Noekeon

Joan Daemen*, Gilles Van Assche*, Michael Peeters* and Vincent Rijmen**

*Proton World, Brussels **COSIC, Leuven

Outline

- Noekeon design philosophy and properties
- Round transformation and components
- Key schedule modes
- Resistance against cryptanalysis
- Propagation analysis
- Implementation aspects
- The inverse cipher
- Surprising properties of Noekeon
- Conclusions

Noekeon Design Philosophy

- Security: resistance against known types of cryptanalysis and implementation attacks
- and Efficiency: fast and compact in software and dedicated hardware
- through Symmetry:
- iterated cipher with one single, round transformation
- bit-wise Boolean operations and cyclic shifts only
- same round key for each round: working key
- inverse cipher is (almost) equal to the cipher

Noekeon Properties

- Block Cipher
- 128-bit key
- 128-bit block
- Substitution-linear transformation network in bit-slice mode
- inspired by 3-Way [Da93] and BaseKing [Da95]
- very similar to Serpent [BAK98]
- Optional key schedule
- key schedule only needed when related-key attacks can be mounted

Round Transformation

- Noekeon has 16 equal rounds
- Round transformation consists of 5 steps:
- Round constant addition
- Theta: diffusion and key addition
- Pi1: permutation
- Gamma: non-linearity
- Pi2: permutation
- Output transformation:
- Theta

The Noekeon State

- All round transformations operate on a state consisting of 4 32-bit words: $a_{0}, a_{1}, a_{2}, a_{3}$

Round Constant Addition

- Break symmetry between the words and between the rounds

Theta

- Linear transformation in 3 steps:
- modification of odd words
- addition of working key
- modification of even words
- Symmetry within the state words:
- all bits are treated in the same way
- High average diffusion
- Involution

Theta Illustrated

Pi 1 and Pi 2

- Cyclic shift of words a_{1}, a_{2}, a_{3}
- Symmetry within the state words:
- all bits in a word are treated in the same way
- Give high multiple-round diffusion in combination with Theta and Gamma
- Pi1 and Pi2 are each others inverse:
- Pi1 shifts are 1, 5 and 2 to the left
- Pi2 shifts are 1,5 and 2 to the right

Pi 1 and Pi 2

13/11/2000

Gamma

- Nonlinear transformation in 3 steps:
- simple nonlinear transformation
- simple linear transformation
- simple nonlinear transformation
- Symmetry within the state words:
- 32 times the same 4-bit S-box
- Good nonlinear properties
- Involution

Gamma Illustrated

Key Schedule Modes

Cipher Key

Indirect-Key

Cipher Key

World

Resistance Against Cryptanalysis

- Linear and differential cryptanalysis: propagation analysis
- Truncated differentials
- Interpolation attacks
- Symmetry properties and slide attacks
- Weak keys
- Related-key attacks
- use indirect-key mode
- Hidden weaknesses and Trapdoors

Propagation Analysis

- Identification of all 4-round trails with less than 24 active S-boxes ("<24")
- differential trails: characteristics
- linear trails: linear approximations
- In the small set of 4-round trails found:
- no differential trails with prob. > 2-48
- no linear trails with correlation > 2-24
- For the full cipher this means:
- DC: no 12-round differential trails with prob. > 2-144
- LC: no 12-round linear trails with correlation > 2-72

Propagation Analysis

- Step 1: recording all 2-round trails (< 18)
- non-trivial exercise!
- made feasible by exploiting symmetry properties in component transformations
- Step 2: covering space of 4-round trails (<24)
- by chaining pairs of recorded 2-round trails (≥ 6)
- the few 2-round trails (<6) are treated separately

Table of 2-round Trails

	1	2	3	4	5	6	7	8
1							4	
2		2				14	4	8
3			6		28	12	70	108
4				163	32	178	328	1,493
5			28	32	617	1,283	3,762	6,261
6		14	12	179	1,283	9,101	15,341	54,660
7	4	4	70	328	3,762	15,341	93,668	273,344
8		8	108	1,493	6,261	54,660	273,344	1,249,658
9		1	357	1,972	21,036	129,640	838,646	4,378,578
10		41	305	5,038	44,593	353,545	2,380,721	?
11	1	52	899	9,356	97,629	853,003	$?$	$?$
12		113	1,273	18,489	205,194	2,085,751	$?$?
13	5	66	1,947	33,605	444,745	4,827,996	$?$?
14		149	3,338	63,611	897,923	$?$?	?
15		109	5,852	112,168	?	?	?	?
16		199	8,222	?	?	?	?	?

X: number of active S-boxes in round 1, Y: number of active S-boxes in round 2

Hardware Suitability

- Ultra compact: small number of gates
- 1050 XOR
- 64 AND
- 64 NOR
- 128 MUX
- High speed: small gate delay
- 7 XOR
- 1 AND
- 1 MUX

Software Performance

- Very well suited for 32-bit processors
- Pentium II: 525 cycles ($49 \mathrm{Mbit} / \mathrm{s}$ @ 200 MHz)
- Well suited to other word lengths of form 2^{m}
- ARM7 (RISC core):

	code size (bytes)	\# cycles	bit rate @ 28.56 MHz
Min. size	332	712	$5.1 \mathrm{Mbit} / \mathrm{s}$
Max speed	3688	475	7.7 Mbit/s

No RAM usage

13/11/2000

Protection Against DPA

- Noekeon is a fixed sequence of operations
- counters timing attack and SPA
- State splitting as applied to BaseKing in our FSE 2000 paper
- counters first-order DPA (extendable to also counter higher-order DPA) ...
- at relatively low CPU cost, thanks to few non-linear operations
- In direct-key mode:
- counters key schedule attacks

The Inverse Cipher

- The inverse cipher is equal to the cipher
- with the exception of the round constant addition
- Because
- Theta and Gamma are involutions
- Pi1 and Pi2 are each others inverses
- Cipher and inverse use same hardware circuit or program

The Unbearable Weakness of Noekeon

- All round keys are the same!
- The linear part of the round has order 2 !
- The nonlinear part of the round has order 2 !
- If the round constants are removed:
- all rounds are equal!
- there is a symmetry within the words!
- the cipher and its inverse are equal!
- The only non-linearity is provided by some binary ANDs (order 2)!
\rightarrow Actual weaknesses? We don't think so...

Noekeon:

- is ultra compact and fast in hardware,
- runs fast even in DPA-resistant implementations,
- has very low RAM usage in software,
- takes very small amount of code,
- is very efficient on a wide range of platforms,
- so simple that it can be memorized by an average person!

