analysis of binary opcodes, and try to map the VM_INSTRUCTION format. We
have already encountered the offsets +1,+2 of our VM instruction, so lets examine the last one, the
+3:

This byte is directly loaded in ecx using MOVSX. You should already understand what I'm about to
say: why MOVSX?? this byte is then added to the EDI parameter, which contain our destination
parameter. Why should we need to add something to our parameter? Displacement, of course...

So, we now can rebuild the instruction's structure for Binary instruction's:

I agree I haven't commented much this part. But the reason is that it is very 'VM-dependent'.

3. Reversing VMs Guidelines

The steps shown in prior chapters are an important step toward the comprehension of a VM.

● You can initially skip the structure of a VM instruction, as long as it is not
decrypted/decoded within each instruction.

● At this point, we must examine deeply the instruction set trying to find something
recognizable, as the NOP instruction -which might not be included at all.

● Once the instruction set is starting to result clear, at least in minimal part, a special care must
be set by looking for possible VM register's usage. Eventually their usage won't be clear, as
they can be 'shifty', remapped upon each VM entry etc. but we don't care. Knowledge is
incremental, and making errors is human -especially if you abuse of Zen for quickening
your analysis by intuition ;-)

● At this point, we must attack the 'living heart' of the VM, its decoder. It contains all the
important information's of the VM and the structure of the VM instructions, as it is usually
responsible for the scheduling and performing the instruction (pre-)processing. You must
remember that often the decoder have to analyse the VM instruction for discovering things
like the opcode length, parameters and so on. But it is also possible that part of the
management is performed in the instructions itself -i.e. making instructions of fixed size (i.e.
16 bytes).

● And then? Then we must get back to the instruction set, trying to understand specific, non-
standard opcodes that perform creative duties that are usually not part of a processor (i.e.
Calls to 'real' functions, API functions, calculation blocks etc. etc.).

● At this point we have decoded most of the VM, and we might try to debug an instruction or
two to se if things are as we expected, and if VM registers follows up our scheme.

● But before or later you have to get coding for dumping the VM Program in comprehensible
shape. You might wish to write an IDA plugin (if you don't use 4.3 like me) or a script for
decoding the VM program. Or much simpler but slightly less effective, you can code a
logger, which is simply an hook in the VM instruction table, for each instruction (simply
make your debugger-loader and use breakpoints which you defer in the breakpoint event, or
inject a dll which hooks the table). Whenever an instruction is called, your hook dumps the
opcode name, and the parameters. So, you can rebuild the flow of the program. An useful
add-on to the logger is a VM.EIP dumper, which allows you to assign the right key to each
VM instruction, and eventually the possibility to 'alter' the result of conditional jumps, so to
allow the logger to examine the major part of the VM program and eventually 'skip' long
cycles. Later, you can reassemble most of the VM program it using the VM.EIP logged for
each instruction.

Well, I hope this can help you all to understand VMs better. I saw is common style in tutorials to
place credits, so my thanks to the Community and my friends Zero and HAVOK.

Regards,

 Maximus

15-16/7/2006

For the curious, this is my IDA analysis of the binary parameter's setup decoder of the crackme:

	Reversing a Simple Virtual Machine - Tutorial
	1. Retrieving instructions and registers
	2. General VM Structure
	3. Reversing VMs Guidelines

