

 Fixed-Point Representation
& Fractional Math

By Erick L. Oberstar
©2004-2007 Oberstar Consulting

Revision 1.2

Released August 30, 2007

1

Table of Contents
Table of Contents.. 1
Summary ... 2
1. Fixed-Point Representation... 2

1.1. Fixed-point Range - Integer Portion ... 3
1.1.1. Fixed-point Range for Unsigned Integers... 3
1.1.2. Fixed-point Range for Signed Integers ... 5
1.1.3. Fixed-point Range Comments/Conclusions ... 9
1.2. Fixed-point Resolution - Fractional Portion ... 9
1.3. Range & Resolution - Putting Them Together ... 10
1.4. Scaling A Floating-point Number To Fixed-point.. 11

2. Math With Eight Bit Examples... 12
2.1. Q1.7 Format .. 12
2.2. Q2.6 Format .. 12
2.3. Addition - Q1.7+Q2.6=Q2.6 Format .. 12
2.4. Multiply - Q1.7xQ2.6=Q3.13 Format... 13
2.5. An Example Using Real Numbers.. 14

3. Implementation Caveats.. 15
3.1. Computing QI & QI≤0.. 15
3.2. Addition .. 16
3.3. Multiplication.. 17
3.4. General Caveats & Example C Code.. 17

4. References... 18

2

Summary

In a majority of the commercially available processors on the market today there is no hardware
support for floating-point arithmetic due to the cost the extra silicon imposes on a processor’s
total cost. In fact a large portion of processors do not even have hardware support for integer
multiplication. This necessitates software emulation for floating-point arithmetic and possibly
even software emulation for computing integer multiplications. This software overhead can
significantly limit the rate at which algorithms can be executed.

By implementing algorithms using fixed-point (integer) mathematics, a significant improvement
in execution speed can be observed because of inherent integer math hardware support in a large
number of processors, as well as the reduced software complexity for emulated integer multiply
and divide. This speed improvement does come at the cost of reduced range and accuracy of the
algorithms variables. The purpose of this paper is to investigate the issues relating to algorithm
implementation utilizing fixed-point rather than floating-point mathematics.

The Q[QI].[QF] format fixed-point number format analyzed in this paper is broken down in
subsequent sections into integer and fractional content for the purpose of study and
understanding. The separate sections on integer and fractional content are subsequently
combined to provide an overall understanding of the nature of Q[QI].[QF] format fixed-point
numbers.

1. Fixed-Point Representation

To more accurately construct an algorithm, double or single precision floating-point data and
coefficient values should be used. However there is significant processor overhead required to
perform floating-point calculations resulting from the lack of hardware based floating-point
support. In some cases such as with lower powered embedded processors there is not even
compiler support for double precision floating-point numbers. Floating-point overhead limits the
effective iteration rate of an algorithm.

To improve mathematical throughput or increase the execution rate (i.e. increase the rate the
algorithm could be repetitively run), calculations can be performed using two’s complement
signed fixed-point representations. Fixed-point representations require the programmer to create
a virtual decimal place in between two bit locations for a given length of data (variable type).

For the purposes of this paper the notion of a Q-point for a fixed-point number is introduced.
This labeling convention is as follows:

Q[QI].[QF]
Where QI = # of integer bits & QF = # of fractional bits

3

The number of integer bits (QI) plus the number of fractional (QF) bits yields the total number of
bits used to represent the number. Sum QI+QF is know as the Word Length (WL) and this sum
usually corresponds to variable widths supported on a given processor. Typical word lengths
would be {8,16,32} bits corresponding to {char, int, long int} C/C++ variable types commonly
implemented in compilers for microcontrollers or DSPs.

For example: a Q3.5 number would be an 8-bit value with three integer bits and five fractional
bits. For signed integer variable types we will include the sign bit in QI as it does have integer
weight albeit negative in sign. WL varies over processors and integer type names can infer
different word lengths in various tool chains (i.e some compilers treat int as 16-bit, some as 32-
bit) [ISO/IEC 9899:TC2]. Therefore, for the purpose of this paper the previously referenced
word lengths / type names are implied and used.

The Q[QI].[QF] format fixed-point number format is broken down in subsequent sections into
integer and fractional content for the purpose of study and understanding. The separate sections
on integer and fractional content are subsequently combined to provide an overall understanding
of the nature of Q[QI].[QF] format fixed-point numbers.

1.1. Fixed-point Range - Integer Portion

To represent a floating-point number in fixed-point a floating-point number needs to be viewed
as two distinct parts, the integer content, and the fractional content. The integer range of a
floating-point variable (i.e. its Min to Max range) in an algorithm sets the number of bits (QI)
required to represent the integer portion of the number. Keep in mind that QI itself can only hold
integer values because of the binary nature of a bit – it exists or doesn’t.

There are two different methods of computing the number of integer bits required (QI) for each
type of number, unsigned and signed.

1.1.1. Fixed-point Range for Unsigned Integers

This relationship for unsigned numbers (positive only) is defined by the minimum and maximum
of any QI-bit number shown in the following equation:

()0 2QIα 1≤ ≤ −

Equation 1

olving Equation 1 for the required number of bits QI:

Method 1:
S

()()2log 1QI ceiling α≥ +

4

()()2log 1QI ceiling α= +

Equa 2

ative which implies that QI is always ≥ 1.
The benefit of QI < 1 is addressed later in this paper.

or example an unsigned (positive only) variable α = 5.4321:

tion

where α is the floating-point variable being ranged & ceiling rounds towards +∞.

Note: The log2() value in Equation 2 can never be neg

F

()() ()log 5.4321 1 2.6835 3QI ceiling ceiling= + =2 =

Exam e 1

As sanity check, verify -bit unsigned number.
 35.4321 2 1 7

pl

∴ 3 bits are required for the integer portion of α

α imum 3 less than the max
≤ − = - Yes!

ethod 2:

s that could be much smaller than |1| that must be implemented on standard variable
pes.

aking our initial bounding inequality Equation 1:

M

Although the previous method above (Method 1) is one possible way of computing QI for
unsigned values, there is another way that is arguably better, especially when dealing with
number
ty

T

()0 2QIα 1≤ ≤ −

The inequality can be rewritten:

0 2QIα≤ <

Equation 3

Note: The upper boundary conditions changes from ≤ to < and the boundary value changes to

I-bit unsigned number.

Solving Equation 3 for QI for the constra

()2log QIα <

one integer count higher that the maximum Q

int:

2QIα <

5

()()2logQI α>

Equation 4

Knowing that QI is an integer number of bits we can create an equation to compute a QI that
satisfies constraint Equation 4 by adding 1 and truncating the result (rounding tward -∞). An
equation for the required number of integer bits can be generalized for this method:

()()2log 1QI floor α= +

Equation 5

where α is the floating-point variable being ranged & floor rounds towards -∞.
Note: The log2() value in Equation 5 can be negative which implies that QI can be negative. The
benefit of QI < 1 is addressed later in this paper.

For example if:

() ()

()()

2 2

2

2
log log 2 1
1

log 2 1 1 1 2

2

QI
QI

QI floor

QI

α
α

=

> = =

>

= + = + =

∴ =

Example 2

 check, verify α is bounded by the minimum and maximum values of a 2-bit unsigned
number.

α≤ <

As sanity

0 2QI

[] 220 0, 2≤ <

[]0 0, 2 4≤ < - Yes!

previous solution for QI changes because of the
nge limits of a signed integer number types.

igned QI-bit integer number type can hold. This is
ber shown in the following equation:

1.1.2. Fixed-point Range for Signed Integers

If signed variables must be represented, the
ra

This relationship for the integer content of signed numbers (±α) is defined is defined by the
minimum and maximum values that a s
num

6

() ()1 12 2 1QI QIα− −− ≤ ≤ −

Equation 6

 computing
e number of integer bits:

Method 3:

Solving for QI for the negative constraint of (i.e. when α is negative

Remember there is an asymmetry about zero for signed integer variable types: (i.e. a signed 8-bit
value ranges from +127 to -128). This asymmetry yields two possible methods for
th

Equation 6):

()1

1

2

2

QI

QI

α

α

()21 logQI α

−

−

− ≤

≥ −

− ≥ −

()2log 1QI α≥ − +

Equation 7

traint Equation 6 (i.e. whSolving for QI for the Positive cons en α is positive):

()

()

2 1

1 2
log 1 1

QI

QI

α

α
α

−≤ −

+ ≤

1

1QI −

≤ −

+2

()()2log 1 1QI α≥ + +

Equation 8

For example if:

() ()
() ()

min

max

2 min 2

2 max 2

log 1 log 2 1 2

log 1 1 log 3 1 2.5850

QI

QI
α

α

min max2, 2α α= − =

α

α

≥ − + = + =

≥ + + = + =

Example 3

 the tighter of the two constraints due to this asymm

is not uncommon for users/programmers to define variable
The positive constraint is etry of signed
integer types about zero. It
magnitude constraints that are symmetric about zero (for example: 3 3− α≤ ≤). The computation
for the required number of integer bits can be generalized for this method:

7

([])()()2 max minlog max , 1 1QI ceiling abs α α= + +

Equation 9

where α is the floating-point variable being ranged & ceiling rounds towards +∞.

Note: The log2() value in Equation 9 can never be negative which implies that QI is always ≥ 1.
The benefit of QI < 1 is addressed later in this paper.

For example to compute QI for a signed (±) variable 5.4321 5.4321 α− ≤ ≤ :

[]()()() ()()2 21 log max 5.4321,5.4321 1 1 log 6.4321 1QI ceiling abs ceiling− = − + + = +

()() ()log 6.4321 1 2.6853 1 3 1QI ceiling ceiling= + = + = + 2

4QI =

Example 4

As sanity check, verify α ues of a 4-bit signed
number.

 is bounded by the minimum and maximum val

() ()1 12 2 1QI QIα− −− ≤ ≤ −

() [] ()4 12 5.4321,5.4321− −− ≤ − ≤

()

4 12 1−

([])3 32 5.4321,5.4321 2 1− ≤ − ≤ −

[]8 5.4321,5.4321 7− ≤ − ≤ - Yes!

Method 4:

Although Method 3 is one possible way of computing QI for signed values, there is another way
that is arguably better, especially wh bers that could be much smaller than |1|

at must be implemented on standard variable types.

Taking our initial bounding inequality

en dealing with num
th

Equation 6:

() ()1 12 2 1QI α− −QI− ≤ ≤ −

The inequality can be rewritten:

8

1 12 2QI QIα− −− ≤ <

Note: The upper boundary conditions changes from to < and the boundary value changes to
one integer count higher that the maxim

Solving Equation 10 for QI for the negative constraint (i.e. when α is negative

Equation 10

 ≤
um QI-bit signed number.

):

()1QI

()
()

1

2

2

2

2
1 log

log 1

QI

QI

QI

α

α
α

α

−

− ≤

≥ −

−

− ≥ −

≥ − +

Solving Equation 10 for QI for the Positive constraint (i.e. when α is positive):

12QIα −<

()2

2

log 1

log 1

QI

QI

α

α

<

()()
−

> +

he positive constraint is the tighter of the two constraints due to this asymmetry of signed T

integer types about zero. It is not uncommon for users/programmers to define variable
magnitude constraints that are almost symmetric about zero (for example: 4 4α− ≤ <). The
constraint for the required number of integer bits can be generalized for this method:

[]()()2 max minlog max , 1QI abs α α> +

Equation 11

Knowing that QI is an integer num pute a QI that
satisfies constraint Equation 4 by adding 1 and truncating the result (rounding tward -∞). An
quation for the required number of integer bits can be generalized for this method:

]

ber of bits we can create an equation to com

e

[()()()2log maxQI floor abs= max min, 1 1α α + +

[]

(()())2 max minlog max , 2QI floor abs α α= +

Equation 12

9

Note: The log2() value in that QI can be negative.
The benefit of QI < 1 is addr

For example if:

Equation 12 can be negative which implies
essed later in this paper.

() ()
() ()

min

max

min max

2 min 2

2 2

2, 2
log 1 log 2 1 2

log g 2 1 2

2, 2

3

QI

QI

QI QI

α

α

α α
α

= − =

≥ − + = + =

> + + =

≥ >

max 1 loα =

min max

QI
α α

∴ =

As sanity check, verify α is bounded by the m um values of a 3-bit signed
number.

1 12 2QI QI

Example 5

inimum and maxim

− α −− ≤ <
[]3 1 3 12 2, 2 2− −− ≤ − <

[]4 2, 2 4− ≤ − < - Yes!

tent for unsigned and signed number types respectively. As a result
e minimum number of integer content bits QI, is 1. Method 2 and Method 4 constrain QI in

For s 2 puted. Since
I n on n. This issue

1.2. Fixed-point Resolution - Fractional Portion

The resolution for a fixed-point vari ber of fractional bits (QF) used in the
fixed-point variable. The resolution ε, ber is governed by the equation:

1.1.3. Fixed-point Range Comments/Conclusions

Method 1 and Method 3 exactly constrain QI based on the exact numerical range of the input
parameter’s (α‘s) integer con
th
such a way that QI can be negative for unsigned and signed number types respectively. Negative
values for QI provide benefit by allowing extended resolution (QF) for chosen WL which will be
discussed later in this paper.

 Method and 4 the QI constraint equation requires QI “>” a value that is com
itself ca ly have integer values, the next largest integer value must be choseQ

is apparent when log2(α) in either Equation 5 or Equation 11 results in exact integer value.

able is set by the num
 of a fixed-point num

1

2QFε =

Equation 13

Therefore the number of fractional bits (QF) required for a particular resolution are defined by
the equation:

10

2
1logQF
ε

⎛ ⎞= ⎜ ⎟
⎝ ⎠

Equation 14

However since QF is integer values only (i.e. we can only use integer numbers of bits), the
ceiling of the logarithm is used:

2
1logQF ceiling
ε

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Equation 15

For example an signed (±) variable α = -5.4321, 0.0001ε ≤

2
1log

0.0001
QF ceiling ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

()() ()2log 10000 13.288 14QF ceiling ceiling= = =

Example 6

It is not uncommon for users/programmers to find number of integer bits required (QI) and live
with the resolution provided by the left over bits for a given word length (WL) used for the
variable. For a given word length (WL) and dynamic range (QI) of a variable, the resolution is
limited. If a higher resolution is needed for a given range then the WL of the variable must be
increased to provide this resolution.

1.3. Range & Resolution - Putting Them Together

The full range and resolution for a fixed-point value are set by the integer and fractional parts of
the number for a fixed WL. The combined range and resolution for an unsigned fixed-point
number is defined by:

()
2

0 2 1
QF

QI

ε
α

−=
≤ ≤ −

Equation 16

The combined range and resolution for a signed fixed-point number is defined by:

11

()1 1

2
2 2 2

QF

QI QI QF

ε
α

−

− − −

=
− ≤ ≤ −

Equation 17

Where: WLRequired = QI+QF with the sign bit lumped in with QI.

The integer and fractional bits are combined together into and used to determine a standard WL
that is large enough to hold all the integer and factional bits. This implies:

RequiredWL QI QF≥ +

Equation 18

For example for a Q3.5 number, an 8-bit integer variable type must be used to contain the
number although larger variable types (i.e. 16-bit, 32-bit, etc…) can also contain it.

As another example for a Q4.14 number 18-bits are required to represent the number. Since 18-
bits are not a standard word length in most programming languages or processors, the next
longest word length variable needs to be used to contain the result. A 32-bit number would be
the smallest standard WL in C/C++ that could contain a Q4.14 number. If a 32-bit number is
used for the Q4.14 number, there are an additional 14-bits that are available to extend the range
or resolution of the number (i.e. increase QI and/or QF). This exemplifies that there is a tradeoff
between range and resolution when implemented with standard WL variables.

1.4. Scaling A Floating-point Number To Fixed-point

Once an appropriate fixed-point format has been calculated based on WL, range, and resolution
of a floating-point value, the fixed-point approximation for the floating-point number can be
calculated. This relationship is governed by the equation:

()
Rounded twards 0

2QFFxdPt FltPt= ×

Equation 19

Since the fixed-point representation of a floating-point number can only have integer values the
integer portion or truncation of the scaled floating-point number must be used. This means round
towards zero. For example -1.4 becomes -1 and 1.4 becomes 1.

From the example above, a signed (±) variable α = -5.4321, 0.0001ε ≤ , QF = 14.
The integer (Fixed-point) representation for α is:

() ()14

Rounded twards 0Rounded twards 0
2 5.4321 2QF

FxdPt FltPt
αα α= × = − ×

()

()
Rounded twards 0 Rounded twards 0

5.4321 16384 -88999.5264 88999FxdPtα = − × = = −

Example 7

12

Note that 16 172 88999 2FxdPtα< = < , this necessitates that 17-bits be used for the magnitude plus
the sign bit yields the previously calculated WL of 18-bits in a Q4.14 to represent α = -5.4321,
with an 0.0001ε ≤ . Note that the closest larger standard data type that can accommodate this
value is a 32-bit data type. Since only four integer bits are required the remaining 28 bits of the
32-bit data can be used for fractional content (QF) which would yield

28

1 1 3.725290298461914e-009
2 2QFε = = ≅ .

2. Math With Eight Bit Examples

Consider a simple example with two variables, one variable (α) ranging from ~±1 (–1 to
0.9921875) and the other variable (β) ranging from ~±2 (–2 to 1.984375) with both as much
resolution as possible. For an 8-bit WL, this necessitates Q1.7 and Q2.6 fixed-point
representations for α and β respectively. An 8-bit example was chosen because the most
common WL in low cost microcontrollers is typically 8-bits.

2.1. Q1.7 Format

Q1.7 numbers can represent fixed-point numbers ranging from –1 to 0.9921875 in increments
0.0078125 (-1 to 1 - 1/128). The 8-bit Q1.7 number bit weighting is shown below. The decimal
place is between bits 6 and 7. The variable α is in a Q1.7 format.

1/128|1/64|1/32|1/16|1/8|1/4|1/2|-1|
x |x |x |x |x |x |x |. s |

2.2. Q2.6 Format

Eight bit Q2.6 numbers can represent fixed-point numbers ranging from –2 to 1.984375 in
increments 0.015625 (-2 to 2 - 1/64). The Q2.6 representation bit weighting is shown below.
The decimal place is between bits 5 and 6. The variable β is in a Q2.6 format.

1/64|1/32|1/16| 1/8|1/4| 1/2| 1 |-2|
x |x |x |x |x |x | x. | s |

2.3. Addition - Q1.7+Q2.6=Q2.6 Format

Addition is a pure integer type of operation but care must be taken to align the fixed-point
decimal places and attention must be paid to handling overflow of the addition.

s .

s .

x x x x x x x

x x x x x x x
+

13

Right Shift & sign extend the Q1.7 to align the decimal place.

.

s .
s .

s s x x x x x x

x x x x x x x
c x x x x x x x
+

Perform the signed addition and check the carry bit (c) to see if you overflowed the WL (8-bits in
this case). Another option is to accumulate the result of the destination into a 2xWL variable and
check to see if it exceeds the maximum WL value you expect. For example with the addition of
two eight bit values into a sixteen bit result and checking if the sixteen bit result is in the range

, and if not saturating positive or negative. 72 result− ≤ < −72 1

2.4. Multiply - Q1.7xQ2.6=Q3.13 Format

When performing an integer multiplication the product is 2xWL if both the multiplier and
multiplicand are WL long. If the integer multiplication is on fixed-point variables, the number of
integer and fractional bits in the product is the sum of the corresponding multiplier and
multiplicand Q-points as described by the following equations:

Product Multiplicand MultiplierQI QI QI= +

Equation 20

Product Multiplicand MultiplierQF QF QF= +

Equation 21

When a Q1.7 and Q2.6 number are multiplied (both are signed 8-bit numbers) the result is a 16-
bit Q3.13 number. Q3.13 numbers range from –4 to 3.9998779296875 in increments of
0.0001220703125 (-4 to 4 – 1/8192). The Q3.13 representation bit weighting is shown below.

|1/8192|x|x|x |x|x|x|x |x|x|x|1/4|1/2|1.|2|-4|
|x|x|x|x |x|x|x|x |x|x|x|x |x |x.|x|s|

The 16-bit Q3.13 number can be scaled back to an 8-bit representation for subsequent use in an
algorithm. The 8-bit result needs to be a Q3.5 format to maintain the range of the result of the
multiplication at the price of loosing the precision for the lowest 8 fractional bits. These Q3.5
bits are extracted by shifting the 16-bit Q3.13 number right eight bits and selecting only the low
byte of the 16-bit value. The resulting 8-bit Q3.5 number inside the 16-bit result is shown below.

|1/8192|x|x|x |x|x|x|x |x|x|x|1/4|1/2|1.|2|-4|
|x|x|x|x |x|x|x|x |x|x|x|x |x |x.|x|s|

 8-bit Q3.5 Number

14

2.5. An Example Using Real Numbers

Using an 8-bit WL with 1.8α ≤ , 1β < , and 2.8χ ≤ as range limits (i.e. , ,α β χ are signed),
with 1.667α = , 0.75β = − , and 2.6χ = , with maximal resolution on each variable, compute:

() ()1.667 0.75 2.6 1.25025+2.6=1.34975α β χ× + = × − + = −

()()()()
()() ()

2 min max

2

log max , 2

log 1.8 2 0.848 2 2

QI floor abs

QI floor floor

α

α

α α= +

= + = + =

8 2 6QF WL QIα α= − = − =

so: 6

1 1 1 0.015625
2 2 64QFααε = = = =

() ()10 10115 2.6 115 2.6FxdPtQ Qα− ≤ ≤

()6
101.667 2 106 2.6FxdPt Qα = × =

()()()()
()()
()()

2 min max

2

2

log max , 2

log 1 2

log 0.999999999 2 1

QI floor abs

QI floor

QI floor

β

β

β

β β

ε

= +

= − +

= + =

8 1 7QF WL QIβ β= − = − =

so: 7

1 1 1 0.0078125
2 1282QFββε = = = =

() ()10 10127 1.7 1127 1.7FxdPtQ Qβ− ≤ ≤

()7
100.75 2 96 1.7FxdPt Qβ = − × = −

()()()()
()()

2 min max

2

log max , 2

log 2.8 2 3

QI floor abs

QI floor

χ

χ

χ χ= +

= + =

8 3 5QF WL QIχ χ= − = − =

so: 5

1 1 1 0.03125
2 322QFχχε = = = =

() ()10 1090 3.5 89 3.5FxdPtQ Qχ− ≤ ≤

()5
102.6 2 83 3.5FxdPt Qχ = × =

() ()1.667 0.75 2.6 1.25025+2.6=1.34975α β χ× + = × − + = −

Computing the product term ()α β× :

() () ()10 10 10106 2.6 96 1.7 10176 3.13 -1.2421875FxdPt FxdPt Q Q Qα β× = × − = − =

15

Notice that the fixed-point approximation of the product term has an error of :

()-1.25025- -1.2421875 =-0.0080625
Also notice that the range of the product term is essentially the range of α but in a 16-bit format.

Before computing the sum ()α β× + χ , the 16-bit product term and χ need to have the decimal
places aligned. The decimal places can be aligned by right shifting the signed 16-bit product
term 8-bits or by sign extending χ to 16-bits and left shifting it 8-bits. It is not uncommon to
need to scale a 2xWL result back to a WL result for subsequent computations or system outputs
such as a D/A or PWM.

Scaling the product term to align the decimal places:

() ()10
10 108

1017610176 3.13 8 39 3.5
2FxdPt FxdPt Q Qα β −

× = − >> = = −

Adding the scaled product term and χ

() () () (10 10 1039 3.5 83 3.5 44 3.5FxdPt FxdPt FxdPt Q Q Qα β χ× + = − + =)

The answer is:

() ()1044 3.5 1.375FxdPt FxdPt FxdPt Qα β χ× + = =

Notice the error inherent between the floating-point calculation and the fixed-point calculation
shown below:

()() ()() 1.34975-1.375=-0.02525FxdPt FxdPt FxdPtα β χ α β χ× + − × + =

3. Implementation Caveats

A critical detail when implementing fixed-point algorithms is that the variables must be a signed
data type. I.e. use variable types: signed char, signed int, and signed long int, as opposed to
unsigned char, unsigned int, and unsigned long int. This is important because of the need to
preserve a variables sign when performing the inherent scaling via left or right shift operations
for fixed-point addition operations and sign extension for typecasting required for multiplication
operations.

3.1. Computing QI & QI≤0

The number of integer bits may be computed in several ways. It is arguably preferable to
compute QI using Equation 5 and Equation 12 from Method 2 and Method 4 respectively.
Because of the modified constraints in methods 2 & 4, “<” as opposed to “≤” it is important to
evaluate if log2(|α|) or “log2(|α|) + 1” compute to an exact an integer value. If it does QI must
be incremented to the next largest integer value of bits. This is because ceiling of an integer

16

value is itself. Incrementing QI by 1 when the log2(|a|) is an integer value is done by adding 1 to
and taking the floor of the constraint equations (Equation 5 & Equation 12).

Equation 5 and Equation 12 from Method 2 and Method 4 respectively are arguably preferable
because they can yield negative QI values. If QI is negative (i.e. the number is fractional only),
QF can be increased to the standard WL used to increase resolution of the fractional content. QI
is the weight of the most significant bit in the fixed-point number. QI<0 implies fractional
weight.

For example if:

0.05 0.05α− ≤ ≤ 0.0001 with ≤ ε

()()()()
()()

()

2

2

log max 2

log 0.05 2

4.3219 2 2
3

QI floor abs

QI floor

QI floor floor
QI

α

α

α

α

α= +

= +

= − + = ().3129−

∴ = −

()()
()

2

2

2

1log

1log
0.0001

log 10000

13.288 14

QF ceiling

QF ceiling

QF ceiling

QF ceiling

α
α

α

α

α

ε
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=

= =

3 14 11QI QFα α+ = − + =
140.05 2 819.2 0 0333x× = → =

bits are required to represent α

0000 0011 0011 0011
0 0. 0 0 0 0 1 1 0 0 1 1 0 0 1 1
-2 1. ½ ¼ 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048 1/4096 1/8192 1/16384
S S. S S S -1/16 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048 1/4096 1/8192 1/16384

So for a 16-bit WL we can increase QF by 5-bits

3 19 16QI QFα α+ = − + =

19 -62 1.9073486328125 10ε −= = ×

190.05 2 26214.4 0 6666x× = → =

bits to represent α

This improves resolution to

0110 0110 0110 0110
.x x x 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
.x x x S F F F F F F F F F F F F F F F

Example 8

3.2. Addition

When an addition operation needs to be performed one of the variables may need to be shifted to
align the Q-points (decimal place) of the variables before the addition. The variable with the
larger number of fractional bits (larger QF) will need to be right shifted bits to
effectively move its decimal place left to align the Q-points.

Larger SmallerQF QF−

17

3.3. Multiplication

When a product of fixed-point numbers is calculated at least one of the values must be sign
extended to 2xWL to do the multiplication correctly. If this is not done, only the lower half of
2xWL result will be returned. This is done by typecasting the multiplicand (or multiplier) to a
2xWL variable type. This will sign extend the multiplicand (or multiplier) to 2xWL to properly
compute the product.

3.4. General Caveats & Example C Code

A point of caution: some compilers contains switches to make “char” data types unsigned by
default as well as to allow automatic promotion of “char” types to “int”. The following C code
example could be used to implement the example earlier in this document assuming that char and
int variable types are signed 8-bit and 16-bit respectively. This code example also assumes
appropriate variables are loaded with fixed-point values of the listed Q format elsewhere.

/* Variable Declarations */
signed char alpha, beta, gamma; /* Alpha - Q1.7, Beta - Q2.6, Gamma - Q3.5 */
signed int prod; /* 16-bit multiply product accumulator */
signed int sum; /* 16-bit summation accumulator */
signed char result; /* 8-bit result register */

/* Functional Code Block */
prod = (int) alpha*beta; /* 8x8 to 16 multiply – Note that the type cast to */

/* integer is required otherwise the accum will */
/* only have the low 8-bits of the multiply */

sum = ((signed char)(prod >>8))+gamma; /* align the Qpts, cast to WL and add them */
if (sum>127) /* Positive saturation point for signed 8-bit */
 result = 127; /* Saturate positive */
else if (sum<-128) /* Negative saturation point for signed 8-bit */
 result = -128; /* Saturate negative */
else
 result = (signed char)sum; /* If not saturated just use the low 8-bits */

18

4. References

1. Joint Technical Committee ISO/IEC JTC1, Information technology, Subcommittee SC22,
Programming languages, their environments and system software interfaces., Working
Group WG14, “ISO/IEC 9899:TC2 Committee Draft – May 6, 2005 WG14/N1124”,
2005, Retreived August 21, 2007 from the World Wide Web:

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

2. K.-I. Kum, J. Kang, W. Sung, “A Floating-point to Fixed-point C Converter For Fixed-
point Digital Signal Processors”, Second SUIF Compiler Workshop, 1997, Retrieved July
12, 2004 from the World Wide Web:

http://suif.stanford.edu/suifconf/suifconf2/papers/4.ps

3. K.-I. Kum, J. Kang, W. Sung , “A Floating-Point to Integer C Converter with Shift
Reduction for Fixed-Point Digital Signal Processors,” Proceedings of the International
Conference on Acoustics, Speech and Signal Processing 1997, ICASSP'99, pp. 2163-
2166, March 1999

4. S. Kim and W. Sung "A Floating-point to Fixed-point Assembly Program Translator for
the TMS320C25," IEEE Transactions on Circuits and Systems, vol. 41, no.11, pp.730-
739, November 1994

5. J. Kang and W. Sung, "Fixed-Point C Compiler for TMS320C50 Digital Signal
Processor," Proceeding of the International Conference on Acoustics, Speech, and Signal
Processing 1997, pp. 707-710, 1997.

6. A. G. M. Cilio and H. Corporaal, “Floating Point to Fixed Point Conversion of C Code,“
Delft University of Technology: Computer Architecture and Digital Techniques Dept.,
Retrieved July 12, 2004 from the World Wide Web:
http://citeseer.nj.nec.com/cache/papers/......./floating-point-to-fixed.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://suif.stanford.edu/suifconf/suifconf2/papers/4.ps
http://citeseer.nj.nec.com/cache/papers/cs/11075/http:zSzzSzcardit.et.tudelft.nlzSzMOVEzSzpaperszSzCilio99a.pdf/floating-point-to-fixed.pdf

	Table of Contents
	Summary
	1. Fixed-Point Representation
	1.1. Fixed-point Range - Integer Portion
	1.1.1. Fixed-point Range for Unsigned Integers
	1.1.2. Fixed-point Range for Signed Integers
	1.1.3. Fixed-point Range Comments/Conclusions
	1.2. Fixed-point Resolution - Fractional Portion
	1.3. Range & Resolution - Putting Them Together
	1.4. Scaling A Floating-point Number To Fixed-point

	2. Math With Eight Bit Examples
	2.1. Q1.7 Format
	2.2. Q2.6 Format
	2.3. Addition - Q1.7+Q2.6=Q2.6 Format
	2.4. Multiply - Q1.7xQ2.6=Q3.13 Format
	2.5. An Example Using Real Numbers

	3. Implementation Caveats
	3.1. Computing QI & QI≤0
	3.2. Addition
	3.3. Multiplication
	3.4. General Caveats & Example C Code

	4. References

