
Distributed Development2.1

Nobody writes software entirely in-house anymore. Outside the world of
embedded systems, almost everyone relies upon libraries and frameworks
written by someone else. By using them, it is possible to concentrate on the
actual logic of the application while reusing the infrastructure, frameworks,
and libraries written and provided by others. Doing so shortens the time
needed to develop software.

The rise of open-source software over the past decade makes library reuse
doubly compelling. For many kinds of programs there are existing solutions
for various problems, and those solutions are available at zero monetary cost.
The set of open-source offerings starts with UNIX kernels, base C libraries,
command-line utilities, and continues over Web servers and Web browsers
to Java utilities such as Ant, Tomcat, JUnit, Javacc—ad infinitum. Writing
modern software is as much a process of assembly as it is creation. Picking
available pieces and composing them together is a large part of modern appli-
cation development. Instead of writing everything from scratch, people who
need an HTTP server for their application select Apache or Tomcat. Those
who need a database could choose MySQL or PostgreSQL. The application
glues these pieces together and adds its own logic. The result is a fully function-
al, performant application developed in remarkably little time.

9

C HAPTE R T WO

The Benefits of Modular
Programming

Copyright Sun Microsystems, 2007

Consider how Linux distributions work. RedHat’s Fedora, Mandriva,
SUSE, and Debian all contain largely the same applications, written by the
same people. The distributor simply packages them and provides the “glue”
to install them together. Distribution vendors often write only central manage-
ment and installation software and provide some quality assurance to make
sure all the selected components work well together. This process works well
enough that Linux has grown considerably in popularity. As evidence of
meaningfulness of such a model, consider that Mac OS X is in fact a FreeBSD
UNIX with a bunch of add-ons from Apple. The key thing to note is that the
software in question is created through a distributed development model. The
developers and distributors of the software may not even know or communi-
cate with each other, and are usually not even in the same place geographically.

Such distributed development has specific characteristics. The first thing
to notice is that the source code for the application (or operating system) is
no longer under a developer’s complete control. It is spread all over the world.
Building such software is unquestionably different from building an applica-
tion whose source code is entirely in your in-house repository.

The other thing to realize is that no one fully controls the schedule of the
whole product. Not only the source code, but also the developers are spread
all over the world and are working on their own schedules. Such a situation
is not actually as unusual or dangerous as it sounds. Anyone who tried to
schedule a project with a team of more than fifty people knows that the idea
of ever having “full control” over the process is at best a comforting illusion.
You always have to be prepared to drop a feature or release an older version
of one or another component. The same model works with distributed
development.

The basic right everyone has is the freedom to use a newer or older version
of a library.

The ability to use external libraries and compose applications out of them
results in an ability to create more complex software with less time and work.
The trade-off is the need to manage those libraries and ensure their compati-
bility. That is not a simple task. But there is no other practical, cost-efficient
way when one wants to assemble systems of today’s complexity.

Chapter 2 The Benefits of Modular Programming10

Modular Applications2.2

The technological solution to the challenges of distributed development is
modularization. A modular application, in contrast to one monolithic chunk
of tightly-coupled code in which every unit may interface directly with any
other, is composed of smaller, separated chunks of code that are well isolated.
Those chunks can then be developed by separate teams with their own life
cycles and their own schedules. The results can then be assembled together by
a separate entity—the distributor.

It has long been possible to put a bunch of libraries on the Java classpath
and run an application. The NetBeans Platform takes the management of li-
braries further—by actively taking part in the loading of libraries and enforcing
that the minimum version of a library that another library uses is adequate.
Such libraries are what we call modules. The NetBeans module system is a
runtime container that ensures the integrity of the system at runtime.

Versioning2.2.1

Breaking an application into distinct libraries creates a new challenge—one
needs to ensure that those independent parts really work together. There are
many possible ways to do so. The most popular is versioning. Each piece of a
modular application has a version number—usually a set of numbers in Dewey
decimal format, such as 1.34.8. When a new version is released, it has an
increased version number, for example 1.34.10, 1.35.1, or 2.0. If you think
about it, the idea that an incremented version number can encode the differ-
ence between two versions of a complex piece of software is patently absurd.
But it is simple to explain, and it works well enough that the practice is
popular.

The other parts of a modular system can then declare their external depen-
dencies. Most components will have some external requirements. For example,
a component in a modular system might rely on an XML parser being present,
or on some database driver being installed, or on a text editor or Web browser
being present. For each of these, another module can request a specific mini-
mum version of their interfaces. Even if the dependencies on external libraries
are minimized, every program in Java depends on a version of Java itself. A
fully modular system should make it possible to specify it. A module of func-

112.2 Modular Applications

tionality could require JDK >= 1.5, xmlparser >= 3.0, and webbrowser
>= 1.5. At runtime, the code responsible for starting the application must
ensure that the requested dependencies are satisfied—that the XML parser is
available in a version 3.0 or newer, the Web browser is in version 1.5 or higher,
and so forth. The NetBeans module system does this.

Using such dependency schemas to maintain external dependencies be-
tween components in a modular system can work only if certain rules are
obeyed. The first rule is that if a new version is released, all contracts that
worked in the previous version will work with the new one as well. This is
easier to say than to achieve—otherwise nobody would need a quality assur-
ance department. Rule number two is that components of the system need to
accurately say what they need. When a module’s set of dependencies changes,
it needs to say so, so that the system can accurately determine if they are
satisfied. So if a piece of a modular system starts to rely on new functionality,
such as an HTML editor, it needs to add a new dependency (e.g. htmleditor
>= 1.0). And if you start to use a new interface to the htmleditor compo-
nent—one which was only added in version 1.7 of htmleditor— the dependen-
cy needs to be updated to require htmleditor >= 1.7. The NetBeans
module system makes this second part relatively simple in practice, since a
module cannot see any classes it does not declare a dependency on, so unless
the module’s list of dependencies is updated, it will not compile.

Secondary Versioning Information2.2.2

The versioning scheme just discussed refers to the specification version of a li-
brary. It describes a specific snapshot of the public APIs in that library.

It is a fact of life that some versions of libraries can contain bugs which
must be worked around. For this reason, a secondary version indentifier—an
implementation version—should be associated with a component. In contrast
to the specification version, this is usually a string like “Build20050611” which
can only be tested for equality. This provides a secondary identifier that can
be used to determine if a specific piece of code to work around a given bug is
needed. The fact that a bug is present in (specification) version 3.1 does not
mean it will also be in version 3.2 or even in a different build of 3.1. So, for
reasons of bugfixing or special treatment of certain versions, associating an
implementation version with a library can be useful.

Chapter 2 The Benefits of Modular Programming12

Dependency Management2.2.3

The system of versions and dependencies needs a manager that makes sure all
requirements of every piece in the system are satisfied. Such a manager can
check at each piece’s install time that everything in the system remains consis-
tent—this is how RPMs or Debian packages work in Linux distributions.
Metadata about such dependencies is also useful at runtime. Such metadata
makes it possible for an application to dynamically update its libraries without
shutting down. It can also determine if the dependencies of a module it is
asked to dynamically load can be satisfied—and if not, it can describe the
problem to the user.

NetBeans is a modular application. Its modules—its constituent li-
braries—are discovered and loaded at runtime. They can install various bits
of functionality, such as components, menu items, or services; or they can run
code during startup to initialize programmatically, by taking advantage of
declarative mechanisms that various parts of the platform and IDE offer. The
NetBeans module system uses the declared dependencies of the installed
components to set parent ClassLoaders needed for a module. This ensures
that the classpath is isolated from independent modules and enforces the de-
clared dependencies of each component—a module cannot call code in a
foreign module unless it declares a dependency on that foreign module, so it
will not be loaded at all if some of its dependencies cannot be satisfied.

A Modular Programming Manifesto2.3

No one is surprised anymore that operating systems and distributions are de-
signed in a modular way. The final product is assembled from independently
developed components. Modularity is a mechanism to coordinate the work
of many people around the world, manage interdependencies between their
parts of the project, and assemble very complex systems in a reasonably reliable
way.

The value of this approach is finally filtering down to the level of individ-
ual applications. Applications are getting more and more complicated, and
they are increasingly assembled from pieces developed independently. But
they still need to be reliable. Modular coding enables you to achieve and

132.3 A Modular Programming Manifesto

manage that complexity. Since applications are growing in size and function-
ality, it is necessary to separate them into individual pieces (whether as
“components,” “modules,” or “plugins”). Each such separated piece then be-
comes one element of the modular architecture. Each piece should be isolated
and should export and import well-defined interfaces.

Splitting an application into modules has benefits for software quality. It
is not surprising that a monolithic piece of code, where every line in any source
file can access any other source file, may become increasingly interconnected,
unreadable, and ultimately unreliable. If you have worked in software for a
few years, you have probably been on a project where there was some piece
of code which everyone on the team was afraid to touch—where fixing one
bug always seemed to create two new bugs. That is the entropy of software
development. There is economic pressure to fix problems in the most expedi-
ent way possible—but the most expedient way is not necessarily in the long-
term interest of the codebase. Modular software limits the risk of creeping
coupledness by requiring that different components of the system interoperate
through well-defined API contracts. It’s not a silver bullet, but it makes it
considerably harder to have the sort of decay that eventually dooms many
complex pieces of software.

Comparing modular design and traditional object-oriented design is a lot
like comparing structured programming to spaghetti code in the 1960s.
Spaghetti code is the name given to large Fortran or BASIC programs where
every line of code could use a GOTO statement to transfer execution to anoth-
er place in the program. Such code tended to be written in such a chaotic way
that often only the author of a program could understand the program’s logic.
Structured programming tried to reduce this disorder by introducing blocks
of code: for loops, while loops, if statements, procedures and calls to pro-
cedures. Indeed, this improved the situation and the readability and maintain-
ability of applications increased. If nothing else, one could be sure that a call
to a method will return only once.1

The classic object-oriented style of programming in some ways resembles
the situation before structured programming arrived. With the term “classic
object-oriented style,” we are referring to the style of programming typically

1. Except for boundary conditions where it may never return, throw an exception, etc.

Chapter 2 The Benefits of Modular Programming14

taught today. It is also the sort of code you get from using UML tools: heavy
use of inheritance, and almost everything overridable and public. In such an
application nearly any method in a class can call any other method. Indeed
there are public, private, and protected access modifiers, but the granu-
larity of access permissions is done on the level of a single class or class mem-
ber. That is far too low-level to serve as a basic building block of application
design. Modularity is about the interaction between systems, rather than
between small parts of subsystems.

Modular applications are composed of modules. One module is a collec-
tion of Java classes in Java packages. Some of these packages are public, and
public classes in them serve as an exported API that other modules can call.
Other classes are private and cannot be accessed from outside. Moreover, to
be a module, a library must list its dependencies on its surrounding environ-
ment—other modules, the Java runtime, etc.

Inside a module, one can still apply bad coding practices, but the architec-
ture of an application can be well observed by checking the dependencies
among all its modules. If one module does not have a dependency on another,
then its classes cannot directly access the other module’s classes. This keeps
the architecture clean by preventing GOTO-like coding constructs that could
otherwise couple completely unrelated parts of the codebase.

Sometimes people say that their application is too small for modular ar-
chitecture to be applicable. It may indeed be so. But if it is beyond the level of
a student project, then it is likely to evolve over time. As it evolves, it is likely
to grow. And as it grows, it is very likely to face the “entropy of software”
problem.

The initial step in designing a complex application is to design its architec-
ture. For this, it is necessary to define and understand the dependencies be-
tween parts of the application. It is much easier to do this in case of modular
applications.

Thus it is always wise to start designing any application in a modular
way—this creates an infrastructure that will let you build more robust appli-
cations and avoid a great deal of manual bookkeeping. Rewriting messy, inter-
connected traditional object-oriented applications to give them a good mod-
ular design is a hard task. And it is not often that a project can afford the time

152.3 A Modular Programming Manifesto

it takes to be rewritten or rearchitected. Often, programmers have to live with
old, monolithic code with ever-increasing maintenance costs—because the
code is known to work.

Modular design starts you out in an environment where the architecture
cannot slowly decay into unmaintainability without anyone noticing. If you
create a new dependency between two parts of a modular application, you
need to do some explicit gestures to set up that dependency. It cannot happen
by accident. While that is not a cure for messy designs, it is an environment
that encourages well-thought-out ones.

Modularity gives systems clearer design and control of module interdepen-
dencies; it also gives developers more flexibility in maintenance. Consider that
when starting any new project—regardless of the project’s initial scope.
Modular design will have large benefits for the architecture of the entire appli-
cation as it grows from its infancy. The real benefits of modular programming
might not be apparent in the first version of an application. But they will be-
come obvious later with the reduced cost of creating the 2.0 and 3.0 versions.
Since modular programming does not add significant cost to creating the 1.0
version of an application, there is little reason not to use this approach on all
projects. Many programmers are surprised (even sometimes horrified) to find
something they wrote fifteen years ago still in use. Since we cannot predict the
future of our code, we might as well architect it to last from the start.

Using NetBeans to Do Modular Programming2.4

Creating a skeleton for a new NetBeans module is as easy as creating a plain
old Java application project in the IDE. Just start NetBeans IDE 5.5, select File
| New Project, and choose NetBeans Plug-in Modules | Module Project. Give
the module a name and a location and you will end up with a brand-new
project opened in the Project window. Create a Java class in the package that
has been pre-created for you. Then, in the IDE’s source editor, use any the
features of the JDK platform that you are running against. All the classes from
the JDK are accessible and can be used without any special setup.

A slight difference compared to plain Java coding is the way one uses ad-
ditional libraries. Instead of directly choosing a JAR file, one creates a module

Chapter 2 The Benefits of Modular Programming16

dependency on another module. To do this, open the Libraries subnode of
your project and invoke the Add Module Dependency . . . dialog. NetBeans
5.5 contains a lot of modules and you can choose which ones to add as li-
braries. There are also many library wrapper modules, each presenting a third-
party library as a standard NetBeans module. For example, there is
Apache.org’s Commons Logging library—just type common, select the library,
and click OK (Figure 2.1). Now the editor knows how to use logging classes
so you can safely type, for example, org.apache.commons.logging.
LogFactory.getLog("name.of.your.log") and the result will be compi-
lable. This may not look like a huge advantage over selecting the JAR file di-
rectly; however, notice that it was enough to specify just the identifying name
of the module and the library management dialog located it for us. Adding
explicit dependencies to a module project is quite simple.

Figure 2.1: Adding a dependency on a module wrapping the Apache’s Commons
Logging library

172.4 Using NetBeans to Do Modular Programming

Modules vs. Plugins

One point of potential terminology confusion is the use of the terms
“plugin” and “module.” For most practical intents and purposes, there is
no difference. A module is simply a unit of code that you can “plug in” to
the Platform or the IDE. The term “plugin” has been popularized by various
other environments and can easily be applied to modules created for the
NetBeans Platform as well.

Traditionally, we have used the term “module” in the NetBeans envi-
ronment, since the platform itself is composed of modules. (You cannot
say that the core platform is composed of “plugins.”) On the other hand,
if you are creating new features for the IDE or the platform but your fea-
ture set is composed of multiple modules, you might prefer to refer to
those modules collectively as a single plugin.

It appears that creating a single module and reusing existing resources is
fairly easy. However, the power of modular applications is in having multiple
modules with dependencies, so the question is, how to create such modular
application inside NetBeans IDE? The answer is a module suite. A suite is a
container for a set of modules which can see each other and communicate
among themselves (Figure 2.2). To create a suite, choose NetBeans Plug-in
Modules/Module Suite in the New Project Wizard. Then follow the steps in
the wizard. After clicking OK, a new project be visible in the Projects window.
In contrast to the regular project, a suite does not have its own sources. It is
merely a project to bind together other, interdependent NetBeans Module
projects. So, choose Suite/Modules, invoke a popup menu on that node, and,
using the Add Existing . . . menu item, add the previously created module
into the suite.

A suite can contain more than one module. To demonstrate that, we can
convert an existing library into a module in the suite. Choose New Project
again and select NetBeans Plug-in Modules/Library Wrapper Module Project,
choose some plain existing Java JAR file, such as an Apache library, and follow
the steps to create its wrapper and make it part of the suite we just created.
When done, the suite will show the two modules under the Modules node
and it will be possible to create a dependency between them. Select the first
module again, right-click it and choose Properties from the popup menu. In
the Properties dialog, click the Libraries category to show the UI for setting

Chapter 2 The Benefits of Modular Programming18

Figure 2.2: A suite can contain many modules

up dependencies. Add a dependency on the just added library wrapper module.
When done, classes in the first module will be able to use classes from the
library.

192.4 Using NetBeans to Do Modular Programming

