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  achine learning offers important new      
                       capabilities for solving today’s com-
                       plex problems, but it’s not a panacea. 
                       To get beyond the hype, engineers and 
scientists must discern how and where machine 
learning tools are the best option — and where they 
are not.   

Once the province of experimentation, machine 
learning is hitting its stride now that computational 
modeling capacity can handle the massive amounts 
of data and computing power available. We see the 
application of machine learning across varied 
industries including aerospace, construction, defense, 
transportation, energy, semiconductors, pharma-
ceuticals, materials, climate modeling, seismology, 
and more.

The vast volumes of data and powerful computational 
processes now available open new avenues for 
exploration and analysis. This has led some organiza-
tions to take the leap too quickly, indiscriminately 
using machine learning in applications where it may 
not be efficient or even appropriate. 

Considering engineering and the physical sciences, 
the competitive advantage of machine learning will 
come through weighing the different tools available 
and selecting the best ones for each particular job to 
be done. You need to identify precisely where and 
how machine learning will create the biggest “lift.” 
For example, we are familiar with the gaps in tradi-
tional model-based computation and simulation. 
Machine learning can be applied in combination with 
more traditional methods to close some of these 
gaps.

Machine learning gives us the ability to fuse theo-
ry-based models with data. According to Youssef 
Marzouk, professor of aeronautics and astronautics 
at MIT and co-director of the MIT Center for Computa-
tional Science and Engineering (CCSE) in the new MIT 
Schwarzman College of Computing, “There are many 
situations where theory-based models are not 
enough. They might be missing some crucial but 
complicated interactions. They might be too expen-
sive to simulate. They might not capture the phenom-
ena that we're really interested in. We have powerful 
ways of building models from data and making 
predictions that we simply could not make before.”  

Machine learning provides a powerful set of tools 
that enable engineers and scientists to use data to 
solve meaningful and complex problems, make 
predictions, and optimize the systems and products 
they discover and design. The latest developments 
in data-driven modeling, applied in conjunction with 
first-principles modeling techniques, can deliver 
more rapid results and improve the reliability of 
predictions.

And yet one of the biggest hurdles with machine 
learning is seeing opportunities to solve problems 
with the technology in the first place.
 
In this paper, we describe different applications of 
machine learning in engineering and scientific 
problem-solving. We aim to demystify how machine 
learning can help solve some difficult problems and 
describe the risks and costs of using it in your work. 

1.

DEMYSTIFYING MACHINE LEARNING FOR 
ENGINEERING AND PHYSICAL SCIENCES

MACHINE LEARNING BUILDS ON THE SAME 
MATH AS PHYSICS-BASED MODELING
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Machine learning is enabling exciting progress in 
the engineering and scientific fields. For example, 
machine learning is helping:

2.

WHAT’S POSSIBLE?

Machine learning is bridging the computational 
paradigms and building on hundreds of years of 
modeling history and progress. This heritage means 
engineers less familiar with modern data science or 
computational methods can still gain advantage in 
applying machine learning to their problem-solving 
when appropriate. The machine learning that engi-
neers and scientists will find most useful layers on 
top of first-principles modeling, simulation, and 
prediction tools for greater power and results. 

MACHINE LEARNING THROUGH A PHYSICS-
INFORMED LENS

Improve the aerodynamics of aircraft. 
The aerospace industry has used computa-
tional fluid dynamics (CFD) for decades. 
While the models are highly reliable and 
sophisticated, the modeling frameworks 
have acknowledged gaps or limitations. 
They might dismiss some key physics or the 
cost of sufficient computational resolution 
may be prohibitive. Machine learning can 
take libraries of data from wind tunnel test-
ing and other experiments and fuse them 
into fluid simulations to come up with better 
predictive models for aerospace design.

Predict battery life.
Predicting the useful life of a battery is a 
notoriously difficult problem because of the 
variability of battery lifetime even off the 
same manufacturing line. After a machine 
learning model was trained with a few 
hundred million data points of batteries 
charging and discharging, the algorithm was 
able to predict the useful life of lithium-ion 
batteries before their capacities started to 
wane. This research has reduced the extent 
of battery testing—one of the most time-
consuming and expensive steps of battery 
design—by an order of magnitude.

Develop new catalysts for chemical 
reactions.
In materials science, if you are trying to 
design a new catalyst, you may not have 
data relevant to the new chemical process
you care about. Computational simulation
can work in concert with machine learning 
tools by creating a database to make better 
predictions around how molecules will re-
spond to catalysts even before physical 
experimentation. 
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3.

Before the advent of practical computing from the 
middle of the 20th century, engineers and scientists 
started to apply first-principles physical laws built 
from observation (called here the first paradigm) and

theory-based models (the second paradigm) to 
describe the physical world with a computer. 
Eventually, as computers became more powerful 
and accessible in the third paradigm, computational 
modeling and simulation were applied to theory-
based models providing new levels of prediction. This 
approach has been an essential tool that underpins 
everything from the design of new airplanes to the 
optimization of manufacturing processes.

We now talk about a fourth paradigm, which yields 
extraordinary capabilities at a mere fraction of the 
cost. This computational transformation fuses theory-
based models with data using high-performance 
computing, huge datasets, and novel, powerful 
algorithms including machine learning. We’ve super-
charged the numerical methods and optimizations in 
the third paradigm to form the backbone of modern 
engineering and scientific problem-solving.

F IRST  PARADIGM :

Experimentation 

SECOND PARADIGM :

THEORY-BASED MODELS

THIRD PARADIGM :  
MODEL-BASED

COMPUTATION AND S IMULATION 

FOURTH PARADIGM :  
FUSION OF  DATA-DRIVEN AND
FIRST-PRINCIPLES  MODELING

COMPUTATIONAL SCIENCE + ENGINEERING PARADIGMS

PRE-18TH CENTURY MID-20TH CENTURY TODAY
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4.

Big data’s unwieldiness, inhomogeneity, and nonstop 
growth make it increasingly difficult to manage. 
Machine learning can be harnessed in ways to 
respond to burgeoning data by figuring out the rules 
to follow and identifying what’s most important and 
what’s just fluff.

WHERE WILL MACHINE LEARNING HAVE 
THE BIGGEST IMPACT ON ENGINEERING 
AND SCIENCE?

Engineers and scientists aim to use machine learning to:

Accelerate processing and increase efficiency.
Once you choose a model, machine learning can 
use it to learn the patterns in your data and 
then further tune and refine the model to more 
quickly predict outcomes, especially while 
inputting new conditions and observations.

Quantify and manage risk.
Machine learning can be used to model the 
probability of different outcomes in a process 
that cannot easily be predicted due to random-
ness or noise. This is especially invaluable for 
situations where reliability and safety are 
paramount.

Compensate for missing data.
Accurate learning, inference, and prediction are 
severely limited in the presence of missing data. 
Models trained by machine learning improve 
with more relevant data. Yet as long as it’s used 
correctly, machine learning can help synthesize 
missing data that round out incomplete 
datasets. 

Make more accurate predictions or conclusions 
from your data.
By tuning the settings of how your machine 
learning model’s parameters will be updated 
and learned during training you can streamline 
your data-to-prediction pipeline. Building better 

MACHINE LEARNING SOLVES COMMON 
CHALLENGES

models of your data will also improve the 
accuracy of subsequent predictions.

Solve complex classification and prediction 
problems. 
Predicting how an organism’s genome will be 
expressed or what the climate will be like in 
fifty years are examples of highly complex 
problems. Many modern machine learning 
problems take thousands or even millions (or 
far more) of data samples across many 
dimensions to build expressive and powerful 
predictors, often pushing far beyond traditional 
statistical methods.

Create new designs. 
There is often a disconnect between what 
designers envision and how products are made. 
It’s costly and time-consuming to simulate every 
variation of a long list of design variables. 
Machine learning can take the input of key 
variables to generate good options and help 
designers identify which best fits their 
requirements.

Increase yields.
Manufacturers aim to overcome inconsistency 
in equipment performance and predict main-
tenance by applying machine learning to flag 
defects and quality issues before products ship 
to customers, improve efficiency on the produc-
tion line, and increase yields by optimizing use 
of the manufacturing resources.

1.

2.

3.

4.

5.

6.

7.

“Rather than rely on trial and error, 
machine learning is a powerful tool to 
accelerate the discovery process and 
give us shortcuts to solving design 
problems and finding design rules.”

 – MIT xPRO course material from Heather J. Kulik, 
   Associate Professor of Chemical Engineering, MIT
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How are engineers and scientists gaining advantage with these tools? Here are just a few specific applications 
for machine learning we see across the engineering and the physical sciences. 

APPLICATIONS OF MACHINE LEARNING IN INDUSTRY

Understand the behavior and 
aerodynamic properties of 
airfoils in order to make designs 
with reduced noise, which is 
critically important for both 
efficiency and reduced environ-
mental impact.

AEROSPACE

Understand the complex relation-
ship between a powder’s metal-
lurgical parameters, the printing 
process, and the microstructure 
and mechanical properties of 
additive manufacturing parts to 
make impact-resistant materials.

MATERIALS SCIENCE

Lengthen the remaining useful 
life of equipment through 
predictive maintenance of 
machinery, maximizing asset 
lifetime, operational efficiency, 
or uptime.

MECHANICAL ENGINEERING

Reconstruct seismic data from 
under-sampled or missing traces. 
Enable intelligent interpolation 
between data sets with similar 
geomorphological structures, 
which can significantly reduce 
costs in engineering applications. 

GEOPHYSICS + SEISMOLOGY

Capture essential flow mecha-
nisms at a fraction of the cost 
through new avenues for dimen-
sionality reduction and 
reduced-order modeling by 
providing a concise framework 
that complements and extends 
existing CFD methodologies.

FLUID MECHANICS

Predict how formations will react 
to certain drilling techniques to 
pinpoint the best route through 
a rock formation and dig virtually 
even before drilling equipment 
arrives onsite.

OIL AND GAS EXPLORATION

Determine the changing behavior 
of extreme weather such as the 
frequency and ferocity of tropical 
storms, the intensity and geome-
try of atmospheric currents, and 
their relationship with fluctuat-
ing ocean temperatures. 

CLIMATE SCIENCE

Use gene expression data to 
classify patients in different 
clinical groups and to identify 
new disease groups, while 
genetic code allows prediction of 
the protein secondary structure.

BIOMEDICINE

Address complex problems such 
as river flow forecasting, model-
ing evaporation, modeling 
compressive strength of 
concrete, and groundwater level 
forecasting. 

CIVIL ENGINEERING
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6.

THE PAYOFF OF MACHINE LEARNING

Applying machine learning most typically yields 
financial impact by reducing risk, increasing speed 
to delivery, and/or decreasing costs. 
 
For example, a top European manufacturer of chemi-
cals set out to improve production process yield. They 
used machine learning techniques to examine sensor 
data for features including carbon dioxide flow, 
coolant pressures, quantities, and temperatures, and 
compared these features to determine which was 
most important according to their model. Carbon 
dioxide flow rates proved to be the most impactful 
factor. With a moderate change in parameters, the 
waste of raw materials was lowered by 20%, energy 
costs decreased by 15%, and process yield was 
considerably improved.

Beyond cost savings and increased yields, processing 
and analyzing data amassed through machine 
learning often reveal previously unseen behaviors 
which, in turn, may lead to new opportunities for 
improvement.

Machine learning improves product 
quality up to 35% in discrete 
manufacturing industries

– Deloitte, 2017

One of the key considerations when choosing a machine learning model is to make a series of choices between 
trade-offs. The right answers for these problems depend on your priorities as well as the nature of the problem 
or process being studied. Here are a set of questions that will help you explore and weigh various approaches. 

UNDERSTANDING THE LIMITATIONS AND TRADEOFFS

QUESTIONS ABOUT THE DATA

SOME CONSIDERATIONS WHEN APPLYING MACHINE LEARNING

• How much data do we have?
• How diverse is that data?
• Do you have distinct features in the data set?
• How repeatable, reliable, or deterministic is it?
• How much does it cost to obtain that data in terms
  of time or human effort?
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How do you weigh the tradeoffs and identify the 
optimal approaches? Learning the capabilities and 
limits of various models and approaches is a good 
start. It will deepen your understanding of how regu-
larization methods can be used to help your models 
provide a better predictive fit. 

 

Most often, engineers and scientists will take a hybrid 
approach that includes physics-based modeling and 
machine learning. 
 
Physics-based modeling helps whittle down the 
computational complexity of training your model. 
Since training tends to be one of the more expensive 
parts of applying machine learning, an understanding 
of physics-based modeling can save time and money.
 
For example, finite element method (FEM) is common-
ly used to solve engineering and mathematical 
physics problems. Physics-based machine learning 
can increase the accuracy of predictions and reduce 
the cost of training by combining training data from 
conventional FEM simulations with data from experi-
ments and other variables.

 

IT’S USUALLY NOT A SIMPLE YES OR NO

Feature engineering is a critical consideration within 
the machine learning process. A feature is a transfor-

DEFINING THE FEATURE SET IS A CRUCIAL PART 
OF THE PROCESS

QUESTIONS WHEN CHOOSING
THE MODEL

• How interpretable do you want the model to be?
• Do you have enough data to train the model 
  appropriately?
• How much expert knowledge do you have in model 
  training?
• Do you need a measure of model uncertainty?
• Is the model overdetermined or underdetermined?

mation of the raw data in a way that is useful for the 
modeling task. In machine learning, features might be 
very abstract, made up of a set of numbers that 
combine many different quantities. Setting up the 
problem requires selecting the most important 
features and knowing their contribution to the end 
result.

For engineers and scientists, context is crucial for AI 
and machine learning to achieve the desired results. 
Context determines the techniques that are better or 
worse and the level of confidence that's acceptable or 
unacceptable in a given situation. This is where the 
domain expertise they bring can make machine 
learning most powerful. 

“You don’t have to become a machine 
learning expert to apply these new 
tools effectively. Engineers and
scientists who more fully understand 
where machine learning can help – 
and where it can’t – can achieve real 
gains from these tools.”

– Youssef Marzouk, Professor of Aeronautics and 
  Astronautics, MIT, and Co-Director, MIT Center for 
  Computational Science and Engineering
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You can only use machine learning with huge data sets.

All data is useful and more is better.

Machine learning is only for data scientists.

Machine learning is not transparent enough. 
We don’t want a “black box.”

You have to find that one perfect model.

Finding machine learning talent is tough.

8.

“Machine learning can also help you work back from 
the results you have, so you can identify the features 
that are most important. Using machine learning to 
solve these inverse problems is a powerful tool, and 
not one that many are fully accessing,” according to 
Marzouk.

MACHINE LEARNING CAN WORK FOR INVERSE 
PROBLEMS, TOO

DEBUNKING PRECONCEPTIONS ABOUT MACHINE LEARNING 

Machine learning can work for inverse problems as 
well, when you are estimating the parameters of your 
problem. You can use machine learning to derive the 
parameters from the data you have and better 
understand your assumptions from the data you 
have.

P R E C O N C E P T I O N S

Machine learning can often be applied to help round 
out missing data.

Not all data are relevant. It's important to consider the 
risk of overfitting the model.

A lot of machine learning is based on principles and 
simple mathematical techniques that many engineers 
and scientists already know.

There’s a lot of research in improving transparency. 
Just because it’s not transparent doesn’t mean it’s 
not valuable.

It’s usually a combination of approaches that works 
best. Knowing how to assess the accuracy of models 
will always be helpful.

Top engineers and scientists are already looking to 
learn machine learning techniques in the context of 
their disciplines.

R E A L I T Y

REFINING YOUR APPROACH TO MACHINE 
LEARNING

Machine learning is the area of computational science 
that offers new ways to tackle real-world engineering 
and scientific problems.

When engineers and scientists develop a deeper 
understanding of machine learning methods, they 

can apply machine learning in a more judicious way. 
They can more quickly assess where machine learning 
can help accelerate their processes and where other 
modeling methods remain a better option.

According to Marzouk, “Adoption is growing fast but 
what’s happening is still a lot of ad hoc experimenta-
tion. Many industries are somewhere between the 
initial discovery phase and the phase where they 

ALL MATERIALS ©2020 MASSACHUSETTS INSTITUTE OF TECHNOLOGY



begin to encounter limitations. You don’t have to 
become a machine learning expert to apply these 
new tools effectively. Engineers who more fully 
understand where machine learning can help – and 
where it can’t – can achieve real gains from these 
tools, whatever their industry.”

We encourage leaders in engineering and physical 
sciences to help their teams develop a deeper under-
standing of the capabilities of machine learning. By 
applying these new tools thoughtfully to create 
specific models in their respective disciplines, they 
can help make better predictions that mitigate risk 
and catapult their work ahead.

600 Technology Square, 2nd floor
Cambridge, Massachusetts 02139

xpro.mit.edu
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