
1ASLRMBE - 03/31/15

Address Space Layout Random
Randomization

Modern Binary Exploitation
CSCI 4968 - Spring 2015

Patrick Biernat

2ASLRMBE - 03/31/15

Lecture Overview

1. Introducing ASLR
2. Position Independent Executables
3. Bypassing ASLR, Examples
4. Conclusion

ASLRMBE - 03/31/15

Modern Exploit Mitigations

• Theres a number of modern exploit mitigations that we’ve
generally been turning off for the labs and exercises
• DEP
• ASLR
• Stack Canaries

• … ?

3

ASLRMBE - 03/31/15

Modern Exploit Mitigations

• Theres a number of modern exploit mitigations that we’ve
generally been turning off for the labs and exercises
• DEP
• ASLR
• Stack Canaries

• … ?

• We turned on DEP and introduced ROP last lab

4

ASLRMBE - 03/31/15

Modern Exploit Mitigations

• Theres a number of modern exploit mitigations that we’ve
generally been turning off for the labs and exercises
• DEP
• ASLR
• Stack Canaries

• … ?

• We turned on DEP and introduced ROP last lab

• Today we turn ASLR back on for the remainder of the course

5

6ASLRMBE - 03/31/15

What is ASLR?

A: Address

S: Space

L: Layout

R: Randomization

7ASLRMBE - 03/31/15

Course Terminology

• Address Space Layout Randomization
• An exploit mitigation technology used to ensure that

address ranges for important memory segments are
random for every execution

• Meant to mitigate exploits leveraging hardcoded stack,
heap, code, libc addresses

• Known as ASLR for short

8ASLRMBE - 03/31/15

Runtime Process Without ASLR

Runtime Memory

Stack

ELF Executable

.text segment

.rodata segment

Heap

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08049290 - 0x0805033c (R-X)

0xbffdf000 - 0xc0000000 (RW-)

Libraries (libc)

0x08050360 - 0x08051208 (R--)

0x08055000 - 0x08076000 (RW-)

0xb7e25000 - 0xb7fcd000

9ASLRMBE - 03/31/15

Run #1 Without ASLR

Runtime Memory

Stack

ELF Executable

.text segment

.rodata segment

Heap

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08049290 - 0x0805033c (R-X)

0xbffdf000 - 0xc0000000 (RW-)

Libraries (libc)

0x08050360 - 0x08051208 (R--)

0x08055000 - 0x08076000 (RW-)

0xb7e25000 - 0xb7fcd000

10ASLRMBE - 03/31/15

Run #2 Without ASLR

Runtime Memory

Stack

ELF Executable

.text segment

.rodata segment

Heap

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08049290 - 0x0805033c (R-X)

0xbffdf000 - 0xc0000000 (RW-)

Libraries (libc)

0x08050360 - 0x08051208 (R--)

0x08055000 - 0x08076000 (RW-)

0xb7e25000 - 0xb7fcd000

11ASLRMBE - 03/31/15

Run #3 Without ASLR

Runtime Memory

Stack

ELF Executable

.text segment

.rodata segment

Heap

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08049290 - 0x0805033c (R-X)

0xbffdf000 - 0xc0000000 (RW-)

Libraries (libc)

0x08050360 - 0x08051208 (R--)

0x08055000 - 0x08076000 (RW-)

0xb7e25000 - 0xb7fcd000

12ASLRMBE - 03/31/15

ya so, nothing changes...

13ASLRMBE - 03/31/15

Runtime Process Without ASLR

Runtime Memory

Stack

ELF Executable

.text segment

.rodata segment

Heap

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08049290 - 0x0805033c (R-X)

0xbffdf000 - 0xc0000000 (RW-)

Libraries (libc)

0x08050360 - 0x08051208 (R--)

0x08055000 - 0x08076000 (RW-)

0xb7e25000 - 0xb7fcd000

14ASLRMBE - 03/31/15

Run #1 With ASLR

Runtime Memory

ELF Executable

.text segment

.rodata segment

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08049290 - 0x0805033c (R-X)

0x08050360 - 0x08051208 (R--)

Heap
0x98429000 - 0x9844a000 (RW-)

Libraries (libc)
0x244b9000 - 0x24661000

0x7fa54000 - 0x7fa75000 (RW-)
Stack

15ASLRMBE - 03/31/15

Run #2 With ASLR

Runtime Memory

ELF Executable

.text segment

.rodata segment

0xFFFFFFFF – End of memory

0x08049290 - 0x0805033c (R-X)

0x08050360 - 0x08051208 (R--)

Heap
0xa07ee000 - 0xa080f000 (RW-)

Libraries (libc)
0x00540000 - 0x006e8000

0x10962000 - 0x10983000 (RW-)
Stack

16ASLRMBE - 03/31/15

Run #3 With ASLR

Runtime Memory

ELF Executable

.text segment

.rodata segment

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08049290 - 0x0805033c (R-X)

0x08050360 - 0x08051208 (R--)

Heap
0x43db2000 - 0x43dd3000 (RW-)

Libraries (libc)
0xbf8c3000 - 0xbf8e4000

0x094fb000 - 0x0951c000 (RW-)
Stack

17ASLRMBE - 03/31/15

ASLR in Action

> Open up a terminal.

18ASLRMBE - 03/31/15

> Open up a terminal.

> Type “cat /proc/self/maps”

ASLR in Action

19ASLRMBE - 03/31/15

> Open up a terminal.

> Type “cat /proc/self/maps”

> Repeat a few times :)

ASLR in Action

20ASLRMBE - 03/31/15

> Open up a terminal.

> Type “cat /proc/self/maps”

> Repeat a few times :)

You’ll see lots of lines like this:

bfe49000-bfe6a000 rw-p 00000000 00:00 0 [stack]
...

bfa23000-bfa44000 rw-p 00000000 00:00 0 [stack]
…

bfdab000-bfdcc000 rw-p 00000000 00:00 0 [stack]

ASLR in Action

21ASLRMBE - 03/31/15

> Open up a terminal.

> Type “cat /proc/self/maps”

> Repeat a few times :)

• Stack Address Changes

ASLR in Action

22ASLRMBE - 03/31/15

> Open up a terminal.

> Type “cat /proc/self/maps”

> Repeat a few times :)

• Stack Address Changes
• Heap Address Changes

ASLR in Action

23ASLRMBE - 03/31/15

> Open up a terminal.

> Type “cat /proc/self/maps”

> Repeat a few times :)

• Stack Address Changes
• Heap Address Changes
• Library Addresses Change

ASLR in Action

ASLRMBE - 03/31/15

ASLR Basics

• Memory segments are no longer in static address ranges,
rather they are unique for every execution

24

ASLRMBE - 03/31/15

ASLR Basics

• Memory segments are no longer in static address ranges,
rather they are unique for every execution

• A simple stack smash may get you control of EIP, but what
does it matter if you have no idea where you can go with it?

25

ASLRMBE - 03/31/15

ASLR Basics

• Memory segments are no longer in static address ranges,
rather they are unique for every execution

• A simple stack smash may get you control of EIP, but what
does it matter if you have no idea where you can go with it?
• The essence of ASLR

• You must work with no expectation of where anything is in
memory anymore

26

27ASLRMBE - 03/31/15

History of ASLR

• When was ASLR implemented?
• May 1st, 2004 - OpenBSD 3.5 (mmap)

• June 17th, 2005 - Linux Kernel 2.6.12 (stack, mmap)

• January 30th, 2007 - Windows Vista (full)

• October 26th, 2007 - Mac OSX 10.5 Leopard (sys libraries)

• October 21st, 2010 - Windows Phone 7 (full)

• March 11th, 2011 - iPhone iOS 4.3 (full)

• July 20th, 2011 - Mac OSX 10.7 Lion (full)

28ASLRMBE - 03/31/15

History of ASLR

• When was ASLR implemented?
• May 1st, 2004 - OpenBSD 3.5 (mmap)

• June 17th, 2005 - Linux Kernel 2.6.12 (stack, mmap)

• January 30th, 2007 - Windows Vista (full)

• October 26th, 2007 - Mac OSX 10.5 Leopard (sys libraries)

• October 21st, 2010 - Windows Phone 7 (full)

• March 11th, 2011 - iPhone iOS 4.3 (full)

• July 20th, 2011 - Mac OSX 10.7 Lion (full)

perspective: markus is accepted to RPI

29ASLRMBE - 03/31/15

Reminder:
Security is rapidly evolving

30ASLRMBE - 03/31/15

Checking for ASLR

$ cat /proc/sys/kernel/randomize_va_space

31ASLRMBE - 03/31/15

Checking for ASLR

$ cat /proc/sys/kernel/randomize_va_space

2

32ASLRMBE - 03/31/15

Checking for ASLR

$ cat /proc/sys/kernel/randomize_va_space

2

0: No ASLR

1: Conservative Randomization

(Stack, Heap, Shared Libs, PIE, mmap(), VDRO)

2: Full Randomization

(Conservative Randomization + memory managed via brk())

33ASLRMBE - 03/31/15

Lecture Overview

1. Introducing ASLR
2. Position Independent Executables
3. Bypassing ASLR, Examples
4. Conclusion

34ASLRMBE - 03/31/15

ELF’s and ASLR

On Linux, not everything is randomized...

35ASLRMBE - 03/31/15

Runtime Process With ASLR

Runtime Memory

Stack

ELF Executable

.text segment

.rodata segment

Heap

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08049290 - 0x0805033c (R-X)

0xbffdf000 - 0xc0000000 (RW-)

Libraries (libc)

0x08050360 - 0x08051208 (R--)

0x08055000 - 0x08076000 (RW-)

0xb7e25000 - 0xb7fcd000

36ASLRMBE - 03/31/15

Run #1 With ASLR

Runtime Memory

ELF Executable

.text segment

.rodata segment

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08049290 - 0x0805033c (R-X)

0x08050360 - 0x08051208 (R--)

Heap
0x98429000 - 0x9844a000 (RW-)

Libraries (libc)
0x244b9000 - 0x24661000

0x7fa54000 - 0x7fa75000 (RW-)
Stack

wat r u doin ELF

37ASLRMBE - 03/31/15

Run #2 With ASLR

Runtime Memory

ELF Executable

.text segment

.rodata segment

0xFFFFFFFF – End of memory

0x08049290 - 0x0805033c (R-X)

0x08050360 - 0x08051208 (R--)

Heap
0xa07ee000 - 0xa080f000 (RW-)

Libraries (libc)
0x00540000 - 0x006e8000

0x10962000 - 0x10983000 (RW-)
Stack

plz ELF...

38ASLRMBE - 03/31/15

Run #3 With ASLR

Runtime Memory

ELF Executable

.text segment

.rodata segment

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08049290 - 0x0805033c (R-X)

0x08050360 - 0x08051208 (R--)

Heap
0x43db2000 - 0x43dd3000 (RW-)

Libraries (libc)
0xbf8c3000 - 0xbf8e4000

0x094fb000 - 0x0951c000 (RW-)
Stack

stahppp q_q

39ASLRMBE - 03/31/15

Not Randomized

• Main ELF Binary
• .text / .plt / .init / .fini - Code Segments (R-X)
• .got / .got.plt / .data / .bss - Misc Data Segments (RW-)
• .rodata - Read Only Data Segment (R--)

• At minimum, we can probably find some ROP gadgets!
• Warning: They won’t be pretty gadgets

40ASLRMBE - 03/31/15

Course Terminology

• Position Independent Executable
• Executables compiled such that their base address does

not matter, ‘position independent code’

• Shared Libs /must/ be compiled like this on modern Linux
• eg: libc

• Known as PIE for short

41ASLRMBE - 03/31/15

Applying ASLR to ELF’s

• To make an executable position independent, you must
compile it with the flags -pie -fPIE

$ gcc -pie -fPIE -o tester tester.c

42ASLRMBE - 03/31/15

Applying ASLR to ELF’s

• To make an executable position independent, you must
compile it with the flags -pie -fPIE

$ gcc -pie -fPIE -o tester tester.c

• Without these flag, you are not taking
full advantage of ASLR

43ASLRMBE - 03/31/15

Checking for PIE

• Most binaries aren’t actually compiled as PIE

• Generally only on remote services, as
you don’t want your server to get owned

44ASLRMBE - 03/31/15

Lecture Overview

1. Introducing ASLR
2. Position Independent Executables
3. Bypassing ASLR, Examples
4. Conclusion

45ASLRMBE - 03/31/15

Bypassing ASLR

• Assume you can get control of EIP

• What information does ASLR deprive us of?

46ASLRMBE - 03/31/15

Bypassing ASLR

• Assume you can get control of EIP

• What information does ASLR deprive us of?
• You don’t know the address of ANYTHING

47ASLRMBE - 03/31/15

Bypassing ASLR

• Assume you can get control of EIP

• What information does ASLR deprive us of?
• You don’t know the address of ANYTHING

• How can we get that information?
• Or work around it?

48ASLRMBE - 03/31/15

Bypassing ASLR

• There’s a few common ways to bypass ASLR
• Information disclosure (aka info leak)
• Partial address overwrite + Crash State
• Partial address overwrite + Bruteforce

49ASLRMBE - 03/31/15

What are Info Leaks?

• An info leak is when you can extract meaningful
information (such as a memory address) from
the ASLR protected service or binary

• If you can leak any sort of pointer to code during
your exploit, you have likely defeated ASLR
• Why is a single pointer leak so damning?

50ASLRMBE - 03/31/15

Death by Pointer

Runtime Memory! … or the North Pacific Ocean

51ASLRMBE - 03/31/15

Death by Pointer

Runtime Memory! … or the North Pacific Ocean

The ocean is so vast and
empty, but once you get a

pointer to Hawaii...

52ASLRMBE - 03/31/15

Death by Pointer

Runtime Memory! … or the North Pacific Ocean

executable code!

The ocean is so vast and
empty, but once you get a

pointer to Hawaii...

53ASLRMBE - 03/31/15

Death by Pointer

Everything becomes relative

54ASLRMBE - 03/31/15

Death by Pointer

Everything becomes relative

A single pointer into a
memory segment, and you
can compute the location of
everything around it
- Functions
- Gadgets
- Data of Interest

55ASLRMBE - 03/31/15

Using Info Leaks

By Example:
-You have a copy of the libc binary, ASLR is on

56ASLRMBE - 03/31/15

Using Info Leaks

By Example:
-You have a copy of the libc binary, ASLR is on

-You’ve leaked a pointer off the stack to printf()
 printf() is @ 0xb7e72280

57ASLRMBE - 03/31/15

Using Info Leaks

By Example:
-You have a copy of the libc binary, ASLR is on

-You’ve leaked a pointer off the stack to printf()
 printf() is @ 0xb7e72280

-Look at the libc binary, how far away is system() from printf()?
 system() is -0xD0F0 bytes away from printf()

58ASLRMBE - 03/31/15

Using Info Leaks

By Example:
-You have a copy of the libc binary, ASLR is on

-You’ve leaked a pointer off the stack to printf()
 printf() is @ 0xb7e72280

-Look at the libc binary, how far away is system() from printf()?
 system() is -0xD0F0 bytes away from printf()

therefore system() is at @ 0xb7e65190
 (0xb7e65190-0xD0F0)

59ASLRMBE - 03/31/15

/levels/lecture/aslr/aslr_leak1

ssh lecture@warzone.rpis.ec 22

Fully Position Independent Executable:

gcc -pie -fPIE -fno-stack-protector ./aslr_leak1.c

 Force it to execute the “i_am_rly_leet” function

mailto:lecture@warzone.rpis.ec

60ASLRMBE - 03/31/15

/levels/lecture/aslr/aslr_leak2

ssh lecture@warzone.rpis.ec 22

The exercise is equally as small and dirty as the last one, but
this is typically how an infoleak might appear in the wild.

Can you parse it? Build a ROP chain based off it?

mailto:lecture@warzone.rpis.ec

61ASLRMBE - 03/31/15

Using Info Leaks

• Can be used on hardest scenario of PIE, full ASLR
• Usually comes with 100% exploit reliability!
• ‘it just works’

• Info leaks are the most used ASLR bypass in real
world exploitation as they give assurances
• Someone’s life might depend on your exploit landing

62ASLRMBE - 03/31/15

Partial Overwrites

• Assume you have no way to leak an address, but
you can overwrite one

from multiple runs:

0xb756b132
0xb758e132
0xb75e5132
0xb754d132
0xb75cf132

Guaranteed 255 byte ROP/ret
range around that address

24 bits of bruteforce gives you
64kb of range around the addr

212 bits of bruteforce will give
you ROP/ret across all of libc

63ASLRMBE - 03/31/15

Partial Overwrites

• Assume you have no way to leak an address, but
you can overwrite one

from multiple runs:

0xb756b132
0xb758e132
0xb75e5132
0xb754d132
0xb75cf132

100% exploit reliability

6.25% exploit reliability

0.024% exploit reliability

64ASLRMBE - 03/31/15

Bruteforcing

• Note that these bruteforcing details apply only
to Ubuntu 32bit

• Don’t bother to try bruteforcing addresses on a
64bit machine of any kind

• Ubuntu ASLR is rather weak, low entropy

65ASLRMBE - 03/31/15

ASLR Tips

• What does your crash state look like?
• What’s in the registers?
• What’s on the stack around you?

• Even if you can’t easily leak some data address
out of a register or off the stack, there’s nothing
that’s stopping you from using it for stuff
• As always: get creative

66ASLRMBE - 03/31/15

Lecture Overview

1. Introducing ASLR
2. Position Independent Executables
3. Bypassing ASLR, Examples
4. Conclusion

67ASLRMBE - 03/31/15

In Closing

• Like other mitigation technologies, ASLR is a
‘tack on’ solution that only makes things harder

• The vulnerabilities and exploits become both
more complex and precise the deeper down the
rabbit hole we go

68ASLRMBE - 03/31/15

Modern Exploit Mitigations

• DEP & ASLR are the two main pillars of modern
exploit mitigation technologies

• Congrats, being able to bypass these mean that
you’re probably capable of writing exploits for
real vulnerabilities

