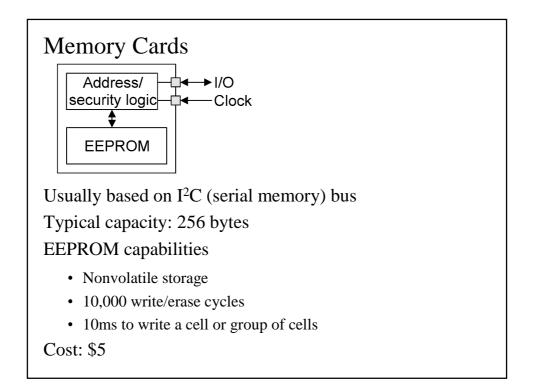
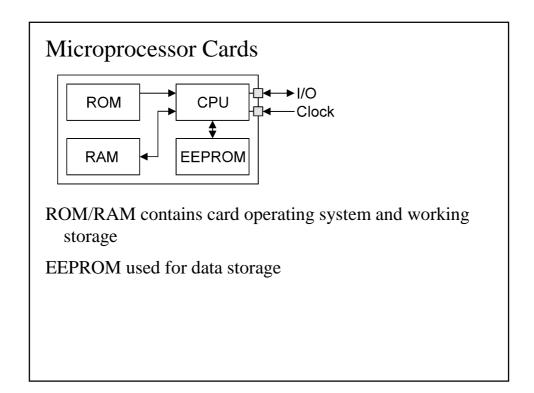
Miscellaneous Topics

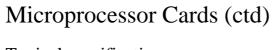
Buy a rifle, encrypt your data, and wait for the revolution

Smart Cards

Invented in the early 1970's


Technology became viable in early 1980's


Major use is prepaid telephone cards (hundreds of millions)


• Use a one-way (down) counter to store card balance

Other uses

- Student ID/library cards
- Patient data
- Micropayments (bus fares, photocopying, snack food)

Typical specifications

- 8-bit CPU
- 16K ROM
- 256 bytes RAM
- 4K EEPROM

Size ratio of memory cells:

 $RAM = 4 \times EEPROM size$ = 16× ROM size

Cost: \$5-50 (with crypto accelerator)


Smart Card Technology

Based on ISO 7816 standard, which defines

- Card size, contact layout, electrical characteristics
- I/O protocols
 - Byte-based
 - Block-based
- File structures

Terminology alert: Vendor literature often misuses standard terms

- "Digital signature" = simple checksum or MAC
- "Certificate" = data + "digital signature"

File Types Transparent Binary blob Linear fixed n × fixed-length records Linear variable n records of fixed (but different) lengths Cyclic Linear fixed, oldest record gets overwritten Execute Special case of transparent file

File Attributes

EEPROM has special requirements (slow write, limited number of write cycles) which are supported by card attributes

- WORM, only written once
- Multiple write, uses redundant cells to recover when some cells die
- Error detection/correction capabilities for high-value data
- Error recovery, ensures atomic file writes
 - Power can be removed at any point
 - Requires complex buffering and state handling

Card Commands

Typical commands are

- CREATE/SELECT/DELETE FILE
- READ/WRITE/UPDATE BINARY
 - Write can only change bits from 1 to 0, update is a genuine write
- ERASE BINARY
- READ/WRITE/UPDATE RECORD
- APPEND RECORD
- INCREASE/DECREASE
 - Changes cyclic file position

Card Commands (ctd)

Access control

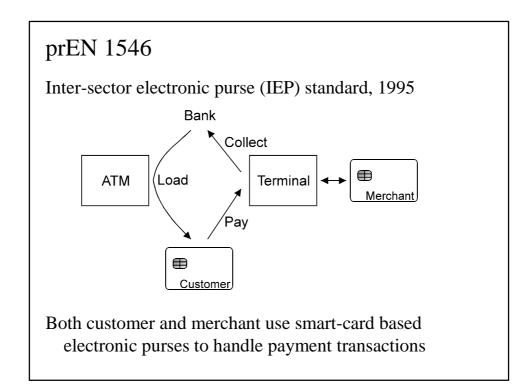
- Based on PIN of chip holder verification (CHV)
- VERIFY CHV
- CHANGE CHV
- UNBLOCK CHV
- ENABLE/DISABLE CHV

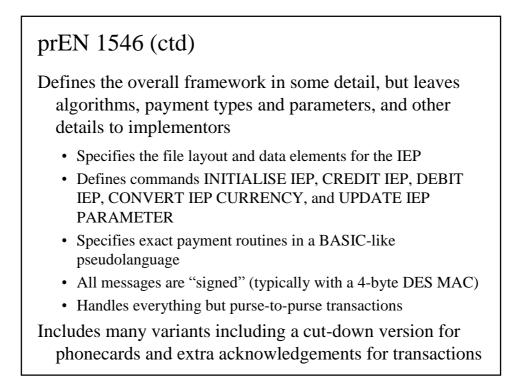
Authentication

- Simple challenge/response authentication protocol
- INTERNAL AUTHENTICATE – Authenticate card to terminal
- EXTERNAL AUTHENTICATE
 - Authenticate terminal to card

Card Commands (ctd)

Encryption: Various functions, typically


- ENCRYPT/DECRYPT
- SIGN DATA/VERIFY SIGNATURE


Electronic purse instructions

• INITIALISE/CREDIT/DEBIT

Application-specific instructions

• RUN GSM ALGORITHM

Credit Merchant Transaction		
IEP		Merchant

TeleQuick

Austrian CEN 1546 Quick electronic purse adapted for online use

- Merchant \leftrightarrow customer = Internet
- Merchant \leftrightarrow bank = X.25

All communications uses strong SSL encryption and server certificates

Conceived as a standard Quick transaction with terminals a long way apart

- Transaction rollback in case of communications faults
- Virtual ATM must handle multiple simultaneous transactions - Handled via host security modules (HSM's)
- Windows PC is an insecure platform
 - Move functionality into read (LCD, keypad, crypt module)

Working with Cards

ISO 7816 provides only a standardised command set, implementation details are left to vendors

• Everyone does it differently

Standardised API's are slow to appear

PKCS #11 (crypto token interface) is the most common API

- Functionality is constantly changing to handle different card/vendor features
- Vendors typically only implement the portions which correspond to their products
- For any nontrivial application, custom handling is required for each card type

Working with Cards (ctd)

The Smart Card Problem

- No cards
- No readers
- No software

Installation of readers and cards is too problematic

- Keyboard and mouse (or all of Windows) may stop working
- Installing more than one reader, or reinstalling/updating drivers, is a recipe for disaster
 - Drivers need to be installed in exactly the right order
 - PC operations may be affected (eg other peripherals stop working, system functions are disabled)
 - Drivers/readers may cease to function entirely
- USB readers seem to be the safest bet

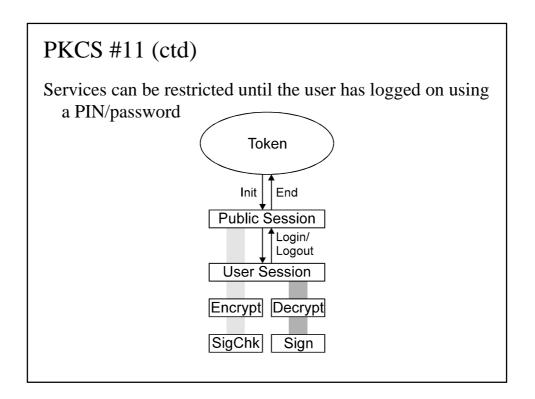
Working with Cards (ctd)

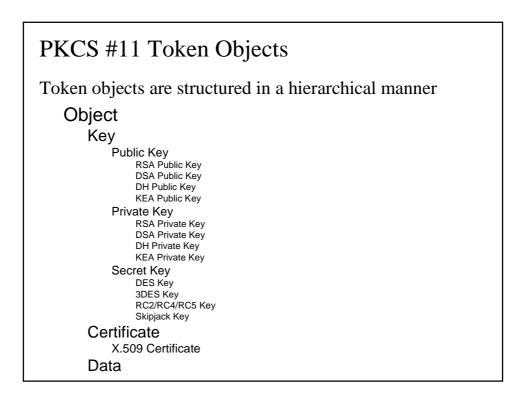
Even finding basic DES encryption which works is tricky

- Schlumberger Cryptoflex: Doesn't make DES user-accessible
- Schlumberger Multiflex: Returns only 6 of 8 encrypted bytes
- IBM MFC: Encrypts a random number
- Maosco MULTOS: Uses a fixed, known key "for security reasons"
- General Information Systems OSCAR: XOR's the DES key with a random number "for security reasons"
- Gemplus GPK: Restricts keys to 40 bits

PKCS #11

Object-oriented interface to any type of crypto token


- Smart card
- Crypto hardware accelerator
- Fortezza card
- USB-based token
- Handheld PC (eg PalmPilot)
- Software implementation


Programming interface is (in theory) completely independent of the underlying token type

PKCS #11 (ctd)

Token provides various services to the caller

- Store public/private keys, certificates, secret keys, authentication values, generic data
- Encrypt/decrypt
- Sign/signature check
- Wrap/unwrap key
- Generate key, generate random data
- Find object in token

PKCS #11 Token Objects (ctd)

Each object has a collection of attributes, eg RSA private key has:

- Object attributes CKA_CLASS = CKO_PRIVATE_KEY CKA_TOKEN = TRUE CKA_PRIVATE = TRUE CKA_MODIFIABLE = FALSE CKA_LABEL = "My private key"
- Key attributes CKA_KEY_TYPE = CKK_RSA CKA_ID = 2A170D462582F309 CKA_LOCAL = TRUE

(persistent object) (needs login to use) (can't be altered) (object ID for humans)

(object ID for computers) (key generated on token)

PKCS #11 Token Objects (ctd)

- Private Key attributes CKA_SENSITIVE = TRUE CKA_EXTRACTABLE = FALSE CKA_DECRYPT = TRUE CKA_SIGN = TRUE CKA_UNWRAP = TRUE
- RSA Private Key attributes CKA_MODULUS = ... CKA_PUBLIC_EXPONENT = ... CKA_PRIVATE_EXPONENT = ... CKA_PRIME_1 = ... CKA_PRIME_2 = ... CKA_EXPONENT_1 = ... CKA_EXPONENT_2 = ...

(attributes can't be revealed outside token)(can't be exported from token)(can be used to decrypt data)(can be used to sign data)(can be used to unwrap encryption keys)

Like a rubber screwdriver or styrofoam broadsword, PKCS #11 trades some utility in exchange for flexibility

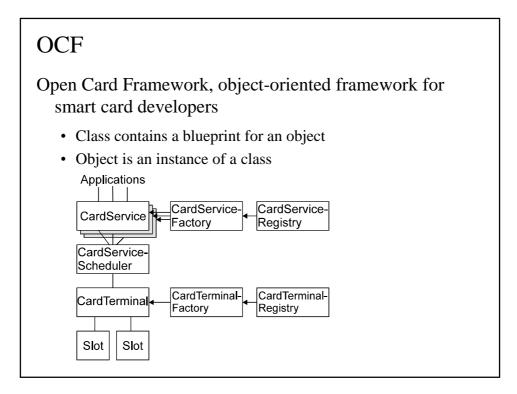
JavaCard

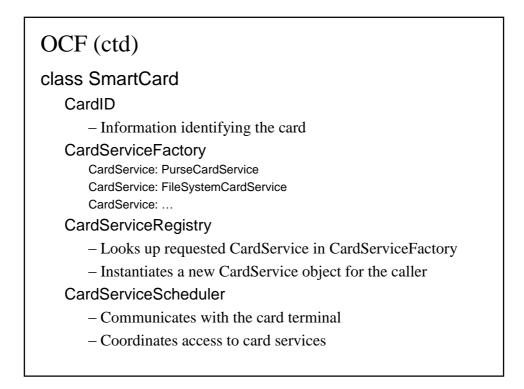
Standard smart card with an interpreter for a Java-like language in ROM

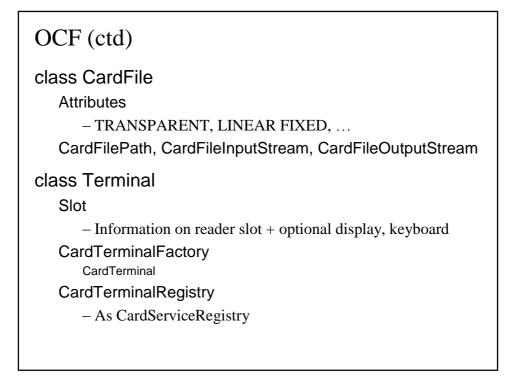
• Card runs Java with most features (multiple data types, memory management, most class libraries, and all security (via the bytecode verifier)) stripped out

- Can run up to 200 times slower than card native code Provides the ability to mention both "Java" and "smart

cards" in the same sales literature


JavaCard (ctd)

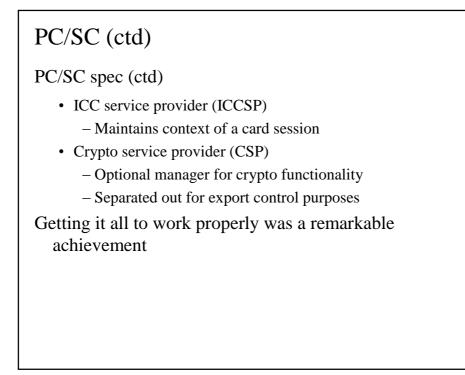

Card contains multiple applets

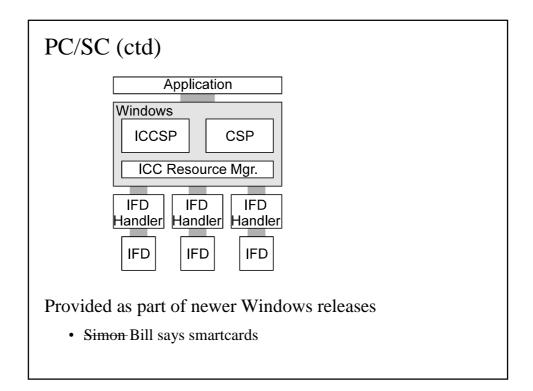

- External client sends select command to card
- Card selects applet and invokes its select method
- Further commands sent by the client are forwarded to the applets process method
- Applet is shut down via deselect method when a new select command is received

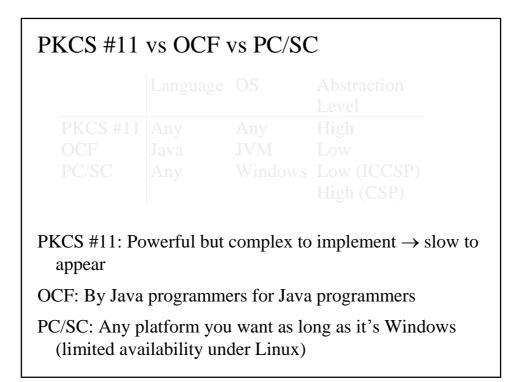
Applet can access packages and services from other applets

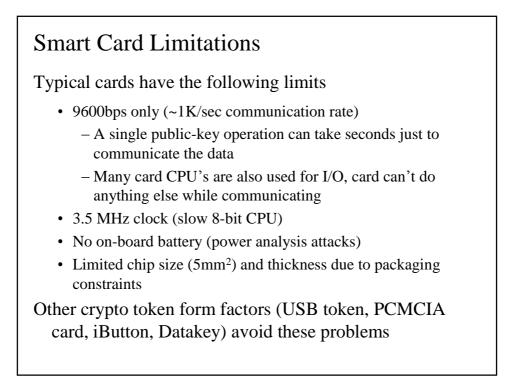
• How to do this securely is still under debate

PC/SC


Interoperability Specification for ICC's and Personal Computer Systems

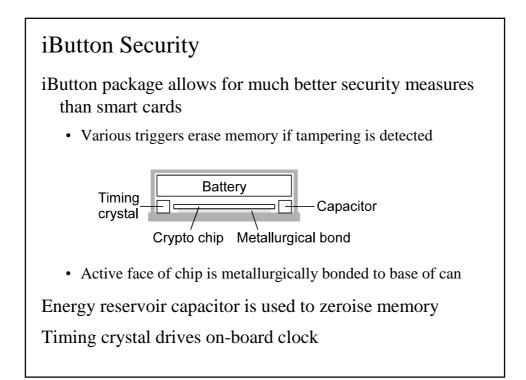

• Microsoft's attempt to kill PKCS #11 (c.f. PCT vs SSL)


• Goes a long way towards solving the Smart Card Problem


PC/SC spec defines

- Physical and electrical characteristics as ISO 7816
- Interface device (IFD) handler
 - Common software interface for card readers
 - Sets out minimal IFD requirements (command handling, card insertion check)
- Integrated circuit card (ICC) resource manager
 - Controls all IFD's attached to the system

Dallas iButton


Avoids most smart card problems by changing the packaging

Device is contained in 16×5mm microcan

- Stainless steel case is much stronger than smart card
- Case contains built-in battery and clock
- I/O doesn't tie up a serial port
 - \$10 iButton interface is cheaper than \$50 card reader

Capabilities range from simple serial-number ID, real-time clock, and data storage to crypto iButton

- 8051 processor, 32K ROM, 6K NVRAM
- 1024-bit crypto accelerator
- Real-time clock

iButton Security (ctd)

Zeroisation can be triggered by

- Opening the case
- Disconnecting the battery
- Temperatures below -20° C or above 70° C
- Excessive voltage levels
- Attempts to penetrate the case to get to the chip
 - Chip contains screen to prevent microprobing

iButton Programming

The device recognises two roles

- Crypto officer initialises the device
 - Create transaction group(s)
 - Set up information (keys, monetary value, etc)
 - Set initial user PIN
 - Lock transaction group(s)
- User utilises it after initialisation by crypto officer

Device contains one default group (Dallas Primary Feature Set) initialised at manufacture

- Allows crypto officer to initialise the device
- Allows user to verify that crypto officer hasn't altered certain initial options

iButton Programming (ctd)

Dallas Primary contains default private key generated by device at manufacture

- Corresponding public key is certified by the manufacturer
- Guarantees to a third party that a given initial key belongs to a given iButton
- Users can generate further keys as required

iButton Special Features

Device provides enhanced signature capabilities using onboard resources

- Signing time
- Transaction counter (incremented for each signature, used to detect trojan signing software)
- Device serial number

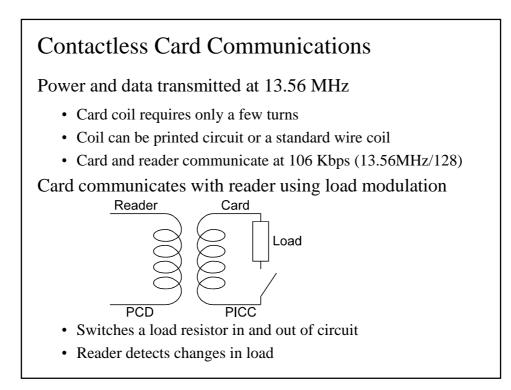
Signing process

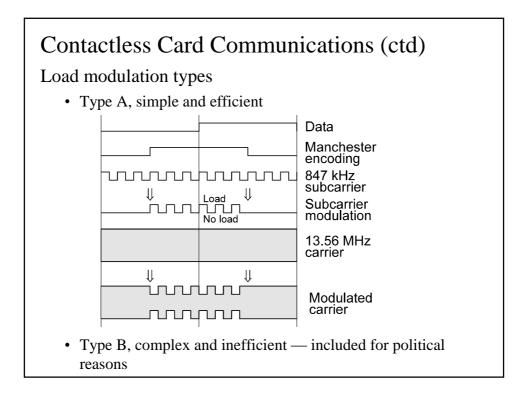
- User hashes data with MD5, SHA-1, RIPEMD-160, ...
- iButton hashes user-supplied hash with device serial number, transaction counter, and timestamp
- iButton signs hash using private key
- User retrieves serial number, transaction counter, timestamp, and signature from iButton

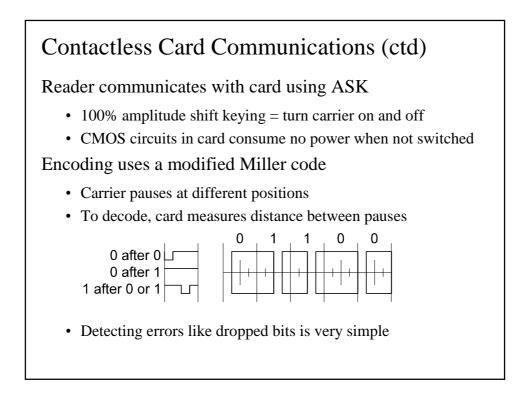
Contactless Cards

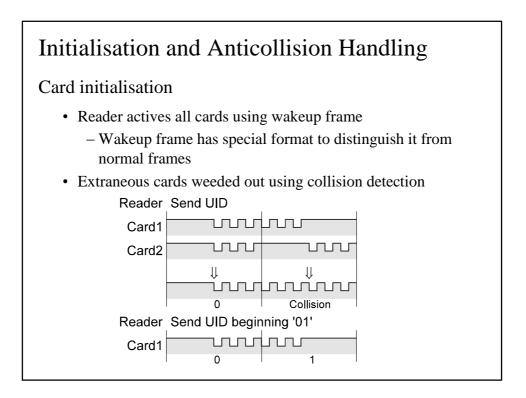
Several levels of contactless cards

- Contact, ISO 7816
- Close-coupled, 0-2mm, ISO 10536
 - Abandoned in favour of proximity cards
- Proximity, 0-10cm, ISO 14443
 - Typical use: MIFARE, transport applications
- Vicinity, ~1m, ISO 15693
 Typical use: RFID


Terminology and specs mirror ISO 7816


- Card = Proximity Integrated Circuit Card, PICC
- Reader = Proximity Coupling Device, PCD


Contactless Cards (ctd)


Contactless card issues

- Power and communications link is unstable
- Background noise problems
- Low power levels available
 - Boosting power increases RFI caused by carrier sidebands
 - Maximum range determined by level at which RFI still complies with emission laws
- Transaction must be rapid (100-200ms)
 - Move as many people through as few turnstiles as possible

Vicinity Cards

Extend proximity card ideas

- PCD \rightarrow VCD (Vicinity card device)
- PICC \rightarrow VICC (Vicinity integrated circuit card)

Vicinity card requirements

• Low-cost, high volume, long range, simple cards

More commonly use type B modulation

- Less RFI allows operation over longer ranges
- Use PPM (pulse position modulation) for VCD \rightarrow VICC, FSK for VICC \rightarrow VCD
 - Communication rate 6.6 Kbps
 - Variations on modulation, coding, and baud rate for different applications (speed vs distance vs noise immunity vs emission levels)

Attacks on Smart Cards

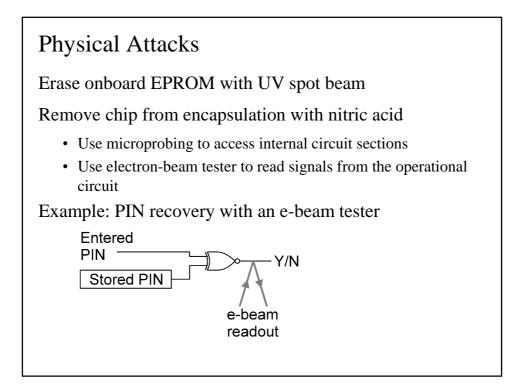
Use doctored terminal/card reader

- Reuse and/or replay authentication to card
- Display \$*x* transaction but debit \$*y*
- Debit account multiple times

Protocol attacks

• Card security protocols are often simple and not terribly secure

Fool CPU into reading from external instead of internal ROM


Manipulating supply voltages can affect security mechanisms

- Picbuster
- Clock/power glitches can affect execution of instructions

Attacks on Smart Cards (ctd)

Erasing an EEPROM cell requires a high voltage (12 vs 5V) charge

- Don't provide the power to erase cells
- Most cards now generate the voltage internally
 - Destroy the (usually large) on-chip voltage generator to ensure the memory is never erased

Physical Attacks (ctd)

Modify the circuit using a focused ion beam (FIB) workstation

- Disable/bypass security circuitry (Mondex)
- Disconnect all but EEPROM and CPU read circuitry

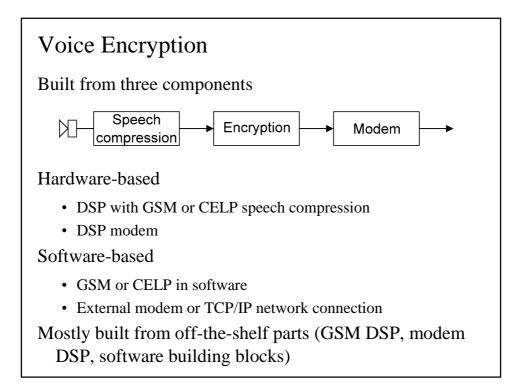
Attacking the Random Number Generator

Generating good random data (for encryption keys) on a card is exceedingly difficult

• Self-contained, sealed environment contains very little unpredictable state

Possible attacks

- Cycle the RNG until the EEPROM locks up
- Drop the operating voltage to upset analogue-circuit RNG's
- French government attack: Force manufacturers to disable key generation
 - This was probably a blessing in disguise, since externally generated keys may be much safer to use


Timing/Power Analysis

Crypto operations in cards

- Take variable amounts of time depending on key and data bits
- Use variable amounts of power depending on key and data bits - Transistors are voltage-controlled switches which consume
 - power and produce electromagnetic radiation
 - Power analysis can provide a picture of DES or RSA en/decrypt operations
 - Recovers 512-bit RSA key at ~3 bits/min on a PPro 200

Differential power analysis is even more powerful

• Many card challenge/response protocols are DES-based → apply many challenge/response operations and observe power signature

TCSEC/Orange Book

Trusted Computer Security Evaluation Criteria

- Based on 10-15 years of security research
- Usage model: multiuser mainframes, terminals/users cleared at a single level
- "Make it simple enough that even a general can understand it"
- Attempts to apply it to other areas (eg networks) via increasingly tortuous "interpretations"

Maximum sensitivity	Rmax	Minimum user clearance	Rmin
Unclassified (U)	0	Uncleared (U)	0
Unclassified but sensitive (N)	1	Uncleared, allowed access to sensitive information (N)	1
Confidential (C)	2	Confidential (C)	2
Secret (S)	3	Secret (S)	3
Top Secret (TS) 5		Top Secret (TS)/Background Investigation	4
		Top Secret (TS)/Special Background Investigation	5

ying t	he Orange Book (ctd)
Risk index	Operating Mode	Orange Book class
0	Dedicated	None
0	System high	C2
1	Limited access, controlled, compartmented, multilevel	B1
2	Limited access, controlled, compartmented, multilevel	B2
3	Controlled, multilevel	B3
4	Multilevel	A1
5	Multilevel	?

Applying the Orange Book (ctd)					
Operating modes					
Dedicated	System exclusively used for one classification				
System high	Entire system operated at and all users cleared at highest sensitivity level of information				
Limited access	All users not fully cleared or authorised access to all data				
Controlled	Limited multilevel				
Compartmented	At least one compartment requiring special access to which not all users have been cleared, but all users cleared to highest level				
Multilevel	Two or more classification levels, not all users cleared for all levels				

Typical Voice Encryption System

Speech compression

- GSM compression (high-bandwidth)
- CELP compression (low-bandwidth)

Security

- DH key exchange
- DES (larger manufacturers)
- 3DES, IDEA, Blowfish (smaller manufacturers, software)
- Password/PIN authentication

Typical Voice Encryption System (ctd)

Communications

- Built-in modem (hardware)
- Internet communications (software)

Speak Freely,

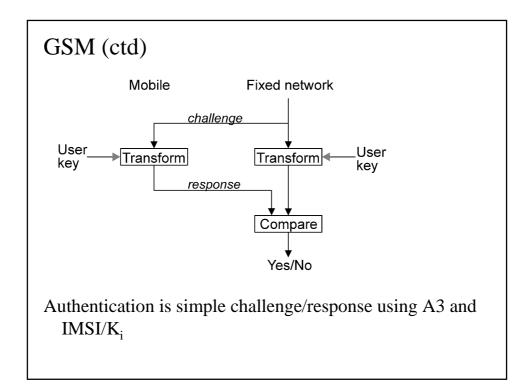
http://www.fourmilab.ch/netfone/windows/
speak_freely.html

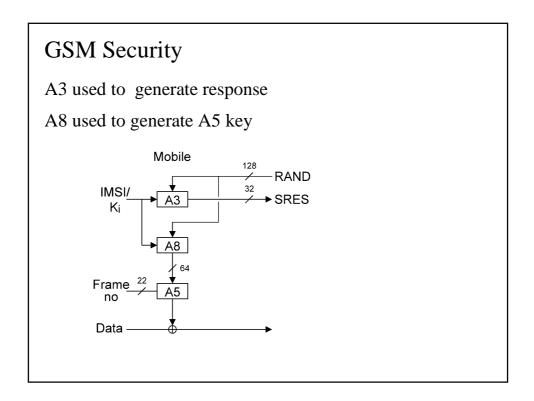
- Typical software implementation
- Uses standard software components
- Portable across several operating systems

Problems

Latency issues (dropped packets) Authentication/MITM attacks

No standardisation


GSM


GSM subscriber identity module (SIM) contains

- International Mobile Subscriber Identity (IMSI)
- Subscriber identification key K_i

Used for authentication and encryption via simple challenge/response protocol

- A3 and A8 algorithms provide authentication (usually combined as COMP128)
- A5 provides encryption

GSM Security (ctd)

- 1. Base station transmits 128-bit challenge RAND
- 2. Mobile unit returns 32-bit signed response SRES via A3
- 3. RAND and K_i are combined via A8 to give a 64-bit A5 key
- 4. 114-bit frames are encrypted using the key and frame number as input to A5

GSM Security (ctd)

GSM security was broken in April 1998

- COMP128 is weak, allows IMSI and K_i to be extracted
 - Direct access to SIM (cellphone cloning)
 - Over-the-air queries to phone
- Some cards were later modified to limit the number of COMP128 queries
- A5 was deliberately weakened by zeroing 10 key bits
 - Even where providers don't use COMP128, all shorten the key
- Claimed GSM fraud detection system doesn't seem to exist
- Affects 80 million GSM phones

```
GSM Security (ctd)
Key weakening was confirmed by logs from GSM base
  stations
BSSMAP GSM 08.08 Rev 3.9.2 (BSSM) HaNDover REQuest (HOREQ)
-----O Discrimination bit D BSSMAP
0000000- Filler
00101011 Message Length 43
00010000 Message Type
                        0x10
Channel Type
00001011 IE Name Channel type
00000011 IE Length 3
00000001 Speech/Data Indicator
                              Speech
00001000 Channel Rate/Type Full rate TCH channel Bm
00000001 Speech encoding algorithm
                                    GSM speech algorithm
Encryption Information
                         Encryption information
00001010 IE Name
00001001 IE Length
                        9
00000010 Algorithm ID GSM user data encryption V.1
******* Encryption Key C9 7F 45 7E 29 8E 08 00
Classmark Information Type 2
```

GSM Security (ctd)

Many countries were sold a weakened A5 called A5/2

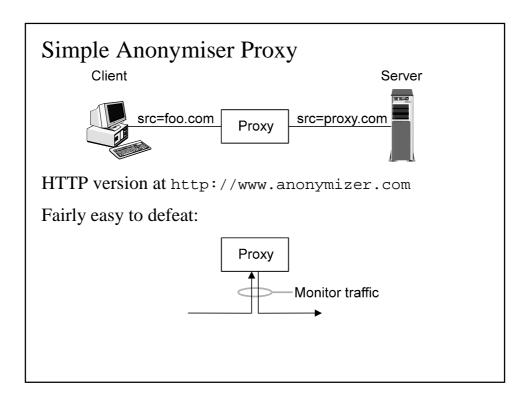
- A5 security: Breakable in real time with 2⁴⁰ precomputations
- A5/2 security: None (5 clock cycles to break)
- Another attack is to bypass GSM entirely and attack the base station or land lines/microwave links

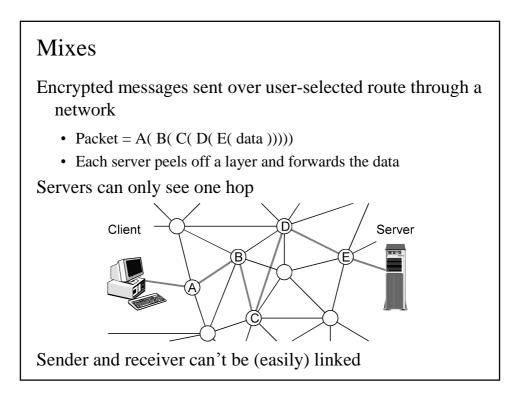
GSM security was compromised at every level

- Deliberately weakened key generation
- Broken authentiction
 - GSM MoU knew of this nearly a decade ago but didn't inform its members
- A5/1 was known to be weak, A5/2 was deliberately designed to be weak

GSM represents well-designed multiple-redundant compromise

GSM Security (ctd)


Most other cellphone security systems have been broken too


- Secret design process with no public scrutiny or external review
- Government interference to ensure poor security

Traffic Analysis

Monitors presence of communications and source/destination

- Most common is analysis of web server logs
- Search engines reveal information on popularity of pages
- The mere presence of communications can reveal information

Attacks on Mixes

Incoming messages result in outgoing messages

- Reorder messages
- Delay messages

Message sizes change in a predictable manner

Replay message (spam attack)

• Many identical messages will emerge at some point

Onion Routing

```
Message routing using mixes,
http://www.itd.nrl.navy.mil/ITD/5540/
projects/onion-routing
```

Routers have permanent socket connections

Data is sent over short-term connections tunnelled over permanent connections

- 5-layer onions
- 48-byte datagrams
- CREATE/DESTROY for connection control
- DATA/PADDING to move datagrams
- Limited form of datagram reordering
- Onions are padded to compensate for removed layers

Mixmaster

Uses message ID's to stop replay attacks

Message sizes never change

- 'Used' headers are moved to the end, remaining headers are moved up one
- Payload is padded to a fixed size
- Large payloads are broken up into multiple messages
- All parts of the message are encrypted

Encryption is 1024 bit RSA with triple DES

Message has 20 headers of 512 bytes and a 10K body

Crowds

Mixes have two main problems

- Routers are a vulnerable attack point
- Requires static routing

Router vulnerability solved via jondo (anonymous persona)

Messages are forwarded to a random jondo

- Can't tell whether a message originates at a given jondo
- Message and reply follow the same path

LPWA

Lucent Personalised Web Assistant

- Provides access to web sites via LPWA proxy
- Automatically generates per-site pseudonymous personas
 - User name
 - Password
 - Email address
- Filters sensitive HTTP headers

LPWA (ctd)

Protects users from profile aggregation, spamming

- User connects to LPWA using email address and password
- When web site asks for identification information, user types \u (user name), \p (password), \@ (email address)
- Proxy translates these to per-site pseudonymous personas

Email forwarder forwards mail to users real email address

• Spam sources can be blocked on a per-persona basis

Steganography

From the Greek for "hidden writing", secures data by hiding rather than encryption

• Encryption is usually used as a first step before steganography Encrypted data looks like white noise

Steganography hides this noise in other data

- By replacing existing noise
- By using it as a model to generate innocuous-looking data

Hiding Information in Noise

All data from analogue sources contains noise

- Background noise
- Sampling/quantisation error
- Equipment/switching noise

Extract the natural noise and replace it with synthetic noise

- Replace least significant bit(s)
- Spread-spectrum coding
- Various other modulation techniques

Examples of channels

- Digital images (PhotoCD, GIF, BMP, PNG)
- Sound (WAV files)
- ISDN voice data

Generating Synthetic Data

Usually only has to fool automated scanners

• Needs to be good enough to get past their detection threshold

Two variants

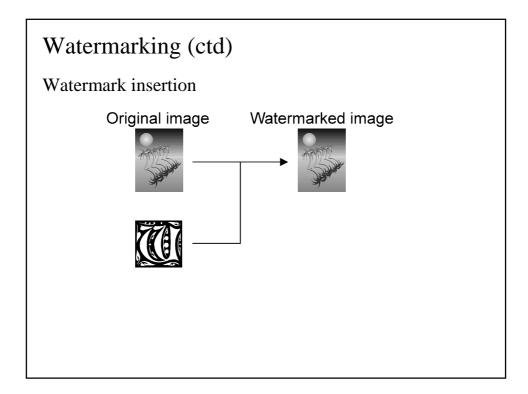
- Use a statistical model of the target language to generate plausible-looking data
 - "Wants to apply more or right is better than this mechanism.
 Our only way is surrounded by radio station. When leaving. This mechanism is later years".
 - Works like a text compressor in reverse
 - Can be made arbrtrarily close to real text

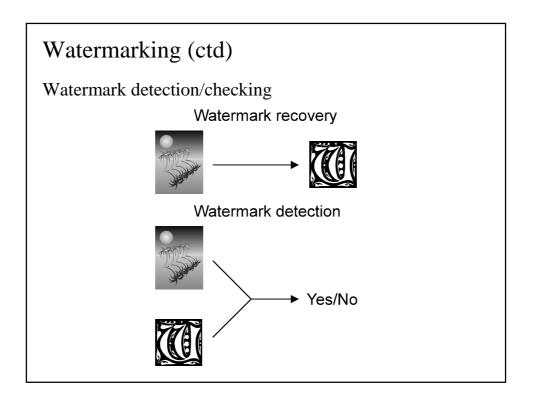
Generating Synthetic Data (ctd)

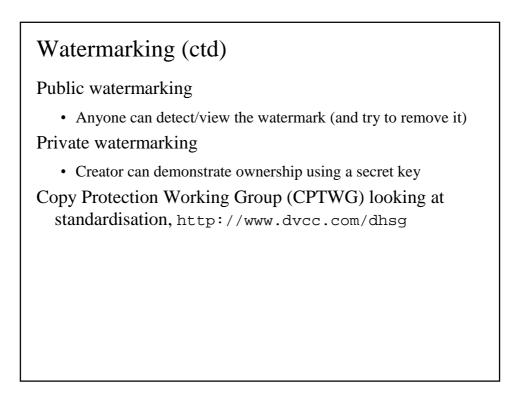
- Use a grammatical model of actual text to build plausiblesounding data
 - "{Steganography|Stego} provides a {means|mechanism} for {hiding|encoding} {hidden|secret} {data|information} in {plain|open} {view|sight}".
 - More work than the statistical model method, but can provide a virtually undetectable channel

Problems with steganography

• The better the steganography, the lower the bandwidth


Main use is as an argument against crypto restrictions


Watermarking

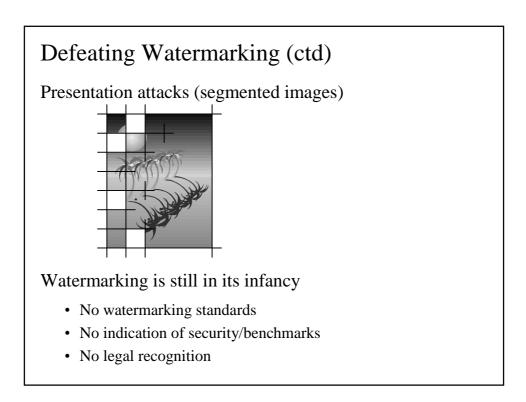

Uses redundancy in image/sound to encode information

Requirements

- Invisibility
- Little effect on compressability
- Robustness
- High detection reliability
- Security
- Inexpensive

Defeating Watermarking

Lossy compression (JPEG)


Resizing

Noise insertion (print+scan)

Cropping

Interpretation attacks (neutralise ownership evidence)

Automated anti-watermarking software available (eg UnZign)

Other Crypto Applications

Hashcash

- Requires finding a collision for *n* bits of a hash function
 - "Find a message for which the last 16 bits of the SHA-1 hash are 1F23"
- Forces a program to expend a (configurable) amount of effort before access is granted to a system or service
- Useful for stopping denial-of-service attacks
 - -n varies as the system load goes up or down
 - Can be used as a spam-blocker

Other Crypto Applications (ctd)

PGP Moose

- Signs all postings to moderated newsgroups

 Signature is added to the message as an X-Auth header
- Unsigned messages (spam, forgeries) are automatically cancelled
- Has so far proven 100% effective in stopping newsgroup spam/forgeries