
Forensics II

Static and dynamic analysis [repetition]

IDA Pro and OllyDbg

Obfuscated code analysis

De-obfuscation of binaries

Forensic Analysis of unknown files

• Before you begin check if you are allowed to
examine!

• Question to answer - what are the true functions
and capabilities of the file/program?

• Deep knowledge about the program may give
additional benefits as
–Anti-... methods
–Damage control know how
– Info about the creator

Two analysis methods

• Before you begin with any deeper analyse
– Document as much as you know about the file

• System location, OS, full path to file, etc.
• Who found it?

– Run a malware scan (can give quick result!)

• Static analysis
– No execution
– Extensive search in the binary with various tools

• Dynamic analysis
– Execution
– Extensive monitoring
– Alter the execution and program flow

Automatic malware analysis
• Scan malware with different AntiVirus agents

– If there is an alert, research AV manufacturers websites
– If analysis is already done – 90% of your job may be done 

• AV report can be faulty, malcode may be of a new variant etc.

• Web based static and dynamic analyze
– http://www.virustotal.com

– http://www.sunbeltsecurity.com - ThreatTrack Security
– http://metascan-online.com/

• Indicators of Compromise (IOCs)
– Mandiant IOC Editor and Finder

– iDefense MAP (Malcode Analyst Pac)

– FTK – Cerberus

• Many other various solutions – Search! Landscape is
changing constantly

• ethical-hacker.net > Blog (Tools and Techniques)
– http://ethicalhackernet.blogspot.com/2008_04_01_archive.html

http://ethicalhackernet.blogspot.com/2008_04_01_archive.html

Cerberus

Cerberus Stage 1 Score

Static analysis methods (Linux)

• Hash the file
• File

– Properties and type of file etc.

• Strings

• Hexdump

• Nm
– List symbol info

• Ldd
– View shared objects which is

linked in at runtime

– Listed in the .interp section

• Readelf, elfdump, objdump

hjo@lnx:~/$ nm winkill
...
08048784 T parse_args
08049c78 D port
 U printf@@GLIBC_2.0
08048760 T usage
 U usleep@@GLIBC_2.0
…
D The symbol is in the initialized .data section
T The symbol is in the .text (code) section
U The symbol is unknown
…

hjo@lnx:~/$ ldd winkill
 linux-gate.so.1 => (0xffffe000)
 libc.so.6 => /lib/tls/i686/cmov/libc.so.6
(0xb7e36000)
 /lib/ld-linux.so.2 (0xb7f70000)

hjo@lnx:~/$ file winkill
winkill: ELF 32-bit LSB executable, Intel
80386, version 1 (SYSV), for GNU/Linux
2.0.0, dynamically linked (uses shared libs),
for GNU/Linux 2.0.0, not stripped

hjo@lnx:~/$ readelf
Usage: readelf <option(s)> elf-file(s)
 Display information about the contents of ELF format files
 Options are:
 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I
 -h --file-header Display the ELF file header
 -l --program-headers Display the program headers
 --segments An alias for --program-headers
 -S --section-headers Display the sections' header
 --sections An alias for --section-headers
 -g --section-groups Display the section groups
 -t --section-details Display the section details
 -e --headers Equivalent to: -h -l -S
 -s --syms Display the symbol table
 --symbols An alias for --syms
 -n --notes Display the core notes (if present)
 -r --relocs Display the relocations (if present)
 -u --unwind Display the unwind info (if present)
 -d --dynamic Display the dynamic section (if present)
 -V --version-info Display the version sections (if present)
 -A --arch-specific Display architecture specific information (if any).
 -D --use-dynamic Use the dynamic section info when displaying symbols
 -x --hex-dump=<number> Dump the contents of section <number>
 -w[liaprmfFsoR] or
 --debug-dump[=line,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=str,=loc,=Ranges]
 Display the contents of DWARF2 debug sections
 -I --histogram Display histogram of bucket list lengths
 -W --wide Allow output width to exceed 80 characters
 @<file> Read options from <file>
 -H --help Display this information
 -v --version Display the version number of readelf
Report bugs to <URL:http://www.sourceware.org/bugzilla/>

Readelf

Objdump and HT Editor
HT Editor - http://hte.sourceforge.net/

– Provides readelf functions and
further probing of contents

• Disassemble
– Convert from binary to assembly code

• Dead listing

– hjo@lnx:~/$ objdump -d winkill

-d, --disassemble Display assembler contents of executable sections
-D, --disassemble-all Display assembler contents of all sections

08048874 <main>:
 8048874: 55 push %ebp
 8048875: 89 e5 mov %esp,%ebp
 8048877: 81 ec b8 3a 00 00 sub $0x3ab8,%esp
 804887d: c7 45 e8 98 3a 00 00 movl
$0x3a98,0xffffffe8(%ebp)
 8048884: 83 7d 08 01 cmpl $0x1,0x8(%ebp)
 8048888: 7f 0e jg 8048898 <main+0x24>
 804888a: 8b 45 0c mov 0xc(%ebp),%eax
 804888d: 8b 10 mov (%eax),%edx
 804888f: 52 push %edx
 8048890: e8 cb fe ff ff call 8048760 <usage>
 8048895: 83 c4 04 add $0x4,%esp
...

This is an excerpt from the output!

08048760 <usage>:
 8048760: 55 push %ebp
 8048761: 89 e5 mov %esp,%ebp
 8048763: 8b 45 08 mov 0x8(%ebp),%eax
 8048766: 50 push %eax
 8048767: 68 80 8b 04 08 push $0x8048b80
 804876c: e8 97 fe ff ff call 8048608
<printf@plt>
...

Dynamic analysis methods

• Safe controlled isolated lab
– Assume the worst!

• System Call Trace (strace)
– hjo@lnx:~/$ strace -d ./winkill
– Library Call Trace (ltrace)
– *trace got similar options

• The GNU debugger, http://www.gnu.org/software/gdb/
– Huge subject

• Google on ”gnu debugger gdb tutorial”

– Stop program execution
– Control program flow
– Examine data structures
– Disassemble etc. etc. etc. ...

hjo@lnx:~/$ ltrace ./winkill
__libc_start_main(0x8048874, 1, 0xbfd3d314, 0x8048528,
0x8048b2c <unfinished ...>
__register_frame_info(0x8049c7c, 0x8049d90,
0xbfd3d298, 0x804854d, 0xb7faaff4) = 0
printf("Usage: %s <host> -p port -t hits"...,
"./winkill"Usage: ./winkill <host> -p port -t hits
) = 40
exit(1 <unfinished ...>
__deregister_frame_info(0x8049c7c, 0xbfd397a8,
0x8048b41, 0xb7faaff4, 0xbfd397c8) = 0
+++ exited (status 1) +++

http://www.gnu.org/software/gdb/

Further analysis!

• RDF chapters 13, 14 and 15 are elite!
• Ch 14 deals with

– Advanced static options

– Advanced dynamic options

– Unlink an unpacked tmp file
• Open and execve the deleted tmp file

– Generate core file (process dump)
• ulimit -c unlimited (to enable core)
• kill -s SIGSEV <PID> (from another console) other signals which

action is core should do aswell, SIGSEV = Invalid memory reference
• Check out the Linux manual: man signal

– Examine core files with gdb
– Packers
– RCE etc. ...

Further analysis...
• Different methods to recover a unpackable packed binary...

– Debugfs
• ext2/ext3 file system debugger

• Similar to ifind and icat as in SITIC/CERT
course exercise but on a deleted file

– Strace hexdump – output all
• In combination with hexeditor

(cut and paste) rebuild binary

– /proc pseudo file system
• ls -al /proc/<PID>/

• # man proc

• Copy the exe link

– Packers as UPX(nrv/ucl)
• First try to unpack with packer versions

• Note that programmer may
have ”edited” away traces of
used packers with a hexeditor

– Crypt-packers as Burneye

hjo@lnx:~/$ ls -al /proc/29279/
dr-xr-xr-x 5 hjo hjo 0 Feb 6 12:56 .
dr-xr-xr-x 82 root root 0 Nov 7 11:49 ..
-r-------- 1 root root 0 Feb 6 12:57 auxv
--w------- 1 root root 0 Feb 6 12:57 clear_refs
-r--r--r-- 1 root root 0 Feb 6 12:56 cmdline
-rw-r--r-- 1 root root 0 Feb 6 12:57 coredump_filter
lrwxrwxrwx 1 root root 0 Feb 6 12:57 cwd -> /
-r-------- 1 root root 0 Feb 6 12:57 environ
lrwxrwxrwx 1 root root 0 Feb 6 12:57 exe ->
/tmp/upxRandName (deleted)
dr-x------ 2 root root 0 Feb 6 12:57 fd
dr-x------ 2 root root 0 Feb 6 12:57 fdinfo
-r-------- 1 root root 0 Feb 6 12:57 limits
-r--r--r-- 1 root root 0 Feb 6 12:57 maps
-rw------- 1 root root 0 Feb 6 12:57 mem
-r--r--r-- 1 root root 0 Feb 6 12:57 mounts
-r-------- 1 root root 0 Feb 6 12:57 mountstats
-rw-r--r-- 1 root root 0 Feb 6 12:57 oom_adj
-r--r--r-- 1 root root 0 Feb 6 12:57 oom_score
lrwxrwxrwx 1 root root 0 Feb 6 12:57 root -> /
-r--r--r-- 1 root root 0 Feb 6 12:57 smaps
-r--r--r-- 1 root root 0 Feb 6 12:56 stat
-r--r--r-- 1 root root 0 Feb 6 12:57 statm
-r--r--r-- 1 root root 0 Feb 6 12:56 status
dr-xr-xr-x 3 hjo hjo 0 Feb 6 12:57 task
-r--r--r-- 1 root root 0 Feb 6 12:57 wchan

Burneye's three layers of
executable protection

• Scrambles the code in the executable thru obfuscated instructions
• Encryption of the binary program
• System fingerprint – will only run on certain computers

Windows dev. tools

• Enable a C/C++ compiler (since it
not is bundled with OS)

– Goal is to run cl.exe (as gcc/g++ in
Linux)

• Visual C++ 20xx Express Edition or
other free download

• Visual Studio 20xx
– Run the ”Developer Command

Prompt for VS20xx” cmd in program
menu if you want cmd line enabled

• Generate an ASM listing
– cl.exe /?

• /Fa[file] name assembly listing file

• cl.exe /Fahello.asm hello.c
– hello.asm, hello.exe, hello.obj

; Listing generated by Microsoft (R) Optimizing
Compiler Version 14.00.50727.762

TITLE C:\data\ppt\hello\hello.c
.686P
.XMM
include listing.inc
.model flat

INCLUDELIB LIBCMT
INCLUDELIB OLDNAMES

_DATA SEGMENT
$SG2245 DB 'Hello World!', 0aH, 00H
_DATA ENDS
PUBLIC _main
EXTRN _printf:PROC
; Function compile flags: /Odtp
_TEXT SEGMENT
_argc$ = 8 ; size = 4
_argv$ = 12 ; size = 4
_main PROC
; File c:\data\hello\hello.c
; Line 5

push ebp
mov ebp, esp

; Line 6
push OFFSET $SG2245
call _printf
add esp, 4

; Line 7
xor eax, eax

; Line 8
pop ebp
ret 0

_main ENDP
_TEXT ENDS
END

Static analysis methods (Windows)
• Option 1

– Install Cygwin (Unix shell in windows)
– Use same Unix/Linux programs/commands as earlier described

• Some may not be ported and some may be ported to native Windows

– md5, file, strings, ldd, hexedit, nm, objdump

– Examining PE structure
• pe_map (almost as objdump)

• Option 2
– dumpbin.exe or link.exe, need the VsDevCmd.bat to be set as well

• They got similar output (as nm and objdump) link.exe -dump -all <file>

– Use Windows third party tools for above as
• Hex editors, Sysinternals tools, etc.
• Earlier mentioned PE/COFF tools
• Disassemble with IDA Pro etc. (Google search for others)

Dynamic analysis methods (Windows)

• System call trace (ported)
– Strace NT 0.8 beta

• Dependency Walker (profile
runtime dependencies)

• Debug exe (open or attach)
– MS Visual Studio IDE

• http://msdn.microsoft.com/en-us/library/0bxe8ytt.aspx

– Gdb, ddd, OllyDbg, IDA Pro, etc...

• Sysinternals Process Monitor (or the separate tools)
– File, registry, network and process monitor in the same package!

• Reverse Code Engineer the file
– Debug the generated assembly list files

– Tracking down how a program works can take weeks or more!

http://msdn.microsoft.com/en-us/library/0bxe8ytt.aspx

Dynamic analysis methods (Windows)

• Virtualization
• Ghost images for quick reload of OS
• Other tools as

– Wireshark, ...
– Port Reporter tool

• A service logging all TCP and UDP traffic
– http://support.microsoft.com/kb/837243

• Parser tool for Port Reporter
– http://support.microsoft.com/kb/884289

• Webcast – usage
– http://support.microsoft.com/kb/840832/

• The ports that are used
• The processes that use the port
• Whether a process is a service
• The modules that a process loaded
• The user accounts that run a process

• Microsoft Windows GUI to review the logs
• Identifying suspicious data or data that you are interested in
• Analyzing the logs and generating data

Dynamic analysis methods (Windows)

• Enable auditing for process tracking in event log (failure
and success events)

– auditpol.exe /enable /process:all

• Non real-time registry or file snapshot tools
– As RegShot and Incontrol5

– Not to be used for longer time since you don’t see
• Keys or files that have been searched for

• Timeline when keys or files were accessed

• Dump the process – depending on demands
– .dmp format tools as ProcDump (Sysinternals) etc.

– PE format tools as ProcDump32 v1.6.2, LordPE dlx b v1.41

• Dump the RAM and examine as we did earlier in the
course and analyze

Zero Wine: Malware Behavior Analysis
Upload malware
perform static and
dynamic analyze

Same userdb.txt
(signatures) as PEiD

Virtual machine using

Qemu or VMware
and Linux/Wine

Output:
• Raw trace

(Report)
• Strings
• PE headers
• Signature (API calls) http://zerowine.sourceforge.net/

Static and dynamic verfication
• Verify diffrence/similarity between examined file and assumed

source code/binary in ”the wild”
• Compare output

– With diff or other line by line tool

– Functions with nm
– Strings
– Assembly code side by side
– Ssdeep, nwdiff, bindiff (binary)

• strace, ltrace
• Gdb/ddd or other tools as IDA Pro, OllyDbg

– http://www.gnu.org/software/ddd/

– http://www.hex-rays.com/idapro/
– http://www.ollydbg.de/

• Practical usage testing and monitoring
– lsof, netstat, wireshark etc. (live response methods)

http://www.hex-rays.com/idapro/
http://www.hex-rays.com/idapro/
http://www.ollydbg.de/

BinDiff and BinNavi (IDA Pro addon)
http://www.zynamics.com

Dynamic analysis

Debugger aware malware
PEB (Process Environment Block) struct
got a member variable:
UCHAR BeingDebugged;
Malware check itself if being debugged!

VMware aware malware
As for example Blue and Red Pill
http://www.invisiblethings.org
http://bluepillproject.org

 int swallow_redpill () {
 unsigned char m[2+4], rpill[] = "\x0f\x01\x0d\x00\x00\x00\x00\xc3";
 ((unsigned)&rpill[3]) = (unsigned)m;
 ((void(*)())&rpill)();
 return (m[5]>0xd0) ? 1 : 0;
 }

http://www.invisiblethings.org/
http://bluepillproject.org/

Malware analysis template
http://www.counterhack.net/malware_template.html

Dynamic
analysis

Static
analysis

LAB

http://www.counterhack.net/malware_template.html

IDA Pro
• What is IDA Pro?

– Disassembler and debugger (also remote debugging)

– Interactive (change app state) and programmable (scripts and plugins)

• How is IDA Pro useful?
– Hostile Code analysis and vulnerability research

– COTS validation, privacy protection and patent infringements

• Who are the IDA Pro users?
– Anti-virus companies and vulnerability research companies

– Large software development companies and forensic software companies

– Three letter agencies, military organizations and patent trolls

• Highlights
– FLIRT (Fast Library Identification and Recognition Technology)

• Recognize and annotate (data information about) library functions

• Saving significant amounts of time tracing through machine code

– Obfuscated code analysis (bypass obfuscation) and many other things

IDA Pro basics

Consult the excellent tutorial IdaTut.pdf file for full coverage – included in lab

IDA Pro (Hex-Rays)
• http://en.wikipedia.org/wiki/Interactive_Disassembler
• 5.x series have a very nice graph based interface and support for

things as iPhone etc. (IDA Pro is at v6.5 now)
• Hex-Rays Decompiler plugin
– Converts executable programs into a human readable

C-like pseudo code text

• The IDA Pro Book (5 * at Amazon)
– http://www.idabook.com/ (Chris Eagle)

• Enable the ”Edit > Patch program” menu
– IDA is not primarly for patching binaries
– In idagui.cfg, "DISPLAY_PATCH_SUBMENU = YES"

• Fix problem with .hlp files in Windows Vista/7 etc.
http://support.microsoft.com/kb/917607
• Right click the .hlp file and press unblock under the
General tab

http://en.wikipedia.org/wiki/Interactive_Disassembler
http://www.idabook.com/
http://support.microsoft.com/kb/917607

IDA Pro (Hex-Rays)

• This book have several chapters dealing
with IDA Pro and RCE

• IDA does not work against the binary
direct, instead an IDB file is used

– Database with each byte flagged

– May not be a full PE image

• FLAIR (Fast Library Acquisition for
Identification and Recognition)

– As FLIRT but create your own signatures
for library functions

– http://users.du.se/~hjo/cs/common/books/
The%20IDA%20Pro
%20Book/idaPro_ch12.pdf

• Write your own plugins (SDK) and scripts

• Lots of other functions in IDA Pro

• IDA Pro 5.x
graph based
interface

• IDB to exe
instructions in lab

http://www.openrce.org/forums/posts/612

• PE utilities
http://www.hex-rays.com/idapro/idadown.htm

• IDA scripts and plugins
 http://www.openrce.org/downloads/

http://www.openrce.org/forums/posts/612
http://www.hex-rays.com/idapro/idadown.htm
http://www.openrce.org/downloads/

.
• RE-Google

– A plugin for the IDA Pro that queries Google Code for information about
the functions etc. contained in a disassembled binary

– High probability that Google finds the code parts ”in the wild”

http://regoogle.carnivore.it/

Uses the IDAPython plugin
http://d-dome.net/idapython

http://regoogle.carnivore.it/

Disassembly vs.
Decompilation

http://www.hex-rays.com/compare.shtml

http://www.hex-rays.com/compare.shtml

Decompilation with IDA Pro - for free!

• Desquirr IDA Pro plugin
• http://www.iitac.org/2008/01/decompilation-with-ida-pro-for-free/
• Thesis

– Designing an object-oriented decompiler : Decompilation support for
Interactive Disassembler Pro, David Eriksson

• Plugin and scripts installation
– \IDA\Plugins\ and \IDA\idc directory

– Edit plugins.cfg if neccessary

• Exerpt from translation
– Before comp. after decomp.

{
 if (arg 0 >= 2) goto loc 10313;
 dx = sub 102EB(arg 0 - 1);
 ax = sub 102EB(arg 0 + 0xfffe);
 ax = dx + ax;
 goto loc 10318;
 goto loc 10318;
 loc 10313:
 ax = 1;
 goto loc 10318;
 loc 10318:
 return ax;
}

{
 if (x >= 2)
 return (fib(x - 1) + fib(x - 2));
 else
 return (1);
}

Patched v4.9 SDK included in lab

Demo!
• Looking at the program ->
• How to enforce access?
• At least two ways

– Find password

– Break thru password protection

• Strings/hexeditor

• Examine and debug using IDA
Pro free v5.0 (and/or OllyDbg)

– Change the ASM code (binary)
– Change CPU registers

• ASM instruction ”test”, performs a non
destructive logic AND on operands

• If strcmp result == 0 : ZF = 1
• If result is anything else : ZF = 0

IDA Pro free – graphs
• F12
• Solution

flow chart

• Ctrl-F12
• Graph of

function
calls

• Can be
very large
and hard
to view!

IDA Pro decompiled code

• Main function

• Hex-Rays
decompiler

• sub_4012B7
–printf

• char Str1
– entered

password

• unknown_libname_1
– system

int __cdecl main(int argc, const char **argv, const char *envp)
{
 char ST08_1_0; // ST08_1@0
 char v4; // ST08_1@1
 int s; // [sp+70h] [bp+0h]@1
 unsigned int v7; // [sp+6Ch] [bp-4h]@1
 char Str1; // [sp+0h] [bp-70h]@1

 v7 = (unsigned int)& s ^ dword_40F060;
 sub_4012B7((int)"Please enter your password\n\n", ST08_1_0);
 scanf("%s", &Str1);
 if (strcmp(&Str1, "RCE"))
 sub_4012B7((int)"Wrong Pass\n\n", v4);
 else
 sub_4012B7((int)"Congrats!! Correct Pass\n\n", v4);
 unknown_libname_1("PAUSE");
 return 0;
}

The password program

Restrictions on IDA free
If you wish to use the freeware version of IDA, you must abide by (and, perhaps, put up

with) the following restrictions and reduced functionality:

• The freeware version is for non-commercial use only and only as a Windows GUI

• The freeware version lacks all features introduced in later versions of IDA, including
all SDK and scripting features that were introduced in versions 5.0 and later

• The freeware version ships with substantially fewer plug-ins and IDC scripts than the
commercial versions

• The freeware version can disassemble only x86 code (it has only one processor
module)

• The freeware version ships with only seven loader modules that cover common x86
file types, including PE, ELF, MS-DOS, COFF and a.out. Loading files in binary format
is also supported

• The freeware version includes only a few type libraries common to x86 binaries,
including those for GNU, Microsoft, and Borland

• Add-ons such as the FLAIR tools and the SDK are not included

• Debugging is allowed only for local Windows processes/binaries. No remote
debugging capability is available

Source: The IDA Pro Book

OllyDbg, quick tutorial

OllyDbg, quick tutorial
• Drag-and-drop a file or click File->Open (F3), select a file, wait for the analysis

to finish, and then, well, watch and analyze the code
• Right after the file has been loaded, the pointer is at the first instruction to be

executed in the program (OEP). The program is stopped right now.
• F9 runs the program from the current position

• Use F7 and F8 to step instruction by instruction, F7 enters inside any function
calls, while F8 steps “over” them – (highly recommended for WINAPI calls)

• F2 puts a breakpoint (the program will stop if it reaches a breakpoint)
– It can be resumed with F9, or you can press F7 and F8 to step further on

• With Shift+F7/F8/F9 one can pass exceptions to debugged program instead of
the debugger taking care of it

• Ctrl+A re-analyzes the code
• Right-click in the windows and on objects in the windows to get pop-up menus

enabling you to do a multitude of different things
• OllyDbg saves data in .udd files (v2.x can save analysis data as well)
• Internet is full of OllyDbg tutorials...

OllyDbg 2.x and other debuggers
• Plugins is not supported yet in OllyDbg 2.x branch,

development is slow, x64 version in the works

• Immunity Debugger (free based on
OllyDbg 1.x) with Python API, function
graphing, heap analysis and more
– Focused more on the security industry (exploits)

– http://www.immunityinc.com/products-immdbg.shtml

• Ring 0 (kernel space) vs. Ring 3 (user space) debuggers
– Debug drivers, kernel, executive services etc.

– Syser, MS WinDbg (user space as well) etc.

• The Windows OS runs processes in
one of two modes

– User Mode (ring 3) and Kernel Mode (ring 0)

EDB (Evan’s Debugger)
• http://www.codef00.com/projects
• OllyDbg in Linux?
• Developers goal

is to have
features on par
with OllyDbg

Obfuscated code analysis
• Even under ideal circumstances, comprehending a disassembly

listing is a difficult task at best

• Over the last several years, an arms race of sorts has been taking
place between reverse engineers and programmers who wish to
keep their code secret

• Software Protection through Anti-Debugging

– http://people.seas.harvard.edu/~mgagnon/software_protection_through_
anti_debugging.pdf

• Honynet project challenges at: honeynet.org
– Scan 32 - Analyze a Malware binary

• http://old.honeynet.org/scans/scan32/sotm32.pdf

• Heading 6 – Code analysis, good in detail description of
unpacking/dumping malware and analysis of the binary with
OllyDbg, OllyDump, ImpREC etc.

– Scan 33 - Advanced reverse engineering challenge

– The reverse challenge

Obfuscated code analysis
Anti-Static Analysis Techniques

• Disassembly Desynchronization

– Prevent the disassembly from finding the correct starting address for
one or more instructions. Forcing the disassembler to lose track of itself

• Dynamically Computed Target Addresses

– Address to which execution will
flow is computed at run-time

• Opcode Obfuscation

– Encode or encrypt the actual
instructions when the executable
file is being created (self modification)

• Imported Function Obfuscation

– In order to avoid leaking information about potential actions that a binary
may perform, aimed at making it difficult for the static analysts to
determine which shared libraries and library functions are used within an
obfuscated binary

• Targeted Attacks on Analysis Tools

Obfuscated code analysis
Anti-Dynamic Analysis Techniques

• Detecting Virtualization

– Detection of virtualization-specific software and hardware

– Detection of virtual machine-specific behaviors

– Detection of processor-specific behavioral changes (blue/red pill etc.)

• Detecting Instrumentation (Sysinternals tools, WireShark etc.)

– Check loaded drivers, scan active process list or windows title texts etc.

• Detecting Debuggers

– API functions such as the Windows IsDebuggerPresent(),
NtQueryInformationProcess() or OutputDebugStringA()

– Lower-level checks for memory or processor artifacts resulting from the
use of a debugger

• Detecting that a processor's trace (single step) Trap Flag (TF) is set.

– SoftIce, a Windows kernel debugger, can be detected through the
presence of the "\\.\NTICE" device (named pipe), which is used to
communicate with the debugger

Obfuscated code analysis
Anti-Dynamic Analysis Techniques

• Preventing Debugging

– Intentionally generating various exceptions when a SEH (Structured
Exception Handler) is set

• Attached debugger will catch the exception and the debug user must
analyze why the exception occurred and decide if to or not to pass the
exception along to the program being debugged

– Standard software breakpoint such as opcode 0xCC (INT3)

– Functions as CloseHandle(HANDLE invalid_handle)

– Perplex the debugger by introducing spurious breakpoints, clearing
hardware breakpoints, hindering selection of breakpoint addresses or
preventing the debugger from attaching to a process

• WriteProcessMemory() to remove/add INT3

• Encoded programs makes placing your own breakpoints difficult

– Calling GetTickCount() at regular intervals, detecting slow execution

– Suspend thread - if the process is not a child of explorer.exe

• Many more exists as TLS callback, Hardware BPs, etc. see paper next slide

Obfuscated code analysis
Anti-Dumping/Anti-MUP

• Code Splicing or stolen bytes

– Place code in blocks outside image (what PE loader have allocated)

• Debug-Blocker (Armadillo)

– Creates two processes, the parent acts as a debugger and protects the
child from other debuggers!

• Nanomites (Armadillo)

– Extension of debug-blocker - parent have a special table (obfuscated)
which child is fetching assembly codes from when INT3 occurs!

• CopyMem I and II

– Code is not fully decrypted, only if a required memory page is needed

• Hide Import tables and Original Entry Point (OEP)

• Very good paper covering anti-everything - included in lab

– Cracking,TheAnti

– https://secure.um.edu.mt/__data/assets/pdf_file/0008/51767/wict08_sub
mission_32.pdf

IDA and Olly debug stealth
• Anti-anti-debug plugins

Dynamic de-obfuscation of binaries
• If the import table is weird just showing KERNEL32.DLL and just a few

imported functions from the DLL as LoadLibraryA and GetProcAddress it’s
probably an indicator of obfuscation

• The following steps provide a basic and somewhat simplistic guide for dynamic
de-obfuscation of binaries – MUP (Manually UnPack)

1. Open an obfuscated program with a debugger (OllyDbg is a popular choice)

2. Search for and set a breakpoint on the end of the de-obfuscation routine (hard!),
what you search for is the OEP (Original Entry Point) before obfuscation

3. Launch the program from the debugger, and wait for your breakpoint to trigger

4. Utilize the debugger's memory-dumping features to capture the current state of the
process to a file (OllyDump etc.)

5. Terminate the process before it can do anything malicious. Note if IAT is going to be
restored (for dynamic analysis) you must leave the process on in paused mode!

6. Perform static analysis on the captured process image (and dynamic analysis)

 IDA Pro tutorials - Using IDA to deal with packed executables

1. Difficult example via normal user interface

2. Using the universal PE unpacker plug-in

http://www.hex-rays.com/idapro/unpack_pe/index.htm

IDT/IAT restoration
• One of the trickiest parts of reconstructing a binary image from an

obfuscated process is restoration of the program's imported function table

• The de-obfuscation process must also take care of linking the newly de-
obfuscated process to all of the shared libraries and functions the process
requires in order to execute properly

– The only trace of this process is usually a table of imported function addresses
somewhere within the process's memory image

• When dumping a de-obfuscated process image to a file, steps are often
taken to attempt to reconstruct a valid import table in the dumped process
image

– In order to do this, the headers of the dumped image need to be modified to point
to a new import table structure that must properly reflect all of the shared library
dependencies of the original de-obfuscated program

• A popular tool to either automate this process or do it by hand is the
ImpREC (Import REConstruction) utility

– http://www.woodmann.com/collaborative/tools/index.php/ImpREC

• x9090's Blog

– http://x9090.blogspot.com/2009/04/manual-iat-recovery-using-imprec.html

ImpREC (Import REConstructor) utility
• Attach to an Active Process, Correct OEP, AutoSearch, Get Imports

• Show Invalid, Double Click rva:..., Load/Save Tree, Fix Dump

• ImpRec adds a new section with correct IDT/IAT with name .mackt

Read the tool docs!

Defeating HyperUnpackMe2 With an
IDA Processor Module

• Not as executable protectors of yesteryear wherein the contents of
the executable in memory, minus the import information are restored
eventually

• Breaking a modern protector (2007)

– This article is an exercise in overkill...

• Active measures to frustrate attempts to dump the process

– Convert code to proprietary byte code

– Use virtual machines operating upon polymorphic byte code

– Copying portions of the code elsewhere in the process address space
but not in PE image (stolen bytes)

• Very interesting read!

– http://www.openrce.org/articles/full_view/28

• The x86 Emulator plugin for IDA Pro

– Useful for obfuscated code

– http://www.idabook.com/x86emu/

RCE frameworks
• The goal of frameworks is to reduce the time from "idea" to prototype

to a matter of minutes, instead of days

• Frameworks can essentially be thought of as a reverse engineer's
swiss army knife - can also be plugins to OllyDbg, IdaPro etc.

• Used for static and dynamic tasks such as: fuzzer assistance, code
coverage tracking, data flow tracking, malcode analysis etc.

• http://www.woodmann.com/collaborative/tools/index.php/Category:R
everse_Engineering_Frameworks

• Examples

– Radare (book included) and ariadne

– ERESI (The Reverse
Engineering Software Interface)

– Security Research and
Development Framework (SRDF)

– Malcode Analysis Pack
(iDefense Labs)

Malware analysis

Boken har ett stort antal verktyg
på en DVD (vilken kan laddas
ner) som är mycket intressanta!
Jag har lagt DVDn på
[server]\malware\malwarecookb
ook.com
Password “infected”
På internet
http://www.malwarecookbook.co
m/
Full pott på Amazon, läs
recensionerna för att veta mer
Helt enkelt bästa boken i ämnet!

Malware analysis
• Malware Forensics Investigating and Analyzing Malicious Code

– http://www.elsevier.com/wps/find/bookdescription.cws_home/714697/description
• Mobile malware attacks and defense

– http://www.elsevier.com/wps/find/bookdescription.cws_home/715445/description

http://www.elsevier.com/wps/find/bookdescription.cws_home/714697/description
http://www.elsevier.com/wps/find/bookdescription.cws_home/715445/description

Malware analysis links
• Reverse Engineering Wiki books (mycket bra)

– http://en.wikibooks.org/wiki/Reverse_Engineering

• Reverse Engineering Malware, article in 5 parts
– http://www.windowsecurity.com/articles/Reverse-Engineering-Malware-Part1.html

• Reverse Engineering Hostile Code
– http://www.securityfocus.com/infocus/1637

• Fifteen Minute Malware Analysis
– http://forensiczone.blogspot.com/2008/02/fifteen-minute-malaware-analysis.html

• Fifteen Minute Virus Analysis
– http://forensiczone.blogspot.com/2008/03/practical-of-15-minute-virus-analysis.html

• Basic tutorial about how to dump a process and update the IAT using
Immunity Debug, LordPE, and ImpRec
– https://www.openrce.org/blog/view/1135/Basic_tutorial_about_how_to_dump_a_pr

ocess_and_update_the_IAT_using_Immunity_Debug,_LordPE,_and_ImpRec

• REVERSE CODE ENGINEERING: AN IN-DEPTH ANALYSIS OF THE BAGLE VIRUS

– Paper
• http://rozinov.sfs.poly.edu/papers/bagle_analysis_v.1.0.pdf

– Presentation
• http://rozinov.sfs.poly.edu/presentations/bagle_analysis_v.1.0-presentation.pdf

http://en.wikibooks.org/wiki/Reverse_Engineering
http://www.windowsecurity.com/articles/Reverse-Engineering-Malware-Part1.html
http://www.securityfocus.com/infocus/1637
http://forensiczone.blogspot.com/2008/02/fifteen-minute-malaware-analysis.html
http://forensiczone.blogspot.com/2008/03/practical-of-15-minute-virus-analysis.html
http://rozinov.sfs.poly.edu/papers/bagle_analysis_v.1.0.pdf
http://rozinov.sfs.poly.edu/presentations/bagle_analysis_v.1.0-presentation.pdf

Learning IDA Pro and OllyDbg
• The best video packages learning IDA and OllyDbg

– TiGa’s Video Tutorials - Reverse Engineering Using IDA Pro

– Learn how to do Reverse Code Engineering for newbies
by Lena (OllyDbg)

– [server]\training_forensics_networkanalysis_pen-test\
Reverse.Code.Engineering

• Reverse Engineering Code with IDA Pro
http://www.elsevierdirect.com/companion.jsp?ISBN=9781597492379

– 1,5 * on amazon 

• Exploiting Software:
How to Break Code

– 4,5 * on amazon

http://www.elsevierdirect.com/companion.jsp?ISBN=9781597492379

Readings and RCE sites etc.
• Introduction to Reverse Engineering Software

– http://www.acm.uiuc.edu/sigmil/RevEng/index.html

• Open Reverse Code Engineering community

– Great site! Loads of plugins for IDA Pro and OllyDbg

– http://www.openrce.org

• The book Reversing: Secrets of Reverse Engineering, 4,5 *

– http://en.wikipedia.org/wiki/Reversing:_Secrets_of_Reverse_Engineering

• Woodmann Reverse Engineering

– http://www.woodmann.com

• TUTS4YOU

– http://tuts4you.com

• The Reverse Code Engineering Community

– http://www.reverse-engineering.net/

• Crackmes.de – reversers’ playground

– http://crackmes.de/

• Blogs

– http://x9090.blogspot.com/

– http://reversengineering.wordpress.com/

End!
and

Backups

Kartläggning av
upphovsman
Report example

http://sakerhet.idg.se/2.1
070/1.272980/yrke-
virusjagare

Structured Exception Handling (SEH)

// Exception-Handler Syntax
__try {
 // guarded body of code
}
__except (filter-expression) {
 // exception-handler block
}

// Termination-Handler Syntax
__try {
 // guarded body of code
}
__finally {
 // __finally block
}

• Structured exception handling is a mechanism for handling both
hardware and software exceptions in Windows (Windows API)

• One of Microsoft's main motivations for adding SEH to Windows was
to ease the development of the operating system and make the
system more robust

• Mainly used in C and works like C++/Java/.NET exception handling

• RaiseException Function works like throw

http://msdn.microsoft.com/en-us/library/ms680657%28VS.85%29.aspx

SEH nested example
DWORD FilterFunction()

{

 printf("1 "); // printed first

 return EXCEPTION_EXECUTE_HANDLER;

}

VOID main(VOID)

{

 __try {

 __try {

 RaiseException(

 1, // exception code

 0, // continuable exception

 0, NULL); // no arguments

 }

 __finally {

 printf("2 "); // this is printed second

 }

 }

 __except (FilterFunction()) {

 printf("3\n"); // this is printed last

 }

}

IA-32 (x86) Hardware breakpoints
• The IA-32 family of processors provides support for 4 hardware
breakpoints

– The hardware breakpoints use special debug registers

– These registers contain the breakpoint addresses as well as control
information and breakpoint type

– Breakpoint addresses are stored in debug registers D0 to D3

– In order to set breakpoints a size field is needed. The possible sizes are
1, 2, or 4 bytes. Breaks on execution use a size of 1 byte

– The possible sizes have been expanded to include 8 bytes for 64-bit
CPUs

• There are various conditions to trigger the breakpoints.
– Break on execution

– Break on memory access (reads and writes)

– Break on memory write only

– Break on I/O port access (rarely used, most debuggers do not have this
as an option)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

