
Beyond Autorun (v1.0) (c) 2011 IBM Corp. 1

Beyond Autorun: Exploiting
vulnerabilities with removable storage

Jon Larimer jlarimer@us.ibm.com, jlarimer@gmail.com

IBM X-Force Advanced Research

BlackHat – Washington, DC - 2011

January 18, 2011

mailto:jlarimer@us.ibm.com
mailto:jlarimer@gmail.com

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 2

Contents

1. Abstract ... 5

2. Introduction .. 6

2.1. A brief history of removable storage malware .. 6

2.2. AutoRun and AutoPlay ... 6

2.3. Stuxnet and the LNK vulnerability.. 7

2.4. Attacks on physical systems ... 7

3. USB Architecture ... 9

3.1. About USB .. 9

3.2. Host controllers .. 10

3.3. Devices ... 10

3.3.1. Hubs .. 10

3.3.2. Functions ... 10

3.3.3. Interfaces .. 10

3.3.4. Endpoints .. 11

3.3.5. Device classes .. 11

3.3.6. USB descriptors ... 12

3.4. Mass storage class devices ... 13

3.5. Attacks using the USB protocols .. 14

3.6. Fuzzing USB drivers .. 14

3.6.1. Windows Device Simulation Framework .. 15

3.6.2. QEMU/BOCHS ... 15

4. USB operation on Windows 7 ... 16

4.1. USB driver stack ... 16

4.1.1. Core stack .. 16

4.1.2. Class drivers .. 17

4.1.3. USB device recognition ... 18

4.1.4. The danger of drivers from Windows Update .. 20

4.2. Mass storage devices ... 21

4.2.1. USB storage port driver and Windows disk class driver ... 21

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 3

4.2.2. Partition and volume management .. 22

4.2.3. File system drivers .. 22

4.2.4. Fuzzing filesystem drivers on Windows .. 23

4.3. Exploiting USB and file system drivers ... 24

4.4. PnP Manager .. 24

4.4.1. Kernel mode PnP manager ... 24

4.4.2. User mode PnP manager .. 25

4.5. AutoPlay ... 25

4.5.1. Shell Hardware Detection Service ... 25

4.5.2. ReadyBoost ... 27

5. Windows Explorer ... 28

5.1. Shell Extension Handlers .. 28

5.1.1. Registered file types and perceived types .. 29

5.1.2. Icon handlers ... 30

5.1.3. Thumbnail handlers .. 32

5.1.4. Image handlers .. 34

5.1.5. Preview handlers ... 35

5.1.6. Infotip handlers ... 36

5.1.7. COM object persistence and type confusion .. 36

5.1.8. Fuzzing shell extensions .. 36

5.1.9. Exploiting shell extensions .. 36

5.2. Property system ... 37

5.3. Folder customization ... 38

5.3.1. Shell namespace extensions ... 39

6. USB operation on GNU/Linux ... 40

6.1. Core .. 40

6.2. USB interface drivers ... 40

6.3. USB mass storage class driver .. 40

6.4. udev, udisks, D-Bus .. 41

6.5. File systems in Linux ... 41

7. GNOME and Nautilus .. 43

7.1. Automatic mounting of storage devices .. 43

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 4

7.2. Autorun capabilities ... 44

7.3. Thumbnailers ... 45

7.3.1. Exploiting thumbnailers .. 45

8. Conclusion ... 48

8.1. Acknowledgements .. 48

9. Appendix ... 49

9.1. USB descriptors for a mass storage class device ... 49

9.2. Default Shell Extension Handlers in Windows 7 Professional (32 bit) ... 50

9.2.1. Icon handlers ... 50

9.2.2. Image handlers .. 50

9.2.3. Thumbnail handlers .. 51

9.2.4. Property handlers ... 52

9.2.5. Preview handlers ... 54

9.3. Default GNOME Desktop thumbnailers in Ubuntu Desktop Linux 10.10 (32 bit) 57

10. Works cited ... 60

11. Legal notices .. 66

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 5

1. Abstract
Malware has been using the AutoRun functionality in Microsoft Windows for years to spread through

removable storage devices. Although the feature is easy to disable, the Stuxnet worm was able to

spread through USB drives by exploiting a vulnerability in Windows. This paper examines different ways

that attackers could potentially abuse operating system functionality to execute malicious payloads

from USB devices without relying on AutoRun. There's a lot of code that runs between the USB drivers

and the desktop software that renders icons and thumbnails for files, providing security researchers and

hackers with a rich landscape of potentially vulnerable software to exploit. Understanding what this

code does is crucial for discovering and fixing vulnerabilities that could be exploited from removable

storage devices.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 6

2. Introduction

2.1. A brief history of removable storage malware
The very first computer virus that spread in the wild through removable storage was Elk Cloner, which

spread on floppy disks used by Apple II computers (1). Elk Cloner was a boot sector virus, meaning it

would infect the computer's memory when it was booted from an infected disk. The first virus for MS-

DOS that spread through removable storage was Brain, which was developed in January of 1986 (2). It

was a boot sector virus that infected 5 ¼" 360KB floppy disks. Whenever an MS-DOS PC was booted with

an infected floppy disk, any other floppy disks accessed would also be infected with Brain. Later in 1986,

Ralf Burger developed the Videm virus which was the first file infecting virus for DOS (3). The first virus

to infect PE files – the executable format used by Windows95, was called Bizach, and was developed in

1996 (4). In 2002, the Roron worm made use of the autorun.inf file to spread to remote network

drives, although it would not infect USB devices (5). The Bacros worm, discovered in 2004, would spread

to CD-Rs by creating an autorun.inf file on CD-ROM drives, but it also specifically avoided copying

itself to USB devices (6). 2004 was also the year that Microsoft released service pack 2 for Windows XP.

While this service pack was designed to enhance security by including a firewall and enabling automatic

updates by default, it also enabled AutoRun for floppy disks and some USB mass storage devices (7),

eventually leading to a flood of USB malware. In 2005, Darrin Barrall and David Dewey presented a talk

at BlackHat USA 2005 about using USB flash drives to install malware (8). In early 2007 the first worm to

spread through USB sticks using autorun.inf, SillyFD-AA, was reported by Sophos (9). It didn't take

long for other malware authors to include this functionality, and in 2008 the U.S. Strategic Command

banned all removable storage devices, including floppy disks and USB drives (10). Finally, in 2010, the

Stuxnet worm was discovered using a vulnerability in the Windows LNK file shell icon handler to infect

PCs from USB devices, even with AutoRun disabled.

2.2. AutoRun and AutoPlay
The AutoRun feature was introduced in the Windows95 operating system. It was originally designed to

allow software developers to have an application or installer to execute whenever a user inserted a CD-

ROM into their PC (11). To use this feature, a file named autorun.inf is placed in the root directory

of the CD-ROM disc. This file is a text file which contains instructions on which program to launch when

a disc is inserted. Here's an example of a simple autorun.inf file that specifies program.exe

should be executed when the disc is inserted:

[autorun]

open=program.exe

icon=helper.dll,1

label=Awesome Program

AutoPlay was introduced in Windows XP to launch applications automatically when a supported device

or file system is connected to the computer (12). This lets Windows launch a movie player to play

VideoCD and DVD disks and an audio application for CDs, for example. The AutoRun feature is now

considered a subset of AutoPlay.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 7

In Windows 7, Microsoft changed the behavior of AutoPlay so that AutoRun only works on removable

optical media, CDs and DVDs, but not USB drives (13).

2.3. Stuxnet and the LNK vulnerability
The LNK vulnerability used by the Stuxnet worm is interesting for a number of reasons. Until it was

fixed, the vulnerability was present and exploitable on all supported versions of Windows. The

vulnerability allowed the execution of an arbitrary DLL file on a removable storage device without

relying on the AutoRun feature. The Stuxnet worm was able to spread for months using this

vulnerability without being detected.

The details of the flaw exploited by Stuxnet aren't important for the topic of this paper, and have been

documented in Symantec's whitepaper W32.Stuxnet Dossier (14) and by Peter Ferrie in The Missing LNK

(15). What is important to understand is the reason this vulnerability exists – because Windows (and

other operating systems) will render custom icons for certain files when displaying them in a folder on

the desktop. The custom icon code will sometimes parse file content in order to determine what icon to

display and a malicious file can exploit a vulnerability in that icon handling code. This class of

vulnerability provided Stuxnet with a way to spread through USB drives without relying on AutoRun.

The LNK vulnerability won't be the last vulnerability found in custom icon code, and Stuxnet won't be

the last malware to take advantage of such a vulnerability. This type of vulnerability is especially suited

to worm-like malware that can spread with very little user interaction. The purpose of this paper is to

bring more attention to this and other related avenues of attack with USB mass storage devices and

removable storage in general.

2.4. Attacks on physical systems
The attacks on software described in this paper depend on physical access to the target machine. Many

people consider physical access "game over" – that if an attacker has physical access, they can do

anything they want, and this is true. If someone has physical access, they could boot the machine from

external media or even just steal the machine itself. However, if the machine is protected with BIOS

passwords, a hard disk password, or full disk encryption, then the best way to attack it is under the

context of a logged-on user or at the OS kernel level – after the OS has been booted and the file system

mounted. One possible method for attacking a system in this state is by using so-called cold boot attacks

on the RAM (16), but that requires being able to boot from a device under your control, which could be

disabled in the BIOS. Another very effective attack on physical machines is to use DMA (direct memory

access) through an IEEE 1349 (FireWire) port to read or write directly to or from physical memory on a

target machine. A practical DMA attack using FireWire was first presented at PacSec04 in Tokyo by

Maximillian Dornseif in his talk "0wned by an iPod" (17). At Ruxcon in 2006, Adam Boileau demonstrated

a tool called WinLockPwn that was able to bypass the Windows XP screensaver lock over a FireWire

connection (18). Of course, these attacks are only applicable if the target PC has a 1394 port.

USB is still an excellent choice for vector of physical attack, and the entire attack surface available

through USB (and other avenues for removable storage, such as eSATA) has not been fully explored. The

beauty of attacks with USB devices, and other forms of removable storage, is that they can also be used

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 8

to attack a machine where you don't have direct physical presence if you can convince someone to

connect the device to their PC. People may suspect they're safe from malware because they have

AutoRun disabled and keep their AntiVirus software updated, or because they run Linux or MacOS, but

the point of this paper is to show that that isn't necessarily true – there can be software vulnerabilities

lurking anywhere from the low level kernel mode USB drivers up to the high-level graphical interface of

the OS. If a hacker can execute arbitrary code by inserting a malicious USB device, the exploit payload

could do any number of evil things – dump physical memory back to the USB device, copy the victim's

home directory to the USB device, install malware on the PC, or even unlock the screensaver to get full

access to the PC as the logged-on user. The damage that can be done is limited only by the privilege

level of the executing code or the availability of privilege escalation exploits.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 9

3. USB Architecture
To understand how USB devices can be used to attack a PC, it's important to know what USB is and how

it works. This section is intended to be a brief introduction to USB and how it's used by removable

storage devices.

3.1. About USB
USB, or Universal Serial Bus, is a standard that allows peripheral devices to talk to computers. It's used

by keyboards, mice, digital cameras, printers, removable storage devices, and many other peripherals.

USB is an asymmetric, speak-when-spoken-to, tiered-star network topology system. Peripherals,

referred to as functions in the USB specifications, are connected to hubs which are in turn connected to

a host controller.

Figure 1 - USB device relationships

The operating system typically provides a device driver for the host controller and generic USB device

classes, such as the Human Interface Device (HID) and the Mass Storage Device (MSD) classes, and the

manufacturer of a USB device will provide more specific device drivers.

USB is a polled bus, and all transactions are initiated by the host. The host controller sets the schedule

for transactions to and from devices. This means that a USB device doesn't send commands to the host

controller – it only responds to commands sent to it. This also means that USB devices cannot

communicate with each other. This is different than the IEEE1394 bus, which uses a peer-to-peer

protocol and devices are able to send commands to the host controller as well as communicate with

other devices on the bus.

The authoritative source of information on the USB architecture and protocols are the USB

specifications available from the USB Implementers Forum (19). The information on the Wikipedia page

on USB (20) is also helpful for a broader understanding of the history, purpose, and design of USB. The

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 10

USB In a Nutshell website (21) is another great guide to the standard. This section is an overview of USB,

but the published technical specifications should be consulted for more detail.

3.2. Host controllers
There are three types of host controllers currently used by USB: UHCI (Universal Host Controller

Interface), OHCI (Open Host Controller Interface), and EHCI (Enhanced Host Controller Interface). UHCI

is used for low-speed USB 1.1 devices such as keyboards and mice. OHCI is an alternative to UHCI for

USB 1.1 devices, and can be found on PCs that are not based on Intel's chipsets. EHCI is used for high-

speed USB 2.0 devices, like printers, scanners, and flash drives. Of these three types of host controllers,

only EHCI and OHCI are "open" specifications (22) (23). Although the specifications for UHCI are

proprietary, a design guide is available from Intel (24).

3.3. Devices
A USB device is either a hub or a function. In USB terms, "device" refers to a physical device, and a

physical device can have more than one function.

3.3.1. Hubs

A USB hub is basically a "wiring concentrator" - it allows one to plug multiple devices into a single port. A

hub's upstream connection is either another hub or the host controller itself. The USB specifications

permit 6 tiers of hubs, including the root hub. This means that 5 non-root hubs can be present between

the host controller and a function. The root hub is inside the PC and part of the host controller, and the

USB ports on the outside of a PC are generally connected to the root hub. Consumers can buy additional

USB hubs that contain ports for connecting multiple devices. Some consumer USB devices also include

built-in hubs. For example, keyboards and monitors can contain built-in USB ports for connecting

additional devices.

3.3.2. Functions

A function plugs into a hub. These are the peripheral devices themselves that communicate over the

USB bus. Many USB devices serve a single purpose, but there are devices that provide multiple functions

over a single USB connection, such as mouse/keyboard combinations. A device providing multiple

functions is either a composite or a compound device. A composite device has multiple functions at the

same bus address. An example of this would be an external USB keyboard with a built-in pointing stick.

This keyboard contains the functionality of a keyboard and a mouse, but connects to a single physical

USB port. This port will contain two interfaces – one for the keyboard and one for the mouse, which use

different protocols for communicating with the system. A compound device has multiple functions at

different bus addresses that are connected to a hub inside of the device. That means that each

functional aspect of the device has its own port. Because the device has a hub built-in, it only needs to

connect to a single port on the PC.

3.3.3. Interfaces

A single physical USB connection supports one or more interfaces, and an interface can be thought of as

a logical grouping of endpoints. Each interface can support a different device class, which means it

exposes a different set of functionality. The example above was a combination mouse and keyboard

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 11

device. Each of those device functions has a separate set of endpoints on the bus so that the host

controller can send requests to each separate function.

3.3.4. Endpoints

Each logical USB device has one endpoint labeled 'endpoint zero' that is used for control transactions,

for example to retrieve the device, interface, endpoint, and configuration descriptors. The interface and

endpoint descriptors describe how many endpoints each interface has and how each endpoint works –

which direction the data flows (in/out), what protocol is used, etc. A connection between a single

endpoint and the host controller is called a pipe. Each endpoint on a device gets a separate address. For

an example of how endpoints are used, a USB mass storage device will generally have three endpoints

and a single interface – the control endpoint (endpoint zero), and separate endpoints for input and

output of data. The following diagram shows the relationship between interfaces and endpoints in a

composite device – one with multiple interfaces:

Figure 2 - Interfaces and Endpoints in a composite USB device

3.3.5. Device classes

Each device is identified by a class code (sometimes called a class ID) that the host can use to determine

which set of drivers to load for it. Examples of class IDs are Mass Storage Device Class and Human

Interface Device Class (HID). Mass Storage Devices, the focus of this research, are designed to provide

access to storage devices such as floppy disks, CD-ROMs, and flash storage devices. HIDs provide an

interface for keyboards, mice, joysticks, and other input devices. A list of all device class codes can be

found on the USB Implementers Forum website (25).

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 12

3.3.6. USB descriptors

Each USB device includes a number of descriptors that the host queries to determine a device's

capabilities. These descriptors tell the host what protocol to use, what class the device is, which

interfaces are supported, etc. The host operating system's USB driver stack uses these descriptors to

determine which driver to load for each device. For a real-world example of what these descriptor

values look like, see USB descriptors for a mass storage class device in the Appendix. There are five

commonly used types of descriptors.

Figure 3 - USB descriptor relationships

3.3.6.1. Device descriptor

Each USB device has a single device descriptor that contains critical information about the device – the

class, subclass, protocol, vendor, and product identification information required by the OS to load the

required drivers. In many cases, the class, subclass, and protocol are set to 00 to indicate that the class

information should come from the interface descriptor instead. It also contains a serial number and

specifies the number of configuration descriptors on the device.

3.3.6.2. Configuration descriptor

There can be multiple configuration descriptors for each device. This descriptor contains information on

the power requirements of the device (self-powered or bus powered), as well as the number of

interfaces on the device. The interface and endpoint descriptors, described below, are actually part of

the configuration descriptor – the configuration descriptor has a 'total length' field that specifies how

much data should be read to obtain all of the data for interfaces and endpoints.

3.3.6.3. Interface descriptor

There is an interface descriptor for each function of the device. A composite device will include more

than one interface. Each interface specifies a single class, subclass, and protocol. Each interface can

support a number of endpoints.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 13

3.3.6.4. Endpoint descriptor

There is a separate endpoint descriptor for each endpoint other than "endpoint 0", which is the control

endpoint. The endpoint descriptor specifies communication protocol information, such as the transfer

and synchronization type.

3.3.6.1. String descriptor

String descriptors are special descriptors that hold string data. Strings are referenced by language and

are stored in the Unicode format. Examples of information stored in string descriptors can be found in

the iManufacturer, iProduct, and iSerialNumber fields of the device descriptor. On a test device used

for this research, those values were respectively "SanDisk", "Cruzer", and "20060266120EDEE311F8".

These values can be used by the operating system to provide a description of the device to the end user.

3.4. Mass storage class devices
The mass storage class defines the interface used by mass storage devices, such as flash drives, external

hard disk drives, floppy drives, and CD-ROM drives. Most USB mass storage devices use the bulk-only

transport (BOT) protocol to send and receive responses to the host using the bulk transfer capability of

USB (26), as defined by the USB Implementers Forum (27). This standard specifies which descriptors USB

mass storage devices need to support, and which values certain descriptor fields must contain. For

example, the standard specifies that the bDeviceClass in the Device Descriptor should be set to zero,

and the mass storage class and subclass ID should be identified in the Interface Descriptor instead. The

Interface Descriptor's bInterfaceClass should be set to 0x08, the bInterfaceSubclass value is generally

set to 0x06 indicating that the device uses the Small Computer Systems Interface (SCSI) command set,

and the bInterfaceProtocol value is set to 0x50, indicating support for BOT. Mass storage devices are

also required to contain a string descriptor for a 12 digit serial number that's unique for each idVendor

and idProduct pair.

Mass storage devices using BOT operate with a Command/Data/Status protocol. The USB host initiates

communication with a Command Block Wrapper (CBW). The device will acknowledge this, and the host

will either send data or receive data from the device. When the data transfer is finished, the device

responds with a status message in a Command Status Wrapper (CSW). For a much more detailed

description of this process, see the bulk-only transport documentation (27).

Most USB mass storage devices use the SCSI command set. To work with SCSI, the last 16 bytes of the

CBW are a SCSI Command Descriptor Block (CDB). CDBs represent SCSI commands, such as INQUIRY,

READ, or WRITE. The INQUIRY command is used to request information about the device, such as the

level of compliance with the SCSI specifications indicating commands are supported. Unless there's an

error processing the command, the response to the command occurs in the data transfer phase, and

then the status is returned in the CSW. The full SCSI standards are published by INCITS Technical

Committee T10 (28), but most USB mass storage devices only support a small subset of the SCSI

command set.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 14

A USB mass storage device isn't aware of file systems – data is written to and read from storage blocks

by using Logical Block Addressing (LBA). It's up to the operating system to provide a file system driver to

support high-level concepts such as files and directories on the device.

USB MASS STORAGE (29), by Jan Axelson, is an excellent source of information on USB mass storage

devices and how they work.

3.5. Attacks using the USB protocols
Data coming from any USB device must not be trusted to comply with the standards. Just like a network

protocol stack, the USB protocol stack should be hardened against exploitation.

Exploits against USB driver stacks have been described before. At BlackHat Las Vegas in 2005, David

Dewey and Darrin Barrall of SPI Dynamics demonstrated an attack against the Windows XP USB drivers

by using a malicious device (8). In 2009, Rafael Dominguez Vega of MWR InfoSecurity found a

vulnerability in a USB device driver in Linux (30).

One recent real-world example of how a flaw in a USB driver was able to compromise a system is the

Sony PlayStation3 (PS3) jailbreak USB 'modchip', PSJailbreak (31). This is a USB key that someone can

insert into their PS3 that will allow them to load unauthorized software, such as pirated games. One

analysis (32) revealed that this USB key emulates a 6 port USB hub, attaching and removing fake devices

in a certain order to manipulate the heap, eventually resulting in a buffer overflow that allows code

execution.

A blog post from Fizalkhan Peermohamed on the Microsoft Windows USB Core Team Blog (33) talks

about how to properly read and parse USB descriptors. Peermohamed alludes to a case where a USB

device driver could allocate a certain amount of memory for a configuration descriptor based on a

length field from an initial read, and then the device reports a different length for the second read. This

could cause an API call, USBD_ParseConfigurationDescriptorEx(), to reference memory

outside of the allocated length, resulting in a crash. While this specific scenario has yet to be proven

exploitable for code execution, it does provide an interesting example of how a misbehaving device

could cause a poorly written device driver to access memory in an unintended way – which is the basis

for many security vulnerabilities.

Purposely creating a misbehaving USB device is cheaper and easier than many people are aware of.

There are inexpensive development boards that can be programmed to act as any type of USB device.

They can send the host anything the programmer wants to send in the USB descriptors, making them

useful for carrying USB driver exploit payloads. One of these development boards was used as an attack

vector in the Social Engineering Toolkit – it's programmed to act as a keyboard and send keystrokes to a

PC, triggering it to download malware (34). The development board currently sells for around US $18.

3.6. Fuzzing USB drivers
A number of techniques can be used to locate security vulnerabilities in device drivers. Reverse

engineering and static analysis techniques will work, but fuzz testing can sometimes lead to quicker

results. Some research into USB device fuzzing has already been done – Moritz Jodeit at the University

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 15

of Hamburg implemented a fuzzer with a combination of hardware and software (35), and Tobias

Mueller at Dublin City University created a fuzzer based on QEMU (36).

3.6.1. Windows Device Simulation Framework

The Windows Device Simulation Framework (DSF) is included in the Windows Driver Kit and allows

developers to test device drivers by implementing a simulated device in the programming language of

their choice (37). It's implemented as a set of drivers that run in kernel mode and a COM API to build

applications on. These applications can be rapidly developed a high-level scripting language such as

JScript or VBScript, or any language that can interface with COM. The DSF framework for the USB bus

includes a simulated EHCI controller that talks to the host OS, which treats it like any other USB

controller, making its use transparent to applications. This means that the DSF can be useful for testing

USB class and device drivers, but it's probably not useful for stressing host controller drivers themselves.

3.6.2. QEMU/BOCHS

QEMU and BOCHS are open source virtual machine implementations that allow implementing virtual

USB devices. This makes it possible to install an OS on a virtual machine and attach simulated devices to

it in order to exercise the OS's USB driver stack.

Since these tools also simulate CPUs, it could be possible to implement a USB device fuzz testing

framework that traces each instruction to ensure adequate code coverage, similar to what others have

done with dynamic instrumentation in user mode (38).

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 16

4. USB operation on Windows 7

4.1. USB driver stack
USB 2.0 support has been included in all Windows versions since XP. Support for peripheral devices is

implemented as a driver stack (39). The information presented here applies to the 32 bit version of

Microsoft Windows 7 Professional, and the function and symbol names were taken from the publicly

available debug symbols.

Figure 4 - USB driver stack

4.1.1. Core stack

The USB "core stack" is the set of drivers for the host controller and hubs. These are device independent

and handle communicating with the hardware that is already in the PC itself – the USB host controllers

and their root hubs.

At the very bottom of the stack are the host controller miniport drivers: usbuhci.sys,

usbehci.sys, and usbohci.sys. The purpose of a miniport driver is to communicate directly with

the hardware – handling interrupts and I/O.

The miniport drivers are linked against the generic USB port driver (usbport.sys) and make a call to

the exported function USBPORT_RegisterUSBPortDriver() to register themselves as port

drivers that can be called from other drivers in the USB stack. The 3rd argument to

USBPORT_RegisterUSBPortDriver() is a RegistrationPacket structure that includes a long list

of function pointers that the port driver uses to call into the miniport driver.

To handle hardware interrupts from the USB host controller, the USBPORT_StartDevice()

function in usbport.sys makes a call to IoConnectInterrupt() in ntoskrnl.exe to register

the interrupt service routine (ISR) - USBPORT_InterruptService(). That ISR will in turn call the

ISR that the miniport driver has registered with the port driver, such as

EHCI_InterruptService() in usbehci.sys and UhciInterruptService() in

usbuhci.sys. The ISR for the miniport driver was specified in the RegistrationPacket structure. The

miniport driver immediately services the interrupt, and then the port driver queues the miniport's

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 17

deferred procedure call (DPC) to handle the request from the hardware. See MSDN (40) for a

description of how ISRs are generally written for Windows.

The miniport driver's ISR and DPC routines communicate directly with the hardware. For EHCI,

EHCI_InterruptService() and EHCI_InterruptDpc() use the hal.dll

READ_REGISTER_ULONG() function to read status information from the EHCI controller's memory

mapped I/O registers. The UHCI miniport driver's UhciInterruptService() and

UhciInterruptDpc() functions use the READ_PORT_USHORT() function to communicate with

I/O ports.

Above the port driver is the bus driver, or hub driver: usbhub.sys. Each hub connected to the host

controller is controlled by the bus driver. The bus driver is as close as most USB client drivers will get to

the USB device – all interactions with USB devices go through the bus driver. USB client drivers

communicate with the bus driver using I/O control calls (IOCTLs). The main IOCTL used – the one that

does the bulk of the work for most USB devices once the device is set up – is

IOCTL_INTERNAL_USB_SUBMIT_URB (0x220003). This IOCTL submits an URB, or USB request

block, to the bus driver. This IOCTL is passed to the bus driver by creating an I/O request packet (IRP)

with the IoBuildDeviceIoControlRequest() function, then the IRP is submitted with

IofCallDriver(). The bus driver will then pass the URB on to the port driver by doing another

IOCTL call, where the USBPORT_ProcessUrb() function processes it, communicating with the

miniport driver if necessary. Because of this architecture, it's not necessary for USB client drivers to

know anything about the USB hub and device topology or host controller interface. This makes writing

client drivers for USB devices relatively easy.

Composite devices are handled by the USB Generic Parent Driver, usbccgp.sys. A generic parent

driver means that separate client drivers can handle different functions in the USB device. The purpose

of this is to allow selective use of Microsoft-supplied driver support for some interfaces (41). For

example, a really fancy gaming mouse could have the mouse pointer aspects handled by the built-in

Windows mouse driver, and custom buttons and other functionality handled by a vendor-supplied

driver.

4.1.2. Class drivers

The USB Device Working Group (DWG) specifies a list of generic classes of USB devices (25). Each class of

device shares a common set of interfaces that allows a single driver to work for devices from any vendor

that support that class interface. Windows provides drivers for many of these classes (42). Examples are

the HID class (hidclass.sys, hidusb.sys) that encompasses human interface devices (mice,

keyboards, and joysticks), and the mass storage class (usbstor.sys) that includes external USB hard

drives and flash drives. These class drivers communicate with the bus driver lower in the stack, and

more generic feature drivers higher in the stack. For example, the USB Mass Storage Class Driver

(usbstor.sys) will talk to the native disk class driver (disk.sys) that controls all disks in the

system, regardless of how they're connected.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 18

4.1.3. USB device recognition

4.1.3.1. Querying the new device

An excellent description of the process Windows 7 goes through when a new USB device is plugged in

can be found in Martin Borve's blog post at (43). What follows is a simplified version of the process that

focuses on the parts that are of interest to people reverse engineering USB drivers.

When a new device is inserted into a USB port, the host controller will enumerate the devices and

functions on that port. The USB bus driver will then request the device descriptor from the device. The

device descriptor contains information about the hardware device that the OS needs to load a driver for

it – the USB specification version, the USB device class and sub-class, the vendor and product IDs, and

other important data. The device descriptor is defined in the USB specifications, but there's also a handy

reference at the USB in a NutShell page (44) and an example in the Appendix. To read a descriptor, a

driver uses the UsbBuildGetDescriptorRequest() macro to create an URB with the

GetDescriptor request, and the URB is passed to the USB bus driver with an

IOCTL_INTERNAL_USB_SUBMIT_URB request.

The bus driver also requests the configuration descriptor for the device and validates it before it

continues to obtain more information about the device. Windows queries a number of other descriptors

from the device, depending on fields in the device descriptor: the MS OS Descriptor, Serial Number

String Descriptor, MS OS Extended Configuration Descriptor, MS OS Container ID Descriptor, Language

ID, Product ID String, and Device Qualifier (43).

Once all of this information is obtained, the kernel mode PnP (Plug and Play) manager is notified of the

new device, and the PnP manager will decide which driver to load.

4.1.3.2. Locating the correct driver

A good overview of how the PnP manager handles new devices can be found in the MSDN Library (45).

The kernel mode PnP manager is a core part of the kernel (ntoskrnl.exe – the functions named

PnpXXX and PipXXX). A bus driver notifies the PnP manager that a new device has been added by

calling IoInvalidateDeviceRelations() in ntoskrnl.exe (45). A chain of other function

calls is made, and eventually PnpQueryDeviceRelations() will issue an

IRP_MN_QUERY_DEVICE_RELATIONS request to the bus driver. In the case of USB, this will be

handled by UsbhFdoPnp_QueryDeviceRelations() in usbhub.sys, which calls

UsbhQueryBusRelations() to enumerate the devices on the USB bus. When a new device is

found, PiProcessNewDeviceNode() will add information on it to the system registry in

HKLM\System\CurrentControlSet\Enum\USB and then call PnpSetPlugPlayEvent()

with the flag GUID_DEVICE_ENUMERATED to let the system know the new device has been

enumerated.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 19

Figure 5 - Processing a new USB device

When the PnP manager learns that a new device is present, it will attempt to find a driver for the device.

There are three important identifiers that the USB stack will build for each USB device: the device ID, the

hardware ID, and the compatible ID.

For single-interface USB devices, the device ID is a string that has one of these forms:

 USB\VID_v(4)&PID_d(4)

 USB\VID_v(4)&PID_d(4)&REV_r(4)

The hardware ID is the same as the device ID in most cases, and the compatible ID has the form:

 USB\CLASS_c(2)&SUBCLASS_s(2)&PROT_p(2)

The values v(4), d(4), r(4), c(2), s(2), and p(2) all come from the USB device descriptor (or

the interface descriptor if certain fields in the device descriptor are set to 00) that was obtained when

the device was connected. This table shows which field each value comes from:

Item Value Device Descriptor Value

v(4) vendor ID idVendor

d(4) product ID idProduct

r(4) revision ID bcdDevice

c(2) class code bDeviceClass

s(2) subclass bDeviceSubClass

p(2) protocol bDeviceProtocol

There are a slightly different set of device, hardware, and compatible IDs generated by composite

devices that use values from the USB interface descriptor; these IDs are described in the MSDN Library

(46).

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 20

The first place the PnP manager looks for a driver is in the registry in

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Enum. USB devices that already have

drivers installed will have entries for their device IDs in the USB subkey of Enum. There are also special

identifiers for mass storage devices and printer devices, under the keys USBSTOR and USBPRINT.

If a match is found in the registry, the PnP manager loads the driver, calls the DriverEntry()

function, and then calls the driver's AddDevice() routine which creates the function device object

(FDO) and attaches it to the bus's stack.

If a driver is not found, Windows will search Windows Update for the correct driver, and then local

DriverStore. This process happens in the Plug and Play service, umpnpmgr.dll. To check Windows

Update for drivers, the user mode plug and play manager makes calls to an external DLL file –

chkwudrv.dll, which is configured as the driver finding 'plugin' in the registry value

HKLM\Software\Microsoft\Windows\CurrentVersion\DriverSearching\Plugin\

WUSearchLibrary. chkwudrv.dll makes calls to the Windows Update API COM objects (in

wuapi.dll) to download an appropriate driver from Windows Update, if one is found.

4.1.4. The danger of drivers from Windows Update

It's possible for any 3rd party who can obtain a VeriSign Class 3 Organizational Certificate and write a

device driver that passes the WHQL Windows Logo requirements to submit a driver to WinQual (the

Microsoft site that gives developers access to application error reporting logs and allows uploading of

drivers for Windows Update) that can be automatically installed on a Windows Vista or Windows 7

system when a matching device is plugged in.

While the Level 3 certificate requirement and WHQL testing are designed to ensure only high quality,

professionally written drivers are uploaded, it could be possible for a malicious entity to create a

corporation, obtain a certificate, develop a backdoored driver for a non-existent device, fulfill the testing

requirements, submit the signed driver, then wait for their submission to be approved. Since Microsoft

accepts signed driver binaries and not source code, it could be possible for a driver author to slip in

some obfuscated malicious code. Unless Microsoft has a team of super-star analysts manually

disassembling and analyzing each submitted driver, it's possible for something malicious to slip through

the cracks.

Even without going through the effort of obtaining the Class 3 certificate, it could be possible for a

malicious person or group to simply steal the WinQual and certificate credentials. The Stuxnet authors

used stolen certificates and credentials to sign rootkit drivers used by the worm, and it's not a stretch to

think that someone could use a stolen key to upload malicious drivers to WinQual.

For this attack to work, a malicious driver would be registered with WinQual with an INF file for a

specific device ID. In the case of USB, it needs to be a unique Vendor and Product ID within the USB

device descriptor. When a device matching that ID is inserted into a Windows Vista or Windows 7 PC

with automatic driver installation enabled (as it is by default), the PC will connect to Windows Update

and request that driver. Once installed, the driver can send a message to the device indicating that it's

running, and the device itself can send a "secret message" back to the driver. This could be a response

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 21

indicating that the driver should initiate a backdoor, perhaps to unlock the screensaver. It could even

exploit a purposely placed vulnerability to exploit malicious code. Since the WHQL Windows Logo tests

are self-administered and driver vendors submit the testing logs for approval, it's possible to tweak the

backdoored driver if it fails any tests before submitting it for approval.

For this reason, it's not wise to have automatic driver installation enabled on systems in potentially

hostile environments. Windows 7 will install drivers for new devices even when nobody is logged into

the system, since the Plug and Play service doesn't require user interaction to install new drivers as it did

with Windows XP.

4.2. Mass storage devices
The Storage Management chapter of Mark Russinovich's WINDOWS INTERNALS (5th Edition) contains a lot

of information about how disks and the storage subsystem work in Windows. The MSDN library also has

a couple of sections dedicated to storage (47) (48). The information presented here is just an overview

of the storage subsystem as it applies to USB mass storage devices.

4.2.1. USB storage port driver and Windows disk class driver

USB devices with the Mass Storage Class code are handled by the generic USB mass storage class driver,

usbstor.sys, which is a storage port driver. It registers with the Windows generic PnP disk class

driver (disk.sys) to provide an interface between the Windows storage subsystem and the physical

USB hardware. The disk class driver creates disk device objects that are accessed by other parts of the

storage subsystem. These device objects are named \Device\HardDiskX\DRX, where X starts with

0 for the boot disk and increases as disks are added.

Figure 6 - Windows USB mass storage stack

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 22

4.2.2. Partition and volume management

The partition manager, partmgr.sys, manages partitions. This driver reads partition tables from disks

as they're connected using the IoReadPartitionTableEx() function in ntoskrnl.exe. This

function builds an IRP_MJ_READ request for the first four sectors of the disk (2048 bytes) using the

IoBuildSynchronousFsdRequest() function, then sends the IRP to the driver specified by the

DeviceObject argument. IoReadPartitionTableEx() makes sure the boot sector is valid by

ensuring the last 2 bytes are 0xAA55 (55AA on disk) and then fills out the

_DRIVE_LAYOUT_INFORMATION_EX structure based on the partition table to return to the caller.

This function works with both MBR (Master Boot Record) partitions and GPT (GUID Partition Table)

partitions. The partition manager notifies volume managers when new disks are online or new partitions

are created or removed.

Volumes are the basic unit of disks that are visible to the rest of the Windows OS, and the volume

manager is responsible for keeping track of them and allowing other components to interact with them.

The basic disk volume manager is volmgr.sys. Besides basic disks, Windows supports dynamic disks

which use a different volume manager driver, but removable storage devices are always considered

basic disks.

When a new volume is added, a drive letter is assigned. It's not actually mounted until the first attempt

to access a file or directory on the volume. During the mounting process, which happens as part of the

I/O manager in IopMountVolume() in ntoskrnl.exe, each file system driver registered for that

type of storage device (Network, CD-ROM, Disk, Tape) is called until one recognizes and claims the

volume.

4.2.3. File system drivers

File system drivers exist above the volume manager and provide an interface for interacting with file

system concepts such as files and directories. File system drivers register with the system by making a

call to IoRegisterFileSystem() in ntoskrnl.exe, which inserts the driver's device object into

one of four global queues, depending on the storage medium type as set by the DeviceType member of

DeviceObject.

The drivers for file systems natively supported by Windows 7 don't actually register themselves – there

is a driver called fs_rec.sys, the File System Recognizer Driver, which registers on behalf of the

drivers. The reason for this is so Windows doesn't need to unnecessarily keep drivers loaded in memory

for file systems that aren't being utilized – fs_rec.sys will recognize and load the file system drivers

supported by the OS. The file systems and device types recognized by fs_rec.sys are in the table

below.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 23

Filesystem

Device

Type Driver

CDFS CD-ROM cdfs.sys

UDF CD-ROM udfs.sys

UDF DISK udfs.sys

FAT DISK fastfat.sys

FAT CD-ROM fastfat.sys

NTFS DISK ntfs.sys

ExFAT DISK exfat.sys

CDFS is the file system used by CD-ROM discs and is also known as ISO 9660. UDF, or Universal Disk

Format, is used by DVD ±R/W devices, but the driver also handles CD ±R/W disks since it was designed

with the ability to write to optical disks as well as read from them. The UDF specifications are available

from OSTA, the Optical Storage Technology Association (49). The FAT, or File Allocation Table, file

system was used by Microsoft Standalone Disk BASIC and later used in DOS (50). It's still widely used

today and many USB flash drives are pre-formatted with FAT32. The specifications for FAT32 are

available from Microsoft (51). NTFS is the preferred file system for Windows systems because of the

security and reliability features it offers. It's also the most complex – ntfs.sys is around 1.2MB

compared to 150KB for fastfat.sys. The NTFS specifications are not public. ExFAT, or Extended FAT,

is a new version of FAT developed especially for USB devices and included with Vista SP1 and later

versions of Windows (52). The ExFAT specifications are licensed by Microsoft but not publicly available.

The source code for versions of cdfs.sys and fastfat.sys are included in the Windows Driver Kit

(WDK) as sample file system drivers and can be very useful for understanding the structure of file system

drivers when attempting to reverse engineer one of the drivers that don't have source available.

4.2.4. Fuzzing filesystem drivers on Windows

It's possible to implement a very simple file system driver fuzzer by using FileDisk (53), by Bo Brantén.

This tool allows mounting a file image on an existing volume as a file system. I developed two proof-of-

concept fuzzers – one that randomly perturbed bytes in a file image and then mounting it, and one that

was part of the driver itself that modified bytes as they were read from a disk image. Both techniques

were able to crash (blue screen) systems, but more research should be done in this area for smarter

fuzzing and crash analysis. Since Windows will search for certain files and directories and read certain

files when a file system is mounted, even with AutoPlay disabled, it could be possible to construct a file

system image that stresses different parts of the driver. An example of this is putting a large

autorun.inf file on an image and compressing it at the NTFS level or even simply spreading the file

out across many sectors.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 24

4.3. Exploiting USB and file system drivers
There have been a number of successful exploits for USB drivers that were mentioned above in the

section Attacks using the USB protocols. I don't know of any successful exploits for the Windows 7 USB

driver stack that have been made public.

I'm also not aware of any publicly disclosed vulnerabilities that could be exploited with a maliciously

crafted file system image written to a USB disk. There was a vulnerability in the MacroVision SafeDisc

filter driver (MS07-067), but that was a local privilege escalation vulnerability exploited by

communicating directly with the driver from a user-mode application. In 2008 Daniel Roethlisberger of

Compass Security AG presented a demonstration of an attack on the VMWare Tools HGFS.sys file

system driver, but again that was a local privilege escalation exploit making use of IOCTL calls.

The Windows 7 kernel includes several mitigations designed to prevent successful exploitation of bugs in

kernel drivers. There's a form of Address Space Layout Randomization (ASLR) for drivers that will

randomly load each driver module into one of 64 different addresses. The kernel also implements safe

unlinking for kernel pools, making exploitation of kernel pool overwrites somewhat more difficult (54).

4.4. PnP Manager
Once the volume manager gets control of a newly-connected volume, it notifies the Plug and Play

manager – the same subsystem that's in charge of recognizing that a new USB device was connected.

4.4.1. Kernel mode PnP manager

The kernel mode PnP manager code resides in the NT kernel executive (ntoskrnl.exe). It works in

concert with the I/O manager to handle devices being added and removed from the system. It also

ensures that PnP devices receive proper notifications for power management events, like entering sleep

mode or shutting down. The PnP manager tracks the device tree – the hierarchical structure of devices

that are connected to the system. As devices are added or removed, device drivers make calls to the PnP

manager to have it refresh the device tree and take action on any changes that are found. The device

tree can be viewed on a Windows PC through the Device Manager application – there is a "View by

Connection" option in the View menu that will display devices in a tree format similar to how the PnP

manager tracks them. DeviceTree (55), an application developed by Mark Cariddi, provides a more

detailed view of the device tree and the relationships between devices and drivers.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 25

Figure 7 - Device Manager

The USB Device Recognition section provides an overview of how the PnP manager works with USB

devices and drivers.

4.4.2. User mode PnP manager

The user mode plug and play manager is the "Plug and Play" service, umpnpmgr.dll. This service has

a thread running that waits for plug and play events from the kernel by using the undocumented system

call NtGetPlugPlayEvent().

An application that wants to receive notifications on plug and play events can use the

RegisterDeviceNotifications() API call in user32.dll, which uses cfgmgr.dll to

make a RPC call to the PnP service for event registration. This RPC call is handled in the function

PNP_RegisterNotification() in umpnpmgr.dll, which adds the recipient handle to a list of

handles to notify for events.

4.5. AutoPlay

4.5.1. Shell Hardware Detection Service

4.5.1.1. Detecting new devices

Most of the functionality of AutoPlay is in the Shell Hardware Detection Service, shsvcs.dll. This

service registers for callbacks when a new device is connected. The first registration happens during the

PnPServices::Initialize() function, when

CRegisterNotificationOnAllInterfaces::Register() calls

RegisterDeviceNotification() in user32.dll. There are two flags set in the Flags

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 26

argument. DEVICE_NOTIFY_SERVICE_HANDLE (0x1) indicates that the notifications are sent to

the service control handler with the SERVICE_CONTROL_DEVICEEVENT (0x0B) control code, and

DEVICE_NOTIFY_ALL_INTERFACE_CLASSES (0x4) specifies that the recipient should receive

notifications for all devices classes.

The service control codes are handled by the GSM::HandleServiceControls() function in

shsvcs.dll. When the device event code is sent, PnPServices::HandleDeviceEvent()

takes control. PnPServices::HandleInterfaceEvent() gets called for interface events. At

this point, the code will also register for events specific to this device by calling

RegisterDeviceNotification() again, but specifying the device handle for the newly

connected device.

There are two events that are sent and handled when a new storage device is connected – because the

service registers for both DBT_DEVTYP_DEVICEINTERFACE (0x5) and DBT_DEVTP_HANDLE

(0x6) events. The interface event is handled by PnPServices::HandleInterfaceEvent(), the

handle event by PnpServices::HandleBroadcastHandleEvent(), but eventually they'll both

call Storage::CVolumeInfo::UpdateMediaInfo() to determine what kind of media are on

the storage device. This function checks for the presence of certain files and directories in the root

directory of the device and setting certain flags if the files exist that are later checked by other user

mode components. The list of files and directories, and what their existence signifies, is:

File Purpose

autorun.inf Autorun file

desktop.ini Desktop.ini file

video_ts\\video_ts.ifo DVD Video

dvd_rtav\\vr_mangr.ifo DVD Video

audio_ts\\audio_ts.ifo DVD Audio

VCD\entries.vcd Video CD

SVCD\entries.svd Super Video CD

SVCD\entries.vcd Super Video CD

DCIM Photos

BDMV Blu-ray disc

BDAV Blu-ray disc

The shell hardware detection service doesn't actually read and parse any of these files or directories

(other than autorun.inf) – it just uses their existence to determine what kind of media are on the

storage device so that the AutoPlay dialog knows which options to display.

The Storage::CVolumeInfo::UpdateMediaInfo() function also reads the label and icon

path from the autorun.inf file (in

Storage::CVolume::_ExtractAutorrunIconAndLabel()) . This function also checks to

see if the UseAutoPlay setting is present and if it's equal to 1, signifying that Windows should ignore the

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 27

autorun.inf file and use AutoPlay to handle the device. The final check on the autorun.inf file

is to see if it contains an Open or UseShellExecute line, meaning that the autorun.inf file is

specifying a file to execute.

UpdateMediaInfo() also checks to see if the volume is encrypted with BitLocker by dynamically

loading fveapi.dll and calling the FveOpenVolumeW() and FveGetStatus() functions.

These checks are done even if AutoPlay is disabled and when no user is logged into the machine. This

code is also running at a very high privilege level as LocalSystem. While the amount of parsing done on

files is extremely limited, it could be possible to use the fact that the OS is reading files from the file

system to attack the file system driver.

Figure 8 - Process Monitor showing USB access before user logon

4.5.2. ReadyBoost

ReadyBoost is a feature introduced in Windows Vista that allows a user to use a flash storage device as

a disk cache. The idea behind this is that random data accesses are much faster on flash media than on a

hard disk, so performance of the system can be increased by caching access to files. The SuperFetch

service (sysmain.dll hosted by svchost.exe) registers for device events using

RegisterDeviceNotificationW(). When a new flash storage device is inserted into the PC, the

function RdbDeviceProcessExisting() in sysmain.dll will delete the file

ReadyBoostPerfTest.tmp if it exists. If the file ReadyBoost.sfcache exists, the first 65536

bytes are read into memory and the first 4 bytes are checked to see if they match the ReadyBoost file

header ('EcMg'). If the header is there, the file is removed. These checks are done even if AutoPlay is

disabled.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 28

5. Windows Explorer
Windows Explorer is the shell of the Windows operating system – it provides the graphical interface that

users interact with every time they use the PC. To make the shell more pleasant to use, Windows allows

the development of extensions that allow customization of the user experience. For example, a program

can install a Shell Icon Handler that can render custom icons for files of a certain type. This can be used

to show icons that are thumbnail images of pictures or previews of documents.

Much of the information in this section comes from documentation in the MSDN Library, supplemented

by reverse engineering of relevant code. DLL file names and symbols are given to aid other reverse

engineers in understanding potential vulnerabilities in the code. Symbol names and reverse engineering

information comes from the 32 bit version of Windows 7 Professional. The information should also be

valid for Windows Vista, but definitely not for Windows XP or Windows Server 2003.

5.1. Shell Extension Handlers
Shell Extension Handlers are used to provide custom capabilities for certain files and folders in the

Windows shell. The shell will query these extensions before file operations are performed to determine

if an extension should handle that operation. Shell extensions can provide custom icons for files, custom

file drop handlers for folders, custom property sheets displayed in a file's Properties view, and custom

Infotips that are displayed when users hover the mouse over a file or folder. The MSDN Library has a lot

of information on how these extension handlers are implemented (56).

A vulnerability in a shell extension handler could allow code to be executed without a user's knowledge.

The LNK exploit used by Stuxnet is an example of how a vulnerability in the icon handler for .LNK files

lead to code execution, causing a PC to become infected with malware from a USB drive without relying

on autorun.inf. In early 2009, Didier Stevens wrote a blog post about how to trigger a certain PDF

exploit without actually opening the PDF file by abusing the preview, thumbnail, and property

(metadata) handlers (57). In December of 2010, Moti and Xu Hao presented "A Vulnerability in my

Heart" at the POC2010 conference in South Korea, detailing a vulnerability in a thumbnail handler in

Windows XP (58), and in January 2011 Joshua Drake released a Metasploit module for the vulnerability.

Shell extension handlers are implemented as COM objects. The screenshot below shows an example of

which COM interface is responsible for displaying each part of the Explorer window. In this example,

from Windows 7, the view was 'Large Icons' and the preview pane was enabled.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 29

Figure 9 - Shell extension handlers

As you can see, the IThumbnailProvider interface displays the preview icon in both the main widow and

the information pane at the bottom. IPropertyStore is used to obtain the information in the Infotip,

which is displayed when you hover over a file with the mouse, and the information pane at the bottom.

IPreviewHandler renders a preview of the image for the preview pane on the right. Each of the circles

represents some information that Windows obtained from parsing the file.

5.1.1. Registered file types and perceived types

Files in windows are 'typed' based on the extension. In other words, Windows determines what sort of

content a file contains based on the extension – the last part of a file name following the last period. For

example, Windows assumes that a file ending in ".BMP" is a bitmap file – an image. How Windows

responds to user interactions with that file is determined by the information contained in the registry.

What program opens when a file is double-clicked, what options are shown on the context menu when a

file is right-clicked, and what information shows up in the Infotip when the mouse is hovered over a file

are all configured in the Windows registry. Shell extensions that operate on files and file types are also

configured in the registry. There are several places a shell extension could be configured for a file type:

 HKEY_CLASSES_ROOT\.ext

 HKEY_CLASSES_ROOT\ExtProgId

 HKEY_CLASSES_ROOT\SystemFileAssociations\.ext

 HKEY_CLASSES_ROOT\SystemFileAssociations\ExtProgId

 HKEY_CLASSES_ROOT\SystemFileAssociations\extperceivedtype

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 30

.ext is the file extension, ExtProgId is the ProgId (another string representing the file type, which

is referenced in the file extension entry), and extperceivedtype is the perceived type of the file. In

addition to HKEY_CLASSES_ROOT, shell extensions can be registered under the

HKEY_CURRENT_USER\Software\Classes key. The section for each specific handler lists which

registry keys Explorer will look for handlers for certain file types.

A perceived type is a category that a file belongs to, such as "image" or "document" (59). A perceived

type for a file extension is also configured through the registry (60), for example:

HKEY_CLASSES_ROOT\.jpg\PerceivedType = "image"

Perceived types can also be configured by ProgId or in the SystemFileAssociations section of

the registry.

A major consequence of this flexibility is that it can be difficult to locate a shell extension that handles a

given type or to fully enumerate all installed shell extensions.

5.1.2. Icon handlers

Icon handlers allow Windows Explorer to display a custom icon for each individual file (61). Instead of

registering a file type (62) to display the same icon for each file with a given extension, Windows allows

developers to implement and register an icon handler COM object that can display a different icon for

each file of a given extension based on other aspects of the file, such as the file contents or metadata.

For example, an icon handler registered for .msc files will get called for each file with a .msc extension

in a folder to determine which icon should be displayed for each file.

The MSDN documentation states that icon handlers for file types should be registered by creating a

ShellEx\IconHandler subkey under the entry for the ProgId under the

HKEY_CLASSES_ROOT registry hive (61). However, Windows will look under several keys for the

ShellEx\IconHandler key for a type. Here is a list of where Windows will look for the icon handler

for a file ending in .jpeg, which has a ProgId of 'jpegfile' and a perceived type of 'image'. There is

no icon handler registered for these files.

 HKCU\Software\Classes\jpegfile\ShellEx\IconHandler

 HKCR\jpegfile\ShellEx\IconHandler

 HKCU\Software\Classes\SystemFileAssociations\.jpeg\ShellEx\IconHandler

 HKCR\SystemFileAssociations\.jpeg\ShellEx\IconHandler

 HKCU\Software\Classes\SystemFileAssociations\image\ShellEx\IconHandler

 HKCR\SystemFileAssociations\image\ShellEx\IconHandler

The default value of IconHandler is the CLSID for the icon handler – a COM object implementing the

IExtractIconA or IExtractIconW interface. Here's an example of the set of registry entries for the icon

handler for .msc files:

HKEY_CLASSES_ROOT

 .msc = "MSCFile"

HKEY_CLASSES_ROOT

 mscfile

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 31

 shellex

 IconHandler = "{7A80E4A8-8005-11D2-BCF8-00C04F72C717}"

HKEY_CLASSES_ROOT

 CLSID

 {7A80E4A8-8005-11D2-BCF8-00C04F72C717}

 InprocServer32 = "%SystemRoot%\system32\mmcshext.dll"

These entries specify that the icon handler for files with a .msc extension are handled by the COM

object with CLSID {7A80E4A8-8005-11D2-BCF8-00C04F72C717}, which can be found in the

mmcshext.dll file. The CFileSystemString::LoadHandler() function called by

CFSFolder::_CreatePerInstanceDefExtIcon() is the code in shell32.dll that locates,

loads, and initializes the icon handler COM objects.

Icon handlers must implement the IExtractIcon interface, as well as another interface that's used to

initialize the object. In Windows XP, it was the IPersistFile interface and IPersistFile::Load()

was used for initialization. To initialize an icon handler that implements IPersistFile, the Load()

function is called with the full path of the file to load an icon for. This function would generally store the

file name as a local member of the class and return. Starting with Windows Vista, Microsoft added

support for using different interfaces for initializing icon handlers – IInitializeWithFile,

IInitializeWithItem, or IInitializeWithStream (56). In Windows 7, the code in

CFileSystemString::HandlerCreateInstance() called by

CFileSystemString::LoadHandler() first attempts to use IInitializeWithStream and if this

fails then IIniitalizeWithFile is tried. IPersistFile is only called as a last resort.

After the icon handler is initialized, the shell calls IExtractIcon::GetIconLocation(). This

function will return the path to the file that contains the icon for the requested file. If the icon is to be

extracted from the file itself, the GetIconLocation() implementation will set the flag

GIL_NOTFILENAME (0x8) for the last argument – pwFlags. Otherwise, the path to the file containing

the icon is copied to the buffer pointed to by the pszIconFile argument. GetIconLocation()

implementations need to be careful to not copy more characters than specified in the cchMax

argument, which is typically MAX_PATH. Next the shell will call the IExtractIcon::Extract()

function, passing the path and icon index returned from GetIconLocation(). If the Extract()

method extracts the icon from a file itself, it will return handles to small and/or large icons in the

phiconLarge and phiconSmall arguments. It's also possible for both of those handles to be NULL and to

return S_FALSE from Extract() – in this case, the shell will pass the file name and icon index to the

PrivateExtractIconsW() function in user32.dll. That function loads the file as a DLL (using

LoadLibraryExW() and using the LOAD_LIBRARY_AS_DATAFILE flag) and attempts to load the

icon from the file's resources.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 32

Figure 10 - Process Monitor stack trace of icon handler for .msc files

5.1.3. Thumbnail handlers

Thumbnail handlers are used to provide a small image used to represent a file (63). These image

representations, or thumbnails, are used in the Windows 7 Explorer views for displaying Medium Icons,

Large Icons, and Extra Large Icons. A thumbnail handler can either load a thumbnail image that was pre-

rendered and stored inside of a file or generate one dynamically. Microsoft recommends that files

contain pre-rendered thumbnail images for performance reasons (64), but it's also good practice for

security, to avoid rendering questionable documents on untrusted removable storage devices.

Embedding pre-rendered thumbnails doesn't always prevent security issues though, as Moti and Xu Hao

showed at POC2010 (58) – that vulnerability was exploited with an embedded thumbnail image.

Thumbnail handlers are COM objects that implement the IThumbnailProvider interface, CLSID

{E357FCCD-A995-4576-B01F-234630154E96}. Thumbnail handlers are usually registered by

adding an entry for that CLSID under the ShellEx subkey of the extension or ProgId for a file.

Windows will look in a few different locations in the registry for thumbnail handlers – it could be

registered by extension, ProgId, or perceived type. Here is an example of where Explorer looks for a

thumbnail handler with a file ending in .ini, whose ProgId is 'inifile' and the perceived type is

'text':

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 33

 HKCU\Software\Classes\inifile\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

 HKCR\inifile\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

 HKCU\Software\Classes\.ini\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

 HKCR\.ini\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

 HKCU\Software\Classes\SystemFileAssociations\text\ShellEx\{E357FCCD-A995-4576-B01F-

234630154E96}

 HKCR\SystemFileAssociations\text\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

 HKCU\Software\Classes*\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

 HKCR*\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

 HKCU\Software\Classes\AllFilesystemObjects\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

 HKCR\AllFilesystemObjects\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

Additionally, if a file extension doesn't have a ProgId in the registry, these keys will be searched:

 HKCU\Software\Classes\Unknown\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

 HKCR\Unknown\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

 HKCU\Software\Classes*\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

 HKCR*\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

 HKCU\Software\Classes\AllFilesystemObjects\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

 HKCR\AllFilesystemObjects\ShellEx\{E357FCCD-A995-4576-B01F-234630154E96}

Here's an example of the registered thumbnail handler for AVI files:

HKEY_CLASSES_ROOT

 .avi

 ShellEx

 {e357fccd-a995-4576-b01f-234630154e96} = "{9DBD2C50-62AD-11D0-B806-00C04FD706EC}"

HKEY_CLASSES_ROOT

 CLSID

 {9DBD2C50-62AD-11d0-B806-00C04FD706EC}\InProcServer32 =

 "SystemRoot%\system32\shell32.dll"

By default thumbnail handlers will run in an isolated process (the COM Surrogate host, dllhost.exe),

but that feature can be disabled by setting a registry value named DisableProcessIsolation, in the

subkey for the handler's CLSID. The isolated process runs under the same isolation level and as the same

user as explorer.exe itself, so any malicious code executed from a thumbnail handler will still have

the same rights and permissions as the logged on user.

5.1.3.1. Thumbnail Property Handler

Many of the default thumbnail handlers included in Windows 7 make use of the Property Thumbnail

Handler, CLSID {9DBD2C50-62AD-11D0-B806-00C04FD706EC}, located in shell32.dll as

the CPropertyThumbnailHandler class.

This class is a generic thumbnail handler that makes use of the Windows Property System described

below. It exposes interfaces for IThumbnailProvider, IExtractImage, and IExtractIconW. The main

functionality of this class is in CPropertyThumbnailHandler::_GetThumbnailInternal().

This function attempts to load the thumbnail from three different property keys: first PKEY_Thumbnail,

then PKEY_ThumbnailStream, and then PKEY_ImageParsingName. If found, the thumbnail is converted

to the format required by IThumbnailProvider::GetThumbnail(), which is an HBITMAP.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 34

5.1.3.2. Folder Thumbnails

When viewing a folder in Explorer in the Medium, Large, or Extra Large icon view, it

will display thumbnails for folders that contain skewed images of thumbnails of up

to two files within that folder. For example, if the current folder contains a folder

named "catpics" with 3 files named "cat1.jpg", "cat2.jpg", and

"cat3.jpg", the folder's thumbnail will show images of cat1.jpg and

cat2.jpg. The implications of this are that thumbnail and icon handlers can be

run on files that aren't in the directory currently being viewed, which could hide the

true source of a vulnerability that gets exploited. The CFolderThumbnail class

in shell32.dll is responsible for generating folder thumbnails, and the

CombineThumbnails() function does the actual work of reading, parsing, skewing, and combining

the thumbnail images.

5.1.4. Image handlers

Originally, thumbnail handlers in Windows implemented the IExtractImage interface, which has been

largely deprecated in Windows Vista in favor of IThumbnailProvider. There are still quite a few

registered IExtractImage implementations in Windows 7, so it's still worth mentioning. Windows will use

the IThumbnailProvider interface if available for the file type, but will fall back on the IExtractImage

interface. The IExtractImage interface exposes two methods – GetLocation() and Extract().

IExtractImage thumbnail providers are registered by adding an entry for the CLSID {BB2E617C-

0920-11d1-9A0B-00C04FC2D6C1} under the ShellEx subkey of the file extension or ProgId

for the file. Like other shell extension handlers, Explorer will actually look in a number of additional

locations for configured thumbnail handlers. Here are the keys Explorer examines when trying to find an

IExtractImage object for files ending in .ini:

 HKCU\Software\Classes\inifile\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

 HKCR\inifile\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

 HKCU\Software\Classes\.ini\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

 HKCR\.ini\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

 HKCU\Software\Classes\SystemFileAssociations\text\ShellEx\{BB2E617C-0920-11D1-9A0B-

00C04FC2D6C1}

 HKCR\SystemFileAssociations\text\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

 HKCU\Software\Classes*\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

 HKCR*\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

 HKCU\Software\Classes\AllFilesystemObjects\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

 HKCR\AllFilesystemObjects\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

Like with IThumbnailHandler, there are also additional keys that are checked if there is no ProgId for the

file:

 HKCU\Software\Classes\Unknown\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

 HKCR\Unknown\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

 HKCU\Software\Classes*\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

 HKCR*\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

 HKCU\Software\Classes\AllFilesystemObjects\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

 HKCR\AllFilesystemObjects\ShellEx\{BB2E617C-0920-11D1-9A0B-00C04FC2D6C1}

Figure 11 - Folder
thumbnail

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 35

Here are the registry entries for the registered IExtractImage thumbnail handler for TTF (TrueType font)

files:

HKEY_CLASSES_ROOT

 .ttf = "ttffile"

HKEY_CLASSES_ROOT

 ttffile

 shellex

 {BB2E617C-0920-11d1-9A0B-00C04FC2D6C1} = {B8BE1E19-B9E4-4ebb-B7F6-A8FE1B3871E0}

HKEY_CLASSES_ROOT

 CLSID

 {B8BE1E19-B9E4-4ebb-B7F6-A8FE1B3871E0}

 InProcServer32 = "%SystemRoot%\system32\fontext.dll"

5.1.5. Preview handlers

Preview handlers are used to provide a light-weight, read-only representation of the contents of a file

without actually running the file's associated application (65). Preview handlers only display a preview

when a file is selected in an Explorer window.

Preview handlers implement the IPreviewHandler interface, as well as a few others. Preview handlers

are registered by adding an entry for the CLSID {8895B1C6-B41F-4C1C-A562-0D564250836F}

under the ShellEx subkey of the file extension, ProgId, or perceived type registry entry. Here's an

example of the registration information for the preview handler for HTML files:

HKEY_CLASSES_ROOT

 .html = htmlfile

HKEY_CLASSES_ROOT

 htmlfile

 shellex

 {8895B1C6-B41F-4C1C-A562-0D564250836F} = "{f8b8412b-dea3-4130-b36c-5e8be73106ac}"

HKEY_CLASSES_ROOT

 CLSID

 {f8b8412b-dea3-4130-b36c-5e8be73106ac}

 InprocServer32 = "%SystemRoot%\system32\inetcomm.dll"

Unlike the shell extension handlers mentioned above, preview handlers always run out-of-process. This

can either be an in-process COM server that runs in a surrogate host (prevhost.exe), or the

extension can be implemented as its own COM server. Microsoft recommends developing preview

handlers that run inside of prevhost.exe. By default, this process runs at a low integrity level to

protect the system against successful exploitation of security vulnerabilities. This means that any exploit

for a protected preview handler will need to exploit a separate vulnerability to increase the integrity

level, such as a local privilege escalation exploit. It is possible for preview handlers to disable running in

a low integrity level process by creating a DWORD value in its CLSID registry entry named

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 36

DisableLowILProcessIsolation with the value of 1. A number of preview handlers included with

Windows have this feature disabled, and are listed in the Appendix.

5.1.6. Infotip handlers

Infotips are the bubbles of text that Explorer displays when the mouse is hovered over a file. There are a

couple of ways that custom Infotips could be shown for a file. The most common way is to create a

registry value named Infotip under the ProgId key for a file type (56). This value is a string that

could either be static text that gets displayed, a reference to a string resource in a DLL, or a set of

properties to display – making use of the Windows Property System described below. Here's an example

of the Infotip settings for .exe files:

HKEY_CLASSES_ROOT\SystemFileAssociations\.exe\InfoTip =

"prop:System.FileDescription;System.Company;System.FileVersion;System.DateCreated;System.

Size"

In that example, there will be five properties displayed in the Infotip: file description, company name,

file version, date created, and the file's size.

Another way to register an Infotip handler is to create and register a COM object that implements the

IQueryInfo interface. These objects are registered as Infotip handlers by creating a ShellEx\

{00021500-0000-0000-C000-000000000046} entry for the file type. There are only four

Infotip handlers registered this way by default in Windows 7 Professional: for .contact, .group,

.lnk, and .url files.

5.1.7. COM object persistence and type confusion

At BlackHat Las Vegas in 2010, Mark Dowd, Ryan Smith, and David Dewey presented a paper titled

Attacking Interoperability (66) where they outlined several types of attacks against web browsers that

could also be applicable against the Windows shell. One category of attack has to do with persistence

and type confusion in COM objects. Because Windows shell extensions are implemented as COM objects

and the shell expects certain types to be returned from various interface functions, type confusion

vulnerabilities are possible. Shell extension handlers that read serialized COM objects from a file and

return data without checking types could provide an interesting exploit opportunity.

5.1.8. Fuzzing shell extensions

Because the interface used by Windows Explorer to use shell extensions is well documented, it's

relatively easy to write a fuzzer for them without having to rely on Explorer itself. A very simple fuzzer

could use a collection of valid files and randomly modify them before making use of the IExtractIcon,

IExtractImage, or IThumbnailProvider interface to load and process them. Of course, more

sophisticated fuzzing techniques using code coverage analysis would allow for more thorough testing.

5.1.9. Exploiting shell extensions

Vulnerability exploit mitigation technologies such as ASLR (Address Space Layout Randomization) and

DEP (Data Execution Prevention) can make successful exploitation of Windows shell extensions difficult

(67). Exploitation techniques like ROP (return oriented programming) (68) can get around the protection

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 37

offered by DEP, but can be foiled by ASLR – ROP requires having certain sequences of bytes at known

addresses in memory. It could be possible to brute-force the base address of a DLL for using ROP if an

icon or thumbnail handler has its own exception handling in the

IExtractIcon::ExtractIcon(), IExtractImage::Extract(), or

IThumbnailProvider::GetThumbnail() functions. Explorer doesn't wrap calls to those

functions (or other functions in the IExtractIcon, IExtractImage, or IThumbnailProvider interfaces) in

exception handlers and the process calling them will crash on invalid memory access. When a thumbnail

handler has process isolation disabled, this crashes the explorer.exe process itself. When the

handler runs in an isolated process, Explorer attempts to generate the thumbnail images one at a time.

If dllhost.exe crashes on the first thumbnail generated, it will not attempt to generate more

thumbnails until the user takes action to report the error and close the process. After that, Explorer will

attempt to generate the next thumbnail with a new dllhost.exe process, which will again crash.

Besides brute force techniques, ASLR can be defeated when a DLL file that hasn't been built with the

/DYNAMICBASE option is loaded into memory at a fixed memory address (69). This means that if a 3rd

party thumbnail handler is compiled without ASLR support, exploitation with ROP may be possible. It

could also be possible to exploit a shell extension with ASLR support by causing a separate shell

extension without ASLR support to be loaded into process memory at a fixed address. For example, if a

thumbnail handler for .aaa files is built with ASLR support and the .bbb thumbnail handler is not, a

vulnerability the .aaa thumbnail handler could be exploited by having .bbb files in the same folder.

Exploitation will only be effective if the libraries are loaded in the same process – both in

explorer.exe or both in the COM Surrogate dllhost.exe.

Having thumbnail handlers run in an isolated process is good for system stability because it means a bug

in a thumbnailer only crashes dllhost.exe. It can also be good for security since dllhost.exe will

have fewer DLLs loaded into memory than explorer.exe, with less of a chance that one could be

found using a fixed base address. Having a shell extension run in an isolated process with low integrity –

as many preview handlers do – is even better for security. In that case, even if execution of arbitrary

code is achieved, the attacker would still need to find a way around the limited system access allowed

by the low integrity level (70).

The vulnerability exploited by Stuxnet was able to work around the DEP and ASLR features of Windows 7

because it wasn't a memory corruption issue and Stuxnet didn't have to rely on subverting execution to

run shellcode in memory – it was able to cause Explorer to load an arbitrary DLL file, resulting in code at

the DLL's entry point executing.

It should be noted that while these investigations into shell extensions were intended to be exploited

from a removable storage device, they could also be potentially exploitable remotely as well. Remote

vectors include malicious email attachments and files placed on network shares.

5.2. Property system
The Windows Property System was implemented in Windows Vista as an extensible system for reading

and storing metadata in files (71). One purpose for this was to allow the search indexer to index files

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 38

based on non-file-system properties, such as the author of an email or artist of an MP3 file. Since this

metadata is stored in the file itself, instead of in the system registry or using special features of the file

system, property handlers could be a source of security vulnerabilities.

Like preview handlers, property handlers are COM objects, but instead of being registered with the file

extension in the registry in HKEY_CLASSES_ROOT, they're registered in

HKEY_CURRENT_MACHINE\Software\Microsoft\Windows\CurrentVersion\Propert

ySystem\PropertyHandlers, where there's a subkey for each registered file extension. The

default value of the key is the CLSID of the handler. Property handlers implement the IPropertyStore

interface that Windows uses to enumerate, extract, and store properties.

These property handlers can be run in-process by Windows Explorer when examining the properties of a

file through the context menu, viewing a folder in the Details mode, hovering over a file to view the

Infotip, or selecting a file to view the information pane. An example of this is when Windows determines

that a folder contains music files and the Details view will be able to show the author and song name in

columns instead of just the properties of the file on disk. In Windows XP and earlier operating systems,

this functionality was handled by "column handlers" implementing the IColumnProvider interface.

Property handlers are also used by Windows Search. By default they run in a low-privilege isolated

process, SearchFilterHost.exe. It's possible to force a property handler to run inside of the

search protocol host (SearchProtocolHost.exe) by setting the DWORD value

DisableProcessIsolation to 1 in the CLSID registry entry for the property handler.

Since property handlers parse potentially untrusted files and they can be executed without user

interaction, security vulnerabilities in them could be quite serious. The search indexer doesn't index

files on removable storage by default, but someone could inadvertently place malicious files into an

indexed directory by copying a folder from removable storage into their home directory on the PC. The

search indexer could also process an email attachment in a person's inbox, allowing a security

vulnerability to be exploited without the user actually opening the attachment.

One documented case of a search indexer compromising a machine by indexing a malicious file

happened in 2005 – a researcher at F-Secure noticed that simply downloading a malicious WMF file with

wget resulted in their machine being infected (72). The culprit was Google Desktop Search attempting

to index image metadata for the file using Windows APIs and triggering the exploit. This type of thing is

one of the major benefits of having Windows Search make use of low integrity processes and process

isolation.

5.3. Folder customization
It's possible to customize the look of folders in Explorer through a number of techniques. The simplest is

creating a desktop.ini file. This file is parsed whenever a folder is opened in Explorer and can

control certain aspects of how the folder is displayed – for example, setting the icon of the folder or

selecting which columns are displayed in the Details view. There have been vulnerabilities associated

with this file in the past – a buffer overflow in explorer.exe when parsing the file (73), and a

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 39

vulnerability that allowed activating arbitrary COM objects (74). In 2005, Andrés Tarascó Acuña

documented that certain fields of desktop.ini can contain UNC paths (75), meaning you can cause a

machine to attempt to connect out to an arbitrary system when a folder is viewed in Explorer. This

feature still exists in Windows 7.

5.3.1. Shell namespace extensions

Shell namespace extensions allow developers to provide an Explorer interface to data that isn't stored as

files and folders on a file system. For example, the ZIP and CAB file viewers (zipfldr.dll and

cabview.dll) allow the user to browse inside of a ZIP or CAB file as if they were actual folders and

files on the file system. However, most namespace extensions included with Windows (such as the

Games folder, Recycle Bin, the Fusion Cache viewer, etc) don't operate on a specific file or folder.

Namespace extensions are implemented as COM objects that run in-process in the Windows Explorer.

When a developer wants a folder to be displayed by a namespace extension, they can either configure

an entry in the registry – a virtual folder junction, or use the file system itself by using a special folder

name or a desktop.ini file (76).

When Explorer encounters a folder with a name that ends in .{CLSID}, where CLSID is a class

identifier of a shell namespace extension, it will load that namespace extension to display the contents

of the folder. Another possibility is creating a desktop.ini file within the folder that contains a

section named [.ShellClassInfo] with a CLSID value. In either case, the folder itself needs to

have the FILE_ATTRIBUTE_SYSTEM attribute set. The desktop.ini file should have

FILE_ATTRIBUTE_HIDDEN and FILE_ATTRIBUTE_SYSTEM set.

The core interface of a namespace extension is the IShellFolder implementation – this provides access

to the items in the virtual folder (77). The important functions, the ones that generally lead to parsing of

data, are:

 EnumObjects: returns an enumerator object used to list all items in the folder

 CreateViewObject: returns an IShellView object to manage the folder view

 GetUIObjectOf: returns extra information about UI objects such as icons.

 GetDisplayNameOf: returns a displayable name for an object

 GetAttributesOf: returns attributes for an object

Even though it's possible to create a folder pointing to a namespace extension on a removable storage

device, most of the default extensions in Windows operate on data already on the system. For example,

a Recycle Bin folder can be created on a USB flash drive, but when a user opens it, they see their own

recycle bin and not the contents of whatever is inside of the Recycle Bin folder on the USB drive. This

fact makes shell namespace extensions of very limited use for exploitation, unless one can be found that

parses data within its own folder.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 40

6. USB operation on GNU/Linux
USB has been supported on Linux since the 2.2.7 kernel (78) released in 1999. The research for this

paper was based on the 32 bit version of Ubuntu Desktop 10.10 (Maverick Meerkat) running kernel

2.6.35. The information presented here may not apply to earlier or later versions of Ubuntu, or other

distributions of GNU/Linux.

6.1. Core
The core of the USB driver suite, known as usbcore, is located in the drivers/usb/core directory of

the Linux kernel source tree. There is a host controller driver framework

(drivers/usb/core/hcd.c) that contains most of the code for communicating with host

controllers at a high level. This is analogous to the Windows USB port driver (usbport.sys).

Communication with the host controllers at a low level is done with code in the drivers/usb/host

directory – usb-uhci.c is for UHCI, usb-ehci.c is for EHCI, and these are analogous to the USB

host controller miniport drivers on Windows. The USB hub driver (drivers/usb/core/hub.c)

contains the code to drive the USB hub, which contains similar functionality to the Windows driver

usbhub.sys. The function usb_new_device() in hub.c is the code that the hub driver calls

when a new device is connected. This function calls usb_enumerate_device() to enumerate the

device, which involves reading the relevant descriptors. The device is then added to the device tree with

a call to device_add().

6.2. USB interface drivers
Drivers for USB devices are implemented as kernel modules. The module's initialization function

(defined by the macro module_init()), will call usb_register() or

usb_register_driver() to register itself with the USB subsystem. The registration function is

passed a pointer to a usb_driver structure that includes a list of callback functions for various events and

a list of USB IDs that the device can control – usb_driver.id_table. This table is a list of usb_device_id

entries that specify the device class, subclass, and protocol, as well as information such as the vendor,

product, and interface information. The USB subsystem uses this list of IDs to match a driver to a device,

which happens in usb_match_id() in drivers/usb/core/driver.c.

USB interface drivers communicate with the USB host controller by using structures called URBs – USB

Request Blocks, again, just like Windows, although the URB structure in Linux (named urb, defined in

include/linux/usb.h) is completely different.

6.3. USB mass storage class driver
The Linux USB mass storage class driver is in drivers/usb/storage/usb.c. The USB subsystem

will call the probe routine, storage_probe(), whenever it finds a new device in the mass storage

class. The probe function allocates and sets up a SCSI host structure, adds the host to the SCSI

subsystem, then creates a kernel thread to handle delayed SCSI device scanning. Once the SCSI

subsystem is aware of the device, the USB mass storage SCSI emulation code in

drivers/usb/storage/scsiglue.c and protocol.c handle communication between the

SCSI subsystem and the USB subsystem. This basically involves taking SCSI SRBs (SCSI Request Blocks)

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 41

and converting them to URBs and then sending the URB to the USB hub driver. The SCSI subsystem then

presents a disk block device to the system – this is the disk device that shows up in /dev, such as

/dev/sdb. In older GNU/Linux systems, this is the most that would happen when inserting a USB stick

– it was up to the user to mount the file system. Some people hacked together scripts using the Linux

hotplug system (79), but hotplug has since been deprecated and replaced with udev and D-bus on

modern GNU/Linux distributions (80).

For more information on how the Linux SCSI subsystem and the Linux file system work, read the

"Anatomy of..." series of articles on the Linux kernel by M. Tim Jones that were published on the IBM

developerWorks website. Specifically, see Anatomy of the Linux file system (81) and Anatomy of the

Linux SCSI subsystem (82). Of course, the Linux kernel source code is also an excellent source of

information and some parts of it are well-documented in the code.

6.4. udev, udisks, D-Bus
udev is the user-mode device manager in recent distributions of Linux and is responsible for dynamically

creating and removing entries in /dev for devices, setting permissions on those entries, and notifying

other subsystems that the entries were created. udev can be configured with rules that can cause other

applications to run when certain devices are detected. It can also publish events to subscribers through

netlink sockets.

D-Bus is an interprocess communication (IPC) mechanism that recent distributions of Linux use to allow

applications to register for system device events.

udisks, previously known as DeviceKit-disks, provides a D-Bus interface for querying and manipulating

storage devices. udisks uses the interface provided by GUdev (part of libudev) to subscribe to udev

events and re-publish them to D-Bus subscribers.

6.5. File systems in Linux
File systems can exist in a number of forms in modern Linux distributions. Historically, file system drivers

were implemented as kernel modules located in the fs/ directory in the kernel source tree. Each of the

file system drivers operate at a level between the storage device's low level device drivers and the

virtual file system. The system call interface allows user mode code to talk to the virtual file system,

which interacts with the individual file system drivers, which in turn interact with the storage device

drivers. The list of native kernel file system drivers supported by the running kernel can be found in

/proc/filesystems.

File system drivers can also now be implemented in user mode by using FUSE, Filesystem in Userspace.

When a USB flash drive with the NTFS file system is inserted into an Ubuntu 10.10 machine, the ntfs-3g

FUSE driver is loaded.

The GNOME desktop also includes a user-mode file system capability called GVFS, or the GNOME Virtual

File System; however, this is not a Linux file system driver in the traditional sense – GVFS virtual file

systems can only be accessed through the GVFS library, another interface that uses the GVFS library like

GIO, or the GVFS FUSE mount point at ~/.gvfs/ . All of Nautilus's File I/O goes through GIO, so

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 42

Nautilus is able to natively use GVFS file systems. This use of GVFS allows Nautilus to browse files and

directories over protocols such as DAV, FTP, and SMB.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 43

7. GNOME and Nautilus
GNOME is the default desktop environment for Ubuntu Linux 10.10 and a few other distributions. The

GNOME file browser application is called Nautilus and provides many of the features one would expect

from an operating system shell.

7.1. Automatic mounting of storage devices
Instead of relying directly on udev rules to mount newly attached file systems, Nautilus makes use of the

GVolumeMonitor API in GNOME's GIO library, which is part of glib2. The default implementation of

GVolumeMonitor on Unbuntu 10.10 is part of GVFS, the GNOME Virtual File System, and is called

GGduVolumeMonitor. It uses the GduPool interface from the libgdu library that communicates with

udisks via dbus to get notified when new devices are connected to the PC.

Figure 12 - Nautilus communicates with udisks to monitor and mount devices

Newly connected volumes are mounted through the GVolume API, which again is part of GVFS and

called GGduVolume and uses the GduDevice interface of the libgdu library to mount volumes. libgdu

uses D-Bus to send a message to udisks indicating the disk should be mounted. At this point, udisks runs

the mount program, specifying the arguments "–t auto", indicating that mount should attempt to

determine the file system type, using libblkid, or by trying each of the supported file systems listed in

/proc/filesystems one at a time.

When notification is received that a new disk (or volume) is available, Nautilus checks the user's settings

to decide if it should automatically mount the volume or not. This setting is stored in the gconf system

at /apps/nautilus/preferences/media_automount. This setting can be retrieved from the

command line using this command:

gconftool –g /apps/nautilus/preferences/media_automount

In Ubuntu 10.10, this is set to 'true' by default. Once a file system has been mounted, Nautilus may

open a new file browser window open to the root directory of the device. The setting that controls this

is /apps/nautilus/preferences/media_automount_open, and that setting is also 'true' by

default on Ubuntu 10.10.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 44

7.2. Autorun capabilities
Nautilus supports a number of AutoPlay-like capabilities. It can start playing CDs or DVDs when they are

inserted or start browsing photos when a device with photos is attached. Much like Windows, the

actions are configurable.

Whether or not Nautilus does this for each type of media is controlled by these gconf settings in

/apps/nautilus/preferences:

 media_autorun_never: If this boolean value is true, autorun is disabled.

 media_autorun_x_content_ignore: This string array value lists which content types that

autorun should ignore ("Do Nothing").

 media_autorun_x_content_open_folder: This string array value lists which content types

autorun should just open the folder for browsing on the dekstop.

 media_autorun_x_content_start_app: This value is an array of strings that determine which

detected media types will start a specific application to handle them (such as an audio player).

If a media type doesn't appear in any of the media_autorun_x_content settings, the user is prompted

with a dialog box asking them what to do.

The content type is determined by the GContentType API of GIO (through the GMount interface),

specifically the g_content_type_guess_for_tree() function. This function makes use of the

/usr/share/mime/treemagic file to determine the content type for the file system. The format

of this file is part of the shared MIME-info database specifications (83) and contains a list of content

mime types (x-content/) followed by a list of files and attributes that signify that file type. Here are

two examples:

[50:x-content/audio-dvd]
>"AUDIO_TS/AUDIO_TS.IFO"=file
>"AUDIO_TS/AUDIO_TS.IFO;1"=file
[50:x-content/image-dcf]
>"dcim"=directory,non-empty

This specifies that if a volume contains the files "AUDIO_TS/AUDIO_TS.IFO" or

"AUDIO_TS/AUDIO_TS.IFO;1", the content type is x-content/audio-dvd, which is a DVD

Audio disc. If the volume contains a non-empty directory named "dcim", the content type is x-

content/image-dcf, a digital camera file system.

One particularly interesting content type is x-content/unix-software, which is specified when

the file system contains a file named .autorun, autorun, or autorun.sh. When one of these files

is found, the system will prompt the user to run it or not. The files themselves are shell scripts, and this

is analogous to having an autorun.inf file on Windows pointing to an executable to run. Luckily for

the security of Linux desktop users everywhere, there's no option to automatically run autorun scripts

when a device is inserted – this ability is specifically prohibited by the Desktop Application Autostart

Specification (84).

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 45

7.3. Thumbnailers
GNOME supports the generation of thumbnail images for certain file types. Nautilus makes use of the

ability to show thumbnails in the file browser when in the Icon and Details views.

Thumbnails for image files are generated internally in GNOME using the GdkPixbuf library to load and

scale the image. GNOME relies on external thumbnailer applications to generate thumbnails for other

file types, such as movies and documents. The configuration for thumbnailers is stored in gconf in

/desktop/gnome/thumbnailers, and can be listed with the command "gconftool –R

/desktop/gnome/thumbnailers". The output looks like this (but is much longer):

disable_all = false
/desktop/gnome/thumbnailers/audio@mpeg:
 enable = false
 command = /usr/bin/totem-video-thumbnailer -s %s %u %o
/desktop/gnome/thumbnailers/application@x-cb7:
 enable = true
 command = evince-thumbnailer -s %s %u %o
/desktop/gnome/thumbnailers/image@x-gzeps:
 enable = true

These settings match a file's MIME type with a program to run, with some substitution done for

arguments. %s is the size, %u is the input file, and %o is the output file. The settings also determine if

each thumbnailer is enabled or not for that MIME type. The MIME type is derived from the file

extension, and the mappings from extension to MIME type are stored in XML files in

/usr/share/mime. For example, /usr/share/mime/image/png.xml contains <glob

pattern="*.png">, so files that match that pattern are reported as image/png.

A full list of default thumbnailers and what extensions they process can be found in the appendix. There

are only three thumbnailers configured by default:

 evince-thumbnailer for document files

 totem-video-thumbnailer for audio and video files

 gnome-thumbnail-font for font files

Each of these programs supports a number of different file types, many times relying on 3rd party

libraries. If the programs or libraries used contain security vulnerabilities, they could be used to execute

arbitrary code when a file is thumbnailed – which happens when a user browses to that directory. This is

particularly a problem if a user inserts an untrusted USB flash drive and opens a window to browse the

drive. evince-thumbnailer is protected by AppArmor, which helps to mitigate any possible

vulnerabilties, but the other two thumbnailers are not protected.

7.3.1. Exploiting thumbnailers

Exploiting a vulnerability in a thumbnailer on 32 bit Ubuntu Desktop 10.10 is somewhat easier than on

32 bit Windows 7. By default, when a new volume is mounted, Nautilus will open a file browser window

to the root directory. This means that when a USB flash drive is inserted, Nautilus will start generating

thumbnails for each file in the root directory of the device. This even happens even when the

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 46

screensaver is running and locked. Luckily, this feature can be disabled, but the default behavior allows

easy exploitation of vulnerable thumbnail handlers. A proof-of-concept exploit was developed that can

unlock the screensaver on a locked Ubuntu Desktop machine, giving the attacker full access to the

desktop of the logged-on user.

Another aspect of GNOME and Nautilus that make exploitation easier is the fact that external

thumbnailers are run as a separate process for each file. This means that having one thumbnailer

application crash won't affect the thumbnailing of other files, making it possible to perform brute-force

attacks against ASLR.

7.3.1.1. ASLR and NX

Ubuntu has non-executable memory (NX) and ASLR enabled by default; however, it's possible to brute-

force addresses of libraries by creating many malicious files. If enough files are present in the root

directory of a newly mounted USB device, there's a good chance that a ROP-based exploit can succeed.

On my test machine, the kernel had a predilection for mapping libc at the higher end of the range of

memory up to 0x00FFF000 in the evince-thumbnailer process, which is built as PIE (position-

independent executable) in Ubuntu 10.10:

Figure 13 - Distribution of base addresses of libc

Out of 40960 runs, libc was loaded at the address 0x00FF8000 100 times. In smaller runs of 4096, it

was likely to hit that address, or any given address of the form 0x00FFX000, around 10 times. That's 10

times what could be expected with 12 bits of entropy, and this makes it possible to write reliable

0

20

40

60

80

100

120

0
0
2
3
6
0
0
0

0
0
4
B
3
0
0
0

0
0
5
3
C
0
0
0

0
0
5
A
A
0
0
0

0
0
6
1
3
0
0
0

0
0
6
7
9
0
0
0

0
0
6
D
F
0
0
0

0
0
7
4
1
0
0
0

0
0
7
A
6
0
0
0

0
0
8
0
A
0
0
0

0
0
8
6
C
0
0
0

0
0
8
C
F
0
0
0

0
0
9
2
E
0
0
0

0
0
9
8
D
0
0
0

0
0
9
E
C
0
0
0

0
0
A
4
B
0
0
0

0
0
A
A
A
0
0
0

0
0
B
0
9
0
0
0

0
0
B
6
8
0
0
0

0
0
B
C
7
0
0
0

0
0
C
2
6
0
0
0

0
0
C
8
5
0
0
0

0
0
C
E
4
0
0
0

0
0
D
4
3
0
0
0

0
0
D
A
2
0
0
0

0
0
E
0
1
0
0
0

0
0
E
6
0
0
0
0

0
0
E
B
F
0
0
0

0
0
F
1
E
0
0
0

0
0
F
7
D
0
0
0

0
0
F
D
C
0
0
0

0
8
8
E
4
0
0
0

1
5
2
8
8
0
0
0

C
o

u
n

t

Address

Base address of libc per 40960 runs of
evince-thumbnailer

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 47

thumbnailer exploits that use around 410 malicious files. More research should be done to determine

why the selection of addresses in this implementation of ASLR is not distributed evenly in this case.

Implementing effective ROP shellcode is another hurdle to clear for exploit developers. Writing

shellcode to execute a file on the USB drive is one possibility, but likely won't work for an application

protected with AppArmor.

7.3.1.2. AppArmor

AppArmor is a kernel module that allows an administrator to restrict the abilities of an application to

access different aspects of a system. It can be configured to only allow an application to open certain

files or prevent an application from launching another process. This is a very effective means of securing

an application from exploitation – even if an exploit is successful and an attacker can execute arbitrary

code, the shellcode itself is still restricted from what it can do to the system.

AppArmor is configured per-application through profiles, and the protection it offers an application

depends on the profile. This means that successfully exploiting an AppArmor-protected application can

require finding weaknesses in the profile or in the protection that AppArmor provides. While working on

an exploit for a vulnerability that I discovered in evince-thumbnailer (85), I had to clear several

hurdles to even trigger the vulnerability. For example, the evince-thumbnailer AppArmor profile

only allows read access to certain files that evince supports displaying: PNG, PDF, DVI, etc. Exploitation

of the vulnerability required that evince-thumbnailer load an additional malicious file – a font file

that had a certain extension not allowed by the AppArmor profile. Creating a symlink with the font file's

name that pointed to a file with a .png extension allowed evince-thumbnailer to load the

malicious file, bypassing the AppArmor restriction and triggering the vulnerable code.

Other ways to get around AppArmor are to simply perform activities that aren't restricted by it. For

example, there's no way to create an AppArmor profile that prohibits an application from killing a

window in the X desktop. So while AppArmor can prevent shellcode from locating the screensaver

process by denying access to /proc and ptrace(), the shellcode could make use of X11 libraries in

memory to locate the screensaver window and kill it. Proof-of-concept code was written to do this using

XQueryTree() to enumerate desktop windows, XFetchName() to query the window name and

look for the screensaver, and then XKillClient() to kill the screensaver process.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 48

8. Conclusion
If you weren't already convinced that USB and removable storage devices are a security threat, or you

thought that disabling AutoRun features was an effective security solution, I hope the research

presented here changes your mind.

Because there are many features in both Windows and Linux that parse untrusted content present on

USB drives, even with minimal or no user interaction, the threat posed by these devices is greater than

many people think.

Exploit mitigation technologies developed by OS vendors definitely raise the bar for exploit writers, but

they aren't 100% effective.

The only sure way to prevent an intrusion or malware infection from the removable storage vector is to

completely disable all removable storage devices that you don't have full physical control over. This

means disabling auxiliary USB, FireWire, and eSATA ports if you can't control which devices people will

plug into them.

8.1. Acknowledgements
First of all, thanks to all of the people behind the research papers, blog posts, presentations, and books

that I've cited throughout this paper. There's a huge body of security research out there, and almost

every new idea I come up with has already been done five years ago.

I'd also like to thank everyone who reviewed this paper for their insightful comments and scathing

criticisms. Tom Cross, Matthew de Carteret, David Dewey, Joshua Drake, Robert Freeman, Shane

Garrett, Darel Griffin, Herb Hintz, John Kuhn, Ben Layer, Gregory Newman, Paul Sabbanal, Natalie

Spaeth, Takehiro Takahashi, Chris Valasek, Mark Yason were particularly helpful and/or scathing.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 49

9. Appendix

9.1. USB descriptors for a mass storage class device
This is the USB descriptor output for a mass storage class device, generated by the lsusb -v

command under Linux:

Bus 001 Device 003: ID 0781:5530 SanDisk Corp.

Device Descriptor:

 bLength 18

 bDescriptorType 1

 bcdUSB 2.00

 bDeviceClass 0 (Defined at Interface level)

 bDeviceSubClass 0

 bDeviceProtocol 0

 bMaxPacketSize0 64

 idVendor 0x0781 SanDisk Corp.

 idProduct 0x5530

 bcdDevice 1.00

 iManufacturer 1 SanDisk

 iProduct 2 Cruzer

 iSerial 3 20060266120EDEE311F8

 bNumConfigurations 1

 Configuration Descriptor:

 bLength 9

 bDescriptorType 2

 wTotalLength 32

 bNumInterfaces 1

 bConfigurationValue 1

 iConfiguration 0

 bmAttributes 0x80

 (Bus Powered)

 MaxPower 200mA

 Interface Descriptor:

 bLength 9

 bDescriptorType 4

 bInterfaceNumber 0

 bAlternateSetting 0

 bNumEndpoints 2

 bInterfaceClass 8 Mass Storage

 bInterfaceSubClass 6 SCSI

 bInterfaceProtocol 80 Bulk (Zip)

 iInterface 0

 Endpoint Descriptor:

 bLength 7

 bDescriptorType 5

 bEndpointAddress 0x81 EP 1 IN

 bmAttributes 2

 Transfer Type Bulk

 Synch Type None

 Usage Type Data

 wMaxPacketSize 0x0200 1x 512 bytes

 bInterval 0

 Endpoint Descriptor:

 bLength 7

 bDescriptorType 5

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 50

 bEndpointAddress 0x02 EP 2 OUT

 bmAttributes 2

 Transfer Type Bulk

 Synch Type None

 Usage Type Data

 wMaxPacketSize 0x0200 1x 512 bytes

 bInterval 1

9.2. Default Shell Extension Handlers in Windows 7 Professional (32 bit)

9.2.1. Icon handlers

Icon Handlers implement the IExtractIcon interface.

File Extension Handler Name Handler DLL

.appref-ms Shell Icon Handler for Application References C:\Windows\system32\dfshim.dll

.library-ms Library Icon Extract Extension %SystemRoot%\System32\shdocvw.dll

.lnk Shortcut C:\Windows\system32\shell32.dll

.msc ExtractIcon Class %SystemRoot%\system32\mmcshext.dll

.pif Shortcut C:\Windows\system32\shell32.dll

.scf CmdFileIcon %SystemRoot%\system32\shell32.dll

.searchConnector-ms SearchConnector Icon Extract Extension %SystemRoot%\System32\shdocvw.dll

.URL Internet Shortcut C:\Windows\System32\ieframe.dll

9.2.2. Image handlers

Image handlers implement the IExtractIcon interface, but if a thumbnail handler is available for the

extension (IThumbnailProvider), it's used instead. Many of the thumbnail handlers also have an

image handler available, but the ones listed here don't have an associated thumbnail handler interface.

File Extension Handler Name Handler DLL

.contact .contact shell extension handler %CommonProgramFiles%\System\wab32.dll

.doc Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.dot Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.dwfx %SystemRoot%\system32\XPSSHHDR.DLL

.easmx %SystemRoot%\system32\XPSSHHDR.DLL

.edrwx %SystemRoot%\system32\XPSSHHDR.DLL

.eprtx %SystemRoot%\system32\XPSSHHDR.DLL

.fon Microsoft Windows Font IExtractImage Handler %SystemRoot%\system32\fontext.dll

.fpx Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.jtx %SystemRoot%\system32\XPSSHHDR.DLL

.lnk Shortcut C:\Windows\system32\shell32.dll

.mic Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.mix Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 51

.mpp Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.obd Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.obt Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.otf Microsoft Windows Font IExtractImage Handler %SystemRoot%\system32\fontext.dll

.pfm Microsoft Windows Font IExtractImage Handler %SystemRoot%\system32\fontext.dll

.pot Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.ppt Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.ttc Microsoft Windows Font IExtractImage Handler %SystemRoot%\system32\fontext.dll

.ttf Microsoft Windows Font IExtractImage Handler %SystemRoot%\system32\fontext.dll

.xls Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.xlt Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.xps %SystemRoot%\system32\XPSSHHDR.DLL

9.2.3. Thumbnail handlers

Thumbnail handlers implement the IThumbnailProvider interface. The items in bold are configured by

default to not run in an isolated process – they run inside of explorer.exe. The behavior of items

that use the "Property Thumbnail Handler" is described above.

File Extension Handler Name Handler DLL

.3g2 Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.3gp Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.3gp2 Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.3gpp Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.asf Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.avi Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.bmp Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

.dib Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

.dvr-ms Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.emf Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

.gif Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

.jfif Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

.jpe Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

.jpeg Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

.jpg Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

.library-ms Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.m1v Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.m2t Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.m2ts Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.m2v Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.m4a Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.m4b Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 52

.m4p Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.m4v Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.mod Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.mov Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.mp2 Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.mp2v Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.mp3 Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.mp4 Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.mp4v Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.mpe Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.mpeg Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.mpg Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.mpv2 Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.mts Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.png Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

.rle Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

.searchConnector-ms Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.theme Windows Theme Thumbnail Preview %SystemRoot%\system32\themeui.dll

.tif Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

.tiff Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

.ts Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.tts Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.vob Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.wav Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.wdp Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

.wma Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.wmf Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

.wmv Property Thumbnail Handler %SystemRoot%\system32\shell32.dll

.WTV WTVFile Thumbnail Handler C:\Windows\System32\sbe.dll

.wdp Photo Thumbnail Provider C:\Windows\system32\PhotoMetadataHandler.dll

9.2.4. Property handlers

Property handlers implement the IPropertyStore interface. The items below in bold have process

isolation disabled.

File Extension Handler Name Handler DLL
.3gp MF MPEG-4 Property Handler %SystemRoot%\System32\mf.dll

.3gp2 MF MPEG-4 Property Handler %SystemRoot%\System32\mf.dll

.3gpp MF MPEG-4 Property Handler %SystemRoot%\System32\mf.dll

.aac MF ADTS Property Handler %SystemRoot%\System32\mf.dll

.adts MF ADTS Property Handler %SystemRoot%\System32\mf.dll

.appref-ms ShellLink for Application References C:\Windows\system32\dfshim.dll

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 53

.asf MF ASF Property Handler %SystemRoot%\System32\mf.dll

.avi MF AVI Property Handler %SystemRoot%\System32\mf.dll

.bmp IPropertyStore Handler for Images C:\Windows\system32\PhotoMetadataHandler.dll

.contact .contact shell extension handler %CommonProgramFiles%\System\wab32.dll

.cpl %SystemRoot%\system32\shell32.dll

.dib IPropertyStore Handler for Images C:\Windows\system32\PhotoMetadataHandler.dll

.dll %SystemRoot%\system32\shell32.dll

.doc Office Document Property Handler %SystemRoot%\system32\propsys.dll

.dot Office Document Property Handler %SystemRoot%\system32\propsys.dll

.dvr-ms MF ASF Property Handler %SystemRoot%\System32\mf.dll

.dwfx Microsoft XPS Shell Metadata Handler %SystemRoot%\system32\XPSSHHDR.DLL

.easmx Microsoft XPS Shell Metadata Handler %SystemRoot%\system32\XPSSHHDR.DLL

.edrwx Microsoft XPS Shell Metadata Handler %SystemRoot%\system32\XPSSHHDR.DLL

.eml Shell Message Handler %SystemRoot%\system32\inetcomm.dll

.eprtx Microsoft XPS Shell Metadata Handler %SystemRoot%\system32\XPSSHHDR.DLL

.exe %SystemRoot%\system32\shell32.dll

.fon %SystemRoot%\system32\shell32.dll

.gif IPropertyStore Handler for Images C:\Windows\system32\PhotoMetadataHandler.dll

.group .group shell extension handler %CommonProgramFiles%\System\wab32.dll

.ico IPropertyStore Handler for Images C:\Windows\system32\PhotoMetadataHandler.dll

.jfif IPropertyStore Handler for Images C:\Windows\system32\PhotoMetadataHandler.dll

.jpe IPropertyStore Handler for Images C:\Windows\system32\PhotoMetadataHandler.dll

.jpeg IPropertyStore Handler for Images C:\Windows\system32\PhotoMetadataHandler.dll

.jpg IPropertyStore Handler for Images C:\Windows\system32\PhotoMetadataHandler.dll

.jtx Microsoft XPS Shell Metadata Handler %SystemRoot%\system32\XPSSHHDR.DLL

.label Property Labels %SystemRoot%\System32\shdocvw.dll

.library-ms Library Property Store %SystemRoot%\system32\shell32.dll

.lnk Shortcut C:\Windows\system32\shell32.dll

.m1v MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.m2t MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.m2ts MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.m2v MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.m4a MF MPEG-4 Property Handler %SystemRoot%\System32\mf.dll

.m4b MF MPEG-4 Property Handler %SystemRoot%\System32\mf.dll

.m4p MF MPEG-4 Property Handler %SystemRoot%\System32\mf.dll

.m4v MF MPEG-4 Property Handler %SystemRoot%\System32\mf.dll

.mod MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.mov MF MPEG-4 Property Handler %SystemRoot%\System32\mf.dll

.mp2 MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.mp2v MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.mp3 MF MP3 Property Handler %SystemRoot%\System32\mf.dll

.mp4 MF MPEG-4 Property Handler %SystemRoot%\System32\mf.dll

.mp4v MF MPEG-4 Property Handler %SystemRoot%\System32\mf.dll

.mpe MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.mpeg MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.mpg MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.mpv2 MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.msg Office Document Property Handler %SystemRoot%\system32\propsys.dll

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 54

.MSI OLE DocFile Property Handler %SystemRoot%\system32\propsys.dll

.MSM OLE DocFile Property Handler %SystemRoot%\system32\propsys.dll

.MSP OLE DocFile Property Handler %SystemRoot%\system32\propsys.dll

.MST OLE DocFile Property Handler %SystemRoot%\system32\propsys.dll

.mts MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.nws Shell Message Handler %SystemRoot%\system32\inetcomm.dll

.ocx %SystemRoot%\system32\shell32.dll

.otf %SystemRoot%\system32\shell32.dll

.PCP OLE DocFile Property Handler %SystemRoot%\system32\propsys.dll

.png IPropertyStore Handler for Images C:\Windows\system32\PhotoMetadataHandler.dll

.pot Office Document Property Handler %SystemRoot%\system32\propsys.dll

.ppt Office Document Property Handler %SystemRoot%\system32\propsys.dll

.rle IPropertyStore Handler for Images C:\Windows\system32\PhotoMetadataHandler.dll

.rll %SystemRoot%\system32\shell32.dll

.search-ms CLSID_AutoListPropertyStore %SystemRoot%\System32\shdocvw.dll

.searchConnector-ms Location Description Property Handler %SystemRoot%\system32\shell32.dll

.sys %SystemRoot%\system32\shell32.dll

.tif IPropertyStore Handler for Images C:\Windows\system32\PhotoMetadataHandler.dll

.tiff IPropertyStore Handler for Images C:\Windows\system32\PhotoMetadataHandler.dll

.ts MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.ttc %SystemRoot%\system32\shell32.dll

.ttf %SystemRoot%\system32\shell32.dll

.tts MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.url Internet Shortcut C:\Windows\System32\ieframe.dll

.vob MF MPEG Property Handler %SystemRoot%\System32\mf.dll

.wav MF WAV Property Handler %SystemRoot%\System32\mf.dll

.wdp IPropertyStore Handler for Images C:\Windows\system32\PhotoMetadataHandler.dll

.wma MF ASF Property Handler %SystemRoot%\System32\mf.dll

.wmv MF ASF Property Handler %SystemRoot%\System32\mf.dll

.wtv WTVFile Property Handler C:\Windows\System32\sbe.dll

.xls Office Document Property Handler %SystemRoot%\system32\propsys.dll

.xlt Office Document Property Handler %SystemRoot%\system32\propsys.dll

.xps Microsoft XPS Shell Metadata Handler %SystemRoot%\system32\XPSSHHDR.DLL

9.2.5. Preview handlers

Preview Handlers implement the IPreviewHandler interface. The items in bold below have the

DisableLowILProcessIsolation setting enabled, which means they run in the same security context as

the logged-on user.

File Extension Handler Name Handler DLL

.3g2 Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.3gp Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.3gp2 Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.3gpp Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.AAC Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.ADT Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 55

.ADTS Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.aif Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.aifc Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.aiff Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.asf Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.asm Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.asmx Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.aspx Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.au Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.avi Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.bat Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.c Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.cmd Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.contact CLSID_ContactReadingPane %CommonProgramFiles%\System\wab32.dll

.cpp Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.css Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.csv Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.cxx Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.def Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.diz Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.dvr-ms Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.dwfx Microsoft XPS Rich Preview Handler %SystemRoot%\System32\xpsrchvw.exe -IPreview

.easmx Microsoft XPS Rich Preview Handler %SystemRoot%\System32\xpsrchvw.exe -IPreview

.edrwx Microsoft XPS Rich Preview Handler %SystemRoot%\System32\xpsrchvw.exe -IPreview

.eprtx Microsoft XPS Rich Preview Handler %SystemRoot%\System32\xpsrchvw.exe -IPreview

.fon Windows Font previewer %SystemRoot%\system32\fontext.dll

.h Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.hpp Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.hta Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.htm CLSID_PreviewHtml %SystemRoot%\system32\inetcomm.dll

.html CLSID_PreviewHtml %SystemRoot%\system32\inetcomm.dll

.hxx Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.inc Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.ini Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.java Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.jtx Microsoft XPS Rich Preview Handler %SystemRoot%\System32\xpsrchvw.exe -IPreview

.m1v Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.m2t Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.m2ts Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.m2v Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.m4a Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 56

.m4v Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.mht CLSID_PreviewMime %SystemRoot%\system32\inetcomm.dll

.mhtml CLSID_PreviewMime %SystemRoot%\system32\inetcomm.dll

.mid Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.midi Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.mod Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.mp2 Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.mp2v Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.mp3 Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.mp4 Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.mp4v Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.mpa Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.mpe Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.mpeg Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.mpg Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.mpv2 Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.mts Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.nvr Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.otf Windows Font previewer %SystemRoot%\system32\fontext.dll

.pfm Windows Font previewer %SystemRoot%\system32\fontext.dll

.php3 Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.pl Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.plg Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.ps1xml Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.reg Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.rmi Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.rtf Windows RTF Previewer %SystemRoot%\system32\shell32.dll

.sed Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.shtml Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.snd Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.sql Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.text Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.ts Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.tsv Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.ttc Windows Font previewer %SystemRoot%\system32\fontext.dll

.ttf Windows Font previewer %SystemRoot%\system32\fontext.dll

.tts Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.txt Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.wav Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.wm Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.wma Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 57

.wmv Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.WTV Windows Media Player Rich Preview Handler %ProgramFiles%\Windows Media Player\wmprph.exe

.x Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.xml Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.xps Microsoft XPS Rich Preview Handler %SystemRoot%\System32\xpsrchvw.exe -IPreview

.xsl Windows TXT Previewer %SystemRoot%\system32\shell32.dll

.contact CLSID_ContactReadingPane %CommonProgramFiles%\System\wab32.dll

.htm CLSID_PreviewHtml %SystemRoot%\system32\inetcomm.dll

.html CLSID_PreviewHtml %SystemRoot%\system32\inetcomm.dll

.mht CLSID_PreviewMime %SystemRoot%\system32\inetcomm.dll

.mhtml CLSID_PreviewMime %SystemRoot%\system32\inetcomm.dll

.msg MAPI Mail Previewer %SystemRoot%\system32\mssvp.dll

.rtf Windows RTF Previewer %SystemRoot%\system32\shell32.dll

9.3. Default GNOME Desktop thumbnailers in Ubuntu Desktop Linux 10.10 (32

bit)
This table lists the default thumbnailer applications in Ubuntu 10.10. By default, evince-

thumbnailer is protected with an AppArmor profile but the other thumbnailers are not.

File Extensions Mime Type File Description Thumbnailer

.anim[1-9j] video/x-anim ANIM animation
totem-video-
thumbnailer

.mp4 .m4v video/mp4 MPEG-4 video
totem-video-
thumbnailer

.m2t .m2ts .ts .mts .cpi .clpi .mpl .mpls .bdm

.bdmv video/mp2t MPEG-2 transport stream
totem-video-
thumbnailer

.asf video/x-ms-asf ASF video
totem-video-
thumbnailer

.ogx application/ogg Ogg multimedia file
totem-video-
thumbnailer

.shn application/x-shorten Shorten audio
totem-video-
thumbnailer

.mxf application/mxf MXF video
totem-video-
thumbnailer

.gvp text/x-google-video-pointer Google Video Pointer
totem-video-
thumbnailer

.avi .divx video/x-msvideo AVI video
totem-video-
thumbnailer

.qt .mov .moov .qtvr video/quicktime QuickTime video
totem-video-
thumbnailer

.wmv video/x-ms-wmv Windows Media video
totem-video-
thumbnailer

.webm video/webm WebM video
totem-video-
thumbnailer

.wmx video/x-ms-wmx

totem-video-
thumbnailer

.ra .rm .ram audio/x-pn-realaudio

totem-video-
thumbnailer

.ogv video/ogg Ogg Video
totem-video-
thumbnailer

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 58

.ram application/ram RealMedia Metafile
totem-video-
thumbnailer

.mpeg .mpg .mp2 .mpe .vob video/mpeg MPEG video
totem-video-
thumbnailer

.dv video/dv DV video
totem-video-
thumbnailer

.mkv video/x-matroska Matroska video
totem-video-
thumbnailer

.wpl application/vnd.ms-wpl WPL playlist
totem-video-
thumbnailer

.fli video/fli

totem-video-
thumbnailer

.rm .rmj .rmm .rms .rmx .rmvb application/vnd.rn-realmedia RealMedia document
totem-video-
thumbnailer

.wvx video/x-ms-wvx

totem-video-
thumbnailer

.rv .rvx video/vnd.rn-realvideo RealVideo document
totem-video-
thumbnailer

.rp image/vnd.rn-realpix RealPix document
totem-video-
thumbnailer

.flv video/x-flv Flash video
totem-video-
thumbnailer

.pict .pict1 .pict2 image/x-pict
Macintosh Quickdraw/PICT
drawing

totem-video-
thumbnailer

.nsc
application/x-netshow-
channel Windows Media Station file

totem-video-
thumbnailer

.fli .flc video/x-flic FLIC animation
totem-video-
thumbnailer

.wm video/x-ms-wm

totem-video-
thumbnailer

.sdp application/sdp SDP multicast stream file
totem-video-
thumbnailer

.qtl
application/x-
quicktimeplayer

 totem-video-
thumbnailer

.3gp .3g2 .3gpp .3ga video/3gpp 3GPP multimedia file
totem-video-
thumbnailer

application/x-matroska Matroska stream

totem-video-
thumbnailer

.nsv video/x-nsv NullSoft video
totem-video-
thumbnailer

.viv .vivo video/vivo Vivo video
totem-video-
thumbnailer

.pdf application/pdf PDF document evince-thumbnailer

.djvu .djv image/vnd.djvu DjVu image evince-thumbnailer

.pdf.bz2 application/x-bzpdf PDF document (bzip-compressed) evince-thumbnailer

.cbr application/x-cbr comic book archive evince-thumbnailer

.cbz application/x-cbz comic book archive evince-thumbnailer

.cbt application/x-cbt comic book archive evince-thumbnailer

.dvi application/x-dvi TeX DVI document evince-thumbnailer

.pdf.gz application/x-gzpdf PDF document (gzip-compressed) evince-thumbnailer

.ps.bz2 application/x-bzpostscript
PostScript document (bzip-
compressed) evince-thumbnailer

.ps application/postscript PS document evince-thumbnailer

.ps.gz application/x-gzpostscript
PostScript document (gzip-
compressed) evince-thumbnailer

.eps.bz2 .epsi.bz2 .epsf.bz2 image/x-bzeps EPS image (bzip-compressed) evince-thumbnailer

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 59

.eps .epsi .epsf image/x-eps EPS image evince-thumbnailer

.dvi.gz application/x-gzdvi
TeX DVI document (gzip-
compressed) evince-thumbnailer

.dvi.bz2 application/x-bzdvi
TeX DVI document (bzip-
compressed) evince-thumbnailer

.eps.gz .epsi.gz .epsf.gz image/x-gzeps EPS image (gzip-compressed) evince-thumbnailer

.cb7 application/x-cb7 comic book archive evince-thumbnailer

.ttf .ttc application/x-font-ttf TrueType font gnome-thumbnail-font

.otf application/x-font-otf OpenType font gnome-thumbnail-font

.pfa .pfb .gsf application/x-font-type1 Postscript type-1 font gnome-thumbnail-font

.pcf .pcf.Z .pcf.gz application/x-font-pcf PCF font gnome-thumbnail-font

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 60

10. Works cited
1. O'Connor, Mary and Nelson, Tom. Protect Your PC From Viruses. Smart Computing. 2002, Vol. 6, 7.

2. Slade, Robert M. History of Computer Viruses. 1992.

3. Virdem - VirusInfo. The Virus Encyclopedia. [Online] [Cited: Nov 27, 2010.]

http://virus.wikia.com/wiki/Virdem.

4. F-Secure. F-Secure Virus Descriptions : Boza.A. F-Secure. [Online] [Cited: Nov 27, 2010.] http://www.f-

secure.com/v-descs/boza.shtml.

5. —. F-Secure Virus Descriptions: Roron. F-Secure. [Online] F-Secure, November 6, 2002. [Cited:

November 28, 2010.] http://www.f-secure.com/v-descs/roro.shtml.

6. Turkulainen, Jarkko and Tocheva, Katrin. F-Secure Virus Descriptions : Bacros.A. F-Secure. [Online] F-

Secure, October 13, 2004. [Cited: November 28, 2010.] http://www.f-secure.com/v-

descs/bacros_a.shtml.

7. Microsoft. How to disable the Autorun functionality in Windows. Microsoft Support. [Online]

September 9, 2010. [Cited: November 30, 2010.]

8. Dewey, David and Barrall, Darrin. Plug and Root: The USB Key to the Kingdom. BlackHat. [Online]

2005. http://www.blackhat.com/presentations/bh-usa-05/BH_US_05-Barrall-Dewey.pdf.

9. 'Silly' worm targets USB sticks. v3.co.uk. [Online] v3.co.uk, May 4, 2007. [Cited: November 28, 2010.]

http://www.v3.co.uk/vnunet/news/2189228/virus-targets-usb-sticks.

10. Shachtman, Noah. Under Worm Assault, Military Bans Disks, USB Drives. Wired Magazine. [Online]

November 19, 2008. [Cited: November 29, 2010.] http://www.wired.com/dangerroom/2008/11/army-

bans-usb-d/.

11. Microsoft. How to Test Autorun.inf Files. Microsoft Support. [Online] May 11, 2007. [Cited:

November 29, 2010.] http://support.microsoft.com/kb/136214.

12. —. Using Hardware AutoPlay. MSDN Library. [Online] November 9, 2009. [Cited: November 29,

2010.]

13. Cohen, Arik. Improvements to AutoPlay. Engineering Windows 7. [Online] April 27, 2009.

http://blogs.msdn.com/b/e7/archive/2009/04/27/improvements-to-autoplay.aspx.

14. Falliere, Nicolas, Murchu, Liam O and Chien, Eric. W32.Stuxnet Dossier. Symantec. [Online]

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stux

net_dossier.pdf.

15. Ferrie, Peter. The Missing LNK. Microsoft. [Online] http://pferrie2.tripod.com/papers/lnk.pdf.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 61

16. Halderman, J. Alex, et al. Lest We Remember: Cold Boot Attacks on Encryption Keys. [Online] 2008.

http://citp.princeton.edu/pub/coldboot.pdf.

17. Dornseif, Maximillian. 0wned by and iPod. [Online] 2004.

http://md.hudora.de/presentations/firewire/PacSec2004.pdf.

18. Boileau, Adam. Hit by a Bus: Physical Access Attacks with Firewire. [Online] 2006.

http://www.storm.net.nz/static/files/ab_firewire_rux2k6-final.pdf.

19. USB Implementers Forum. USB.org Documents. USB.org. [Online]

http://www.usb.org/developers/docs/.

20. Wikipedia. Universal Serial Bus. Wikipedia. [Online]

http://en.wikipedia.org/wiki/Universal_Serial_Bus.

21. Peacock, Craig. USB in a NutShell. Beyond Logic. [Online]

http://www.beyondlogic.org/usbnutshell/usb1.shtml.

22. Intel. Enhanced Host Controller Interface Specification for Universial Serial Bus. Intel. [Online]

http://www.intel.com/technology/usb/download/ehci-r10.pdf.

23. Compaq. OpenHCI: Open Host Controller Interface Specification for USB. Compaq. [Online]

ftp://ftp.compaq.com/pub/supportinformation/papers/hcir1_0a.pdf.

24. Intel. Universal Host Controller Interface (UHCI) Design guide. Intel. [Online]

http://download.intel.com/technology/usb/UHCI11D.pdf.

25. USB-IF. USB Class Codes. USB.org. [Online] November 17, 2009. [Cited: November 30, 2010.]

http://www.usb.org/developers/defined_class.

26. Axelson, Jan. The Mass Storage Page. Jan Axelson's Lakeview Research. [Online]

http://www.lvr.com/mass_storage.htm.

27. USB Implementers Forum. Universal Serial Bus Mass Storage Class Bulk Only Transport. USB

Implementers Forum. [Online] 1999.

http://www.usb.org/developers/devclass_docs/usbmassbulk_10.pdf.

28. INCITS. SCSI Standards Architecture. T10 Technical Committee. [Online] http://www.t10.org/scsi-

3.htm.

29. Axelson, Jan. USB Mass Storage. s.l. : Lakeview Research, 2006.

30. MWR InfoSecurity. Linux USB Device Driver - Buffer Overflow. MWR InfoSecurity. [Online]

http://labs.mwrinfosecurity.com/files/Advisories/mwri_linux-usb-buffer-overflow_2009-10-29.pdf.

31. PlayStation Jailbreak. Wikipedia. [Online] http://en.wikipedia.org/wiki/PlayStation_Jailbreak.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 62

32. phire. PSJailbreak Exploit Reverse Engineering. PS3 Wiki. [Online]

https://ps3wiki.lan.st/index.php?title=PSJailbreak_Exploit_Reverse_Engineering.

33. Peermohamed, Fizalkhan. What is the right way to read and parse configuration descriptors?

Microsoft Windows USB Core Team Blog. [Online]

http://blogs.msdn.com/b/usbcoreblog/archive/2009/12/12/what-is-the-right-way-to-validate-and-

parse-configuration-descriptors.aspx.

34. Social-Engineer Toolkit v0.6.1 Teensy USB HID Attack Vector. SecManiac. [Online]

http://www.secmaniac.com/august-2010/social-engineer-toolkit-v0-6-1-teensy-usb-hid-attack-vector/.

35. Jodeit, Moritz. Evaluating Security Aspects of the Universial Serial Bus. [Online] 2009.

http://www.informatik.uni-hamburg.de/SVS/archiv/slides/09-01-13-OS-Jodeit-

Evaluating_Security_Aspects_of_USB.pdf.

36. Mueller, Tobias. Virtualized USB Fuzzing: Breaking USB for Fun and Profit. [Online] 2010.

https://muelli.cryptobitch.de/paper/2010-usb-fuzzing.pdf.

37. Microsoft. DSF Device Simulation Framework. Windows Hardware Developer Central. [Online]

http://www.microsoft.com/whdc/devtools/dsf.mspx.

38. Miller, Charlie. Fuzzing With Code Coverage By Example. [Online] 2007.

http://toorcon.org/2007/talks/34/code_coverage_by_example.pdf.

39. Microsoft. USB Driver Stack for Windows XP and Later. Windows Driver Kit. [Online] October 26,

2010. [Cited: November 30, 2010.] http://msdn.microsoft.com/en-us/library/ff539311(v=VS.85).aspx.

40. —. Writing an ISR. Windows Driver Kit. [Online] November 21, 2010. [Cited: December 2, 2010.]

http://msdn.microsoft.com/en-us/library/ff566399(VS.85).aspx.

41. —. USB Generic Parent Driver (Usbccgp.sys). MSDN Library. [Online] October 26, 2010. [Cited:

December 2, 2010.] http://msdn.microsoft.com/en-us/library/ff539234(VS.85).aspx.

42. —. Drivers for the Supported USB Device Classes. MSDN Library. [Online] October 26, 2010. [Cited:

December 2, 2010.] http://msdn.microsoft.com/en-us/library/ff538820(v=VS.85).aspx.

43. Borve, Martin. How does USB stack enumerate a device? Microsoft Windows USB Core Team Blog.

[Online] October 30, 2009. [Cited: December 2, 2010.]

http://blogs.msdn.com/b/usbcoreblog/archive/2009/10/31/how-does-usb-stack-enumerate-a-

device.aspx.

44. Peacock, Craig. USB Descriptors. USB in a NutShell. [Online] September 17, 2010. [Cited: December

3, 2010.] http://www.beyondlogic.org/usbnutshell/usb5.shtml.

45. Microsoft. Adding a PnP Device to a Running System. MSDN Library. [Online] September 21, 2010.

[Cited: December 3, 2010.] http://msdn.microsoft.com/en-us/library/ff540535(VS.85).aspx.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 63

46. —. Standard USB Identifiers. MSDN Library. [Online] November 16, 2010. [Cited: December 2, 2010.]

http://msdn.microsoft.com/en-us/library/ff553356(v=VS.85).aspx.

47. —. Storage Technologies. Windows Hardware Developer Central. [Online]

http://www.microsoft.com/whdc/device/storage/default.mspx.

48. —. Storage Devices. MSDN Library. [Online] http://msdn.microsoft.com/en-

us/library/ff563893(v=VS.85).aspx.

49. OSTA. OSTA Universal Disk Format Specifications. [Online] http://www.osta.org/specs/.

50. File Allocation Table. Wikipedia. [Online] http://en.wikipedia.org/wiki/File_Allocation_Table.

51. Microsoft. Microsoft Extensible Firmware Initiative FAT32 File System Specification. Windows

Hardware Developer Central. [Online]

http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx.

52. ExFAT. Wikipedia. [Online] http://en.wikipedia.org/wiki/ExFAT.

53. Brantén, Bo. Windows Driver Examples. [Online] http://www.acc.umu.se/~bosse/.

54. Beck, Peter. Safe Unlinking in the Kernel Pool. Microsoft Security Research & Defense Blog. [Online]

http://blogs.technet.com/b/srd/archive/2009/05/26/safe-unlinking-in-the-kernel-pool.aspx.

55. Downloads: DeviceTree. OSR Online. [Online] http://www.osronline.com/article.cfm?article=97.

56. Microsoft. Creating Shell Extension Handlers. MSDN Library. [Online] November 9, 2010. [Cited:

December 10, 2010.] http://msdn.microsoft.com/en-us/library/cc144067(VS.85).aspx.

57. Stevens, Didier. Quickpost: /JBIG2Decode Trigger Trio. Didier Stevens. [Online]

http://blog.didierstevens.com/2009/03/04/quickpost-jbig2decode-trigger-trio/.

58. Hao, Xu and Joseph, Moti. A Story about How Hackers' Heart Broken by 0-day. POC2010. [Online]

http://www.exploit-db.com/download_pdf/15899.

59. Microsoft. Perceived Types. MSDN Library. [Online] http://msdn.microsoft.com/en-

us/library/cc144150(v=vs.85).aspx.

60. —. Application Registration. MSDN Library. [Online] http://msdn.microsoft.com/en-

us/library/ee872121(v=vs.85).aspx.

61. —. Creating Icon Handlers. MSDN Library. [Online] [Cited: December 10, 2010.]

http://msdn.microsoft.com/en-us/library/cc144122(v=VS.85).aspx.

62. —. File Types. MSDN Library. [Online] [Cited: December 10, 2010.] http://msdn.microsoft.com/en-

us/library/cc144148(v=VS.85).aspx.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 64

63. —. IThumbnailProvider Interface. MSDN Library. [Online] [Cited: December 10, 2010.]

http://msdn.microsoft.com/en-us/library/bb774614(v=VS.85).aspx.

64. —. Thumbnail Handlers. MSDN Library. [Online] [Cited: December 13, 2010.]

http://msdn.microsoft.com/en-us/library/cc144118(v=VS.85).aspx.

65. —. Preview Handlers and Shell Preview Host. MSDN Library. [Online] [Cited: December 10, 2010.]

http://msdn.microsoft.com/en-us/library/cc144143(VS.85).aspx.

66. Dowd, Mark, Smith, Ryan and Dewey, David. Attacking Interoperability. [Online]

http://www.hustlelabs.com/stuff/bh2009_dowd_smith_dewey.pdf.

67. Miller, Matt. On the effectiveness of DEP and ASLR. Microsoft Security Research & Defense. [Online]

http://blogs.technet.com/b/srd/archive/2010/12/08/on-the-effectiveness-of-dep-and-aslr.aspx.

68. Shacham, Hovav. The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function

Calls (on the x86). [Online] 2007. http://cseweb.ucsd.edu/~hovav/dist/geometry.pdf.

69. Microsoft. Windows ISV Software Security Defenses. MSDN Library. [Online]

http://msdn.microsoft.com/en-us/library/bb430720.aspx.

70. —. Windows Vista Integrity Mechanism Technical Reference. MSDN Library. [Online]

http://msdn.microsoft.com/en-us/library/bb625964.aspx.

71. —. Understanding Property Handlers. MSDN Library. [Online] [Cited: December 13, 2010.]

http://msdn.microsoft.com/en-us/library/cc144129(v=VS.85).aspx.

72. F-Secure. Be careful with WMF files. F-Secure Weblog. [Online] December 28, 2005. http://www.f-

secure.com/weblog/archives/00000753.html.

73. Microsoft. Unchecked Buffer in Windows Shell Could Enable System Compromise. Microsoft Security

Bulletins. [Online] http://www.microsoft.com/technet/security/bulletin/ms03-027.mspx.

74. Secunia. Microsoft Windows "desktop.ini" Arbitrary File Execution Vulnerability. McAfee. [Online]

Secunia. http://secunia.com/advisories/11633/.

75. Acuña, Andrés Tarascó. Exploiting Win32 Design Flaws. [Online]

http://www.tarasco.org/security/Process_Injector/Win32.Design.Flaws.pdf.

76. Microsoft. Specifying a Namespace Extension's Location. MSDN Library. [Online] [Cited: 13 2010,

December.] http://msdn.microsoft.com/en-us/library/cc144096(v=VS.85).aspx.

77. —. Implementing the Basic Folder Object Interfaces. MSDN Library. [Online] [Cited: December 13,

2010.] http://msdn.microsoft.com/en-us/library/cc144093(v=VS.85).aspx#PIDL.

78. Linux USB Project. Linux USB Project. [Online] http://www.linux-usb.org/.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 65

79. Riabitsev, Konstantin. USB storage hotplug code. Redhat Developers Mailing List. [Online]

https://listman.redhat.com/archives/rhl-devel-list/2003-August/msg00115.html.

80. NTLUG. Hotplugging, Udev, HAL and D-BUS. NTLUG. [Online] http://www.ntlug.org/Articles/Hotplug.

81. Jones, M. Tim. Anatomy of the Linux file system. IBM developerWorks. [Online]

http://www.ibm.com/developerworks/linux/library/l-linux-filesystem/.

82. —. Anatomy of the Linux SCSI subsystem. IBM developerWorks. [Online]

http://www.ibm.com/developerworks/linux/library/l-scsi-subsystem/.

83. Leonard, Thomas. Shared MIME-info Database Specification. X Desktop Group. [Online]

http://standards.freedesktop.org/shared-mime-info-spec/shared-mime-info-spec-latest.html.

84. John Palmieri, et. al. Desktop Application Autostart Specification. X Desktop Group. [Online]

http://standards.freedesktop.org/autostart-spec/autostart-spec-latest.html.

85. Canonical, Ltd. USN-1035-1: Evince vulnerabilities. Ubuntu. [Online]

http://www.ubuntu.com/usn/usn-1035-1.

86. NirSoft. ShellExView. NirSoft. [Online] [Cited: December 10, 2010.]

http://www.nirsoft.net/utils/shexview.html.

87. TeensyUSB Development Board. PJRC. [Online] http://www.pjrc.com/teensy/.

88. Nadel, Brian. Kanguru Fire Flash Review. CNET Reviews. [Online] July 25, 2005.

http://reviews.cnet.com/flash-memory-cards/kanguru-fire-flash-2gb/4505-3241_7-31229811.html.

89. Lake, Bill. Supercharge Your Flash Drive With eSATA. Tom's Guide. [Online] February 6, 2009.

http://www.tomsguide.com/us/eSATA-USB-Flash,review-1195.html.

90. Farino, Dan. Remotely Unlock a Windows Workstation. CodeProject. [Online] November 2, 2006.

http://www.codeproject.com/KB/system/RemoteUnlock.aspx.

91. Microsoft. Microsoft Security Advisory (2490606). Microsoft Technet Security Advisories. [Online]

http://www.microsoft.com/technet/security/advisory/2490606.mspx.

Beyond Autorun (v1.0) (c) 2011 IBM Corp. 66

11. Legal notices
 Microsoft, Windows, and Windows Vista are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries.

 Google is a registered trademark of Google, Inc.

 Ubuntu is a registered trademark of Canonical Ltd.

 GNOME is a registered trademark of GNOME Foundation in the U.S. and other countries.

 Linux is the registered trademark of Linux Torvalds in the U.S. and other countries.

 Apple is a registered trademark of Apple, Inc in the U.S. and other countries.

 Symantec is a registered trademark of Symantec Corporation or its affiliates in the U.S. and

other countries.

 SanDisk and Cruzer are trademarks of SanDisk Corporation, registered in the United States and

other countries.

 Other names may be trademarks of their respective owners.

	1. Abstract
	2. Introduction
	2.1. A brief history of removable storage malware
	2.2. AutoRun and AutoPlay
	2.3. Stuxnet and the LNK vulnerability
	2.4. Attacks on physical systems

	3. USB Architecture
	3.1. About USB
	3.2. Host controllers
	3.3. Devices
	3.3.1. Hubs
	3.3.2. Functions
	3.3.3. Interfaces
	3.3.4. Endpoints
	3.3.5. Device classes
	3.3.6. USB descriptors
	3.3.6.1. Device descriptor
	3.3.6.2. Configuration descriptor
	3.3.6.3. Interface descriptor
	3.3.6.4. Endpoint descriptor
	3.3.6.1. String descriptor

	3.4. Mass storage class devices
	3.5. Attacks using the USB protocols
	3.6. Fuzzing USB drivers
	3.6.1. Windows Device Simulation Framework
	3.6.2. QEMU/BOCHS

	4. USB operation on Windows 7
	4.1. USB driver stack
	4.1.1. Core stack
	4.1.2. Class drivers
	4.1.3. USB device recognition
	4.1.3.1. Querying the new device
	4.1.3.2. Locating the correct driver

	4.1.4. The danger of drivers from Windows Update

	4.2. Mass storage devices
	4.2.1. USB storage port driver and Windows disk class driver
	4.2.2. Partition and volume management
	4.2.3. File system drivers
	4.2.4. Fuzzing filesystem drivers on Windows

	4.3. Exploiting USB and file system drivers
	4.4. PnP Manager
	4.4.1. Kernel mode PnP manager
	4.4.2. User mode PnP manager

	4.5. AutoPlay
	4.5.1. Shell Hardware Detection Service
	4.5.1.1. Detecting new devices

	4.5.2. ReadyBoost

	5. Windows Explorer
	5.1. Shell Extension Handlers
	5.1.1. Registered file types and perceived types
	5.1.2. Icon handlers
	5.1.3. Thumbnail handlers
	5.1.3.1. Thumbnail Property Handler
	5.1.3.2. Folder Thumbnails

	5.1.4. Image handlers
	5.1.5. Preview handlers
	5.1.6. Infotip handlers
	5.1.7. COM object persistence and type confusion
	5.1.8. Fuzzing shell extensions
	5.1.9. Exploiting shell extensions

	5.2. Property system
	5.3. Folder customization
	5.3.1. Shell namespace extensions

	6. USB operation on GNU/Linux
	6.1. Core
	6.2. USB interface drivers
	6.3. USB mass storage class driver
	6.4. udev, udisks, D-Bus
	6.5. File systems in Linux

	7. GNOME and Nautilus
	7.1. Automatic mounting of storage devices
	7.2. Autorun capabilities
	7.3. Thumbnailers
	7.3.1. Exploiting thumbnailers
	7.3.1.1. ASLR and NX
	7.3.1.2. AppArmor

	8. Conclusion
	8.1. Acknowledgements

	9. Appendix
	9.1. USB descriptors for a mass storage class device
	9.2. Default Shell Extension Handlers in Windows 7 Professional (32 bit)
	9.2.1. Icon handlers
	9.2.2. Image handlers
	9.2.3. Thumbnail handlers
	9.2.4. Property handlers
	9.2.5. Preview handlers

	9.3. Default GNOME Desktop thumbnailers in Ubuntu Desktop Linux 10.10 (32 bit)

	10. Works cited
	11. Legal notices

