OpenOffice.org Base
Macro Programming
By
Andrew Pitonyak

Last Modified
Thursday, March 12, 2009 at 08:29:19 PM

Document Revision: 35

Information Page

Copyright

This document is Copyright © 2005-2009 by its contributors as listed in the section titled
Authors. You can distribute it and/or modify it under the terms of the Creative Commons
Attribution License, version 2.0 or later (http://creativecommons.org/licenses/by/2.0/).

All trademarks within this guide belong to their legitimate owners.

Authors
Andrew Pitonyak

Feedback

Maintainer: Andrew Pitonyak [andrew(@pitonyak.org]
Please direct any comments or suggestions about this document to:
authors@user-fag.openoffice.org

Acknowledgments

I find it difficult to properly credit all of my sources, because so many people are helpful in an
en devour of this size. There are, however, a few people who do indeed stand out in my mind
as having provided significant encouragement.

I have no explanation as to precisely why my wife Michelle allows me to spend so much time
working with OpenOffice.org. Perhaps she is really the person that you should thank for my
productivity. I Love you Michelle, you complete me.

All of the people with whom I have interacted at Sun Microsystems have been very tolerant
and patient with my endless questions. In the creation of this document, Frank Schonheit,
however stands out in this regard. Mr. Schonheit spends a lot of time helping people with
problems and questions, and most notable for me, he answers my questions. Thank you Frank!

There is a large community volunteering their time with OpenOffice.org. Drew Jensen has
stood out in my mind as an incredibly prolific and knowledgeable individual. Drew clearly has
vast experience using database products, and he has brought this vast experience to the OOo
community. He has created numerous excellent examples on the OOo Forums and mailing
lists. Thank you Drew.

There is a large community of helpers, who are simply too numerous to mention. I owe you
all a thank you for your help and encouragement. In the general community, however, I will
single out G. Roderick Singleton, who helps numerous people every day on the mailing lists.
He also very proactive in keeping the documentation up-to-date. Mr. Singleton, I thank you
for all of your help as well.

This document is updated a lot, so it hardly makes sense to track changes at this time. Perhaps
when I come up with at least a version 1.0.

mailto:authors@user-faq.openoffice.org
http://creativecommons.org/licenses/by/2.0/

Table 1. Modification History

Date
9/23/06
3/13/07
4/4/07
1/30/08
2/18/08

Comment

Integrated changes from Jo <ml@winfix.it>
Moved document to a new format.

Discovered that I did NOT transfer the macros.
Comments related to fields in forms.

New changes coming for OOo 3.0; watch out!

I encourage people to turn on change tracking in OOo (Edit > Changes > Record) and make
corrections, enhancements, and/or updates to this document. When you are finished, please
send the document to me for integration into the final document. Please make note of the
“Last Modified” date (Thursday, March 12, 2009 at 08:29:19 PM) and the revision number
(35) so that I will know if you have the latest document version, which makes my life much

easier.

mailto:ml@winfix.it

Table of Contents

0 0= (T =0 L= O 2
(@0 017/ 1 o || SRR 2
L1 10 R 2
e |07 o SRR 2
ACKNOWIEAOMENTS.......eveeie ittt e st ee e e st e e s s e e e e e s e s abe e e s ssabreeessabaesesassbesessssssenessns 2

TADIE Of CONLENES......eeeeeeieieeie ettt e et e e s et e e e s s bt e e e s e sbb e e e s sssbasessesabeeesssbreeessabeenasas Y,

I o [0 ot TR 1
0 O 1 | (oo (W (0 A 00 1111 = 1K= 1
1.2. Document organization and iNtrOAUCLION...........c.eeeiiueeeiiieeeiiee e 1
1.3. Prepare for big changesSin OO0 3.0.......ccicuiiieiie et sree e e 2

2. Storing images (binary data) INBASE.........ceeeueeueeeeieee e e e eeeereseee e sre s s ses e e e sreesaeeee e 4
2.1. Create the initial BaSe dOCUMIENE.........ccoiiviiiiiiiiiie e ccrreee et e e srre e sarae e e sareea s 4

2.1.1. USING NG GUI ...ttt 4
P20 I U 1S 10 1= 10 o (PR 4
2.1.3. Using amacro to open the WIZard.............oocueeeeiiiieiee et 5
A O (<= (<N | =0 =) 0 L= 5
pZ N I U 1] o 11 1= 1 5
2.2.2. USINQ @IMACID. ...e.veeiteeeeeseesteesteesessseessessessseessessessseessssssssseessessesssesssessesseessesssssseenes 6
2.2.3. Using SQL statements to modify tableS...........eeviieceeiieieceeee e 8
2.2.4. REfTEN thE LADIES......oee e eneeas 8
2.2.5. Creating and deleting tables using SQL.........ceecveeiieeciee it 9
2.2.6. InCrease afildd'S IENALN..........ooiieieccee e 11
R R O == (=X 1 10) 1 1.1 PP PE TSR 11
2.3.1. USING G GUI ...ttt nne e 11
2.3.2. USINQ AIMACTO. . .evveeveeiueeeiteeeieesteeseeesteesaaeesseessseesseesaseabeessseesseessseenseesnseensessnsnans 13
2.4. Open aform USING A MACIO.ccciiiureieeceteiee e eereee e s ebre e e s e sbre e s s sbbe e e s s sabae e e s ssabeeeesasrreeaeas 17
2.5. AcCesSING the DINAIY aLa..........cccuveiiiiiiiee e sare e e 20
V223 o o [0 To o 1072 YA = - S 20
2.5.2. EXtracting DiNary Aata..........cccoieveieiiiireiieeieieieeceeteie e es e e e e e e aree e s s s bae e s s e enrees 22
3. ONE-TO-ManY relatioNSNIPS.......cveeiiiereiee it ee e e e e e st ee s s esare e e s s sbaresssssreeessssareeesessbeessssnens 25
I I O (=7 0140 = o) =< 25
3.1.1. Create the DEALER tADIE.......c..viiiieeeceee ettt 25
3.1.2. Create the ITEM tabl€........ccccveiiiiieiceie e e 26
3.2. Definethe data relatioNSNiPS.........veeeveeeceie ettt eares 28
3.3. Add datato the DEALER and ITEM tableS........ccceeiueiiiieiiiiie e 29
o111 32
4.1. Theinterna ObjECt MOAE.oeiiiuii e eree e 32
4.1.1. A control's shape iSin the draW PAGE..........cuveeeieiveieeeiireee et 32
4.1.2. A draw page CONtAINS FOIMIS.........uveeiiiiiiiie et erre e 33
4.1.3. A control's data MOdel ISTNATOIM.......cccuveiiiicieiee e 34
4.1.4. A control's view model iSinthe CONLrOIIES.........cueeveeeveieeieceee e 35
4.1.5. Enabling and setting controls visble—an example..........cccceeeevveeeeieecceeeeereee e 36

4.1.6. Finding a control from an event — an EXamPle.......c.vveeeveeeeieeeeieeieeeee e e seeereeeeeees 36

4.1.7. Control connected t0 adatabaSe...........coeeecveiieiiiieiee e 37
4.1.8. Control MOAE SUMIMAIY.........uuveeeiiirrieeeeereeeeeeeteee e e eieee e s e sareesssssraeesssssaeeesssseneess 38
4.2. Database FOrmS act [IKE ATrESUIT SEL.........ccocveeeeieciriie et eesireee e e eaae e e 38
ViR W DU o] [T7= (<X (=010 £ 1 4 17= £ NP 39
4.3. Show one item and the corresponNding EAIEYcccueeeeiieecieccee e 42
4.4, Use acombo box With the dealer id...........ccueeeceeeiciiiicee e 44
4.5. Use alist box with the deal&r NAME.........cccveeieiieieee e 45
4.6. RAAioNSIN ASINAIELADIE.......ccceveeieiieceee et 47
3 o U (o 47
4.6.2. SOIULION CHArACLEITSLICS........vveeeieiriiee et et e et e e e e eaa e e s e sabae e e s sbaeeeeenns 48
4.7. Usea“help and fill” DULLON..........oooiiiiiieeeciee e 49
5. Many-to-many relatioNShiPS.......ccciicveiiiiiieiie et brr e e e e ebb e e e s s aba e e e s ennanes 50
SR B = 0= s 1= [0 TR 51
LS S (o T 0 10100100 £ 54
L I I 1= 0 (< 00010 = £ 54
6.1.2. Floating POINt NUMBDELS.......ceeiieeeiie e e eeteee e se et e s e e s s ssre e e s s snre e e s ssaraeeesenrees 55
6.1.3. NUMERIC and DECIMAL TVDES.....ooeieeeeeeee et eeee e s sree s sne e s saee s 56
6.2. Bit aNd BOOIEAN TYPES....ccccveeieitieccttee ettt et eette s e e e sabe e e sabe e e eabeeseneeeeneeas 56
SR BT (0= 010 I (111 PR 57
O = 0= = 57
O = 1107 Y = = S 58
S O 1= 0= 7= 1/ 0= O 58
6.7. Database sequences and auto-value fieldS.........ccoevveiericieiie e 58
7. A few easy database dEfINITIONS.........cocoocueeiiiiiiiie e srr e e e sraee s 60
B o 1= 17 PR 61
SRBY: It 07z < cX 00 0]1=.01110) 8 PR 62
8.1. Obtain a database CONLEXL.........cuuiriiiriiie ettt e e ebre e s e b e e e sbr e e e s s sanees 62
8.1.1. Registered data SOUICES.........cccveeereerieeeesieesieeeesseesteeeesseesseeeesseesseeaesseesseenseens 63
8.1.2. Unregistering @ dat@ SOUICE..........cccuerueerieeiesteesieeeeseesteeseesseessessesseesseessesseessnnnes 63
8.1.3. REQISLENING A ALA SOUICE.......eeeeuveeiireeieeeee et e et e etre e et e sbe e e sbe e s snbeeesnbeeesnaeeenes 64
8.2. CONNECE 10 A ALANASE........ccuveeeceeie ettt e e be e e bee e saree s 64
8.3. Connect using an iNteraction NANAIET............ececveeiicieeeceee e 65
N 0] 11,0 (0] ' 65
8.4.1. Extended SDB CONNECHIONS.........veeiiiiiirieeiiiireeeeeireeeeeebreeessssbreeesesseeesesbreeessnnes 67
I VI L= = S 0 - = WO 67
8.4.3. InSpecting the MELG-AALAL...........cccvvieeiicieie e e 74
8.4.4. GEtBESIROWIAENLITIEN........veieiiieiiie ettt s 81
8.4.5. GELCOIUMNPYIVIIEOES. ...ttt ettt e ettt e e e et e s s eaae e e s e sabaee e s snreeeeaans 82
R T (0] [0 1N 83
R € o 00 (=0 =Y 84
R S I T 10 (= d 11 86
8.4.9. GEIPIIMAIVKEYS ...ccitvieeeteee ettt etee e etee e tee e e teeseab e e sebteesebsessbeeesabeessabeeessbeseaseessanes 87

8.4.10. GELTADIEPTIVIIEOES.ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee eeeeees 87

I N R Tl 1= o) [T 88
S v 1< i 1Y 0= 0 1 () 88
8.4.13. GEIUDTSottt e st e st e s et e s e beeesebeeesbeessbeessabesssabeessnreneas 89
8.4.14. GELV ErSIONCOIUMNS........vveeeeietrieeeeereeeesesitreessesaeessssssseessssssesessasreeessssssssessans 90

8.5, CONMNECLIONSuvveeeeieteeee e ettt e e e e eeeee e e ettt esseesbeeesseabseeasssssaeesssasseeessasseeesssssseeessssssneesanns 91
8.6. Connections Without & data SOUICE...........cceuveeiieeeeiirieecreeeeree e e e eeree e ebee e saeeesareeas 92
8.6.1. DEIMItEA tEXE FIIES.......veiicriie ittt e eaae e 96
8.6.2. FIXed Width tEXE fIlES.....ueiieeeieeee et 98
8.6.3. Help. | still can not import MY CSV fil€....ccueecieiiecee e 103
8.6.4. AAAreSS DOOKS........uviiiiiiriiie it ceire et e e e e e s e bb e e e s seabr e e e s s sabeeeeesanees 105
8.6.5. MYSQL USINQ JIDBC......oc ettt st 105

S S I = =0 (0 = 1010 O B = O 106
I o [11 o o 108

9. Connecting to MySQL USING JDBC.......cooceiieeee ettt srae e 109
O 1V 10101 =P 111
11. Copying an entire dataDase...........cccveeereerieeieseere e e e ee e nneeneeas 112
12. GENEral ULIITY MACIOS......uveeiiieeeeieeeeteiee e eeteee e ettt e s e et e s s e e e e e s s ebaeessessbeeesssbeeeessansreessans 113
2 B O 0T K oY= o (=i (0] R 114
12.2. Get 8 dOCUMENE'S AITECLONY.......veeeireeiiiie ettt e e e e eab e e s b e sbeeeeanes 115
R T O 0TS o= 1 i 1= O 115
12.4. Finding a (loaded) OO0 AOCUMENL.........c.eeiveieirieireceiee e esreseeeesres e s sressvessressareeas 117
12.5. APPENA L0 @M AITAY......uvviieiiiirieee et e eetre e e e e e e e e e e e s sbbe e s s ssabaeeessbbaeesssabaeeassnrnes 119
12.6. COMPAre datAiN AN AITAY.......cuveeeeeerrieeeeiieee e eeir e e e et e e e e sbreeesseabreeesessraeesesbseessenees 119
12.7. CrEate A PIODEITY. ... veiiieieeeeieeettee ettt et e e et e e e st e e e e s et e e s sab e s s baessbeessbesssabesesabessanes 120
12.8. Create aPoIiNt AN @ SIZE........ooiiieeiiie ettt eaaes 120
12.9. Append adata array to a Calc dOCUMIENT..........coeeveeeiiieeeciee e 121
12.10. Dynamically call object MEthOAS...........cooovcuuiiiiieeiee e 122
12.11. Display numeric constants as meaningful tEXL..........cccceeevveeeieeeieeee i 125
12.12. Select from alist in AliSt DOX......cccoveeeeee e 127
13. Database ULiliTY MACIOS.......ccuveeiiueeeiiieectee e eteeeeteeestteeeearesesaaesssbeesebeessbeesssbesssssesesnsessnns 129
13.1. Quoting table and fIEld NAMES.........c.eeiivieicee e 129
13.2. Convert between an UNO Date and aBasiC Date..........c..eeecveeevcveeeccveeecieec e 129
13.3. Convert aresult set to an array of dafa..........oocveeeivieiiiie e 131
13.4. Create and populate adialog from aresult SEt.........ccvveveiecveeeiiciieee e 134
I 10 ST o o USSR 136
14.1. Limit the number of returned reCOrdS..........cocvviiiiiiieiii e 136
15. Connect to a Base document USING JDBC..........ooiiiiviiie ittt e eaeee e 139
APPENIX A SEUFT T OWNL.....ooieiie e 143
N T 17 o] == 143
N I I 07 =0 0 YRR 143

F N B2 B <= [R 143
N R R 1 0= [S 144

ALLA TEBIMN. ..o 144

A 111 144
F N N 1 (= 1 Y0 7= o) == 144
A.2.2. HEM ONE TADIE.... ..o et s s e e s e aba e e e s eanees 146
YA T (< 1 L= [0 TR TRTRRRRRSRRRR 147

NS Ao (o [F= AT A07= 0 (=] 107 & (0P U 148

A.4. DEEE AN IMBOE MACTO......cvveeieeieeitieeeteeeeteeeeteeeeteeessaeesessesssbseesbeessbeesssresssnsessanes 149

A.5. REDIACE AN IMAOE MBCKO......eeeiiuvieiireieiitieeeiteeeeireeeetesesbesessaesssseesssseessseessbeessareessnees 150

A.6. EXtract an iMag@ MACIO.........ccocueeeirieeiteeeereeeeteeeeaee e sete e e s steessbeessnbeeseabesseneeeeabeeesanes 152

A.7. Clean the database...........ccueiiiiie i s 153

y < T I 111010 S (0 1o (0 SO SPR 153

viii

1. Introduction

1.1. Introductory comments

Although I was going to write a book on this subject, I have been discouraged from
completing this project. I opted, instead, to create this somewhat fragmented, less time
intensive document. Hopefully you will find it useful.

This document is not even remotely finished. If you find errors, or have some favorite
additions, then please do the following:

1) Download the latest version of the document.

2) Make note of the “Last Modified” date (Thursday, March 12, 2009 at 08:29:19 PM)
and the revision number (35) so that I will know if you have the latest document
version, which makes my life much easier.

3) Time permitting, warn me ahead of time so that I can send you the latest version if |
have not posted it.

4) Use Edit > Changes > Record to turn on edit tracking.

5) I attempted to use the the styles and formatting recommended at the OOo Authors web
site (see http://www.oooauthors.org/). The primary difference is that I do not embed
place graphics in a frame with the caption. I prefer them to be in their own paragraph
and not in a frame. I experienced bugs related to using frames for this, which caused
me to lose information from this document; the information is still missing today.

6) Send the modified document to me.

I will incorporate the changes into the latest document and reformat the document to be
compliant with the OOo Authors web site criteria if required. I really do appreciate bug
reports, and if you desire to add sections or material, I am open to that as well. Thanks to
Szymon Nikliborc, who provided the first bug report.

1.2. Document organization and introduction

The database component in OpenOffice.org (OO0) contains numerous complexities. In some
ways the vast capabilities are mature, and in others they are not. I have solved many problems
using Base and I add them to this document as I solve them and as I have time to add them.
The advantage is that all of the problems end up in a single document. The disadvantage,
however, is that coverage is disjointed and not consistent. Sometimes I assume that you know
nothing about Base, and at other times I might assume that you are an expert user.

I, Andrew Pitonyak, was unable to find significant documentation dealing specifically with
binary data stored in a Base document, so I decided to figure out how it works. This
document starts by demonstrating how to use binary fields, with an emphasis on using macros
to manipulate the data.

http://www.oooauthors.org/

TIP The OO0 Write version of this document contains the macros described in this document.
The document also contains buttons that call the macros contained in this document. For
obvious reasons, if this document is converted to a different format, such as a PDF or
DOC, the macros will be lost and the buttons will not call the macros. In other words, if
you are reading a PDF version of the document, the buttons don't work.

The initial section dealing with binary data provides easy steps for creating your first database.
The binary section also demonstrates many useful methods such as creating and opening
forms using macros.

This document contains a library named AndrewBase, which contains the main macros shown
in this document. Buttons are inserted throughout the document to call the macros shown in
the text. When OOo loads a document, only the Standard library is loaded, which means that
the macros stored in the AndrewBase library are not available to be called from a button. The
standard library contains helper macros, that wrap calls to the macros of interest. A typical
helper macro, CallCreateBinaryDB, is shown in Listing 1. All helper macros start by calling
LoadDBLibs, which loads the library containing the worker macros.

Listing 1: Macro used to create the empty Base document.

Const sDBBaseNanme$ = "BaseFi el dDB. odb"

Sub LoadDBLi bs()
If NOT BasicLibraries.isLibrarylLoaded("AndrewBase") Then
Basi cLi brari es. LoadLi brary("AndrewBase")
End |f
End sub

Sub Cal | Creat eBi nar yDB()

LoadDBLi bs()

Cr eat eBi nar yDB(Get Sour ceCodeDi r () & sDBBaseNane, True)
End Sub

Notice that the computer code uses syntax highlighting as is done by the Basic IDE. I feel that
this enhances the readability of the code, so I wrote a macro that will search the entire
document for computer code, and then create syntax highlighting.

1.3. Prepare for big changes in OOo 3.0

In OOo 2.x, a Base document can not contain macros, but the contained reports and forms
can. In OOo 3.x, this is to be reversed; a Base document can contain macros and contained
reports and forms can not.

http://wiki.services.openoffice.org/wiki/Macros_in Database Documents

ThisComponent will also change. In OOo 2.x, ThisComponent refers to the single document
that was last active before the database document became active. With version 3.x,
ThisComponent will always be the component which was active when the macro was invoked.
This holds no matter whether the macro is located in the database document's or in the
application's Basic library. Also, it holds no matter whether the active component is a database
document or any of its sub components. In particular, the various designers are also available
as ThisComponent.

The variable ThisDatabaseDocument will be introduced for basic macros embedded in a Base
document, and always refer to the Base document.

As of October 7, 2008, this has not yet occurred. I expect it in say version 3.1.

2. Storing images (binary data) in Base

In this section, we will create a database that contains a field of type Image. An Image field is
really a “long variable binary” field, which means that it can contain any type of binary data, not
just images. If I choose to store images in my binary field, then I can use an Image viewing
control in a form to see the images—and seeing the pretty picture allows for immediate feedback
that things are working.

2.1. Create the initial Base document

You need a base document that will contain the image data.

2.1.1. Using the GUI
Use the following step by step instructions to create a sample database for use.
1) Use File > New Database to open the new database wizard.
2) Select the Create a new database radio button and click Next.

3) Select the No, do not register the database radio button, the Open the database for editing
checkbox, and click Finish.

4) Name the database ImageDB and click Save.

2.1.2. Using a macro

Creating a Base document using a macro is easy, but it is easy to make a mistake in the details.
There are a few key items to create a Base document.

1) Use the DatabaseContext to create an empty data source.
2) Set the data source URL to sdbc:embedded:hsqldb for an internal HSQL database.

3) Obtain the database document from the data source and save it. You can not add tables to a
Base document until after it has been saved.

The macro in Listing 2 demonstrates how to create a Base document. If the database URL is not
specified, then a dialog asks for a file name. The filter list, which contains the Base file extensions
is obtained from Listing 59, and then the macro in Listing 58 displays the dialog asking for the

new database name. Use the Create Database button Create Database to run the wrapper
method which calls CreateBinaryDB (see Listing I and Listing 2); this will create the
BaseFieldDB.odb file in the same directory used by this document (see Listing 57).

Listing 2. Create an empty Base document.

REM Use " Option Conpatible", or you can not use a default argunent.
Sub CreateBi naryDB(Optional dbURL$ = "", Optional bVerbose = Fal se)
Di m oDBCont ext ' Dat abaseCont ext servi ce.

OpenOffice.org Base 4

Storing images (binary data) in Base

Di m oDB ' Dat abase data source.

REM No URL Specified, get one.

If dbURL = "" Then dbURL = ChooseAFil e(OCoBaseFilters(), False)
REM Still No URL Specified, exit.
If dbURL = "" Then Exit Sub

If FileExists(dbURL) Then
If bVerbose Then Print "The file already exists.”

El se
If bVerbose Then Print "Creating " & dbURL
oDBCont ext = createUnoService("com sun. star.sdb. Dat abaseContext")
oDB = oDBCont ext . creat el nstance()
oDB. URL = "sdbc: enbedded: hsql db"
oDB. Dat abaseDocunent . st or eAsURL(dbURL, Array())

End |f

End Sub

2.1.3. Using a macro to open the wizard

This is a little snippet that I have not tested, but according to Sevastian Foglia

(sevastian.foglia@yacme.com), the following should work:

Listing 3: Start the Base document wizard using a macro.

SURL = "private:factory/sdatabase?l nteractive"”
doc = StarDesktop. | oadConponent FromJRL(sURL, " _bl ank", 0, args)

2.2. Create the table

The image database is intentionally very simple (see Table 2). The field names use uppercase
characters and contain no spaces because it simplifies the SQL—you do not have to quote the
field names in SQL statements. The annoying thing about quoting, is that the same quote
character is not always used. The query builder might require that non-uppercase characters be
quoted using a double quote character ("), but an SQL statement in a macro might require a back-
tic (7). A macro that deals with this problem is demonstrated in Listing 77.

Table 2. Fields in the binary table.

Field Type
ID Integer [INTEGER] Table's primary key
‘ NAME ‘ Text [VARCHAR] ‘ Name for the data, most likely, a file name.
DATA Image [LONGVARBINARY] The binary data.

2.2.1. Using the GUI

Now, create the table to hold the image. Select Tables from the left hand side and then choose the
Create Table in Design View task. Enter the fields in the table design window.

1) Create the primary key.

OpenOffice.org Base 5

mailto:sevastian@linuxtime.it

Storing images (binary data) in Base

1) Set the Field Name to ID.

2) Set the Field Type to Integer.

3) Set Auto Value to Yes.

4) Right click to the left of the field name and choose Primary Key.
2) Create the name field.

1) Set the Field Name to NAME.

2) Set the Field Type to Text [VARCHAR].

3) Set Entry required to Yes.

4) Set Length to 255.
3) Create the image field.

1) Set the Field Name to DATA.

2) Set the Field Type to Image.

3) Set Entry required to No.

4) Leave the Length at the default value of 2147483647.

Use File > Save to save the table. Name the table BINDATA, and then use File > Close to close
the table design window.

Caution Saving the table saves the table definition into the Base document, but the document itself
f has not been saved. You must also save the Base document.

2.2.2. Using a macro

Use the Create Binary Tables button Create Binary Tables to run the macro in Listing 4. If the

table exists, it will be deleted and recreated. Also, if the document does not yet exist, it will be
created. The macro uses the standard OOo API.

Listing 4. Create a table in a Base document using the API.

REM Create the database specified by dbURL. If it
REM does not exist, then it is created.
REM | f bForceNew is True, then an existing table is deleted first.
REM I f bVerbose is True, progress nmessages are printed.
Sub CreateBinaryTabl es(dbURL As Stri ng,
Optional bForceNew = Fal se, _
Optional bVerbose = Fal se)

Di m sTabl eNanme$ "The nane of the table to creat.
Di m oTabl e "A table in the database.
Di m oTabl es "Tabl es in the docunent

Di m oTabl eDescriptor 'Defines a table and how it | ooks.

OpenOffice.org Base 6

Storing images (binary data) in Base

Di m oCol s 'The colums for a table.

Di m oCol "A single columm descriptor.
Di m oCon ' Dat abase connecti on.

Di m oBaseCont ext ' Dat abase context service.
Di m oDB ' Dat abase data source.

REM I f the database does not exist, then create it.
If NOT Fil eExi sts(dbURL) Then

Cr eat eBi nar yDB(dbURL, bVerbose)
End If

REM Use the DatabaseContext to get a reference to the database.
oBaseCont ext = CreateUnoService("com sun. star.sdb. Dat abaseCont ext")
oDB = oBaseCont ext . get ByNanme(dbURL)

oCon = oDB. get Connection("", "")

oTabl es = oCon. get Tabl es()

sTabl eNane$ = "Bl NDATA"
I f oTabl es. hasByNane(sTabl eNane$) Then
I f bForceNew Then
I f bVerbose Then Print "Deleting table " & sTabl eNane
oTabl es. dr opByNane(sTabl eNane)
oDB. Dat abaseDocunent . store()
' oCon. cl ose()
"Exit Sub
El se
If bVerbose Then Print "Table " & sTableNane & " already exists!”
oCon. cose()
Exit Sub
End If
End If

REM For now, this should always be True

If NOT oTabl es. hasByNane(sTabl eNane$) Then
oTabl eDescri ptor = oTabl es. creat eDat aDescri ptor ()
oTabl eDescri ptor. Name = sTabl eNane$

0Col s = oTabl eDescri ptor. get Col utms()

0Col = oCol s. createDat aDescri ptor ()

oCol . Nane = "I D"

oCol . Type = com sun. star. sdbc. Dat aType. | NTEGER

oCol . I sNul I abl e = com sun. star. sdbc. Col unmVal ue. NO_NULLS
oCol . | sAut ol ncrenent = True

oCol . Precision = 10

oCol . Description = "Primary Key"

0oCol s. appendByDescri pt or (oCol)

oCol . Nane = " NAME"
oCol . Type = com sun. star. sdbc. Dat aType. VARCHAR

oCol . Description = "Fil enane”
oCol . Preci sion = 255
oCol . I sAut ol ncrenent = Fal se

0Col s. appendByDescri pt or (oCol)

OpenOffice.org Base 7

Storing images (binary data) in Base

oCol . Nane " DATA"

oCol . Type com sun. st ar. sdbc. Dat aType. LONGVARBI NARY
oCol . Preci sion = 2147483647

oCol . I sNul I abl e = com sun. star. sdbc. Col unmVal ue. NULLABLE
oCol . Description = "Binary Data"

0oCol s. appendByDescri pt or (oCol)

oTabl es. appendByDescri pt or (oTabl eDescri pt or)
End If

REM Do not dispose the database context or you will NOT be able to
REM get it back without restarting OpenOfice. org.
REM Store the associ ated docunent to persist the changes to disk.
oDB. Dat abaseDocunent . st ore()
oCon. cl ose()
I f bVerbose Then Print "Table " & sTableNane & " created!"

End Sub

TIP In my testing, I wanted to completely delete an OOo Base document and start over.
Unfortunately, after using a Base document, OOo holds the file open, so OOo must be
shutdown and restarted before the document can be deleted. This is a known bug in OOo
version 2.0 and should be fixed in OO0 2.01.

2.2.3. Using SQL statements to modify tables

You can create and manage tables using SQL statements rather than the OOo API. The SQL
statements differ depending on the back-end database system, so the SQL is database dependent
—this is never a good thing. The OO0 API does a good job of insulating you from the system
specific details. Unfortunately, some things just can not be done using the API. For example, as of
OOo version 2.0, you can only set default values to a constant value. It is not possible to default a
time or date field to the current date or time—this is trivial using SQL.

2.2.4. Refresh the tables

Care must be taken when using SQL to modify a table, because the OO0 GUI will not
automatically notice that changes have been made. You must refresh the internal OOo structures.
You can use View > Refresh Tables from the OOo Base GUI. A kind macro programmer will
perform this task in the macro that modifies the database structure. Refreshing the table view
should be simple.

Listing 5: Refresh the tables in an OOo Base document should be simple.

oCon. get Tabl es() . refresh()
Unfortunately, calling refresh (see Listing 5) does not always work; in my limited testing, it did
not properly update when deleting tables, and it sometimes worked when adding a table. Using a
dispatch (see Listing 6), worked for my few test cases. Unfortunately, the database must be
loaded in the GUI to use a dispatch; hopefully this will be fixed in version 2.01. ??

Listing 6. Refresh the tables in an OOo Base document using a dispatch.

REM Usi ng SQL DDL conmands to nodify the table structure bypasses

OpenOffice.org Base 8

Storing images (binary data) in Base

REM t he normal OOCo API, which does not give OOo an opportunity to
REM notice that the table structure has changed. Tell OO0 to

REM refresh the table view

Sub RefreshTabl es(sURL$, oCon)
Di m oDoc "Docunent to refresh.
Dim oDi sp 'Dispatch hel per.
Dim oFrane ' Current frane.

REM Thi s shoul d be the sane as

REM oCon. get Tabl es() . refresh()

REM but it is not...

oDoc = Fi ndConponent WthURL(sURL, Fal se)

If NOT I sNULL(oDOC) AND NOT | sEnmpty(oDoc) Then

oDi sp = createUnoService("com sun. star.frane. Di spat chHel per")

oFranme = oDoc. get Current Controller().getFrane()
oDi sp. execut eDi spat ch(oFrane, ". uno: DBRef r eshTabl es",
End |f
End Sub

2.2.5. Creating and deleting tables using SQL

", 0, Array())

The macro in Listing 7 performs the following tasks, which means that it demonstrates how to do

them using SQL:

1) Determine if a table exists. To determine how to do this, I examined the meta data from the

connection (see Listing 35 and following).
2) Delete a table.

3) Create a new table.

Create Table Using SQL If the table exists, it is deleted and then the macro returns. If the table
does not exist, then it is created. If any forms or other items rely on this table, then they will also

be deleted; you have been warned.

Listing 7: Create a table in a Base document using the APL

REM Create the database specified by dbURL. If it
REM does not exist, then it is created.

REM I f bForceNew is True, then an existing table is deleted first.

REM | f bVerbose is True, progress nessages are printed.
Sub Creat eBi naryTabl esUseSQL(dbURL As String,
Optional bForceNew = Fal se,
Optional bVerbose = Fal se)
sTabl eNane$ ' The name of the table to creat.
oTabl e "A table in the database.
oTabl es ' Tables in the docunment

oCol s ' The columms for a table.
oCol "A single colum descriptor.
oCon ' Dat abase connecti on.
oBaseCont ext ' Dat abase context service.
oDB ' Dat abase data source.

vBvBvvvvvvavEvRv)
33333333333

nCount As Long ' Counting variable.

oTabl eDescriptor 'Defines a table and how it | ooks.

oResul t "Restul of executing an SQL statenent.

OpenOffice.org Base

Storing images (binary data) in Base

Di m oSt nt
Dim sSql $

REM | f the database does not exist, then create it.
If NOT Fil eExists(dbURL) Then

Cr eat eBi nar yDB(dbURL, bVer bose)
End If

REM Use the DatabaseContext to get a reference to the database.
oBaseCont ext = Creat eUnoService("com sun. star. sdb. Dat abaseCont ext™")
oDB = oBaseCont ext . get ByNanme(dbURL)

oCon = oDB. get Connection("", "")

oStm = oCon.createStatenment ()
sTabl eName$ = " Bl NDATA"

REM First, check to see if the table exists!

sSql = "select count(*) from | NFORVATI ON_SCHEMA. SYSTEM TABLES " & _
"where TABLE _NAME='" & sTableNane & "' " & _
"AND TABLE_SCHEM-=' PUBLI C "

nCount = 0

oResult = oStnt.executeQuery(sSql)

If NOT IsNull (oResult) AND NOT |sEnpty(oResult) Then
oResul t. Next ()
nCount = oResul t.getLong(1)

End |f

If nCount <> 0 Then
I f bForceNew Then
If bVerbose Then Print "Deleting table " & sTabl eNane
REM The default behavior is to use RESTRICT rather than CASCADE.
REM RESTRI CT prevents the deletion if other things depend on
REM t hi s tabl e.
sSql = "DROP TABLE " & _
DBQuot eNanme(sTabl enane, oCon) & _
"I'F EXI STS CASCADE"
oSt nt . execut eQuery(sSql)
Ref reshTabl es(dbURL$, oCon)
oCon. cl ose()
Exit Sub
El se
I f bVerbose Then Print "Table " & sTableNane & " already exists!"
oCon. cl ose()
Exit Sub
End If
End |f

REM | did not quote the field names because | know t hat
REM t hey are all uppercase with nothing special about them
sSgl = "CREATE TABLE " & _

DBQuot eNane(sTabl eNane, oCon) & _

"(1'D INTEGER NOT NULL IDENTITY PRI MARY KEY, " & _

" NAME VARCHAR(255) NULL, " & _

OpenOffice.org Base

10

Storing images (binary data) in Base

' DATA LONGVARBI NARY NULL) "

oSt nt . execut eQuery(sSql)
If bVerbose Then Print "Created table in " & dbURL
Ref reshTabl es(dbURL$, oCon)

REM Do not di spose the database context or you will NOT be able to
REM get it back without restarting OpenOfice. org.
REM Store the associated docunment to persist the changes to disk.
oDB. Dat abaseDocunent . st ore()
oCon. cl ose()
If bVerbose Then Print "Table " & sTableNane & " created!"

End Sub

2.2.6. Increase a field's length

I needed to increase the length of a field, but was unable to save my change. OOo offers to delete
the field and insert a new field. This removes all data associated with that field. I used the
following method to increase the length of the text field. In the following example, I modify the
field named “COMMENT” in the ITEM table.

1) From the Base document, right click on the table and choose edit.

2) Rename the COMMENT field to something else such as COMMENT1 and save the
change.

3) Add a new field named COMMENT with the desired length or properties and save the
change.

4) From the Base document, use Tools > SQL to open the Execute SQL Statement dialog.

5) Enter the desired SQL statement to copy the content from field COMMENTI to
COMMENT; I used “UPDATE ITEM SET COMMENT=COMMENT1”. Remember that
ITEM is the table name.

6) Open the ITEM table and verify that the data has been copied.

7) From the table design window (remember right click on the table and choose edit), delete
the old COMMENT1 field leaving only the new COMMENT field.

These steps may require a few changes if the field is used someplace else (for example, in a
relation set using Tools > Relationships.

2.3. Create a form

2.3.1. Using the GUI

I want a simple form so that I can insert images. Although OOo calls a LONGVARBINARY field

an Image field, you can store any type of binary data in an Image field. Although there is an Image
field that is able to display images, an automated binary field viewer does not exist. OOo does not
assume that all binary fields contain image data, which is why binary fields are not added to a form
using the form wizard.

OpenOffice.org Base 11

Storing images (binary data) in Base

TIP To add an Image control to view an Image field, you must manually edit the form after using
the form wizard.

1) Create the initial form using the Wizard

1) Select Forms on the left hand side and then choose the Use Wizard to Create Form
task.

2) Set the tables or queries field Table:BINDATA.

3) Click on the >> button to add all available fields to the form. This will only include the
ID and NAME field. Image fields are not included in the wizard in OOo version 2.0.

4) Click Next to continue to the sub forms page.
5) Click Next to continue without creating a sub form.

6) Select the Columnar for a single record per form and click Next. If you click Finish,
the form will automatically be saved using the name BINDATA, which corresponds to
the table name.

Label placement

« Align left

Align right
Arrangement of the main form
F.

-0 =0 =1 E==== R T
= =l = [l
= = [| = =

Columnar - Labels Left
-0 -0 =I= E==== R T
= [= [
== =1= = =

7) Ignore the data entry mode and click Next.
8) Ignore the styles and click Next.
9) Set the name to “BINDATAImage” and click Finish.
2) The form is automatically opened for editing. Close the form using File > Close.
3) Now, open the form in edit mode and add an Image control.
1) Select Forms on the left hand side.
2) Right click on the BINDATAImage form created using the wizard and choose Edit.

OpenOffice.org Base 12

Storing images (binary data) in Base

3) The Form Controls toolbar should already be visible. You can check this using View >
Toolbars; there should be a check mark next to Form Controls.

%
4) Click on the more controls icon ("7') to open the more controls toolbar.
Ty
5) Click on the Image control icon (1=) and then draw out the control on the form. Be
warned that the Image control icon is very similar to the Image Button icon.

6) Right click on the newly inserted control and choose Control to open the control
properties dialog.

7) On the Data tab, set the Data field to DATA, which contains the binary data. If we
happen to store non-image data, this is likely to be a problem for the image control,
which now expects this data to be an image. Do not use this form if you store non-
image data in the DATA field.

8) Use File > Save to save the form into the Base document.
9) Use File > Close to close the form.

4) The form has only been saved into the Base document, but now you must save the Base
document. Use File > Save to save the Base document.

2.3.2. Using a macro

Stated simply, a form is a document that contains controls. In this case, the controls are connected
to a database. The document's draw page contains shapes and forms. Each control is associated
with a shape, the shape dictates where the shape is displayed. The macro in Listing 8 creates a
simple form, which is very similar to the form created using the form wizard; there are a few
notable differences, however.

The macro in Listing 8 creates one shape for each control. There is a separate shape for each data
control and each label. The form wizard creates an additional GroupShape for each control/label
pair. The group shape is used to keep a data control with its label. When the form is in design
mode and you select a control, you are selecting the shape. If a control is grouped with its label,
you select the two controls together because you are selecting the group shape rather than the
individual controls. The disadvantage is that you can not easily select a specific control or its label
to edit the individual properties—use the form navigator to select each individual component,
even when they are grouped with others.

The form wizard in OOo version 2.0 creates forms using the .sxw file extension used in OOo
version 1.x. The macro in Listing 8 creates a Writer document using the newer .odt file extension.

The macro in Listing 8§ creates a Writer document as a form and stores it in the same directory as
the Base document. After the form is created, it is added into the Base document. Although I
have not tested this, there is no particular reason that an existing document can not be added into
a Base document using the code shown in this macro. If you choose to do this, please report your
results. 7?

OpenOffice.org Base 13

Storing images (binary data) in Base

Another thing to consider is that a form does not really imply that a Writer document is used. My
guess is that you should be able to create and store a Calc document into a Base document. If
you try this, let me know how it works. ??

Create A Form

Listing 8: Create and add a form to a Base document.
Sub AddBi nFor m(sDBURL$, sTabl eNane$)

Di m oDoc '"Newl y created Form docunent

Di m oDr awPage ' Draw page for the form docunent.

Dim s$ "CGeneric tenporary string variable.

Di m oDBDoc ' The Base dat abase docunent.

Di m sDBNane$ "Nanme portion from sDBURL.

Di m sFor mURLS$ "URL where the tenmporary formis stored.

Di m oFor nDocs " Form docunents in the Base docunent.

Di m sFor mNane$ "Form nanme as stored in the Baes form docunents.
Di m oDocDef " Docunent defition of the formstored in Base.
Di m NoArgs() As new com sun. star. beans. PropertyVal ue

Di m oProps(2) as new com sun. star. beans. PropertyVal ue

REM Create a new document for the form
s$ = "private:factory/switer"
oDoc = StarDesktop. LoadConponent FromURL(s$, " _default", 0, NoArgs())

REM The formw |l in edit node, rather than design node, by default.
oDoc. Appl yFor mDesi gnMbde = Fal se

Di m oVi ewSet ti ngs

oVi ewSettings = oDoc. CurrentController.ViewSettings
oVi ewSet t i ngs. ShowTabl eBoundari es = Fal se

oVi ewSet ti ngs. ShowOnl i neLayout = True

REM Cet the document's draw page and force the top level formto
REM exi st and be naned "Standard".
oDr awPage = oDoc. DrawPage
I f oDrawPage. Forns. Count = 0 Then
s$ = "com sun. star.form conponent . For n{
oDBForm = oDoc. Creat el nst ance(s$)
oDr awpage. Forns. I nsert Byl ndex (0, oDBForm
El se
oDBFor m = oDr awPage. For ns. Get Byl ndex(0)
End |f
oDBForm Nane = "Standard"

REM Cause the formto use the table as a datasource.
oDBFor m Dat aSour ceNane = sDBURL

oDBFor m Command = sTabl eNane

oDBFor m CommandType = com sun. st ar. sdb. CoomandType. TABLE

REM Servi ce nanes for controls.

Di m sLabel $: sLabel = "com sun.star.form conponent. Fi xedText"
Di m oContr ol "A control to insert into the form
Di m oShape "Control's shape in the draw page.

OpenOffice.org Base 14

Storing images (binary data) in Base

Di m oLControl 'Label control.
Di m oLShape 'Label control's shape in the draw page.

REM Anchor the controls to paragraphs.
Di m | Anchor As Long
| Anchor = com sun. star.text. Text Cont ent Anchor Type. AT_PARAGRAPH

REM I nsert the I D | abel

oLControl = oDoc. Createl nstance(sLabel $)
oLControl . Label = "ID"
oLControl .Nane = "I bl|D"

oLShape = oDoc. Creat el nstance("com sun. star. draw ng. Cont r ol Shape")
oLShape. Si ze = createSi ze(1222, 443)

oLShape. Position = createPoint (1000, 1104)

oLShape. Anchor Type = | Anchor

oLShape. control = oLContr ol

REM Do not add the | abel control yet!

REM I nsert the ID formatted text field
s$ = "com sun. star.form conponent. FornmattedFi el d"
oControl = oDoc. Createl nstance(s$)
oControl . Label Control = oLControl
oControl . BackgroundCol or = 14540253
oControl .Border =1

oControl .DataField = "I D"

oControl . Effecti veMax = 2147483647
oControl .EffectiveMn = -2147483648
oControl . EnforceFormat = True

oControl . Hi del nactiveSel ection = True
oControl.Name = "fnt|D'

oControl . Treat AsNunmber = True

oShape = oDoc. Creat el nstance("com sun. star. draw ng. Contr ol Shape")
oShape. Si ze = createSi ze(2150, 651)

oShape. Position = createPoint (2522, 1000)

oShape. Anchor Type = | Anchor

oShape. control = oControl

oDr awpage. Add(oLShape)

oDr awpage. Add(oShape)

REM I nsert the Nane | abel

oLControl = oDoc. Createl nstance(slLabel)
oLControl . Label = "NAWE"
oLControl . Name = "I bl Nane"

oLShape = oDoc. Creat el nstance("com sun. star. draw ng. Cont r ol Shape")
oLShape. Si ze = createSi ze(1222, 443)

oLShape. Position = createPoint (1000, 1954)

oLShape. Anchor Type = | Anchor

oLShape. control = oLContr ol

REM I nsert the Nanme text field
s$ = "com sun. star.form conponent. TextFi el d"
oControl = oDoc. Createl nstance(s$)

OpenOffice.org Base 15

Storing images (binary data) in Base

oCont rol . BackgroundCol or = 14540253
oControl .Border =1

oControl . DataFi el d = " NAVE"

oControl . Label Control = oLControl
oControl . Name = "t xt NAVE"

oShape = oDoc. Creat el nstance("com sun. star. draw ng. Control Shape")
oShape. Si ze = createSi ze(8026, 651)

oShape. Positi on = createPoi nt (2522, 1850)

oShape. Anchor Type = | Anchor

oShape. control = oControl

oDr awpage. Add(oLShape)

oDr awpage. Add(oShape)

REM Add the | nmage control

s$ = "com sun. star.form conponent. Dat abasel mageControl "
oControl = oDoc. Createl nstance(s$)

oCont rol . BackgroundCol or = 14540253

oControl .Border =1

oControl . Dat aFi el d = "DATA"

oControl . Name = "i ngDATA"

oShape = oDoc. Createl nstance("com sun. star. draw ng. Control Shape")
oShape. Si ze = createSi ze(10504, 7835)

oShape. Posi ti on = createPoi nt (2522, 3332)

oShape. Anchor Type = | Anchor

oShape. control = oControl

oDr awpage. Add(oShape)

REM At this point, we have a Form which is a Witer docunent.
REM Store the stand alone formto disk. This formis usable as is.

REM Use sone net hods fromthe Tools library.

If NOT d obal Scope. Basi cLi braries.isLibraryLoaded("Tool s") Then
G obal Scope. Basi cLi brari es. LoadLi brary("Tool s")

End |f

sDBNanme = Get Fi | eNanmeW t hout Ext ensi on(sDBURL, "/")

sFormName = "Form " & sTabl eNane
s$ = DirectoryNaneout of Pat h(sDBURL, "/") & "/"
sFormJRL = s$ & "Form " & sDBNane & " " & sTableNane & ".odt"

REM Store the formto disk and then close the docunent.
oDoc. StoreAsUrl (sFormJrl, NoArgs())
oDoc. cl ose(True)

REM Now, convert the formon disk to a docunent defition and
REM store it in a Base docunent.
oDBDoc = Fi ndConponent Wt hURL(sDBURL$, True)
oFornDocs = oDBDoc. get For mDocunment s()
I f oFornDocs. hasByNane(sFor mName) Then
Print "Removing " & sFormNane & " from the database"
oFor mDocs. r enoveByNane(sFor mNane)
End |f

OpenOffice.org Base 16

Storing images (binary data) in Base

oProps(0). Name = "Nane"

oProps(0). Val ue = sFor mNane
oProps(1).Name = "Parent”

oProps(1). Value = oFormDocs()
oProps(2).Name = "URL"

oProps(2).Value = sFormurl

s$ = "com sun. star.sdb. Docunent Defi ni tion"

oDocDef = oFornDocs. createl nstanceW t hArgument s(s$, oProps())

oFor nDocs. i nsert byNanme(sFor mNane, oDocDef)
Print "Added " & sFormNane & " to the database"
End Sub

2.4. Open a form using a macro

The macro in Listing 9 performs the following operations:
1) Open a database document.
2) Allow the user to select a form.
3) Open the form using the macro OpenFormInDB1().

Listing 9: Choose and open a form from a database.

Sub ChooseAndQOpenFor m nDB(sDBURL$)
Di m oDoc
Di m oFor ns
Di m sFor mNane$
Dim s$

REM Fi nd the dat abase document and open it if required.
oDoc = Fi ndConponent Wt hURL(sDBURLS$, True)
If IsNULL(oDoc) OR |sEnpty(oDoc) Then
Print "The docunent was not found"
Exit Sub
End If

REM Choose a formto open!
oForns = oDoc. get For mDocunent s()
If oForms.getCount() < 1 Then
Print "The database contains no forns"
El sel f oForns. getCount() = 1 Then
REM I f there is ONLY one form then open the one fornl
Dim x()
x() = oForns. get El enent Nanes()
sFormNane = x(0)
El se
s$ = "Choose A Form To Open"
sFormNane = Di al ogSel ectltem(oForns. get El enent Nanes(),

End If

If sFormNane = "" Then Exit Sub

OpenFor m nDB1(sDBURL$, sFor mNane$)
End Sub

OpenOffice.org Base

17

Storing images (binary data) in Base

The form can now be loaded as shown in Listing 10. The form can be loaded in design mode
without an active connection, but it is required for all other modes.

Choose And Open Form You will not be asked to choose a form if the database only contains
one form.

Listing 10: Load a form from a database using LoadComponentFromURL.
Functi on OpenForm nDB1(sDBURL$, sFormNane$)

Di m oDBDoc ' The dat abase docunent that contains the form

Di m oFor nDef 'com sun. star. sdb. Docunment Definition of the form
Di m oFor nDocs ' The form docunents contai ner.

Di m oFor nDoc ' The actual form docunent.

Di m oCon ' Dat abase connecti on.

Di m oParns() As New com sun. star. beans. PropertyVal ue

Di m oBaseCont ext 'd obal database context service.

Di m oDat aBase ' Dat abase obtained fromthe database context.

REM Fi nd the dat abase docunment and open it if required.
oDBDoc = Fi ndConponent Wt hURL(sDBURLS, True)
If IsNULL(oDBDoc) OR | sEnpty(oDBDoc) Then
Print "The docunent was not found"
Exit Function
End If

oFornDocs = oDBDoc. get For nDocunent s()

I f NOT oFornmDocs. hasByNane(sFor mNane) Then
Print "The database does not have a form naned " & sFornNane
Exit Function

End |f

oFor nDef = oDBDoc. get For rDocunent s() . get ByName(sFor mNane)

REM Wt hout this, the form opens and then disappears!

REM This is a bug that will hopefully be fixed in OO0 version 2.0.1.
REM oDumyFor nDef is defined in the nmain nodul e.

oDumyFor nDef = oFor mDef

oBaseCont ext = Creat eUnoService("com sun. star.sdb. Dat abaseCont ext")
oDat aBase = oBaseCont ext . get ByNanme(sDBURL)
oCon = oDat aBase. get Connection("", "")
REM OpenMode is runored to support "open", "openDesign",
REM and "openFor Mai | "
AppendProperty(oParns(), "OpenMbde", "open")
AppendProperty(oParnms(), "ActiveConnection", oCon)
oFor nDoc = oFor nDocs. | oadConponent FromJRL(sFor mNane, "", 0, oParns())
OpenForm nDB1() = oFor mDoc
REM | f you close the connection, then the formloses its connection.
REM The requirement of an Active connection should be renoved,
REM hopeful ly in version 2.0.1.
REM This really looks like a resource |eak, but | have not checked.
REM oCon. cl ose()

End Function

OpenOffice.org Base 18

Storing images (binary data) in Base

TIP The macro in Listing 10 obtains a reference to the database document using the method
FindComponentWithURL(). The database document is available from the database context
using the DatabaseDocument property.

oDat aBase = oBaseCont ext . get ByNanme(sDBURL)

oFor nDoc = oDat aBase. Dat abaseDocunent
In OOo version 2.0.1, you should be able to load a form without loading the document. In
OO0 version 2.0, this causes a crash.

Internally, loadComponentFromURL() performs an execute on the form definition object. The
macro in Listing 11, demonstrates how to use the execute method. A connection is not required to
open the form in design mode, but it is for all other modes (see Listing 12).

Listing 11: Load a form by executing the form definition.

Functi on OpenForm nDB2(sDBURL$, sFormNane$)

Di m oDBDoc ' The dat abase docunent that contains the form

Di m oFor nDef 'com sun. star. sdb. Docunent Definition of the form
Di m oFor mDocs ' The form docunents contai ner.

Di m oFor nDoc ' The actual form docunent.

Di m oBaseCont ext ' d obal database context service.

Di m oDat aBase ' Dat abase obtained fromthe database context.

Di m oCon ' Dat abase connecti on.

Di m oParns() As New com sun. star. beans. PropertyVal ue

REM Fi nd the dat abase docunment and open it if required.
oDBDoc = Fi ndConponent Wt hURL(sDBURL$, True)
If I'sNULL(oDBDoc) OR | sEnpty(oDBDoc) Then
Print "The document was not found"
Exit Function
End |f

oFornDocs = oDBDoc. get For mDocunent s()

I f NOT oFormDocs. hasByNanme(sFor mNane) Then
Print "The database does not have a form named " & sFormNane
Exit Function

End |f

oFor nDef = oDBDoc. get For rDocunent s() . get ByName(sFor mNane)

oBaseCont ext = Creat eUnoService("com sun. star. sdb. Dat abaseCont ext")
oDat aBase = oBaseCont ext . get ByNanme(sDBURL)

'oCon = oDat aBase. get Connection("", "")

AppendProperty(oParns(), "ActiveConnection", oCon)

Dimidentifier as Long
identifier = oFornDef.createConmandl dentifier()

Di m UcbConmand as new com sun. st ar. uch. Command

UcbConmmand. Name = "openDesign" 'O "open" or "openFor Mail"
Di m Argunents as new com sun. st ar. uch. OpenConmandAr gurent 2
Argunments. Mode = com sun. star. uch. OQpenMbde. DOCUMENT
UcbCommand. Argunent = Argunents

Di m envi ronnment as Obj ect
oFormDoc = oFor nDef . execute(UcbConmand, identifier, environnment)

OpenOffice.org Base 19

Storing images (binary data) in Base

OpenFor m nDB2() = oFor nDoc
End Function

The macro in Listing 12 demonstrates how to open a form with the current connection. The
onClickOpenForm method would be called from a form in the same Base document.

Listing 12: Load a form by executing the form definition.

Sub onCl i ckOpenForm (oEvent as variant)
OpenFor m(oEvent, "Form Nane")
End sub

Sub OpenForm(oEvent as variant, aFormNane as string) as variant
Dimargs(1) As New com sun. star. beans. PropertyVal ue
Di m cont ai ner as vari ant
Di m oCon

oCon = oEvent. Source. Model . Parent. Acti veConnecti on
cont ai ner = oCon. Par ent . Dat abaseDocument . For nDocunent s

args(0).Nanme = "ActiveConnection"
args(0). Value = oCon
args(1).Nane = "OpenMode"

args(1).Vvalue = "open"
cont ai ner. | oadConponent Fr onJRL(aFor mNane, " _bl ank", 0, args())
End Sub

2.5. Accessing the binary data

2.5.1. Adding binary data

Adding binary data using a macro is pretty easy. Unfortunately, it is not possible with Ooo version
2.0 to use an output stream directly, you must first read the data into an array of bytes. ?? check
this in version 2.04.

Listing 13: Add binary data to a table.

Sub I nsertlmge(sDBURLS, sFil eURLS)

Di m sFi | eNane$ "File to save in the database.
Di m oDat a() "Array of bytes.

Dim|Len As Long "Nurmber of bytes in the file.
Di m oDB ' Dat abase obj ect.

Di m oSt ream

Di m oSi npl eFi | eAccess

Di m oBaseCont ext

Di m oSt at enent

Dim sSQLS$

Di m oCon

Dims$

If NOT Fil eExists(sFileURL) Then
Print "Sorry, " & sFileURL & " does not exist"
Exit Sub

End |f

OpenOffice.org Base 20

Storing images (binary data) in Base

If NOT Fil eExists(sDBURL) Then
Cr eat eBi nar yDB(sDBURL, True)
End |f
Creat eBi naryTabl es(sDBURL, Fal se, Fal se)

REM Load the Tools library

If NOT d obal Scope. Basi cLi braries.isLibraryLoaded("Tool s") Then
G obal Scope. Basi cLi brari es. LoadLi brary("Tool s")

End If

REM Cal | nethods in the Tools library to parse the path.
sFil eNanme = Fil eNaneQut Of Pat h(sFil eURL, "/")

oBaseCont ext = CreateUnoService("com sun. star. sdb. Dat abaseCont ext")
oDB = oBaseCont ext . get ByName(sDBURL)
oCon = oDB. get Connection("", "")

s$ = "com sun. star. uch. Si npl eFi | eAccess"
oSi npl eFi | eAccess = createUnoService(s$)
oStream = oSi npl eFi | eAccess. openFi | eRead(sFil eURL)

REM Get the total length and then dinmension the array.
| Len = oStream getLengt h()

ReDi m oData(0 To |Len-1)

oStream readByt es(oData(), |Len)

REM Use a prepared statenent to insert the data.

REM Notice that | do not set the ID because it is

REM an aut o-val ue field.

sSQ = "insert into Bl NDATA (NAME, DATA) values (?, ?2)"
oSt at enent = oCon. PrepareSt at ement (sSQL)

oSt atenent . Set String(1, sFileNane)

REM | should be able to sinply use the stream
REM but there is a bug that prevents this. Too bad!
"oStatenent.setBinaryStream(2, oStream oStream getlLength())
oSt at enent . set Bytes(2, obData(), |Len)
oSt at enent . Execut eUpdat e()
oStream cl osel nput ()
Print "Inserted " & sFileNane
oCon. cl ose()
Exit Sub
End Sub

Add Binary File To DB The following example, selects a specific file and inserts the file into a
database. Although the macro name implies that an image is inserted, any file can be inserted. You
can add the same file many times, the macro neither knows, nor cares. It is likely to be a problem
when you try to extract data, however.

Listing 14: Select a file and add it to the database.

Sub Cal |l I nsertl|mage()
Di m sFi | eURL$
Di m sDBURL$

OpenOffice.org Base 21

Storing images (binary data) in Base

LoadDBLi bs()

sFil eURL = ChooseAFil e(G aphicFilters(), True)
If sFileURL = "" Then

Exit Sub
End |f

sDBURL = Get SourceCodeDir () & sDBBaseNane
I nsertl mage(sDBURLS, sFil eURLS)

End Sub

2.5.2. Extracting binary data

Extracting a binary file is easier than adding a binary file. The difficult part is determining which

file to extract. The following steps are performed in this example:

1) Connect to the database.

2) The database has a field/column, which contains a list of file names. When a graphic is
added to the database, the name field is set to contain the file name of the graphic. A result
set is generated, which contains a sorted list of graphic file names from the database.

3) Use the macro in Listing 83 to select a file name from the result set.

4) If the file exists, the chooseAFi | e() macro from Listing 58 allows the user to select a
different file.

5) If the file does not exist, then it is written into the same directory containing this document.

Extract A File For obvious reasons, you should add data to the database before you try to

extract it.

Listing 15: Extract a binary file from the database.

Sub Extract Bi naryFil e(sPat hURL$, sDBURL$)
sFi | eNane$
oDB ' Dat abase obj ect.
oSt ream

oSi npl eFi | eAccess

oBaseCont ext

oSt at enent

oResul t

sSQL$

oCon

sSURL$

s$

vvvvvavvvavavav]
33333333333

I f NOT Fil eExists(sDBURL) Then

'"File to save from the dat abase.

Print "The DB does not exist, sorry"
Exit Sub
End |f
oBaseCont ext = CreateUnoService("com sun. star.sdb. Dat abaseCont ext™)

oDB = oBaseCont ext . get ByNane(sDBURL)

oCon = oDB. get Connection("", "")

oSt at enent = oCon. createStatenment ()

sSQL = "SELECT NAME FROM BI NDATA ORDER BY NAME"

OpenOffice.org Base

22

OoResult = oSt atenent. executeQuery(sSQL)
sFil eName = Sel ItenfFronmResul t (oResult, 1, 100)
If sFileNane = "" Then
oCon. cl ose()
Exit Sub
End If

Storing images (binary data) in Base

sSQL = "SELECT DATA FROM Bl NDATA WHERE NAME='" & sFileName & """

oResult = oSt atenent. executeQuery(sSQL)
If Not IsNull (oResult) Then
oResul t. next ()

REM | could get a byte array, but this is easier.

oStream = oResul t.getBi naryStream 1)
If oResult.wasNull () Then
Print "The i mge was NULL"
El se
s = "com sun. star.uch. Si npl eFi | eAccess”
oSi npl eFi | eAccess = createUnoService(s)
sURL = sPathURL & sFil eNane
If FileExists(sURL) Then
sURL = ChooseAFi |l e$(G aphicFilters(), False,
End |f
If sSURL <> "" Then
oSi npl eFi | eAccess. writeFile(sURL, oStream)
Print "Wote " & sURL
End |If
End If
End |f
oCon. cl ose()
End Sub

?? Open a document directly into OOo!

SURL)

To open a document directly in OOo, I must obtain an appropriate file stream. Unfortunately, the
file stream returned from my query is not sufficient — it does not support all of the required
interfaces. I can accomplish this in Java by creating my own class that supports all of the requisite

interfaces, but I am using Basic in this document.

OpenOffice.org Base

23

3. One-To-Many relationships

I decided to write this chapter because I have difficulties figuring out the best way to represent
associated data in forms. By associated data, I mean a one to many, or many to many relationship.
Every attempt is made to spell things out in detail, so that even a first timer can at least follow
along. Things may become a bit more difficult when macros are introduced.

For the one-to-many relationship, consider a simplified inventory that associates items to a dealer.
The assumption is that each item comes from one, and only one dealer.

You need a base document that will contain the data. Use the following step by step instructions
to create a sample database for use.

1) Use File > New Database to open the new database wizard.
2) Select the Create a new database radio button and click Next.

3) Select the No, do not register the database radio button, the Open the database for editing
checkbox, and click Finish.

4) Name the database OooBaseAssociateData.odb and click Save.

3.1. Create the tables

The first table contains the dealer information (see 7able 3). The database is intentionally very
simple. A “useful” table is likely to contain more information. The field names use uppercase
characters and contain no spaces.

Table 3. Fields in the DEALER table.

Field Field Type Comment
ID Integer [INTEGER] Table's primary key
' NAME Text [VARCHAR] ' Dealer name. |

Maintaining “simple” theme, the item table is also very simple (see 7able 4). The DEALER field
links back to the ID field in the DEALER table.

Table 4. Fields in the ITEM table.

Field Field Type Comment
ID Integer [INTEGER] Table's primary key

ITEM Text [VARCHAR] ' Item name. |
DEALER Integer [INTEGER] Dealer ID.

OpenOffice.org Base 24

One-To-Many relationships

3.1.1. Create the DEALER table

Select Tables from the left hand side and then choose the Create Table in Design View task.
Enter the fields in the table design window.

1) Create the primary key.

1) Set the Field Name to ID.

2) Set the Field Type to Integer.

3) Set Auto Value to Yes.

4) Right click to the left of the field name and choose Primary Key.
2) Create the name field.

1) Set the Field Name to NAME.

2) Set the Field Type to Text [VARCHAR].

3) Set Entry required to Yes.

4) Keep the default length of 50.

Use File > Save to save the table. Name the table DEALER, and then use File > Close to close
the table design window.

3.1.2. Create the ITEM table

Although the ITEM table is easily created using the same method used to create the DEALER
table, it is always instructive to learn a new method; creating the ITEM table from the DEALER

table. Select Tables from the left hand side to view the existing tables.
1) Right click on the DEALER table and choose copy.
2) Right click near the DEALER table, but not on the table and choose paste.
1) Change the Table name from DEALER to ITEM
2) There is no data in the DEALER table yet, but we only need to copy the Definition.

3) Do not check Create primary key, this will create a new primary key that we do not
want.
4) Click Next to open the Apply columns dialog.

3) Use the Apply columns dialog to copy all of the fields from the left hand side to the right
hand side. This causes all of the fields to be added to the ITEM table. Click Next to open

the Type formatting dialog.

OpenOffice.org Base 25

One-To-Many relationships

A npply columns

Existing columns

D
NAME

‘ | Cancel | | < Back | Nexts | | Create J|

| | Help
Figure 1: Use the arrows to copy the fields.

4) Use the Type formatting dialog to set the field types. The existing field types are fine as is,

including using ID as the primary key. Click Create to create the ITEM table.

g Column information

Field Name [ID

Field Type Integer [INTE =
Auto-increment statement |IDENTITY
Length 10

Figure 2: Set the field types.

5) Add the DEALER field to the ITEM table.
1) Right click on the ITEM table and choose Edit.
2) Set the Field Name to DEALER.
3) Set the Field Type to Integer.
4) Set Entry required to Yes.
5) Leave Auto value as No.

6) Set the Default value to 0 (zero, not a letter). ?? In OOo version 2.0, this seems to
corrupt the database after it has been saved and reloaded.

7) Use File > Save to save the table modifications to the Base document.
8) Use File > Close to close the table design window.

6) Use File > Save for the Base document, to save the table modifications to disk.

OpenOffice.org Base

26

One-To-Many relationships

3.2. Define the data relationships

As already stated, it is assumed that each item comes from one, and only one dealer. Use Tools >
Relationships to open the Relationship window. When the relationship design window opens, the
Add Tables dialog also opens (see Figure 3). Add both the DEALER and the ITEM table to the
Relationship design window by selecting each table and clicking the Add button. When you are
finished adding tables, click the Close button to close the Add tables dialog.

b Add Tables
Tabhl
aI;hle name | add |
| Close |
55 ITEM
[]

Figure 3: Add tables to the relationship design window.

To create a one-to-many relationship from, click on the ID field in the DEALER table and drag it
to the DEALER field in the ITEM table. A line is drawn between the tables that illustrates the
connection (see Figure 4).

Figure 4: Create a one-to-many relationship.

The established relationship indicates that each record in the ITEM table corresponds to a single
record in the dealer table. On the other hand, each record in the DEALER table corresponds to
zero or more records in the ITEM table. Assume that item 7 refers to dealer 3, and you try to
delete dealer 3; what happens? Double click on the relationship line to open the Relationship
dialog.

The Relationship dialog allows you to specify what to do if the dealer ID is updated (changed) or
deleted. The default behavior is to do nothing. If I choose to use an Update cascade, then if 1
change dealer 3 to have a new identifier, then all records in the Item table are updated to use the
new value. If Delete cascade is set, then deleting dealer 3 causes every item that refers to dealer 3
to be deleted. Set the update action to Update cascade and the delete action to Set default (see
Figure 5)—remember that the default value for the DEALER field in the ITEM table is 0. Use
File > Save to save the relationships to the Base document and File > Close to close the
relationship window.

OpenOffice.org Base 27

b 4 Relations

Tables involved

One-To-Many relationships

Fields involved

ITEM

DEALER |

[DEALER

Update options
" No action

‘# Update cascade
" Setnull

" Set default

- |ID

Delete options
(" Mo action

" Delete cascade

" Setnull

[R—TI—

B

Figure 5: Set the update and delete actions.

3.3. Add data to the DEALER and ITEM tables

To provide examples, it is important that the tables contain data. Enter the sample data from Table

5 into the DEALER table.

Table 5: Sample data in the DEALER table.

0
1
2
3
4
5

To add data to the DEALER, you must open the table for editing. Click on the Tables icon in the
left hand column and then double click on the DEALER table (see Figure 6).

Unknown

Dealer 1 ‘
Dealer 2

Dealer 3 ‘
Dealer 4

Dealer 5 ‘

OpenOffice.org Base

28

One-To-Many relationships

E5 Create Table in Design View...
Use Wizard to Create Table...
batg Create View...
N

i

—
(1-1]
=
m
1]

= NS

EEE First, click on the Tables icon.
Queries

‘é Second, double click on

Forms

the DEALER table.
i

ITEM

Figure 6: Open the DEALER table for editing.

lﬁ‘dﬁ\
-]
S

The ID field is an AutoValue field, and it is shown as such in the table (see Figure 7). The table is
currently empty, and a new empty record is ready to be added. You can not place the cursor in the
ID field and enter a value because this is an AutoValue field. Place the cursor in the NAME field
and enter the value “Unknown” and press the Enter key. The ID field is automatically given the
value of zero. As you enter new values, the ID field will increment by one each time. While
entering data using the table view, can not enter a value for the ID field. You can, however,
change an ID after entering the record.

L'd 000BaseAssociatedData: DEALER
File Edit View Tools Window Help

By o - "
D

| NAME |

=AutoField>

L
Ecnrdh [of 1 X8 KN D3 0 J

Figure 7: Empty DEALER table, waiting for data.

The internal database remembers the value used in the ID field, which is then used to provide the
next automatic ID value. The important thing to remember, is that the next value is one larger
than the largest value used so far, not one greater than the largest value that is currently in the
database. So, if you change an entry from 4 to 100 and then back to 4, the next automatic value
will be 101. With SQL, you can set the value to any value that you desire.

TIP The described behavior assumes that the Base document references an internal HSQLDB
database—this is the default.

Now add example data to the ITEM table (see Table 6).

OpenOffice.org Base 29

One-To-Many relationships

Table 6: Sample data in the ITEM table.

NAME Dealer
0 Unknown 0
‘ 1 Item 1 ‘ 3 ‘
2 Item 2 1
‘ 3 Item 3 ‘ 1 ‘
4 Item 4 3
E Ttem 5 | 2 |

OpenOffice.org Base 30

4. Forms

At a high level, a form is a Writer document containing controls attached to a database. A control
can be a button, a list box, a text input box, or one of many other control types. When I speak of
a form at a high level, I refer to the entire Writer document. This is what you load when you open
a form.

To a form designer, the high level “form”, which is a Writer document, contains things called
forms. Each form is associated with a specific table in a database. Each form can contain controls
and other forms. When a form is contained in another form, it is called a sub-form.

4.1. The internal object model

Macro programmers need to understand the internal object model, which can be rather confusing
—which is a shame because it is not as confusing as many people seem to think. If you are not a
macro programmer, you might want to skip this section. Unfortunately, much of the interesting
stuff requires the use of macros.

4.1.1. A control's shape is in the draw page

A Writer document contains a draw page. All shapes are contained in the draw page. There is a
special type of shape called a control shape, which corresponds to a single control. To change the
size or location of a control, find the corresponding control shape and modify it. The Form wizard
groups each control with its corresponding label in a group shape object. It is, therefore,
important that any code that searches for control shapes looks inside group shapes.

Listing 16: Finding control shapes in a Writer document.

Di m oDr awPage

Di m oShape

Dimi %

Di m sG oupShape
Di m sCont r ol Shape

sG oupShape
sCont r ol Shape

"com sun. star. draw ng. GroupShape"
"com sun. st ar. draw ng. Cont r ol Shape"

oDr awPage = Thi sConponent . get Dr awPage()
For i = 0 To oDrawPage. get Count() - 1
oShape = oDr awpage. get Byl ndex (i)
I f oShape. supportsServi ce(sG oupShape) Then
REM The group shape supports the nmethods get Count ()
REM and get Byl ndex() to obtain the contained shapes.
REM You shoul d probably use a recursive routine to
REM extract the shapes, because the contai ned shape
REM rmay be anot her group shape.
REM Di m o
REM For j = O To oShape.getCount() -1
REM o = oShape. get Byl ndex(j)

OpenOffice.org Base 31

Forms

REM Print o.control.nane
REM Next
El sel f oShape. supportsServi ce(sControl Shape) Then
REM Access the control nodel using oShape. Control
REM Print oShape.control.name
End If
Next

4.1.2. A draw page contains forms

A draw page contains forms, and forms contain controls and other forms. It is easy, therefore, to
find a named form or control.

Listing 17: Find a named form or control.

REM oObj can be a generic draw page, a form conponents object, a
REM form or a Witer docunment. This routine will find any

REM f orm conponent, which neans a formor a control.

Function findForm(oObj, sNane$)

Di m sFor n$: sForm = "com sun. star.form conponent. Fornf
Dim sForns$: sFornms = "com sun. star.form FornConponent s"
Di m sConmp$: sConp = "comsun.star.form FornConponent"
Di m oFor m

Dimi %

Di m x

REM Extract the forms from a generic draw page.

I f oObj.supportsService("com sun.star.draw ng. Generi cDrawPage") Then
findForm() = findForm(oQbj.getForns(), sNane$)
Exit Function

End |f

REM I f the object is an office docunent, assune that it is a Witer
REM docunent. If this is a Calc docunent, then the object has nore
REM t han one draw page. | amtoo lazy to worry about this now
If oObj.supportsService("com sun.star.docunent. Of ficeDocument™) Then
findForm() = findForm(oQbj.getDrawPage().get Forns(), sNane$)
Exit Function
End |f

REM I f this is a form conponent, then it has a nane.
REM Check to see if the name is the search nane.
If oObj.supportsService(sConp) Then
If oCbj.getName() = sNane Then
findForm() = ovj
Exit Function
End If
End |f

REM I f this object contains conponents, then search it.
If oObj.supportsService(sForns) Then
REM Enunerate fornms and controls.
For i = 0 To oObj.getCount()-1
x = oCbj . get Byl ndex(i)
oForm = findForm(x, sNane)

OpenOffice.org Base 32

Forms

If NOT IsNull (oForm) AND NOT |sEnpty(oForm Then
findForm() = oForm

Exit For
End |f
Next
El se
End If

End Function

4.1.3. A control's data model is in a form

Every control contains data such as the text that is displayed. The object that encapsulates this
information is called the model. The control's model is contained in a form. Use the control's
model to enable or disable the control.

The complete form/control hierarchical structure is as follows: A Writer document contains a
draw page. The draw page contains shapes and forms. Each form can contain control models and
other forms. Rather than provide a lengthy explanation, I provide an example macro.

Listing 18: Inspect control models in a form.

REM oObj can be a generic draw page, a form conponents object, a
REM form or a Witer docunent. The |ead nane usually starts as "".
Functi on get Control Nanmes(oObj, ByVal sLeadNane$) As String

Di m sFor n$: sForm = "com sun. star.form conponent . For ni

Di m sForns$. sForns = "com sun. star.form For nConponent s”
Dim sControl$: sControl = "com sun.star.form FornControl Model "
Dims$

Dmi%

Di m x

REM Extract the forms from a generic draw page.

I f oObj.supportsService("com sun.star.draw ng. Generi cDrawPage") Then
get Control Nanes() = get Control Nanes(oObj . get Forns(), sLeadNane)
Exit Function

End |f

REM | f the object is an office docunment, assume that it is a Witer
REM docunent. If this is a Calc docunent, then the object has nore
REM t han one draw page. | amtoo lazy to worry about this now
If oObj.supportsService("com sun.star.docunent. O ficeDocunment™) Then
Dim oForms : oForns = oQbj.get DrawPage(). get Forms()
s = get Control Names(oForns, sLeadNane)
get Control Nanes() = s
Exit Function
End |f

REM Add the current formnanme to the lead nane if, and only if,
REM t he argunent is a form
If oQbj.supportsService(sForm Then
sLeadNane = sLeadNane & oObj . get Nane()
El sel f NOT oChj . supportsService(sForns) Then
get Control Nanes() = ""
Exit Function

OpenOffice.org Base 33

Forms

End If

REM Enunerate forns and controls.
For i = 0 To oObj.getCount()-1
x = oCbj . get Byl ndex(i)
I f Xx.supportsService(sControl) Then

s = s & sLeadNane & " : " & x.getNane() & CHR$(10)
El sel f x.supportsService(sForns) Then
If sLeadNane = "" Then
s = s & getControl Names(x, sLeadNane)
El se
s = s & getControl Nanmes(x, sLeadNane & ".")
End |f
End |f

Next
get Control Nanes() = s
End Function

4.1.4. A control's view model is in the controller

Every visible document has a current controller. The controller handles user interaction. To cause
a control to become visible, or invisible, use the control's view model returned from the controller.

The controller has the method getControl(), which accepts a control model as an argument. In
other words, you must get a control model before you can get the view model from the controller.
When a control calls an event handler, it passes an event as an argument. The source property of
the event contains the control's view model. The data model is obtained by using the getModel()
method on the view model.

Listing 19: A very simple event handle, it does nothing.
Sub ButtonEvent Handl er (oEvent)

oEvent . Source "Control's view nodel.
oEvent . Sour ce. get Model () 'Control's data nodel .
End Sub

The current controller is obtained from the Writer document. If you have a form, but not the
parent Writer document, you can work your way back to the containing parent document as
follows:

Listing 20: Get the containing parent document from a form.

Functi on get Docunent Fr onfor m(oFor m)

Di m x
Dim sForn : sForm = "com sun. star.form For nConponent "
Dim sDoc$: sDoc = "com sun.star.docunent. O fi ceDocunent”

I f NOT oForm supportsService(sForm Then
Exit Function

End |f

X = oForm

Do Wil e NOT x.supportsService(sDoc)
X = X.getParent ()

Loop

get Docunent FronfForm() = X

OpenOffice.org Base 34

Forms

End Function

4.1.5. Enabling and setting controls visible — an example

As a final example to illustrate how to access controls in a form, consider a macro that enables, or
disables, all controls in a specific form (see Listing 21). First, the document is obtained from the
form objects using the macro in Listing 20. Each control data model is obtained from the form.
The data model is enabled, or disabled, depending on the bEnable argument. A disabled control is
still visible in a form, but it is shown in a subdued color. The data model is used to obtain the view
model from the document controller. The view model is then set visible, or invisible.

Listing 21: Toggle all controls in a form visible and enabled.

REM oForm - Form on which to work.
REM bEnabl e - Enable, or disable, every control in the form
REM bVi si bl e - Set every control visible, or invisible.
REM bRecurse - |If true, recurse into subforns.
Sub Enabl eControl s(oForm bEnabl e As Bool ean,
bVi si bl e As Bool ean,
bRecurse As Bool ean)
"com sun. star.form conponent. For ni
"com sun. st ar. f orm For nConponent s"
"com sun. star. form For mCont r ol Model "

sFor n® : sForm
sFornms$: sForns
sControl $: sControl
oControl |l er

oDoc

i %

X

vvBvvRvNvNv]
3333333

oDoc = get Docunent Fr onfor m(oFor m)
oController = oDoc.getCurrentController()

For i = 0 To oForm get Count ()-1
x = oForm get Byl ndex(i)
I f x.supportsService(sControl) Then
x. Enabl ed = bEnabl e
oController.getControl (x).Visible = bVisible
El sel f x.supportsService(sForns) Then
I f bRecurse Then Enabl eControl s(x, bEnabl e)
End If
Next
End Sub

4.1.6. Finding a control from an event — an example

Consider a text table with a button in the first column of every row. Each button in the table calls
the same macro. The macro wants to know which cell contained the button. The solution to the
problem is as follows:

1) Obtain the view model from the event using oEvent.Source.

2) Obtain the data model from the view model using oEvent.Source.getModel().

OpenOffice.org Base 35

Forms

3) Enumerate the shapes on the draw page. This code is not really safe because every shape is
assumed to be a control shape.

4) Obtain the data model from the control shape using oShape.control.
5) Use EqualUNOODbjects to compare the two data models.
The macro in Listing 22 implements a working solution.

Listing 22: Determine which cell contains a button control.

Sub ButtonCal |l (oEvent)
Dim i
Di m oButton
Di m olvbdel
Di m oShape
Di m bFound As bool ean

REM First, get the button used to call this routine.
REM Save the button's nodel.

oButton = oEvent. Source

oMbdel = oButton. get Model ()

REM Iterate through the controls
i = Thi sConponent . get DrawPage() . get Count ()
bFound = Fal se
Do Wiile (i > 0 AND NOT bFound)
=i -1

oShape = Thi sConponent . get Dr awPage() . get Byl ndex (i)
bFound = Equal UNOObj ect s(oShape. Control, oMbdel)
Loop
I f bFound Then
Print "The button is in cell " & oShape.getAnchor (). Cell. Cell Nane
End |f
End Sub

4.1.7. Control connected to a database

A control can be bound to a database field. Unfortunately, the value in the control is not always
and automatically in sync with the value in the database field.

1) The user interacts with the visual component.
2) The control model describes the look and behavior of the control.

3) The form field holds the data from one specific column of the result set represented by the
form; did I mention that a form acts like a result set?

Code that deals directly with the control model does not interact with the underlying result set,
and therefore, does not deal with the values in the database. For example, you set new values in
the form (using a macro), and those values are not saved to the database (result set). Use the
commit method on the control to explicitly commit the control/model content to the database
field.

OpenOffice.org Base 36

Forms

Andrew Jensen specifically recommends obtaining the control from the controller and the
modifying the control rather than the model; and what Mr. Jensen says is almost always correct.
Although this works in some cases where modifying the control model does not, it is not
considered safe. There are issues related to which listeners are called, and what will really be
updated (according to Frank Schonheit).

The safest solution is to modify the bound field directly. For example, your current code may be
as follows:

oControl .setString("nmyText")
It is better if you can use the bound field:

oCont rol . BoundFi el d. updateString("myText")

The required method is dependent on the data type, which is a drawback to this method. I am
aware of at least one instance where the specific method (updateDate) failed, yet the generate
updateString method properly updated the bound field.

4.1.8. Control model summary

A lot more can be said about controls, forms and their structure. I leave this discussion until it is
needed for an example.

4.2. Database Forms act like a result set

A form fulfills several tasks, like storing the structure of its form components, storing the
information concerning tab ordering and control grouping, and providing the event environment
for its contained elements. A database form adds the ability to connect to a database.

Table 7: Some services supported by database forms.

Service Description

Form Specifies a form which is a group of FormComponents. The form service allows a
specific form component to be identified as a form rather than a control (see Listing
18).

FormComponent Allows a form to be contained in another form.

FormComponents Allows a form to contain multiple components.

DataForm Specifies a form that is connected to a database, displaying the results of SQL

queries. A database form can add, modify, and delete records. A database form is
essentially an enhanced row set, which can display and manipulate the data.

ResultSet A ResultSet, which is usually generated by executing a Statement, maintains a
cursor pointing to its current row of data. Initially the cursor is positioned before
the first row. “Get” routines are provided to retrieve column values for the current
row.

RowSet A RowSet is a client side ResultSet, which combines the characteristics of a
Statement and a ResultSet. A RowSet can be used to implement capabilities for a
result set, which are not supported by a driver result set; caching and update
capabilities, for example. A RowSet provides event notification for various changes

OpenOffice.org Base 37

Forms

Service Description

in state.

4.2.1. Duplicate record macro

I am not aware of a built-in method to duplicate a record while entering new data, so I decided to
write a simple macro to do this. First, use the form wizard to create a form to edit the DEALER
table. Click on the Forms icon (see Figure §).

=

Forms

Figure 8: Formsicon
Next, click on Use Wizard to Create Form to start the Form Wizard. Select the DEALER table
and then copy all Available fields to the Fields in the form and click Next twice.

Tables or queries
Table: DEALER v|

Available fields Fields in the form

D
NAME
Figure 9: Add all fields from the DEALER table to the form.

Choose a layout for the form and click Next three times.

OpenOffice.org Base 38

Forms

Arrangement of the main form

.::.:: == = e
== - = £ - =
= = i = ——r—

Columnar - Labels Left

Figure 10: Use Columnar - Labels Left

Name the form DEALER Add and click Finish to exit the Form Wizard. Use File > Close to
close the newly created form. Right click on the newly created form and choose Edit. Use View >
Toolbars to enable the Form Controls and Form Design toolbars. If a toolbar is displayed, there
is a check mark next to the toolbar name.

Use Tools > Macros > Organize Macros > OpenOffice.org Basic to open the OpenOffice.org

Macros dialog. Click on the Organizer button to open the Organizer dialog. Select the Modules
tab, if it is not already selected. Find the DEALER Add document in the Module list (see Figure
11). Select the Standard library, which already exists, and click the New button. Click OK to use
the default new module name of Modulel.

L"d OpenOffice.org Basic Macro Organizer

Modules IDia1ugs Ii_ihran'es

Module | ‘

Er—Tr e
=3 OpenOffice.org Macros | Close ‘
[=, 00oBaseAssocdiatedData.odt
E‘, AndrewMacro

= 0O0oBaseBinaryFields

E‘, Generallnvitation. odt

B {2 DEALER_Add

|
|

L u|

Figure 11: Add a new module to the DEALER Add Form.

Finally, highlight Modulel and click the Edit button, which will open the Basic Integrated
Debugging Environment (IDE). Replace the text with Listing 23; the included comments indicate
how the macro works. Use File > Save to save the macro into the DEALER Add form.

TIP When you save a macro in a form, the macro is stored in the form document. When a form
document is saved, it is saved in the Base document. Saving the form document, persists the
form into the Base document, but it does not persist the Base document to disk. Be certain to
save the Base document after you save a form to the Base document.

OpenOffice.org Base 39

Forms

Listing 23: Macro to duplicate a DEALER record.

REM *kk k% BASIC *k k k%
Option Explicit

Sub Mai n
End Sub

Sub Dupl i cat eRecord(oEvent)
Di m oFor m '"Reference to the formcontaining the primary record.
Dim | NameCol ' Colum used to hold the NAME in the DEALER table.
Dim sDealer$ 'Value stored in the current NAME field.

REM Get the button's view npdel from the event Source.
REM Get the button's data nodel from the view nodel .
REM Get the form from the data nodel.

oForm = oEvent . Sour ce. get Model (). get Parent ()

REM Fi nd the colum that contains the NAME fiel d.
| NameCol = oForm fi ndCol umm(" NAMVE")

REM Not |ikely to happen, but check for it anyway.
If oFormisAfterlLast() Then

Print "Hey, you are after the last elenent”

Exit Sub
End |f

REM Not |ikely to happen, but check for it anyway.
If oFormisBeforeFirst() Then
Print "Hey, you are before the first elenent”
Exit Sub
End |f

REM Get the data for the current record.

REM This is a sinple table with an I D and a NAME.

REM The ID is an autovalue, so we only need to save the NAME.
sDeal er = oForm get String(l NanmeCol)

REM | f new data has been entered into the form
REM when | change records, | |ose the data.
REM Avoid this by updating the row.

oFor m updat eRow()

REM Now, nove to the "Insert row' to add a new record.
oFor m noveTol nsert Row()

REM Update all of the data fromthe original record that you stored.
REM If | only updated the control, then the form would not know
REM about it, but if | update the colum in the row, then the control
REM i s automatical | y updat ed.
oForm updateString(l NanmeCol , sDeal er)

End Sub

OpenOffice.org Base 40

Forms

Using the form again, click on the command button icon (=) in the Controls toolbar and the
mouse cursor will change to cross-hairs. Drag a rectangle where you want the button to be placed
(see Figure 12).

ID Duplicate Dealer

NAME

Figure 12: Completed DEALER Add form.

Double click on the newly added button to open the button properties dialog. In the General tab,
name the button PushButtonDuplicate, and set the label to Duplicate Dealer. Select the events
tab. A control button supports many events. It is possible to differentiate between a mouse click,

and a key press. All we care about is that the button has been clicked. Click on the three dots (B
) next to the When initiating box to open the Assign Macro dialog. Although there is an icon next
to every supported event, you can assign any event (or multiple events) to a macro. Highlight the

When initiating event and click on the Assign macro. Find the DuplicateRecord macro in the
DEALER Add form, highlight it, and click OK.

Library Macro name
E = My Macros = | oK |
=7 OpenOffice.org Macros Z Main
B {2 DEALER_Add | Cancel |
B (53] Standard
| Help |

Figure 13: Use the DuplicateRecord macro in the DEALER _Add form.

Click OK in the Assign Macro dialog, and the form is ready to test. Use File > Save to save the

form into the Base document. Use the Design Mode On/Off icon () to toggle design mode off
and test the form.

4.3. Show one item and the corresponding dealer

While displaying items one record at a time, the dealer is difficult to identify because the dealer's
numeric identifier is not descriptive and easy to remember. It is, therefore, typical to show values
from both tables. The form wizard can easily create the appropriate form.

Click on the Forms icon in the left column of the Base document. In the Tasks section, select Use
Wizard to Create Form to start the Form wizard. On the first page of the wizard, select the ITEM
table as the primary source of data for the main form. A query can also be used as the primary
source of data. Next, move all of the fields in the “Available fields” list box to the “Fields in the
form” list box. Use the >> button to move all of the fields at one time. Click the Next button to
add a sub-form.

OpenOffice.org Base 41

Forms

Select the fields of your form

Tables or queries

Table: ITEM -]

Available fields Fields in the form
D
NAME

I:I DEALER E
L] L]

Binary fields are always listed and selectable from the left list.
If possible, they are interpreted as images.

Figure 14: Select the table and fields for the main form.
A sub-form is a form that is inserted into another form. Use a sub-form to show data from tables
or queries with a one-to-many relationship. Use the existing relationship. If you do not use an

existing relationship, then you will be asked to explicitly specify the corresponding fields. Click
the Next button to select which fields will be displayed from the DEALER table.

P Add Subform

i [Subform based on existing relation|

Which relation do you want to
add?

" Subform based on manual selection of fields

Figure 15: Create a sub-form for the DEALER record.

Select all of the fields from the DEALER table to be included in the sub-form. Click the Next
button to choose how the controls will be arranged. Choose the Columnar — Labels Left format
for both the form and the sub-form. Click the Next button to select the data entry mode. The
default is to display all data and to allow modifications, deletions, and additions. Click the Next
button to specify the look, use the default 3D look and color. Click the Next button to name the
form. Set the name to ITEM_Wizard Simple. Click the Finish button to save the form (see
Figure 16). (?? Note that I had to use a development build because OOo version 2.0 failed with
this).

After opening the form, you can move back and forth between the records using the first (M),
previous (4), next (P), and last (M) record icons. As you move through the different item records,
the corresponding dealer record is displayed. If you move past the end of the last record, an
empty record is displayed. This is the same as using the new record icon (}#). If you accidentally
move past the last record and, use the previous record button to got back; a new record will not

be added to the table. If you accidentally add a new record, use the delete record icon (}%).

OpenOffice.org Base 42

Forms

ID 4

ITEM |Irem 4

DEALER |3

F—
ID N

NAME |Dea|er 3

Figure 16: The form contains all fields from both tables.

Although the dealer information is displayed in the sub-form, you can not move through the
dealer records. Even worse, you can not use the data in the sub-form to set the dealer identifier in
the ITEM table. The best solution to this problem depends on you, and the user.

4.4. Use a combo box with the dealer id

If the dealer identifier were descriptive, and simple, then a combo box can be easily used to
choose the dealer. Use the form wizard to create a form for the ITEM table; do not include the
DEALER field. Name the form ITEM Dealer ID Combo.

After creating the simple form, right click on the form and choose Edit. Use View > Toolbars to
enable the Form Controls and Form Design toolbars. If a toolbar is displayed, there is a check
mark next to the toolbar name.

On the Form Controls toolbar, click on the Label Field icon (®e2). The cursor will change to a
cross-hairs shape. Draw a rectangle where you want the Dealer label; the size is not important
because you can change the size later. Double click on the new label field to open the control
properties window. In the control properties window, set the Name to LabelFieldDealer and set
the Label to Dealer.

TIP If you click on (select) a control, green boxes are displayed around the control. A selected
control can be moved, resized, copied, or deleted.

Click on the Combo Box icon () in the Form Controls toolbar and then draw a rectangle where
you want the combo box. The Combo Box wizard is immediately displayed. First, you must
choose from which table the combo box should obtain its values; choose the DEALER table and
click Next. Although the Name field is more descriptive than the ID field, choose to display the
ID field and click Next. Indicate that you want to save the value in the DEALER database field.
You can only save the data in fields in the ITEM table, because the combo box is in the main form
(there is only one form right now) and it is attached to the ITEM table. Click Finish to create the
control.

OpenOffice.org Base 43

Forms

You can test the form immediately by clicking on the Design Mode On/Off icon. As you move

through the form, the combo box displays the correct value and you can directly set the dealer

identifier by choosing a different value in the combo box. Unfortunately, this has not improved
things; the dealer identifier is not descriptive.

ID 1

ITEM Item 1

Dealer 3 j

Figure 17: Simple form with a combo box

4.5. Use a list box with the dealer name

A list box provides more capabilities than a combo box. Sufficient capabilities, in fact, that this
problem can be solved without writing a single macro. Right click on the

ITEM Dealer ID Combo form and choose Copy. Next, use Edit > Paste to create a new form;
name the new form ITEM Dealer Name List. Right click on the new form and choose Edit. Use
View > Toolbars to enable the Form Controls and Form Design toolbars. If a toolbar is
displayed, there is a check mark next to the toolbar name.

TIP In OOo version 2.0, the toolbars seem to move around a lot. Sometimes I find my toolbars
floating around the screen in random locations, and sometimes they are docked to the top,
bottom, or side of my current window. You can always doc a floating toolbar by dragging it
where you want it.

Remove the existing combo box, it is no longer needed. In its place, insert a new list box ()
control. After you draw out the desired location, the table selection dialog opens; select the
DEALER table as the source of the displayed data and click the Next button. Select NAME as
the displayed field and click the Next button. The list box allows you to display one field and link
it to another field. Set the DEALER field from the “Value” table and the ID field from the “List”
table (see Figure 18). Click the Finish button to create the control.

Field from the Value Table Field from the List Table

|DEALER

D
ITEM

Figure 18: Link ITEM.DEALER to DEALER.ID.

To emphasize what was just accomplished:

OpenOffice.org Base 44

Forms

- Alist box was created to display the NAME field from the DEALER table.
- The DEALER field in the ITEM table was linked to the ID field in the DEALER table.

The same information can be seen in the list box properties dialog. Double click on the newly
created list box and look at the Data tab.

Table 8: Data properties for the list box control.

Data Property

Data Field Associate the list box to the DEALER field in the ITEM table.
‘ Type Use an SQL statement to fill the list box with data. ‘
Content SQL statement to use: SELECT "NAME", "ID" FROM "DEALER". Notice

that the name and the id are retrieved.

the name is the first field in the select statement.

Bound Field The first field is bound, which means that the name is displayed. Notice that

Click on the General tab. Associate the Dealer label to the list box by clicking on the three dots to
the right of the Label Field property and choosing the dealer label. Other notable properties
include the Dropdown property, which causes the list box to be displayed as a “drop down” rather
than a list box, and the multi-selection property, which prevents more than on item from being
selected at a time.

ID I
ITEM Item 1
Dealer Dealer3 j

Figure 19: The dealer name displayed in a list box.

Save the form and test it. As you move through the item records, the correct dealer name is
automatically displayed. Changing the dealer name in the drop down automatically updates the
dealer id in the ITEM table. This is probably the solution of choice. There are a few points to
keep in mind:

1) The list is stored in the same form as the related data. In other words, although the list box
displays the dealer name, it is contained in the form displaying the item data. You can,
therefore, select the item form and then insert the list box.

2) If wizards are enabled — there is a button in the controls toolbar to enable and disable
wizards — a wizard will guide you through the process.

OpenOffice.org Base 45

Forms

3) If you do not use a wizard, you must set the control properties manually. The data field is
corresponding ID field, the contents type is SQL, and the list contents is similar to
“SELECT "NAME", "ID" FROM "DEALER"”. The “bound field” entry refers to the data
that is displayed from the query. With the provided SQL, the data to display is the NAME
field, which corresponds to the first first column returned.

Using a listbox populated using a query provides a lot of control. You can really display almost
anything.

4.6. Relations in a single table
Assume that you have Tablel with the following fields:
ID — Integer auto-value as the key field.
Title — Text field.
Description — Text field.

Create a combo-box containing the values from the Title column that causes the corresponding
Description text to be displayed in a text field.

4.6.1. Solution
Create a form in design view. Now, add controls to the form.
1) Open the form navigator.

2) In the form navigator, right click on Forms and choose New > Form. For me the form was
automatically named Standard.

3) In the form navigator, right click on the Standard form and choose Properties.
4) In the form properties dialog, choose the Data tab.
5) Set the Content property to Tablel, or what ever you named your table.

6) With the Standard form highlighted in the form navigator, click on the combo-box button
m the Controls tool-bar. Draw a combo-box on the form. The combo-box wizard will
open.

7) Select Tablel in the combo-box wizard and click Next.
8) For the display field, choose Title and click Next.
9) Choose “No, I only want to save the value in the form.” and click Finish.

If you toggle the design mode off to test your form, the combo-box contains values from the Title
column. Toggle design mode on and then continue. Look at the properties for the combo-box, it
obtains content using the following SQL:

SELECT DI STINCT "Title" FROM "Tabl el"
Now, add a text box to display the Description.
10)With the Standard form selected, add a text field.

OpenOffice.org Base 46

Forms

11)In the Data tab of the properties dialog for the text field, set the Data field to Description.

At this point, the text field displays the Description for the current record. It is just a matter of
telling the form which record to display. Add the following macro to the form:

Listing 24: Filter a form based on text in a combo-box.
Sub NewTi t| eSel ect ed(oEvent)

Di m oForm
oForm = oEvent. Sour ce. get Model (). get Parent ()
oFormFilter = "Title="" & oEvent. Source.getText() & """

oForm Appl yFilter = True
oForm rel oad()
End Sub

I tied the macro to the item status changed event, which is only called if a new item is selected
using the mouse — modifying text using the keyboard does not cause an item status changed
event. Another option is the text changed event, which is called when ever the text is modified,
including from the keyboard. ??? I think that I tied this to the combo-box. Verify.

4.6.2. Solution characteristics

Each form is associated with a record in a table. The form containing the solution is associated
with Tablel. The text field is related to the current record. Moving through the records causes the
text field to display the Description for the current record.

The combo-box is filled using a SQL statement and is not related to the current record. A macro
filters the records that the form can visit based on the value in the combo-box.

It is possible,with a bit more work, to disassociate the text field from the current record. On the
Data tab, do not associate the field to the table. The macro must now do all of the work.

Listing 25: Set text field based on text in a combo-box.
Sub NewTit| eSel ect ed(oEvent)

Dim s$

Di m oForm

Di m oDoc

Di m oCont ext ' d obal database context.

Di m oDat aSour ce "Data source for the specified database.
Di m oCon ' Connection to a database.

Di m sSQL$ 'SQL that is executed.

Di m oResul t "Result froman SQL statenent.

Di m oSt at enent "A created statenent that can execute SQL.
Di m sQuot e$

oForm = oEvent. Sour ce. get Model (). get Parent ()
oDoc = oForm

REM Wal k up the form conponent tree |ooking for
REM t he contai ning text docunent.

OpenOffice.org Base 47

Forms

s = "com sun.star.text. Text Docunment "

Do Wil e NOT oDoc. supportsService(s)
oDoc = oDoc. get Parent ()

Loop

REM Now, get the containing database.

s = "com sun. star.sdb. O ficeDat abaseDocunent "

oDoc = oDoc. get Parent ()

If IsNull (oDoc) OR | sEnpty(oDoc) Then
Print "The formis not enbedded in a Base docunent"”
Exit Sub

El sel f Not oDoc. supportsService(s) Then
Print "The formis not enbedded in a Base docunent”
Exit Sub

End |f

oCont ext = CreateUnoService("com sun. star.sdb. Dat abaseCont ext ")
oDat aSour ce = oCont ext . get ByName(oDoc. get URL())

oCon = oDat aSour ce. get Connection("", "")

sQuote = oCon. get MetaDat a().getldentifierQuoteString()

oSt at enent = oCon. Creat eSt at enent ()

sSQ = "SELECT " & sQuote & "Description" & sQuote & " FROM " & _
sQuote & "Tablel" & sQuote & " WHERE " & _
sQuote & "Title" & sQuote & "="" & _
oEvent . Source.get Text () & """

oResult = oSt atenent. executeQuery(sSQL)
s =""
If NOT IsNull (oResult) AND NOT |sEnpty(oResult) Then
If oResult.next() Then
s = oResult.getString(1)
End If
End If
oCon. cl ose()
oFor m get ByNane(" Text Box").setString(s)
End sub

4.7. Use a “help and fill” button

A typical solution to this problem is to provide a button or keyboard shortcut to display the values
from another table. The selected value is then updated in the original table. I can think of a few
possibilities on how to implement this. One solution, includes creating a form to display the
DEALER entries. After choosing the dealer, an update item button is pressed on the dealer form.
Paradox had a very nice feature for this, but I am too lazy to create an implementation right now.

I use a drop down list box in my example shown in Appendix A. Stuff I Own. Take a look at
section A.2.2. Item One Table.

OpenOffice.org Base 48

5. Many-to-many relationships

Next, setup a many to many relationship and discuss what to do with it in a manner similar to the
one to many relationship. ?? Time, I lack time...

OpenOffice.org Base 49

6. Database fields

A database table is a collection of records. Each record contains individual pieces of data called
fields. This chapter discusses the types of data that can be stored in a database field, primarily as it
relates to macro programmers.

Most major databases are built to conform to an SQL standard, which dictates numerous things,
including the data types supported by the database. The primary standards are SQL89, SQL92,
SQL99, and SQL2003—the number indicates the year that the standard was adopted. The data
types defined by these standards are outlined in 7able 9.

Table 9. General field types supported by SQL.

SQL99
SQL2003
SQL2003
SQL92

SQL92
SQL92
SQL99
SQLS9

SQL92

SQL99

SQLS9

SQL92
SQL92

SQL92
SQL99
SQL99

SQL99

SQL99

ARRAY

ARRAY UNBOUNDED
BIGINT

BINARY

BIT (Dropped SQL2003)

BIT VARYING (Dropped SQL2003)
BOOLEAN

CHAR

DATE

DECIMAL

DOUBLE

FLOAT
INTEGER

INTERVAL
INTERVAL DAY
INTERVAL DAY _TO_HOUR

INTERVAL DAY _TO MINUTE

INTERVAL DAY _TO SECOND

Description

Collection type.
Collection type.
Exact numeric value with precision 19.

Binary data of fixed length with a maximum
length 255.

Fixed length n-length bit string.
Variable length bit string (up to n-bits).
A single true or false value.

Character string of fixed string length with a
maximum length 255.

Year, month, and day fields, conforming to the
rules of the Gregorian calendar .

Signed, exact, numeric value with a precision
and scale.

Signed, approximate, numeric value with a
binary precision 53.

Signed, approximate, numeric value.

Exact numeric value with precision 10 and scale
0.

Specify a time interval.
Number of days between two dates.

Number of days and hours between two dates and
times.

Number of days, hours, and minutes between two
date and times.

Number of days, hours, minutes, and seconds
between two dates and times.

OpenOffice.org Base 50

SQL99
SQL99

SQL99

SQL99
SQL99

SQL99
SQL99
SQL99
SQL99
SQL92
SQL92

SQL2003
SQL99

SQLS9

SQLS9

SQL92
SQL92

SQL92

SQL92

SQL92

SQL2003

INTERVAL_HOUR
INTERVAL_HOUR_TO_MINUTE

INTERVAL_HOUR_TO_SECOND

INTERVAL MINUTE
INTERVAL MINUTE TO SECOND

INTERVAL_MONTH
INTERVAL_SECOND
INTERVAL_YEAR

INTERVAL YEAR_TO MONTH
LONG VARBINARY

LONG VARCHAR

MULTISET
NUMERIC

REAL

SMALLINT

TIME
TIMESTAMP

TINYINT

VARBINARY

VARCHAR

XML

Database fiel

Description

Number of hours between two dates and times.

Number of hours and minutes between two dates
and times.

Number of hours, minutes, and seconds between
two dates and times.

Number of minutes between two dates and times.

Number of minutes and seconds between two
dates and times.

Number of months between two dates

ds

Number of seconds between two dates and times.

Number of years between two dates.
Number of years and months between two dates.
Variable length binary data.

Variable length character data; typically called a
memo field.

Collection type.

Signed, exact, numeric value with a precision
and scale.

Signed, approximate, numeric value with a
binary precision 24.

Exact numeric value with precision 5 and scale
0.

Hour, minute, and second fields.

Year, month, day, hour, minute, and second
fields.

Exact numeric value with precision 3 and scale
0.

Variable length binary data with a maximum
length 255.

Variable length character data with a maximum
length 255.

Native XML storage.

OpenOffice.org Base

51

Database fields

The different SQL standards build on each other. There are instances, however, where a data type
is dropped; BIT was dropped by SQL2003. The most commonly supported and used data types
are defined by SQL92. The data types supported by OpenOffice.org are shown in Table 10. The
Type column contains a numeric value used internally by OpenOffice.org and is useful when
modifying a database using macros. The Length column indicates the length values supported by
OpenOffice.org. Many of the types defined by the SQL standard do not specify the maximum
precision and length; the values are implementation specific. Precision and length information
mentioned in 7able 10 is specific to the HSQLDB database implemented in OpenOffice.org.

Table 10. Field types supported by OpenOffice.org using HSQLDB.

Type Name

Comment

Bit -7 1 Boolean yes and no values.
TinylInt -6 3 8 bit signed integer from -128 to 127.
Biglnt 64 bit signed integer from
-9,223,372,036,854,775,808 to
-5 19 9,223,372,036,854,775,807.
LongVarBinary -4 2147483647 Variable-length binary data such as an image.
VarBinary Variable-length binary data with a maximum
-3 2147483647 length.
Binary -2 2147483647 Fixed-length binary data.
LongVarChar Variable length character data, also known as a
-1 2147483647 Memo field.
SQLNULL 0 0 Null value.
CHAR 1 1 to 2147483647 Fixed length text.
Numeric 1 to 646456993 Signed, exact numeric value with a specified
2 precision and scale.
Decimal 1 to 646456993 Signed, exact numeric value with a specified
3 precision and scale.
Integer 32 bit signed integer from -2,147,483,648 to
4 10 2,147,483,647.
Smalllnt 5 5 16 bit signed integer from -32,768 to 32,767.
Float 6 17 Double precision (8 byte) floating point number.
Real 7 17 Double precision (8 byte) floating point number.
Double 8 17 Double precision (8 byte) floating point number.
VarChar 12 1 to 2147483647 Variable length text data.
VarChar_IgnoreCas 1 to 2147483647 Variable length text data that is not case sensitive.
e 12 This is not a standard type.
Boolean A numeric 0 is False and any other number is
16 1 True.
Date N/A Year, month, and day fields, conforming to the
91 rules of the Gregorian calendar.

OpenOffice.org Base

Database fields

Type Name Comment
Time 92 N/A Hour, minute, and second fields.
TimeStamp 93 N/A Date and time with a one second time resolution.
Other The SQL type is database-specific and is mapped
to an object that can be accessed using the method
111 21474383647 XRow::getObject() .

Of the four data types—string, number, date-time, and interval—numbers have the most available
data types and the greatest constraints on implementation. The SQL92 standard defines
fundamental data types that mold the types found in the various SQL-based database
implementations. Numbers pose the greatest risk when moving data between different database
implementations because it is common to offer non-standard extensions. For example, the same
type may have different default size limits in Oracle and SQL Server. It is, therefore, important
that you understand the idiosyncrasies of the underlying database.

6.1. Storing numbers

All numbers have a precision, which indicates the number of significant digits. Some numeric
types contain a scale value that indicates the position of the least significant digit to the right of
the decimal. For example, the number 1234.56 has a precision of 6 and a scale of 2.

The SQL92 standard provides for built-in operations, such as addition, subtraction, multiplication,
and division, in addition to functions that determine the length and other attributes required for
value handling. The different numeric data types can be mixed during comparisons and numeric
operations. In most database implementations, the result uses the data type with the greatest
precision.

TIP Numeric data types are the most difficult to move between different database implementations
because it is common to offer non-standard extensions. For example, support for unsigned
integers or support for extended precision.

6.1.1. Integer numbers

The integer data types are used to store numbers with no decimal portion. All of the integer types
use the same radix (numeric base and internal representation), round using the same rules, and are
exact. The SQL standard specifies the following properties:

- Is an exact type, which store a literal representation of the number.

- Can uses decimal precision or binary precision, which is based on the number of bits used
to represent the value. The represented range is implementation-specific.

-+ Has a scale of 0—no decimal digits.

OpenOffice.org Base 53

Database fields

- Has an implementation specific minimum and maximum precision.
- May have a vendor-supplied default value for the precision if no explicit value is specified.

The SQL92 standard defined the types INTEGER, SMALLINT, and TINYINT; BIGINT was
introduced by SQL2003. Although each implementation is able to state the precision of the
integer types, the following must be true: TINYINT <= SMALLINT <= INTEGER <= BIGINT.
Table 11 summarizes the differences between the integer data types implemented by the database
used in OpenOffice.org.

Table 11. Integer types supported by HSOLDB.

Type Minimum value Maximum value
TINYINT 1 byte 2128 127

SMALLINT dbytes -32,767 32,767 |
INTEGER 4 bytes 22,147,483,648 2,147,483,647

BIGINT 8 bytes \ -9.223.372,036,854.775.808 \ 9.223,372,036,854,775.807 \

6.1.2. Floating point numbers

Floating point numbers are numbers that can have numbers to the right of the decimal point—
unlike an integer type, which can not. Floating point numbers are internally represented in
scientific notation, for example, 1.23e-45. The Institute of Electrical and Electronics Engineers
(IEEE) defined a format for storing floating point numbers. The IEEE standards are used by
almost every computer that utilizes floating point numbers. Probably the most important thing to
know about a particular floating point number is the number of relevant digits. For example, a
double precision IEEE floating point number is accurate to roughly fifteen digits.

Floating point numbers are defined to use binary precision when rounding and are not exact. A
format is not exact if some numbers are not represented exactly because the internal
representation is not able to do so. At the heart of the problem is that numbers are usually
represented in base 2, but the external representation is base 10. Although it is well understood
that 1/3 may not be exactly representable, it is unintuitive that 0.01 is not. In IEEE single-
precision format, 0.01 is represented as approximately 0.009999999776482582—the number that
is stored is exactly 10737418/1073741824. It is not possible to exactly represent 0.01 using the
IEEE floating point formats typically used by computers.

The SQL standard specifies that the floating point types have the following properties:

- Is an approximate numeric type, meaning that it represents an exponential format for a
given value, for example, 1.23e-45. Although rounding and truncating for this type are
defined largely by the manufacturer, the IEEE standards are almost always used.

- Uses binary precision when rounding.

OpenOffice.org Base 54

Database fields

TIP In OpenOffice.org, using HSQLDB, the three floating point types REAL, DOUBLE
PRECISION, and FLOAT use the IEEE 8 byte double precision representation supporting
values +/- 1.79769313486232 x 10E308.

The SQL standard defines three primary floating point data types REAL, DOUBLE PRECISION,
and FLOAT. Although each implementation is able to state the precision of the floating point
types, the precision of the REAL type must be less than or equal to the precision of the DOUBLE
PRECISION type. In the SQL specification, the FLOAT type provides a mechanism to
recommend the precision, the implementation can then choose the representation. In a typical
implementation, the FLOAT type will be assigned to either the REAL or the DOUBE
PRECISION type depending on the requested precision. The HSQLDB database used internally
by OpenOffice.org represents all three types as an IEEE 8 byte double precision number.

TIP In most implementations, including HSQLDB, the DOUBLE PRECISION type can be
abbreviated as DOUBLE.

6.1.3. NUMERIC and DECIMAL types

The NUMERIC and DECIMAL types define exact numeric types that contain decimals. When
defining a NUMERIC or a DECIMAL column, the total column length and the number of decimal
digits is specified—the number of decimal digits is usually referred to as the scale. The SQL
standard defines the types to have the following properties:

- Is an exact type, which store a literal representation of the number.

+ Perform rounding in base 10 rather than the usual base 2. A typical implementation
accomplishes this by storing the numbers as strings or in the binary coded decimal format.

- Has a total length equal to the defined precision, plus 1 if the scale is greater than 0.

Based on the SQL standard, the NUMERIC and DECIMAL types differ in their treatment of
decimals. A NUMERIC type must use the number of decimal digits as specified by the scale. The
DECIMAL type, however, must use at least as many decimal digits as specified by the scale, but
may use more. The SQL definition allows the two types to be identical.

TIP The SQL standard uses the type NUMERIC. HSQLDB documentation and OOo frequently
uses the word NUMBER rather than NUMERIC; they are the same type.

The GUI shortens numeric values, probably by manipulating them as Doubles. I tested the
NUMERIC type with OOo version 2.0 release candidate 2. I created a NUMERIC column with a
precision of 50 and a scale of 4. Using the GUI, I entered a 19 digit number, which the GUI
shortened to 17 digits. Using SQL (see Listing 26), 1 was able to store and retrieve a long
NUMERIC number, but the GUI always displayed the number to 17 significant digits.

Listing 26: Set and retrieve the value in a NUMERIC field.
s = "update ""Nunbers"" Set ""Nunmber2""=1234567890123456789. 1234 \Were | D=3"

OpenOffice.org Base 55

Database fields

oSt nt . execut eQuery(s)
s = "select ""Number2"" from ""Nunbers"" Were |D=3"
oResul t Set = oSt at enent . execut eQuery(s)
If Not IsNull (oResultSet) Then
oResul t Set . next
Print "Return = " & oResultSet.getString(1)
End If

Caution Asofversion 2.0, the OO0 GUI does not properly update and display NUMERIC types. They
data is appears to be treated as a double, which has a precision of 17 decimal digits. I tested
A this using both the Query designer and by editing a table directly. Be certain to wrap access
to these tables in properly tested forms.

6.2. Bit and Boolean Types

HSQLDB supports the BOOLEAN type, which stores the values 'yes' and 'no'. When initialized
with a numeric value, a zero value is translated to no and any other value is translated to yes.
Although OpenOffice.org does not directly list the BIT data type, use the “yes/no” BOOLEAN
type instead.

?? dBase you can check using yes/no, usually, you use true/false, I think that you can use 0/-1.

6.3. Date and time

Use the DATE type to store a date with no time. use the TIME type to store a time with no date.
Although both the DATE and TIME type allow a display format that shows both a date and time,
this is very confusing because neither type has both values. Use the TIMESTAMP type to store a
date and time value.

The TIMESTAMP type stores and returns values in hundredths of a second. Although I could not
set hundredths of a second using the standard GUI, I was able to use SQL to do this (see Listing
27). With OOo 2.0 RC 2, when the time stamp is obtained as a string, the value includes
HundredthSeconds, but when obtained as a TimeStamp, it does not.

Listing 27: Set a TIMESTAMP to include hundredths of a second.

s = "update NUM Set TS='1965-03-13 01:02:03.123456789" Were | D=0"
oSt nt . execut eQuery(s)
oResul t Set = oSt atenent . executeQuery("select TS from NUM Where | D=0")

If Not IsNull (oResultSet) Then
oResul t Set . next ()
0TS = oResul t Set . get Ti mestanp(1)

S =5 &"TS1 =" & oTS.Year & "-" & oTS.Month & "-" & oTS.Day & " " & _
oTS.Hours & ":" & oTS.Mnutes & ":" & _
oTS. Seconds & "." & oTS. Hundr edt hSeconds & CHR$(10) & _
"TS2 = " & oResultSet.getString(1l) & CHR$(10)
Msgbox s
End |f

OpenOffice.org Base 56

Database fields

The real surprise for me is that I can not set ??
?? Comment on can not use the other type to obtain milliseconds.

?? Comment on default values and defining using DDL so that can set certain default values.

6.4. Text data

Use the CHAR type to store data with a fixed length. The advantage of a CHAR type is that it is
efficient to store, index, and access. The disadvantage of the CHAR type, is that the maximum
length is always used and is therefore wasteful of space. The VARCHAR type, however, is
typically more efficient in storage, using only as much space as is required. The

VARCHAR IGNORECASE is a special case-insensitive non-portable type of VARCHAR.

TIP In some implementations, it is more space efficient to place the fixed length fields before the
variable length fields.

Unlike the other text data types, the LONGVARCHAR type does not accept a length. The
LONGVARCHAR type is frequently called a memo field because it allows for long rambling
memos of no specific length—there is an implementation specific upper limit, but the limit is
usually very large. In a typical implementation, the primary file contains a pointer to most or all of
the “memo”, which is stored in a secondary file. The HSQLDB database stores all of the data in a
single file. Some database implementations have difficulty accessing and using memo fields.

TIP I experimentally determined that the HSQLDB database uses the same amount of storage
regardless of the type used. I also saw no speed advantage while searching the different text
types. Despite these these observations, you should choose data types realizing that the
underlying implementation may change in the future.

6.5. Binary data

OpenOffice.org supports three primary binary types, BINARY, VARBINARY, and
LONGVARBINARY. Based on the SQL standards, the binary types should behave similarly to the
corresponding text types CHAR, VARCHAR, and LONGVARCHAR types;but binary data is
stored rather than text data. The HSQLDB implementation used by OpenOffice.org, however,
implements all binary types similarly to a memory field—you can not specify the length, but the
length is very large.

TIP The HSQLDB implementation treats all the binary types as equivalent. You can not specify a
maximum length, so the three binary types are treated as a LONGVARBINARY.

This document contains extensive examples of manipulations using binary data.

OpenOffice.org Base 57

Database fields

6.6. Other data type

The purpose of the OTHER data type in HSQLDB, is to store a serializable JAVA object. Objects
stored as an OTHER type are always considered equal unless one of the objects is NULL. Finally,
OTHER data can not be searched or joined other than tests for NULL.

6.7. Database sequences and auto-value fields

A database index is a lookup table that relates the value of fields to their location in the database.
The value of the fields on which an index is based provide is called the index key. It is typically
very fast to search an index for a specific value, and then the index returns a pointer into the
database that allows the corresponding record to be obtained. If a large database is frequently
accessed based on a person's last name, then an index should probably be created based on the last
name field.

A key is a set of columns that can be used to identify or access a particular row or rows. A unique
key is a key that is constrained so that no two values are equal. The primary key is a unique key
that is selected to be the most important key for a table—each table can have only one primary
key. A primary index is based on the primary key and a secondary index is based on columns that
are not the primary key.

Although OpenOffice.org can access a database that does not contain a primary key, OOo can not
(in general) update a database without a primary key. Neither a CVS text file nor a Calc document
contain a primary key. The dBase access code is an exception to the primary key rule; dBase files
do not contain primary keys, yet OOo is able to update these files.

It is very important, therefore, that add a primary key field to every table that you create. When
no obvious primary key exists, the typical solution is to create an integer field that contains a
sequence of integers. OpenOffice.org calls a field an auto-value field, if it can automatically set
itself to the next available sequence number when a new row is inserted into the table.

TIP The auto-increment statement for an integer field in HSQLDB is “IDENTITY™.

HSQLDB, included with OOo, implements an Identity statement used to generate a sequence of
integers. An auto-value integer field can be implicitly set with an automatically generated number
—insert a null value into the auto-value column to implicitly insert the next sequence number. You
can explicitly set the value stored in an auto-value field. If the explicitly entered value is greater
than the next available sequence number, then the sequence is reset to the explicit value. Listing
28 demonstrates implicitly and explicitly setting an auto-value field while inserting new rows in a
database.

Listing 28. Implicitly and explicitly set an auto-value field.

CALL | DENTI TY() ** Assume returns 50
I NSERT | NTO "Tabl el™ VALUES (NULL, 'x0') ** |nsert (50, 'x1')
I NSERT I NTO "Tabl el® VALUES (137, 'x1') ** |nsert (137, 'x2')
I NSERT I NTO "Tabl el® VALUES (130, 'x2') ** |nsert (130, 'x3")
I NSERT I NTO "Tabl el® VALUES (130, 'x3") ** Failure, 130 exists.
I NSERT I NTO "Tabl el® VALUES (NULL, 'x4') ** |nsert (138, 'x0')

I NSERT | NTO “Tabl el VALUES (NULL, IDENTITY()) ** Insert (139, 138)

OpenOffice.org Base 58

Database fields

OpenOffice.org Base

59

7. A few easy database definitions

Although database terminology is not difficult, some words have a different meaning depending
on the context and database system. Words that are likely to be used while creating a new
database are shown and defined in Table 12 as they are used in this document. A database power
user will already know and be comfortable with the definitions.

Note Many of OpenOffice.org's APIs accept arguments that specify the schema and catalog, which
is why I chose to define them. The definitions shown in Table 5 are intended to provide a
broad view for an inexperienced user. The terms schema and catalog are generally not
required while using a simple database. In other words, don't panic, and don't spend a lot of
time memorizing definitions.

A database table is a collection of records. Each record contains individual pieces of data called
fields. The SQL 92 standard introduces the terms catalog and schema, which refer to the
organization of data in database systems. Fields are contained in records, records are contained in
tables, tables are contained in schemas, and schemas are contained in catalogs. Finally, all of the
elements are stored in a database. A schema is also likely to contain views, aliases, indexes,
triggers, and structured types.

Table 12. Simplistic database definitions

Simplistic Definition

Field Individual piece of data such as a first name, or date.
Record ‘ Collection of related fields, treated as a single unit; a record is a single row of fields.
Table Collection of records.

Schema Collection of tables, views, aliases, indexes, triggers, and structured types. Frequently used to
mean the structure of a group of tables.

Catalog Collection of schemas.

‘ Database ‘ Encapsulates all of the items, including catalogs, schemas, tables, records, and fields. ‘

Many database systems do not support catalogs or schemas, especially smaller database systems.
Larger database systems are more likely to support catalogs and schemas, but the names and
precise definitions differ between different database systems. For example, in some systems a table
is called a catalog and in others a table is called a schema—the different usages were in place
before the SQLI2 standard provided a common definition.

TIP Internally, the HSQLDB supports schemas, but not catalogs. Schema support is new, and was
added shortly before the release of of OOo version 2.0. The initial release of OOo version 2.0
does not fully support schemas when used with their internal database due to time
constraints; better support will be added later.

OpenOffice.org Base 60

A few easy database definitions

7.1. Schema

According to the dictionary, a schema refers to a structure that represents some aspect of the
world. The SQL92 definition effectively organizes organizes an entire database hierarchy into
schemas. A common usage for a schema is to store table definitions, relationships, and access
rights in one schema, and the general data tables in a different schema. While working with an
unfamiliar database, I sometimes search the information schema to determine existing table names
—assuming that I have access to the information schema.

With regards to database systems, the word schema frequently refers to the database structure,
and is frequently represented as a table or a graphic. Although you must determine the meaning
based on the context, this is usually easy to do.

OpenOffice.org Base 61

8. Database connections

8.1. Obtain a database context

The first step in accessing a database, is to open the database context (see Listing 29). The
database context is used to manipulate registered data sources and to obtain a data source for a
database that is not registered. Table 13 provides a brief description of methods supported by the
database context.

Listing 29. Create a global database context.

oBaseCont ext = CreateUnoService("com sun. star.sdb. Dat abaseCont ext")

TIP Do not dispose a database context; the database context is a global service and there is only
one instance, which is always returned. If you dispose a database context, the disposed
unusable context will be returned. You must restart OpenOffice.org before you can obtain
another database context.

Table 13. Some methods supported by a DatabaseContext.

Method Description
addContainerListener(listener) Registering a listener to be notified when new data source is created
or removed.
‘ createEnumeration() Return an enumeration of registered data sources. ‘
dispose() Dispose this global object. Do not use this method!
getByName(name) Retrieve a data source, registered or not, based on the registered name
or database URL.
getElementNames() Return an array of registered data source names.
‘ getRegisteredObject(name) Return the registered data source. ‘
hasByName(name) Return True if the specified name is a registered data source.
‘ hasElements() Return True if there is at least one registered data source. ‘
registerObject(name, data_source) Register the supplied data source.
‘ removeContainerListener(listener) Remove a registered container listener. ‘
revokeObject(name) Unregister the named data source.

OpenOffice.org Base 62

Database connections

8.1.1. Registered data sources

Use the database context to obtain a data source for either a registered or an unregistered data
source. Some methods relate only to registered data sources. For example, the method
hasByName(name) returns True if the database context contains a registered a database with the
specified name, but getByName(url) returns a data source even if it is not registered. The macro
in Listing 30 displays the currently registered data sources and then demonstrates how to
enumerate them. Registered Sources

Listing 30. List the currently registered database services.

Sub Li st Regi st eredDat aSources()
Di m oBaseContext ' d obal database context.

Di m oEnum "Enuneration of registered data sources.
Di m oDat aSour ce ' Dat abase source
oBaseCont ext = Creat eUnoService("com sun. star.sdb. Dat abaseCont ext")

I f NOT oBaseContext.hasEl enents() Then
Print "There are no regi stered data sources."
Exit Sub

End |f

REM Use hasByNane(nane) to verify that a data source is registered.
REM use get El ement Nanes() to obtain a list of registered data sources.
REM Cal | i ng oBaseCont ext . get ByNane(nane) returns a data source.
MsgBox Joi n(oBaseCont ext . get El enent Nanes(), CHR$(10)), 0,

"Regi stered Sources"

REM Enunerate the currently regi stered data sources.
oEnum = oBaseCont ext . creat eEnunerati on()
Do Wil e oEnum hasMor eEl enent s()
oDat aSour ce = oEnum next El enent ()
Loop
End Sub

8.1.2. Unregistering a data source

While registered, an OOo Base file is locked, preventing it from being deleted or otherwise
manipulated. Deleting a data source from the data source view will unregister the data source; use
F4 to open the data source view. A data source can also be unregistered using a macro (see
Listing 31).

Listing 31. Unregister a data sources.

oBaseCont ext = CreateUnoService("com sun. star.sdb. Dat abaseCont ext")
oBaseCont ext . r evokeObj ect (" MeniTest ")

OpenOffice.org Base 63

Database connections

8.1.3. Registering a data source

Prior to OpenOffice.org version 2.0, a data source needed to be registered before it could be
accessed; this is no longer true. A data source can be obtained based on the document's URL, but
this will not register the data source. Listing 32 demonstrates how to obtain and register a data
source. A data source can be obtained based on the URL, even if it is already registered by
another name—notice the use of GetSourceCodeDir() from Listing 57.

Listing 32. Register a data source.

oBaseCont ext = CreateUnoService("com sun. star.sdb. Dat abaseCont ext")
sName = Cet SourceCodeDir() & "MeniTest. odb"
oDat aSour ce = oBaseCont ext . get ByNane(sNane)

REM Regi ster the object if you want, but this is not required for use.
oBaseCont ext . regi st er Obj ect ("MeniTest", oDat aSour ce)

TIP You can manipulate a database without a registered data source. The data source is the
database document. Listing 32 demonstrates how to obtain a data source based on its URL
and how to register the data source.

A data source always corresponds to a database document; even with the “Bibliography” data
source. The data source is available from the DatabaseContext using the URL of the database
document. The data source contains a reference to the database document using the
DatabaseDocument property, which can be opened the same was as any other OpenOffice.org
document. Listing 62 demonstrates how to find a currently open document based on the
document's URL. The primary difference between loading a document directly, and obtaining the
data source from the DatabaseContext (see Listing 32), is the absence of a visible user interface
when using a DatabaseContext.

8.2. Connect to a database

A database connection represents a session with a specific database. To manipulate or modify the
data contained in a database, a database connection is required. The connection provides the
ability to execute SQL statements to modify and obtain information. Listing 33 demonstrates how
to open a connection to the Bibliography database, which is included with OOo.

Listing 33. Open a connection to the Bibliography database.

Di m oBaseCont ext ' d obal dat abase context.

Di m oDat aSour ce 'Data source for the specified database.
Di m oCon "Connection to a database.

Dim sUser$ "User nanme while connecting.

Di m sPasswor d$ ' Password whil e connecti ons.

REM Set the user nanme and password for connection.

REM There is no user or password required so set to an enpty string.
sUser = ""

sPassword = ""

OpenOffice.org Base 64

Database connections

oBaseCont ext = Creat eUnoService("com sun. star.sdb. Dat abaseCont ext")
oDat aSour ce = oBaseCont ext . get ByNanme(" Bi bl i ogr aphy")

oCon = oDat aSour ce. get Connecti on(sUser, sPassword)

oCon. cl ose()

TIP Although connections are automatically closed when the macro finishes, it is considered good
practice to close a connection when you are finished. If the macro exits abnormally, the
connection may not close.

8.3. Connect using an interaction handler

The code in Listing 33 demonstrates how to open a connection to a database by supplying both
the user name and password. The Bibliography database does not require a user name and a
password, so empty strings are used. OpenOffice.org provides a mechanism to automatically
prompt for a password if it is required (see Listing 34).

Listing 34. Use an interaction handler to open the database.

Di m oBaseCont ext ' d obal dat abase context.

Di m oDat aSour ce 'Data source for the specified database.

Di m oHandl er "Interaction handler in case a password is required.
Di m oCon ' Connection to a database.

oBaseCont ext = CreateUnoService("com sun. star.sdb. Dat abaseCont ext")

oDat aSour ce = oBaseCont ext . get ByNanme(" Bi bl i ogr aphy")

oHandl er = createUnoService("com sun. star.sdb.|nteractionHandl er")
oCon = oDat aSour ce. Connect Wt hConpl eti on(oHandl er)

oCon. cl ose()

8.4. Connections

A connection represents a session with a specific database. A connection is used to execute SQL
statements and obtain results. A database connection is able to provide meta data concerning the
connection.

Table 14. Methods supported by the com.sun.star.sdbc.Connection service.

Method Description

createStatement() Return a new statement object for executing SQL. SQL statements that are
executed many times should use a prepared statement instead.

prepareStatement(sql) Return a prepared statement object for executing parameterized SQL
statements. Use '?' as the parameter place holder.

prepareCall(sql) Return a callable statement object for calling database stored procedures. Use
'?" as the parameter place holder.

nativeSQL(sql) A driver may transform SQL before sending it to the database, the
nativeSQL() method returns the transformed SQL without sending it to the
database.

setAutoCommit(boolean) Enable (True) or disable (False) a connection's auto-commit mode. In auto-

OpenOffice.org Base 65

Method

getAutoCommit()

close()

commit()

rollback()

isClosed()
getMetaData()
setReadOnly(boolean)

isReadOnly()

setCatalog(catalog_name)

getCatalog()
setTransactionlsolation(long)

getTransactionlIsolation()

getTypeMap()
setTypeMap(map)

getWarnings()

clearWarnings()

Database connections

Description

commit mode, all SQL statements are executed and committed as individual
transactions. Otherwise, SQL statements are grouped into transactions that
are terminated by a call to either commit() or rollback(). A commit occurs
when a statement completes or the next execute occurs, whichever comes
first. If a result set is obtained, the statement completes when the last row
from the result set is retrieved or the result set is closed.

Return the current auto-commit state. By default, new connections are in
auto-commit mode.

Close the connection. The connection is automatically closed when it is no
longer referenced.

Cause all changes made since the last commit or rollback to become
permanent, releasing database locks held by the connection—use only when
auto-commit mode is disabled.

Discard all changes made since the last commit or rollback, releasing
database locks held by the connection—use only when auto-commit mode is
disabled.

Return True if the connection is closed.
Return the meta-data for the connection's database.

Enable (True), or disable, read-only mode as a hint to enable database
optimizations.

Return True if the connection is in read-only mode.

Set a catalog name to select a subspace of this connection's database in
which to work. If the driver does not support catalogs, the request is ignored.

Return the name of the connection's current catalog.
Change the transaction isolation level.

Return the connection's current transaction isolation level.
Return the type map, if any, associated with this connection.

Install the given type map as the type map for this connection. The type map
is used for the custom mapping of SQL structured types and distinct types.
Not all drivers support type maps.

Return the first warning or error. The warning object contains a link to the
following warnings.

Clears all warnings.

Transactions prevent data from being read in an inconsistent state. For example, reading a row
changed by one transaction that is later rolled back. 7able 15 lists the three primary types of “bad”
reads that are preventable using transactions.

OpenOffice.org Base

66

Database connections

Table 15. Read types that produce inconsistent data.

Description
Dirty Reading a row with uncommitted changes.
Non-repeatable Reading a row before and after a second transaction modifies the row.
Phantom A phantom read requires the following sequence of events: A transaction using a

WHERE clause reads rows before and after, a second transaction inserts a row that
matches the WHERE clause. The extra rows read after the insertion are called phantom
TOWS.

The transaction isolation level is set based on the Transactionlsolation constants; not all drivers
support all transaction isolation level.

Table 16. Constants in the com.sun.star.sdbc. Transactionlsolation constant group.

Description
NONE 0 Transactions are not supported.
READ UNCOMMITTED 1 Rows that are not yet committed can be read; allows dirty, non-
repeatable, and phantom reads.
READ COMMITTED 2 Prevent dirty reads but allows non-repeatable and phantom reads.
REPEATABLE READ 4 Prevents dirty and non-repeatable reads, but allows phantom reads. ‘
SERIALIZABLE 8 Prevents dirty, non-repeatable and phantom reads.

8.4.1. Extended SDB connections

Every connection supports the com.sun.star.sdbc.Connection service. Some connections support
the com.sun.star.sdb.Connection service, which provides access to the data definitions of a
connected database. The extended connection can be used to control the access rights on database
objects. Access to the tables, using getTables() is always supported and optionally, the methods
getViews(), getUsers(), and getGroups() may also be present.

The SDB connection implements the prepareCommand(sql$, CommandType) method (see Table
19), which returns a PreparedStatement object for sending parameterized SQL statements to the
database. A SQL statement with or without IN parameters can be pre-compiled and stored in a
PreparedStatement object. This object can then be used to efficiently execute the statement
multiple times.

Table 17. Values for the com.sun.star.sdb. CommandType constant group.

Value Name Description

0 TABLE The command contains a table name, which can be used to process a

OpenOffice.org Base 67

Database connections

Description
command like "SELECT * FROM tablename".

1 QUERY The command contains a name of a query component, which contains a
certain statement.
2 COMMAND The command is an SQL statement.

8.4.2. Meta-data

Use a connection's getMetaData() method to obtain comprehensive information about the
database as a whole. Some meta-data object methods return simple data types, and others return a
result set with multiple rows. Different result set types exist. Some methods supported by the
meta-data object accept a result set type as an argument; insertsAreDetected() for example.

Table 18. Values for the com.sun.star.sdbc.ResultSetType constant group.

Value Name Description

1003 FORWARD ONLY The row set cursor can move only forward.

1004 SCROLL INSENSITIVE The row set cursor is scrollable but generally not sensitive to
changes made by others.

1005 SCROLL_SENSITIVE The row set cursor is scrollable and generally sensitive to

changes made by others.

Table 19. Values for the com.sun.star.sdbc.ResultSetConcurrency constant group.

Value Name Description
1007 READ ONLY Concurrency mode for a result set that may not be updated.
1008 UPDATABLE Concurrency mode for a result set that may be updated.

Routines that accept string patterns, such as a table name, support simple regular expressions. The
string, “%” means match any substring of 0 or more characters, and “_ means match any one
character.

Caution The API documentation indicates that a NULL reference for a search pattern causes that
argument's criteria to be dropped from the search. Unfortunately, it is not valid to pass a
A NULL reference using UNO. Some platforms generate a run time error and some platforms
silently allow it. Do not allow assume that a NULL value is valid.

OpenOffice.org Base 68

Database connections

Table 20. Methods supported by the com.sun.star.sdbc. XDatabaseMetaData interface.

Method
allProceduresAreCallable()

allTablesAreSelectable()

dataDefinitionCausesTransactionCommit()

dataDefinitionIgnoredInTransactions()

deletesAreDetected(ResultSetType)

doesMaxRowSizeIncludeBlobs()

getBestRowldentifier(catalog, schema, table, scope,
nullable)

getCatalogs()
getCatalogSeparator()
getCatalogTerm()

getColumnPrivileges(catalog, schema, table,
column)

getColumns(catalog,schema, table, column)

getConnection()

getCrossReference(primaryCatalog,
primarySchema, primaryTable, foreignCatalog,
foreignSchema, foreignTable)

getDatabaseProductName()
getDatabaseProductVersion()
getDefaultTransactionlIsolation()
getDriverMajorVersion()
getDriverMinorVersion()
getDriverName()
getDriverVersion()

getExportedKeys(catalog, schema, table)

getExtraNameCharacters()

getldentifierQuoteString()

Description

True, if the current user can call every procedure
returned by the getProcedures() method.

True, if the current user can SELECT every table
returned by the getTables() method.

True, if a data definition statement within a transaction
can force the transaction to commit.

True, if a data definition statement within a transaction
is ignored.

True, if the rowDeleted() method of the result set can
detect a row deletion.

True if getMaxRowSize() includes LONGVARCHAR
and LONGVARBINARY blobs.

Result set describing a table's optimal set of columns
that uniquely identify a row.

Result set of the available catalog names.
The separator between a catalog and table name.
The database vendor's preferred term for “catalog”.

Result set with a description of the access rights for a
table's columns.

Result set with a description of the table columns. I
used this to find table names as well.

Connection that produced this meta-data object.

Result set with a description of the foreign key columns
in the foreign key table that reference the primary key
columns of the primary key table—describe how one
table imports another's key.

Name of the database product.

Version of the database product.

Default database transaction isolation level.
Major version number of the SDBC driver.

Minor version number of the SDBC driver.

Name of the SDBC driver.

Version number of the SDBC driver.

A row set that describes the foreign key columns that
reference a table's primary key columns—the foreign
keys exported by a table.

All the "extra" characters that can be used in unquoted
identifier names (those beyond a-z, A-Z, 0-9 and).

nn

The string used to quote SQL identifiers. A space " " is

OpenOffice.org Base

69

Method

Database connections

Description

getlmportedKeys(catalog, schema, table)

approximate)

getMaxBinaryLiteralLength()
‘ getMaxCatalogNameLength()
getMaxCharLiteral Length()

‘ getMaxColumnNameLength()
getMaxColumnsInGroupBy()

‘ getMaxColumnsInIndex()
getMaxColumnsInOrderBy()

‘ getMaxColumnsInSelect()
getMaxColumnsInTable()

‘ getMaxConnections()
getMaxCursorNameLength()

‘ getMaxIndexLength()
getMaxProcedureNameLength()

‘ getMaxRowSize()
getMaxSchemaNameLength()

‘ getMaxStatementLength()
getMaxStatements()

‘ getMaxTableNameLength()
getMaxTablesInSelect()

‘ getMaxUserNameLength()

getNumericFunctions()

getPrimaryKeys(catalog, schema, table)

getProcedureColumns(catalog, schema,
procedure, column)
getProcedures(catalog, schema,
procedure)

getProcedureTerm()

getSchemas()
getSchemaTerm()

getIndexInfo(catalog, schema, table, unique,

returned if identifier quoting is not supported.

A row set that describes the primary key columns that
are referenced by a table's foreign key columns—the
primary keys imported by a table.

A row set that describes a table's indexes and statistics.

Maximum number of hex characters in a binary literal.
Maximum length of a catalog name. ‘
Maximum length for a character literal.

Maximum length of a column name. ‘

Maximum number of columns in a "GROUP BY"
clause.

Maximum number of columns allowed in an index. ‘

Maximum number of columns in an "ORDER BY"
clause.

Maximum number of columns in a "SELECT" list. ‘
Maximum number of columns in a table.

Maximum number of concurrent active connections. ‘
Maximum length of a cursor name.

Maximum index length (in bytes). ‘
Maximum length of a procedure name.

Maximum length of a single row. ‘
Maximum length allowed for a schema name.

Maximum length of an SQL statement. ‘
Maximal number of open concurrent active statements.
Maximum length of a table name. ‘
Maximum number of tables in a SELECT statement.
Maximum length of a user name. ‘
Comma-separated list of math functions.

A row set that describes a table's primary key columns. ‘

A row set that describes the stored procedure's
parameters and result columns.

A row set that describes the stored procedures in a
catalog.

The database vendor's preferred term for “procedure”.
A row set that describes the available schema names. ‘

The database vendor's preferred term for "schema".

OpenOffice.org Base

70

Method

Database connections

Description

getSearchStringEscape()

getSQLKeywords()
getStringFunctions()

getSystemFunctions()

getTablePrivileges(catalog, schema, table)
getTables(catalog, schema, table, types())
getTableTypes(catalog, schema, table, column)

getTimeDateFunctions()

getTypelnfo()

getUDTs(catalog, schema, type name, types())

getURL()

getUserName()
getVersionColumns(catalog, schema, table)
insertsAreDetected(ResultSetType)

isCatalogAtStart()

isReadOnly()
nullPlusNonNullIsNull()

nullsAreSortedAtEnd()

nullsAreSorted AtStart()
nullsAreSortedHigh()
nullsAreSortedLow()
othersDeletesAreVisible(ResultSetType)

othersInsertsAreVisible(ResultSetType)
othersUpdatesAreVisible(ResultSetType)

ownDeletesAreVisible(ResultSetType)
ownlnsertsAreVisible(ResultSetType)

ownUpdatesAreVisible(ResultSetType)

storesLowerCaseldentifiers()

The string used to escape wild-card characters '
'%".

Comma-separated list of SQL keywords not in SQL92.

or

Comma-separated list of string functions. ‘
Comma-separated list of system functions.

A row set that describes the access rights for each table. ‘
A row set that describes the available tables.

A row set with one column with the available table
types.

Comma-separated list of time and date functions.

A row set that describes the supported standard SQL
types.
A row set that describes the user-defined types.

Supported types include OBJECT, STRUCT, and
DISTINCT.

Directory and filename of the database.
User name for the connection.

A row set that describes a table's columns that are
automatically updated when any value in a row is
updated.

True, if the rowInserted() method of the result set can
detect a row insertion.

True, if a catalog appears at the start of a qualified table
name; otherwise it appears at the end.

True, if the database is in read-only mode.

True, if concatenations between NULL and non-NULL
values are NULL.

True, if NULL values are sorted at the end.

True, if NULL values are sorted at the start. ‘
True, if NULL values are sorted high.

True, if NULL values are sorted low. ‘
True, if deletes made by others are visible.

True, if inserts made by others are visible. ‘
True, if updates made by others are visible.

True, if a result set's own deletes are visible. ‘
True, if a result set's own inserts are visible.

True, if a result set's own updates are visible. ‘

True, if the database treats mixed case unquoted SQL
identifiers as case insensitive and stores them in lower

OpenOffice.org Base

71

Method

Database connections

Description

storesLowerCaseQuotedIdentifiers()

storesMixedCaseldentifiers()

storesMixedCaseQuotedIdentifiers()

storesUpperCaseldentifiers()

storesUpperCaseQuotedIdentifiers()

supportsAlterTableWithAddColumn()

supportsAlterTableWithDropColumn()

supportsANSI92EntryLevel SQL()

supportsANSI92FullSQL()

supportsANSI92IntermediateSQL()

supportsBatchUpdates()
supportsCatalogsInDataManipulation()

supportsCatalogsInIndexDefinitions()

supportsCatalogsInPrivilegeDefinitions()

supportsCatalogsInProcedureCalls()

supportsCatalogsInTableDefinitions()

supportsColumnAliasing()
supportsConvert(fromType, toType)

supportsCoreSQLGrammar()

case.

True, if the database treats mixed case quoted SQL
identifiers as case insensitive and stores them in lower
case.

True, if the database treats mixed case unquoted SQL
identifiers as case insensitive and stores them in mixed
case.

True, if the database treats mixed case quoted SQL
identifiers as case insensitive and stores them in mixed
case.

True, if the database treats mixed case unquoted SQL
identifiers as case insensitive and stores them in upper
case.

True, if the database treats mixed case quoted SQL
identifiers as case insensitive and stores them in upper
case.

True, if the Database supports "ALTER TABLE" with
add column.

True, if the Database supports "ALTER TABLE" with
drop column.

True, if the database supports ANSI92 entry level SQL
grammar.

True, if the database supports ANSI92 full SQL
grammar.

True, if the database supports ANSI92 intermediate
SQL grammar.

True, if the driver supports batch updates.

True, if a catalog name can be used in a data
manipulation statement.

True, if a catalog name can be used in an index
definition statement.

True, if a catalog name can be used in a privilege
definition statement.

True, if a catalog name be used in a procedure call
statement.

True, if a catalog name be used in a table definition
statement.

True, if the Database supports column aliasing. ‘

True, if the Database can convert between the two SQL
types. The types are represented as an integer.

True, if the database supports ODBC Core SQL
grammar.

OpenOffice.org Base

72

Method

Database connections

Description

supportsCorrelatedSubqueries()
supportsDataDefinitionAndDataManipulationTrans
actions()
supportsDataManipulationTransactionsOnly()
supportsDifferentTableCorrelationNames()
supportsExpressionsInOrderBy()

supportsExtendedSQLGrammar()

supportsFullOuterJoins()
supportsGroupBy()

supportsGroupByBeyondSelect()

supportsGroupByUnrelated()

supportsIntegrityEnhancementFacility()

supportsLikeEscapeClause()

supportsLimitedOuterJoins()
supportsMinimumSQLGrammar()

supportsMixedCaseldentifiers()
supportsMixedCaseQuotedldentifiers()
supportsMultipleResultSets()

supportsMultiple Transactions()

supportsNonNullableColumns()
supportsOpenCursorsAcrossCommit()
supportsOpenCursorsAcrossRollback()
supportsOpenStatementsAcrossCommit()
supportsOpenStatementsAcrossRollback()
supportsOrderByUnrelated()

True, if correlated sub-queries are supported.

True, if the Database supports both data definition and
data manipulation statements within the same
transaction.

True, if only data manipulation statements within a
transaction are supported.

True, if table correlation names are restricted to names
different from the actual table names.

True, if expressions in "ORDER BY" lists are
supported.

True, if the ODBC Extended SQL grammar is
supported.

True, if full outer joins are supported.

True, if some form of the "GROUP BY" clause is
supported.

True, if a "GROUP BY" clause can add columns not in
the SELECT—assuming it specifies all columns in the
SELECT.

True, if a "GROUP BY" clause can use columns not in
the SELECT.

True, if the SQL Integrity Enhancement Facility is
supported.

True, if the escape character is supported in "LIKE"
clauses.

True, if limited outer joins are supported.

True, if the ODBC Minimum SQL grammar is
supported.

True, if unquoted SQL identifiers are case sensitive.
True, if quoted SQL identifiers are case sensitive.

True, if multiple result sets from a single execute are
supported.

True, if multiple transactions on different connections
can be open at once.

True, if columns be defined as not nullable.

True, if cursors can remain open across commits.
True, if cursors can remain open across rollbacks.
True, if statements can remain open across commits.
True, if statements can remain open across rollbacks.

True, if an "ORDER BY" clause use columns not in the
SELECT statement.

OpenOffice.org Base

73

Method

Database connections

Description

supportsOuterJoins()
supportsPositionedDelete()
supportsPositionedUpdate()

supportsResultSetConcurrency(ResultSetType,
concurrency)

supportsResultSetType(ResultSetType)
supportsSchemasInDataManipulation()

supportsSchemasInIndexDefinitions()

supportsSchemasInPrivilegeDefinitions()

supportsSchemasInProcedureCalls()

supportsSchemasInTableDefinitions()

supportsSelectForUpdate()
supportsStoredProcedures()

supportsSubqueriesInComparisons()

supportsSubqueriesInExists()

supportsSubqueriesInins()
supportsSubqueriesInQuantifieds()

supportsTableCorrelationNames()

supports TransactionlsolationLevel(level)

supportsTransactions()

supports TypeConversion()

supportsUnion()
supportsUnionAll()

updatesAreDetected(ResultSetType)

usesLocalFilePerTable()

usesLocalFiles()

True, if outer joins are supported.
True, if positioned DELETE is supported.
True, if positioned UPDATE is supported.

Does the database support the concurrency type in
combination with the given result set type.

True, if the given result set type is supported.

True, if a schema name can be used in a data
manipulation statement.

True, if a schema name can be used in an index
definition statement.

True, if a schema name can be used in a privilege
definition statement.

True, if a schema name can be used in a procedure call
statement.

True, if a schema name be used in a table definition
statement.

True, if SELECT for UPDATE is supported.

True, if stored procedure calls using the stored
procedure escape syntax are supported.

True, if sub-queries in comparison expressions are
supported.

True, if sub-queries in 'exists' expressions are
supported.

True, if sub-queries in 'in' statements are supported.

True, if sub-queries in quantified expressions are
supported.

True, if table correlation names are supported.

True, if the given transaction isolation level is
supported.

True, if transactions are supported.

True, if the CONVERT function between SQL types is
supported.

True, if the SQL UNION statement is supported.
True, if the SQL UNION ALL statement is supported. ‘

True, if a row update can be detected by calling the
method rowUpdated() on the result set object.

True, if one local file is used for each table. ‘

True, if the local files are used to save the tables.

OpenOffice.org Base

74

Database connections

8.4.3. Inspecting the meta-data

To demonstrate how to access the meta data, [wrote a macro that retrieves the meta-data by
calling the methods in Listing 35, and then stores the data in a Calc document. First, a new Calc
document is created to contain the resulting data.

Listing 35. Inspect the meta data from a connection.

Function | nspect Met aDat a(ByVal oleta)

s$ "Uility string variable.
oResul t "Result froman SQ statenent.
i As Long 'General index variable.

j As Long 'General index variable.

k As Long 'General index variable.

oDoc "Cal ¢ docunment that will contain the presentation data.
sNewUr | $ "URL for a new cal c docunent.

oTables() 'Contains the prinmary data tables.

oDat al() "Ceneric data variable.

oDat a2() "Ceneric data variable.

oDat a3() "Ceneric data variable.

oDat a4() "Ceneric data vari able.

vBvvvavavivavavivlvRvav]
3333333333333

oNul | As Onj ect

If IsNull (oMeta) OR | sEnpty(oMeta) Then
Print "The neta-data is null or enpty"
Exit Function

End |f

REM Open a new cal ¢ docunent to hold the datal!

sNewUr| = "private:factory/scalc"

oDoc = StarDesktop. | oadConponent FromJRL(sNewUr | , " _bl ank™, 0, Array())

REM Start by obtaining the list of regular tables.
oResult = oMeta.get Tables(oNull, "%, "%, Array("TABLE"))
Redi m oTabl es()
Do Wil e oResult.next()
AppendToArray(oTabl es(), oResult.getString(3))
Loop

RunMul ti pl eCal | sAppendToDoc(oDoc, oMet a,
Array("al |l ProceduresArecCall abl e",
"al | Tabl esAr eSel ect abl e",
"dat aDefiniti onCausesTransacti onComm t",
"dat aDefinitionl gnoredl nTransacti ons",
"doesMaxRowSi zel ncl udeBl obs"))

REM The argunents are (catal og, schemn, table, scope, nullable)
REM The scope can be any value fromthe com sun. star. sdbc. Best RowScope
REM const ants includi ng TEMPORARY (0), TRANSACTION (1),
REM and SESSI ON (2).
For i = LBound(oTables()) To UBound(oTabl es())
oResult = oMeta. get Best Rowi dentifier(oNull, "%, oTables(i),
com sun. st ar. sdbc. Best RowScope. SESSI ON, True)
AddResul t Set ToDoc(oResul t, oDoc, _
"get Best Rowl dentifier(" & oTables(i) & ")")
Next

OpenOffice.org Base 75

Database connections

REM There is a single colum CATALOG returned.
oResul t = oMet a. get Cat al ogs()
AddResul t Set ToDoc(oResul t, oDoc, "getCatal ogs")

RunMul ti pl eCal | sAppendToDoc(oDoc, oMt a,
Array("get Catal ogSeparator", "getCatal ogTerni))

REM get Col umPri vi | eges(cat al og, schema, table, columPattern)
oResult = oMeta. get Col umPrivileges(oNull, "%, "%, "%)
AddResul t Set ToDoc(oResul t, oDoc, "getCol umPrivileges")

REM The NULL reference can not be replaced with
REM "9% as with get Col umPrivil eges().
oResult = oMeta.getColums(oNull, "%, "%, "%)
Resul t Set ToDat a(oResul t, oDoc, "getColums", oDatal())
Saf eArrayCol ums (11, oDatal(), _
Array("NO_NULLS", "NULLABLE", "NULLABLE UNKNOWN'), True)
AppendDat aToCal cDoc(oDoc, oDatal())

RunMul ti pl eCal | sAppendToDoc(oDoc, oMet a,
Array("get Dat abaseProduct Nane", "get Dat abaseProduct Version"))

oData2() = Array("getDefaultTransactionlsolation", "unknown")
Sel ect Case oMet a. get Def aul t Transacti onl sol ati on()
Case com sun. star.sdbc. Transacti onl sol ati on. NONE

oData2(1) = "0 = None"
Case com sun. star.sdbc. Transacti onl sol ati on. READ_UNCOVM TTED
oData2(1) = "1 = Read Unconm tted"

Case com sun. star.sdbc. Transacti onl sol ati on. READ_COVM TTED
oData2(1l) = "2 = Read Committed"

Case com sun. star.sdbc. Transacti onl sol ati on. REPEATABLE READ
oData2(1l) = "4 = Repeatabl e Read"

Case com sun. star.sdbc. Transacti onl sol ati on. SERI ALI ZABLE

oData2(1) = "8 = Serializable"
Case Else

oData2(1) = "invalid"
End Sel ect

AppendDat aToCal cDoc(oDoc, Array(oData2()))
RunMul ti pl eCal | sAppendToDoc(oDoc, oMeta,
Array("getDriver Maj or Versi on", "getDriverM norVersion",

"get DriverName", "getDriverVersion"))

ReDi m oDat a3(5 To 7)

oDat a3(5) = "IN Tl ALLY_DEFERRED"
oData3(6) = "IN TIALLY_| MVEDI ATE"
oDat a3(7) = "NONE"
For i = LBound(oTables()) To UBound(oTabl es())
oResul t = oMeta. get ExportedKeys(oNull, "%, oTables(i))

Resul t Set ToDat a(oResul t, oDoc, _
"get ExportedKeys(" & oTables(i) & ")",
oDat al())

Saf eArrayCol ums (10, oDatal(), Array("CASCADE", "RESTRICT",

OpenOffice.org Base 76

Database connections

"SET_NULL", "NO_ACTION'",
" SET_DEFAULT"), True)
Saf eArrayCol uims (11, oDatal(), Array("CASCADE', "RESTRICT",
"SET_NULL", "NO_ACTION'",
" SET_DEFAULT"), True)

Saf eArrayCol unms (14, oDatal(), oData3(), True)
AppendDat aToCal cDoc(oDoc, oDatal())

Next

For i = LBound(oTables()) To UBound(oTabl es())
oResult = oMeta. getlndexInfo(oNull, "%, oTables(i), False, True)
Resul t Set ToDat a(oResul t, oDoc, "getlndexlnfo(" & oTables(i) & ")", _

oDat al())
Saf eArrayCol uims (7, oDatal(), _
Array("STATI STIC', "CLUSTERED', "HASHED', "OTHER'), True)
AppendDat aToCal cDoc(oDoc, oDatal())
Next

RunMul ti pl eCal | sAppendToDoc(oDoc, oMeta, _
Array("get MaxBi naryLiteral Length", "getMaxCatal ogNaneLengt h",
"get MaxChar Li teral Length", "get MaxCol unmNanmeLengt h",
"get MaxCol umsI| nG oupBy", "get MaxCol utmsl nl ndex", _
"get MaxCol umsl| nOr der By", "get MaxCol utmsl nSel ect ™,
"get MaxCol umsl nTabl e", "get MaxConnecti ons",
"get MaxCur sor NanmeLengt h",
"get Maxl ndexLengt h", "get MaxProcedur eNanmeLength", "get MaxRowSize",
"get MaxSchemaNanmelLengt h", "get MaxSt at enent Lengt h",
"get MaxSt at enent s", _
"get MaxTabl eNaneLengt h", "get MaxTabl esl nSel ect",
"get MaxUser NaneLengt h"))

AppendDat aToCal cDoc(oDoc,
Array(Split("getNunmericFunctions," & _

oMet a. get Nuneri cFunctions(), ",")))
For i = LBound(oTables()) To UBound(oTabl es())
oResult = oMeta.getPrinmaryKeys(oNull, "%, oTables(i))

AddResul t Set ToDoc(oResul t, oDoc, "getPrimaryKeys(" & _
oTables(i) & ")")
Next

RunMul ti pl eCal | sAppendToDoc(oDoc, oMeta, Array("getProcedureTernmni))

oResult = oMet a. get Schemas()
AddResul t Set ToDoc(oResul t, oDoc, "getSchenmas")

RunMul ti pl eCal | sAppendToDoc(oDoc, oMeta, _
Array("get SchemaTern', "get SearchStringEscape"))
AppendDat aToCal cDoc(oDoc, _
Array(Split("get SQLKeywords," & oMeta. get SQLKeywords(), ",")))
AppendDat aToCal cDoc(oDoc,
Array(Split("getStringFunctions," & oMeta.getStringFunctions(),

)
AppendDat aToCal cDoc(oDoc,

OpenOffice.org Base 77

Array(Split("getSystenfunctions," & _
oMet a. get Syst enfunctions(), ",")))

REM Cbtain the foll owi ng col ums:
REM TABLE_CAT, TABLE_SCHEM TABLE_NAME, GRANTOR, GRANTEE, PRI VI LEGE
OResult = oMeta.getTabl ePrivileges(oNull, "%, "%)

AddResul t Set ToDoc(oResul t, oDoc, "getTabl ePrivileges")

oResult = oMeta.getTables(oNull, "%, "%, Array())
AddResul t Set ToDoc(oResul t, oDoc, "getTabl es")

REM One columm with the supported table types
oResult = oMet a. get Tabl eTypes(oNull, "%, "%)
AddResul t Set ToDoc(oResul t, oDoc, "get Tabl eTypes")

AppendDat aToCal cDoc(oDoc,
Array(Split("getTi neDat eFunctions," & _
oMet a. get Ti neDat eFunctions(), ",")))

oResult = oMeta. get Typel nfo()
Resul t Set ToDat a(oResul t, oDoc, "getTypelnfo", oDatal())
Saf eArrayCol ums(7, oDatal(), _

Array("NO_NULLS", "NULLABLE", "NULLABLE UNKNOWN'), True)
Saf eArrayCol uims (9, obDatal(),

Array("NONE", "CHAR',

"BASI C', "FULL"), True)

AppendDat aToCal cDoc(oDoc, oDatal())

REM The out!| ook driver

generates an exception with a call

'oResult = oMeta.getUDTS(oNul |, "%, "%, _

' Array(com sun. star.sdbc. Dat aType. OBJECT, _

' com sun. star. sdbc. Dat aType. STRUCT , _
' com sun. star. sdbc. Dat aType. DI STI NCT))
" AddResul t Set ToDoc(oResult, oDoc, "getUDTS")

RunMul ti pl eCal | sAppendToDoc(oDoc, oMet a,
Array("get URL", "getUser Nane"))

For i = LBound(oTables()) To UBound(oTabl es())
oResult = oMeta. getVersi onCol uims(oNull, "%, oTabl es(i)
Resul t Set ToDat a(oResul t, oDoc, "getVersionColums(" & _

oTables(i) & ")",

oDatal())

Saf eArrayCol uims (8, oDatal(), _
Array (" UNKNOMWN', "NOT_PSEUDO', "PSEUDO'), True)
AppendDat aToCal cDoc(oDoc, oDatal())

Next

RunMul ti pl eCal | sAppendToDoc(oDoc, oMeta, _
Array("isCatal ogAtStart”, "isReadOnly", "null Pl usNonNul I
"nul | sAreSort edAt End", "null sAreSortedAtStart",

"nul | sAreSort edHi

For i = 1003 To 1005

gh", "nullsAreSortedLow"))

RunMul ti pl eCal | sAppendToDoc(oDoc, oMt a,
Array("insertsAreDetected",

Database connections

to get UDTS()

)

IsNul I",

OpenOffice.org Base

78

Database connections

"ot hersDel et esAreVisi bl e", "otherslnsertsAreVisible",
"ot her sUpdat esAreVi si bl e", "ownDel et esAreVisible", _
"ownl nsertsAreVisible", "ownUpdatesAreVisible"), True, i)

Next

RunMul ti pl eCal | sAppendToDoc(oDoc, oMt a,
Array("storesLower Caseldentifiers", _
"storesLower CaseQuot edl dentifiers",
"st oresM xedCasel dentifiers",
"storesM xedCaseQuot edl denti fiers",
"storesUpper Casel dentifiers", _
"storesUpper CaseQuot edl denti fiers",
"supportsAlterTabl eWthAddCol um",
"supportsAlterTabl eWthDropCol um", _
"support sANSI 92Ent ryLevel SQL", "supportsANSI 92Ful | SQL",
"support sANSI 921 nt er nedi at eSQL", "supportsBatchUpdates",
"support sCat al ogsl nDat aMani pul ati on",
"support sCat al ogsl nl ndexDefi nitions",
"supportsCatal ogsl nPrivil egeDefinitions",
"supportsCat al ogsl nProcedureCal | s", _
"support sCat al ogsl nTabl eDefi ni tions", "supportsColumAliasing"))

oDatal() = Array(-7, -6, -5, -5, -4, -3, -2, -1, 0, _
1, 2, 3, 4, 6, 7, 8, 12, 91, 92, 93, 111,
2000, 2001, 2002, 2003, 2004, 2005, 2006)
oData2() = Array("supportsConvert", "BIT", "TINYINT", "BIGNT", _
"LONGVARBI NARY", " VARBI NARY", "Bl NARY", "LONGVARCHAR",
"SQLNULL", "CHAR', "NUMERI C', "DECIMAL", "INTEGER',

"SMALLI NT", "FLOAT", "REAL", "DOUBLE", "VARCHAR', " DATE" ,
"TIVE", "TIMESTAMP", "OTHER', "OBJECT", "DI STINCT",
"STRUCT", "ARRAY", "BLOB", "CLOB", "REF")

oDat a3() = Di mArray(UBound(oData2()))
oDat a3(0) = oData2()
For i = LBound(oDatal()) to UBound(oDatal())
oDat a4() = Di mArray(UBound(oData2()))
oDat a4(0) = "supportsConvert (" & oData2(i+1) & ", ...)"
For | = LBound(oDatal()) to UBound(oDatal())
oDat a4(j +1) = CStr(oMeta. supportsConvert (obDatal(i), oDatal(j)))
Next
oDat a3(i +1) = oDat a4()
Next
AppendDat aToCal cDoc(oDoc, oData3())

RunMul ti pl eCal | sAppendToDoc(oDoc, oMet a,

Array("supportsCoreSQLG ammar", "supportsCorrel atedSubqueries”, _
"support sDat aDef i ni ti onAndDat aMani pul ati onTransacti ons",
"support sDat aMani pul ati onTransacti onsOnl y",

"supportsDifferent Tabl eCorrel ati onNanes",

"support sExpressi onsl nOrder By", "supportsExtendedSQLG anmar"”, _
"supportsFul | QuterJoi ns", "supportsG oupBy",

"support sG oupByBeyondSel ect”, "supportsG oupByUnrel ated",
"supportslntegrityEnhancenment Facility",

"supportsLi keEscapeC ause",

OpenOffice.org Base 79

Database connections

"supportsLim tedQuterJoins", "supportsM ni munSQLG ammar ",
"support sM xedCasel dentifiers",

"supportsM xedCaseQuot edl denti fiers",

"supportsMil tipl eResultSets", "supportsMiltipleTransactions",
"support sNonNul | abl eCol ums", _

"support sOpenCur sor sAcr ossConmmi t ",

"support sOpenCur sor sAcr ossRol | back",

"support sOpenSt at ement sAcrossConmi t", _

"support sOpensSt at enment sAcr ossRol | back",
"supportsOrderByUnrel ated", _

"supportsQuterJoins", "supportsPositionedDel ete",
"supportsPosi ti onedUpdate"))

For i = 1003 To 1005
RunMul ti pl eCal | sAppendToDoc(oDoc, oMet a,
Array("supportsResul t Set Concurrency"), True, i, 1007)
RunMul ti pl eCal | sAppendToDoc(oDoc, oMeta, _
Array("supportsResul t Set Concurrency"), True, i, 1008)
Next
For i = 1003 To 1005

RunMul ti pl eCal | sAppendToDoc(oDoc, oMeta, _
Array("supportsResul t Set Type"), True, i)
Next

RunMul ti pl eCal | sAppendToDoc(oDoc, oMeta, _
Array("supportsSchemasl nDat aMani pul ati on",
"support sSchemasl nl ndexDef i nitions",
"supportsSchemas| nPrivil egeDefinitions",
"support sSchemasl| nProcedureCal | s",

"supportsSchenmasl| nTabl eDefiniti ons",_ "support sSel ect For Updat e",
"supportsSt oredProcedures”, "supportsSubquerieslnConparisons”,
"support sSubqueri esl nExi sts", "supportsSubquerieslnlns",

"support sSubqueriesl nQuantifieds",
"supportsTabl eCorrel ati onNanmes"))

REM com sun. st ar. sdbc. Transacti onl sol ati on constants
oDatal() = Array(0, 1, 2, 4, 8)
For i = Lbound(oDatal()) to UBound(oDatal())
RunMul ti pl eCal | sAppendToDoc(oDoc, oMet a,
Array("supportsTransactionl sol ati onLevel "), True, oDatal(i))
Next

RunMul ti pl eCal | sAppendToDoc(oDoc, oMet a,

Array("supportsTransactions", "supportsTypeConversion",
"supportsUnion", "supportsUnionAll"))
For i = 1003 To 1005

Runiul ti pl eCal | sAppendToDoc(oDoc, oMt a,
Array("updat esAreDetected"), True, i)
Next

RunMul ti pl eCal | sAppendToDoc(oDoc, oMeta,
Array("usesLocal Fi |l ePer Tabl e", "usesLocal Files"))
I nspect Met aDat a() = oDoc

OpenOffice.org Base 80

Database connections

End Function

The macro in Listing 36 demonstrates how to inspect the meta-data from a connection.
DB Meta Data Use the DB Meta Data button to select a Base document and display the
associated meta data in a Calc document.
Listing 36. InspectHSQLMetaData is contained in SCO04.
Sub | nspect DBMet aDat a()

Di m oBaseCont ext 'd obal database context service.

Di m oDat aBase ' Dat abase obtai ned fromthe database context.
Di m oCon ' Dat abase connecti on.

Di m sURL$

LoadDBLi bs()
sURL = ChooseAFi | e$(OoBaseFilters(), True)
If sURL = "" Then Exit Sub

oBaseCont ext = CreateUnoService("com sun. star. sdb. Dat abaseCont ext")
oDat aBase = oBaseCont ext . get ByNanme(sURL)
oCon = oDat aBase. get Connection("", "")
I nspect Met aDat a(oCon. get Met aDat a())
oCon. cl ose()

End Sub

The macro in Listing 37 demonstrates how to inspect the meta-data from a connection.
HSQLDB Meta Data ~ Use the HSQLDB Meta Data button to use the binary database document

created at the beginning of this document. This macro may take a little while to run!

Listing 37. InspectHSQLMetaData is contained in SC04.
Sub | nspect HSQLMet aDat a()

Di m oBaseCont ext ' d obal database context service.

Di m oDat aBase ' Dat abase obtained fromthe database context.
Di m oCon ' Dat abase connecti on.

Dim sDBU | $

LoadDBLi bs()

sDBUrl = Cet SourceCodeDir () & sDBBaseNane
oBaseCont ext = Creat eUnoService("com sun. star.sdb. Dat abaseCont ext")
oDat aBase = oBaseCont ext . get ByNanme(sDBUr |)
oCon = oDat aBase. get Connection("", "")
I nspect Met aDat a(oCon. get Met aDat a())
oCon. cl ose()
End Sub

8.4.4. GetBestRowldentifier

The method getBestRowlIdentifier() returns a description of the optimal set of columns that
uniquely identify a row. In other words, use the columns identified by the method
getBestRowldentifier() to most quickly access a row in a table. The arguments are described in
Table 21.

OpenOffice.org Base 81

Database connections

Table 21. Arguments for getBestRowldentifier().

Argument Description

catalog Retrieve rows that use the specified catalog name; an empty string ("") retrieves rows
without a catalog and NULL means ignore the catalog name.

schema Retrieve rows that use the specified schema name; an empty string ("") retrieves rows
without a schema.

table Retrieve rows that use the specified table name; wild-cards are not supported.

scope Retrieve rows with the specified scope. Use the com.sun.star.sdbc.BestRowScope
constant group, which supports values of TEMPORARY (0), TRANSACTION (1), and
SESSION (2).

nullable If True, return columns that are allowed to be null.

Many databases support special “hidden” columns that are not explicitly defined by the user in the
table definition. These pseudo-columns generally provide the fastest access to the data because
they typically are pointers to the exact location of the record. Table 22 contains the constants
used to identify a column as a pseudo-column.

Table 22. Values for the com.sun.star.sdbc.BestRowType constant group.

Value Name Description
0 UNKNOWN The best row identifier may or may not be a pseudo-column.
1 NOT PSEUDO The best row identifier is not a pseudo-column.
2 PSEUDO The best row identifier is a pseudo-column.

The getBestRowldentifier() method returns a result set with the columns shown in 7able 23.

Table 23. Columns returned by getBestRowldentifier().

Column Typ Description
e
1 SCOPE short Scope, based on the BestRowScope constant group (see the
scope argument in Table 21).
2 COLUMN NAME string Column name.
3 DATA _TYPE short SQL data type based on the java.sql.Types (see Table 10).
4 TYPE NAME string Data source dependent type name.
5 COLUMN SIZE long The precision (length) of the column.
6 BUFFER _LENGTH long Length of column value in bytes.
7 DECIMAL _DIGITS short Scale; for numerical columns.
8 PSEUDO_COLUM short Identify the column as a pseudo-column (see Table 22).

OpenOffice.org Base 82

Database connections

Listing 35 calls getBestRowlIdentifier(). Some drivers return a NULL result set rather than a
result set that contains no rows. In my testing using OOo 2.0 pre-beta(?? retest), a flat file
returned a result set that contained no rows and an HSQLDB database returned NULL.

8.4.5. GetColumnPrivileges

The result set from getColumnPrivileges() describes the access rights for a table's columns; the
supported arguments are shown in 7able 24.

Table 24. Arguments for getColumnPrivileges().

Argument Description

333}

catalog Retrieve rows that use the specified catalog name;
and NULL means ignore the catalog name.

retrieves rows without a catalog

‘ schema ‘ Retrieve rows that use the specified schema name; "" retrieves rows without a schema. ‘
table Retrieve rows that use the specified table name; use “%” to retrieve all tables.
‘ column ‘ Retrieve rows that use the specified column name; use “%” to retrieve all columns. ‘

The method getColumnPrivileges() returns a result set with the columns as shown in Table 25.
System tables are also returned, so hundreds of rows may be returned, even on a small database.

Table 25. Columns returned by getColumnPrivileges().

Column Type Description
1 TABLE CAT string Table catalog name (may be NULL).
‘ 2 TABLE SCHEM string Table schema (may be NULL). ‘
3 TABLE NAME string Table name.
‘ 4 COLUMN NAME string Column name. ‘
5 GRANTOR string Granter of access (may be NULL).
‘ 6 GRANTEE string Grantee of access. ‘
PRIVILEGE string Name of access (SELECT, INSERT, UPDATE,
7 REFERENCES, ...).
IS GRANTABLE string "YES" if grantee is permitted to grant to others; "NO" if not;
8 NULL if unknown.

8.4.6. GetColumns

The getColumns() method returns a description of the available columns. The arguments to
getColumns(), catalog, schema, table, and column, are shown in 7able 24. The returned row set
uses the ColumnValue constant group (see Table 26) to identify if a column can contain a NULL
value.

OpenOffice.org Base 83

Database connections

Table 26. Values for the com.sun.star.sdbc.ColumnValue constant group

Value Name Description
0 NO_NULLS A column does not allow NULL values.
1 NULLABLE A column allows NULL values.
2 NULLABLE UNKNOWN The null-ability of the column is unknown.

The getColumns() method returns a result set with the columns shown in 7able 27.

Table 27. Columns returned by getColumns().

Column Type Description
1 TABLE CAT string Table catalog name.
2 TABLE SCHEM string Table schema name.
3 TABLE NAME string Table name.
4 COLUMN NAME string Column name.
DATA_TYPE short SQL data type based on the java.sql. Types (see
5 Table 10).
6 TYPE NAME string Data source dependent type name.
7 COLUMN SIZE long The precision (length) of the column.
BUFFER LENGTH long Length of column value in bytes. Not used for all
I drivers.
9 DECIMAL DIGITS long Scale for numerical columns.
10 NUM_PREC RADIX long Radix (typically either 10 or 2).
NULLABLE long Can the column contain a NULL value (see Table
11 26).
12 REMARKS string Comment describing column (may be NULL).
13 COLUMN_DEF string Default value for the column (may be NULL).
SQL DATA TYPE long The value of the SQL data type as it appears in the

SQL DESC_TYPE field of the descriptor. This is
frequently the same as the data type and it may be

14 NULL.
SQL DATETIME SUB long For a date-time or interval type, this contains the
15 date-time/interval sub-code. This may be NULL.
CHAR OCTET LENGTH long Maximum number of bytes in the column (for
16 char columns).
17 ORDINAL POSITION int Column's Index in the table (starting with 1).
IS NULLABLE string “NO” means no, “YES” means maybe, and “”
18 means unknown.

OpenOffice.org Base 84

Database connections

Most database systems store information in system tables. For example, it is typical to have a
table that lists users, and another that lists the defined tables. When run against a simple database
using the HSQLDB format, the getColumns() method returned roughly 400 rows from numerous
system tables. Use getColumns() to investigate the available columns and rows, but in practice,
you will probably want to limit the returned values to the tables of interest.

8.4.7. GetExportedKeys

The method getExportedKeys() returns a result set describing the foreign key columns that
reference a table's primary key columns (the foreign keys exported by a table). Each foreign key
contains an update and delete rule described by the KeyRule constant group (see Table 28). The
behavior may be different based on whether the rule is used as an update rule or a delete rule.

Table 28. Values for the com.sun.star.sdbc.KeyRule constant group.

Description

0 CASCADE As an update rule, when the primary key is updated, the foreign key
(imported key) is also changed. As a delete rule, when the primary key
is deleted, rows that imported that key are deleted.

1 RESTRICT As an update rule, a primary key may not be updated if it is imported
by another table as a foreign key. As a delete rule, a primary key may
not be deleted if it is imported by another table as a foreign key.

2 SET NULL If the primary key is updated or deleted, the foreign key (imported key)
is changed to NULL.

3 NO_ACTION An imported primary key cannot be updated or deleted.

4 SET_DEFAULT If the primary key is updated or deleted, the foreign key (imported key)

is set to the default value.

The Deferrability constant group (see Table 29) controls whether a constraint can be deferred. A
constraint that is not deferrable is checked immediately after every command. A deferred
constraint may be postponed until the end of the transaction.

Table 29. Values for the com.sun.star.sdbc.Deferrability constant group.

Description
5 INITIALLY DEFERRED Foreign key verification may be deferred.
6 INITIALLY IMMEDIATE ‘ Foreign key verification is done after each command.
7 NONE Foreign key verification is not performed.

The columns returned by the getExportedKeys() method are shown in 7able 30.

OpenOffice.org Base 85

Database connections

Table 30. Columns returned by getExportedKeys().

Column Type Description
1 PKTABLE CAT string Primary key table catalog (may be NULL).
‘ 2 PKTABLE SCHEM ‘ string Primary key table schema (may be NULL). ‘
3 PKTABLE NAME string Primary key table name.
‘ 4 PKCOLUMN NAME ‘ string Primary key column name. ‘
5 FKTABLE CAT string Foreign key table catalog being exported (may be
NULL).
6 FKTABLE SCHEM string Foreign key table schema being exported (may be
NULL).
7 FKTABLE NAME string Foreign key table name being exported.
‘ 8 FKCOLUMN NAME ‘ string Foreign key column name being exported. ‘
9 KEY SEQ short Sequence number in the foreign key.
10 UPDATE RULE short What happens to the foreign key when the primary is
updated (see KeyRule in 7able 28).
11 DELETE RULE short What happens to the foreign key when the primary is
deleted (see KeyRule in Table 28).
‘ 12 FK NAME ‘ string Foreign key name (may be NULL). ‘
13 PK NAME string Primary key name (may be NULL).
14 DEFERRABILITY short When are foreign key constraints evaluated (see Table
29)?

The arguments for getExportedKeys() are shown in Table 31.
Table 31. Arguments for getExportedKeys().

Argument Description

732}

catalog Retrieve rows that use the specified catalog name;
and NULL means ignore the catalog name.

retrieves rows without a catalog

nn

schema Retrieve rows that use the specified schema name; "" retrieves rows without a schema.

table Retrieve rows that use the specified table name; wild-cards are not supported.

8.4.8. Getindexinfo

The getIndexInfo() method returns a row set that provides information related to each index for
the database. Each index has a type (see Table 32). A clustered index is usually used when there
are a limited number of unique values, such as a state column that contains only 50 unique state
codes. A clustered index is also frequently used if queries using operators such as BETWEEN, >,
>= <, and <= are used. A hashed based index is optimized for equality based searches.

OpenOffice.org Base 86

Database connections

Table 32. Values for the com.sun.star.sdbc.IndexType constant group.

Value Name Description
STATISTIC Table statistics that are returned in conjunction with a table's index
0 description.
1 CLUSTERED The index is a clustered index.
2 HASHED The index is a hashed index.
3 OTHER This index some other type.

All of the entries in 7Table 32 define a type of index except for STATISTIC, which changes the
meaning of certain rows. For example, the PAGES column refers to the number of pages used for

the index unless the type is STATISTIC, in which case it is the number of pages used for the table
(see Table 33).

Table 33. Columns returned by getIndexInfo().

Column Type Description

1 TABLE CAT string Table catalog (may be NULL).

2 TABLE SCHEM string Table schema (may be NULL).

3 TABLE NAME string Table name.

4 NON_UNIQUE boolean True, if the index values can be non-unique, False
otherwise; this is always False for the statistic type.

5 INDEX QUALIFIER string Index catalog (may be NULL); NULL for type
statistic.

6 INDEX NAME string Index name. This is always NULL when the type is
statistic.

7 TYPE short Index type (see Table 32).

8 ORDINAL POSITION short Column sequence number in the index; zero for type
statistic.

9 COLUMN NAME string Column name; NULL for type statistic.

10 ASC OR DESC string Column sort sequence; “A” means ascending and

“D” means descending. This is NULL if a sort
sequence is not supported and for type statistic.

11 CARDINALITY long Number of unique values in the index. If the type is
statistic, then this is the number of rows in the table.

12 PAGES long Number of pages used for the index. If the type is
statistic, then this is the number of pages used for the
table.

13 FILTER _CONDITION string Filter condition, if any (may be NULL).

The arguments for getlndexInfo() are shown in Table 34.

OpenOffice.org Base 87

Database connections

Table 34. Arguments for getlndexInfo().

Argument Description

catalog Retrieve rows that use the specified catalog name;
and NULL means ignore the catalog name.

retrieves rows without a catalog

‘ schema Retrieve rows that use the specified schema name; "" retrieves rows without a schema. ‘
table Retrieve rows that use the specified table name; wild-cards are not supported.

‘ unique If True, return only indexes for unique values, otherwise, return all indexes. ‘
approximate If True, the returned values may contain approximate or out of data values. If False,

results must be accurate.

8.4.9. GetPrimaryKeys

The getPrimaryKeys() method returns a result set that describes a table's primary key columns.
The returned rows are ordered by the column name. The accepted arguments—catalog, schema,
and table—are described in 7able 26 and the returned rows are shown in Table 35.

Table 35. Columns returned by getPrimaryKeys().

Column Type Description
1 TABLE CAT string Catalog name (may be NULL).

‘ 2 ‘ TABLE SCHEM string ‘ Table schema (may be NULL). ‘
3 TABLE NAME string Table name.

‘ 4 ‘ COLUMN NAME string ‘ Column name. ‘
5 KEY SEQ short Sequence number within primary key.

‘ 6 ‘ PK NAME string ‘ Name of the primary key (may be NULL). ‘

8.4.10. GetTablePrivileges

The method getTablePrivileges() returns a result set that describes the access rights for each table
in the catalog. Each table privilege applies to one or more columns in the table, but not necessarily
to all of the columns in the table. The accepted arguments are described in 7able 26 and the
returned columns are described in 7able 36—wild-cards are supported for the table name.

Table 36. Columns returned by getTablePrivileges().

Type Description
1 TABLE CAT string Catalog name (may be NULL).

OpenOffice.org Base 88

Database connections

Column Type Description

2 TABLE SCHEM string Table schema (may be NULL).

3 TABLE NAME string Table name.

4 GRANTOR string Person who granted access (may be NULL).

5 GRANTEE string Person to whom access was granted.

6 PRIVILEGE string Access type (SELECT, INSERT, UPDATE,
REFERENCES, ...).

7 IS GRANTABLE string "YES" if grantee is permitted to grant to others; "NO" if not;
NULL if unknown

8.4.11. GetTables

The getTables() method returns a row set that describes the tables contained in the database. The
columns returned by the row set are described in Table 37.

Table 37. Columns returned by getTables().

Type Description

1 TABLE CAT string Catalog name (may be NULL).

2 TABLE _SCHEM string Table schema (may be NULL).

3 TABLE NAME string Table name.

4 TABLE _TYPE string Table type; typical values include TABLE, VIEW, SYSTEM

TABLE, GLOBAL TEMPORARY, LOCAL TEMPORARY,
ALIAS, and SYNONYM.

5 REMARKS string Comment that explains the table.

The arguments for getTables() are shown in 7able 38.
Table 38. Arguments for getTlables().

Argument Description

"nn

catalog Retrieve rows that use the specified catalog name;
NULL means ignore the catalog name.

retrieves rows without a catalog and

schema Retrieve rows that use the specified schema name; "" retrieves rows without a schema.
table Retrieve rows that use the specified table name; use “%” to retrieve all tables.
types() Array of table types to return; Although NULL returns all types, this is not supported on

some systems; use an empty array instead.

OpenOffice.org Base 89

Database connections

8.4.12. GetTypelnfo()

The getTypelnfo() method returns a row set that describes the standard SQL types supported by
this database. Each column supports different types of searches based on the data type and the
database implementation (see 7able 10).

Table 39. Values for the com.sun.star.sdbc. ColumnSearch constant group.

Value Name Description
0 NONE WHERE search clauses are not supported for this type.

‘ 1 CHAR ‘ The only supported search clause is WHERE...LIKE. ‘
2 BASIC Supports all supported search clauses except WHERE...LIKE.

‘ 3 FULL ‘ All WHERE search clauses can be based on this type. ‘

The columns returned by the row set are shown in Table 40.

Table 40. Columns returned by getTypelnfo().

Description
1 TYPE NAME string Type name.
‘ 2 DATA_TYPE ‘ short ‘ SQL data type from java.sql.Types (see Table 10). ‘
3 PRECISION long Maximum precision.
‘ 4 LITERAL PREFIX ‘ string ‘ Prefix used to quote a literal (may be NULL). ‘
5 LITERAL SUFFIX string Suffix used to quote a literal (may be NULL).
‘ 6 CREATE_PARAMS ‘ string ‘ Parameters used in creating the type (may be NULL). ‘
7 NULLABLE short Indicates if this type supports NULL values (see
Table 26).
8 CASE_SENSITIVE Cboolean True if this type is case sensitive. |
9 SEARCHABLE short Indicates the searches supported by this type: Table
39.
‘ 11 FIXED PREC SCALE ‘ boolean ‘ If True, this type can represent a monetary value. ‘
12 AUTO_INCREMENT boolean If True, this type can be used for an auto-increment
value.
13 LOCAL_TYPE_NAME string Localized version of type name (may be NULL). |
14 MINIMUM SCALE short Minimum scale supported.
‘ 15 MAXIMUM SCALE ‘ short ‘ Maximum scale supported. ‘
16 SQL DATA TYPE long The value of the SQL data type as it appears in the

SQL DESC_TYPE field of the descriptor. This is
frequently the same as the data type and it may be
NULL.

17 SQL DATETIME SUB long For a date-time or interval type, this contains the

OpenOffice.org Base 90

Database connections

Column Description

date-time/interval sub-code. This may be NULL for
many drivers.

18 NUM_PREC RADIX long Radix (typically either 10 or 2).

8.4.13. GetUDTS

The getUDTS() method returns a row set that describes the user-defined types contained in the
database. The arguments for getUDTS() are shown in Table 41. In my testing, calling the
getUDTS() method causes a runtime error for some connection types; Outlook, for example.

Table 41. Arguments for getUDTS().

Argument Description

[732)

catalog Retrieve rows that use the specified catalog name; “” retrieves rows without a catalog and

NULL means ignore the catalog name.

‘ schema Retrieve rows that use the specified schema name; "" retrieves rows without a schema. ‘
type name Retrieve rows that use the specified fully qualified name; use “%” to retrieve all UDTs.

types() Array of UDT types to return; supported types include strings with values of OBJECT,
STRUCT, and DISTINCT.

The columns returned by the row set are shown in 7able 42.

Table 42. Columns returned by getUDTS().

Column Type Description
1 TYPE CAT string Type's catalog (may be NULL).

‘ 2 TYPE SCHEM ‘ string Type's schema (may be NULL). ‘
3 TYPE NAME string Type name.

‘ 4 CLASS NAME ‘ string Java class name or service name. ‘
5 DATA_TYPE string Type value. One of OBJECT, STRUCT, or DISTINCT.

‘ 6 REMARKS ‘ string Explanatory comment on the type. ‘

OpenOffice.org Base 91

Database connections

8.4.14. GetVersionColumns

The method getVersionColumns() returns a row set that describes a table's columns that are
automatically updated when any value in a row is updated. Many databases support special
“hidden” columns that are not explicitly defined by the user in the table definition. These pseudo-
columns generally provide the fastest access to the data because they typically are pointers to the
exact location of the record. Table 43 contains the constants used to identify a column as a
pseudo-column.

Table 43. Values for the com.sun.star.sdbc. ColumnType constant group.

Value Name Description
0 UNKNOWN The best row identifier may or may not be a pseudo-column.
1 NOT PSEUDO The best row identifier is not a pseudo-column.
2 PSEUDO The best row identifier is a pseudo-column.

The arguments accepted by getVersionColumns()—catalog, schema, and table—are described in
Table 31—wild-cards are not supported for the table argument—and the returned rows are shown
in Table 44.

Table 44. Columns returned by getVersionColumns().

Column Type Description

1 SCOPE short Unused.
2 COLUMN NAME ‘ string ‘ Column name. ‘
3 DATA TYPE short SQL data type based on the java.sql.Types (see Table 10).
4 TYPE NAME ‘ string ‘ Data source dependent type name. ‘
5 COLUMN SIZE long The precision (length) of the column.

6 BUFFER LENGTH ‘ long ‘ Length of column value in bytes. ‘
7 DECIMAL_DIGITS short Scale; for numerical columns.

8 PSEUDO_COLUMN ‘ short ‘ Identify the column as a pseudo-column (see 7able 43). ‘

8.5. Connections
A method is usually obtained as a three step process (see Listing 38):
1. Get a reference to the DatabaseContext service.
2. Get/load the database from the DatabaseContext.

3. Get a connection from the database.

OpenOffice.org Base 92

Database connections

Listing 38. Standard method to obtain a database connection.

oBaseCont ext = CreateUnoService("com sun. star.sdb. Dat abaseCont ext")
oDB = oBaseCont ext . get ByNane(dbURL)
oCon = oDB. get Connection("", "")

The get Connect i on method returns a proxy object for the connection. Every proxy object
obtained in this way share the same physical connection. Therefore, operations done on one proxy
should cause side effects on all the others.

Another method, get | sol at edConnect i on, returns an isolated connection that is not
shared. Although an isolated connection uses more resources, this is required if a separate
connection is required to the database. OOo is not a multi-user application so a standard
connection is usually what you want.

If an existing connection already has exclusive access to the database, the returned connection will
be (I think it will be) read-only. For example, if you open two isolated connections, the second
connection is likely to be read-only.

TIP If you forget to close a connection, the next connection may be read-only, even if the
connection is isolated. So, if you obtain a read-only connection that you did not expect, check
your code for a connection leak.

8.6. Connections without a data source

Although the new database document type, which corresponds to a data source, is desirable,
sometimes the extra functionality of prepared queries, forms, and reports is not required. It is
possible to connect to a database by using an appropriate database driver rather than a data
source—so an external Base file is not required. OpenOffice.org contains a driver manager that
manages the database drivers supported by OOo. Listing 39 demonstrates how to retrieve the
database driver manager.

Listing 39. Retrieve the global database driver manager.

oManager = CreateUnoService("com sun. star.sdbc. DriverManager")

The driver manager identifies the driver types based on a URL (see Table 45). The structure of the
URL consists of a protocol name, followed by the driver specific sub-protocol. The data source
administration dialog shows the latest supported protocols. Some protocols are platform
dependent. For example, ADO is only supported on Windows.

Table 45. Database URL types supported by OpenOffice.org.

Driver Comment
JDBC jdbc:subprotocol: JDBC connections.
ODBC 3.5 sdbc:odbc:datasource name ODBC connections.
Adabas D sdbc:adabas:database name Adabas connections.

OpenOffice.org Base 93

Database connections

Driver Comment
ADO sdbc:ado:ADO specific Available only on Windows.
dBase sdbc:dbase:Location of folder or file Read-only access to dBase files.

Flat file format (csv) sdbc:flat:Location of folder or file

Read-only access to delimited text
files (see Listing 42).

OpenOffice.org Calc sdbc:calc:Location of OpenOffice.org Calc Read-only access to Calc documents
file (see Listing 47).

Address Book sdbc:address:Kind of address book. Mozilla, Outlook, and LDAP
address books (see Listing 48).

The driver manager supports methods to obtain connections, based on a URL and to enumerate
the supported drivers (see Table 46).

Table 46. Some methods supported the driver manager.

Description
createEnumeration() Return an enumeration of the available drivers.
getConnection(url) Return a connection to the given database URL. The manager
selects an appropriate driver from the registered drivers.
getConnectionWithInfo(url, args()) Return a connection to the given database URL. The manager
selects an appropriate driver from the registered drivers.
getDriverByURL(url) ‘ Return a driver that can handle the specified URL. ‘
getLoginTimeout() Get the maximum time, in seconds, that a driver will wait
while attempting to connect to a database.
hasElements() ‘ Return True if there are any available drivers. ‘
setLoginTimeout(seconds) Set the maximum time, in seconds, that a driver will wait

while attempting to connect to a database.

Listing 40 demonstrates how to enumerate the drivers supported by OpenOffice.org and is shown
in Figure 20; my Linux computer has all of the drivers shown in Figure 20, and it also has a
driver for evolution. Supported DB Drivers Use the Supported DB Drivers button to display
a list of drivers supported on this computer.

Listing 40. Database drivers supported by OQOo.

Sub SupportedDBDri vers()
Di m oManager ' Connection driver nanager.

Di m oEnum " Enuneration of supported drivers.
Di m oDri ver "An indiviual driver.
Dim s$ "Utility string variable.

oManager = CreateUnoService("com sun.star.sdbc.Driver Manager")
OoEnum = oManager . cr eat eEnunerati on()

OpenOffice.org Base 94

Database connections

Do Wil e oEnum hasMor eEl enent s()
oDriver = oEnum next El enent ()
s = s & oDriver.getlnplenentati onNane() & CHR$(10)
Loop
MsgBox s, 0, "Supported Database Drivers"
End Sub

Supported Database D |

com. sun.skar, comp, sdbc, ODECDriver

com. sun.skar, comp, sdbc, JDBCDriver

com. sun.skar, comp.sdbc, MozabDriver

com, sun.skar, comp.sdbc, ado, QDriver

com, sun.skar, comp.sdbc, cale, QDriver

com. sun.skar, comp.sdbc, dbase, ODriver
com. sun.skar, comp.sdbe, Flak, ODriver

com, sun.skar, comp.sdbcx, adabas, ODriver
com. sun.skar, sdbcx, comp. hsgldb, Driver
arg.openoffice, comp, drivers, My30L, Driver

Figure 20. Drivers supported on a Windows

computer.
Use getDriverByURL() to obtain the driver used to open a specific database. You can also verify

that a suitable driver exists for a specific database type. After obtaining a specific driver, use the
methods in Table 47.

Table 47. Methods supported by a database driver.

Method Description

connect(url, args()) Return a connection to the given database URL. NULL is returned if the
driver can not connect to the specified database.

acceptsURL(url) Return True if the driver thinks that it can open a connection to the given
URL; drivers return True if they understand the sub-protocol in the URL.

getPropertylnfo(url, args()) Return the properties supported by this driver.

‘ getMajorVersion() ‘ Return the driver's major version number. Initially this should be 1. ‘
getMinorVersion() Return the driver's minor version number. Initially this should be 0.

OpenOffice.org Base 95

Database connections

The connect() method for a driver (see 7able 47) and getConnectionWithInfo() for the driver
manager (see Table 46) both accept a URL to the database and an array of arguments. The
supported arguments differ based on the database and the driver used. Each driver supports the
method getPropertylnfo() (see Table 47) that returns the properties supported by a specific driver.
The getPropertyInfo() method is intended to allow a generic GUI tool to discover the supported
properties and then prompt for connection information. The returned list may change depending
on the properties, which is why getPropertyInfo() accepts an array of properties. As such, it may
be necessary to iterate though several calls to getPropertylnfo().

The macro in Listing 41 demonstrates the use of getPropertyInfo() for a CSV file.
Flat Driver Args ~ Use the Flat Driver Args button to display the supported arguments for a CSV
file (see Figure 21). Notice that the driver displays arguments for the file foo.csv, which does not

exist. The file name is used to find the driver. The macro in Listing 41 does not actually open the
file.

Listing 41. Show the arguments supported by the CSV database driver.

Sub Showfl at Dri ver Args()

LoadDBLi bs()

Call DriverArgs("sdbc:flat:" & GetSourceCodeDir() & "foo.csv")
End Sub

REM The specified database is not required to exist.

REM Requi red argunments are enclosed in parenthesis "()".
REM Optional argunents are enclosed in square brackets "[]"
Sub DriverArgs(sURLS$)

Di m oManager ' Connection driver manager.
Di m oDri ver "An indiviual driver.

Di m oProps() ' Supported properties.

Di m oProp "A specific property.

Dim s$ "Utility string variable.
Dmi% "Utility index variable.

oManager = CreateUnoService("com sun.star.sdbc. Driver Manager")

REM Cbtain a driver that supports the specified URL
oDriver = oManager.getDriver ByURL(SURL)
If IsNull (oDriver) Then

Print "Sorry, no driver available for " & sURL

Exit Sub
End |f
oProps() = oDriver.getPropertylnfo(sURL, ARRAY())
For i = LBound(oProps()) To UBound(oProps())

oProp = oProps(i)
If NOT oProp.|sRequired Then
s =s &"[" &oProp.Nane & ", " & oProps(i).Value &", " &
oProps(i).Description & "]" & CHR$(10)

El se
s =s &"(" &oProp.Name & ", " & oProps(i).Value &", " & _
oProps(i).Description & ")" & CHR$(10)
End If
Next

MsgBox s, 0, "Properties for " & oDriver.getlnplenentati onNanme()

OpenOffice.org Base 96

End Sub

Properties for com.sun.star.comp.

[Charset, , Charset of the database.]

[Extension, .*, Extension of the file Farmat.]
[ShowDeleted, 0, Display inactive records,]
[EnableslazCheck, 0, Use SOL9Z naming constraints.]
[FixedLenagth, , FixedLength aof the database.]
[FieldCelimiter, , Field separator,]

[Headerline, O, Text contains headers,]
[StringDelimiter, O, Text separator,]

[DecimalDelimiter, O, Decimal separator.]
[ThousandDelimiter, 0, Thousands separatar,]

Database connections

Figure 21. Arguments for a flat file driver.

Figure 21 shows the properties supported by the flat driver for a CSV file as generated by Listing
41. Although all of the listed properties are listed as optional, the default values for some
properties are not reasonable. For example, the text separator and field separator are not set. The

supported properties for the database drivers are shown in Table 48.

Table 48. Documented connection properties.

Property

AutoRetrievingStatement
Charset

DecimalDelimiter
Extension
FieldDelimiter
FixedLength

HeaderLine
IgnoreDriverPrivileges

IsAutoRetrievingEnabled

JavaDriverClass

ParameterNameSubstitution

password
ShowDeleted
Silent

Description

Specifies the statement to executed when asking an insert
statement for the XGeneratedResultSet interface.

Character set used to fetch data.

A one character delimiter to separate the decimal.
Extension of the files to be used; txt, csv, and sdf.
A one character delimiter to separate the fields.

True when all occurrences of "?" as a parameter name will be
replaced by a valid parameter name. This is necessary,
because some drivers mix the order of the parameters.

True when the file contains a header line otherwise false
Ignore privileges from the database driver.

If True, the statement will support the XGeneratedResultSet
interface when it is supported in the future.

JAVA class for the JDBC driver.

If True, the parameter '?' in a prepared statement is replaced
with a distinct name.

Password for the specified user name.
True when deleted rows should be shown, otherwise false

If True, no user interaction will be used while creating the
connection.

Driver

JDBC,
ODBC

ODBC,

dBase, Flat

Flat
‘ Flat
Flat
Flat

Flat

JDBC,
ODBC

- JDBC
ODBC

\au
dBase
ODBC

ODBC JDBC

OpenOffice.org Base

97

Database connections

Property Description Driver
StringDelimiter A one character delimiter to separate the strings. Flat

‘ SystemDriverSettings ‘ Driver settings. ‘ ODBC ‘
ThousandDelimiter A one character delimiter to separate the thousands. Flat

‘ Timeout ‘ Timeout value, in seconds, to use for this connection. ‘ ODBC ‘
UseCatalog If True, the driver should support a catalog. ODBC

‘ user ‘ User name to access the database. ‘ all ‘

I inspected the source code and found properties that are not in 7able 48:

AddIndexAppendix DataCacheSize PortNumber
AppendTableAliasName DataCacheSizelncrement ParameterNameSubstitution
AutolncrementCreation EnableSQL92Check ShutdownDatabase

BaseDN FixedLength SuppressVersionColumns
BooleanComparisonMode HostName UseSchemalnSelect
ControlPassword MaxRowCount UseCatalogInSelect
ControlUser NoNameLengthLimit

8.6.1. Delimited text files

The flat file driver provides read-only connections to text files. The most popular text file format
is the CSV (Comma-Separated Values) file. A CSV file contains the values for a single table as a
series of ASCII text lines organized so that each column value is separated by a delimiter—usually
a comma, semicolon, or tab—from the next column's value and each row starts a new line. The
macro in Listing 42 opens a connections to a CSV file, inspects the connection's meta-data, and
then reads all of the data in the file.

Listing 42. Read a CSV file, print the meta-data and the data.

REM sDir - Path, as a URL, to the database file.
REM sFile - File nanme without the file extension; also the table nane.

REM sExt - File extension, probably csv.
Sub ReadCSVData(sDir$, sFile$, sExt$)
Di m oManager ' Connection driver manager.
Di m oDri ver "An indiviual driver.
Di m sURL$ "DB URL including "sdbc:flat:..."
Di m oCon ' Connecti on object.
Di m sSQL$ 'SQL that is executed.
Di m oResul t "Result froman SQ. statenent.
DimoStatenent 'A created statement that can execute SQL.
Di m oDoc "Cal c document that will contain the presentation data.
Di m oDat al() "Ceneric data variable.
Di m oParns() As New com sun. star. beans. PropertyVal ue

sFile = sFile
sExt = sExt
sURL = "sdbc:flat:" & sDir & sFile & "." & sExt

OpenOffice.org Base 98

Database connections

REM Cbtain a driver that supports the specified URL
oManager = CreateUnoService("com sun.star.sdbc. Driver Manager")
oDriver = oManager.getDriver ByURL(sSURL)

If IsNull (oDriver) Then

Print "Sorry, no driver available for a " & skExt & " file"
Exit Sub
End If
REM Assune that there is a header |ine!
AppendProperty(oParns(), "Extension", sExt)
AppendProperty(oParns(), "HeaderLine", True)
AppendProperty(oParns(), "FieldDelimter", ",")
AppendProperty(oParns(), "StringDelimter", """")
AppendProperty(oParnms(), "DecimalDelimter", ".")
AppendProperty(oParnms(), "ThousandDelimter", ",")
oCon = oManager . get Connecti onWthlnfo(sURL, oParns())
oDoc = | nspect Met aDat a(oCon. get Met aDat a())
oSt at enent = oCon. Creat eSt at ement ()
sSQ = "SELECT * FROM " & DBQuot eNane(sFile, oCon)
oResult = oSt atenent. executeQuery(sSQL)
Resul t Set ToDat a(oResul t, oDoc, "SELECT *", oDatal())
AppendDat aToCal cDoc(oDoc, oDatal())

oCon. cl ose()
End Sub

Read CSV Data

Use the Read CSV Data button to call the macro in Listing 43. First, you

must select an existing CSV file. The macro will open a new Calc document and then fill the Calc
document with properties from the meta data, followed by the data in the CSV file.

Listing 43. Prompt for a CSV file, and then display the data.

Sub Cal | ReadCSVDat a()
DimoFilters()
Dim sFile$
Di m sURL$
Di m sExt $
DimsDir$

REM Load my libraries.y
LoadDBLi bs()

REM Use sone net hods fromthe Tools library.
I f NOT d obal Scope. Basi cLibraries.isLibraryLoaded("Tools") Then
G obal Scope. Basi cLi brari es. LoadLi brary("Tool s")

End |f
REM List .csv first so it will be used by default.
oFilters() = Array("*.csv Flat files", "*.csv", "All Files", "*.*")

sURL = ChooseAFil e$(oFilters(),
If sURL = "" Then Exit Sub

True)

REM Cal | nmethods in the Tools library to parse the path.

OpenOffice.org Base

99

Database connections

sExt = Get Fi |l eNaneExt ensi on(sURL)
sFile = GetFil eNameW t hout Ext ensi on(sURL, "/")
sDir = DirectoryNaneout of Path(sURL, "/") & "/"

REM Now, display the neta-data and the regul ar data.
ReadCSVDat a(sDir$, sFile$, sExt$)
End Sub

The database driver may choose to convert table and column names to upper case and then fail
because the names are not in mixed or lower-case. Quote the table and column names to avoid
this problem. The quote string may be different for each driver. The macro in Listing 77 uses the
quote string from the connection meta-data to safely quote identifiers.

Each flat file contains a single table. The name of the table is the name of the file without the file
extension. If the HeaderLine property is True, the column names are set based on the first row of
data. If the HeaderLine property is False, however, the columns names default to the letter C
followed by the column number; C1, C2, C3, C4.

TIP The table name in a flat file is the base file name. If the first row does not contain the column
names, then the columns default to C1, C2, C3. It is always possible to retrieve columns
based on its index.

I determined this by inspecting the meta data from the connection. This is the same way that
I determined the table names in a Calc document. Inspecting the meta data from the
connection is a very enlightening experience.

8.6.2. Fixed width text files

Fixed width text files are frequently called SDF (System Data Format). An SDF file is an ASCII
text file in which records have a fixed length and end with a carriage return and line feed.
Although the SDF file format is mentioned in the developer's guide as a supported format, I have
only been able to read fixed text files by using the CSV file extension. Fields are not delimited.
Unfortunately, fixed width files can not be opened directly as a database connection.

TIP OOo uses the SDF extension for files output from the localization tools. The localization files
are also sometimes labeled GSI; GSI is short for “Gutschmidt invented” after the inventor of
the format. The SDF localization files are not fixed width text files.

It is possible to open fixed width data into a Calc document using the “Text - txt - csv (StarCalc)”
import/export filter. The Calc document can then be used as the data source. For Calc to
recognize a flat file, the file extension must be CSV. Listing 44 is a code snippet that will import a
fixed width text file.

Listing 44. Import a fixed width text file.

Dim args(1) as new com sun. star. beans. PropertyVal ue
args(0). Nane "FilterName"

args(0). val ue "Text - txt - csv (StarCalc)"
args(1). Nane "FilterOptions"

OpenOffice.org Base 100

Database connections

args(1).Value = "FI X, 34,0, 1, 0/1/10/ 2/ 30/ 10"

sURL
oDoc

Get SourceCodeDir() & "fix_len.csv"
St ar Deskt op. LoadConponent Fromr | (sURL, " _bl ank", 0, args())

The FilterOptions argument directs the importing and exporting of data through the Calc CSV
filter. The format of the argument is shown in Listing 45. Each option is separated by a comma.
The first option determines if the CSV file is a fixed width file or a delimited file (see Table 49).

Listing 45. Filter options for “Text - txt - csv (StarCalc)” filter.

field_separator,text_delimter,character_set,first_line,field_specifier
Table 49. Initial arguments for the “Text - txt - csv (StarCalc)” filter.

Description
1 field The ASCII value of the field separator. If multiple separators are used, separate them
separator with a slash. For example, 44/9 indicates that a comma or a tab can separate each field.

Use the text “FIX” for fixed width fields.

2 text delimiter = ASCII value of the text delimiter. In a CSV file, the text portions are usually surrounded
by either double quotation marks (") or single quotation marks ('). To recognize multiple
delimiters, separate them with a slash; for example 34/39 specifies both a double and a
single quote.

3 character set Numeric index that identifies which character set to use. The value of O represents the
system character set. This might also be called the code page.

4 first line First line to import. The value 1 indicates the first line. The value 2, causes the first
column to be ignored.

5 field specifier = The field specifier identifies the columns or fields to import.

If the filter options start with a field separator, then the field specifier is in the format shown in
Listing 46. The field num is an integer that identifies a field, where 1 is the leftmost field. For

example, given the fields “one”, “two”, and “three”, a field num of 2 refers to “two”. The format
is an integer that identifies the format of the field (see 7able 50).

Listing 46. Delimited-text-format string for the CSYV filter.

field_num format/field_num format/field_num format/...

If the filter options start with the text “Fix”, as is shown in Listing 44, then the field specifier is in
the format shown in Listing 47. The column value specifies the first character in a field. A column
of 0 refers to the leftmost character of the text. The format is an integer that identifies the format
of the text (see Table 50).

Listing 47. Delimited-text-format string for the CSV filter.

colum/format/colum/format/colum/format/...

OpenOffice.org Base 101

Database connections

Table 50. CSV field format values.

Format Description

1 Standard format allows the import filter to guess the type.

2 ‘ Text ‘
3 MM/DD/YY

4 ‘ DD/MM/Y'Y

5 YY/MM/DD

9 ‘ Do not import; ignore this field. ‘

10 Import a number formatted in the US-English locale regardless of the locale.

To access a fixed width text file using a database connection, open the file as a Calc document and
then either access the Calc document as a database, or export the data as a delimited file and then
open the connection to the delimited text file. The macro in Listing 47 demonstrates how to read
a fixed width text file by transforming the file to a Calc document and a delimited CSV file as
follows:

1) Create the fixed width data file delmel.csv.

2) The fixed width data is imported into a Calc document using the CSV import filter.
3) The Calc document is saved as a Calc document (delmel.ods).

4) The Calc document is exported to a delimited CSV file.

5) A connection is created to the delimited file.

6) A connection is made to the Calc document.

7) The created files are deleted.

Read Fixed Width File Use the button Read Fixed Width File to created and read the
fixed width files.

Listing 48. Created and read fixed width files and a Calc document.

Sub ReadFi xedW dt hFi | e()

sFi | eNane$ ' The base file nane.

n As Integer 'The file numnber.

i As Integer 'Ceneral index variable.

s As String 'Tenporary string.

sURLInitial$ 'URL of the CSV file.

sURLCal c$ "URL of the Calc docunent.

sQut () "Qutput text initially witten to the CSV file.
oManager " Connection driver manager.

oCon ' Connecti on object.

sSSQLS$ "SQL that is executed.

OoResul t "Result froman SQ. statenent.

oSt at enment "A created statenent that can execute SQL.

oDoc 'Cal c docunent used to read the fixed wi dth data.

vBvBvvvivvavvavavRvRv)
3333333333333

OpenOffice.org Base 102

Database connections

Di m oParns() As New com sun. star. beans. PropertyVal ue

REM First, create the following text file:
REM Dat e Nane Nunber

REM 01/ 01/ 05Danny Bot 17

REM 12/ 25/ 99Shelly G rt13

REM 03/ 13/ 65Fred Krank 7

sQut () = Array("Date Nane Nunmber ",
"01/ 01/ 05Danny Bot 17",
"12/ 25/ 99Shelly G rt13",
"03/13/65Fred Krank 7 ")

sFil eNane = "del nel"
sURLInitial = GetSourceCodeDir() & sFileNane & ".csv"

n = FreeFile() '"Next free file nunber

REM Open for read/wite
Open sURLInitial For Qutput Access Read Wite As #n

For i = 0 To UBound(sQut())
Print #n, sQut(i)

Next

Cl ose #n

REM Open the fixed width text file into a Calc docunent.
AppendPr operty(oParns(),

"FilterNane", "Text - txt - csv (StarCalc)")
AppendProperty(oParns(), "FilterOptions", "FIX 34,0,1,0/3/8/2/19/10")
oDoc = Star Deskt op. LoadConponent Fromr| (sURLInitial, "_blank",

0, oParns())

REM Save the docunment as a Calc docunent!

ReDi m oPar ns ()

AppendProperty(oParns(), "Overwrite", "True")
sURLCal ¢ = Get SourceCodeDir() & sFileName & ".ods"
oDoc. storeAsURL(sURLCal c, oParns())

REM Delete the initial fixed width file.
Kill (sURLInitial)

REM Wite the file as a comma delinmted text file. Notice that only the
REM t ext colums contain the double quote text delinmiter.

REM " Dat e", " Nanme", " Nunber "

REM 01/ 01/ 2005, "Danny Bot", 17

REM 12/ 25/ 1999, "Shelly Grt", 13

REM 03/ 13/ 1965, "Fred Krank",7

ReDi m oPar ms ()

AppendPr operty(oParmnms(),

"FilterNane", "Text - txt - csv (StarCalc)")
AppendProperty(oParns(), "FilterOptions", "44,34,0,1,1/1/2/2/3/10")
oDoc. storeAsURL(sURLInitial, oParns())
oDoc. cl ose(True)

oManager = CreateUnoService("com sun. star.sdbc. Driver Manager")

OpenOffice.org Base 103

Database connections

REM Open the CSV file.

REM Notice that | the header line is ignored.
REM | f the header line is NOT ignored, then all
REM col utmms are recogni zed as type Var Char.
ReDi m oPar ns()

AppendProperty(oParns(), "Extension", "csv")
AppendProperty(oParns(), "HeaderLine", True)
AppendProperty(oParns(), "FieldDelimter", ",")
AppendProperty(oParns(), "StringDelimter™, """")
AppendProperty(oParns(), "DecimalDelimter", ".")
AppendProperty(oParns(), "ThousandDelimter", ",")

oCon = oManager. get Connecti onWthlnfo("sdbc:flat:" & _
sURLInitial, oParms())

oSt at enent = oCon. CreateSt atenent ()
sSQL = "SELECT * FROM " & DBQuot eNane(sFil eNane, oCon)
oResult = oSt atenent.executeQuery(sSQL)

Do Wil e oResult.next()

s =s & "CSV File: Date =" & _
CSt r (UNODat eToDat e(oResul t . getDate(1))) & _
" Name = '" & oResult.getString(2) & """ & _
" Nunber = " & CStr(oResult.getlLong(3)) & CHR$(10)
Loop

oCon. cl ose()

oCon = oManager . get Connection("sdbc:calc:" & sURLCal c)
oSt at enent = oCon. Creat eSt at ement ()

sSQ. = "SELECT * FROM " & DBQuot eNane(sFil eNane, oCon)
OoResult = oSt atenent. execut eQuery(sSQL)

s = s & CHR$(10)

Do Wil e oResult.next()

s =s & "Calc File: Date =" & _
CSt r (UNODat eToDat e(oResul t. getDate(1))) & _
" Nane ='" & oResult.getString(2) &"'" & _
" Nunber =" & CStr(oResult.getLong(3)) & CHR$(10)
Loop

oCon. cl ose()
MsgBox s, 0, "Data fromthe flat file"

REM Del ete the created files.
Kill (sURLCal c)
Kill(sURLInitial)

End Sub

TIP It is very important that you use the correct filter name. When I used “scalc: Text - txt - csv
(StarCalc)”, rather than “Text - txt - csv (StarCalc)”. The macro worked fine on one
computer, but on the other computer, the CSV file loaded into a text document rather than a
Calc document—thanks to Paolo Mantovani for providing the correct solution.

OpenOffice.org Base 104

Database connections

Figure 22 demonstrates that the data read from the Calc document is the same as the data read
from the CSV file.

Drata from the flat Ffile 2 x|

Z5Y File; Date = 01/01 /2005 Mame = 'Danny Bok' Mumber = 17
Z5Y File; Date = 12/25/1999 Mame = 'Shelly Girt' Mumber = 13
Z5Y File; Date = 03131965 Mame = 'Fred Krank' Mumber = 7

Zalc File: Date = 01/01/2005 Name = 'Danny Bok' Mumber = 17
alc File; Date = 12/25/1999 MName = 'Shelly Girt' Mumber = 13
Calc File: Date = 03/13/1965 Name = 'Fred Krank' Mumber = 7

Figure 22. The CSV and Calc files contain the
same data.

It is easier to import a Calc document than a delimited text file. Therefore, I recommend that you
read fixed width data files as Calc documents rather than delimited files. The flat file database
connection guesses the column types based on data in the first row. If the header is included with
the CSV file, then all fields are considered text fields. The Calc CSV import filter allows you to
specify the data types. Also, connections to Calc documents do not require connection arguments.

8.6.3. Help, I still can not import my CSV file

It can be difficult to obtain the correct values to open a CSV file. The most common problems
are:

1) The file extension must be “.csv”’; you can not open a “.txt” file into a calc document as a
comma delimited file.

2) Using the wrong filter name.

3) Determining the correct character set, sometimes referred to as the code page (see Table
5.

4) Determining the correct field widths.

If you do not know the character set, try some of the values shown in 7able 51. I am likely to try
0, 65535, and then 1252.

Table 51. Character sets for use with CSV import.

Character Set Comment
0 The system character set frequently works (tested).

‘ 65535 ‘ Unicode is very popular these days (tested). ‘
437 Original DOS Latin character set(not tested).

850 DOS Latin 1 (not tested). |
851 Dos Latin 2 (not tested).

OpenOffice.org Base 105

Database connections

1252 Windows Latin 1 (not tested).
1250 Windows Latin 2 (not tested).

If you still have difficulties, try importing the file using the GUI and then inspect the document to
see which import arguments were used.

Listing 49. Inspect document arguments.

Sub | nspect DocAr gs
Dim args()
Dmx, i% s$
args() = Thi sConmponent . get Args()
On Error Resunme Next
For i = LBound(args()) To UBound(args())
X args(i)
S s & x.Name & " :
S s & CStr(x. Val ue)
s s & CHR$(10)
Next
MsgBox s
End Sub

After inspecting the arguments (see Listing 49), you can see the filter and the filter arguments (see
Figure 23). If you can figure out how to import the document using the GUI, you should be able
to import the file from a macro.

soffice x|

URL : File: (i fandy [Download/fool [PRTAE1GPerm, cow
Filterfame : Text - kxt - csw (SkarCalc)

FilterOptions : FIX,54,65535,1,001/4/9/111/15/1/25/1/35/1 /655359
InteractionHandler :

LCEContent

Skrearn |

Framerame : _default

MacroExecutionMode ; 3

UpdateDocMode : 2

WinExktentk

DiocumentBaorder

Title : PRTG16Perm

.......

Figure 23: Arguments from a CSV file.

OpenOffice.org Base 106

Database connections

8.6.4. Address books

The address book connection provides access to Mozilla, Outlook, Outlook Express, and LDAP
address books. The macro in Listing 50 demonstrates how to read the names and email addresses
supported by the local Outlook address book. Each address book type (see Table 45) implements
a different set of tables and columns. I inspect the connection meta-data to determine the name of
the tables and supported columns. The Outlook address book uses the “ OP Contacts” table, and
the Mozilla address book has two tables, “Personal Address book’ and “Collected Addresses”.

Inspect Outlook Addresses I checked this macro on a windows computer and it displayed the email
addresses that I personally added, not the global addresses.

Listing 50. Inspect an Outlook address book.
Sub | nspect Qut | ookAddr ess()

Di m oManager " Connection driver manager.

Di m oCon ' Connecti on object.

Dim sSQL$ 'SQL that is executed.

Di m oResul t "Result froman SQ. statenent.

Dim oStatenent 'A created statenent that can execute SQ..
Dim s$ "Ceneral string variable.

Di m nCount &

oManager = CreateUnoService("com sun. star.sdbc. DriverManager")
oCon = oManager . get Connecti on("sdbc: address: outl ook: ")

oSt at enent = oCon. CreateStatenent ()

sSQ = "SELECT " & DBQuoteNane("First Nane", oCon) & ", " &_
DBQuot eNanme("Last Nane", oCon) & ", " & _
DBQuot eName("E-mai | ", oCon) & " FROM " & _

DBQuot eName (" OP Cont acts", oCon)
OoResult = oSt atenent.executeQuery(sSQL)

REM Limit the returned values to 50!
nCount = 0
Do Wil e oResult.next() AND nCount < 50
s = s &oOResult.getString(l) & " " & oResult.getString(2) & _
' ==> " & oResult.getString(3) & CHR$(10)
Loop
MsgBox s, 0O, "Public e-nmmil™"
oCon. cl ose()
End Sub

8.6.5. MySQL using JDBC

Connecting to a MySQL database using JDBC is easy if you know proper connection URL. The
macro in Listing 51 connects to a the “stamps” MySQL database running on my local computer

(local host) using the default port (3306). Setting the Java driver class property is optional and it
defaults to com.mysql.jdbc.Driver.

Listing 51. Connect to a MySQL database using JDBC.

sUser$ = "user”
sPass$ = "password"
sURL$ = "sdbc: nysql:jdbc: | ocal host: 3306/ st anps”

OpenOffice.org Base 107

Database connections

oManager = CreateUnoService("com sun. star.sdbc. Driver Manager")
AppendProperty(oParns(), "user", sUser)

AppendProperty(oParns(), "password", sPass)

AppendProperty(oParns(), "JavaDriverC ass", "comnysql.jdbc.Driver")
oCon = oManager . get Connecti onWt hl nfo(sURL, oParns())

TIP Listing 51 assumes that Java is installed, the JDBC driver is installed, and the
OpenOffice.org has been properly configured to use the driver.

8.6.6. Paradox using ODBC

ODBC (Open DataBase Connectivity), pronounced as separate letters, is a standard database
access method developed in 1992 by the SQL Access group. ODBC is a middle layer between a
DBMS (database management system) and an application. ODBC translates data queries into
commands that the DBMS understands. SDBC knows how to talk to an ODBC data source.

An ODBC data source must be registered before it can be used. Use the ODBC Data Source
Administrator to add and configure an ODBC data source on Windows. Use the control panel
(Start | Settings | Control Panel) to open the Control Panel. With Microsoft Windows 2000 or
newer, use Administrative Tools | Data Sources (ODBC) to open the ODBC Data Source
Administrator (see Figure 24). For older versions of Windows, use 32-bit ODBC or ODBC.

OpenOffice.org Base 108

Database connections

#710DBC Data Source Administrator i 21x]
Uszer DSM | Systern DSM I Fil= DSM I Driversl Tracingl Connection F'u:u:ulingl &bt I

Izer D ata Sources:

I arme | Drriveer | Add..
dBASE Files Microzoft dB aze Driver [*.dbf)
Excel Files Microzaft Excel Driver [F =lz] Remove

M5 Access Databaze Microzoft Access Driver [*.mdb]
g Drriver do Microsaft Parados [*.db] Corfigure...
Yigio Databaze Samples Microsaft Access Diver [“.MDOE]

u

An ODEC Uszer data source stores information about how to connect to
the indizated data provider. A Uzer data zource is only visible to pou,
and can only be uzed on the curent machine.

] I Cancel Apply | Help

Figure 24. ODBC data sources on Windows XP Professional.

I used ODBC to connect to a set of existing Paradox tables. I was very happy to find out that
Windows XP Professional came with drivers for Paradox, and many other database systems,
already installed. The macro in Listing 52 connects to the defined PDOX data source and accesses
the COUNTRY table.

Listing 52. Connect to a Paradox database using ODBC.
Sub UsePDoxODBC

Di m oManager ' Connection driver manager.

Di m sURL$ "DB URL including "sdbc:flat:..."

Di m oCon ' Connecti on object.

Di m sSQL$ 'SQL that is executed.

Di m oResul t "Result froman SQ. statenent.

DimoStatenent 'A created statenent that can execute SQL.

Di m oDoc "Cal c docunment that will contain the presentation data.
Di m oDat a() "Ceneric data vari able.

Dim s$ "General utility string.

sURL = "sdbc: odbc: PDOX"
oManager = CreateUnoService("com sun.star.sdbc. Driver Manager")
oCon = oManager . get Connecti on(sURL)
oSt at enent = oCon. Creat eSt at ement ()
sSQL = "SELECT * FROM " & DBQuot eNanme(" COUNTRY", oCon)
oResult = oSt atenent. execut eQuery(sSQL)
Do Wil e oResult.next()
s = s &oOResult.getString(1l) &" " & oResult.getString(2) & CHR$(10)
Loop
oCon. cl ose()

OpenOffice.org Base 109

Database connections

MsgBox s
End Sub

8.6.7. Conclusion

Determining the connection URL is probably the most difficult part of connecting to an external
database. I frequently create a connection and then inspect the meta data to determine the format
of the URL. This chapter provides sufficient information to connect to a database and sets the
stage for more advanced applications.

OpenOffice.org Base 110

9. Connecting to MySQL using JDBC

To connect to MySQL using JDBC, Java must be installed on your computer. From OOo, use
Tools > Options > OpenOffice.org > Java to open the Java tab of the options dialog. Verify that
a Java runtime environment is configured for use with OpenOffice.org. If Java is not installed,
visit http://java.sun.com/ to download and install Java. I installed J2SE 5.0, which is sometimes
referred to as version 1.5. Developers usually install the JDK (Java Development Kit) version so
that they can create software using Java. Non-developers, however, usually install the JRE (Java
Runtime Environment) version because it is smaller and they do not require the developer tools.
After installing Java, you may need to restart OOo so that it can recognize Java.

Download the latest JDBC driver from http://www.mysgl.com; the main MySQL web page. From
the main MySQL page, click Products > Connectors > MySQL Connector/J to open the JDBC
download page. Select and download an appropriate driver. Unpack the driver using a zip or tar
utility and make a note of where you placed the driver. You must set the class path so that OOo
can find the MySQL JDBC drivers. Click the Class Path button, from the Java options page, to
open the Class Path dialog. Click the Add Folder button to add the directory containing the JDBC
driver. You must restart OpenOffice.org before the new class path will be recognized.

Use File > New > Database to start the Database Wizard. Select Connect to an existing database
and choose the MySQL Database type. Click Next to setup the MySQL connection. Choose the
JDBC connector and click Next to setup the JDBC connection.

In MySQL, you connect to a database, which is collection of tables. The JDBC connection in
Figure 25 is configured to connect to the stamps database on the current computer using the
default port.

OpenOffice.org Base 111

http://www.mysql.com/
http://java.sun.com/

Connecting to MySQL using /DBC

Database Wizard x|
Steps 5et up connection to a MySQL database using JDBC
L. Select database Please enter the required information to conneck ko a MySQL database using JDBC,
. Mote that & JDEC driver class must be installed on wour swskerm and registered with
2, Set up MyS0L conneckion Opendffice.arg.

Please contact wour system administrator if you are unsure about the Following
setkings.

4. Set up user authentication

Mame of the database Istamps
5. Save and procead
Server URL Ilocalhost
Port number |33l36 Defaulk: 3306

MySQL JDBC driver class:

|c0m.mysql. jdbc. Driver

Help | << Back | Mext = | Firish | Cancel I
Figure 25. Configure and test the JDBC connection.

The default JDBC driver is com.mysql.jdbc.Driver. Click the Test class button to verify that the
JDBC driver can be loaded. If the driver can not be loaded, verify that the class path is properly
configured in OOo. Click Next to setup user authentication

Enter the user name and choose to use a password if required. Click the Test Connection button
to verify that a connection can be made to the database using the configured parameters. You will
be prompted for the password, if one is required. To connect to a MySQL database, the MySQL
server must be running.

Click Next to move to the final dialog in the Database Wizard. You do not need to register the
database unless you want to reference the data source based on a name rather than using the URL
of the Database document. Click the Finish button to finish and save the document. I chose to
save the document using the name StampsJDBC.

OOo contains a dedicated MySQL/JDBC bridge, which handles certain MySQL peculiarities such
as parameter handling. The connection returned from the GUI uses the special MySQL
connection. While using the connection manager in a macro, however, you must be certain to
specify the correct type (see Listing 51).

The "sdbc:mysql:jdbc:localhost:3306/stamps" connection string uses the SDBC MySQL driver,
which is the desired connection. Using "jdbc:mysql://localhost:3306/stamps", uses a standard
JDBC connection, that does not contain the “special sauce”, so to speak.

TIP Always use “sdbc:mysql:jdbe” rather than “jdbc:mysql”.

OpenOffice.org Base 112

10. Mailmerge

7

Insert content from chapter 10 as it is. Also, use the new merge to email capability in 2.01.

OpenOffice.org Base 113

11. Copying an entire database

There is an example here: http://www.oooforum.org/forum/viewtopic.phtml?
t=22858&view=previous

OpenOffice.org Base 114

http://www.oooforum.org/forum/viewtopic.phtml?t=22858&view=previous
http://www.oooforum.org/forum/viewtopic.phtml?t=22858&view=previous

12. General utility macros

This section introduces general utility macros and establishes the foundation on which the
database related macros are built. Many interesting and useful macros that are not directly related
to database programming are used in this document. The macros also demonstrate some useful
programming techniques.

Macros are considered an advanced topic that are an absolute necessity for some and never
required for others. The macro coverage in this book assumes a working knowledge of macros so
no preliminary macro information is discussed. For more information on macro programming, see
my book “OpenOffice.org Macros Explained.”

OOo supports different documents types such as Writer (text document) and Calc (spreadsheet
document). Each unique document type supports at least one service that is supported only by
that document type (see Table 52). You can determine the type of document by checking if it
supports one of these services.

Table 52. Fields in the binary table.

Document Type Service
Drawing com.sun.star.drawing. DrawDocument

‘ Writer com.sun.star.text. TextDocument ‘
Writer/Web com.sun.star.text. WebDocument

‘ Master Document com.sun.star.text.GlobalDocument ‘
Calc com.sun.star.sheet.SpreadsheetDocument

‘ Math com.sun.star.formula.FormulaProperties ‘
Presentation (Impress) com.sun.star.presentation.PresentationDocument

‘ Database (Base) com.sun.star.sdb.DatabaseDocument ‘

A Database document implements the DatabaseDocument service. The macro in Listing 53
checks to see if the variable oDoc references a database document.

Listing 53: Check if oDoc references a database document.

I f oDoc. supportsService("com sun. star.sdb. Dat abaseDocunent") Then

Unlike other document types, a database document can not contain macros, which is probably
why ThisComponent is not set to reference a database document. To obtain the currently focused
component, including a database document, use the getCurrentComponent() method of the
desktop object (see Listing 54). ThisComponent references the most recently focused document
that is not a database document. Unfortunately, getCurrentComponent() also returns components
such as the Basic IDE.

Listing 54: Get the current component and ThisComponent.

oDoc = Thi sConmponent
oConp = St ar Desktop. get Current Conmponent ()

OpenOffice.org Base 115

General utility macros

TIP Later versions of OpenOffice.org may allow database documents to contain macros. Also, in
future versions, ThisComponent may be set to reference a database document; until then, you
need to use getCurrentComponent().

12.1. Choose a directory

The PathSettings service provides an easy method to get the user's document directory.
work Directory ~ Use the Work Directory button to print your working directory.

Listing 55: Get the user's document directory from the PathSettings service.

Function GetWorkDir () As String
Dim oPat hSettings
oPat hSettings = CreateUnoService("comsun.star.util.PathSettings")
Get WorkDir () = oPathSettings. Wrk

End Function

The FolderPicker service returns a dialog to select directories. The actual service that is returned
depends on the operating system and options specified in the Options dialog. choose Directory Use

the Choose Directory button to call the macro in Listing 56; the starting directory should be your
work directory.

Caution In OOo version 2.0, the Win32FolderPicker has a bug, which prevents you from setting the
A initial directory. Use Tools > Options > OpenOffice.org > General to open Options dialog,
/N and then check the Use OpenOffice.org Dialogs checkbox. Baring that, you can explicitly
use the OfficeFolderPicker service rather than the FolderPicker service.

Listing 56: Select a directory.

REM sl nPath specifies the initial directory. If the initial directory
REM i s not specified, then the user's default work directory is used.
REM The sel ected directory is returned as a URL.
Functi on ChooseADi rectory(Qptional slnPath$) As String

Di m oDi al og As Obj ect

Di m oSFA As Obj ect

Dims As String

Rem You can al so use com sun. star. ui.dialogs. OficeFol der Pi cker
oDi al og = CreateUnoService("com sun. star. ui.dial ogs. Fol der Pi cker")
0SFA = createUnoService("com sun. star. uch. Si npl eFi | eAccess")

If 1sMssing(slnPath) Then

oDi al og. set Di spl ayDi rectory(Get WrkDir())
El sel f 0SFA. Exi sts(slnPath) Then

oDi al og. set Di spl ayDi rectory(slnPat h)

El se
s = "Directory '" & slnPath & "' Does not exist"
If MsgBox(s, 33, "Error") = 2 Then Exit Function
End |f

OpenOffice.org Base 116

General utility macros

I f oDial og. Execut e()
ChooseADi rectory()
End |f
End Function

1 Then
oDi al og. getDi rectory()

12.2. Get a document's directory

Many of the macros in this document assume that the working directory is the directory that
contains this document. The macro in Listing 57 demonstrates how to obtain the directory portion
ofa URL. printbocDir Use the Print Doc Dir button to call the macro in Listing 57.

Listing 57: Select a directory.

REM Deternine the directory used by this docunent.
REM It is assunmed that the rest of the interesting data files
REM are in the sane directory.
REM Returns the docunent's directory as a URL with a trailing "/"
Functi on Get Sour ceCodeDi r (Optional useDoc) As String

Di m oDoc ' The docunment on which to work.

Dim s$ " Tenporary string variable.

If NOT | sM ssing(useDoc) Then
oDoc = useDoc
End |f
If IsEnmpty(oDoc) OR IsNull (oDoc) Then
oDoc = Thi sConmponent
End If
I f oDoc. hasLocation() Then
G obal Scope. Basi cLi brari es. LoadLi brary("Tool s")
REM This is assumed to be in URL notation!
s = DirectoryNanmeout of Pat h(oDoc. get Location(), "/")
Cet SourceCodeDir() =s & "/"
El se
Print "Warning, current docunent has no |ocation"
End |f
End Function

12.3. Choose a file

Use the FilePicker service to select a file. There are many configurable options for setting the
default behavior using TemplateDescription constants. If the optional input path is set and
contains a file name, then that file name is selected by default.

Listing 58: Select a file.

REM sl nPath specifies the initial directory. If the initial directory
REM i s not specified, then the user's default work directory is used.
REM The selected file is returned as a URL.
Functi on ChooseAFi |l e$(sFilters(), bQOpen As Bool ean, Optional slnPath$)
Di m oDi al og As Obj ect
Dim sPath As String
Di m oSFA As Obj ect
Dims As String
Dimi As |nteger

OpenOffice.org Base 117

General utility macros

oDi al og = Creat eUnoServi ce("com sun. star. ui.dial ogs. Fil ePi cker")
OSFA = createUnoService("com sun. star. uch. Si mpl eFi | eAccess")

REM See the Tenpl at eDescription constants to see what other
REM val ues are supported.
If bOpen Then
i = comsun.star.ui.dialogs. Tenpl at eDescri pti on. FI LEOPEN_SI MPLE
El se
REM When choosing a file that already exists, you will be asked
REM i f you want to overwite the file.
i = com sun.star.ui.dial ogs. Tenpl at eDescri pti on. FI LESAVE_SI MPLE
End |f
oDialog.initialize(Array(i))

If 1sMssing(slnPath) Then

oDi al og. set Di spl ayDi rectory(Get WrkDir())
El sel f 0SFA. Exi sts(slnPath) Then

oDi al og. set Di spl ayDi rectory(slnPat h)

El se
s = "Directory '" & slnPath & "' Does not exist"
I f MsgBox(s, 33, "Error") = 2 Then Exit Function
End |f
For i = LBound(sFilters()) To UBound(sFilters()) Step 2

Di m sFilterNanme$
Di m sFilterVal ue$
sFilterValue = sFilters(i+1)

sFilterNane = sFiltervValue & " - " & sFilters(i)
oDi al og. appendFilter (sFilterNanme, sFilterValue)
Next

If oDial og. Execute() = 1 Then
sPath = oDi al og. Fil es(0)
ChooseAFil e() = sPath

End |f

End Function

The macro in Listing 58 expects a list of filters to limit the files displayed to the user. The macros
in Listing 59 demonstrate how to build the list.

Listing 59: Build filters for selecting graphics files or Base documents.

Functi on OCoBaseFilters()
OoBaseFilters() = Array("All Files", "*. *",
"O0o Base", "*.odb")
End Function

Function GraphicFilters()

GraphicFilters() = Array("All Files", "*.*"|
"Graphic Interchange Format", "*.gif",
"Joi nt Phot ographi c Experts Group", "*.jpg",
"Tag Image File Format", "*.tif",

"W ndows Bit Mp", "*.bnp",
"Gnmp Files", "*.xcf",

OpenOffice.org Base 118

General utility macros

"Portabl e Network Graphics", "*.png")
End Function

FindFile ~ Use the Find File button to call the macro in Listing 60. The initial filename and
directory are not specified, so the your default working directory is used.

Listing 60: Obtain a graphic filename for input.

Sub ChooseGr aphi cFi | eFor Open()

LoadDBLi bs()

Print "You Chose: " & ChooseAFile$(G aphicFilters(), True)
End Sub

As nice as the FilePicker is, it can be very annoying, or very friendly, depending on your desires. If
you choose to save a file, then you are asked if you want to overwrite the file. On the other hand,
if you are opening a file, then you can not specify a file that does not exist. This behavior can be a
curse, or a blessing, depending on your intentions.

12.4. Finding a (loaded) OOo document

I want a reference to a document that is already loaded. To solve this problem, obtain an
enumeration of open components from the desktop object and then check the URL for each
component. The enumeration includes all open components, including the Basic IDE and the OOo
help, which should be ignored. Also, if a document has not been saved, then it does not have a
URL—check this by calling the hasLocation() method.

Listing 61: Safely get the URL from an OOo component.

REM Care must be taken while enunerating conponents to only obtain a URL
REM from conponents that support them
Function Get DocURL(0oDoc) As String
Get DocURL() = ""
If NOT HasUNO nterfaces(oDoc, "com sun.star.frame. XStorable") Then
REM The OO0 hel p does not support the XStorable interface, but the
REM Basi c | DE does. A truely paranoid person, therefore, mght check
REM for the com sun.star.docunment. Of fi ceDocunment service.
REM | could al so check for the comsun.star.script.BasiclDE service.
El sel f NOT oDoc. hasLocation() Then
REM Thi s docunent has never been saved, so there is no URL
REM t o conpare agai nst.
El se
Get DocURL() = oDoc. get URL()
End If
End Function

If an OO0 document is already loaded, the macro in Listing 62 will find it based on its URL or file
name. If the file name is used rather than the full URL, the file extension is optional but safer—the
files Util.odb and Util.odt look the same without a file extension. If a document is not found in the
enumeration returned by the desktop object, then it is loaded if the second argument is true.

Caution Use the StarDesktop.loadComponentFromURL() to load an OOo document. In OOo version
1.x, a NULL value is returned if the document does not exist. In OOo version 2.0, however,
an illegal argument exception is thrown instead.

OpenOffice.org Base 119

General utility macros

Listing 62: Find an OOo document if it is already loaded.
Functi on Fi ndConponent Wt hURL(sNane$, bLoadl f Not Found As Bool ean)

Di m oDocs ' Enumeration of the |oaded conponents.
Di m oDoc " A single enunerated conponent.
Di m sDocURL$ ' URL of the conponent that we are checking.

REM Use sone nethods fromthe Tools library.

I f NOT d obal Scope. Basi cLi braries.isLibraryLoaded("Tool s") Then
G obal Scope. Basi cLi brari es. LoadLi brary("Tool s")

End |f

oDocs = StarDesktop. get Conponents().createEnuneration()
Do Wil e oDocs. hasMor eEl enent s()

oDoc = oDocs. next El ermrent ()

sDocURL = Get DocURL(oDoc)

REM Just in case the nanme contains the full URL.

REM I f the name is an enpty string, then return an unsaved docunent.

I f sNanme = sDocURL Then
Fi ndConmponent Wt hURL() = oDoc
Exit Function

End | f

REM This will only work if the name contains the file extension.

I f Fil eNanmeout of Pat h(sDocURL, "/") = sName Then
Fi ndConponent Wt hURL() = oDoc
Exit Function
End If
Loop

REM The docunent was not found,
REM per haps the name did not contain a file extension.
oDocs = StarDesktop. get Conponents(). createEnuneration()
Do Wil e oDocs. hasMor eEl enent s()

oDoc = oDocs. next El enent ()

sDocURL = Get DocURL(oDoc)

I f CetFil eNaneW t hout Ext ensi on(sDocURL, "/") = sNanme Then
Fi ndConponent Wt hURL() = oDoc
Exit Function
End |f
Loop

REM The nane was still not found, check to see if a docunent exists

REM with the specified URL.

REM I n OOo version 1.x, |oadConponentFromJRL() returned NULL
REM i f the docunent did not exist. Starting with version 2.Xx,
REM an illegal argument exception is thrown instead.

OpenOffice.org Base

120

General utility macros

I f bLoadl f Not Found AND Fil eExi st s(sNanme) Then
oDoc = StarDesktop. | oadConponent FromUJRL(sNanme, "_blank", 0, Array())
Fi ndConponent Wt hURL() = oDoc
"El se
Fi ndConmponent Wt hURL = NULL
End |f
End Function

12.5. Append to an array

While accumulating data, it is convenient to add data to an array without worrying about the size
of the array—it may not be efficient, but it is convenient. The macro in Listing 63 increases the
size of an array by one, and then appends data to the end of the array. This technique is invaluable
when space and complexity are more important than runtime—appending data to an array is
similar to pushing data onto a stack.

Listing 63. Append data to an array.

Sub AppendToArray(oData(), ByVal x)
DimiUB As Integer 'The upper bound of the array.
DimilLB As Integer 'The |ower bound of the array.
i UB = UBound(oData()) + 1
i LB = LBound(oData())
ReDi m Preserve oData(iLB To i UB)
oData(i UB) = x

End Sub

TIP The first version of AppendToArray() passed the second argument as a reference. I then wrote
a loop that used a temporary variable to collect data. At each iteration, the reference to the
temporary variable was pushed onto the end of the array. The final result was that every value
in the array was the same.

12.6. Compare data in an array

I frequently convert data into data arrays and then copy the data arrays directly into a spreadsheet.
I initially wrote this routine to check individual arrays to see if they contained duplicate data.

Listing 64. Check to see if two arrays contain the same text.

REM check to see if two arrays contain the sane data.

REM Both arrays are assuned to be one di nensional arrays.

REM The data in both arrays are assumed to be directly

REM conpar abl e dat a.

Function ArraysAreSane(oDatal(), oData2(), nM nCol As Long) As Bool ean
Dimn As Long
ArraysAreSane() = Fal se

REM First, conpare the upper dinension.
I f UBound(oDatal()) <> UBound(oData2()) Then Exit Function

OpenOffice.org Base 121

General utility macros

I f LBound(oDatal()) <> LBound(oData2()) Then Exit Function
I f LBound(oDatal()) < nM nCol Then Exit Function

For n = LBound(oDatal()) To UBound(oDatal())
If oDatal(n) <> oData2(n) Then
Exit Function
End |f
Next
ArraysAreSane() = True
End Function

12.7. Create a property

I have always found it annoying to create an array of properties to pass as arguments to the UNO
API; create a properly dimensioned array, set the property values, realize that an extra property is
required so | need to start over. The CreateProperty() method in Listing 65 simplifies the creation
of properties. accepts a property name and a property value—a new property is created and
returned. The real strength of the CreateProperty() method is seen when used in conjunction with
the AppendProperty() method, which creates a new property and appends it to an array (see
Listing 65).

Listing 65. Create a PropertyValue structure and append one to an array.

Function CreateProperty(sName$, oVal ue) As com sun. star.beans. PropertyVal ue
Di m oProperty As New com sun. star. beans. PropertyVal ue
oProperty. Name = sNanme
oProperty. Val ue = oVal ue
CreateProperty() = oProperty
End Function

Sub AppendProperty(oProperties(), sName As String, Byval oVal ue)
AppendToArray(oProperties(), CreateProperty(sName, oVal ue))
End Sub

12.8. Create a Point and a Size
Many routines require a point or size object. It is easier to create and return an item in a function.

Listing 66. Create a Point and Size.

Functi on CreatePoi nt (xPos, YPos) as New com sun. star.aw . Poi nt
Di m oPoi nt as New com sun. st ar. awt . Poi nt
oPoi nt. X = xPos
oPoint.Y = yPos
Creat ePoi nt () = oPoi nt
End Function

Function CreateSi ze(iWdth, iHeight) As New com sun.star.awt . Size
Dim 0Si ze As New com sun. star.awt . Si ze
0Size.Wdth = iWdth
0Si ze. Hei ght = i Hei ght
CreateSi ze() = oSize
End Function

OpenOffice.org Base 122

General utility macros

12.9. Append a data array to a Calc document

I frequently write test macros that display data in a dialog. A dialog is not sufficient to display a
large amount of data, so I sometimes use a Calc document instead. The macro in Listing 67
accepts a data array, which is added to the Calc document at the current cursor position. After
inserting the data, the cursor is moved below the last inserted row. Repeated calls to
AppendDataToCalcDoc() append more data to the end of the document and reposition the cursor.

Listing 67. Add data array to a Calc document at the cursor position.

Sub AppendDat aToCal cDoc(oDoc, oData())
Di m oSheet 'The first sheet in the docunent.
Di m oAddr " Address of the current cursor.
Dim i NumRows% ' Nunber of rows to add.
DimiNumCol s% ' Nunmber of columms to add.
Di m x() "Utility variable used as a single row
Di m oRange '"Range to add the data and focus the cursor.

REM Get the address of the currently selected cell.
REM Use the address to obtain the current sheet.
oAddr = oDoc. get Current Sel ecti on(). getCel | Address()
oSheet = oDoc. get Sheet s(). get Byl ndex(oAddr . Sheet)

REM Det ermi ne the nunmber of rows in the data.

REM Next, obtain the first row and see how nmany colums it has.
i NumRows = UBound(oData()) - LBound(oData())

x() = oData(l Bound(oData()))

i NunCol s = UBound(x()) - LBound(x())

oRange = oSheet. get Cel | RangeByPosi ti on(oAddr. Col utm, oAddr . Row,
0Addr . Col utm + i NunCol s, oAddr. Row + i NumRows)
oRange. set Dat aArray(oDat a())
oRange. get Col ums(). opti mal Wdth = True
oRange = oSheet. get Cel | ByPosi ti on(0oAddr. Col unm, oAddr. Row + i NumRows+1)
oDoc. get Current Control l er (). sel ect (oRange)
End Sub

The setDataArray() method for a Calc sheet is used because it is fast and efficient, but the data
array must be a single dimension array. Each element in the data array corresponds to a single row
of data and is represented by a one dimensional array(see Table 53).

Table 53. Data arrangement for use in setDataArray()

Correct: Incorrect:

Each row is an array A two dimension array

Dim oData(3) Dim oData(3, 3)

oData(0)=Array(1, 2, 3) oData(0, 0)=1 : oData(0, 1)=2 : oData(0, 2)=3
oData(1)=Array(4, 5, 6) oData(1, 0)=4 : oData(1, 1)=5 : oData(1, 2)=6

OpenOffice.org Base 123

General utility macros

Correct: Incorrect:
Each row is an array A two dimension array

oData(2)=Array(7, 8, 9) oData(2, 0)=7 : oData(2, 1)=8 : oData(2, 2)=9

12.10. Dynamically call object methods

The macros introduced in this section are very advanced and easily skipped by a novice. Before
examining these macros, it is important to understand the problem. Assume that you have an
object and the name of the method (as a string) that you want to call. If you know the name of the
method when you write your macro, you can directly call the method. If you do not know the
method name ahead of time, however, then it is not possible to directly call the method on an
object based on its name. For example, if you want to write a macro that asks the user which
method to call. The macro in Listing 68 demonstrates a function called “MylnsertedFunc”. The
“MylnsertedFunc” function returns the value returned by the getName() method on the oObj
object.

TIP Although you can not dynamically call a method based on its name, most of an objects
properties are available through the property set information object available through the
method getPropertySetInfo(). At runtime, you can discover the name of an objects properties
and then obtain the values using the property set information object. You can also discover
the names of an objects methods at runtime, but you can not call them based on the name.

Listing 68. Call the getName() function on the object oObj.

Option Explicit

Function Myl nsertedFunc(ByRef oObj)
Myl nsertedFunc = oQbj . get Nane()

End Function

The macro in Listing 68 is so trivial and obvious that it seems superfluous until you realize that
you can write a macro to generate the macro in Listing 68 based on the method name. I created a
function named RunFromLib(). When RunFromLib() is called as shown in Listing 69, it performs
the following tasks:

+ Create a library named xlib in the global libraries object.
Create a module named TMod in the xlib library.

- Create the function named MylnsertedFunc (see Listing 68), which calls the function
getName() on the oDoc object.

- Call the function MylnsertedFunc(); this works because the function name MylnsertedFunc
never changes.

Perform cleanup.

OpenOffice.org Base 124

General utility macros

Listing 69. Call the getName() function on the object oDoc.

olib = d obal Scope. Basi cLi braries
RunFronLi b(oLi b, "xlib", "TwWod", oDoc, "getName", True)

The arguments for RunFromLib() are shown in 7able 54.
Table 54. Arguments for the RunFromLib() function.

Argument Description

oLibs BasicLibaries container to contain the newly created module.

sLName Name of the library to use, this library can already exist. If the library does not exist, it
is created.

sMName Name of the module to use; the module is replaced if it already exists. The module is
created to contain code similar to that shown in Listing 68.

‘ o0Obj Object that contains the method to call. ‘
sCall Name of the function to call.

bClean If True, the created library and module are deleted after the call. The library is not
removed if it existed before the call.
Optional argument that, if it exists, is passed to the called method.

‘ y Optional argument that, if it exists, is passed to the called method. ‘

The oLibs argument is a BasicLibaries container for either a document or the application. The
library container contains the newly created module. In my testing, I was able to use the
BasicLibraries property from the current document and from the application, but not from a newly
created document. You can not create a library in a document that is not the current document,
because the object returned by the getLibraryContainer() method is not usable for this purpose.
Listing 70 contains a working implementation.

Listing 70. Call a named method on an object.

Function RunFronLi b(oLi bs, sLNane$, sMNane$, oObj, sCall$, _
bCl ean As Bool ean, Optional x, optional vy)
DimoLib "The library to use to run the new function.
Dims$ "Ceneric string variable.
Di m bAddedLi b As Bool ean

REM I f the library does not exist, then create it.
bAddedLi b = Fal se
If NOT oLi bs. hasByNane(sLNane) Then
bAddedLi b = True
oLi bs. createlLi brary(sLNane)
End |f
oLi bs. | oadLi brary(sLNane)
oLi b = oLi bs. get ByNanme(sLNane)

I f oLib. hasByNanme(sMNanme) Then
oLi b. renmobveByNanme(sM\ane)
End |f

s = "Option Explicit" & CHR$(10) & _

OpenOffice.org Base 125

General utility macros

"Function Myl nsertedFunc(ByRef oCbj"

If NOT IsMssing(x) Then s s &", x"

If NOT IsMssing(y) Then s = s & ", y"

s =s &")" & CHR$(10) & "MylnsertedFunc = oObj." & sCall & "("
If NOT IsMssing(x) Then s = s & "x"

If NOT IsMssing(y) Then s =s &", y"

s =s &")" & CHR$(10) & "End Function”

oLi b.insertByName(sM\ame, s)

If 1sMssing(x) Then
RunFronmLi b = Myl nsert edFunc(oQbj)
El self IsM ssing(y) Then
RunFronmLi b = Myl nsertedFunc(oObj, Xx)
El se
RunFronmLi b = Myl nsertedFunc(oObj, X, YY)
End |f

I f bCl ean Then
oLi b. removeByNanme(sM\ane)
If bAddedLi b Then
oLi bs. renmoveli brary(sLNane)
End |If
End |f
End Function

While investigating meta-data, I wanted to call multiple methods on the same object. To shorten
the macro listings, I created the RunMultipleCalls() method (see Listing 71) to call RunFromLib()
multiple times. The arguments for RunMultipleCalls() are shown in Table 55.

Table 55. Arguments to the RunMultipleCalls() method.

Argument Description
oObj Object that contains the methods to call.

‘ oData() ‘ As each function is called, the return value is added to this array. ‘
funcs() Array of function names to call.

‘ bPrintOptional ‘ If True, optional arguments are printed with the function names. ‘
X Optional argument that, if it exists, is passed to the called method.

‘ y ‘ Optional argument that, if it exists, is passed to the called method. ‘

The macro in Listing 71 accepts an array of function names that are assumed to return a simple
data type and accept zero, one, or two arguments. RunFromLib() is called once for each function
name in the funcs() array. The oData() array is modified to contain the method name and the
return value in a form suitable for use in the setDataArray() method in a Calc sheet.

Listing 71. Call multiple named methods on an object.
Sub RunMul tipleCalls(oCj, oData(), funcs(),

OpenOffice.org Base 126

General utility macros

Optional bPrintOptional, Optional x, optional vy)
Dimi % " General index variable.
Dim z "Ceneral utility variable.

REM First, dinmension the array to hold the data.
ReDi m oDat a(LBound(funcs()) To UBound(funcs()))

REM For each function, create a npdule that contains a function,
REM whi ch is used to call the requested function on the object oObj.
For i = LBound(funcs()) To UBound(funcs())
If 1sMssing(x) Then
z = RunFronlLi b(d obal Scope. Basi cLi brari es,
"xyzzylib", "TestMd", oObj, funcs(i), True)
El self IsMssing(y) Then
z = RunFronLi b(d obal Scope. Basi cLi brari es,
"xyzzylib", "TestMd", oObj, funcs(i), True, Xx)
El se
z = RunFronLi b(d obal Scope. Basi cLi brari es,
"xyzzylib", "TestMd", oObj, funcs(i), True, X, Yy)
End |f

If IsMssing(bPrintOptional) OR IsM ssing(x) Then
oData(i) = Array(funcs(i), CStr(z))
El sel f NOT bPrintOptional Then
oData(i) = Array(funcs(i), CStr(z))
El self 1sM ssing(y) Then
oData(i) = Array(funcs(i) & "(" & CStr(x) & ")", CStr(z))

El se
oData(i) =Array(funcs(i) & "(" & CStr(x) & ", " & CStr(y) & _
"), Cstr(z))
End If
Next
End Sub

The method RunMultipleCallsAppendToDoc() (see Listing 72) is a wrapper to call
RunMultipleCalls() and append the returned data array to a Calc document.

Listing 72. Call named methods and append the output to a document.

Sub RunMul ti pl eCal | sAppendToDoc(oDoc, oChj, funcs(),
Optional DbPrintOptional,
Optional x, optional vy)
Di m oDat a() "Hol ds the data array that is set.
If IsMssing(x) OR IsMssing(bPrintOptional) Then
RunMul tipleCalls(oObj, oData(), funcs())
El sel f IsMssing(y) Then
RunMul tipleCalls(oQnj, oData(), funcs(), bPrintOptional, x)

El se
RunMul tipleCalls(oObj, oData(), funcs(), bPrintOptional, x, y)
End |f
AppendDat aToCal cDoc(oDoc, oData())
End Sub

OpenOffice.org Base 127

General utility macros

12.11. Display numeric constants as meaningful text

The OO0 API contains many constant groups. The constants can be referenced as either the
numerical value, or the full name. For example, com.sun.star.sdbc.ColumnValue.NO NULLS is
equivalent to the number 0. It is much easier to recognize the text name than it is to remember the
numerical values.

Most constant groups used in OpenOffice.org UNO programming are sequentially numbered. For
example, the com.sun.star.sdbc.ColumnValue constant group contains the constants NO NULLS,
NULLABLE, and NULLABLE UNKNOWN, which are numbered 0, 1, and 2. The code snippet
in Listing 73 demonstrates an easy way to convert sequentially numbered constants to text; the
constant value is used to index into an array containing a textual representation.

Listing 73. Convert the ColumnValue constants to text.

X() = Array("NO_NULLS", "NULLABLE", "NULLABLE_UNKNOMN')
Print x(com sun.star.sdbc. Col umVal ue. NO_NULLS)
Print x(0)

The macro in Listing 74 generalizes the method demonstrated in Listing 73 to convert the
numeric value to a user friendly text entry. The first argument, n, is the constant value to convert.
The second argument, x(), is an array of descriptive entries that describe the constant values. If
the constants range from -3 to 5, then so should x(). If bIncN is True, then the returned name is
preceded by numeric value. The final argument is optional, and is used as the default default
descriptive entry if the constant group value does not properly index into the array.

Listing 74. Obtain data from an array without an out-of-bounds error.

Function SafeArray(ByVal n As Long, x(), blncN As Bool ean,
Optional Dval ue)
Dims As String
If blncN Then
s =Cstr(n) &" - "

El se
s =""

End If

If LBound(x()) <= n AND n <= UBound(x()) Then
SafeArray() = s & CStr(x(n))

El sel F NOT | sM ssi ng(Dval ue) Then
Saf eArray() = s & CStr(Dval ue)
El se
SafeArray() = s & "lnvalid"
End |f
End Function

The purpose of the SafeArray() function in Listing 74 is to convert a single numeric value into a
human readable text representation of the value. The macro in Listing 75 replaces the numeric
values in an entire column with a human readable text representation. The final usage of Listing
75 reduces the amount of code required to evaluate an entire result set to a data array, and then
replace a single column with a nice textual representation.

Listing 75. Find element in parallel arrays.

Sub Saf eArrayCol ums(ByVal nCol As Long, oData(), x(),
bl ncN As Bool ean, Optional Dval)

OpenOffice.org Base 128

General utility macros

Di m oRow()
Dimi As Long
Dimn As Long
Di m dVal ue

If 1sMssing(dval) Then

dvalue = "Invalid"
El se
dval ue = dval
End If
For i = LBound(oData()) + 1 To UBound(oData())

oRow() = oData(i)
I f LBound(oRow()) <= nCol AND nCol <= UBound(oRow()) Then
oRow(nCol) = SafeArray(CLng(oRow(nCol)), x(), blncN, dVal ue)
End |f
Next i
End Sub

12.12. Select from a list in a list box

The macro in Listing 76 creates a dialog containing a list box. The data in the oData() array is
added into the list box. The user then chooses a single item from the list box. The chosen item is
returned as a string. If nothing is selected, an empty string is returned. An interesting things about
this macro, is that it dynamically builds the dialog and the controls.

Listing 76. Create a dialog with a list box to select one item.

REM Create a dialog with a Iist box.
REM Popul ate the list box with the data and return the selected item
Function Dial ogSel ectltem(oData(), sTitle$) As String

Di m oDl g ' The created dial og.

Di m oDl gMbdel "The created dial og's nodel.

Di m oMVbdel 'Model for a control.

Di m oCont r ol 'References a control.

Dimi Tabl ndex% 'The current tab index while creating controls.
Dim s$ "CGeneric tenporary string variable.

Di al ogSel ectltem() = ""

REM Create the dial og's nodel

oDl gvbdel = CreateUnoService("com sun. star.aw . UnoControl Di al oghbdel ")
oDl gvbdel . PositionX = 50 : oDl ghvbdel . PositionY = 50

oDl gvbdel . Wdt h = 350 : oDl gvodel . Hei ght = 300

oDl ghbdel . Title = sTitle$

i Tabl ndex = 0

s = "com sun. star.awt . UnoControl Li st BoxMdel "

oMbdel = oDl gMbdel . createl nstance(s)

oModel . Name = "Li st Box"

oMbdel . Tabl ndex = i Tabl ndex

oMbdel . Positi onX = Clng(10) : oModdel.PositionY = 10
oMbdel . Wdth = 350 - 20 : oModel . Hei ght = 300 - 60
oMbdel . Dropdown = Fal se

OpenOffice.org Base 129

General utility macros

oModel . Mul ti Sel ecti on = Fal se
oDl gvbdel . i nsertByNanme("ListBox", oMdel)
i Tabl ndex = i Tabl ndex + 1

s = "com sun. star.awt . UnoCont rol Butt onMbdel "
oMbdel = oDl gMbdel . createl nstance(s)

oModel . Name = " OKButton"

oModel . Tabl ndex = i Tabl ndex

oModel . PositionX = Cl ng(350/ 2 - 75)

oModel . Posi tionY = 300-20

oModel . Wdth = 50

oMbdel . Hei ght = 15

oMbdel . Label = "OK"

oMbdel . PushButt onType = com sun. star. awt . PushButtonType. OK
oDl gvbdel . i nsert ByNanme(" OKButton", oModel)

i Tabl ndex = i Tablndex + 1

oMbdel = oDl ghbdel . createl nstance(s)

oModel . Name = " CANCELButton"

oModel . Tabl ndex = i Tabl ndex

oModel . PositionX = Cl ng(350/ 2 + 25)

oModel . PositionY = 300-20

oMbdel . Wdth = 50

oModel . Hei ght = 15

oMbdel . Label = "Cancel"

oMbdel . PushButt onType = com sun. star. awt . PushButt onType. CANCEL
oDl gModel . i nsert ByName(" CANCELBut t on", oMbdel)
i Tabl ndex = i Tabl ndex + 1

REM Create the dial og and set the nopdel
oDl g = CreateUnoService("com sun. star.awt. UnoControl Di al 0g")
oDl g. set Model (oDl gvbdel)

REM Add the itemns.
oDl g. get Control ("ListBox").addltenms(oData(), O0)

REM Create a wi ndow and then tell the dialog to use the created w ndow.
Di m oW ndow

oW ndow = CreateUnoService("com sun.star.awt. Tool kit")

oDl g. creat ePeer (oW ndow, null)

Dimi %

REM Fi nal |y, execute the dial og.

i = oDl g.execute()

If i =0 Then

Exit Function

End |f

Di al ogSel ectltem() = oDl g.getControl ("Li stBox").getSel ectedltem()
End Function

OpenOffice.org Base 130

13. Database utility macros

13.1. Quoting table and field names

If a field name contains a space or lower case letters, then the field name must be quoted. The
character used for quoting changes depending on the database in question. Common quote
characters include a back-tic (), single quote ('), or double quote ("). The precise character to use
is obtainable from the connection meta-data.

Listing 77: Quote a table or field name in a SOL statement.

REM The quote charcter changes based on the database that is accessed.
Functi on DBQuot eNane(sNanme As String, oCon) As String

Dim sQuote As String

sQuote = oCon. get MetaData().getldentifierQuoteString()

DBQuot eNanme = sQuote & sNane & sQuote
End Function

13.2. Convert between an UNO Date and a Basic Date

The OOo database engine returns date objects as an UNO Date structure (see 7able 52). Basic,
on the other hand, has a date type based on a floating point number so the types are not directly
compatible.

Table 56. Properties of the com.sun.star.util. Date structure.

Property Description
unsigned short Year year.
unsigned short Month Month of year (1-12 or 0 for a void date).
unsigned short Day Day of month (1-31 or 0 for a void date).

Listing 78 demonstrates how to convert between the Date type used internally by Basic, and the
UNO structure returned by database calls.

Listing 78. The date routines are contained in the document SC13.

Functi on UNODat eToDat e(ByVal x) As Date
If I'sNull (x) OR |IsEnpty(x) Then
UNODat eToDat e = cDat e(0. 0)
El self x.Day = 0 OR x. Month = 0 Then
UNCDat eToDat e = cDat e(0. 0)
El se
UNODat eToDat e = Dat eSeri al (x. Year, x.Month, x.Day)

OpenOffice.org Base 131

Database utility macros

End If
End Function

Functi on Dat eToUNODat e(ByVal x As Date)
Di m oDate As New com sun.star.util.Date
Set UnoDat e(x, oDate)
Dat eTOUNODat e = oDate

End Functi on

Sub Set UnoDat e(ByVal x As Date, oDate)

oDat e. Day = Day(x)

oDat e. Mont h = Mont h(x)

oDate. Year = Year (x)
End Sub

The OOo database engine returns time data as an UNO Time structure (see 7able 57). The Time
structure contains values accurate to hundredths of a second. Basic is able to store times accurate
hundredths of a second, but does not provide a function to extract the value (see Listing 79).

Table 57. Properties of the com.sun.star.util. Time structure.

Property Description
unsigned short Hours Hours (0-23).
‘ unsigned short ‘ Minutes Minutes (0-59). ‘
unsigned short Seconds Seconds (0-59).
‘ unsigned short ‘ HundredthSeconds Hundredth seconds (0-99). ‘

Listing 79. Convert UNO Time to a Basic Date

Functi on UNOTi neToDat e(ByVal x) As Date
If IsNull (x) OR IsEnmpty(x) Then
UNOTi neToDat e = cDat e(0. 0)
El se
UNOTi neToDat e = TinmeSeri al (x. Hours, x.M nutes, x.Seconds) + _
X. Hundr edt hSeconds / 8640000
End |f
End Function

Functi on Dat eTOUNCOTi mne(ByVal x As Date)
Dim oDate As New com sun.star.util.Tine
Set UNOTi me(x, oDate)
Dat eTOUNOTi e = oDat e

End Function

Sub Set UNOTi ne(ByVal x As Date, oDate)
Dimd As Doubl e
dimi As Integer

oDat e. Hour s = Hour (x)
oDate. M nutes = M nute(x)
oDat e. Seconds = Second(x)

OpenOffice.org Base 132

Database utility macros

REM Renpove any date portion. Int() rounds towards negative infinity,
REM whi ch wor ks properyly, even for dates prior to Decenber 29, 1899.
d =x - Int(x)

REM Now, convert to seconds. There are 86,400 seconds in a day.
d = d * 86400
d=d - Int(d)

REM Now, convert to hundredths of seconds. Use Cint to round to the
REM nearest integer rather than round towards negative infinity.
i = Clnt(d * 100)
If i >99 Then i = 99
oDat e. Hundr edt hSeconds = i
End Sub

A database time stamp is returned as a DateTime structure, that contains the properties in Table
56 and Table 57. The flexibility offered by Basic allows the use of the routines in Listing 78 and
Listing 79, which provides for very simple routines to convert between the Basic Date type and
the UNO DateTime structure (see Listing 80).

Listing 80. Convert UNO DateTime to a Basic Date

Functi on UNODat eTi neToDat e(ByVal x) As Date
UNODat eTi neToDat e = UNODat eToDat e(x) + UNOTi neToDat e(x)
End Function

Functi on Dat eToUNODat eTi ne(ByVal x As Date)
Di m oDate As New com sun.star.util.DateTinme
Set UNOTi me(x, oDate)

Set UNODat e(x, oDate)
Dat eToOUNODat eTi ne = oDat e

End Function

13.3. Convert a result set to an array of data

A result set contains rows of data. Each row of data contains columns with data. A result set
allows a large dataset to be returned, even if it will not all fit into memory at one time—the macro
presented in this section assumes that the data returned by the result set is not too large to fit into
memory. The purpose is to provide a simple method to obtain all of the data from a query,
formatted for use by AppendDataToCalcDoc() in Listing 67; complete with column headers.

A result set provides meta-data, which describes the data that it contains. The result set meta-data
indicates the number of columns in the result set along with a description of each column. The
meta-data is used to determine the number of columns and the column titles. The macro in Listing
81 generates a data array that encapsulates the data based on its type.

Listing 81. Dump the results from a ResultSet into an array.

Sub Resul t Set ToDat a(oResult, oDoc, sFunc$, oData())
Di m oDat a2() " Tenporary row data array.
Di m oMet a "Each result set also has neta-data.
Dimn As Long 'Nunber of columms returned by a result set.
Dimi As Long 'GCeneral index variable.
Di m nRowCount & ' Count of the nunber of rows.

OpenOffice.org Base 133

Database utility macros

Dim x "Generic work vari abl e.

If IsNull (oResult) OR IsEnpty(oResult) Then
oData() = Array(Array(sFunc, "NULL result set returned"))
Exit Sub

End |f

oData() = Array()
Do Wil e oResult.next()
If n =0 Then
REM Add columm titles.
oMeta = oResul t. get Met aDat a()
n = oMet a. get Col uimCount ()
oData2() = DimArray(n)
oDat a2(0) = sFunc

For i =1 Ton
oData2(i) = oMeta. get Col utmNane(i)
Next

REM Advanced progranmm ng concept. . ..
REM Do not replace the next two lines with:
REM oData() = Array(oData2())
REM because it would use a reference to oData2().
REM AppendToArray() copies the array by val ue.
AppendToArray(oData(), oData2())

End If

REM The first columm is always the function nane.
oData2() = Array()
oDat a2() Di mArray(n)

REM Al t hough the row nunber should be avail abl e using
REM oResul t.getRow(), this is not always the case.
nRowCount = nRowCount + 1
oDat a2(0) = sFunc & " " & nRowCount
For i =1 To n
Sel ect Case oMet a. get Col umType(i)
Case com sun. star. sdbc. Dat aType. DATE
oData2(i) = CStr(UNODat eToDat e(oResul t.getDate(i)))
Case com sun. star. sdbc. Dat aType. TI ME
X = oResult.getTinme(i)

oData2(i) = Format(x.Hours, "00") & ":" & _
Format (x. M nutes, "00") & ":" & _
For mat (x. Seconds, "00") & "." & X.HundredthSeconds

Case com sun. star. sdbc. Dat aType. TI MESTAMP
X = oResult.getTinmestanp(i)

oData2(i) = CStr(UNODateToDate(x)) & " " & _
Format (x. Hours, "00") & ":" & Format(x.M nutes, "00") & _
":" & Format (x. Seconds, "00") & "." & X.HundredthSeconds
Case El se
oData2(i) = oResult.getString(i)
End Sel ect
Next
AppendToArray(oData(), oData2())
Loop

OpenOffice.org Base 134

Database utility macros

REM I n case no rows are returned...
If n = 0 AND nRowCount = 0 Then
oData() = Array(Array(sFunc, "No rows returned"))
End |f
End Sub

The macro in Listing 81 inspects the data type by using the DataType constants, which are based
on the java.sql. Types constants (see Table 58).

Table 58. Column types defined by the com.sun.star.sdbc.DataType constants.

-7 BIT One or more bits.
‘ -6 TINYINT ‘ Typically an 8 bit signed integer. ‘
-5 BIGINT Typically a 64 bit signed integer.
‘ -4 LONGVARBINARY ‘ Variable length binary data, such as an image. ‘
-3 VARBINARY Variable length binary data, such as an image.
‘ -2 BINARY ‘ Fixed length binary data. ‘
-1 LONGVARCHAR Variable length character data.
0 SQLNULL NULL value. |
1 CHAR Fixed length character data.
‘ 2 NUMERIC ‘ Long integer with a specified precision. ‘
3 DECIMAL Long integer with a specified precision.
‘ 4 INTEGER ‘ Typically a 32 bit signed integer. ‘
5 SMALLINT Typically a 16 bit signed integer.
FLOAT Typically a single or double precision floating point
6 number.
REAL Typically a single or double precision floating point
7 number.
DOUBLE Typically a single or double precision floating point
8 number.
12 VARCHAR Variable length character data.
91 DATE Date.
92 TIME Time.
TIMESTAMP Date and time accurate to seconds or milliseconds
depending on the database. HSQLDB is accurate to
93 milliseconds..
OTHER Database-specific type, mapped to an object that is accessed
111 using the method XRow::getObject() .
OBJECT A type represented by an object which implements this
2000 type.
DISTINCT Describes a type based on a built-in type; a user-defined
2001 data type (UDT).

OpenOffice.org Base

Database utility macros

Value Name Comment
STRUCT Attributes that may be any type; a user-defined data type
2002 (UDT).
2003 ARRAY SQL ARRAY.
‘ 2004 BLOB ‘ SQL Binary Large Object. ‘
2005 CLOB SQL Character Large Object.
‘ 2006 REF ‘ SQL referencing type. ‘

The AddResultSetToDoc() method in Listing 82 copies a result set to a data array and then
appends the data to a Calc document using the macros in Listing 67 and Listing 81. It is assumed
that the database is not exceedingly large and that all of the data will fit in memory.

Listing 82. AddResultSetToDoc is found in the document SC13.

Sub AddResul t Set ToDoc(oResul t, oDoc, sFunc$)
Di m oDat a() "Primary data array added to the Cal c docunent.
Resul t Set ToDat a(oResul t, oDoc, sFunc$, oData())
AppendDat aToCal cDoc(oDoc, oData())

End Sub

13.4. Create and populate a dialog from a result set

The macro in Listing 83 accepts a result set, a column number and a maximum number of rows. A
dialog with a list box displays the data from the specified column (see Listing 76). The single
selected item is returned as a string. The list box is a standard UNO control is not actually tied to
the database. In other words, the data is extracted manually.

Listing 83. Populate and use a list box from a result set.

Function SelltenfFronResul t (oResult, nCol % nMaxRows&) As String
Di m nCount As Long
DimoData() As String
Dims$

Sel ltenFronResult = ""

REM First, check to see if there is data to read.
If nMaxRows < 1 Then Exit Function
If IsNull (oResult) OR IsEnpty(oResult) Then
Exit Function
End |f

REM Now read the data from the database.

nCount = 0

ReDi m oData(0 To nMaxRows - 1) As String

Do Wil e oResult.next() AND nCount < nMaxRows
oDat a(nCount) = oResult.getString(nCol)
nCount = nCount + 1

Loop

OpenOffice.org Base 136

Database utility macros

ReDi m Preserve oData(0 To nCount - 1) As String
Sel | tenFronResul t () = Dial ogSel ectltemoData(), "Select Itent)
End Function

OpenOffice.org Base 137

14. Tips and tricks

At least initially, tips and tricks really means “things that Andrew always forgets”.

14.1. Limit the number of returned records

Every database does this differently. In a native Base document, use the following syntax:

Iselect limt O 100 <col s> from <t abl es>
select |imt 04 * from TABLE1] 'Rows O, 1, 2, and 3
select limt 4 4 * fromTABLElL 'Rows 4, 5, 6, and 7

Notice that the rows are numbered starting with zero. Be careful, or you will miss a row. Second,
you can not use this syntax in the GUI because the parser will not recognize the SQL. This syntax
1s specific to the database embedded in an OOo Base document.

Use Select Limit The Use Select Limit button asks you to choose a database. The DATA
table is created in this database and data is added. The LIMIT statement is then used in two
queries to display the result.

Listing 84. Create a simple database and then use LIMIT.

Sub UseSel ectLim t (Optional dbURL$ = "")
Di m sTabl eNane$ "The nane of the table to creat.
Di m oTabl e "A table in the database.
Di m oTabl es "Tabl es in the docunent
Di m oTabl eDescriptor 'Defines a table and how it | ooks.
Di m oCol s "The colums for a table.
Di m oCol "A single colum descriptor.
Di m oCon ' Dat abase connecti on.
Di m oBaseCont ext ' Dat abase context service.
Di m oDB ' Dat abase data source.
Di m oSt at enent
Di m sSQL$
If dbURL = Then dbURL = ChooseAFi |l e(OCoBaseFilters(), False)

I f dbURL Then Exit Sub

Cr eat eBi nar yDB(dbURL$, Fal se)

REM Use the DatabaseContext to get a reference to the database.

oBaseCont ext = CreateUnoService("com sun. star.sdb. Dat abaseCont ext™)
oDB = oBaseCont ext . get ByNane(dbURL)
oCon = oDB. get Connection("", "")

oTabl es = oCon. get Tabl es()

sTabl eNane$ = " DATA"

I f oTabl es. hasByNane(sTabl eNane$) Then
oTabl es. dr opByNane(sTabl eNane)
oDB. Dat abaseDocunent . store()

End |f

OpenOffice.org Base 138

Tips and tricks

REM For now, this should always be True

I f NOT oTabl es. hasByNane(sTabl eNane$) Then
oTabl eDescri ptor = oTabl es. creat eDat aDescri ptor ()
oTabl eDescri ptor. Name = sTabl eNane$

0Col s = oTabl eDescri ptor. get Col utms()

oCol = oCol s. createDataDescri ptor ()

oCol . Nane = "I D"

oCol . Type = com sun. star. sdbc. Dat aType. | NTEGER

oCol . I'sNul | abl e = com sun. star. sdbc. Col unmVal ue. NO NULLS
oCol . I sAut ol ncrenment = True

oCol . Precision = 10

oCol . Description = "Primary Key"

oCol s. appendByDescri pt or (0oCol)

oCol . Nane = " NAME"

oCol . Type = com sun. star. sdbc. Dat aType. VARCHAR
oCol . Description = "Fil enane"

oCol . Preci sion = 255

oCol . I sAut ol ncrenent = Fal se

0Col s. appendByDescri pt or (oCol)

oTabl es. appendByDescri pt or (oTabl eDescri pt or)

End |f

sSQ = "insert into DATA (NAVME) values (?)"

oSt at enent = oCon. Prepar eSt at ement (sSQL)

Di m x()

Dimi %

x() = Array("zero", "one", "two", "three", "four",
"five", "six", "seven", "eight", "nine", "ten")

For i = LBound(x()) To UBound(x())

oStatenent.SetString(1, x(i))
oSt at enent . Execut eUpdat e()
Next

oSt at enent = oCon. Creat eSt at ement ()

Dim s$
Di m oResul t
For i =0 To 4 Step 4

sSQ = "select LIMT " &i & " 4 * from DATA"
oResult = oSt atenent. executeQuery(sSQL)
Do While oResult.next()
S =5 &"LIMT " &i &" 4 Yields " & oResult.getString(l) & _
" " & oResult.getString(2) & CHR$(10)
Loop
Next
MsgBox s

REM Do not dispose the database context or you will NOT be able to
REM get it back without restarting OpenOfifice. org.
REM Store the associ ated docunent to persist the changes to disk.
oDB. Dat abaseDocunent . st ore()
oCon. cl ose()

End Sub

OpenOffice.org Base 139

Tips and tricks

OpenOffice.org Base 140

15. Connect to a Base document using JDBC

A Base document can connect to an external database or it can create an HSQLDB database that
is stored inside of the Base document. OO0 documents are stored as zip files and Base documents
are no exception. John Ward created a solution in Java that extracts the HSQLDB files from the
Base document (which means zip file) into a temporary directory and then connects to it using
JDBC. All of John's comments and code are available in his Blog.

http://digiassn.blogspot.com/2006/07/java-creating-jdbc-connection-to.html
Listing 85. Access a Base document using JDBC.

import java.sql.*;

import java.util.zip.*;
import java.io.*;

i mport org. hsqgl db.jdbcDriver;
import java.util.*;

public class Test {
public static void main(String[] args) {

jdbcDriver j = new jdbcDriver();
Connection con = null;

Statenment com = null;

ResultSet rec = null;

ZipFile file = null;

ZipEntry ent = null;

Enuneration en = null;

Buf f er edQut put Stream out = nul | ;
InputStreamin = null;

File f = null;

int |len;

List v = new ArrayList();

try

file new Zi pFi |l e("/ hone/ di gi assn/ OODat abase/ enpl oyeeDat abase. odb");

f = File.createTenpFil e("ooTenpDat abase", "tnp");
f.deleteOnExit();

en = file.entries();
whi | e (en. hasMoreEl enents())
{

OpenOffice.org Base 141

http://digiassn.blogspot.com/2006/07/java-creating-jdbc-connection-to.html

Connect to a Base document using JDBC

ent = (ZipEntry)en. nextEl ement();

if (ent.getName().startsWth("database/"))

{
Systemout.println("Extracting File: " + ent.getNane());
byte[] buffer = new byte[1024];
in = file.getlnputStrean(ent);
out = new BufferedQutputStrean(new FileQutputStreanm("/tnp/" +
f.getName() + "." + ent.getNane().substring(9)));
v.add("/tnmp/" +f.getName() + "." + ent.getName().substring(9));
while((len = in.read(buffer)) >= 0)
out.wite(buffer, 0, len);
out.cl ose();
in.close();
}

}

file.close();

con = DriverManager. get Connection("jdbc: hsgldb:file:/tnp/" + f.getNanme(),

" SA" ’) ;

com = con. createStatenent();
rec = comexecuteQuery("select * from\"enpl oyees\"");

while (rec.next())

Systemout.println("Last Name: " + rec.getString("nmenp_last") + "
First Name: " + rec.getString("nmenp_first"));

rec.close();
com cl ose();
con. cl ose();

OpenOffice.org Base 142

Connect to a Base document using JDBC

for (len = 0; len <> v.size(); len++)
(new File((String)v.get(len))).delete();

}
catch (Exception e)
{
e.printStackTrace();
}
}

}

John's code does the following:

- Extract the HSQLDB files to a temp location (which you must change so that this will
work for you)

Create a JDBC connection to the temporary files.
- Extract values from the nm_emp_first and nm_emp last columns.

« Delete the temporary files.

OpenOffice.org Base 143

Appendix A. Stuff | Own

I decided to create a database of stuff that I own. The database has changed over time. I have
added new fields, and there are some that I should probably remove. The end result is sort of
a collection of stuff that works but is not polished. My intention is not to demonstrate a
polished application, but rather, to show a few techniques that worked for me.

A.1. Tables

=l IMAGES
% IMAGEID n B ITEM
1
| TEMID L g TEMID
NAME = DEALER
MODEL
COMMENT 1
MAGE SERIAL ? DEALERID
DATE NAME
CosT n ADDRESS1
DEALERID ADDRESS?2
E CATEGORY]1_/—”[CATEGORYID PHONE
% CATEGORYID MAKE WEB
DESCRIPTION DESCRIPTION COMMENT
COMMENT

Figure 26. Vague schema of stuff I own.

Notice that table names and field names are in upper case; this is safer and avoids problems
with certain types of database back-ends.

A.1.1. Category

I created arbitrary categorizations such as computers, electronics, and tools. It would be nice
to have a hierarchy of categories — allow each category to have a parent. If I stated that wood
working tools had a parent called tools, I would find hand wood working tools when I
searched for tools. Unfortunately, this is notoriously difficult (and inefficient) to code in SQL.
The usual substitute is to use a hierarchical naming convention. Sorry, no solutions on this
today, I simply ignore the problem in my design.

A.1.2. Dealer

The dealer table tells me from whom I purchased an item. Very simple contact information and
a comment field are used.

145

A.1.3. Images

A scanned image of a receipt, or a picture of the item. The Name field contains just the file
name and does not include the path to the image. This is required because there is no other
way to really understand the file type, other than looking at the file extension. As a binary
field, it could contain just about any data.

The Comment field typically contains simple text such as “receipt”, so I know what the image
is.

A.1.4. Item
What was I thinking when I created the Item table?

Description

Make Manufacturer such as Panasonic, BMW, or Wilson Combat.

‘ Model ‘ Model name and number. ‘
Serial Serial number of the unit.

' Date When did I buy it? |
Cost How much did I pay?

‘ DealerID ‘ From whom did I buy it? ‘
Description What is it?

‘ Comment ‘ Anything else such as “I like it” ‘

It turns out that I have not followed my convention for make and model. It is usually just
easier to enter the full make and model into a single field.

I use the description and comment fields for most anything — so perhaps I should have just one
field. Usually, I mention the warranty, so I can just look in the database to see if the item is
still under warranty.

A.2. Forms

The database evolved over time, so forms that I no longer use are still in the DB.

A.2.1. Item Two Tables

I think that I created the Item with two tables form using the wizard with the items table in the
main form, and the images table in a the sub-form.

146

The form contains garbage characters to the right of the first table, this is a bug in either OOo,
or in my video driver.

i St Wi Owin Z00B0SSL. el @ ITEM TWO,_ TABLES {read -only] - DpenDfioe.org Baka: Ferm Design =
Bile EdiL dam oset Fooral Tghle Joos Wedew Hue £
‘E W = [A REIGT
MEMC | sanOEL COET | CESERID CRTEEIRID | FMERE CESCRIP T
12 Seagate 5 L I E q T Seagake 5 S00GE Ha sl Diie
43 Paresoric [VHTREIGGE 02 606 255 1 ¢ Panazcnic IVDMNWCR 1 fonde
A4 Canon VIXE 722522041 0226005 953 1 A Cangn
45 Seagate Ba SO0ZHPW: 053 L0E 159,90 14 1 Fimriware | | WAE, [
45 UTA4170 7 BMLE1E0D: 06 LME 35,097 5 T Hoirelie o2 ed Wal Aty w
E 47 Heath | Zer QR2EME 24.54 5 9 Heath ! Z 270 cagre wpla
|| 43 Bigen 150 160n 1 4 Bagen 19 Tripod wid i fuk
49 Bukk Le5al Q128ME 775,21 1% 11 Tias ared | | bime
AumFiald = o
[ecord BL Tl £] walee [] 4l I B
WESED | ITEMIE | MAME | COMMERT |
2 47 Zanith5ar Recelpt
AL hoF el e
Mecand [T Tl 1 TETeleT T
] mecord [T = as W4k M 5 w | LR i I
; I S Emw T R SR B
Pagel (1 Cdsult =T

Figure 27. Items with two tables form.

The title-bar indicates the database, the table name, and the text (read-only). Read-only
indicates that you can not edit the form in the current mode. You can, however, edit the data
in the form.

Stuff We_Own_20080531.o0db : ITEM_TWO_TABLES (read-only) - OpenOffice.org Base: Form Design

The structure and relationship of the forms is very simple:

= | Form Navigator (x]

Forms
= MainForm
5 MainForm_Grid
= SubForm
£ SubForm_Grid

Figure 28. Form hierarchy.
The MainForm has content type Table, and the contents is ITEMS.

147

The SubForm has type Table, and the contents is IMAGES. Link Master Fields, and Link
Slave Fields are both set to ITEMID, since that is the name in both tables. The stated links are
clearly shown in Figure 26.

A few annoyances exist with this form.
1. Images are not shown, but you know that they are there.

2. You must set the category and dealer based on their numeric ID after manually finding
an appropriate value.

The next form starts to deal with one issue.

A.2.2. Item One Table

The purpose for the item view with one table, was to figure out how to associate each record
to the dealer and category. This form includes the item table in a grid similar to Figure 27.
Below the grid are two list boxes.

D] MODEL I DESCRIPTION [SIN | DATE COST | DEALERID COMMENT [CATID] MAKE
I I 3 3 o L
Category : j
Purchased From : j

Figure 29. Two list boxes.

This report has only one form. The category list box, therefore, is in the form, which is set to
look at the item table. The control has the following general properties of interest:

« Set the Dropdown property to yes.
+ Set Line count to 5 to limit the size.
+ Set Multiselection to No.
The Data tab for the control properites is a bit more interesting.
+ Set the Data field to CATEGORYID (from the item table).
« Set Type of list contents to Sql.

148

+ Use the SQL in Listing 86 for the List content. This loads the list with the data from
the Category table. Although the data is populated from the category table, the control
is associated with a field from the items table.

« Set the bound field to 1.

Listing 86. SQL for the Category list box.
SELECT "DESCRI PTI ON', "CATEGORYI D' FROM " CATEGORY" ORDER BY " DESCRI PTI ON'

As you select different rows in the grid, the values in the drop down list change to represent
the data in the item table for the current record. Also, choosing a new value in the drop down,
sets the associated category ID in the item table.

A.2.3. Item Fields

This form adds the image field, and buttons for adding, changing, and extracting images.

MEMIG [DATE [oezems
MODEL [Heath s Zenith SL-5716-wH
SERIAL
cosT [s2a.54
CEALERID l57 Hoeme Oenot 'l
CATEGDRYID [Homeard Garden =]
MAKE Heath ¢ Zonith SL-57 16-WH
DESCRIFTION 270 degres replacement rmalion sensar
COMMENT
Image 16] R TR
Fila [zenithsersariza
Comment GE R
ok - H-.-. rf‘rvrl‘.&h i —ror s
add image | — T anie cmomz Sayes | GoopS-as
. TR SBATE. 05
Dielete mage [- 5 e
Rzplace Imaga _ﬁ#:
Exitract Image - o S e o5 o2
= i b bt S YEE‘:E o x?‘: %

j,JH[!ﬁJJIIIlllﬂHIUIJJ[IIIIIIILI Illlllii I|

LR e

i '. E.“:“f"?' :.I'-k“" |'>._.;_ "."'r.‘.Ei""’:.'f. s '.-.'h '*,-F_HL" -..'..F
BT i

|m:w5|1 | of 1 o b ™ nf |

[aL of a3 H o4 H o B o = I3 .

Figure 30. Items with individual fields.

149

There are two internal forms, the main form contains the item information. The two drop-
down list boxes are in the main item form, and they work and are configured in the same way
as the Item One Table form. In other words, they perform a help and fill. The very bottom line
contains a navigation bar for the first form.

The buttons to Add, Delete, Replace, and Extract an image are also in the main form.

The second form contains the image related fields. The image form also contains a navigation
bar, which is used to navigate through the images.

A.3. Add an image macro

The Add Image button is associated to the AddImageButton macro. First, variables are
declared, and required libraries are loaded. Notice that an event argument is passed.

Listing 87. Add an image to a form and database.

Sub Addl mageButt on(oEvent)
Di m ol magesFor m
Di m oMai nFor m
Di m nl mage As Long
Di m nl mageNane As Long
Di m sFi | eNane$
Di m sNameOnl y$

REM Use sone nethods fromthe Tools library.

I f NOT d obal Scope. Basi cLi braries.isLibraryLoaded("Tool s") Then
A obal Scope. Basi cLi braries. LoadLi brary("Tool s")

End |f

The button is contained in the main form. The form is, therefore, the button's parent. The
following steps occur: (1) Get the main form, which is the button's parent. (2) Get the
contained Images form, which is contained in the main form.

oMai nForm = oEvent . Sour ce. get Model (). get Parent ()
ol magesFor m = oMai nFor m get ByNane(" | mages")

Ask the image form for the column number of the image field, and the name field.

nl mage = ol magesForm fi ndCol umm("1 MAGE")
nl mageName = ol magesForm fi ndCol urm(" NAMVE")

I want to insert an image into the database, but I can not do this unless the main form, which
contains items, actually has a record. When you use the form to add a new item, the form
moves to the insert row. I do not know how to tell if the cursor is on the insert row, but it
looks like getRow() returns zero when this is the case. The following code checks the main
fields in the form to see if any data has been entered. If no data exists, then the macro exits
with a warning. If data is determined to be present (and we believe that we are on the “insert”
row), then we call insertRow() to add the current data to the database.

150

I f oMai nForm get Row() = 0 Then
If | sEnpty(oMai nForm get ByNanme("fnt|1 TEM D"). get CurrentVal ue()) AND _
| sEnpt y(oMai nFor m get ByNane(" dat DATE"). get Current Val ue()) AND _
Len(oMai nFor m get ByName("t xt COMVENT"). get Current Val ue()) = 0 AND _
Len(oMai nFor m get ByName ("t xt DESCRI PTI ON") . get Current Val ue()) = 0 AND

Len(oMai nFor m get ByName("t xt SERI AL"). get CurrentVal ue()) = 0 AND _
Len(oMai nFor m get ByName ("t xt MODEL"). get Current Val ue()) = 0 Then
MsgBox (" The current row contains no data")
Exit Sub
End If
oMai nForm i nsert Row()
End |f

Although it may make sense to check for updated data and then update the row, I do not.

Next, use the ChooseAFile macro (see Listing 58), to select the file to input. The file without
the pass is stored in sNameOnly, and it will be saved into the filename field.

sFi | eNane = ChooseAFi | e$(G aphicFilters(), True)
if Len(sFileNane) < 1 Then
Exit Sub
End |f
sNaneOnl y$ = Fi | eNanmeout of Pat h(sFi | eNanme, "/")

If the images form is on a current record, call updateRow() just in case a field has been
updated in the form. In other words, save the data in case there is data to save. If I new how
to check if the data was changed, I would.

If ol magesForm i sAfterLast() OR ol negesForm i sBeforeFirst() Then
Rem No need to save!

El se
Rem Save the current data
ol magesFor m updat eRow()

End If

Open the binary file.
Dims$
Di m oSi npl eFi | eAccess
Di m oSt ream
s$ = "com sun. star. uch. Si npl eFi | eAccess”

oSi npl eFi | eAccess = createUnoService(s$)
oStream = oSi npl eFi | eAccess. openFi | eRead(sFi | eNane)

Finally, use moveTolnsertRow() to insert a new image record, update the image column using
the stream to the image, update the file name without path for the image name column, and
then tell the form to insert the row.

ol magesFor m noveTol nsert Row()

ol magesFor m updat eBi naryStream(nl mrage, oStream oStream getLength())

ol magesFor m updat eSt ri ng(nl mageNane, sNaneOnly)
ol magesFor m i nsert Row()

151

End Sub

A.4. Delete an image macro

The Delete Image button is associated to the DeletelmageButton macro. The first portion is
exactly like adding an image. Variables are declared, required libraries are loaded, and
references to forms and columns are obtained.

Listing 88. Delete an image.

Sub Del et el mageButt on(oEvent)
m ol magesFor m

m oMai nForm

m nl mage As Long

m nl mageNane As Long

m sFi | eName$

m sNameOnl y$

00000

REM Use sone met hods from the Tools library.

If NOT d obal Scope. Basi cLi braries.isLibraryLoaded("Tool s") Then
G obal Scope. Basi cLi brari es. LoadLi brary("Tool s")

End If

REM | nspect oEvent. Source

oMai nForm = oEvent . Sour ce. get Model (). get Parent ()
ol magesFor m = oMai nFor m get ByNane(" | mages")

nl mage = ol magesForm fi ndCol umm("1 MAGE")

nl mageName = ol magesForm fi ndCol urm(" NAMVE")

If there does not appear to be a record to delete, then exit. Otherwise, ask if the image should
be deleted.

If ol nagesForm i sAfterLast() OR ol nagesFormisBeforeFirst() Then
Exit Sub

End If

Dimi %

i = MsgBox ("Delete current inmage?", 4, "Delete |Inmage")
If i <> 6 Then

Exit Sub
End |f

Del ete the current row, and then nove to the next or previous record. Finally,
reload the form

ol magesFor m del et eRow()

I f ol magesForm i sLast () Then
ol magesForm previ ous()

El sel f NOT ol nagesForm next () Then
ol magesForm previ ous()

End |f

ol magesForm rel oad()

152

End Sub

A.5. Replace an image macro

The Replace Image button is associated to the ReplacelmageButton macro. The first portion
is exactly like deleting an image. Variables are declared, required libraries are loaded,
references to forms and columns are obtained, and if it looks like there is no image to delete,
then exit the macro.

Listing 89. Replace an image.

Sub Repl acel mageButt on(oEvent)
Di m ol magesFor m
Di m oMai nFor m
Di m nl mage As Long
Di m nl mageNane As Long
Di m sFi | eNane$
Di m sNaneOnl y$

REM Use sone net hods fromthe Tools library.

I f NOT d obal Scope. Basi cLi braries.isLibraryLoaded("Tool s") Then
G obal Scope. Basi cLi brari es. LoadLi brary("Tool s")

End |f

REM | nspect oEvent. Source

oMai nForm = oEvent . Sour ce. get Model (). get Parent ()
ol mmgesFor m = oMai nFor m get ByNane(" | mages")

nl mage = ol magesForm fi ndCol um("1 MAGE")

nl mageName = ol magesForm fi ndCol urm(" NAMVE")

If ol magesForm i sAfterLast() OR ol nagesForm i sBeforeFirst() Then
Exit Sub
End |f

Select a file that will replace the existing image. If no image is chosen, then exit the macro. If
a file is selected, open a stream to the file, update the image, update the image name, and then
update the row. The only difference between updating an image and adding a new image (for

these steps), is that the row is updated rather than inserted.

sFil eName = ChooseAFi | e$(G aphicFilters(), True)
if Len(sFileNane) < 1 Then
Exit Sub
End |f
sNameOnl y$ = Fi | eNaneout of Pat h(sFi | eNane, "/")

Dims$
Di m oSi npl eFi | eAccess

Di m oStream

s$ = "com sun. star. uch. Si npl eFi | eAccess”

153

oSi npl eFi | eAccess = createUnoService(s$)
oStream = oSi npl eFi | eAccess. openFi | eRead(sFi | eNane)

ol magesFor m updat eBi naryStream(nl nage, oStream oStream getlLength())
ol magesFor m updat eSt ri ng(nl mageNane, sNaneOnly)
ol magesFor m updat eRow()

End Sub

A.6. Extract an image macro

The Extract Image button is associated to the ExtractimageButton macro. The first portion is
exactly like deleting or updating an image. Variables are declared, required libraries are
loaded, references to forms and columns are obtained, and if it looks like there is no image to
delete, then exit the macro.

Listing 90. Replace an image.

Sub Extractl mageButton(oEvent)
m ol magesFor m

m oMai nForm

m nl mage As Long

m nl mageNane As Long

m sFi | eNanme$

m sNameOnl y$

vBvBvBvRvav]

REM Use sone met hods from the Tools library.

I f NOT d obal Scope. Basi cLibraries.isLibraryLoaded("Tools") Then
G obal Scope. Basi cLi brari es. LoadLi brary("Tool s")

End |f

REM | nspect oEvent. Source

oMai nForm = oEvent . Sour ce. get Model (). get Parent ()
ol magesFor m = oMai nFor m get ByNane(" | mages")

nl mage = ol magesForm fi ndCol umm("1 MAGE")

nl mageName = ol magesForm fi ndCol urm(" NAMVE")

If ol nagesForm i sAfterLast() OR ol nagesFormisBeforeFirst() Then
Exit Sub
End If

The image name is obtained from the database. The name was saved so that the file name and,
perhaps more importantly, so that the file extension would be known. If there appears to be no
path information in the file name, then use the working directory.
sFi |l eName = ol magesFor m get Stri ng(nl mageNane)
If InStr(sFileName, "/") = 0 AND InStr(sFileNane, "\") = 0 Then
REM Does not contain any path conponents

sFileName = GetWorkDir() & "/" & sFil eNane
End |f

154

Select a target file name to save the file. The original name is used as the default value. If no
file is selected, then exit the macro.

sFi |l eNane = ChooseAFi | e$(G aphicFilters(), False, sFileNane)
if Len(sFileNane) < 1 Then

Exit Sub
End |f

Obtain a stream from the database, and stream the file to disk.

Dims$
Di m oSi npl eFi | eAccess
Di m oSt ream

s$ = "com sun. star. uch. Si npl eFi | eAccess”

oSi npl eFi | eAccess = createUnoService(s$)

oStream = ol magesFor m get Bi narySt r eam(nl nage)

oSi npl eFi | eAccess. writeFil e(sFil eNane, oStream)
End Sub

A.7. Clean the database

I copied my original database and I wanted to place a sample on my web site. First, however, I
wanted to make certain that deleted records were really removed.

Use Tools > SQL to open the SQL window. Issue the command “CHECKPOINT DEFRAG”
and then save and close the database file.

A.8. Things to do

There are so many things to do, I just do not have the time.

Add the ability to update the dealer and category using a form. This should be callable from
the main form. For now, I manually edit the table — yuck!

155

156

	Information Page
	Copyright
	Authors
	Feedback
	Acknowledgments

	Table of Contents
	 1. Introduction
	 1.1. Introductory comments
	 1.2. Document organization and introduction
	 1.3. Prepare for big changes in OOo 3.0

	 2. Storing images (binary data) in Base
	 2.1. Create the initial Base document
	 2.1.1. Using the GUI
	 2.1.2. Using a macro
	 2.1.3. Using a macro to open the wizard

	 2.2. Create the table
	 2.2.1. Using the GUI
	 2.2.2. Using a macro
	 2.2.3. Using SQL statements to modify tables
	 2.2.4. Refresh the tables
	 2.2.5. Creating and deleting tables using SQL
	 2.2.6. Increase a field's length

	 2.3. Create a form
	 2.3.1. Using the GUI
	 2.3.2. Using a macro

	 2.4. Open a form using a macro
	 2.5. Accessing the binary data
	 2.5.1. Adding binary data
	 2.5.2. Extracting binary data

	 3. One-To-Many relationships
	 3.1. Create the tables
	 3.1.1. Create the DEALER table
	 3.1.2. Create the ITEM table

	 3.2. Define the data relationships
	 3.3. Add data to the DEALER and ITEM tables

	 4. Forms
	 4.1. The internal object model
	 4.1.1. A control's shape is in the draw page
	 4.1.2. A draw page contains forms
	 4.1.3. A control's data model is in a form
	 4.1.4. A control's view model is in the controller
	 4.1.5. Enabling and setting controls visible – an example
	 4.1.6. Finding a control from an event – an example
	 4.1.7. Control connected to a database
	 4.1.8. Control model summary

	 4.2. Database Forms act like a result set
	 4.2.1. Duplicate record macro

	 4.3. Show one item and the corresponding dealer
	 4.4. Use a combo box with the dealer id
	 4.5. Use a list box with the dealer name
	 4.6. Relations in a single table
	 4.6.1. Solution
	 4.6.2. Solution characteristics

	 4.7. Use a “help and fill” button

	 5. Many-to-many relationships
	 6. Database fields
	 6.1. Storing numbers
	 6.1.1. Integer numbers
	 6.1.2. Floating point numbers
	 6.1.3. NUMERIC and DECIMAL types

	 6.2. Bit and Boolean Types
	 6.3. Date and time
	 6.4. Text data
	 6.5. Binary data
	 6.6. Other data type
	 6.7. Database sequences and auto-value fields

	 7. A few easy database definitions
	 7.1. Schema

	 8. Database connections
	 8.1. Obtain a database context
	 8.1.1. Registered data sources
	 8.1.2. Unregistering a data source
	 8.1.3. Registering a data source

	 8.2. Connect to a database
	 8.3. Connect using an interaction handler
	 8.4. Connections
	 8.4.1. Extended SDB connections
	 8.4.2. Meta-data
	 8.4.3. Inspecting the meta-data
	 8.4.4. GetBestRowIdentifier
	 8.4.5. GetColumnPrivileges
	 8.4.6. GetColumns
	 8.4.7. GetExportedKeys
	 8.4.8. GetIndexInfo
	 8.4.9. GetPrimaryKeys
	 8.4.10. GetTablePrivileges
	 8.4.11. GetTables
	 8.4.12. GetTypeInfo()
	 8.4.13. GetUDTS
	 8.4.14. GetVersionColumns

	 8.5. Connections
	 8.6. Connections without a data source
	 8.6.1. Delimited text files
	 8.6.2. Fixed width text files
	 8.6.3. Help, I still can not import my CSV file
	 8.6.4. Address books
	 8.6.5. MySQL using JDBC
	 8.6.6. Paradox using ODBC
	 8.6.7. Conclusion

	 9. Connecting to MySQL using JDBC
	 10. Mailmerge
	 11. Copying an entire database
	 12. General utility macros
	 12.1. Choose a directory
	 12.2. Get a document's directory
	 12.3. Choose a file
	 12.4. Finding a (loaded) OOo document
	 12.5. Append to an array
	 12.6. Compare data in an array
	 12.7. Create a property
	 12.8. Create a Point and a Size
	 12.9. Append a data array to a Calc document
	 12.10. Dynamically call object methods
	 12.11. Display numeric constants as meaningful text
	 12.12. Select from a list in a list box

	 13. Database utility macros
	 13.1. Quoting table and field names
	 13.2. Convert between an UNO Date and a Basic Date
	 13.3. Convert a result set to an array of data
	 13.4. Create and populate a dialog from a result set

	 14. Tips and tricks
	 14.1. Limit the number of returned records

	 15. Connect to a Base document using JDBC
	Appendix A. Stuff I Own
	 A.1. Tables
	 A.1.1. Category
	 A.1.2. Dealer
	 A.1.3. Images
	 A.1.4. Item

	 A.2. Forms
	 A.2.1. Item Two Tables
	 A.2.2. Item One Table
	 A.2.3. Item Fields

	 A.3. Add an image macro
	 A.4. Delete an image macro
	 A.5. Replace an image macro
	 A.6. Extract an image macro
	 A.7. Clean the database
	 A.8. Things to do

	PushButton:
	PushButtonCBinTables:
	PushButtonUseSQLToCreate:
	PushButtonCreateFOrm:
	PushButtonChooseOpenForm:
	PushButtonAddBinData:
	PushButtonExtBinFile:
	PushButtonRegSources:
	PushButtonHSQLMetaData:
	PushButtonMetaData:
	PushButtonSupDBDriver:
	PushButtonShowArgs:
	PushButtonReadCSV:
	PushButtonFixedRead:
	PushButtonOutLook:
	PushButtonWorkDir:
	PushButtonWorkDir1:
	PushButtonDocDir:
	PushButton1:
	PushButtonUseSelLimit:

