
BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

www.apress.com
SOURCE CODE ONLINE

Agile

Android
Godfrey Nolan

Nolan
Agile Android

Shelve in:
Mobile Computing

User level:
Intermediate–Advanced

Agile Android is a unique short book that walks you through how to
get unit testing and test driven development done on the Android

platform - on both new and existing Android projects, specifically
using JUnit 4. Done correctly, agile development results in a significant
increase in development efficiency and a reduction in the number of
defects. This book shows you how it's done quickly but correctly.

Up until now getting JUnit testing up and running in Android was
not for the faint hearted. However, “now it’s in Android Studio, there is
no excuse,” according to author Godfrey Nolan, president of RIIS LLC.
Android developers are faced with their own set of problems such as
tightly coupled code, fragmentation, and immature testing tools, all of
which can be solved using existing agile tools and techniques that this
short book will teach you.

• What is the Agile testing pyramid for Android

• What are the Android unit testing tools and how to use them,
including those found in Android Studio

• What are and how to use third party tools like JUnit, Hamcrest,
Roboletric, Jenkins and more

• What is and how to use mocking, including mocking frameworks
like Mockito to mock out Web Services, Shared Preferences and
SQLite databases

• How to do test driven development (TDD) in Android

• How to manage legacy code and applying TDD to existing
projects

9 781484 297001

52499
ISBN 978-1-4842-9700-1

Agile Android

Godfrey Nolan

Agile Android

Copyright © 2015 by Godfrey Nolan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-9700-1

ISBN-13 (electronic): 978-1-4842-9701-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The images of the Android Robot (01/Android Robot) are reproduced from work created and shared by
Google and used according to terms described in the Creative Commons 3.0 Attribution License. Android
and all Android and Google-based marks are trademarks or registered trademarks of Google Inc. in the
United States and other countries. Apress Media LLC is not affiliated with Google Inc., and this book was
written without endorsement from Google Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewers: Travis Himes and Tri Phan
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, James T. DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Lori Jacobs
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com/9781484297001. For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in
the Supplementary Material section for each chapter.

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484297001
www.apress.com/source-code/

For Dad.
Great teacher, great golfer, great dad.

You will be sorely missed.

v

Contents at a
Glance

About the Author �� xi

About the Technical Reviewers �� xiii

Acknowledgments ��� xv

 ■Chapter 1: Introduction �� 1

 ■Chapter 2: Android Unit Testing �� 15

 ■Chapter 3: Third-Party Tools ��� 25

 ■Chapter 4: Mocking �� 45

 ■Chapter 5: Espresso �� 59

 ■Chapter 6: Test-Driven Development �� 69

 ■Chapter 7: Dealing with Legacy Code ��� 83

Index �� 93

vii

Contents

About the Author �� xi

About the Technical Reviewers �� xiii

Acknowledgments ��xv

 ■Chapter 1: Introduction �� 1

Hello, World Unit Test ��� 2

Understand the Benefits of Using an Agile Approach to Android
Development ��� 2

Explore the Agile Testing Pyramid for Android ��� 3

Create Hello World Unit Test in Android ��� 4

GUI Tests �� 8

Create Hello, World GUI Test �� 9

Summary ��� 13

 ■Chapter 2: Android Unit Testing �� 15

Android Assertions �� 15

Command Line �� 16

JUnit Options ��� 17

HTML Output ��� 19

Contentsviii

Grouping Tests ��� 20

Parameterized Tests �� 21

Summary ��� 24

 ■Chapter 3: Third-Party Tools ��� 25

Hamcrest Assertions ��� 25

JaCoCo �� 27

Mockito�� 31

Robolectric �� 35

Jenkins �� 37

Install �� 37

Configure Jenkins ��� 38

Create Automated job ��� 39

Summary ��� 43

 ■Chapter 4: Mocking �� 45

Shared Preferences ��� 46

Time �� 48

System Properties ��� 50

Database ��� 52

Jenkins �� 56

Summary ��� 57

 ■Chapter 5: Espresso �� 59

onView ��� 60

Hello World ��� 60

Adding Buttons �� 62

ViewMatchers �� 64

ViewActions ��� 64

ViewAssertions �� 65

Contents

ix

onData ��� 65

To Do List �� 65

Jenkins �� 68

Summary ��� 68

 ■Chapter 6: Test-Driven Development �� 69

Understanding Test-Driven Development �� 69

Unit Testing and TDD ��� 70

Value of TDD �� 70

Writing an App Using TDD�� 71

Feature 1 �� 71

Feature 2 �� 75

Feature 3 ��� 79

Summary ��� 82

 ■Chapter 7: Dealing with Legacy Code ��� 83

SonarQube ��� 84

Comparing Projects �� 89

Refactor Code �� 90

Lessons Learned ��� 90

Summary ��� 91

Index �� 93

xi

About the Author

Godfrey Nolan is founder and president of RIIS LLC, a mobile development
firm in the Detroit Metro area. He is also author of Bulletproof Android
(Addison-Wesley Professional, 2014), Android Best Practices (Apress, 2014),
Decompiling Java (Apress, 2004) and Decompiling Android (Apress, 2012).
Originally from Dublin, Ireland he now lives in Huntington Woods, MI.

xiii

About the Technical
Reviewers

Travis Himes is a Senior Software Engineer
specializing in Android development with
more than 12 years of experience. Travis
has given talks at the Philadelphia Android
Alliance, and has taught fellow developers and
developers-in-training the basics of Android
development. Travis is a fan of keyboard
shortcuts, and really anything that saves
time and increases repeatability. If there is an
opportunity for learning something new, he’s
likely to be involved.

Tri Phan is the founder of the Programming
Learning Channel on YouTube. He has over
seven years of experience in the software
industry. Specifically, he has worked for many
outsourcing companies and has written
applications in a variety of programming
languages such as PHP, Java, and C#. In
addition, he has over six years of experience
in teaching at international and technological
centers such as Aptech, NIIT, and Kent College.

xv

Acknowledgments

There are many people I’d like to thank for helping me write this book.
Apologies if I’ve forgotten anyone.

	Travis Himes, for quickly stepping in to review the book
at the last minute.

	David Armstrong, Tom Kocik and Nathan Baumgartner
who helped me with the code samples.

	Mark Powers and Steve Anglin at Apress. And yes
I know I’m late again.

	My beautiful wife, Nancy, for putting up with me when
I needed to talk about what I was writing.

	The many bored listeners at way too many conferences
who provided great feedback that helped shape the
content of this book over the past couple years.

1

Chapter 1
Introduction
For a while now, Agile development has been problematic for Android
developers. There have been a number of ways to test the user interface (UI),
such as Robotium or Monkey Runner, but before Android Studio 1.1,
unit testing was hard to use, hard to configure, and quite challenging to
implement on the Android platform.

Google would argue, no doubt, that in the past you could use JUnit3-style
unit testing. But for anyone from classic Java development this was a
dramatic backward step in time. Developers would stumble along hacking
together a JUnit4 development environment using a number of third-party
tools. More likely than not they would simply give up as the ever-increasing
series of mutually incompatible library dependencies would finally wear them
down. Because there simply wasn’t the toolbox for the Android developer,
Agile development on the mobile platform was immature and reminiscent of
Java development in the early 2000s.

Thankfully all this has changed - Android now supports JUnit4 and Android
developers can now return to unit testing. It’s early days yet in the world
of Android JUnit4 testing world and the documentation is thin on the
ground, so in this book we’re going to show practical ways to get your
unit testing up and running using Android Studio. We’ll also look at how
this can be complemented by other UI-specific Android testing libraries
such as Espresso to create a complete Agile testing framework for Android
developers.

CHAPTER 1: Introduction2

Hello, World Unit Test
Before we go any further let’s look at a simple unit test. For demonstration
purposes we can use the Add method from the Google Calculator example,
which is available from https://github.com/googlesamples/android-testing
(see Listing 1-1).

Listing 1-1. Add Method from Google's Calculator Example

public double add(double firstOperand, double secondOperand) {
 return firstOperand + secondOperand;
}

Listing 1-2 shows a very simple unit test, which tests if the Add method can
add two numbers correctly.

Listing 1-2. Test Method for Add Method from Calculator Example

@Test
public void calculator_CorrectAdd_ReturnsTrue() {
 double resultAdd = mCalculator.add(3, 4);
 assertEquals(7, resultAdd, 0);
}

Unit tests use assertions to make sure the method provides an expected
result. In this case we’re using assertEquals to see if the Add method returns
7 when adding 3 to 4. If the test works, then we should see a positive or
green result, and if it doesn’t, then we’ll see a red result in Android Studio.

Understand the Benefits of Using an Agile
Approach to Android Development
If you’re new to Agile development you’re probably wondering how Agile
can improve the development process.

At its most basic, Agile, and unit testing in particular, helps you to

	Catch more mistakes, earlier in the development
process

	Confidently make more changes

	Build in regression testing

	Extend the life of your codebase

https://github.com/googlesamples/android-testing

CHAPTER 1: Introduction

3

If you write unit tests and they cover a significant portion of your code then
you’re going to catch more bugs. You can make simple changes to tidy up
the code or more extensive architectural changes, run your unit tests, and,
if they all pass, be confident that you didn’t introduce any subtle defects.
The more unit tests you write, the more you can regression test your app
whenever you change the code without fear. And once you have a lot of unit
tests, then it becomes a regression test suite that allows you to have the
confidence to do things you wouldn’t otherwise attempt.

Unit tests mean you no longer have to program with a “leave well enough
alone” mind-set. You can now make significant changes (changing to a new
database, updating your back-end application programming interface (API),
changing to a new material design theme, etc.) and be confident that your
app is behaving the same as before you made the changes since all the
tests execute without any errors.

Explore the Agile Testing Pyramid for Android
There are several types of tests you need in your test suite to make sure
your app is fully tested. You should have Unit Tests for the component-
or method-level functionality, API or Acceptance Tests for any back-end
RESTful APIs, and GUI (graphical user interface) Tests for Android activities
and general application workflow.

The classic Agile Test Pyramid first appeared in Succeeding with Agile by
Mike Cohn (Pearson Education, 2010). This is a good guide for the relative
quantity of each type of test your app is going to need (see Figure 1-1).

Manual
Tests

GUI
Tests

Acceptance Tests
(API Layer)

Unit Tests / Component Tests

Figure 1-1. Agile Test Pyramid

CHAPTER 1: Introduction4

Create Hello World Unit Test in Android
In the following example we show how to create our simple unit test
example in Android Studio. This should return true assuming adding two
numbers in the calculator Android app works correctly.

To set up and run a unit test you need to perform the following tasks:

	Prerequisites: Android Plugin for Gradle version 1.1.x

	Create the src/test/java folders

	Add JUnit:4:12 dependency in build.gradle (app) file

	Choose unit tests’ test artifact in Build Variant

	Create unit tests

	Right-click tests to run tests

Click File ➤ Project Structure and make sure the Android Plugin version is
greater than 1.1. In Figure 1-2 the Android Plugin version is 1.2.3 so we’re
good to go.

Figure 1-2.

Next we need to create the src/test/java folders for our unit test code.
For the moment this seems to be hard-coded to this directory. So change to
Project view to see the file structure and create the folders (see Figure 1-3).
Alternatively, in Windows create the folders using the file explorer or on a
Mac use the command line on a terminal window to make the changes.
Don’t be worried if the folders don’t show up when you go back to the
Android view in Android Studio. They’ll show up when we change to unit
tests in the Build Variant window.

CHAPTER 1: Introduction

5

Add junit library to the dependencies section in the build.gradle (app) file
as shown in Figure 1-4.

Figure 1-3. Change to Project view

CHAPTER 1: Introduction6

Choose the Unit Tests test artifact in Build Variants and use the debug build
(see Figure 1-5). The test code directory should now also appear when
you’re in the Android view of your app.

Figure 1-4. Modify the build.gradle file

Figure 1-5. Choose Unit Tests in Build Variant

CHAPTER 1: Introduction

7

Create the Unit Tests code for our simple example. We need to import the
org.junit.Before so we can create a Calculator object. We need to import
org.junit.Test to tell Android Studio that we’re doing unit tests. And as
we’re going to do an assertEquals, we also need to import org.junit.
Assert.assertEquals (see Listing 1-3).

Listing 1-3. Unit Test Code

package com.riis.calculatoradd;

import org.junit.Before;
import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class CalculatorTest {

 private Calculator mCalculator;

 @Before
 public void setUp() {
 mCalculator = new Calculator();
 }

 @Test
 public void calculator_CorrectAdd_ReturnsTrue() {
 double resultAdd = mCalculator.add(3, 4);
 assertEquals("adding 3 + 4 didn't work this time", 7, resultAdd , 0);
 }
 }

Right-click the CalculatorTest java file and choose Run ’CalculatorTest’ to
run tests (see Figure 1-6).

CHAPTER 1: Introduction8

You can see the results of the tests in the Run windows (see Figure 1-7). You
may also want to click the configuration gear and choose Show Statistics to
see how long the tests take.

Figure 1-7. Test results

Figure 1-6. Running the unit test

If your tests are successful they show as green, and anything that produces
an error is shown in red. All your tests should be green before you continue
with any coding.

GUI Tests
The real beauty of unit testing is that you don’t need an emulator or physical
device to do your testing. But, if we look back at our Agile Testing Pyramid
(Figure 1-1) we know that we’re going to need some GUI tests. Remember,
GUI tests are tests on Activities and unit tests are tests on individual
methods in your code. We won’t need as many GUI tests as unit tests, but
we’re still going to have to test every activity for happy paths as well as not
so happy paths.

CHAPTER 1: Introduction

9

When it comes to testing GUI we have a few frameworks that we can
choose from: we can use the Android JUnit3 framework, Google’s Espresso,
UIAutomator, Robotium, or some Cucumber-type Android framework such
as Calabash. In this book we’ll use Google’s Espresso as it’s quick and easy
to set up and it also has support for Gradle and Android Studio. But your
author has used the other frameworks in the past and they all have their
benefits.

Espresso has three components: ViewMatchers, ViewActions, and
ViewAssertions. ViewMatchers are used to find a view, ViewActions allow
you to do something with a view, and ViewAssertions are similar to unit
test assertions—they let you assert that the value in the view is what you’d
expect or not.

Listing 1-4 shows a simple example of an Espresso GUI test. We’re adding
two numbers again, but this time we’re doing it by interacting with the GUI,
not calling the underlying method.

Listing 1-4. Adding Two Numbers Using Espresso

public void testCalculatorAdd() {

 onView(withId(R.id.operand_one_edit_text)).perform(typeText(THREE));
 onView(withId(R.id.operand_two_edit_text)).perform(typeText(FOUR));
 onView(withId(R.id.operation_add_btn)).perform(click());
 onView(withId(R.id.operation_result_text_view)).check(matches(withText

(RESULT)));
}

In this example withId(R.id.operand_one_edit_text) is one of the
ViewMatchers in the code and perform(typeText(THREE) is a ViewAction.
Finally check(matches(withText(RESULT)) is the ViewAssertion.

Create Hello, World GUI Test
This time we show how to create our simple GUI test example in Android
Studio. As with the unit test, this one should return true assuming that
adding two numbers in the calculator Android app works correctly.

To set up and run a GUI test you need to perform the following tasks:

	Prerequisites: install the Android Support Repository

	Put the test classes in the src/androidTest/java folders

	Add Espresso dependency in build.gradle (app) file

CHAPTER 1: Introduction10

	Choose Android Test Instrumentation Test Artifact in
Build Variant

	Create GUI tests

	Right-click tests to run tests

Click Tools ➤ Android ➤ SDK Manager, click the SDK tools tab, and make
sure the Android Support Repository is installed (see Figure 1-8).

Figure 1-8. Android SDK Manager

By default, Android Studio creates a src/androidTest/java folder when you
create the project using the project wizard so you shouldn’t have to create
any new directory. If you can’t see it, then check that the Test Artifact in the
Build Variant window is set to Android Instrumentation Tests (see Figure 1-9).

CHAPTER 1: Introduction

11

Add the following Espresso libraries (see Listing 1-5) to the build.gradle
(app) file in the dependencies section and click the Sync Now link. Open the
Gradle console as this may take a minute or two.

Listing 1-5. Espresso Libraries

dependencies {
 androidTestCompile 'com.android.support.test:testing-support-lib:0.1'
 androidTestCompile 'com.android.support.test.espresso:espresso-core:2.0'
}

The code in Listing 1-6 shows how we set up and run the GUI test
to add 3 + 4 and how we assert that this is 7.0. In order to test
Android activities we need to extend the CalculatorAddTest with the
ActivityInstrumentationTestCase2 class. This allows you to take control of
the activities. We do this in the setUp() method using the getActivity() call.

Listing 1-6. Adding Two numbers Using Espresso

import android.test.ActivityInstrumentationTestCase2;

import static android.support.test.espresso.Espresso.onView;
import static android.support.test.espresso.action.ViewActions.click;
import static android.support.test.espresso.action.ViewActions.typeText;
import static android.support.test.espresso.assertion.ViewAssertions.matches;
import static android.support.test.espresso.matcher.ViewMatchers.withId;
import static android.support.test.espresso.matcher.ViewMatchers.withText;

public class CalculatorAddTest extends ActivityInstrumentationTestCase2<
CalculatorActivity> {

Figure 1-9. Build Variant test artifacts

CHAPTER 1: Introduction12

 public static final String THREE = "3";
 public static final String FOUR = "4";
 public static final String RESULT = "7.0";

 public CalculatorAddTest() {
 super(CalculatorActivity.class);
 }

 @Override
 protected void setUp() throws Exception {
 super.setUp();
 getActivity();
 }

 public void testCalculatorAdd() {

 onView(withId(R.id.operand_one_edit_text)).perform(typeText(THREE));
 onView(withId(R.id.operand_two_edit_text)).perform(typeText(FOUR));
 onView(withId(R.id.operation_add_btn)).perform(click());
 onView(withId(R.id.operation_result_text_view)).check(matches

(withText(RESULT)));
 }
}

In the code we first connect to the Calculator Activity and then use the
ViewMatcher and ViewActions to put the numbers 3 and 4 in the correct text
fields. The code then uses a ViewAction to click the Add button and finally
we use the ViewAssertion to make sure the answer is the expected 7.0. Note
that the GUI displays the result as a double, so it’s 7.0 and not 7 as you
might expect (see Figure 1-10).

CHAPTER 1: Introduction

13

Figure 1-11 shows the results. In this case they look very similar to those in
the unit tests, but it took a lot longer for the emulator to spin up.

Figure 1-10. Calculator app

Figure 1-11. Espresso results

Summary
In this chapter we looked at the current state of unit testing and GUI tests
on the Android platform. In the rest of this book we’ll explore Agile testing
in a lot more detail so you can see how to apply these techniques to your
application to produce cleaner, faster code with fewer defects.

15

Chapter 2
Android Unit Testing
Before Android Studio incorporated JUnit4, Google’s implementation was
an odd mix of standard and Android-specific unit tests. The current version
of JUnit4 is a much more vanilla implementation of the JUnit standard (see
http://junit.org for more information or https://github.com/junit-team/
junit for the source code). The current recommended version of JUnit we’re
loading in the build.gradle file is 4.12

Android Assertions
In our Hello, World example we used the assertEquals assertion, but there
are other assertions in JUnit 4.12 that we can use (see Table 2-1).

Table 2-1. Assertions

Assertion Description

assertEquals Test that two values are the same

assertTrue Test Boolean condition is true

assertFalse Test Boolean condition is false

assertNull Check that the object is null

assertNotNull Check that the object is not null

assertSame Test that both values refer to the same object reference

assertNotSame Test that both values do not refer to the same object reference

assertThat Test that the first value (object) matches the second value
(or matcher)

fail Test should always fail

http://junit.org/
https://github.com/junit-team/junit
https://github.com/junit-team/junit

CHAPTER 2: Android Unit Testing16

There are also many other asserts that you can use if you add Hamcrest,
AssertJ, or any of the many other assert libraries. But for the moment let’s
start with the basic JUnit assertions.

assertTrue and assertFalse are used when you’re looking to check the
value of a Boolean condition. Rather than having to assertTrue(!something
YouExpectToReturnFalse), assertFalse is provided (e.g., assertTrue (5 < 6)
and assertFalse (5>6)).

assertNull and assertNotNull check to see if an object is null (e.g.,
assertNull(Calculator) or assertNotNull(Calculator)).

assertSame and assertNotSame check that the two objects are references
to the same object for assertSame or not for assertNotSame. This is not the
same as equals, which compares the values of the two objects and not the
object itself.

assertThat can be used like assertEquals where instead of saying
assertEquals(7, mCalculator.add(3,4), 0) we can now say
assertThat(is(7), mCalculator.add(3, 4)).

fail is for simply a failing test, for code that never should have been reached
or to tell you “here be dragons.”

Command Line
Unit tests can be run from the command line using the following command:
gradlew test --continue. The gradlew task runs the unit tests and
continue tells gradlew not to stop if any of the unit tests fail, which is what
we want.

C:\AndroidStudioProjects\BasicSample>gradlew test --continue
Downloading https://services.gradle.org/distributions/gradle-2.2.1-all.zip
..
..
Unzipping C:\Users\godfrey\.gradle\wrapper\dists\gradle-2.2.1-
all\6dibv5rcnnqlfbq9klf8imrndn\gradle-2.2.1-all.zip to C:\Users\godfrey\.
gradle\wrapper\dists\gradle-2.2.1-all\6dibv5rcnnqlfbq9klf8imrndn
Download https://jcenter.bintray.com/com/google/guava/guava/17.0/guava-
17.0.jar
Download https://jcenter.bintray.com/com/android/tools/lint/lint-api/24.2.3/
lint-api-24.2.3.jar
Download https://jcenter.bintray.com/org/ow2/asm/asm-analysis/5.0.3/asm-
analysis-5.0.3.jar
Download https://jcenter.bintray.com/com/android/tools/external/lombok/
lombok-ast/0.2.3/lombok-ast-0.2.3.jar
:app:preBuild UP-TO-DATE
:app:preDebugBuild UP-TO-DATE

https://services.gradle.org/distributions/gradle-2.2.1-all.zip
https://jcenter.bintray.com/com/google/guava/guava/17.0/guava-17.0.jar
https://jcenter.bintray.com/com/google/guava/guava/17.0/guava-17.0.jar
https://jcenter.bintray.com/com/android/tools/lint/lint-api/24.2.3/lint-api-24.2.3.jar
https://jcenter.bintray.com/com/android/tools/lint/lint-api/24.2.3/lint-api-24.2.3.jar
https://jcenter.bintray.com/org/ow2/asm/asm-analysis/5.0.3/asm-analysis-5.0.3.jar
https://jcenter.bintray.com/org/ow2/asm/asm-analysis/5.0.3/asm-analysis-5.0.3.jar
https://jcenter.bintray.com/com/android/tools/external/lombok/lombok-ast/0.2.3/lombok-ast-0.2.3.jar
https://jcenter.bintray.com/com/android/tools/external/lombok/lombok-ast/0.2.3/lombok-ast-0.2.3.jar

CHAPTER 2: Android Unit Testing

17

:app:checkDebugManifest
:app:prepareDebugDependencies
:app:compileDebugAidl
:app:compileDebugRenderscript
.
.
.
:app:compileReleaseUnitTestSources
:app:assembleReleaseUnitTest
:app:testRelease
:app:test

BUILD SUCCESSFUL

Total time: 3 mins 57.013 secs

You may want to run your tests from the command line, especially the first
time you run a unit test, using the gradlew test --continue command
so that you can see what’s happening, or alternatively open the gradle
console in Android Studio. Otherwise you may end up wondering why
nothing is happening as Android Studio downloads all the necessary files
to run unit tests.

Command-line test execution is also very useful if you’re using a continuous
integration build tool such as Jenkins.

JUnit Options
JUnit4 has the following annotations

	@Before

	@After

	@Test

	@BeforeClass

	@AfterClass

	@Test(timeout=ms)

@Test is used to annotate all test methods (see Listing 2-1), without it, the
method will not be run as a test. @Test(timeout=ms) is a slight wrinkle on the
standard annotation; it simply says give up if the test is taking longer than
the defined timeout given in milliseconds.

CHAPTER 2: Android Unit Testing18

Listing 2-1. @Test Method

@Test
public void calculator_CorrectSub_ReturnsTrue() {
 assertEquals(1, mCalculator.sub(4, 3),0);
}

@Before and @After are used for any setup and teardown functions that
you’re going to need. For example, @Before could include code to write
to log files or create objects to be used in the test or perhaps open the
database and then seed the database with test data. @After is typically used
to reverse any of those @Before changes, such as deleting the test rows in
the database, and so on (see Listing 2-2).

Listing 2-2. @Before and @After Annotations

public class CalculatorTest {

 private Calculator mCalculator;

 @Before
 public void setUp() {
 mCalculator = new Calculator();
 }

 @Test
 public void calculator_CorrectAdd_ReturnsTrue() {
 assertEquals(7, mCalculator.add(3, 4),0);
 }

 @Test
 public void calculator_CorrectSub_ReturnsTrue() {
 assertEquals(1, mCalculator.sub(4, 3),0);
 }

 @Test
 public void calculator_CorrectMul_ReturnsTrue() {
 assertEquals(12, mCalculator.mul(3, 4),0);
 }

 @Test
 public void calculator_CorrectDiv_ReturnsTrue() {
 assertEquals(3, mCalculator.div(12, 4),0);
 }

 @After
 public void tearDown() {
 mCalculator = null;
 }
}

CHAPTER 2: Android Unit Testing

19

@Before and @After are called before every test, but if you want to make
the setup changes once only before all the tests and once after all the tests
then you should use @BeforeClass and @AfterClass. The setUp methods are
now setUpBeforeClass rather than setUpBeforeTest. In our @BeforeClass
example below setUp and tearDown methods are now declared as public
static. The Calculator is be defined as static (see Listing 2-3) so there is
now only one instance of the Calculator instead of one for each test.

Listing 2-3. Using @BeforeClass Annotation Instead of @Before

private static Calculator mCalculator;

@BeforeClass
public static void setUp() {
 mCalculator = new Calculator();
}

HTML Output
JUnit outputs HTML- and XML-style reports in the <path_to_your_project>/
app/build/test-results/debug directory. These reports are useful mainly for
reference when you’re trying to track exactly when a class or classes started
to fail or if some package or class has a higher tendency to fail than others
(see Figure 2-1).

Figure 2-1. HTML reporting

There is also an XML output in the same directory if you need to import the
results into another tool.

CHAPTER 2: Android Unit Testing20

Grouping Tests
As your unit tests grow it’s not a bad idea to group them as small, medium,
or large tests based on how long they’re going to take. Writing and
executing unit tests should be lightning fast when you’re coding, but there
may be more comprehensive tests that you might want to run once a day or
when the build is checked in.

Figure 2-2 is taken from an old Google testing blog (see http://
googletesting.blogspot.com/2010/12/test-sizes.html), which does a
good job of showing when you should be grouping your tests into medium
or large tests so they don’t slow down the development process.

Figure 2-2. Grouping unit tests into categories

Small tests would be normal method-based unit tests with mocked-out
database or network access (more on that later). Because Espresso tests
need an emulator or device to run, they would automatically be considered
medium or large tests.

Listing 2-4 shows the normal way you would annotate whether a test is
small or medium with the necessary import statements.

http://googletesting.blogspot.com/2010/12/test-sizes.html
http://googletesting.blogspot.com/2010/12/test-sizes.html

CHAPTER 2: Android Unit Testing

21

Listing 2-4. Classic Unit Testing Grouping

import android.test.suitebuilder.annotation.SmallTest;
import android.test.suitebuilder.annotation.MediumTest;

@SmallTest
public void calculator_CorrectAdd_ReturnsTrue() {
 assertEquals(mCalculator.add(3, 4),7,0);
}

@SmallTest
public void calculator_CorrectSub_ReturnsTrue() {
 assertEquals(mCalculator.sub(4, 3),1,0);
}

@MediumTest
public void calculator_CorrectMul_ReturnsTrue() {
 assertEquals(mCalculator.mul(3, 4),12,0);
}

@MediumTest
public void calculator_CorrectDiv_ReturnsTrue() {
 assertEquals(mCalculator.div(12, 4),3,0);
}

Parameterized Tests
If we want to test our calculator we’re going to have to do a lot more testing
than adding, subtracting, multiplying, and dividing combinations of the
numbers 3 and 4. Listing 2-5 has a few more tests to give us a little more
confidence on our implementation. Run the tests and they all pass.

Listing 2-5. Adding More Test Conditions

@Test
public void calculator_CorrectAdd_ReturnsTrue() {
 assertEquals(7, mCalculator.add(3, 4),0);
 assertEquals(7, mCalculator.add(4, 3),0);
 assertEquals(10, mCalculator.add(8, 2),0);
 assertEquals(3, mCalculator.add(-1, 4),0);
 assertEquals(3260, mCalculator.add(3256, 4),0);
}

If you’re writing unit tests, my guess is you are always looking for ways to
write better code and you will think the code in Listing 2-5 smells. All that
hard coding doesn’t look right, even if it’s test code. We can use JUnit’s
parameterized tests to tidy this up.

CHAPTER 2: Android Unit Testing22

Refactor your code to add parameterized tests as follows:

	Add @RunWith(Parameterized.class) at the top of the
class to tell the compiler that we are using parameters
for our testing

	Add the import statement, import static org.junit.
runners.Parameterized.Parameters;

	Create your collections of tests parameters, in this case
operandOne, operandTwo, and the expectedResult

	Add the constructor for the class

	Use the parameters to feed your tests

Listing 2-6 shows the complete code. For simplicity’s sake, we’ve converted
the code to work only with integers.

Listing 2-6. Paramaterized Testing Example

import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;

import java.util.Arrays;
import java.util.Collection;

import static org.junit.Assert.assertEquals;
import static org.junit.runners.Parameterized.Parameters;

@RunWith(Parameterized.class)
public class CalculatorParamTest {

 private int mOperandOne;
 private int mOperandTwo;
 private int mExpectedResult;

 private Calculator mCalculator;

 /* Array of tests */
 @Parameters
 public static Collection<Object[]> data() {
 return Arrays.asList(new Object[][] {
 {3, 4, 7},
 {4, 3, 7},

CHAPTER 2: Android Unit Testing

23

 {8, 2, 10},
 {-1, 4, 3},
 {3256, 4, 3260}
 });
 }

 /* Constructor */
 public CalculatorParamTest(int mOperandOne, int mOperandTwo, int

mExpectedResult) {
 this.mOperandOne = mOperandOne;
 this.mOperandTwo = mOperandTwo;
 this.mExpectedResult = mExpectedResult;
 }

 @Before
 public void setUp() {
 mCalculator = new Calculator();
 }

 @Test
 public void testAdd_TwoNumbers() {
 int resultAdd = mCalculator.add(mOperandOne, mOperandTwo);
 assertEquals(resultAdd, mExpectedResult,0);
 }

}

When the code runs, we get the following results in the statistics frame (see
Figure 2-3).

Figure 2-3. Parameterized test results

CHAPTER 2: Android Unit Testing24

Summary
In this chapter we looked at unit tests in more detail. In the next chapter
we’ll look at some of the third-party tools that you’ll want to add to your unit
testing tool belt. Later in the book we’ll return to unit testing to show how to
write unit tests in a TDD (Test Driven Development) environment.

25

Chapter 3
Third-Party Tools
JUnit on its own may be all you need, but there are a number of excellent
third-party tools that you can bolt onto JUnit that really make your Android
testing shine.

In this chapter we’ll take a look at the following tools:

	Hamcrest for better assertions

	JaCoCo so we can measure our JUnit code coverage

	Mockito so we can keep our unit tests focused on
the code

	Robolectric so we can test our Android activities

	Jenkins for automating our testing

Hamcrest Assertions
Anything more than a simple Hello, World-type application is probably going
to need better assertions than those that come with JUnit 4.x. Hamcrest
is one option that offers a lot more matchers. It also provides a lot more
flexibility by allowing you to now include ranges instead of just single values.
As the Hamcrest documentation says, Hamcrest lets you create “Matchers
that can be combined to create flexible expressions of intent.” Table 3-1 lists
most of the Hamcrest assertions available, and you can also write your own.

CHAPTER 3: Third-Party Tools26

Listing 3-1 shows how to add the Hamcrest library to your build.gradle
file to include Hamcrest functionality in your app. Remember to hit the Sync
now button.

Listing 3-1. Adding Hamcrest Library Dependency

dependencies {
 testCompile 'junit:junit:4.12'
 testCompile 'org.hamcrest:hamcrest-library:1.3'
}

Now we refactor our tests so they read more like English (see Listing 3-2).

Listing 3-2. Hamcrest Assertions

@Test
public void calculator_CorrectHamAdd_ReturnsTrue() {
 assertThat("Calculator cannot add 3 plus 4", is(7),

mCalculator.add(3, 4));
}

Table 3-1. Hamcrest Assertions

Package Assertions

CoreMatchers allOf, any, anyOf, anything, array, both, containsString,
describedAs, either, endsWith, equalTo, everyItem,
hasItem, hasItems, instanceOf, is, isA, not, notNullValue,
nullValue, sameInstance, startsWith, theInstance

Matchers allOf, any, anyOf, anything, array, arrayContaining,
arrayContainingInAnyOrder, arrayWithSize, both,
closeTo, comparesEqualTo, contains, containsInAnyOrder,
containsString, describedAs, either, empty,
emptyArray, emptyCollectionOf, emptyIterable,
emptyIterableOf, endsWith, equalTo, equalToIgnoringCase,
equaltToIgnoringWhiteSpace, eventFrom, everyItem,
greaterThan, greaterThanOrEqualTo, hasItem,
hasItemInArray, hasItems, hasKey, hasProperty, hasSize,
hasToString, hasValue, hasXPath, instanceOf, is,
isA,isEmptyOrNullString, isIn, isOneOf, iterableWithSize,
lessThan, lessThanOrEqualTo, not, notNullValue,
nullValue, sameInstance, samePropertyValueAs, startsWith,
stringContainsInOrder, theInstance, typeCompatibleWith

Condition and, matched, matching, notMatched, then

MatcherAssert assertThat

CHAPTER 3: Third-Party Tools

27

We can also add ranges to our tests using greaterThan and LessThan
assertions (see Listing 3-3).

Listing 3-3. greaterThan and lessThan

public void calculator_CorrectHamAdd_ReturnsTrue() {
 assertThat("Greater than failed", greaterThan(6), mCalculator.add(3, 4));
 assertThat("Less than failed", lessThan(8), mCalculator.add(3, 4));
}

Or, we can combine the two using the both command (see Listing 3-4).

Listing 3-4. Using the both Matcher

@Test
public void calculator_CorrectHamAdd_ReturnsTrue() {
 assertThat("Number is out of range", both(greaterThan(6)).

and(lessThan(8)), mCalculator.add(3, 4),);
}

We’re only scratching the surface on what you can do with matchers, but no
doubt you can see how powerful Hamcrest can make our testing.

JaCoCo
Unit testing needs some form of code coverage to find any untested parts
of the code. Code coverage tools output code metric reports and annotated
code to show just what code has been unit tested (in green) and what has
not been covered by a unit test (in red). Figure 3-1 shows the code coverage
figures for JaCoCo which was taken from the eclemma.org web site.

Figure 3-1. Code coverage example

The code coverage metric measures how much source code has been unit
tested. Personally I’m not a huge believer in having a code coverage metric
target on an Android project; it should be used as a guide rather than a
mandated requirement. However, if a project has 5% code coverage then you’re
not really doing unit testing and are only paying lip service to the technique.

CHAPTER 3: Third-Party Tools28

Android Studio will invoke or call JaCoCo to do the code coverage reports
on your unit tests, but you need to perform the following tasks:

	Set testCoverageEnabled to true in the build.gradle file

	Change the code coverage runner to JaCoCo

	Run unit tests with code coverage

	View the code coverage

To include code coverage in your Android project, set testCoverageEnabled
to true in your debug buildTypes in the build.gradle file (see Listing 3-5)
and click Sync now after you make the changes.

Listing 3-5. build.gradle JaCoCo Changes

buildTypes {
 debug {
 testCoverageEnabled true
 }
}

To edit the configurations, go to Run ➤ Edit Configurations (see Figure 3-2).

Figure 3-2. Choose Edit Configurations

CHAPTER 3: Third-Party Tools

29

Click the Code Coverage tab and change the coverage runner to JaCoCo
(see Figure 3-3).

Figure 3-3. Changing coverage runner

Run the tests now by right-clicking the method and choosing Run
CalculatorTest with Coverage (see Figure 3-4).

Figure 3-4. Run Calculator Test with Coverage

CHAPTER 3: Third-Party Tools30

The code coverage reports are showing in the Coverage tab (see Figure 3-5),
where you can see we have 50% code coverage in our Calculator method.

Figure 3-5. Code coverage tests

Figure 3-6. Code coverage

The code coverage red/green is shown in the method, although it can be
hard to see (see Figure 3-6). The code coverage integration in Android
Studio is new. No doubt, in future versions it will be much easier to see red/
green coverage.

CHAPTER 3: Third-Party Tools

31

Mockito
In Chapter 2, in the section “Grouping Tests,” we talked about small,
medium, and large tests. In reality, unit tests should always be small tests.
But if we’re making network connections or reading from the file system or
database, then by definition we’re not performing small unit tests. We are
also making an assumption about a third-party web service or database that
may not be running every time we run our tests. So, worst-case scenario,
our tests are going to fail, but for the wrong reason (e.g., the network being
down). We use mocking frameworks to mock out any code that talks to
external resources and get all of our unit tests back to the smaller group.
Mockito works very well with Android Studio, so we’re going to use that tool
in this and subsequent chapters.

Listing 3-6 shows how to add the Mockito library to your build.gradle file
by including the testCompile 'org.mockito:mockito-core:1.10.19' library.
Once again remember to hit the Sync now link after you’re done.

Listing 3-6. Adding Mockito Library

dependencies {
 testCompile 'junit:junit:4.12'
 testCompile 'org.hamcrest:hamcrest-library:1.3'
 testCompile 'org.mockito:mockito-core:1.10.19'
}

Google’s Android sample has a networking app called NetworkConnect
which you can find at https://github.com/googlesamples/android-
NetworkConnect. Figure 3-7 shows the basic functionality of the app which
returns the HTML for the Google web page.

http://dx.doi.org/10.1007/978-1-4842-9701-8_2
https://github.com/googlesamples/android-NetworkConnect
https://github.com/googlesamples/android-NetworkConnect

CHAPTER 3: Third-Party Tools32

Before we mock out the code, we need to cut and paste the network access
code into its own class (see Listing 3-7), which we’ll call DownloadUrl.

Listing 3-7. DownloadUrl Code

public class DownloadUrl {

 public String loadFromNetwork(String urlString) throws IOException {
 InputStream stream = null;
 String str ="";

 try {
 stream = downloadUrl(urlString);
 str = readIt(stream, 88);
 } finally {

Figure 3-7. NetworkConnect app

CHAPTER 3: Third-Party Tools

33

 if (stream != null) {
 stream.close();
 }
 }
 return str;
 }

 public InputStream downloadUrl(String urlString) throws IOException {
 URL url = new URL(urlString);
 HttpURLConnection conn = (HttpURLConnection) url.openConnection();
 conn.setReadTimeout(10000 /* milliseconds */);
 conn.setConnectTimeout(15000 /* milliseconds */);
 conn.setRequestMethod("GET");
 conn.setDoInput(true);
 conn.connect();
 InputStream stream = conn.getInputStream();
 return stream;
 }

 public String readIt(InputStream stream, int len) throws IOException,

UnsupportedEncodingException {
 Reader reader = null;
 reader = new InputStreamReader(stream, "UTF-8");
 char[] buffer = new char[len];
 reader.read(buffer);
 return new String(buffer);
 }

}

The MainActivity now calls DownloadUrl as follows (see Listing 3-8).

Listing 3-8. Updated NetworkConnect MainActivity Code

private class DownloadTask extends AsyncTask<String, Void, String> {

 DownloadUrl htmlStr = new DownloadUrl();

 @Override
 protected String doInBackground(String… urls) {
 try {
 return htmlStr.loadFromNetwork(urls[0]);
 } catch (IOException e) {
 return getString(R.string.connection_error);
 }
 }

CHAPTER 3: Third-Party Tools34

 /**
 * Uses the logging framework to display the output of the fetch
 * operation in the log fragment.
 */
 @Override
 protected void onPostExecute(String result) {
 Log.i(TAG, result);
 }
}

We can now write a unit test to see if the DownloadUrl code is returning
HTML in our unit test (see Listing 3-9).

Listing 3-9. Network Connect Unit Test

public class DownloadUrlTest {

 DownloadUrl tDownloadUrl;
 String htmlStr;

 @Before
 public void setUp() {
 try {
 htmlStr = tDownloadUrl.loadFromNetwork("http://www.google.com");
 } catch (IOException e) {
 // network error
 }
 }

 @Test
 public void downloadUrlTest_ReturnsTrue() {
 assertThat(htmlStr,containsString("doctype"));
 }
}

Because we’re making a network call, we should mock out the network
access using Mockito. For this example there are only a couple things
we need to do to mock out the web server call. First mock out the class
so Mockito knows what functionality it needs to replace DownloadUrl
tDownloadUrl = Mockito.mock(DownloadUrl.class);. Next, tell Mockito
what to return when the method you’re testing is called using the
Mockito.when().thenReturn() format, which is as follows: Mockito.
when(tDownloadUrl.loadFromNetwork("http://www.google.com")).
thenReturn("<!doctype html><html itemscope=\"\" itemtype=\"http://
schema.org/WebPage\" lang=\"en\"><head>");.

Now, when the loadFromNetwork call is made it will return our partial web page
instead of the actual HTML of www.google.com web page (see Listing 3-10).
You can test this by turning your network access on and off.

http://www.google.com/
http://www.google.com
http://schema.org/WebPage%5c
http://schema.org/WebPage%5c
http://www.google.com/

CHAPTER 3: Third-Party Tools

35

Listing 3-10. Mocked Network Access

@RunWith(MockitoJUnitRunner.class)
public class DownloadUrlTest {

 public DownloadUrl tDownloadUrl = Mockito.mock(DownloadUrl.class);

 @Before
 public void setUp() {
 try {
 Mockito.when(tDownloadUrl.loadFromNetwork("http://

www.google.com")).thenReturn("<!doctype html><html
itemscope=\"\" itemtype=\"http://schema.org/WebPage\"
lang=\"en\"><head>");

 } catch (IOException e) {
 // network error
 }
 }

 @Test
 public void downloadUrlTest_ReturnsTrue() {
 try {
 assertThat(tDownloadUrl.loadFromNetwork("http://www.google.com"),

containsString("doctype"));
 } catch (IOException e) {
 //
 }
 }
}

We will return to Mockito in the next chapter and show you how to mock
out database and shared preferences access as well as how to use other
tools to extend the Mockito functionality to help decouple or separate out
your code.

Robolectric
You can’t test Android apps unless you test Android activities. You can
test around it using tools like Mockito and JUnit but you’re missing a key
element of your app if you’re not testing its activities. You can’t be sure
that your app is displaying the correct information if you don’t test what
the activities are displaying to your users. This is relatively easy to using an
emulator testing framework such as Espresso or Calabash. But we can also
test it without an emulator if we use Robolectric.

To install Robolectric 3.0 add the following dependency to your build.gradle
file (see Listing 3-11).

http://%0awww.google.com
http://%0awww.google.com
http://schema.org/WebPage%5c
http://www.google.com

CHAPTER 3: Third-Party Tools36

Listing 3-11. Adding Robolectric Library Dependency

dependencies {
 testCompile 'junit:junit:4.12'
 testCompile 'org.robolectric:robolectric:3.0'
}

You will also need to make a change to your App configuration. Go to
Run-Edit Configurations and if you’re running on a Mac or Linux then change
the Working Directory to $MODULE_DIR$ or if you’re running on a Windows
machine add a \app to the end of the Working Directory (see Figure 3-8).

Figure 3-8. Robolectric Working Directory fix

Listing 3-12 shows a unit test that uses Robolectric to test that Hello
World is displayed on the MainActivity. Note the configuration information
which sets the target SDK to API 21 and tells Robolectric where to find the
AndroidManifest.xml file.

Listing 3-12. Robolectric Hello World

@RunWith(RobolectricGradleTestRunner.class)
@Config(constants = BuildConfig.class, sdk = 21, manifest = "src/main/
AndroidManifest.xml")
public class RobolectricUnitTest {
 @Test
 public void shouldHaveHappySmiles() throws Exception {
 String hello = new MainActivity().getResources().getString(R.string.

hello_world);
 assertThat(hello, equalTo("Hello world!"));
 }
}

CHAPTER 3: Third-Party Tools

37

Run the test in the same way you would run unit tests by right clicking on the
test class name and choosing ’Run RobolectricTest’. The test passes without
the need for an emulator. Relatively speaking Robolectric tests take longer
than JUnit4 tests but they are still considerably faster than emulator tests.

Figure 3-9. Robolectric Hello World test passes

Jenkins
Moving to an Agile process can create considerable overhead. Thankfully
we no longer have to worry about the emulator taking so long to fire up for
vanilla JUnit tests. It takes seconds now instead of minutes. However, as
the app grows and the corresponding number of unit tests grows too, then
eventually it’s going to take time to run the tests manually. The number of
steps to build and test the apps correctly will also start to become more
complex. And as humans are not good at tedious multistep processes, it
makes sense to use a Continuous Integration (CI) server to automate the
process wherever possible to reduce any unnecessary testing errors.

For our purposes we’re going to use Jenkins because it has so many
plug-ins available. However, there are many other options, such as Travis,
TeamCity, or Bamboo, that can work equally well if you’re more familiar with
those CI environments.

Install
Download the Jenkins server from http://jenkins-ci.org/. Install it and
go to http://localhost:8080 and you should see the screen shown in
Figure 3-10.

http://jenkins-ci.org/

CHAPTER 3: Third-Party Tools38

Configure Jenkins
To make it useful in our Android environment we’re going to need to add
a number of plug-ins. Click on Manage Jenkins ➤ Manage Plugins (see
Figure 3-10) and search for and add the Gradle and GIT plug-in or whatever
other source code management system you use. When you’re done, your
installed plug-ins screen should look something like the screen in Figure 3-11.

Figure 3-10. Jenkins start-up screen

Figure 3-11. Installed plug-ins

CHAPTER 3: Third-Party Tools

39

Next we need to configure Jenkins so it knows where you installed
Android. Click Manage Jenkins ➤ Configure System, scroll down to Global
Properties, click Environment variables check box, and enter the directory
for the ANDROID_HOME where you installed Android (see Figure 3-12).

Figure 3-12. Setting Environment variables

Create Automated job
Now that we’ve configured Jenkins we need to create our first automated
job. Go back to the dashboard and click create new jobs (Figure 3-10). Enter
the name of your project and choose Freestyle project (see Figure 3-13).

Figure 3-13. Creating a new item

We need to tell Jenkins where to find the code. In this example we’re using
Git as our source code management system. Here we’re again using the
Google NetworkConnect sample. Enter the Git repository URL. As it’s a
public repo there are no credentials, so we’re going to skip that. There is
also only one branch, so we can leave the Branch Specifier as master
(see Figure 3-14).

CHAPTER 3: Third-Party Tools40

Scroll down to the Build section and choose Invoke Gradle script
(see Figure 3-15).

Figure 3-14. Enter Network Connect repository details

Figure 3-15. Invoke Gradle script

In the Build step choose Use Gradle Wrapper, check Make gradlew
executable and From Root Build Script Dir. Enter --refresh-dependencies
and --profile in the switches section. And in this case enter assemble in
the Tasks section. Click save (see Figure 3-16).

CHAPTER 3: Third-Party Tools

41

Now we’re ready to build our app. Click Build Now on the Project page
(see Figure 3-17).

Figure 3-16. Configure the Build

Figure 3-17. Project page

Once the Build starts, you’ll see a progress indicator to see how your task is
doing. If you want to see what’s happening then click the Build Number
(see Figure 3-18).

CHAPTER 3: Third-Party Tools42

Now click Console Output and you can see what’s happening as if you were
running the app from the command line (see Figure 3-19).

Figure 3-18. View Build progress

Figure 3-19. Click Console Output

CHAPTER 3: Third-Party Tools

43

In our example there are no errors and the Build is successful (see Figure 3-20).
If that’s not the case, then the Console Output page can be really helpful to
see what failed.

Figure 3-20. Console Output

We’ll be using Jenkins later in the book to automate our JUnit and Espresso
tests.

Summary
In this chapter we’ve looked at a number of tools that we’re going to use
throughout the book to make our testing more effective and more efficient.
In the recent past it’s been a very frustrating task to get this stack up and
running, but thankfully that is no longer the case.

45

Chapter 4
Mocking
One of the major goals whether it’s on the Android platform or not is to
isolate the code that we’re testing. When we write our tests, we want to test
a specific class’s method without any of the associated interactions with
other classes in the app or any external elements, such as a web service.
We should be testing a single method, not its dependencies and this method
should be the only code covered by the test with everything else mocked.

Mocking out these third-party interactions is a great way to help us put a
fence around a method so we’re not reliant on such things as the network or
a device’s location or US or UK time when we’re doing our testing. The only
reason a test should fail is because there’s something wrong with the code,
never because external dependencies (like the wifi) are not working.

But there’s another major Android-specific reason we want to use Mocking
frameworks and that’s because we want all our tests to be @SmallTests,
tests that can be run without an emulator. Mocking dependencies allows
you to get your tests to run orders of magnitude quicker than the dreaded
alternative, which is to wait a couple minutes for the emulator to start. Sure
there are times when you need to use an emulator, such as when you’re
testing Activities (see Chapter 5), but if you’re not testing Activities mocking
gives you the confidence to annotate your tests as @SmallTest without the
emulator overhead.

In this chapter we’ll look at using Mockito to mock out the following
interactions for both test isolation and faster test execution.

	Shared preferences

	Time

	Settings

	SQLite databases

http://dx.doi.org/10.1007/978-1-4842-9701-8_5

CHAPTER 4: Mocking46

We’ve also already covered web services briefly in Chapter 2.

Shared Preferences
Shared preferences are typically stored as xml files on the device in the
/data/data/<name of your package> folder. Under normal circumstances,
any testing that requires file system access means using an emulator, unless
we use Mockito.

In our example, to show how this works, we’re going to use a simple
login app. It doesn’t do much other than let you log in with a username,
password, and e-mail address and then display the information on the
second page (see Figure 4-1).

Figure 4-1. Registration app

http://dx.doi.org/10.1007/978-1-4842-9701-8_2

CHAPTER 4: Mocking

47

In our fake app we want to show that the user has already registered,
so the first time the user logs in we’re going to write to the app’s shared
preferences. Listing 4-1 shows the code for writing to the shared
preferences file. The method takes an Activity and a string as its parameters.
The complete code is available in the Source Code/Download area of the
Apress web site the Source Code/Download area of the Apress web site
(www.apress.com).

Listing 4-1. Saving to the Shared Preferences

public void saveSharedPreferences(Activity activity, String spValue) {
 SharedPreferences preferences = activity.getPreferences(Activity.MODE_

PRIVATE);
 preferences.edit().putString(SHAREDPREF, spValue).apply();
}

Listing 4-2 shows the call to check to see the value stored in our shared
preferences.

Listing 4-2. Reading from Shared Preferences

public String getSharedPreferences(Activity activity) {
 SharedPreferences preferences = activity
 .getPreferences(Activity.MODE_PRIVATE);
 return preferences.getString(SHAREDPREF, "Not registered");
}

Run the app on the Android emulator and enter your login credentials. You
can see what’s stored in the shared preferences, by running the adb shell
command on the emulator (see Listing 4-3). It will also work on a rooted
device.

Listing 4-3. Login App’s Shared Preference

>adb shell
root@generic:/ # cd /data/data/com.riis.hellopreferences/shared_prefs
root@generic:/data/data/com.riis.hellopreferences/shared_prefs # ls
MainActivity.xml
root@generic:/data/data/com.riis.hellopreferences/shared_prefs # cat
MainActivity.xml
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
 <string name="registered">true</string>
</map>

http://www.apress.com/

CHAPTER 4: Mocking48

Shared preferences is built into Android functionality, meaning that we
don’t need to test it. In a real app we may want to test our code, assuming
that the user is already registered when the app is under test. Listing 4-4
shows the mocked-out call for the getSharedPreferences method,
sharedPreferencesTest_ReturnsTrue.

Listing 4-4. Mocked getSharedPreferences

// Annotation to tell compiler we're using Mockito
@RunWith(MockitoJUnitRunner.class)
public class UserPreferencesTest {

 // Use Mockito to initialize UserPreferences
 public UserPreferences tUserPreferences = Mockito.mock(UserPreferences.

class);

 private Activity tActivity;

 @Before
 public void setUp() {
 // setup the test infrastructure
 // Use Mockito to declare the return value of getSharedPreferences()
 Mockito.when(tUserPreferences.getSharedPreferences(tActivity)).

thenReturn("true");
 }

 @Test
 public void sharedPreferencesTest_ReturnsTrue() {
 // Perform test
 Assert.assertThat(tUserPreferences.getSharedPreferences(tActivity),

is("true"));
 }
}

sharedPreferencesTest_ReturnsTrue always returns true so we can bypass
the shared preferences and get on with what’s important in our testing. In
this example we fix the shared preferences code so that it always returns
true. Mainly because it never actually runs the shared preferences code.
The setup block tells Mockito how you want it to behave, and the mocked
version of that class will behave as it was instructed, always returning true.

Time
Taking advantage of interfaces can be a very useful mocking technique. For
example, if we have a Clock interface that calls a Clock implementation class
which tells the time, then we use Mockito to mock the interface Clock class
to provide our own Android date/time environment. The interface abstraction

CHAPTER 4: Mocking

49

allows us to hide the implementation so we can have complete control over
time zones and time of day and create a lot more edge case tests to really
work our code. This is a simple example of “coding to the interface”. The
interface is the contract we’re trying to satisfy when we write our code.
However when testing the implementation the interface can talk to either the
real implementation, the mocked one, or even a combination of the two.

Listing 4-5 shows the Clock interface code.

Listing 4-5. Clock Interface

import java.util.Date;

public interface Clock {
 Date getDate();
}

Listing 4-6 shows the Clock implementation code.

Listing 4-6. ClockImpl Code

import java.util.Date;

public class ClockImpl implements Clock {
 @Override
 public Date getDate() {
 return new Date();
 }
}

The concept here is just like the Shared Preferences. We don’t have to test
any java.util.Date functionality; we want to test only the code we write
that uses it. Listing 4-7 has a couple of simple methods that double and
triple the time in milliseconds.

Listing 4-7. Timechange Code

public class TimeChange {

 private final Clock dateTime;

 public TimeChange(final Clock dateTime) {
 this.dateTime = dateTime;
 }

 public long getDoubleTime(){
 return dateTime.getDate().getTime()*2;
 }

CHAPTER 4: Mocking50

 public long getTripleTime(){
 return dateTime.getDate().getTime()*3;
 }
}

In our testing code (see Listing 4-8), we mock out the Clock and the
java.util.Date classes which allows us to set the time to whatever
value we want and run some assertions to make sure our doubleTime and
tripleTime methods are behaving as expected.

Listing 4-8. TimeChangeTest Code

// Tell Android we're using Mockito
@RunWith(MockitoJUnitRunner.class)
public class TimeChangeTest {

 private TimeChange timeChangeTest;

 @Before
 public void setUp() {
 // Mock the Date class
 final Date date = Mockito.mock(Date.class);
 Mockito.when(date.getTime()).thenReturn(10L);

 // Mock the Clock class interface final Clock dt =

Mockito.mock(Clock.class);
 Mockito.when(dt.getDate()).thenReturn(date);

 timeChangeTest = new TimeChange(dt);
 }

 @Test
 public void timeTest() {
 final long doubleTime = timeChangeTest.getDoubleTime();
 final long tripleTime = timeChangeTest.getTripleTime();
 assertEquals(20, doubleTime);
 assertEquals(30, tripleTime);
 }
}

System Properties
If we want to avoid using the emulator for testing we need to fake any Java
or built-in Android functionality. In most cases this is exactly what we’re
looking for; as we’ve seen in the previous example, we’re not testing the
shared preferences functionality or the date functionality. Similarly, we don’t
want to test Android settings (such as the Audio Manager).

CHAPTER 4: Mocking

51

Our AudioHelper code has a single method, maximizeVolume. Listing 4-9
shows our code to max out the volume.

Listing 4-9. Testing the Max-Min Limits of Our Code

import android.media.AudioManager;

public class AudioHelper {
 public void maximizeVolume(AudioManager audioManager) {
 int max = audioManager.getStreamMaxVolume(AudioManager.STREAM_RING);
 audioManager.setStreamVolume(AudioManager.STREAM_RING, max, 0);
 }
}

Listing 4-10 shows our test code to set the ringer to the max volume.

Listing 4-10. Max Volume Limits

/**
 * Unit tests for the AudioManager logic.
 */
// Define the test as SmallTest for grouping tests
@SmallTest
public class AudioHelperTest {
 private final int MAX_VOLUME = 100;

 @Test
 public void maximizeVolume_Maximizes_Volume() {
 // Create a mockAudioManager object using Mockito
 AudioManager audioManager = Mockito.mock(AudioManager.class);

 // Inform Mockito what to return when audioManager.

getStreamMaxVolume is called Mockito.when(audioManager.
getStreamMaxVolume(AudioManager.STREAM_RING)).thenReturn
(MAX_VOLUME);

 // Run method we're testing, passing mock AudioManager
 new AudioHelper().maximizeVolume(audioManager);

 //verify with Mockito that setStreamVolume to 100 was called.
 Mockito.verify(audioManager).setStreamVolume (AudioManager.STREAM_

RING, MAX_VOLUME, 0);
 }
}

We create the mock AudioManager object, and tell our test code to return the
MaxVolume when we make the call and then we verify that the Mockito set
the volume to our max when the call was made.

CHAPTER 4: Mocking52

Database
Shared preferences are great for storing parameters, URLs (uniform resource
locators), or API (application programming interface) keys to third-party
libraries, but they are not so good for large amounts of tabular data. If you
have a lot of spreadsheet-type data in Android that you want to keep on the
phone, then it’s more common to use a SQLite database for storage as it’s
free, lightweight, and does a great job with 10s to 1,000s of rows of data.
If you need to upgrade to bigger data sets, then you’re much more likely to
store them on a back-end server than on the device itself.

Using our sample app (see Figure 4-1, again), we can add the username
and e-mail to a SQLite database. To write to the SQLite database you need
SQLHelper code (see Listing 4-11). This is typical boilerplate code used for
Android SQLite applications. It creates and upgrades the database and its
tables. In this case the Users table has a column for an autogenerated ID as
well as the user’s name and e-mail address.

Listing 4-11. SQLite Code to Create User Database

public class SQLHelper extends SQLiteOpenHelper {
 private static final int DATABASE_VERSION = 1;
 private static final String DATABASE_NAME = "UserDb";

 private static final String TABLE_USERS = "Users";
 private static final String KEY_ID = "id";
 private static final String KEY_FIRST_NAME = "firstName";
 private static final String KEY_LAST_NAME = "lastName";

 private static final String[] COLUMNS = {KEY_ID, KEY_FIRST_NAME,

KEY_LAST_NAME};

 public SQLHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 String CREATE_USER_TABLE = "CREATE TABLE Users (" +
 "id INTEGER PRIMARY KEY AUTOINCREMENT, " +
 "firstName TEXT, "+
 "lastName TEXT)";
 db.execSQL(CREATE_USER_TABLE);
 }

CHAPTER 4: Mocking

53

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 db.execSQL("DROP TABLE IF EXISTS Users");
 this.onCreate(db);
 }

 public void addUser(User user){
 SQLiteDatabase db = this.getWritableDatabase();

 ContentValues values = new ContentValues();
 values.put(KEY_FIRST_NAME, user.getFirstName());
 values.put(KEY_LAST_NAME, user.getLastName());

 db.insert(TABLE_USERS, null, values);
 db.close();
 }

 public User getUser(int id){
 SQLiteDatabase db = this.getReadableDatabase();
 Cursor cursor = db.query(TABLE_USERS, COLUMNS, " id = ?", new

String[] { String.valueOf(id) }, null, null, null, null);

 if (cursor != null) {
 cursor.moveToFirst();
 }

 User user = new User();
 user.setId(Integer.parseInt(cursor.getString(0)));
 user.setFirstName(cursor.getString(1));
 user.setLastName(cursor.getString(2));
 return user;
 }
}
}

In the past, developers have isolated their databases during testing by using
an in-memory SQLite database. You can do this by leaving the DATABASE_
NAME as null (i.e., super(context, null, null, DATABASE_VERSION);).
Unfortunately, this won’t work for us as it still requires an emulator, so we’re
going to have to rely on our mocking.

Listing 4-12 shows the UserOperations code that we want to test: this is our
create, read, update, delete (CRUD) code.

CHAPTER 4: Mocking54

Listing 4-12. CRUD Code for Our Database Calls

public class UserOperations {

 private DataBaseWrapper dbHelper;
 private String[] USER_TABLE_COLUMNS = { DataBaseWrapper.USER_ID,

DataBaseWrapper.USER_NAME, DataBaseWrapper.USER_EMAIL };
 private SQLiteDatabase database;

 public UserOperations(Context context) {
 dbHelper = new DataBaseWrapper(context);
 }

 public void open() throws SQLException {
 database = dbHelper.getWritableDatabase();
 }

 public void close() {
 dbHelper.close();
 }

 public User addUser(String name, String email) {

 ContentValues values = new ContentValues();
 values.put(DataBaseWrapper.USER_NAME, name);
 values.put(DataBaseWrapper.USER_EMAIL, email);

 long userId = database.insert(DataBaseWrapper.USERS, null, values);

 Cursor cursor = database.query(DataBaseWrapper.USERS,
 USER_TABLE_COLUMNS, DataBaseWrapper.USER_ID + " = "
 + userId, null, null, null, null);

 cursor.moveToFirst();

 }

 public void deleteUser(User comment) {
 long id = comment.getId();

 database.delete(DataBaseWrapper.USERS, DataBaseWrapper.USER_ID
 + " = " + id, null);
 }

 public List getAllUsers() {
 List users = new ArrayList();

 Cursor cursor = database.query(DataBaseWrapper.USERS,
 USER_TABLE_COLUMNS, null, null, null, null, null);

CHAPTER 4: Mocking

55

 cursor.moveToFirst();
 while (!cursor.isAfterLast()) {
 User user = parseUser(cursor);
 users.add(user);
 cursor.moveToNext();
 }

 cursor.close();
 return users;
 }

 public String getUserEmailById(long id) {

 User regUser = null;

 String sql = "SELECT " + DataBaseWrapper.USER_EMAIL + " FROM " +

DataBaseWrapper.USERS + " WHERE " + DataBaseWrapper.USER_ID + " = ?";

 Cursor cursor = database.rawQuery(sql, new String[] { id + "" });

 if (cursor.moveToNext()) {
 return cursor.getString(0);
 } else {
 return "N/A";
 }

 }

 private User parseUser(Cursor cursor) {
 User user = new User();
 user.setId((cursor.getInt(0)));
 user.setName(cursor.getString(1));
 return user;
 }

}

In our tests we’re going to mock out an addUser(name, email) call
(see Listing 4-13).

Listing 4-13. testMockUser Code

/**
 * Unit tests for the User Database class.
 */
@SmallTest
public class DatabaseTest {
 private User joeSmith = new User("Joe", "Smith");
 private final int USER_ID = 1;

CHAPTER 4: Mocking56

 @Test
 public void testMockUser() {
 //mock SQLHelper
 SQLHelper dbHelper = Mockito.mock(SQLHelper.class);
 //have mockito return joeSmith when calling dbHelper getUser
 Mockito.when(dbHelper.getUser(USER_ID)).thenReturn(joeSmith);

 //Assert joeSmith is returned by getUser
 assertEquals(dbHelper.getUser(USER_ID), joeSmith);
 }
}

In the setup we mock out the dbHelper class as well as the underlying
SQLiteDatabase. In testMockUser we do a simple test call that the returned
user is Joe Smith.

Jenkins
In an ideal environment, we want to have the tests run automatically, every
time the code is checked in using a Continuous Integration Server such as
Jenkins, which we covered in Chapter 3.

To run the unit tests in Jenkins, click Add Build Step ➤ Invoke Gradle script
and add the testCompile task as shown in Figure 4-2.

Figure 4-2. Running unit tests in Jenkins

http://dx.doi.org/10.1007/978-1-4842-9701-8_3

CHAPTER 4: Mocking

57

Summary
In this chapter we’ve looked at a number of scenarios for using Mockito
to isolate our tests from any underlying Android and Java dependencies.
The reason we do this is to ensure that we are only testing the code we
wish to test, and not any of the code interacting with it. The code you write
should all be unit tested, including mocks to mimic the interactions with its
dependencies.

Working code from this chapter can be found online on the Apress website.

59

Chapter 5
Espresso
Android apps fail for a number of reasons other than simple logic errors.
At its most basic, the app may not install correctly, or there may be a
problem when you move from landscape to portrait and back again.
Because of fragmentation, the layout might not work on any number of
devices that you haven’t had the time to test it on, or it could hang if the
network is down.

It’s just not possible to test for these conditions using unit testing. We’re
going to have to use another testing tool to test our GUIs (graphical user
interfaces) or activities. And, unfortunately, it also means we’re back to using
devices and emulators to do our testing.

There are lots of options out there, such as UIAutomator, Calabash,
Robotium, and Selenium. Until recently I’ve been using Calabash because of
its Given/When/Then writing format which works great with business users.
However, there are significant advantages to using Espresso, which are too
hard to resist.

All these other products are third-party products whereas Espresso is a
Google first-party product. Usually this wouldn’t be any sort of advantage,
but because of Espresso’s ability to hook into the Android life cycle it does a
wonderful job of knowing exactly when the activity is ready to perform your
tests. GUI tests in Android are typically full of sleep() commands to ensure
that the activity is ready to accept your data. With Espresso there is simply
no need for any waiting or sleeping; it just fires the test when the app is
ready to accept the input data. This synchronization between the UI thread
and Espresso means that tests run much more reliably than with the other
tools. If a test fails, then it’s because there’s an error in your code rather than
that you need to add more time to the sleep() command.

CHAPTER 5: Espresso60

onView
While we already looked at the Espresso in Chapter 1, it makes sense to go
back to basics and do a real Hello, World Espresso test.

In Chapter 1 we showed how to set up the Espresso environment as follows:

	Prerequisites: Install the Android Support Repository

	Add Espresso dependency in build.gradle (app) file

	Choose Android Test Instrumentation test artifact in
Build Variant

	Create GUI tests in src/androidTest/java folder

	Right-click tests to run tests

Instead of JUnit or Hamcrest matchers and assertions, Espresso uses the
OnView format. This has three parts, namely a ViewMatcher to find the
element in the activity we’re testing, a ViewAction to perform the action (e.g.,
click) and finally a ViewAssertion to make sure the text matches and the test
passes.

onView(ViewMatcher)
 .perform(ViewAction)
 .check(ViewAssertion);

Hello World
Listing 5-1 shows the code for the standard Android Hello World app.

Listing 5-1. Hello World

public class MainActivity extends Activity {

 private TextView mLabel;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 }
}

Figure 5-1 shows the app running on the emulator. Our simple Espresso test
is going to find the text and make sure it’s really saying Hello world!

http://dx.doi.org/10.1007/978-1-4842-9701-8_1
http://dx.doi.org/10.1007/978-1-4842-9701-8_1

CHAPTER 5: Espresso

61

Listing 5-2 shows the code for the simple test. The test is annotated as a @
LargeTest because we need the emulator to run Espresso tests. We’re using
a JUnit4 rule to launch Main Activity (see the @Rule annotation).

Once we have access to the activity, we use the onView code to find our
Hello World text and a .check to see if the text is what it was defined as in
the strings.xml file. In this case there is no need for the .perform step, so it
is omitted.

Listing 5-2. Hello World Espresso Test

@RunWith(AndroidJUnit4.class)
@LargeTest
public class MainActivityTest {

 @Rule
 public ActivityTestRule<MainActivity> activityTestRule
 = new ActivityTestRule<>(MainActivity.class);

Figure 5-1. Hello world!

CHAPTER 5: Espresso62

 @Test
 public void helloWorldTest() {
 onView(withId(R.id.hello_world))
 .check(matches(withText(R.string.hello_world)));

 }
}

The test passes and the results are shown in Android Studio similar to the
unit test output (see Figure 5-2).

Figure 5-2. Hello World Espresso test results

Adding Buttons
Next let’s add a button to our Hello World code. We do this by adding the
code in Listing 5-3 to our activity_main.xml file. The button_label string
will also need to be added to the strings.xml file. Note that the button is
enabled by default.

Listing 5-3. Adding Hello World Button

<Button
 android:id="@+id/button"
 android:text="@string/button_label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

Figure 5-3 shows our modified app with the new button.

CHAPTER 5: Espresso

63

We want to make sure the button is on or enabled. Listing 5-4 now shows
the test code. This time we’re using the .perform action to click the button.

Listing 5-4. onView Button Test

@Test
public void helloWorldButtonTest(){
 onView(withId(R.id.button))
 .perform(click())
 .check(matches(isEnabled()));
}

The test successfully runs as everything is green (see Figure 5-4).

Figure 5-3. Hello World with button

CHAPTER 5: Espresso64

ViewMatchers
Table 5-1 shows the available ViewMatcher options.

Figure 5-4. Hello World test results

Table 5-1. ViewMatcher

Category Matcher

User Properties withId, withText, withTagKey, withTagValue,
hasContentDescription, withContentDescription,
withHint, withSpinnerText, hasLinks, hasEllipsizedText,
hasMultilineTest

UI Properties isDisplayed, isCompletelyDisplayed, isEnabled,
hasFocus, isClickable, isChecked, isNotChecked,
withEffectiveVisibility, isSelected

ObjectMatcher allOf, anyOf, is, not, endsWith, startsWith, instanceOf

Hierarchy withParent, withChild, hasDescendant, isDescendantOfA,
hasSibling, isRoot

Input supportsInputMethods, hasIMEAction

Class isAssignableFrom, withClassName

Root Matchers isFocusable, isTouchable, isDialog, withDecorView,
isPlatformPopup

Table 5-2. ViewAction

Category Action

Click/Press click, doubleClick, longClick, pressBack, pressIMEActionButton,
pressKey, pressMenuKey, closeSoftKeyboard, openLink

Gestures scrollTo, swipeLeft, swipeRight, swipeUp, swipeDown

Text clearText, typeText, typeTextIntoFocusedView, replaceText

ViewActions
Table 5-2 shows the available ViewAction options.

CHAPTER 5: Espresso

65

ViewAssertions
Table 5-3 shows the available ViewAssertion options.

Table 5-3. ViewAssertion

Package Assertions

Layout Assertions noEllipsizedText, noMultilineButtons, noOverlaps

Position Assertions isLeftOf, isRightOf, isLeftAllginedWith,
isRightAlignedWith, isAbove, isBelow,
isBottomAlignedWith, isTopAlignedWith

Other matches, doesNotExist, selectedDescendentsMatch

onData
onView won’t be able to find the data when we’re using any AdapterViews
such as ListView, GridView, or Spinner. For AdapterViews we have to use
onData in conjunction with the onView to locate and test the item.

The onData format is as follows:

onData(ObjectMatcher)
 .DataOptions
 .perform(ViewAction)
 .check(ViewAssertion)

The DataOptions available are inAdapterView, atPosition, or onChildView.

To Do List
To see how this works let’s look at how to test the ToDoList application
which has a ListView adapter (see Figure 5-5).

CHAPTER 5: Espresso66

Our application uses a ListView adapter. Listing 5-5 shows the code.

Listing 5-5. To Do List Code

public class MainActivity extends Activity {

 private TextView mtxtSelectedItem;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mtxtSelectedItem = (TextView) findViewById(R.id.txt_selected_item);

 String[] todolist = {"pick up the kids","pay bills","do laundry",
 "buy groceries ","go the gym","clean

room","call mum"};

Figure 5-5. ToDoList application

CHAPTER 5: Espresso

67

 List<String> list = Arrays.asList(todolist);
 ArrayAdapter<String> adapter =
 new ArrayAdapter(this, android.R.layout.

simple_list_item_1, list);
 ListView listView = (ListView) findViewById(R.id.list_of_todos);
 listView.setAdapter(adapter);
 listView.setOnItemClickListener(new AdapterView.

OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view, int

position, long id) {
 String text = ((TextView) view).getText().toString();
 Toast.makeText(getApplicationContext(), text, Toast.LENGTH_

LONG).show();
 mtxtSelectedItem.setText(text);
 }
 });
 }

 }

A simple test to make sure everything is working okay would be to pick
something on the todo list, such as “go to the gym.” Listing 5-6 shows
the Espresso code. We’re telling the test to look at position [4] in the
AdapterView in the onData code and then passing that to the onView so that
it can check that the text does indeed say “go to the gym.”

Listing 5-6. onData Test Code

@RunWith(AndroidJUnit4.class)
@LargeTest
public class MainActivityTest {

 @Rule
 public ActivityTestRule<MainActivity> activityTestRule
 = new ActivityTestRule<>(MainActivity.class);

 @Test
 public void toDoListTest(){
 onData(anything())
 .inAdapterView(withId(R.id.list_of_todos)).atPosition(4)
 .perform(click());

 onView(withId(R.id.txt_selected_item))
 .check(matches(withText("go to the gym")));
 }

}

CHAPTER 5: Espresso68

Run the test once again using the emulator or on a device.

Jenkins
To run the Espresso tests in Jenkins, click Add Build Step ➤ Invoke Gradle
Script and add the connectedCheck task (see Figure 5-6).

Figure 5-6. Adding Espresso tests in Jenkins

Figure 5-7. Using an existing emulator

Espresso needs an emulator to perform its tests, so you also need to install
the Android Emulator plug-in. You can choose to let Jenkins use an
existing emulator or create a new one (see Figure 5-7).

Summary
In this chapter we’ve looked at a number of Espresso tests using both
onView and onData. Finally, if you’re wondering how many Espresso tests
we should have in our suite of tests, then go back to our Agile Test Pyramid
in Chapter 1 (Figure 1-1) and you will see that we should always have a lot
more unit tests than Espresso tests, or to put it another way more
@SmallTests than @LargeTests.

http://dx.doi.org/10.1007/978-1-4842-9701-8_1
http://dx.doi.org/10.1007/978-1-4842-9701-8_1#Fig1

69

Chapter 6
Test-Driven
Development
It wouldn’t be right if we didn’t make an effort to show test-driven
development (TDD) in action. So, in this chapter we’re going to create an
app from scratch using our TDD approach. Using TDD, we’re going to
create a sample app for a daily horoscope. I’m not an astrology fanatic by
any means, but it’s a simple enough app that will allow us to show our TDD
techniques in action.

Understanding Test-Driven Development
TDD means that we take the first feature on our list of features and code
using the following process:

	Write a test first and see it fail (red)

	Implement the simplest possible solution to get our test
to pass (green)

	Refactor to remove any code smells (refactor)

In reality you’re probably going to need more than a single test to satisfy a
feature. But once you’re happy that you’ve implemented the feature, take
another feature from the list and repeat the red/green/refactor process until
all the features are completed.

CHAPTER 6: Test-Driven Development70

Unit Testing and TDD
So far we’ve been focused on unit testing our Android apps. But unit testing
is not necessarily TDD. Test-driven development means writing the unit test
before writing the code, whereas unit tests don’t mandate when you write
tests. Without TDD, more often than not unit tests are written at the end of a
coding cycle to improve code coverage metrics. So, you can do unit testing
with or without TDD, but you can’t do TDD without unit testing. Once you start
TDD, you will soon discover that it causes less pain than classic unit testing.

Value of TDD
We know that unit testing and testing in general help catch mistakes, but
why would we use TDD? There are several fundamental reasons. TDD
pushes the developer to write code for only what is minimally needed to
implement a feature, so it helps us shape our design to implement the
features required for actual or real use without any gold-plating in our
implementation—saving money and reducing complexity. We call this
YAGNI, or “you ain’t gonna need it.” It leads to much simpler code, as the
implementation is focused on what’s required and not necessarily on what
you might be able to do.

In these days of faster mobile startups, YAGNI also encourages getting a
minimum viable product (MVP) out the door as quickly as possible. The
business owners choose the bare minimum of features needed to launch an
app in Google Play or the Amazon App Store. This minimum feature list is
then split into manageable chunks that feed your developer’s TDD process.

Unit testing without practicing TDD can also get you a great regression test
suite that will help you avoid introducing any defects as you code. Because
we’re writing unit tests before we write any code, the TDD regression test
suite is going to have more coverage and be much more comprehensive
than unit testing without TDD.

Note In classic TDD, whether it’s in Java, C++ or C#, you don’t have to worry
about any infrastructure. But things aren’t that straightforward in Android. When
you create a Java class to test, you often have to create an Activity that will
display or interact with that Java class. So, when you say write the simplest
possible solution to get the unit test to pass, that will also have to include some
Android Activity code too. Alternatively, you can leave that to the refactoring
stage if you like, but it just needs to be completed somewhere in the red/green/
refactor process.

CHAPTER 6: Test-Driven Development

71

Also because of the ongoing refactoring, the code becomes more
maintainable and much leaner, thereby leading to a longer life for your
codebase. It is very easy to write horrible, untestable code in Android.
Refactoring will encourage you to write small, focused, possibly single-line
methods that are easily tested rather than monolithic Android views.

Finally, the process of coding in this continuous red/green/refactor cycle
helps kill procrastination, as the focus is on small, discrete steps and the
app gradually emerges from the bottom up as one feature after another is
implemented.

Writing an App Using TDD
Before we get started we’re going to need some basic requirements for our
horoscope app.

	Display each star sign

	Display information about each star sign

	Display horoscope for star sign

There are lots of other things we could add, but we’re practicing YAGNI so
we’re going to go with the minimum of features for our MVP horoscope app.

Feature 1
TDD means write the test first—which will fail—get the test to pass, and
then refactor. Our first feature is to display each star sign. Create an Android
app called Horoscope with an empty Activity using the Android wizard. Our
first test uses Robolectric which we introduced in Chapter 3 to test that we
have 12 signs displayed (see Listing 6-1).

Listing 6-1. Robolectric Test

@RunWith(RobolectricGradleTestRunner.class)
@Config(constants = BuildConfig.class, sdk = 21, manifest = "src/main/
AndroidManifest.xml")
public class ZodiacUnitTest {
 private Activity mainActivity;
 private ListView lstView;

 @Before
 public void setUp() {
 // Robolectric sets up the MainActivity class
 mainActivity= Robolectric.setupActivity(MainActivity.class);
 assertNotNull("Main Activity not setup",mainActivity);

http://dx.doi.org/10.1007/978-1-4842-9701-8_3

CHAPTER 6: Test-Driven Development72

 // add a listview to your layout file to get the test to compile
 lstView=(ListView)mainActivity.findViewById(R.id.list_of_signs);
 }

 @Test
 public void shouldDisplaySigns() throws Exception {
 assertThat("should be a dozen star signs", 12, equalTo(lstView.

getCount()));
 }
}

The test code sets up a MainActivity and sees if we have 12 signs on our
listView. Run the test and, of course, it fails (see Figure 6-1).

Figure 6-1. Test fails (red)

MainActivity.java (see Listing 6-2) has a ListView which uses the ListView
item, list_of_signs, in our activity_main.xml layout file.

Listing 6-2. MainActivity.java

public class MainActivity extends AppCompatActivity {
 private Zodiac zodiac;
 private TextView mtxtSelectedItem;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 ListView listView = (ListView) findViewById(R.id.list_of_signs);
 }

}

The simplest way to get the code to compile is to add a zodiac_array in the
strings.xml file (see Listing 6-3).

CHAPTER 6: Test-Driven Development

73

Listing 6-3. strings.xml

<resources>
 <string name="app_name">Horoscope</string>
 <string-array name="zodiac_array">
 <item>Aries</item>
 <item>Taurus</item>
 <item>Gemini</item>
 <item>Cancer</item>
 <item>Leo</item>
 <item>Virgo</item>
 <item>Libra</item>
 <item>Scorpio</item>
 <item>Sagittarius</item>
 <item>Capricorn</item>
 <item>Aquarius</item>
 <item>Pisces</item>
 </string-array>
</resources>

Now reference this array in the layout file (see Listing 6-4).

Listing 6-4. android_main.xml layout file

<ListView
 android:id="@+id/list_of_signs"
 android:entries="@array/zodiac_array"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
</ListView>

Run the test again and it passes (see Figure 6-2). Robolectric does take
longer than vanilla unit tests to run but it’s still seconds and not minutes.
And we’re getting Espresso test functionality without needing an emulator.

Figure 6-2. Test passes (green)

For this feature, we don’t need to do any refactoring probably because the
code is so limited. Instead we’ll add more tests (see Listing 6-5).

CHAPTER 6: Test-Driven Development74

Listing 6-5. Updated ZodiacUnitTests

/**
 * If the Robolectric test will not run, edit the test configuration and add
\app to the
 * end of the Working Directory path (windows) or enter $MODULE_DIR$ (mac).
 */
@RunWith(RobolectricGradleTestRunner.class)
@Config(constants = BuildConfig.class, sdk = 21, manifest = "src/main/
AndroidManifest.xml")
public class ZodiacUnitTest {
 private ListView listView;
 private String[] zodiacSigns;

 @Before
 public void setUp() {
 MainActivity mainActivity = Robolectric.buildActivity(MainActivity.

class).create().get();
 assertNotNull("Main Activity not setup", mainActivity);
 listView=(ListView) mainActivity.findViewById(R.id.list_of_signs);
 zodiacSigns = RuntimeEnvironment.application.getResources().

getStringArray(R.array.zodiac_array);
 }

 @Test
 public void listLoaded() throws Exception {
 assertThat("should be a dozen star signs", zodiacSigns.length,

equalTo(listView.getCount()));
 }
 @Test
 public void listContentCheck() {
 ListAdapter listViewAdapter = listView.getAdapter();
 assertEquals(zodiacSigns[0], listViewAdapter.getItem(0));
 assertEquals(zodiacSigns[1], listViewAdapter.getItem(1));
 assertEquals(zodiacSigns[2], listViewAdapter.getItem(2));
 assertEquals(zodiacSigns[3], listViewAdapter.getItem(3));
 assertEquals(zodiacSigns[4], listViewAdapter.getItem(4));
 assertEquals(zodiacSigns[5], listViewAdapter.getItem(5));
 assertEquals(zodiacSigns[6], listViewAdapter.getItem(6));
 assertEquals(zodiacSigns[7], listViewAdapter.getItem(7));
 assertEquals(zodiacSigns[8], listViewAdapter.getItem(8));
 assertEquals(zodiacSigns[9], listViewAdapter.getItem(9));
 assertEquals(zodiacSigns[10], listViewAdapter.getItem(10));
 assertEquals(zodiacSigns[11], listViewAdapter.getItem(11));
 }
}

Figure 6-3 shows the app after the first feature is completed.

CHAPTER 6: Test-Driven Development

75

Feature 2
In feature 2 we want to “Display information about each star sign.” We need
to create the Zodiac class to store all our information. So, assume that we
have the following variables declared (see Listing 6-6).

Listing 6-6. Zodiac Variables

private String name;
private String description;
private String symbol;
private String month;

We could store the information in a SQLite database but that’s not a
requirement, so we’ll take the easiest route and instead store the zodiac sign
information in a class. Our new unit tests are now shown in Listing 6-7.

Figure 6-3. List of star signs

CHAPTER 6: Test-Driven Development76

Listing 6-7. Unit Tests

@Test
 public void zodiacSymbolTest() throws Exception {
 TextView symbolTextView = (TextView) zodiacDetailActivity.

findViewById(R.id.symbol);
 assertEquals(Zodiac.signs[ARIES_SIGN_INDEX].getSymbol(),

symbolTextView.getText().toString());
 }

 @Test
 public void zodialMonthTest() throws Exception {
 TextView monthTextView = (TextView) zodiacDetailActivity.

findViewById(R.id.month);
 assertEquals(Zodiac.signs[ARIES_SIGN_INDEX].getMonth(),

monthTextView.getText().toString());
 }

 @Test
 public void zodiacNameTest() {
 TextView nameTextView = (TextView) zodiacDetailActivity.

findViewById(R.id.name);
 assertEquals(Zodiac.signs[ARIES_SIGN_INDEX].getName(), nameTextView.

getText().toString());
 }

As expected, seeing as we’re in the red part of the red/green/refactor TDD
cycle, the unit tests all fail (see Figure 6-4).

Figure 6-4. New unit tests fail

Complete the Zodiac class (see Listings 6-8 and 6-9) to store the horoscope
information.

Listing 6-8. Updated Zodiac Class

public class Zodiac {
 private String name;
 private String description;
 private String symbol;
 private String month;

CHAPTER 6: Test-Driven Development

77

 public static final Zodiac[] signs = {
 new Zodiac("Aries","Courageous and Energetic.", "Ram", "April"),
 new Zodiac("Taurus","Known for being reliable, practical,

ambitious and sensual.", "Bull", "May"),
 new Zodiac("Gemini","Gemini-born are clever and intellectual.",

"Twins", "June"),
 new Zodiac("Cancer","Tenacious, loyal and sympathetic.", "Crab", "July"),
 new Zodiac("Leo","Warm, action-oriented and driven by the desire

to be loved and admired.", "Lion", "August"),
 new Zodiac("Virgo","Methodical, meticulous, analytical and

mentally astute.", "Virgin", "September"),
 new Zodiac("Libra","Librans are famous for maintaining balance

and harmony.", "Scales","October"),
 new Zodiac("Scorpio","Strong willed and mysterious.",

"Scorpion", "November"),
 new Zodiac("Sagittarius","Born adventurers.", "Archer", "December"),
 new Zodiac("Capricorn","The most determined sign in the

Zodiac.", "Goat", "January"),
 new Zodiac("Aquarius","Humanitarians to the core", "Water

Bearer", "February"),
 new Zodiac("Pisces","Proverbial dreamers of the Zodiac.",

"Fish", "March"),
 };

 private Zodiac(String name, String description, String symbol, String month) {
 this.name = name;
 this.description = description;
 this.symbol = symbol;
 this.month = month;
 }

 public String getDescription() { return description; }

 public String getName() { return name; }

 public String getSymbol() { return symbol; }

 public String getMonth() { return month; }

 public String toString() { return this.name; }

}

CHAPTER 6: Test-Driven Development78

A lot has happened in this feature. The obvious refactoring step would be
to put the information stored in Zodiac.java into a SQLite database. That
doesn’t add anything to our discussion so you can find the refactored code
with the rest of source code at the Apress website.

The feature is now complete (see Figure 6-6).

Listing 6-9. ZodiacDetailActivity class

public class ZodiacDetailActivity extends Activity {

 public static final String EXTRA_SIGN = "ZodiacSign";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_zodiac_detail);

 int signNum = (Integer) getIntent().getExtras().get(EXTRA_SIGN);
 Zodiac zodiac = Zodiac.signs[signNum];

 TextView name = (TextView) findViewById(R.id.name);
 name.setText(zodiac.getName());

 TextView description = (TextView) findViewById(R.id.description);
 description.setText(zodiac.getDescription());

 TextView symbol = (TextView) findViewById(R.id.symbol);
 symbol.setText(zodiac.getSymbol());

 TextView month = (TextView) findViewById(R.id.month);
 month.setText(zodiac.getMonth());
 }
}

Run the tests and they now pass (see Figure 6-5).

Figure 6-5. Zodiac unit tests pass

CHAPTER 6: Test-Driven Development

79

Figure 6-6. Information on star sign

Feature 3
Feature 3 says we should display the horoscope for star sign. So once
again, let’s start with the testing. The requirement is that it has got to be
free and available in XML or JSON (Java Script Object Notation). We can
create our own simple API or use one of the many free APIs from
http://fabulously40.com or http://findyourfate.com.

We’re going to use an API that calls the Onion’s horoscope from
http://a.knrz.co/horoscope-api.

We know from our Mockito examples in Chapter 4 that we’re not going to
test any network communication and testing our AyncTask methods is not
something we want to do in our unit testing. But we should be testing our own
methods that manipulate the returned horoscopes JSON (see Listing 6-10).

http://fabulously40.com/
http://findyourfate.com/
http://a.knrz.co/horoscope-api
http://dx.doi.org/10.1007/978-1-4842-9701-8_4

CHAPTER 6: Test-Driven Development80

Listing 6-10. JSON Testing

@SmallTest
public class DailyZodiacTest {
 private JsonParser mJsonParser;
 private String validJson, invalidJson;
 private BufferedReader bufferedReader;

 @Before
 public void setUp() throws IOException {
 validJson = "{\n" +
 " \"year\": 2015,\n" +
 " \"week\": 45,\n" +
 " \"sign\": \"aries\",\n" +
 " \"prediction\": \"Test1\"\n" +
 "}";
 invalidJson = "bogus";
 mJsonParser = new JsonParser();
 bufferedReader = org.mockito.Mockito.mock(BufferedReader.class);
 Mockito.when(bufferedReader.readLine()).thenReturn(validJson).

thenReturn(null);
 }

 @Test
 public void validJSON_true() {
 assertTrue(mJsonParser.isValidJSON(validJson));
 }

 @Test
 public void invalidJSON_false() {
 assertFalse(mJsonParser.isValidJSON(invalidJson));
 }

 @Test
 public void testCreateJsonObjectReturnsJsonObject() throws JSONException {
 JSONObject jsonObject = mJsonParser.createJsonObject(bufferedReader);
 String horoscope = jsonObject.getString("prediction");
 assertEquals("Test1", horoscope);
 }
}

The tests fail and we write the code to make them pass by creating the
createJsonObject and isValidJson method in a new class called JsonParser
(see Listing 6-11).

CHAPTER 6: Test-Driven Development

81

Listing 6-11. Valid JSON Code

protected JSONObject createJsonObject(BufferedReader reader) {
 try {
 StringBuilder sb = new StringBuilder();
 JSONObject jsonObject;
 String line;
 String json;

 while ((line = reader.readLine()) != null) {
 sb.append(line).append("\n");
 }

 json = sb.toString();
 jsonObject = new JSONObject(json);

 return jsonObject;
 } catch (Exception e) {
 Log.e(TAG, "Error converting result " + e.toString());
 }

 return null;
 }

 public boolean isValidJSON(String horoscope){
 try {
 new JSONObject(horoscope);
 return true;
 } catch (JSONException e) {
 e.printStackTrace();
 return false;
 }
 }

Run the tests again and they pass. As the API call relies on is AsyncTask
code, we cannot easily test it using unit testing. The recommended approach
would be to test it via the emulator using Espresso.

This time, during the refactoring phase, there is a significant amount of other
infrastructure code in our ZodiacDetailActivity class to get the horoscope
to show up on the page.

The app now shows the horoscope on ZodiacDetailActivity
(see Figure 6-7).

CHAPTER 6: Test-Driven Development82

Summary
In this chapter we created a simple three feature Horoscope app using
TDD. In the first two features we used Robolectric in our tests and we used
Mockito in the last feature. The unit testing code is limited to code that
doesn’t directly relate to the Android framework. At all times we avoided
using any Espresso emulator testing to help keep the testing as rapid as
possible.

Figure 6-7. Horoscope app

83

Chapter 7
Dealing with Legacy
Code
It’s rare during your development career to have the luxury of being able to
start with a clean slate every time you begin a new project. More often than
not you’re going to have to extend code written by someone else. Other
times you’re simply joining the team to help out with the increased workload.
Inevitably, the temptation is just not to do any unit testing. After all, it’s a
massive task to create unit tests for the existing code, so why bother. But
there are ways to approach this “no existing unit tests” scenario so that your
code doesn’t fall apart when the application gets to Quality Assurance (QA).
“It’s not my code” never was a very good excuse.

The process we take to introduce tests is as follows:

	Introduce continuous integration (CI) to build code

	Configure Android Studio for TDD (test-driven
development)

	Add minimal unit tests based on existing tests and get
them to run on a CI server

	Show team how to create unit tests

	Add testing code coverage metrics to CI, expect 5-10%

	Add Espresso tests

	Unit test any new features, while mocking existing
objects

CHAPTER 7: Dealing with Legacy Code84

	Isolate the existing code so nobody can access it
directly;

	Remove unused code

	Refactor isolated code to get code coverage to ideally
60–70%

Whether you’re the sole developer or part of a team it’s always worth setting
up a CI server. We looked at Jenkins earlier in the book, but you can use
your own personal favorite as long as it integrates with Android and Gradle.
Even if you do this step on its own, the team will see benefits.

Next add the JUnit, Mockito, and other dependencies to your project in
Android Studio and make sure Studio is on the most recent stable version.
Add some simple unit tests and show the team how to create unit tests so
they get the general idea; show the team how unit tests work in the
CI server. Code coverage at this step will be minimal.

Create Espresso tests for the basic functionality of the existing app—what
are known as the primary use cases or happy path. You don’t have the
option of internally testing the app, but you can test it at the Activity level.
Not doing this will lead to finger pointing if the app starts to fail and erode
any confidence you’ve built in the new Agile development environment. Now
that you’ve got this in place, create unit tests for any new code.

Don’t edit the old code when adding new features. Isolate any old code so
that no new code is added to your existing non-unit-tested/legacy code.
Create interfaces to interact with the old code so it has a logical fence
around it.

Finally once the development environment is stable you can begin to
refactor the old code so that the code coverage is gradually increased over
time. We’ll look at how to accomplish this in the rest of this chapter using a
tool called SonarQube.

SonarQube
Our goal is to refactor the code so it’s easier to test and easier to maintain,
but this can be problematic. For me Agile is about removing the blame and
giving people the skills to implement quality features faster. Telling someone
that their code smells isn’t going to be an easy sell no matter how you
package it so it’s best to stay objective rather than subjective. Thankfully
there are a number of tools and metrics —other than code coverage—that
provide this objectivity. SonarQube can be particularly useful to identify real
issues with the code.

CHAPTER 7: Dealing with Legacy Code

85

Install SonarQube as follows:

1. Download and install SonarQube Server; use the
most up to date LTS (long-term support) version,
from www.sonarqube.org/downloads/.

2. Download and install the Sonar Runner.

3. Start the Sonar Server; run C:\sonarqube\bin\
windows-x86-xx\StartSonar.bat on Windows or
/etc/sonarqube/bin/[OS]/sonar.sh console on Unix.

4. Go to http://localhost:9000 in your browser to see
if the Sonar Dashboard is running (see Figure 7-1).

Figure 7-1. SonarQube Dashboard

We need to check that the server is analyzing projects and the Java plug-in
is installed, so download the Sonar examples.

1. Download the Sonar examples from https://github.
com/SonarSource/sonar-examples/archive/master.
zip and unzip

2. To get the project information into the Sonar
Dashboard we need to use the runner. Navigate to
the java example folder and start the runner, cd
C:\sonar-examples\projects\languages\java\sonar-
runner\java-sonar-runner-simple and then run
C:\sonar-runner\bin\sonar-runner.bat or on Unix
cd /etc/sonar-examples/projects/languages/java/
sonar-runner/java-sonar-runner-simple and run
the /etc/sonar-runner/bin/sonar-runner command.

http://www.sonarqube.org/downloads/
https://github.com/SonarSource/sonar-examples/archive/master.zip
https://github.com/SonarSource/sonar-examples/archive/master.zip
https://github.com/SonarSource/sonar-examples/archive/master.zip

CHAPTER 7: Dealing with Legacy Code86

3. Navigate to the Sonar Dashboard, click the Java
project and you should see the image in Figure 7-2.

Figure 7-2. Sonar analytics for our Java project

Figure 7-3. Sonar Update Center

Note that we’re getting a “C” grade for our Software Quality Assessment
based on Lifecycle Expectations (SQLAE). However, we’re not interested in
this project as it is Java, not Android. We need to install the Android plug-in
before we analyze any of our Android projects.

1. Log in as Administrator using admin/admin

2. Click Settings ➤ Update Center ➤ Available Plugins
(see Figure 7-3).

3. Click the Android Lint plug-in to install the plug-in
and restart SonarQube.

CHAPTER 7: Dealing with Legacy Code

87

The Android plug-in will import any lint errors into SonarQube as well as
allow you to navigate any Java errors. To see the sample Android project, do
the following:

1. cd C:\sonar-examples\projects\languages
\android\android-sonarqube-runner or on Unix
/etc/sonar-examples/projects/languages/android/
android-sonarqube-runner

2. Create the bin/classes folder as it fails to load
without creating the directory

3. Run C:\sonar-runner\bin\sonar-runner.bat or on
unix /etc/sonar-runner/bin/sonar-runner

Figure 7-4 shows the top-level analysis on this basic project.

Figure 7-4. Android app analysis

Install the Tab Metrics plug-in as above and restart SonarQube. Even though
it’s on a very small project, when you now click the Issues link (see Figure 7-5),
you should get a flavor of the issues that SonarQube identifies.

CHAPTER 7: Dealing with Legacy Code88

The Android plug-in works great for Android apps written in Eclipse which
will probably be the majority of legacy apps you’re trying to fix. Now that we
have that working, we should install the Gradle plug-in so we can analyze
Android Studio projects.

1. Add the plug-in and sonarProperties to your
build.gradle (app) file, see Listing 7-1. This won’t
replace the existing file but will be in addition to
what’s already in the file.

2. Click Sync Now to update the build.gradle file.

3. Run your Analyzer command from the project root
directory with the command gradlew sonarRunner.

4. Open the dashboard at http://localhost:9000, to
browse your project’s quality.

Listing 7-1. build.gradle Updates

apply plugin: 'sonar-runner'

sonarRunner{
 sonarProperties{
 property "sonar.host.url", "http://localhost:9000"
 property "sonar.jdbc.url", "jdbc:mysql://localhost:3306/sonar?use

Unicode=true&characterEncoding=utf8&rewriteBatchedStatements=true&use
Configs=maxPerformance"

 property "sonar.jdbc.driverClassName","com.mysql.jdbc.Driver"
 property "sonar.jdbc.username","root"
 property "sonar.jdbc.password","root"

Figure 7-5. Android app issues list

CHAPTER 7: Dealing with Legacy Code

89

 property "sonar.projectKey", "RIIS:CropCompare"
 property "sonar.projectVersion", "2.0"
 property "sonar.projectName","CropCompare"
 property "sonar.java.coveragePlugin", "jacoco"
 property "sonar.sources","src\\main"
 property "sonar.tests", "src\\test"
 property "sonar.jacoco.reportPath", "build\\jacoco\\jacocoTest.exec"
 property "sonar.java.binaries", "build"
 property "sonar.dynamicAnalysis", "resuseReports"
 }
}

Figure 7-6 shows the CropCompare app has almost 200 issues – 47 Critical
and 87 Major - that need to be fixed.

Figure 7-6. CropCompare app issues list

Comparing Projects
When you have got the code coverage up to something that you consider
respectable, you might to use the Sonar compare projects functionality
to see how each of the projects compares (see Figure 7-7). We can
quickly identify what projects have poor code coverage and also the high
complexity. This will quickly identify other projects that need to undergo the
same process.

CHAPTER 7: Dealing with Legacy Code90

Refactor Code
Once you’ve fixed the SonarQube issues, you should have slimmed down
the largest classes and removed the critical code smell issues. Remember to
test the code using your Espresso test suite after any major surgery to make
sure you haven’t broken the build.

Refactoring may also involve creating a new, cleaner architecture for your
project. MVP (model-view-presenter) and MVVM (model-view-viewmodel)
are both becoming popular Android architectures. Data Binding is another
great way to clean up your code—although at time of writing it’s still in
beta—as it removes the data references from the user interface or UI and is
also a good first step in implementing an MVVM architecture.

Lessons Learned
Before we finish this chapter it would be a mistake to not talk about a few
lessons learned during the transition from poorly written legacy Android
code to something more maintainable.

Keep the conversations objective. Telling someone that his code is bad is
a very subjective conversation. But telling the team that the goal is to have
code coverage and complexity metrics at the same level as the different
projects on the company’s Git server is a much easier sell.

Figure 7-7. Comparing projects

CHAPTER 7: Dealing with Legacy Code

91

Don’t ship any tests or test information with your app. It’s unlikely in the
current unit testing environment that you’d be able to include unit tests in
your APK (Android application package) even if you tried, but we’ve seen
many examples of test data being stored in resources and assets folders
in the past, so always unzip your production APK to ensure it doesn’t have
anything extra in the payload.

Take baby steps when you inherit an existing project. Don’t be driven by
metrics. Try not to get too worried about code coverage; after all, you’re
being judged on how you write good clean code that delivers value, not if
your code coverage or any other metric is more than some specific value.

It’s important to also keep an eye on performance metrics. Just like the
Espresso test harness, some simple app timing metrics will keep you on
track. There is nothing worse than creating quality-tested code to find it’s
two or three times slower than the original legacy code. There is no reason
it should be, but mistakes happen so add a performance metric so you can
become aware of it (and it can be eradicated) before it becomes an issue.

Add some configuration time to your estimates. If done correctly, manual
QA hours should decrease considerably, but this means that the development
and devops time will eat up some of that gain. Don’t assume the developers
are going to go full on TDD without a configuration learning curve.

Summary
In this chapter we’ve looked at some strategies for adding unit testing to an
existing code base. Using Sonar and refactoring in Android Studio, over time
you can gradually decouple existing apps, increase their code coverage,
and decrease their complexity.

Finally, it’s worth stating that you don’t need anyone’s permission to unit
test, even if the rest of the team does not want to partake. Right now
you can start unit testing using Android Studio as there are no longer any
impediments to beginning unit testing as the rest of the Java world has
been doing for about a decade. With or without TDD, unit testing needs to
become part of your development process.

93

 ■A, B, C, D
Agile Test Pyramid, 3

 ■E, F
Espresso test

Jenkins, 68
onData options, 65–67
onView options

adding buttons, 62–64
Hello World, 60–62

ViewActions options, 64
ViewAssertions options, 65
ViewMatchers options, 64

 ■G
GUI tests

adding two numbers using
Espresso, 9, 11–12

Android SDK Manager, 10
Build Variant test

artifacts, 10–11
Calculator app, 12–13
Espresso Libraries, 11
Espresso results, 13

 ■H, I
Hamcrest assertions, 25–27
Horoscope app, TDD. See Test-driven

development (TDD)

 ■J, K
JaCoCo tool

changing coverage runner, 29
code coverage, 27–28
code coverage reports, 30
red/green coverage, 30
selecting Edit Configurations, 28
selecting RunCalculator Test

with Coverage, 29–30
Jenkins tool

configuration, 38–39
creating automated job

Build Now, Project page, 41
configuring Build, 40–41
Console Output, 42–43
creating new item, 39
Network Connect repository

details, 39
selecting Invoke Gradle

script, 40
viewing Build progress, 41–42

Espresso tests, 68
installation, 37–38
mocking, 56

JUnit4 version
annotations, 17

@Before and @After, 18–19
@BeforeClass, 19
@Test method, 18

assertions, 15
command line, 16

Index

Index94

grouping tests, 20–21
HTML output, 19
parameterized tests, 21–23

 ■L
Legacy code

comparing projects, 89–90
refactoring, 90
SonarQube (see SonarQube)

 ■M, N
Mocking

database
creating user database, 52–53
CRUD code, 53–55
testMockUser code, 55–56

Jenkins, 56
shared preferences

Login App, 47
mocked getShared

Preferences, 48
reading, 47
Registration app, 46
saving, 47

system properties
max-min limits testing, 51
setting to max volume, 51

time
Clock interface, 49
Clock implementation, 49
Timechange code, 49–50
TimeChangeTest code, 50

Mockito tool
adding Mockito Library, 31
DownloadUrl code, 32–33
mocked network access, 35
NetworkConnect app, 31–32
Network Connect unit test, 34
updated NetworkConnect

MainActivity code, 33–34
test-driven development (TDD), 79

 ■O, P, Q
onData test, 65–67
onView test, 60–64

 ■R
Refactoring, 90
Robolectric tool

adding Robolectric Library
dependency, 35–36

Hello World test, 36–37
test-driven development

(TDD), 71–72, 75
Working Directory, 36

 ■S
SonarQube

app analysis, 87
build.gradle updates, 88–90
CropCompare app, 89
downloading Sonar

examples, 85–86
installation, 85
installing Android plug-in, 86
installing Gradle plug-in, 88
issues list, 87–88
Sonar Dashboard, 85
Update Center, 86

 ■T
Test-driven development (TDD)

displaying each star sign
adding zodiac_array, 73
failure of test, 72
ListView in

MainActivity.java, 72
output, 74–75
passing the test, 73
referencing array in

layout file, 73
Robolectric test, 71–72

JUnit4 version (cont.)

Index

95

updated ZodiacUnit
Tests, 73–74

adding zodiac_array, 72–73
displaying horoscope

for star sign
JSON testing, 80
validating JSON testing,

80–81
ZodiacDetailActivity, 81–82

displaying star sign information
failure of unit tests, 76
output, 78–79
passing of test, 78
unit tests, 76
updated Zodiac class, 76–77
ZodiacDetailActivity

class, 78
Zodiac variables, 75

YAGNI, 70

 ■U, V, W, X, Y, Z
Unit testing

Add method, 2
Agile Test Pyramid, 3
benefits, 2
Hello World

adding junit library, 6–7
changing to Project view, 4–5
creating Unit Tests code, 7
adding junit library, 5
running unit test, 7–8
selecting Unit Tests in

Build Variant, 6
test results, 8

GUI tests (see GUI tests)
JUnit (see Junit4 version)
TDD (see Test-driven

development (TDD))

	Contents at a Glance
	Contents
	About the Author
	About the TechnicalReviewers
	Acknowledgments
	Chapter 1: Introduction
	 Hello, World Unit Test
	 Understand the Benefits of Using an Agile Approach to Android Development
	 Explore the Agile Testing Pyramid for Android
	 Create Hello World Unit Test in Android
	 GUI Tests
	 Create Hello, World GUI Test
	 Summary

	Chapter 2: Android Unit Testing
	 Android Assertions
	 Command Line
	 JUnit Options
	 HTML Output
	 Grouping Tests
	 Parameterized Tests
	 Summary

	Chapter 3: Third-Party Tools
	 Hamcrest Assertions
	 JaCoCo
	 Mockito
	 Robolectric
	 Jenkins
	 Install
	 Configure Jenkins
	 Create Automated job

	 Summary

	Chapter 4: Mocking
	 Shared Preferences
	 Time
	 System Properties
	 Database
	 Jenkins
	 Summary

	Chapter 5: Espresso
	 onView
	 Hello World

	 Adding Buttons
	 ViewMatchers
	 ViewActions
	 ViewAssertions
	 onData
	 To Do List

	 Jenkins
	 Summary

	Chapter 6: Test-Driven Development
	 Understanding Test-Driven Development
	 Unit Testing and TDD
	 Value of TDD
	 Writing an App Using TDD
	 Feature 1
	 Feature 2
	 Feature 3

	 Summary

	Chapter 7: Dealing with Legacy Code
	 SonarQube
	 Comparing Projects

	 Refactor Code
	 Lessons Learned
	 Summary

	Index

