Chapter 4: Answers

Task 1

A student was interested in whether there was a positive relationship between the time spent doing an essay and the mark received. He got 45 of his friends and timed how ling they spent writing an essay (**hours**) and the percentage they got in the essay (**essay**). He also translated these grades into their degree classifications (**grade**): first, upper second, lower second and third class). Using the data are in the file **EssayMarks.sav** find out what the relationship was between the time spent doing an essay and the eventual mark in terms of percentage and degree class (draw a scatterplot too!).

We're interested in looking at the relationship between hours spent on an essay and the grade obtained. We could simply do a scatterplot of hours spent on the essay (*x*-axis) and essay mark (*y*-axis). I've also chosen to highlight the degree classification grades using different symbols (just place the variable **grades** in the *style* box). The resulting scatterplot should look like this:

Next, we should check whether the data are parametric using the *explore* menu (see chapter 3). The resulting table is as follows:

	Kolmogorov-Smirnov ^a		Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.
Essay Mark (%)	.111	45	.200*	.977	45	.493
Hours Spent on Essay	.091	45	.200*	.981	45	.662

Tests of Normality

* This is a lower bound of the true significance.

a. Lilliefors Significance Correction

The K-S and Shapiro-Wilk statistics are both non-significant (*Sig.* is > .05 in all cases) for both variables which indicates that they are normally distributed. As such we can use Pearson's correlation coefficient. The result of which is:

Correlations				
		Essay Mark (%)	Hours Spent on Essay	
Essay Mark (%)	Pearson Correlation	1	.267*	
	Sig. (1-tailed)		.038	
	Ν	45	45	
Hours Spent on Essay	Pearson Correlation	.267*	1	
	Sig. (1-tailed)	.038		
	Ν	45	45	

Correlations

* Correlation is significant at the 0.05 level (1-tailed).

I chose a 1-tailed test because a specific prediction was made: there would be a positive relationship, that is, the more time you spend on your essay, the better mark you'll get. This hypothesis is supported because Pearson's r = .27 (a medium effect size), p < .05, is significant.

The second part of the question asks us to do the same analysis but when the percentages are recoded into degree classifications. The degree classifications are ordinal data (not interval): they are ordered categories, so we shouldn't use Pearson's test statistic, but Spearman's and Kendall's ones instead:

Concidiona					
			Hours Spent on Essay	Grade	
Kendall's tau_b	Hours Spent on Essay	Correlation Coefficient	1.000	158	
		Sig. (1-tailed)		.089	
		Ν	45	45	
	Grade	Correlation Coefficient	158	1.000	
		Sig. (1-tailed)	.089		
		Ν	45	45	
Spearman's rho	Hours Spent on Essay	Correlation Coefficient	1.000	193	
		Sig. (1-tailed)		.102	
		Ν	45	45	
	Grade	Correlation Coefficient	193	1.000	
		Sig. (1-tailed)	.102		
		Ν	45	45	

Correlations

In both cases the correlation is non-significant. There was no significant relationship between degree grade classification for an essay and the time spent doing it, $\rho = -.19$, *ns*, and $\tau = -.16$, *ns*. Note that the direction of the relationship has reversed. This has happened because the essay marks were recoded as 1 (first), 2 (upper second), 3 (lower second), and 4 (third) and so high grades were represented by low numbers!

This illustrates one of the benefits of NOT taking continuous data (like percentages) and transforming them into categorical data: when you do, you lose information and often statistical power!

Task 2

Using the **ChickFlick.sav** data from Chapter 3, is there a relationship between gender and arousal? Using the same data, is there a relationship between the film watched and arousal?

Now, both gender and the film watched are categorical variables with two categories. Therefore, we need to look at this relationship using a point-biserial correlation. The resulting tables are as follows:

		Gender	Arousal
Gender	Pearson Correlation	1	180
	Sig. (2-tailed)		.266
	Ν	40	40
Arousal	Pearson Correlation	180	1
	Sig. (2-tailed)	.266	
	Ν	40	40

Correlations

		Film	Arousal
Film	Pearson Correlation	1	.638**
	Sig. (2-tailed)		.000
	Ν	40	40
Arousal	Pearson Correlation	.638**	1
	Sig. (2-tailed)	.000	
	Ν	40	40

**. Correlation is significant at the 0.01 level

In both cases I used a 2-tailed test because no prediction was made. As you can see there was no significant relationship between gender and arousal, $r_{pb} = -.18$, *ns*. However, there was a significant relationship between the film watched and arousal, $r_{pb} = -.64$, p < .001. Looking at how the groups were coded, you should see that Bridget Jones' Diary had a code of 1, and Momento had a code of 2, therefore, this result reflects the fact that as film goes up (changes from 1 to 2) arousal goes up. Put another way, as the film changes from Bridget Jones' Diary to Momento, arousal increases. So, Momento gave rise to the greater arousal levels.