Noekeon

Joan Daemen*, Gilles Van Assche*, Michael Peeters* and Vincent Rijmen**

*Proton World, Brussels **COSIC, Leuven

Outline

- Noekeon design philosophy and properties
- Round transformation and components
- Key schedule modes
- Resistance against cryptanalysis
 - Propagation analysis
- Implementation aspects
- The inverse cipher
- Surprising properties of Noekeon
- Conclusions

Noekeon Design Philosophy

- Security: resistance against known types of cryptanalysis and implementation attacks
- and Efficiency: fast and compact in software and dedicated hardware
- through Symmetry:
 - iterated cipher with one single, round transformation
 - bit-wise Boolean operations and cyclic shifts only
 - same round key for each round: working key
 - inverse cipher is (almost) equal to the cipher

Noekeon Properties

- Block Cipher
 - 128-bit key
 - 128-bit block
- Substitution-linear transformation network in bit-slice mode
 - inspired by 3-Way [Da93] and BaseKing [Da95]
 - very similar to Serpent [BAK98]
- Optional key schedule
 - key schedule only needed when related-key attacks can be mounted

Round Transformation

- Noekeon has 16 equal rounds
- Round transformation consists of 5 steps:
 - Round constant addition
 - Theta: diffusion and key addition
 - Pi1: permutation
 - Gamma: non-linearity
 - Pi2: permutation
- Output transformation:
 - Theta

The Noekeon State

 All round transformations operate on a state consisting of 4 32-bit words: a₀, a₁, a₂, a₃

Round Constant Addition

 Break symmetry between the words and between the rounds

7

Theta

- Linear transformation in 3 steps:
 - modification of odd words
 - addition of working key
 - modification of even words
- Symmetry within the state words:
 - all bits are treated in the same way
- High average diffusion
- Involution

Nessie Workshop 2000

Pi1 and Pi2

- Cyclic shift of words a₁, a₂, a₃
- Symmetry within the state words:
 - all bits in a word are treated in the same way
- Give high multiple-round diffusion in combination with Theta and Gamma
- Pi1 and Pi2 are each others inverse:
 - Pi1 shifts are 1, 5 and 2 to the left
 - Pi2 shifts are 1, 5 and 2 to the right

Gamma

- Nonlinear transformation in 3 steps:
 - simple nonlinear transformation
 - simple linear transformation
 - simple nonlinear transformation
- Symmetry within the state words:
 - 32 times the same 4-bit S-box
- Good nonlinear properties
- Involution

Gamma Illustrated

Key Schedule Modes

Resistance Against Cryptanalysis

- Linear and differential cryptanalysis: propagation analysis
- Truncated differentials
- Interpolation attacks
- Symmetry properties and slide attacks
- Weak keys
- Related-key attacks
 - use indirect-key mode
- Hidden weaknesses and Trapdoors

Propagation Analysis

- Identification of all 4-round trails with less than 24 active S-boxes ("< 24")
 - differential trails: characteristics
 - linear trails: *linear approximations*
- In the small set of 4-round trails found:
 - no differential trails with prob. > 2^{-48}
 - no linear trails with correlation > 2^{-24}
- For the full cipher this means:
 - DC: no 12-round differential trails with prob. > 2⁻¹⁴⁴
 - LC: no 12-round linear trails with correlation > 2⁻⁷²

Propagation Analysis

- Step 1: recording all 2-round trails (< 18)
 - non-trivial exercise!
 - made feasible by exploiting symmetry properties in component transformations
- Step 2: covering space of 4-round trails (< 24)
 - by chaining pairs of recorded 2-round trails (\geq 6)
 - the few 2-round trails (< 6) are treated separately

Table of 2-round Trails

	1	2	3	4	5	6	7	8
1							4	
2		2				14	4	8
3			6		28	12	70	108
4				163	32	178	328	1,493
5			28	32	617	1,283	3,762	6,261
6		14	12	179	1,283	9,101	15,341	54,660
7	4	4	70	328	3,762	15,341	93,668	273,344
8		8	108	1,493	6,261	54,660	273,344	1,249,658
9		1	357	1,972	21,036	129,640	838,646	4,378,578
10		41	305	5,038	44,593	353,545	2,380,721	?
11	1	52	899	9,356	97,629	853,003	?	?
12		113	1,273	18,489	205,194	2,085,751	?	?
13	5	66	1,947	33,605	444,745	4,827,996	?	?
14		149	3,338	63,611	897,923	?	?	?
15		109	5,852	112,168	?	?	?	?
16		199	8,222	?	?	?	?	?

X: number of active S-boxes in round 1, Y: number of active S-boxes in round 2

Hardware Suitability

- Ultra compact: small number of gates
 - 1050 XOR
 - 64 AND
 - 64 NOR
 - 128 MUX
- High speed: small gate delay
 - 7 XOR
 - 1 AND
 - 1 MUX

Software Performance

- Very well suited for 32-bit processors
- Pentium II: 525 cycles (49 Mbit/s @ 200 MHz)
- Well suited to other word lengths of form 2^m
- ARM7 (RISC core):

	code size (bytes)	# cycles	bit rate @ 28.56MHz
Min. size	332	712	5.1 Mbit/s
Max speed	3688	475	7.7 Mbit/s

No RAM usage

Protection Against DPA

- Noekeon is a fixed sequence of operations
 - counters timing attack and SPA
- State splitting as applied to BaseKing in our FSE 2000 paper
 - counters first-order DPA (extendable to also counter higher-order DPA) ...
 - at relatively low CPU cost, thanks to few non-linear operations
- In direct-key mode:
 - counters key schedule attacks

The Inverse Cipher

- The inverse cipher is equal to the cipher
 - with the exception of the round constant addition
- Because
 - Theta and Gamma are involutions
 - Pi1 and Pi2 are each others inverses
- Cipher and inverse use same hardware circuit or program

The Unbearable Weakness of Noekeon

- All round keys are the same!
- The linear part of the round has order 2!
- The nonlinear part of the round has order 2!
- If the round constants are removed:
 - all rounds are equal!
 - there is a symmetry within the words!
 - the cipher and its inverse are equal!
- The only non-linearity is provided by some binary ANDs (order 2)!
- Actual weaknesses? We don't think so...

Noekeon:

- is ultra compact and fast in hardware,
- runs fast even in DPA-resistant implementations,
- has very low RAM usage in software,
- takes very small amount of code,
- is very efficient on a wide range of platforms,
- so simple that it can be memorized by an average person!

