

 CodeWarrior

®

C, C++, and Assembly
Language Reference

Because of last-minute changes to CodeWarrior, some of the
information in this manual may be inaccurate. Please read the

Release Notes on the CodeWarrior CD for the latest
up-to-date information.

Metrowerks CodeWarrior copyright ©1993–1996 by Metrowerks Inc. and its licensors.
All rights reserved.

Documentation stored on the compact disk(s) may be printed by licensee for personal
use. Except for the foregoing, no part of this documentation may be reproduced or trans-
mitted in any form by any means, electronic or mechanical, including photocopying,
recording, or any information storage and retrieval system, without permission in
writing from Metrowerks Inc.
Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks
of Metrowerks Inc.
All other trademarks and registered trademarks are the property of their respective
owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE
SUBJECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and international

Metrowerks Corporation
2201 Donley Drive, Suite 310
Austin, TX 78758
U.S.A.

Canada

Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Mail order

Voice: (800) 377–5416
Fax: (512) 873–4901

World Wide Web

http://www.metrowerks.com

Registration information

register@metrowerks.com

Technical support

support@metrowerks.com

Sales, marketing, & licensing

sales@metrowerks.com

America Online

keyword:

Metrowerks

CompuServe

goto

Metrowerks

C, C++, and Assembly Language Reference

 CL–3

Table of Contents

1 Introduction . 13

Overview of the C/C++/ASM Reference 13
Conventions Used in This Manual 14
The C/C++ Project Settings Panels 14
What’s New . 17

The long long type 17
Turning off register coloring in the 68K compiler 17
More information on enumerated types 17
New pragmas . 17
New intrinsic functions 18
Improved documentation 18

2 C and C++ Language Notes . 19

Overview of C and C++ Language Notes 19
The Metrowerks Implementation of C and C++ 20

Identifiers . 21
Include files . 21
The sizeof() operator 22
Register variables 23

Register coloring. 24
Volatile variables . 25
Limits on variable sizes 26
Declaration specifiers 27
Enumerated types 28

Number Formats . 30
68K Macintosh integer formats 30
68K Macintosh floating-point formats 32
PowerPC Macintosh, Magic Cap, and Win32/x86 integer formats

33
PowerPC Macintosh and Win32/x86 floating-point formats . 34
Magic Cap Floating-Point Formats 34

Calling Conventions 35
68K Macintosh calling conventions 35
PowerPC calling conventions 36

CL–4

C, C++, and Assembly Language Reference

Magic Cap calling conventions 39
Win32/x86 calling conventions. 39

Extensions to C or C++ 40
ANSI extensions you can’t disable 42

Multibyte characters (Macintosh Only) 43
Declaring variables by address (Macintosh Only) 43
Opcode inline functions (68K Macintosh Only) 43
Inline data (68K Macintosh Only) 44
Specifying the registers for arguments (68K Macintosh Only)

45
64-bit integers . 46

ANSI extensions you disable with ANSI Strict 47
C++-style comments 48
Unnamed arguments in function definitions 48
A # not followed by argument in macro definition 48
An identifier after #endif 48
Using typecasted pointers as lvalues 49

Disabling trigraph characters 49
Additional keywords 50

Macintosh and Magic Cap keywords 50
Win32/x86 keywords. 51

Enumerated constants of any size 51
Chars always unsigned 52
Inlining functions 52
Using multibyte strings and comments 53
Using prototypes . 54

Requiring prototypes 54
Relaxing pointer checking. 56

Storing strings (Macintosh only) 56
Pooling strings 56
Using PC-relative strings 57
Reusing strings 58

Warnings for Common Mistakes 59
Treat warnings as errors 60
Illegal pragmas . 60
Empty declarations 61

C, C++, and Assembly Language Reference

 CL–5

Possible unwanted side effects 61
Unused variables. 62
Unused arguments 63
Extra commas . 64
Extended type checking 65
Function hiding . 66

Generating Code for Specific 68K Processors (Macintosh Only) . 67
Generating code for the MC68020 70
Generating code for the MC68881 70

Using the Extended data type 71
Using floating-point registers 72

Calling MPW Functions 72
Adding an MPW library to a CodeWarrior project 73
Declaring MPW C functions (Macintosh Only) 75
Using MPW C newlines 76

Calling Macintosh Toolbox Functions (Macintosh Only) 77
Passing string arguments 78
Using the pascal keyword in PowerPC code 79

Intrinsic PowerPC Functions (Macintosh Only) 80
Low-level processor synchronization 80
Floating-point functions. 81
Byte-reversing functions 81
Setting the floating-point environment 82
Floating-point instructions for the 603 and 604 82
Rotating the contents of a variable 83

3 C++ Language Notes . 85

Overview of C++ Language Notes 85
Unsupported Extensions. 86
Metrowerks Implementation of C++ 86

Which keywords to put first 87
Additional keywords 87
Conversions in the conditional operator 87
Default arguments in member functions. 88
Local class declarations with inline functions. 89
Copying and constructing class objects 89

CL–6

C, C++, and Assembly Language Reference

Checking for resources to initialize static data 90
Calling an inherited member function. 91

Setting C++ Options 92
Using the C++ compiler always 93
Enforcing strict ARM conformance 94
Adding C++ extensions. 95
Allowing exception handling 96
Using the bool type 96

Using Run-Time Type Information (RTTI) 96
Using the dynamic_cast operator 97
Using the typeid operator 98

Using Templates . 99
Declaring and defining templates. 100
Instantiating templates 101

Using Exceptions . . 103
Declaring MPW-Compatible Classes 104
Creating Direct-to-SOM Code 105

SOM class restrictions. 106
Using SOM headers 109
Automatic SOM error checking 109
Using SOM pragmas 111

Declaring the release order 112
Declaring the class’s version. 112
Declaring the metaclass for a class 113
Declaring the call style for a class 113

4 68K Assembler Notes . 115

Overview of 68K Assembler Notes 115
Writing an Assembly Function for 68K. 116

Defining a Function for 68K Assembly 116
Using Global Variables in 68K Assembly 119
Using Local Variables and Arguments in 68K Assembly . . . 119
Using Structures in 68K Assembly 120
Using the Preprocessor in 68K Assembly 121
Returning From a Function in 68K Assembly. 121

Assembler directives 122

C, C++, and Assembly Language Reference

 CL–7

dc . 122
ds . 122
entry . . 123
fralloc . 123
frfree . . 123
machine . 124
opword. . 124

5 PowerPC Assembler Notes. 125

Overview of PowerPC Assembler Notes 125
Writing an Assembly Function for PowerPC 126

Defining a Function for PowerPC Assembly 126
Creating Labels for PowerPC Assembly 128
Using Comments for Power PCAssembly 129
Using the Preprocessor for PowerPC Assembly. 129
Creating a Stack Frame for PowerPC Assembly. 129
Using Local Variables and Arguments for PowerPC Assembly130
Specifying Instructions for PowerPC Assembly. 131
Specifying Operands for PowerPC Assembly 132

Using registers 132
Using labels . . 132
Using variable names as memory locations 133
Using immediate operands 134

PowerPC Assembler Directives 134
entry . . 134
fralloc . 135
frfree . . 136
machine . 136
smclass . . 137

PowerPC Assembler Instructions 138

6 MIPS Assembler Notes . 161

Overview of MIPS Assembler Notes. 161
Writing an Assembly Function 161

Creating labels . . 163
Using comments 163

CL–8

C, C++, and Assembly Language Reference

Using the preprocessor 164
Creating a stack frame 164
Specifying operands 164

Using registers 164
Using parameters 165
Using global variables 165
Using immediate operands 165

Assembler Directive. 166
.set . . 166

7 Win32/x86 Assembler Notes 167

Overview of Win32/x86 Assembler Notes 167
Writing an Assembly Function 167

8 Pragmas and Predefined Symbols 169

Overview of Pragmas and Predefined Symbols 169
Pragmas . . 169

Pragma Syntax. . 170
The Pragmas. . 170

a6frames (68K Macintosh and Magic Cap). 171
align (Macintosh and Magic Cap) 171
align_array_members (Macintosh and Magic Cap only) . . 172
ANSI_strict . 173
ARM_conform 174
auto_inline . 175
bool (C++ only) 176
check_header_flags (precompiled headers only) 176
code_seg (Win32/x86 only) 177
code68020 (68K Macintosh and Magic Cap only) 177
code68349 (Magic Cap only). 178
code68881 (68K Macintosh and Magic Cap only) 178
cplusplus . . 179
cpp_extensions 180
d0_pointers (68K Macintosh only) 180
data_seg (Win32/x86 only) 182
direct_destruction (C++ only) 182

C, C++, and Assembly Language Reference

 CL–9

direct_to_som (Macintosh and C++ only) 182
disable_registers (PowerPC Macintosh only). 183
dont_inline . 183
dont_reuse_strings 184
enumsalwaysints 184
exceptions (C++ only) 185
export (Macintosh only) 186
extended_errorcheck 187
far_code, near_code, smart_code (68K Macintosh and Magic

Cap only) . 189
far_data (68K Macintosh and Magic Cap only) 189
far_strings (68K Macintosh and Magic Cap only) 190
far_vtables (68K Macintosh only) 190
force_active (68K Macintosh only) 190
fourbyteints (68K Macintosh only) 191
fp_contract (PowerPC Macintosh only) 191
function (Win32/x86 only) 192
global_optimizer, optimization_level (PowerPC Macintosh

only) . 192
IEEEdoubles (68K Macintosh only) 193
ignore_oldstyle 194
import (Macintosh only) 195
init_seg (Win32/x86 only). 196
inline_depth (Win32/x86 only) 197
internal (Macintosh only) 197
lib_export (Macintosh only) 198
longlong . 198
longlong_enums 199
macsbug, oldstyle_symbols (68K Macintosh and Magic Cap

only) . 199
mark . . 200
mpwc (68k Macintosh only) 200
mpwc_newline 201
mpwc_relax . . 202
no_register_coloring (68K Macintosh and Magic Cap only) 202
once . 203

CL–10

C, C++, and Assembly Language Reference

oldstyle_symbols (68K Macintosh and Magic Cap only) . . 204
only_std_keywords 204
optimization_level (PowerPC Macintosh only) 204
optimize_for_size (Macintosh and Magic Cap only) . . . 204
pack (Win32/x86 only) 205
parameter (68K Macintosh and Magic Cap only) 205
pcrelstrings (68K Macintosh only) 206
peephole (PowerPC Macintosh and Win32/x86 only) . . . 207
pointers_in_A0, pointers_in_D0 (68K Macintosh only) . . 207
pool_strings . . 208
pop, push . . 209
precompile_target 210
profile (Macintosh only) 211
readonly_strings (PowerPC Macintosh only) 211
require_prototypes 211
RTTI . 212
scheduling (PowerPC Macintosh only) 212
segment (Macintosh and Magic Cap only) 213
side_effects (Macintosh only) 213
SOMCallOptimization (Macintosh and C++ only) 214
SOMCallStyle (Macintosh and C++ only) 214
SOMCheckEnvironment (Macintosh and C++ only) . . . 215
SOMClassVersion (Macintosh and C++ only) 216
SOMMetaClass (Macintosh and C++ only) 217
SOMReleaseOrder (Macintosh and C++ only) 217
static_inlines . 218
sym . 218
toc_data (PowerPC Macintosh only) 219
trigraphs . 219
traceback (PowerPC Macintosh only) 219
unsigned_char. 220
unused . . 220
warn_emptydecl 221
warning_errors 221
warn_extracomma 222
warn_hidevirtual 222

C, C++, and Assembly Language Reference

 CL–11

warn_illpragma 223
warn_possunwant 223
warn_unusedarg. 224
warn_unusedvar. 225
warning (Win32/x86 only) 225

Predefined Symbols 226
ANSI Predefined Symbols. 226
Metrowerks Predefined Symbols 228

Options Checking . 229
Options table . 230

Index . 237

CL–12

C, C++, and Assembly Language Reference

C, C++, and Assembly Language Reference

CL–13

1

Introduction

This manual describes how the Metrowerks C and C++ compilers
implement the C and C++ standards and its in-line assembler.

Overview of the C/C++/ASM Reference

This manual describes how the Metrowerks C and C++ compilers
implement the C and C++ standards and its in-line assembler. Each
chapter begins with an overview.

Table 1.1 What’s in this manual

This chapter… Documents…

Overview of C and C++
Language Notes

How Metrowerks C implements the C standard. It also de-
scribes the parts of C++ that it shares with C.

Overview of C++ Lan-
guage Notes

How Metrowerks C++ implements the parts of the C++
standard that are unique to C++. It also describes how to
use templates and exception handling.

Overview of 68K Assem-
bler Notes

How to use the 68K inline assembler, which is part of
Metrowerks C and C++, to include assembly code in your
program.

Overview of PowerPC
Assembler Notes

How to use the PowerPC inline assembler, which is part of
Metrowerks C and C++, to include assembly code in your
program.

Overview of MIPS As-
sembler Notes

How to use the MIPS inline assembler, which is part of
Metrowerks C and C++, to include assembly code in your
program.

Introduction

Conventions Used in This Manual

CL–14

 C, C++, and Assembly Language Reference

Conventions Used in This Manual

This manual includes syntax examples that describe how to use cer-
tain statements, such as the following:

#pragma parameter [

return-reg

]

func-name

 [

param-regs

]
#pragma optimize_for_size on | off | reset

Table 1.2 describes how to interpret these statements.

Table 1.2 Understanding Syntax Examples

The C/C++ Project Settings Panels

This section describes where to find information on the C/C++ Lan-
guage and C/C++ Warnings settings panels.

Overview of Win32/x86
Assembler Notes

How to use the Win32/x86 inline assembler, which is part
of Metrowerks C and C++, to include assembly code in
your program.

Overview of Pragmas
and Predefined Symbols

The pragma statement, which lets you change your pro-
gram’s options from your source code. It also describes the
preprocessor function

__option()

, which lets you test the
setting of many pragmas and options, and the predefined
symbols that Metrowerks C and C++ use.

This chapter… Documents…

If the text
looks like… Then…

literal

Include it in your statement exactly as it’s printed.

metasymbol

Replace the symbol with an appropriate value. The text after the
syntax example describes what the appropriate values are.

a | b | c

Use one and only one of the symbols in the statement: either a, b,
or c.

[a]

Include this symbol only if necessary. The text after the syntax ex-
ample describes when to include it.

Introduction

The C/C++ Project Settings Panels

C, C++, and Assembly Language Reference

CL–15

This is the C/C++ Language settings panel:

Figure 1.1 The C/C++ Languages Settings Panel

This table describes where to find more information on its options:

This option… Is described here…

Activate C++ Compiler “Using the C++ compiler always” on page 93

ARM Conformance “Enforcing strict ARM conformance” on page 94

Enable C++ Exceptions “Allowing exception handling” on page 96

Enable RTTI “Using Run-Time Type Information (RTTI)” on page 96

Inlining “Inlining functions” on page 52

Pool Strings “Pooling strings” on page 56

Don’t Reuse Strings “Reusing strings” on page 58

Require Function Proto-
types

“Requiring prototypes” on page 54

Enable bool Support “Using the bool type” on page 96

ANSI Strict “ANSI extensions you disable with ANSI Strict” on page
47

ANSI Keywords Only “Additional keywords” on page 50

Expand Trigraphs “Disabling trigraph characters” on page 49

Introduction

The C/C++ Project Settings Panels

CL–16

 C, C++, and Assembly Language Reference

This is the C/C++ Warnings settings panel:

Figure 1.2 The C/C++ Warnings Settings Panel

This table describes where to find more information on its options:

Multi-Byte Aware “Using multibyte strings and comments” on page 53

Direct to SOM “Creating Direct-to-SOM Code” on page 105

Map Newlines to CR “Using MPW C newlines” on page 76

Relaxed Pointer Type
Rules

“Relaxing pointer checking” on page 56

Enums Always Int “Enumerated constants of any size” on page 51

Use Unsigned Chars “Chars always unsigned” on page 52

This option… Is described here…

This option… Is described here…

Treat All Warnings As
Errors

“Treat warnings as errors” on page 60

Illegal Pragmas “Illegal pragmas” on page 60

Empty Declarations “Empty declarations” on page 61

Possible Errors “Possible unwanted side effects” on page 61

Introduction

What’s New

C, C++, and Assembly Language Reference

CL–17

What’s New

This section describes the new documentation in this manual.

The long long type

Metrowerks C/C++ now has a 64-bit integer, the

 long long. See
“64-bit integers” on page 46.

Turning off register coloring in the 68K compiler

You can now turn off register coloring in the 68K Mac OS compiler.
This is useful when you’re debugging code. See “Register coloring”
on page 24.

More information on enumerated types

This manual now explains how the compiler implements enumer-
ated types and on how to use enumerators that are large enough to
be a long long. See “Enumerated types” on page 28.

New pragmas

There are three new pragmas:

• “longlong” on page 198

• “longlong_enums” on page 199

• “no_register_coloring (68K Macintosh and Magic Cap only)”
on page 202

Unused Variables “Unused variables” on page 62

Unused Arguments “Unused arguments” on page 63

Extra Commas “Extra commas” on page 64

Extended Error Check-
ing

“Extended type checking” on page 65

Hidden virtual functions “Function hiding” on page 66

This option… Is described here…

Introduction
What’s New

CL–18 C, C++, and Assembly Language Reference

New intrinsic functions

There are three new PowerPC intrinsic functions, described on “Ro-
tating the contents of a variable” on page 83.

Improved documentation

There is new documentation on the MIPS and Win32/x86 inline as-
semblers. For more information, see “Overview of MIPS Assembler
Notes” on page 161 and “Overview of Win32/x86 Assembler
Notes” on page 167.

And there’s improved documentation on these pragmas:

• “code_seg (Win32/x86 only)” on page 177

• “data_seg (Win32/x86 only)” on page 182

• “init_seg (Win32/x86 only)” on page 196

• “inline_depth (Win32/x86 only)” on page 197

• “warning (Win32/x86 only)” on page 225

C, C++, and Assembly Language Reference CL–19

2
C and C++
Language Notes
This chapter describes how Metrowerks handles the C program-
ming language. Since many of the features in C are also in C++, this
chapter is where you’ll find basic information on C++ also.

Overview of C and C++ Language Notes
This chapter describes how Metrowerks handles the C program-
ming language, and basic information on C++. For more informa-
tion on the parts of the C++ language that are unique to C++, see
“Overview of C++ Language Notes” on page 85.

In the margins of this chapter are references to K&R §A, which is
Appendix A, “Reference Manual,” of The C Programming Language,
Second Edition (Prentice Hall) by Kernighan and Ritchie. These refer-
ences show you where to look for more information on the topics
discussed in the corresponding section.

This chapter contains the following sections:

• “The Metrowerks Implementation of C and C++” on page 20
explains how Metrowerks C and C++ implement certain
parts of the standard.

• “Number Formats” on page 30 describes how C and C++ use
store integers and floating-point numbers. This section has
separate explanations for the 68K compiler and the PowerPC
compiler.

• “Calling Conventions” on page 35 explains how C and C++
functions pass their arguments and return their values. This
section has separate explanations for the 68K compiler and
the PowerPC compiler.

C and C++ Language Notes
The Metrowerks Implementation of C and C++

CL–20 C, C++, and Assembly Language Reference

• “Extensions to C or C++” on page 40 describe some of
Metrowerks C and C++’s extensions to the C and C++ stan-
dards. You can disable most of these extensions with options
in the C/C++ Language settings panel.

• “Warnings for Common Mistakes” on page 59 explains some
options that check for common typographical mistakes.
These options are in the C/C++ Warnings settings panel.

• “Generating Code for Specific 68K Processors (Macintosh
Only)” on page 67 describes how to generate code optimized
for the MC68020 and MC68881.

• “Calling MPW Functions” on page 72 describes how to use
an MPW library in a CodeWarrior project.

• “Calling Macintosh Toolbox Functions (Macintosh Only)” on
page 77 explains CodeWarrior’s support for the Macintosh
Toolbox.

• “Intrinsic PowerPC Functions (Macintosh Only)” on page 80
explains some functions that are built into Metrowerks C/
C++ for PowerPC.

The Metrowerks Implementation of C and C++
This section describes how Metrowerks implements many parts of
the C and C++ programming languages. For information on the
parts of the C++ language that are specific to C++, see “Overview of
C++ Language Notes” on page 85.

This section contains the following:

• “Identifiers” on page 21

• “Include files” on page 21

• “The sizeof() operator” on page 22

• “Register variables” on page 23

• “Volatile variables” on page 25

• “Limits on variable sizes” on page 26

• “Declaration specifiers” on page 27

C and C++ Language Notes
The Metrowerks Implementation of C and C++

C, C++, and Assembly Language Reference CL–21

Identifiers
(K&R, §A2.3) The C and C++ compilers let you create identifiers of
any size. However, only the first 255 characters are significant for in-
ternal and external linkage.

The C++ compiler creates mangled names in which all the charac-
ters in are significant. You do not need to keep your class and class
member names artificially short to prevent the compiler from creat-
ing mangled names that are too long.

Include files

(K&R, §A12.4) The C and C++ compilers can nest #include files up
to 32 times. An include file is nested if another #include file uses it
in an #include statement. For example, if Main.c includes the file
MyFunctions.h, which includes the file MyUtilities.h, the file
MyUtilities.h is nested once.

You can use full path names in #include directives, as in this ex-
ample:

#include "HD:Tools:my headers:macros.h"

TIP: To add folders to the Access Paths settings panel, see the
CodeWarrior IDE User’s Guide.

The CodeWarrior IDE lets you specify where the compiler looks for
#include files with the Access Paths settings panel, shown in Figure
2.1. It contains two lists of folders: the User list and the System list.
By default, each list contains one folder. The User list contains
{Project ƒ}, which is the folder that the project file is in and all
the folders it contains. The System list contains {Compiler ƒ},
which is the folder that the compiler is in and all the folders it con-
tains.

C and C++ Language Notes
The Metrowerks Implementation of C and C++

CL–22 C, C++, and Assembly Language Reference

Figure 2.1 The Access Paths settings panel

The compiler searches for an #include file in either the System list or
both the User and System lists, depending on which characters en-
close the file. If you enclose the file in brackets (#include
<stdio.h>), the compiler looks for the file in the System lists’ fold-
ers section. If you enclose the file in quotes (#include
"myfuncs.h"), the compiler looks for the file in the User list’s fold-
ers and then in the System list’s folders. In general, use brackets for
include files that are for a large variety of projects and use quotes for
include files that are for a specific project.

TIP: If you’re using the compilers under MPW, you can specify
where to find #include files with the -i compiler option and the
{CIncludes} variable, described in Command-Line Tools Manual
and MPW Command Reference.

The sizeof() operator

The sizeof() operator returns a number of type size_t, which
this compiler defines to be unsigned long int (in stddef.h). If

C and C++ Language Notes
The Metrowerks Implementation of C and C++

C, C++, and Assembly Language Reference CL–23

your code assumes that sizeof() returns a number of type int, it
may not work correctly.

Register variables

(K&R, §A4.1, §A8.1) The C and C++ compilers automatically allo-
cate local variables and parameters to registers according to how
frequently they’re used and how many registers are available. If
you’re optimizing for speed, the compilers give preference to vari-
ables used in loops.

The PowerPC and 68K Macintosh compilers give preference to vari-
ables declared to be register, but do not automatically assign
them to registers. For example, the compilers are more likely to
place a variable from an inner loop in a register than a variable de-
clared register.

The Win32/x86 compiler ignores the register declaration and de-
cides on its own which variables to place in registers.

The PowerPC Macintosh compiler can use these registers for local
variables:

• GPR13 through GPR31 for integers and pointers

• FPR14 through FPR31 for floating point variables.

The 68K Macintosh and Magic Cap compilers can use these registers
for local variables:

• A2 through A4 for pointers

• D3 through D7 for integers and pointers.

If you turn on the 68881 Codegen option, the 68K compilers also use
these registers:

• FP4 through FP7 for 96-bit floating-point numbers

The Win32/x86 compiler can use these registers for local variables:

• EAX

• EBX

• ECX

C and C++ Language Notes
The Metrowerks Implementation of C and C++

CL–24 C, C++, and Assembly Language Reference

• EDX

• ESI

• EDI

Register coloring

The Macintosh and Magic Cap compilers can also perform an addi-
tional register optimization, called register coloring. In this optimiza-
tion, the compiler lets two or more variables share a register: it
assigns different variables or parameters to the same register if you
do not use the variables at the same time. In this example, the com-
pilers could place i and j in the same register:

short i;
int j;

for (i=0; i<100; i++) { MyFunc(i); }
for (j=0; j<1000; j++) { OurFunc(j); }

However, if a line like the one below appears anywhere in the func-
tion, the compiler would realize that you’re using i and j at the
same time and place them in different registers:

int k = i + j;

To let the PowerPC compiler perform register coloring, turn on the
Global Optimizer option in the PPC Processor settings panel and
set the Level to 1 or more. To let the 68K Macintosh and Magic Cap
compilers perform register coloring, turn on the Global Register
Allocation option in the 68K Processor settings panel. The Global
Optimizer option corresponds to the global_optimizer pragma,
described on “global_optimizer, optimization_level (PowerPC Mac-
intosh only)” on page 192. The Global Register Allocation option
corresponds to the no_register_coloring pragma, described on
“no_register_coloring (68K Macintosh and Magic Cap only)” on
page 202.

If register coloring is on while you debug your project, it may ap-
pear as though there’s something wrong with the variables sharing
a register. In the example above, i and j would always have the
same value. When i changes, j changes in the same way. When j

C and C++ Language Notes
The Metrowerks Implementation of C and C++

C, C++, and Assembly Language Reference CL–25

changes, i changes in the same way. To avoid this confusion while
debugging, turn off register coloring or declare the variables you
want to watch as volatile.

Volatile variables

(K&R, §A4.4) When you declare a variable to be volatile, both the C
or C++ compilers take the following precautions:

• It does not store the variable in a register.

• It computes the variable’s address every time a piece of code
references the variable.

Listing 2.1 shows an example of volatile variables.

Listing 2.1 volatile variables

void main(void)
{
 int i[100];
 volatile int a, b;

 a = 5;
 b = 20;

 i[a + b] = 15;
 i[a + b] = 30;
}

The compiler does not place the value of a, b, or a+b in register.
Also, the compiler re-calculates a+b in both assignment statements.

C and C++ Language Notes
The Metrowerks Implementation of C and C++

CL–26 C, C++, and Assembly Language Reference

Limits on variable sizes

(K&R, §A4.3, §A8.3, §A8.6.2) The Macintosh and Magic Cap C/C++
compilers let you declare structs and arrays to be any size, but place
some limits on how you allocate space for them:

• A function cannot contain more than 32K of local variables.
To avoid this problem, do one of the following:

– Dynamically allocate large variables.

– Declare large variables to be static. Note that if you’re
using a 68K compiler, you may run into the 32K limit on
global variables, described below.

• If you’re using a 68K compiler, you cannot declare a global
variable that is over 32K unless you use far data. You must do
one of the following:

– Dynamically allocate the variable.

– Use the far qualifier when declaring the variable.

– Turn on the Far Data option in the Processor settings
panel or use the pragma far_data.

The example below shows how to declare a large struct or array.

int i[50000]; // USUALLY OK.
 // Wrong only when you use
 // 68K compiler and turn off
 // the Far Data option in the
 // Processor settings panel

far int j[50000]; // ALWAYS OK.

int *k;
&k = malloc(50000 * sizeof(int));
 // ALWAYS OK.

• Bitfields can be only 32 bits or less.

The Win32/x86 compiler places no limits on how large variables can
be or how you allocate them.

C and C++ Language Notes
The Metrowerks Implementation of C and C++

C, C++, and Assembly Language Reference CL–27

Declaration specifiers

CodeWarrior lets you choose how to implement a function or vari-
able with the declaration specifier __declspec(arg), where arg
specifies how to implement it. The Macintosh and Win32/x86 have
different sets of arguments

For 68K and PowerPC Macintosh code, arg can be one of the follow-
ing values:

• __declspec(internal) lets you specify that this variable
or function is internal and not imported. It corresponds to the
pragma internal, described at “internal (Macintosh only)”
on page 197.

• __declspec(import) lets you import this variable or func-
tion which is in another code fragment or shared library. It
corresponds to the pragma import, described at “import
(Macintosh only)” on page 195.

• __declspec(export) lets you export this variable or func-
tion from this code fragment or shared library. It corresponds
to the pragma export, described at “export (Macintosh
only)” on page 186.

• __declspec(lib_export) ignores the pragmas export,
import, and internal for this variable or function. It corre-
sponds to the pragma lib_export, described at “lib_export
(Macintosh only)” on page 198.

For Win32/x86 code, arg can be one of the following values:

• __declspec(dllexport) specifies that this function or
variable is exported from the executable or DLL that defines
it.

• __declspec(dllimport) specifies that this function or
variable is imported from another DLL or executable.

• __declspec(naked) specifies that this function is entirely
implemented with assembler code and the compiler does not
need to produce any prefix or suffix code. It’s the same as
using the asm keyword.

• __declspec(thread) specifies that a copy of this global
variable (i.e. static or extern) is created for each separate
thread in this program. Creating separate copies can simplify

C and C++ Language Notes
The Metrowerks Implementation of C and C++

CL–28 C, C++, and Assembly Language Reference

multi-threaded applications, since this is a reentrant way to
refer to global storage. Note these restrictions on
__declspec(thread):

– You cannot use it in a DLL that’s dynamically loaded (that
is, your program specifically makes a runtime request for
the DLL). You can use it in DLLs that are statically linked
to your application and are implicitly loaded when your
application is launched.

– If you declare a variable as __declspec(thread) , you
cannot use its address as an initializer, since the program
can determine the address only at run-time.

Enumerated types

This section describes how the C/C++ selects the underlying inte-
ger type for an enumerated type. There are two different different
strategies, depending on the setting of the Enum Always Int option
in the C/C++ Language settings panel, which corresponds to the
enumsalwaysint pragma.

If Enums Always Int is on, the underlying type is always signed
int. All enumerators must be no larger than a signed int. How-
ever, if the ANSI Strict option is off, enumerators that can be repre-
sented as an unsigned int are implicitly converted to signed
int. (The ANSI Strict option is in the C/C++ Language settings
panel and corresponds to the ANSI_strict pragma.)

Listing 2.2 Turning on the Enums Always Int option

#pragma enumsalwaysint on
#pragma ANSI_strict on
enum foo { a=0xFFFFFFFF }; // ERROR. a is 4,294,967,295:
 // too big for a signed int
#pragma ANSI_strict off
enum bar { b=0xFFFFFFFF }; // OK: b can be represented as an
 // unsigned int, but is implicitly
 // converted to a signed int (-1).

C and C++ Language Notes
The Metrowerks Implementation of C and C++

C, C++, and Assembly Language Reference CL–29

If Enums Always Int is off, the compiler picks one of the following:

• If all enumerators are positive, it picks the smallest unsigned
integral base type that is large enough to represent all enu-
merators

• If at least one enumerator is negative, it picks the smallest
signed integral base type large enough to represent all enu-
merators.

Listing 2.3 Turning off the Enums Always Int option

#pragma enumsalwaysint off
enum { a=0,b=1 }; // base type: unsigned char
enum { c=0,d=-1 }; // base type: signed char
enum { e=0,f=128,g=-1 }; // base type: signed short

The compiler will only use long long base types if is the
longlong_enums pragma is on. (There is no settings panel option
corresponding to the longlong_enums pragma)

Listing 2.4 Turning on longlong_enums pragma

#pragma enumsalwaysint off
#pragma longlong_enums off
enum { a=0x7FFFFFFFFFFFFFFF }; // ERROR: a is too large
#pragma longlong_enums on
enum { b=0x7FFFFFFFFFFFFFFF };// OK: base type: signed long long
enum { c=0x8000000000000000 };// OK: base type: unsigned long long
enum { d=-1,e=0x80000000 }; // OK: base type: signed long long

When the longlong_enums pragma is off and ANSI strict is on, you
cannot mix huge unsigned 32-bit enumerators (greater than
0x7FFFFFFF) and negative enumerators. If both the
longlong_enums pragma and the ANSI strict option are off, huge
unsigned 32-bit enumerators are implicitly converted to signed 32-
bit types.

C and C++ Language Notes
Number Formats

CL–30 C, C++, and Assembly Language Reference

Listing 2.5 Turning off the longlong_enums pragma

#pragma enumsalwaysint off
#pragma longlong_enums off
#pragma ANSI_strict on
enum { a=-1,b=0xFFFFFFFF }; // error
#pragma ANSI_strict off
enum { c=-1,d=0xFFFFFFFF }; // base type: signed int (b==-1)

For more information on Enums Always Int, see “Enumerated con-
stants of any size” on page 51. For more information on ANSI Strict,
see “ANSI extensions you disable with ANSI Strict” on page 47. For
more information on the longlong_enums pragma, see
“longlong_enums” on page 199.

Number Formats
(K&R, §A4.2) This section describes how the C and C++ compilers
implement integer and floating-point types. You can also read lim-
its.h for more information on integer types and float.h for more
information on floating-point types.

This section contains the following:

• “68K Macintosh integer formats” on page 30

• “68K Macintosh floating-point formats” on page 32

• “PowerPC Macintosh, Magic Cap, and Win32/x86 integer
formats” on page 33

• “PowerPC Macintosh and Win32/x86 floating-point for-
mats” on page 34

• “Magic Cap Floating-Point Formats” on page 34

68K Macintosh integer formats

The 68K Macintosh compiler lets you choose the size of an int with
the 4-Byte Int option in the Processor settings panel. In general,
you’ll turn this option on since it’s easier to port your code to the

C and C++ Language Notes
Number Formats

C, C++, and Assembly Language Reference CL–31

PowerPC compiler, which always uses 4-byte ints. However, 2-byte
ints are slightly more efficient on the 68K, so you may want to turn
this option off when efficiency is more important.

Table 2.1 shows the size and range of the integer types for a 68K
compiler.

Table 2.1 68K Macintosh integer types

For this type If this is true… Size is and its range is

bool Always true 8 bits true or false

char Use Unsigned Chars
is off

8 bits -128 to 127

Use Unsigned Chars
is on

8 bits 0 to 255

signed char Always true 8 bits -128 to 127

unsigned char Always true 8 bits 0 to 255

short Always true 16 bits -32,768 to 32,767

unsigned
short

Always true 16 bits 0 to 65,535

int 4-Byte Ints is off 16 bits -32,768 to 32,767

4-Byte Ints is on 32 bits -2,147,483,648 to
2,147,483,647

unsigned int 4-Byte Ints is off 16 bits 0 to 65,535

4-Byte Ints is on 32 bits 0 to 4,294,967,295

long Always true 32 bits -2,147,483,648 to
2,147,483,647

unsigned long Always true 32 bits 0 to 4,294,967,295

long long Always true 64 bits -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

unsigned
long long

Always true 64 bits 0 to
18,446,744,073,709,551,615

C and C++ Language Notes
Number Formats

CL–32 C, C++, and Assembly Language Reference

68K Macintosh floating-point formats

You can choose the size of a double with the 8-Byte Doubles option.
In general, turn this option off since 8-byte (or 64-bit) doubles are
less efficient than others. However, if you are porting code that re-
lies on 8-byte doubles, turn this option on.

You can also choose to create code that is optimized for machines
with a 68040 processor or a 68881 floating point unit. If you turn on
the 68881 Codegen option in the Processor settings panel, the com-
piler uses floating-point operations and types that are designed spe-
cifically for those chips. If you create code with the 68881 Codegen
option on and try to run it on a machine that does not have a 68040
or 68881, the code will crash. Turn on the 68881 Codegen option
only if the code contains lots of floating-point operations, must be as
fast as possible, and you’re sure the code will be used only on ma-
chines that contain a 68040 or 68881. Table 2.2 shows the size and
range of the floating-point types for a 68K compiler.

Table 2.2 68K Macintosh floating point types

For this type If this is true… Its size is and its range is

float Always true 32 bits 1.17549e-38 to
3.40282e+38

short double Always true 64 bits 2.22507e-308 to
1.79769e+308

double 8-Byte Doubles is on 64 bits 2.22507e-308 to
1.79769e+308

8-Byte Doubles is off and
68881 Codegen is off

80 bits 1.68105e-4932 to
1.18973e+4932

8-Byte Doubles is off and
68881 Codegen is on

96 bits 1.68105e-4932 to
1.18973e+4932

long double 68881 Codegen is off 80 bits 1.68105e-4932 to
1.18973e+4932

68881 Codegen is on 96 bits 1.68105e-4932 to
1.18973e+4932

C and C++ Language Notes
Number Formats

C, C++, and Assembly Language Reference CL–33

PowerPC Macintosh, Magic Cap, and Win32/
x86 integer formats

The PowerPC Macintosh, Magic Cap, and Win32/x86 compilers do
not let you change the sizes of integers. The size of a short int is
always 2 bytes and the size of int or long int is always 4 bytes.

Table 2.3 shows the size and range of the integer types for the Pow-
erPC Macintosh, Magic Cap, and Win32/x86 compilers.

Table 2.3 PowerPC, Magic Cap, and Win32/x86 Integer Types

For this type If this is true… Size is and its range is

bool Always true 8 bits true or false

char Use Unsigned Chars
is off

8 bits -128 to 127

Use Unsigned Chars
is on

8 bits 0 to 255

signed char Always true 8 bits -128 to 127

unsigned char Always true 8 bits 0 to 255

short Always true 16 bits -32,768 to 32,767

unsigned
short

Always true 16 bits 0 to 65,535

int Always true 32 bits -2,147,483,648 to
2,147,483,647

unsigned int Always true 32 bits 0 to 4,294,967,295

long Always true 32 bits -2,147,483,648 to
2,147,483,647

unsigned long Always true 32 bits 0 to 4,294,967,295

long long Always true 64 bits -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

unsigned
long long

Always true 64 bits 0 to
18,446,744,073,709,551,615

C and C++ Language Notes
Number Formats

CL–34 C, C++, and Assembly Language Reference

WARNING! Do not turn off the 4-Byte Ints option in Magic Cap
code. Although the Magic Cap compiler lets you change the set-
ting of this option, your code will not run correctly if it’s off. It is on
by default.

PowerPC Macintosh and Win32/x86 floating-
point formats

Table 2.4 shows the sizes and ranges of the floating point types for
the PowerPC Macintosh and Win32/x86 compilers.

Table 2.4 PowerPC Macintosh and Win32/x86 floating point types

Magic Cap Floating-Point Formats

Table 2.5 shows the size and range of the floating-point types for the
Magic Cap compiler.

Table 2.5 Magic Cap floating point types

Type Size Range

float 32 bits 1.17549e-38 to 3.40282e+38

short double 64 bits 2.22507e-308 to 1.79769e+308

double 64 bits 2.22507e-308 to 1.79769e+308

long double 64 bits 2.22507e-308 to 1.79769e+308

Type Size Range

float 32 bits 1.17549e-38 to 3.40282e+38

short double 64 bits 2.22507e-308 to 1.79769e+308

double 96 bits 1.68105e-4932 to 1.18973e+4932

long double 96 bits 1.68105e-4932 to 1.18973e+4932

C and C++ Language Notes
Calling Conventions

C, C++, and Assembly Language Reference CL–35

WARNING! Do not turn on the 8-Byte Doubles option in Magic
Cap code. Although the Magic Cap compiler lets you change the
setting of this option, your code will not run correctly if it’s on. It is
off by default.

Calling Conventions
(K&R, §A8.6.3) This section describes the C and C++ calling conven-
tions for both the Macintosh, Magic Cap, and Win32/x86 compilers.
It contains the following:

• “68K Macintosh calling conventions” on page 35

• “PowerPC calling conventions” on page 36

• “Win32/x86 calling conventions” on page 39

• “Magic Cap calling conventions” on page 39

68K Macintosh calling conventions

The 68K Macintosh and Magic Cap compilers pass all parameters
on the stack in reverse order. This list describes where the compiler
places a return value:

• It returns an integer values in register D0.

• It returns a pointer value in register A0.

• If it returns a value of any other type, the caller reserves tem-
porary storage area for that type in the caller's stack and
passes a pointer to that area as the last argument. The callee
returns its value in the temporary storage area.

There are two options which can change how the compiler returns a
value:

• If you turn on either the pragma pointers_in_D0 or
pragma mpwc, the compiler returns pointer values in register
D0. Use one of these pragmas if you’re calling a function de-
clared in an MPW library. For more information, see “Calling
MPW Functions” on page 72.

C and C++ Language Notes
Calling Conventions

CL–36 C, C++, and Assembly Language Reference

• If the 68881 Codegen option is on, the compiler returns 96-bit
floating-point values in register FP0.

Figure 2.2 shows what the stack looks like when you call a C func-
tion with the 68K Macintosh and Magic Cap compiler.

Figure 2.2 Calling a C function

PowerPC calling conventions

The consortium behind the PowerPC dictates a standard set of call-
ing conventions that Metrowerks C/C++ for PowerPC follows. For
more information on these calling conventions, see Inside Macintosh:
PowerPC System Software. The rest of this section describes how
Metrowerks C/C++ implements these standards.

The compiler reserves space for a function’s parameters in two
places: it reserves space for all parameter values in a structure in the
caller’s parameter area, and then it copies as many parameters as
possible in registers. If the compiler copies a parameter into a regis-
ter, it does not also copy it onto the parameter stack, but the com-
piler still reserves space for it on the stack. Placing parameters in
registers avoids memory references to the parameter area and
speeds up your programs.

NOTE: A word is eight bytes on the PowerPC.

In the parameter area, parameters are laid out in the order they ap-
pear, with the left-most parameter at the lowest offset. Each parame-
ter starts at a word boundary regardless of size. For example,
characters take up a word and doubles may not be on a double

Stack pointer return address

first argument

last argument

pointer to return value (if needed)

...

C and C++ Language Notes
Calling Conventions

C, C++, and Assembly Language Reference CL–37

word boundary. Signed integers smaller than a word are sign-byte
extended to a word. Unsigned chars are zero-extended.

In the registers, the compiler maps the first eight words of the pa-
rameter area — excluding floating point values — to the general
purpose registers r3 through r10. Integers and pointers take up one
register each. Composite parameters (such as structs, classes, and
arrays) take up as many consecutive registers as they need. Note
that the compiler maps composite parameters are to the registers as
raw data, not as individual members or elements. For example, an
array of six chars uses two registers: all of the first and the top half
of the second.

NOTE: A composite parameter may be both in registers and the
parameter stack. If the parameter starts in or before the eighth
word and ends after the eighth word, the compiler stores part of it
in registers and the rest on the parameter stack.

Floating-point values are mapped to the floating point registers fp1
through fp13. The compiler maps only free variables and not float-
ing-point values contained in composite types. If the floating-point
parameter appears within the first eight words, the compiler does
not use the corresponding general register or pair of registers. The
compiler does not use the register but simply skips it. The compiler
does not skip floating-point registers but uses them consecutively.

If a function does not have a prototype or has a variable argument
list, the compiler copies the floating-point arguments into both gen-
eral purpose registers and floating-point registers. In other words,
the general purpose registers contain the first eight bytes of all pa-
rameters, and the floating-point registers contain duplicates of the
floating-point parameters. The compiler performs this duplication
since the function may be expecting either floats or raw data. If the
function definition specifies floats, it will look for the parameters in
the floating-point registers. If the function accepts anything and in-
terprets the data itself (like printf()), it will look for the parame-
ters in the general purpose registers.

C and C++ Language Notes
Calling Conventions

CL–38 C, C++, and Assembly Language Reference

Figure 2.3 shows how the compiler would store the parameters in
function foo(), shown below. Note that r4, r5, and r6 are empty
and that the floating-point members of the struct are not stored in
floating-point registers. Also, the compiler fills up the floating-point
registers one after the other, even though the floating-point parame-
ters do not follow each other.

typedef struct rec {
 int i;
 float f;
 double d;
} rec;

void foo(int i1, float f1, double d1, rec r,
 int i3, float f3, double d3);

Figure 2.3 PowerPC parameter passing example

i1

f1

d1 (first word)

d1 (second word)

rec.i

rec.f

rec.d (first word)

rec.d (second word)

i3

f3

d3 (first word)

d3 (second word)

i1

empty

empty

empty

rec.i

rec.f

rec.d (first word)

rec.d (second word)

f1

d1 (first word)

d1 (second word)

f3

d3 (first word)

d3 (second word)

empty

empty

empty

empty

empty

empty

empty

Parameter Stack General Purpose Registers Floating-point Registers

r3

r4

r5

r6

r7

r8

r9

r10

fp1

fp2

fp3

fp4

fp5

fp6

fp7

fp8

fp9

fp10

fp11

fp12

fp13

24

28

32

36

40

44

48

52

56

60

64

68

C and C++ Language Notes
Calling Conventions

C, C++, and Assembly Language Reference CL–39

This list describes where the compiler places a return value:

• It returns integer values in r3.

• It returns float and double floating-point values in fp1.

• If it returns a composite type (such as a struct, class, or array),
it allocates area for the return value in a temporary storage
area, and returns a pointer to that area as an implicit left-most
parameter (that is, in r3).

Magic Cap calling conventions

The Magic Cap compiler uses the same calling conventions as the
68K Macintosh compiler with the MPW C Calling Conventions op-
tion on and the d0_pointers pragma on. For more information,
see “68K Macintosh calling conventions” on page 35, “Declaring
MPW C functions (Macintosh Only)” on page 75, and “d0_pointers
(68K Macintosh only)” on page 180.

Win32/x86 calling conventions

The Win32/x86 C/C++ compiler lets you choose how it calls func-
tions with these types of declaration: __stdcall and __thiscall.

If you don’t use a declaration specifier, the compiler uses the default
calling convention. It pushes all parameters onto the stack in right to
left order, so the first parameter in the list is on top of stack when the
call is made. It expands each parameter to at least 32 bits on the
stack and pads structs to an even number of 32 bit longwords. The
caller removes the parameters from the stack. The compiler returns
the function’s value in one of these ways:

• It returns integer and pointer values in the EAX register.

• It returns floating point values on the floating point processor
stack

• It returns structures and classes by passing an additional pa-
rameter with the address of a temporary variable and pushes
that address onto the stack after all explicit parameters.

C and C++ Language Notes
Extensions to C or C++

CL–40 C, C++, and Assembly Language Reference

If you’re declaring a function for an API, specify the standard call-
ing convention with __stdcall. It’s the same as the default calling
convention, except that the callee removes parameters from stack.

If you’re declaring a non-static member function, the compiler auto-
matically uses the __thiscall calling convention unless you ex-
plicitly specify the standard calling convention with __stdcall.
The __thiscall calling convention is the same as the standard
calling convention, except that it passes the this pointer in the ECX
register.

Extensions to C or C++
This section describes some of Metrowerks C and C++’s extensions
to the C and C++ standards. You can disable most of these exten-
sions with options in the Language preference panel, as shown in
Figure 2.4.

Figure 2.4 Setting C Options in the C/C++ Languages Settings Panel

Using Prototypes
Enumerated cons-
tants of any size

Disabling trigraph
characters

Common ANSI
Extensions
Additional
Keywords

Chars always
unsigned

Using multi-byte
strings,comments

Storing strings
Using prototypes

Inlining functions

C and C++ Language Notes
Extensions to C or C++

C, C++, and Assembly Language Reference CL–41

NOTE: For more information on the options in the upper right
corner of the dialog (Activate C++ Compiler, ARM Conformance,
Enable Exception Handling, Don’t Inline, and Enable RTTI), as
well as Enable bool support and Direct to SOM see “Overview of
C++ Language Notes” on page 85. For more information on en-
able bool support, see “Using the bool type” on page 96. For more
information on Map Newlines to CR, see “Using MPW C newlines”
on page 76.

These are the extensions described in this section:

• “ANSI extensions you can’t disable” on page 42 describes ex-
tensions you cannot disable. These extensions are common to
many compilers, especially Macintosh compilers.

• “ANSI extensions you disable with ANSI Strict” on page 47
describes extensions you can disable with the ANSI Strict
option. These extensions are common to many compilers.

• “Disabling trigraph characters” on page 49 describes how to
prevent the compiler from expanding trigraph characters.
You can disable this extension with the Expand Trigraphs op-
tion.

• “Additional keywords” on page 50 describes three additional
words that the compiler recognizes as keywords. You can dis-
able this extension with the ANSI Keywords Only option.

• “Enumerated constants of any size” on page 51 describes
how Metrowerks C and C++ create enumerated constants of
any size. You can disable this extension with the Enums Al-
ways Int option.

• “Chars always unsigned” on page 52 describes how Metrow-
erks C and C++ lets you treat a char declaration as an
unsigned char declaration. You can enable this extension
with the Use Unsigned Chars option.

• “Inlining functions” on page 52 describes how to choose the
way in which Metrowerks C and C++ inline your functions.
You choose with the Inlining menu.

• “Using multibyte strings and comments” on page 53 de-
scribes how to use multibyte strings and comments (such as

C and C++ Language Notes
Extensions to C or C++

CL–42 C, C++, and Assembly Language Reference

Kanji). You can enable this extension with the Multi-Byte
Aware option.

• “Using prototypes” on page 54 describes how to control how
strictly Metrowerks C and C++ enforce prototypes. There are
two options and a pragma that control prototypes: the Re-
quire Function Prototypes option, the Relaxed Pointer Type
Rules option, and the pragma ignore_oldstyle.

• “Storing strings (Macintosh only)” on page 56 describes how
to control how to store strings. There are two options that
control strings: Pool Strings and Don’t Reuse Strings.

ANSI extensions you can’t disable

This section describes some extensions to the ANSI C and C++ stan-
dards that you cannot disable with any option in the project set-
tings. Many compilers, especially Macintosh compilers, support
these extensions.

These extensions are as follows:

• “Multibyte characters (Macintosh Only)” on page 43

• “Declaring variables by address (Macintosh Only)” on page
43

• “Opcode inline functions (68K Macintosh Only)” on page 43

• “Specifying the registers for arguments (68K Macintosh
Only)” on page 45

• “64-bit integers” on page 46

C and C++ Language Notes
Extensions to C or C++

C, C++, and Assembly Language Reference CL–43

Multibyte characters (Macintosh Only)

(K&R, §A2.5.2) The C and C++ compilers let you use multibyte
character constants which contain 2 to 4 characters. Here are some
examples:

Table 2.6 Multibyte character constant

Declaring variables by address (Macintosh Only)

(K&R, §A8.7) The C and C++ compilers let you specify the address
that a variable refers to. For example, this definition defines MemErr
to contain whatever is at the address 0x0220:

short MemErr:0x220;

the variable MemErr contains whatever is at the address 0x220.

TIP: Avoid using this extension to refer to low-memory globals.
To ensure that your programs are compatible with future versions
of the Mac OS, use the functions defined in the LowMem.h header
file.

Opcode inline functions (68K Macintosh Only)

(K&R, §A8.6.3, §A10.1) The 68K C and C++ compilers let you de-
clare a function that specifies the opcodes that it contains. When you
call an opcode inline function, the compiler replaces the function
call with those opcodes. To define an opcode inline function, replace
the function body with an equals sign and the opcode. If there’s

Character constant Equivalent hexadecimal

’ABCD' 0x41424344

’ABC' 0x00414243

’AB' 0x00004142

C and C++ Language Notes
Extensions to C or C++

CL–44 C, C++, and Assembly Language Reference

more than one opcode, enclose them in brackets. Listing 2.6 shows
two opcode inline functions.

Listing 2.6 Declaring an opcode inline function

pascal OSErr FSpCatMove(FSSpec *from,FSSpec *to)
 = { 0x303C,0x000C,0xAA52 };

pascal void LineTo(short h,short v) = 0xA891;

NOTE: Only the 68K Macintosh C and C++ compilers lets you
use opcode inline function declarations. However, all the C++ com-
pilers let you use C++ inline functions, declared with the inline
keyword.

Inline data (68K Macintosh Only)

The 68K C and C++ compilers let you include simple inline data
with the asm declaration. Use this syntax:

asm { constant, constant, . . . }
asm (constant, constant, . . .)

A constant can be a numeric constant or a string literal.

For example, this function:

Listing 2.7 Inline data example

void foo()
{
 asm ((short)0x4e71,(short)0x4e71);
 // two 68K NOP instructions

C and C++ Language Notes
Extensions to C or C++

C, C++, and Assembly Language Reference CL–45

 asm { 0x4e714e71,0x4e714e71 };
 // four 68K NOP instructions

 asm ((char)'C',(char)'o',(short)'de',"Warrior");
}

Produces assembly code that looks like this:

Listing 2.8 Assembly code from inline data

 LINK A6, #$0000
 NOP
 NOP ; First two NOPs
 NOP
 NOP
 NOP
 NOP ; Next four NOPs
 DC.B "CodeWarrior\0"
 UNLK A6
 RTS

Specifying the registers for arguments (68K Macintosh Only)

(K&R, §A8.6.3, §A10.1) The 68K C and C++ compilers let you can
specify which registers that a function uses for its parameters and
the return value. The registers D0-D2, A0-A1, and FP0-FP3 are avail-
able.

When you declare the function, specify the registers by using the
#pragma parameter statement before the declaration. When you de-
fine the function, specify the registers right in the argument list.

This is the syntax for the #pragma parameter:

#pragma parameter return-reg func-name(param-regs)

The compiler passes the parameters for the function func-name in the
registers specified in param-regs instead of the stack, and returns any

C and C++ Language Notes
Extensions to C or C++

CL–46 C, C++, and Assembly Language Reference

return value in the register return-reg. Both return-reg and param-regs
are optional.

For example, Listing 2.9 shows the declaration and definition of a
function, in which a is passed in D0, p is passed in A1, x is passed in
FP0 and f is passed on the stack.

Listing 2.9 Using registers with functions

#pragma parameter __D2 function(__D0,__A1,__FP0)
short function(long a, Ptr p, long double x,
 short f);

short function(long a:__D0, Ptr p:__A1,
 long double x:__FP0, short f) :__D2
{
 // ...
}

64-bit integers

The C or C++ compiler lets you define a 64-bit integer with the type
specifier long long. This is twice as large as a long int, which
is a 32-bit integer. A long long can hold values from
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. An
unsigned long long can hold values from 0 to
18,446,744,073,709,551,615.

In an enumerated type, you can use an enumerator large enough for
a long long. For more information, see “Enumerated types” on
page 28. However, long long bitfields are not supported.

You can disable the long long type with the pragma longlong,
described at “longlong” on page 198. There is no settings panel op-
tion to disable it. If this pragma is off, using long long causes a
syntax error. To check whether this option is on, use
__option (longlong), described in “Options Checking” on page
229. By default, this pragma is on.

C and C++ Language Notes
Extensions to C or C++

C, C++, and Assembly Language Reference CL–47

ANSI extensions you disable with ANSI Strict

This section describes some optional extensions to the ANSI C and
C++ standards that you can enable by turning off the ANSI Strict
option in the Language preference panel. Many compilers, includ-
ing Metrowerks C and C++, support these extensions.

NOTE: You cannot compile most standard Macintosh applica-
tions if the ANSI Strict option is on. In general, use this option
only if you have to check whether a program is strictly ANSI-con-
ferment.

The optional ANSI extensions are the following. If you turn on the
ANSI Strict option, the compiler generates an error if it encounters
any of these extensions.

• “C++-style comments” on page 48

• “Unnamed arguments in function definitions” on page 48

• “A # not followed by argument in macro definition” on page
48

• “An identifier after #endif” on page 48

• “Using typecasted pointers as lvalues” on page 49

For more information on how this option affects enumerated types,
see “Enumerated types” on page 28.

The ANSI Strict option corresponds to the pragma ANSI_strict,
described at “ANSI_strict” on page 173. To check whether this op-
tion is on, use __option (ANSI_strict), described at
“ANSI_strict” on page 230. By default, this option is off.

C and C++ Language Notes
Extensions to C or C++

CL–48 C, C++, and Assembly Language Reference

C++-style comments

(K&R, §A2.2) In the C compiler, you can use C++-style comments.
Anything that follows // on a line is considered a comment. For ex-
ample:

a = b; // This is a C++-style comment

Unnamed arguments in function definitions

(K&R, §A10.1) The C compiler lets you use an unnamed argument
in a function definitions. For example:

void f(int) {} /* OK, if ANSI Strict is off */
void f(int i) {} /* ALWAYS OK */

A # not followed by argument in macro definition

(K&R, §A12.3) The C and C++ compilers do not generate an error if
you use the quote token (#) in a macro definition and a macro argu-
ment does not follow it. For example:

#define add1(x) #x #1
 // OK, but probably not what you wanted:
 // add1(abc) creates "abc"#1
#define add2(x) #x "2"
 // OK: add2(abc) creates "abc2"

An identifier after #endif

(K&R, §A12.5) The C and C++ compilers let you place an identifier
token after #endif and #else. This extension helps you match an
#endif statement with its corresponding #if, #ifdef, or #ifndef
statement, as shown below:

#ifdef __MWERKS__
ifndef __cplusplus
 /*
 * . . .
 */
endif __cplusplus
#endif __MWERKS__

C and C++ Language Notes
Extensions to C or C++

C, C++, and Assembly Language Reference CL–49

If you turn on the ANSI Strict option, you can make the identifiers
into comments, like this:

#ifdef __MWERKS__
ifndef __cplusplus
 /*
 * . . .
 */
endif /* __cplusplus */
#endif /* __MWERKS__ */

Using typecasted pointers as lvalues

The C and C++ compilers let you use a pointer that you’ve type-
casted to another pointer type as an lvalue. For example:

char *cp;
((long *) cp)++; /* OK if ANSI Strict is off. */

Disabling trigraph characters

(K&R, §A12.1) The C and C++ compilers let you ignore trigraph
characters. Many common Macintosh character constants look like
trigraph sequences, and this extension lets you use them without in-
cluding escape characters.

If you’re writing code that must follow the ANSI standard strictly,
turn on the Expand Trigraphs option in the Language preference
panel. Be careful when you initialize strings or multi-character con-
stants that contain question marks. For example:

char c = '????'; // ERROR: Trigraph sequence
 // expands to '??^
char d = '\?\?\?\?'; // OK

The Expand Trigraphs option corresponds to the pragma tri-
graphs, described at “trigraphs” on page 219. To check whether
this option is on, use __option (trigraphs), described at “tri-
graphs” on page 235. By default, this option is off.

C and C++ Language Notes
Extensions to C or C++

CL–50 C, C++, and Assembly Language Reference

Additional keywords

(K&R, §A2.4) If you’re writing code that must follow the ANSI stan-
dard strictly, turn on the ANSI Keywords Only option in the Lan-
guage preference panel. The compiler generates an error if it
encounters any of the Metrowerks C/C++ additional keywords.

This sections contains the following:

• “Macintosh and Magic Cap keywords” on page 50

• “Win32/x86 keywords” on page 51

The ANSI Keywords Only option corresponds to the pragma
only_std_keywords, described at “only_std_keywords” on page
204. To check whether this option is on, use __option
(only_std_keywords), described at “only_std_keywords” on
page 233. By default, this option is off.

Macintosh and Magic Cap keywords

The 68K Macintosh, PowerPC Macintosh, and Magic Cap C /C++
compilers recognize three additional reserved keywords.

• asm lets you compile a function’s body with built-in assem-
bler. For more information on how to use the built-in assem-
bler, consult “Overview of 68K Assembler Notes” on page
115 and “Overview of PowerPC Assembler Notes” on page
125. (K&R, §A10.1)

• far (68K only) lets you declare a variable or a function to use
the far mode addressing regardless of how you set the op-
tions Far Data, Far Virtual Function Tables, and Far String
Constants in the Processor settings. For more information on
the far mode, see the CodeWarrior IDE User’s Guide. (K&R,
§A8.1)

NOTE: The PowerPC compiler ignores the far qualifier but does
not generate an error.

• pascal lets you declare a function that uses Pascal calling
conventions. For information, see “Calling Macintosh Tool-

C and C++ Language Notes
Extensions to C or C++

C, C++, and Assembly Language Reference CL–51

box Functions (Macintosh Only)” on page 77. (K&R, §A8.6.3,
§A10.1)

• inline lets you declare a C function to be inline. It works the
same as inline in C++. For more information, see “Inlining
functions” on page 52.

Win32/x86 keywords

The Win32/x86 compiler recognizes these keywords:

• __stdcall specifies that this function uses the standard call-
ing convention. For more information, see “Win32/x86 call-
ing conventions” on page 39.

• asm specifies that this function is entirely implemented with
assembler code and the compiler does not need to produce
any prefix or suffix code.

The Win32/x86 compiler ignores the pascal keyword and raises an
error for the far keyword.

Enumerated constants of any size

(K&R, §A8.4) When the Enums Always Int option is on, the C or
C++ compiler makes an enumerated type the same size as an int. If
an enumerated constant is larger than int, the compiler generates
an error. When the option is off, the compiler makes an enumerated
type the size of any integral type. It chooses the integral type with
the size that most closely matches the size of the largest enumerated
constant. The type could be as small as a char or as large as a long
int.

For example:

enum SmallNumber { One = 1, Two = 2 };
 /* If Enums Always Int is off, this type will
 be the same size as a char.
 If the option is on, this type will be
 the same size as an int. */

C and C++ Language Notes
Extensions to C or C++

CL–52 C, C++, and Assembly Language Reference

enum BigNumber
 { ThreeThousandMillion = 3000000000 };
 /* If Enuns Always Int is off, this type will
 be the same size as a long int.
 If this option is on, the compiler may
 generate an error. */

For more information on how enumerated types are implemented,
see “Enumerated types” on page 28.

The Enums Always Int option corresponds to the pragma
enumsalwaysint, described at “enumsalwaysints” on page 184. To
check whether this option is on, use __option (enumsalway-
sint), described at “enumsalwaysint” on page 231. By default, this
option is off.

Chars always unsigned

When the Use Unsigned Chars option is on, the C/C++ compiler
treats a char declaration as if it were an unsigned char declara-
tion.

NOTE: If you turn this option on, your code may not be compati-
ble with libraries that were compiled with this option turned off. In
particular, your code may not work with the ANSI libraries included
with CodeWarrior.

The Use Unsigned Chars option corresponds to the pragma
unsigned_char, described at “unsigned_char” on page 220. To
check whether this option is on, use __option (unsigned_char),
described at “unsigned_char” on page 235. By default, this option is
off.

Inlining functions

Metrowerks C/C++ gives you several different ways to inline both
C and C++ functions. When you call an inline function, the caller in-
serts the function’s code instead of a function call. Inlining functions

C and C++ Language Notes
Extensions to C or C++

C, C++, and Assembly Language Reference CL–53

makes your programs faster (since the compiler executes the func-
tion’s code immediately without a function call), but possibly larger
(since the function’s code may be repeated in several different
places).

If you turn off the ANSI Keywords Only option, you can declare C
functions to be inline, just as you do in C++. And the Inlining
menu lets you choose to inline all small functions, only functions
declared inline, or no functions, as shown in the table below:

The Don’t Inline option corresponds to the pragma dont_inline,
described at “dont_inline” on page 183. To check whether this op-
tion is on, use __option (dont_inline), described at
“dont_inline” on page 231. By default, this option is off.

The Auto-Inline option corresponds to the pragma auto_inline,
described at “auto_inline” on page 175. To check whether this op-
tion is on, use __option (auto_inline), described at
“auto_inline” on page 230. By default, this option is off.

Using multibyte strings and comments

To use multibyte strings or comments (such as Kanji), turn on the
Multi-Byte Aware option. If you don’t need multibyte strings or
comments, turn this option off, since it slows down the compiler.

This option Does this…

Don’t Inline Inlines no functions, not even C or C++ func-
tions declared inline.

Normal Inlines only C and C++ functions declared in-
line and member functions defined within a
class declaration. Note that Metrowerks may not
be able to inline all the functions you declare in-
line.

Auto-Inline Lets the compiler choose which functions to in-
line. Also inlines C++ functions declared in-
line and member functions defined within a
class declaration.

C and C++ Language Notes
Extensions to C or C++

CL–54 C, C++, and Assembly Language Reference

Using prototypes

(K&R, §A8.6.3, §A10.1) The C and C++ compilers let you choose
how to enforce function prototypes:

• “Requiring prototypes” on page 54 explains the Require Pro-
totypes option which forces you to prototype every function
so you can find errors caused by forgotten prototypes.

• “Relaxing pointer checking” on page 56 explains the Relaxed
Pointer Type Rules option which treats char*, unsigned
char*, and Ptr as the same type.

Requiring prototypes

When the Require Prototypes option is on, the compiler generates
an error if you use a function that does not have a prototype. This
option helps you prevent errors that happen when you use a func-
tion before you define it. If you do not use function prototypes, your
code may not work as you expect even though it compiles without
error.

In Listing 2.10, PrintNum() is called with an integer argument but
is later defined to take a floating-point argument.

Listing 2.10 Unnoticed type-mismatch

#include <stdio.h>

void main(void)
{
 PrintNum(1); // NO: PrintNum() tries to
} // interpret the integer as a
 // float. Prints 0.000000.
void PrintNum(float x)
{
 printf("%f\n", x);
}

C and C++ Language Notes
Extensions to C or C++

C, C++, and Assembly Language Reference CL–55

When you run it, you could get this result:

0.000000

Although the compiler does not complain about the type mismatch,
the function does not work as you want. Since PrintNum() is not
prototyped, the compiler does not know it needs to convert the inte-
ger to a floating-point number before calling the function. Instead,
the function interprets the bits it received as a floating-point number
and prints nonsense.

If you prototype PrintNum() first, as in Listing 2.11, the compiler
converts its argument to a floating-point number, and the function
prints what you wanted.

Listing 2.11 Using a prototype to avoid type-mismatch

#include <stdio.h>

void PrintNum(float x); // Function prototype.

void main(void)
{
 PrintNum(1); // OK: Compiler knows to
} // convert integer to float.
 // Prints 1.000000.
void PrintNum(float x)
{
 printf("%f\n", x);
}

In other situations where automatic typecasting is not available, the
compiler generates an error when an argument does not match the
expected data type. Such a mismatched data type error is easy to lo-
cate at compile time. If you do not use prototypes, you get no error
and the cause of the resulting unintentional behavior can be ex-
tremely difficult to track down.

C and C++ Language Notes
Extensions to C or C++

CL–56 C, C++, and Assembly Language Reference

The Require Prototypes option corresponds to the pragma
require_prototypes, described at “require_prototypes” on page
211. To check whether this option is on, use __option
(require_prototypes), described at “require_prototypes” on
page 234. By default, this option is on.

Relaxing pointer checking

When you turn on the Relaxed Pointer Type Rules option in the C/
C++ Language settings panel, the compiler treats char*, unsigned
char*, and Ptr as the same type. This option is especially useful if
you’re using code written before the ANSI C standard. This old code
frequently used these types interchangeably. When compiling C++
code, the compiler ignores the setting of this option and always
treats the types as different types.

The Relaxed Pointer Type Rules option corresponds to the pragma
mpwc_relax, described at “mpwc_relax” on page 202. To check
whether this option is on, use __option (mpwc_relax), de-
scribed at “mpwc_relax” on page 233.

Storing strings (Macintosh only)

The C and C++ compilers let you choose how to store strings:

• “Pooling strings” on page 56 describes the Pool Strings op-
tion which lets you save space in your program’s TOC by col-
lecting all your string constants into a single data object.

• “Using PC-relative strings” on page 57 describes the PC-Rel-
ative Strings option which lets you choose whether to store
strings in your code resources or in your global data.

• “Reusing strings” on page 58 describes the Don’t Reuse
Strings option which lets you store only one copy of identical
strings.

Pooling strings

If the Pool Strings option in the Language preference panel is on,
the compiler collects all string constants into a single data object so
your program needs one TOC entry for all of them. If this option is
off, the compiler creates a unique data object and TOC entry for

C and C++ Language Notes
Extensions to C or C++

C, C++, and Assembly Language Reference CL–57

each string constant. Turning this option on decreases the number of
TOC entries in your program but increases your program’s size,
since it uses a less efficient method to store the string’s address.

TIP: You can also change the size of the TOC with the Store
Static Data in TOC option in the PPC Processor preference panel.
For more information, see the CodeWarrior User’s Guide.

This option is especially useful if your program is large and has
many string constants or uses the Metrowerks Profiler.

NOTE: If you turn the Pool Strings option on, the compiler ig-
nores the setting of the PC-Relative Strings option.

The Pool Strings option corresponds to the pragma
pool_strings, described at “pool_strings” on page 208. To check
whether this option is on, use __option (pool_strings), de-
scribed at “pool_strings” on page 234. By default, this option is off.

Using PC-relative strings

If the PC-Relative Strings option in the Processor preference panel
is on, the compiler stores the string constants used in a local scope in
the code segment and addresses these strings with PC-relative in-
structions. If this option is off, the compiler stores all string con-
stants in the global data segment. This option helps keep your
global data segment smaller.

NOTE: This option is available only with the 68K compilers. It is
not available with the PowerPC compilers.

C and C++ Language Notes
Extensions to C or C++

CL–58 C, C++, and Assembly Language Reference

Regardless of how this option is set, the compiler stores string con-
stants used in the global scope in the global data segment. For ex-
ample:

#pragma pcrelstrings on

int f(char *);

int x = f("Hello"); // "Hello" is allocated in
 // the global data segment
int bar()
{
 return f("World"); // "World" is allocated in
} // the code segment
 // (pc-relative)
#pragma pcrelstrings reset

NOTE: If you turn the Pool Strings option on, the compiler ig-
nores the setting of the PC-Relative Strings option.

The PC-Relative Strings option corresponds to the pragma
pcrelstrings, described at “pcrelstrings (68K Macintosh only)”
on page 206. To check whether this option is on, use __option
(pcrelstrings), described at “pcrelstrings (68K only)” on page
233. By default, this option is off.

WARNING! Do not turn off the PC-Relative Strings option in
Magic Cap code. Although the Magic Cap compiler lets you
change the setting of this option, your code will not run correctly if
it’s off. It is on by default.

Reusing strings

If the Don’t Reuse Strings option in the C/C++ Languages settings
panel is on, the compiler stores each string literal separately. If this
option is off, the compiler stores only one copy of identical string lit-

C and C++ Language Notes
Warnings for Common Mistakes

C, C++, and Assembly Language Reference CL–59

erals. This option helps you save memory if your program contains
lots of identical string literals which you do not modify.

For example, take this code segment:

char *str1="Hello";
char *str2="Hello"
*str2 = 'Y';

If this option is on, str1 is "Hello" and str2 is "Yello". If this
option is off, both str1 and str2 are "Yello".

The Don’t Reuse Strings option corresponds to the pragma
dont_reuse_strings, described at “dont_reuse_strings” on page
184. To check whether this option is on, use __option
(dont_reuse_strings), described at “dont_reuse_strings” on
page 231. By default, this option is on. (Strings are not reused.)

Warnings for Common Mistakes
This section describes the options in the Warnings preference panel,
which check for common typographical mistakes.These mistakes
are legal C and C++ code but might not do what you expect. When
the compiler finds one of these possible mistakes, it generates a
warning. Since these mistakes raise warnings, your code will com-
pile and run even if the compiler finds one.

The options in this section warn you of the following:

• “Illegal pragmas” on page 60

• “Empty declarations” on page 61

• “Possible unwanted side effects” on page 61

• “Unused variables” on page 62

• “Unused arguments” on page 63

• “Extra commas” on page 64

• “Extended type checking” on page 65

• “Function hiding” on page 66

C and C++ Language Notes
Warnings for Common Mistakes

CL–60 C, C++, and Assembly Language Reference

The one option that isn’t a warning is the Treat All Warnings as Er-
rors option. If these option is on, the compiler treats all the warnings
the compiler generates, including the ones described here, as errors,
and it won’t compile your code until you resolve them.

Figure 2.5 The C/C++ Warnings Settings Panel

Treat warnings as errors

When the Treat All Warnings as Errors option in the Warnings pref-
erence panel is on, the compiler treats all warnings as though they
were errors. It will not compile a file until all warnings are resolved.

The Treat All Warnings as Errors option corresponds to the pragma
warning_errors, described at“warning_errors” on page 221. To
check whether this option is on, use __option
(warning_errors), described at “warning_errors” on page 236.
By default, this option is off.

Illegal pragmas

If the Illegal Pragmas option is on, the compiler displays a warning
when it encounters an illegal pragma. For example, these pragma
statements generate warnings:

#pragma near_data off
 // WARNING: near_data is not a pragma.

C and C++ Language Notes
Warnings for Common Mistakes

C, C++, and Assembly Language Reference CL–61

#pragma far_data select
 // WARNING: select is not defined
#pragma far_data on
 // OK

The Illegal Pragmas option corresponds to the pragma
warn_illpragma, described at “warn_illpragma” on page 223. To
check whether this option is on, use __option
(warn_illpragma), described at “warn_illpragma” on page 235.
By default, this option is off.

Empty declarations

If the Empty Declarations option is on, the compiler displays a
warning when it encounters a declaration with no variables. For ex-
ample:

int ; // WARNING
int i; // OK

The Empty Declarations option corresponds to the pragma
warn_emptydecl, described at “warn_emptydecl” on page 221. To
check whether this option is on, use __option
(warn_emptydecl), described at “warn_emptydecl” on page 235.
By default, this option is off.

Possible unwanted side effects

If the Possible Errors option is on, the compiler checks for some
common typographical mistakes that are legal C and C++ but that
may have unwanted side effects, such as putting in unintended
semicolons or confusing = and ==. The compiler generates a warn-
ing if it encounters one of these:

• An assignment in a logical expression or the condition in an
if, while, or for expression. This check is useful if you fre-
quently use = when you meant to use ==. For example:

if (a=b) f(); // WARNING: a=b is an
 // assignment

C and C++ Language Notes
Warnings for Common Mistakes

CL–62 C, C++, and Assembly Language Reference

if ((a=b)!=0) f(); // OK: (a=b)!=0 is a
 // comparison

if (a==b) f(); // OK: (a==b) is a
 // comparison

• An equal comparison in a statement that contains a single ex-
pression. This check is useful if you frequently use == when
you meant to use =. For example:

a == 0; // WARNING: This is a comparison.
a = 0; // OK: This is an assignment

• A semicolon (;) directly after a while, if, or for statement.
For example, the statement generates an error and is proba-
bly an unintended infinite loop:

while (i++); // WARNING: Unintended
 // infinite loop

If you intended to create an infinite loop, put white space or a com-
ment between the while statement and the a comment. For exam-
ple, these statements do not generate errors:

while (i++) ; // OK: White space separation
while (i++) /*: Comment separation */ ;

The Possible Errors option corresponds to the pragma
warn_possunwant, described at “warn_possunwant” on page 223.
To check whether this option is on, use __option
(warn_possunwant), described at “warn_possunwant” on page
235. By default, this option is off.

Unused variables

If the Unused Variables option is on, the compiler generates a
warning when it encounters a variable you declare but do not use.
This check helps you find misspelled variable names and variables
you have written out of your program. For example:

void foo(void)
{
 int temp, errer; // ERROR: errer is
 // misspelled

C and C++ Language Notes
Warnings for Common Mistakes

C, C++, and Assembly Language Reference CL–63

 error = do_something()
} // WARNING: temp and error are unused.

If you need to declare a variable that you don’t use, use the pragma
unused, as in this example:

void foo(void)
{
 int i, temp, error;
#pragma unused (i, temp) /* Compiler won’t warn
 error=do_something(); * that i and temp are
} * not used
 */

The Unused Variables option corresponds to the pragma
warn_unusedvar, described at “warn_unusedvar” on page 225. To
check whether this option is on, use __option
(warn_unusedvar), described at “warn_unusedvar” on page 236.
By default, this option is off.

Unused arguments

If the Unused Arguments option is on, the compiler generates a
warning when it encounters an argument you declare but do not
use. This check helps you find misspelled argument names and ar-
guments you have written out of your program.

void foo(int temp,int errer); // ERROR: errer is
 // misspelled
{
 error = do_something();
} // WARNING: temp and error are unused.

If you need to declare an argument that you don’t use, there are two
ways to avoid this warning. You can use the pragma unused, as in
this example:

void foo(int temp, int error)
{
#pragma unused (temp) /* Compiler won’t warn
 error=do_something(); * that temp is not used
} */

C and C++ Language Notes
Warnings for Common Mistakes

CL–64 C, C++, and Assembly Language Reference

You can also turn off the ANSI Strict option, and not give the un-
used argument a name, like this:

void foo(int /* temp */, int error)
{ /* Compiler won’t warn
#pragma unused (temp) * that temp is not used
 error=do_something(); */
}

The Unused Arguments option corresponds to the pragma
warn_unusedarg, described at “warn_unusedarg” on page 224. To
check whether this option is on, use __option
(warn_unusedarg), described at “warn_unusedarg” on page 235.
By default, this option is off.

Extra commas

If the Extra Commas option is on, the compiler generates a warning
when it encounters an extra comma. For example, this statement is
legal in C, but it causes a warning when this option is on:

int a[] = { 1, 2, 3, 4, };
 // ^ WARNING: Extra comma
 // after 4

The Extra Commas option corresponds to the pragma
warn_extracomma, described at “warn_extracomma” on page 222.
To check whether this option is on, use __option
(warn_extracomma), described at “warn_extracomma” on page
235. By default, this option is off.

C and C++ Language Notes
Warnings for Common Mistakes

C, C++, and Assembly Language Reference CL–65

Extended type checking

If the Extended Error Checking option is on, the C compiler gener-
ates a warning (not an error) if it encounters one of these syntax
problems:

• A non-void function that does not contain a return state-
ment. For example, this would generate a warning:

main() /* assumed to return int */
{
 printf ("hello world\n");
} /* WARNING: no return
 statement */

This would be OK:

void main()
{
 printf ("hello world\n");
}

• Assigning an integer or floating-point value to an enum type.
For example:

enum Day { Sunday, Monday, Tuesday,
 Wednesday, Thursday,
 Friday, Saturday } d;

d = 5; /* WARNING */
d = Monday; /* OK */
d = (Day)3 ; /* OK */

NOTE: Both of these syntax problems are always errors in C++.

C and C++ Language Notes
Warnings for Common Mistakes

CL–66 C, C++, and Assembly Language Reference

The C and C++ compilers generate a warning if it encounters this:

• An empty return statement (return;) in a function that is
not declared void. For example, this code would generate a
warning:

int MyInit(void)
{
 int err = GetMyResources();
 if (err!=0) return;
 // ERROR: Empty return statement
 // . . .
}

This would be OK:

int MyInit(void)
{
 int err = GetMyResources();
 if (err!=0) return -1;
 // OK

 // . . .
}

The Extended Error Checking option corresponds to the pragma
extended_errorcheck, described at “extended_errorcheck” on
page 187. To check whether this option is on, use __option
(extended_errorcheck), described at “extended_errorcheck” on
page 231. By default, this option is off.

Function hiding

If the Hidden virtual functions option is on, the compiler generates
a warning if you declare a non-virtual member function that hides a
virtual function in a superclass. One function hides another if it has
the same name but a different argument types. For example:

class A {
 public:
 virtual void f(int);
 virtual void g(int);
};

C and C++ Language Notes
Generating Code for Specific 68K Processors (Macintosh Only)

C, C++, and Assembly Language Reference CL–67

class B: public A {
 public:
 void f(char); // WARNING:
 // Hides A::f(int)
 virtual void g(int); // OK:
 // Overrides A::g(int)
};

The Hidden virtual functions option corresponds to the pragma
warn_hidevirtual, described at “warn_hidevirtual” on page 222.
To check whether this option is on, use __option
(warn_hidevirtual), described at “warn_hidevirtual” on page
235. By default, this option is off.

Generating Code for Specific 68K Processors
(Macintosh Only)

The CodeWarrior IDE lets you generate code for specific 68K pro-
cessors: the MC68020 processor and the MC68881 floating-point
unit. You can find these options in the Processor settings panel,
shown in Figure 2.6.

C and C++ Language Notes
Generating Code for Specific 68K Processors (Macintosh Only)

CL–68 C, C++, and Assembly Language Reference

Figure 2.6 Options to Generate Code for Specific 68K Processors

This sections contains the following:

• “Generating code for the MC68020” on page 70

• “Generating code for the MC68881” on page 70

TIP: Use these options only if your application will run solely on
machines that have that processor and your application needs the
extra efficiency that the processor provides. In general, if your ap-
plication needs to be as fast as possible, compile it for the Pow-
erPC. Most users who want fast applications have a Power
Macintosh.

Metrowerks C and C++ let you compile different code depending
on which processor you’re compiling code for, with the
__option() pre-processor function. Use __option(code68881)
to check whether the 68881 Codegen option is on. Use
__option(code68020) to check whether the 68020 Codegen op-

Compiling
for a specific
68K chip

C and C++ Language Notes
Generating Code for Specific 68K Processors (Macintosh Only)

C, C++, and Assembly Language Reference CL–69

tion is on. The following example uses different code depending on
whether the function is going to run on a machine with a MC68881:

int calc(double i)
{
#if __option (code68881)
 // Code optimized for the floating point unit.
#else
 // Code for any Macintosh
#endif
}

TIP: For more information on __option(), see “Options Check-
ing” on page 229.

To check whether the computer on which your application is run-
ning has a specific processor use the gestalt() function. The fol-
lowing code sample displays an alert if the application is for an
MC68881 and the machine does not have an MC68881:

void main(void)
{
#if __option (code68881)
 if (!HasFPU()) // Calls gestalt() to check
 { // if the computer has FPU
 DisplayNoFPU(); // Displays an alert
 return; // saying there is no FPU
 }
#endif
 // . . .
}

TIP: For more information on gestalt(), see Chapter “Gestalt
Manager” in Inside Macintosh: Operating System Utilities.

Note that HasFPU() and DisplayNoFPU() are not Toolbox func-
tions. If you use this code, you must define these functions.

C and C++ Language Notes
Generating Code for Specific 68K Processors (Macintosh Only)

CL–70 C, C++, and Assembly Language Reference

WARNING! Do not turn off the 68020 Codegen and 68881
Codegen options in Magic Cap code. Although the Magic Cap
compiler lets you change the setting of these options, your code
will not run correctly if they’re off. They are on by default.

Generating code for the MC68020

The CodeWarrior IDE lets you take full advantage of the MC68020
processor. When you turn on the 68020 Codegen option in the Pro-
cessor preference panel, the C and C++ compilers use the extensions
available in the MC68020 instruction set, including integer multipli-
cation, integer division, and bit-field operations.

WARNING! Before your program runs code optimized for the
MC68020, use the gestalt() function to make sure it is avail-
able. For more information on gestalt(), see Chapter “Gestalt
Manager” in Inside Macintosh: Operating System Utilities.

Generating code for the MC68881

The CodeWarrior IDE lets you take full advantage the MC68881
floating-point unit. The MC68881 is built into most versions of the
MC68040 processor, and it is included separately in many Macin-
tosh computers that contain the MC68030 or MC68020 processor.

Metrowerks C and C++ give you two levels of support for the
MC68881, as described below:

• No matter what you do, the Macintosh Toolbox uses the
MC68881 for many floating-point functions.

• If you also turn on the 68881 Codegen option in the Processor
settings panel, the compiler generates code optimized for the
MC68881 and stores variables declared long double or ex-
tended in 96 bits. It uses MC68881 instructions for basic
arithmetic operations, such as addition, subtraction, multipli-
cation, division, and comparisons. The header files fp.h and
math.h use MC68881 instructions for many transcendental

C and C++ Language Notes
Generating Code for Specific 68K Processors (Macintosh Only)

C, C++, and Assembly Language Reference CL–71

and floating-point conversions. The compiled code is faster
and computes the same results as code compiled with the op-
tion off.

Think carefully before you use the 68881 Codegen option. Your code
will not run on a Power Macintosh or any 68K Macintosh that does
not have a MC68881. Even if you do not use the 68881 Codegen op-
tion, the Macintosh toolbox will use the MC68881 to compute many
floating-point functions.

WARNING! Before your program runs code optimized for the
MC68881, use the gestalt() function to make sure an FPU is
available. For more information on gestalt(), see Chapter “Ge-
stalt Manager” in Inside Macintosh: Operating System Utilities.

The rest of this section describes what happens when you turn on
the MC68881 Codegen option.

Using the Extended data type

If you turn on the 68881 Codegen option, the compiler stores any
variable declared extended or long double in the Motorola 96-
bit format, instead of the SANE 80-bit format. Both formats meet the
IEEE standards for accuracy. The main difference between them is
that the 96-bit format contains 16 bits of padding so that an ex-
tended number fits evenly into three 32-bit memory accesses.

Types.h defines the extended type. SANE.h contains two other
type definitions: extended80 and extended96. It also contains
functions that convert between 80-bit and 96-bit formats:
x96tox80() and x80tox96().

NOTE: The PowerPC architecture does not support the
extended type. Use double instead.

C and C++ Language Notes
Calling MPW Functions

CL–72 C, C++, and Assembly Language Reference

Using floating-point registers

The MC68881 has eight registers, FP0 through FP7, which store 96-
bit floating-point values (that is, extended or long double). If
you turn on the 68881 Codegen option, your assembly language
routines can use registers FP0 through FP3 for temporary storage
without restoring their values. If you use registers FP4 through FP7,
you must preserve their contents.

The compiler allocates variables of type long double or ex-
tended to registers to optimize performance.

Calling MPW Functions
The CodeWarrior IDE lets you include an MPW C library in your
CodeWarrior project and call most of its functions. You can set vari-
ous options in the Processor and Language preference panel to
make your project compatible with MPW C code. The Language
preference panel options are shown in Figure 2.7.

Figure 2.7 MPW C Options in the C/C++ Languages Settings Panel

MPW C options

C and C++ Language Notes
Calling MPW Functions

C, C++, and Assembly Language Reference CL–73

NOTE: The Win32/x86 compiler also honors the Map Newlines
to CR, Relaxed Pointer Type Rules, and Enums Always Int op-
tions. However, it does not use the MPW C Calling Convention
option.

Note that even if you turn on the MPW C Calling Convention op-
tion, MPW and Metrowerks aren’t completely compatible in certain
situations. For more information, see “Declaring MPW C functions
(Macintosh Only)” on page 75.

This section contains the following:

• “Adding an MPW library to a CodeWarrior project” on page
73

• “Declaring MPW C functions (Macintosh Only)” on page 75

• “Using MPW C newlines” on page 76

WARNING! Do not turn off the MPW C Calling Convention or
Map Newlines to CR options in Magic Cap code. Although the
Magic Cap compiler lets you change the settings of these options,
your code will not run correctly if they’re off. They are on by default.

Adding an MPW library to a CodeWarrior
project

To call a function from an MPW library, do the following.

1. Add the library to your project with the Add Files command in
the Project menu.

2. If you’re using a 68K library, turn on the MPW C Calling Con-
vention option.

You can either turn on the MPW C Calling Convention option in
the Processor preference panel, or you can use the pragma mpwc. If
you use the MPW C Calling Convention option, all functions in
your project use MPW C calling conventions. If you use the pragma

C and C++ Language Notes
Calling MPW Functions

CL–74 C, C++, and Assembly Language Reference

mpwc, only those functions declared with that pragma use MPW C
calling convention.

To use the pragma, turn on the pragma mpwc in the header file that
declares the MPW C functions, declare the functions, and turn off
the pragma mpwc. For example:

#pragma mpwc on

int func1(double a, int b);
int func2(int a, double b);

#pragma mpwc reset

For more information, see “Declaring MPW C functions (Macintosh
Only)” on page 75.

3. If you’re creating a 68K project, turn on the 4-Byte Int option in
the Processor preference panel.

MPW C does not support 2-byte ints. For more information, see
“Number Formats” on page 30.

4. If you use the ANSI library to perform input or output, turn on
the Map Newlines to CR option in the Language preference
panel.

MPW and Metrowerks C and C++ handle the newline character
('\n') differently. For more information, see “Using MPW C new-
lines” on page 76.

5. If your code relies on MPW C’s relaxed type checking, turn on
the Relaxed Pointer Type Rules option in the C/C++ Language
settings panel .

Metrowerks C and C++ uses stricter rules than MPW when decid-
ing whether certain pointer types are equivalent. For more informa-
tion, see “Relaxing pointer checking” on page 56.

C and C++ Language Notes
Calling MPW Functions

C, C++, and Assembly Language Reference CL–75

Declaring MPW C functions (Macintosh Only)

When you turn on the MPW C Calling Convention option, the
compiler does the following to be compatible with MPW C’s calling
conventions:

• Passes any integral argument that is smaller than 2 bytes as a
sign-extended long integer. For example, the compiler
converts this declaration:

int MPWfunc (char a, short b, int c,
 long d, char *e);

To this:

long MPWfunc(long a, long b, long c,
 long d, char *e);

• Passes any floating-point arguments as a long double. For
example, the compiler converts this declaration:

void MPWfunc(float a, double b,
 long double c);

To this:

void MPWfunc(long double a, long double b,
 long double c);

• Returns any pointer value in D0 (even if the pragma
pointers_in_D0 is off).

• Returns any 1-byte, 2-byte, or 4-byte structure in D0.

• If the 68881 Codegen option is on, returns any floating-point
value in FP0.

NOTE: The MPW C Calling Conventions option is available
only with the 68K compilers. The PowerPC compilers don’t need it,
since all PowerPC compilers use the same calling conventions.

C and C++ Language Notes
Calling MPW Functions

CL–76 C, C++, and Assembly Language Reference

Note that even if you turn on the MPW C Calling Convention op-
tion, MPW and Metrowerks aren’t completely compatible in these
situations:

• Metrowerks C++ and MPW C++ classes are generally not
compatible. Unless you follow the directions in “Declaring
MPW-Compatible Classes” on page 104, you cannot use a
Metrowerks C++ library in MPW or an MPW C++ library in
a CodeWarrior project. If you need to use an MPW C library
with Metrowerks C++ code, don’t turn on the MPW C Call-
ing Conventions option. Instead use the pragma mpwc as
needed for non-member functions.

• To use MPW C functions that return a floating-point value,
you must turn on the 68881 Codegen option. If that option is
off, Metrowerks C returns a long double value in a temporary
variable, while MPW C returns it in a register.

This option corresponds to the pragma mpwc, described at “mpwc
(68k Macintosh only)” on page 200. To check whether this pragma is
on, __option(mpwc), described at “mpwc (68K only)” on page
233. By default, this option is off.

Using MPW C newlines

If you turn on the Map Newlines to CR option in the Language
preference panel, the compiler uses the MPW conventions for the
'\n' and '\r' characters. If this option is off, the compiler uses the
Metrowerks C and C++ conventions for these characters.

In most compilers, including Metrowerks C and C++, '\r' is trans-
lated to the value 0x0D, the standard value for carriage return, and
'\n' is translated to the value 0x0A, the standard value for line-
feed. However, in MPW C, '\r' is translated to 0x0A and '\n' is
translated to 0x0D. When you turn on the Map Newlines to CR op-
tion, Metrowerks C conforms to MPW C conventions for these char-
acters.

If you want to turn this option on, be sure you use the ANSI C and
C++ libraries that were compiled with this option on. The 68K ver-
sions of these libraries are marked with an N; for example, ANSI

C and C++ Language Notes
Calling Macintosh Toolbox Functions (Macintosh Only)

C, C++, and Assembly Language Reference CL–77

(N/2i) C.68K.Lib. The PowerPC versions of these libraries are
marked with NL; for example, ANSI (NL) C.PPC.Lib.

If you turn this option on and use the standard ANSI C and C++ li-
braries, you won’t be able to read and write '\n' and '\r' prop-
erly. For example, printing '\n' brings you to the beginning of the
current line instead of inserting a new line.

This option corresponds to the pragma mpwc_newline, described
at “mpwc_newline” on page 201. To check whether this option is on,
use __option (mpwc_newline), described at “mpwc_newline”
on page 233. By default, this option is off.

Calling Macintosh Toolbox Functions
(Macintosh Only)

Metrowerks C and C++ let you use any routine described in Inside
Macintosh. Simply call a routine exactly as it appears. Use these rules
to convert the Pascal calling conventions to C:

• To pass a structure that is smaller than or equal to 4 bytes
(such as a Point, Cell, or Rect), pass the actual structure.

• To pass a structure larger than 4 bytes, pass a pointer to the
structure.

• To pass a VAR argument, pass a pointer that argument.

• To pass a string, pass a Pascal string.

• To pass any ResType or OSType, such as 'MENU' or 'TEXT',
pass a character literal.

The rest of this section describes creating Pascal strings, using Pascal
variant records in the Macintosh Toolbox, and writing Pascal func-
tions for the PowerPC:

• “Passing string arguments” on page 78

• “Using the pascal keyword in PowerPC code” on page 79

C and C++ Language Notes
Calling Macintosh Toolbox Functions (Macintosh Only)

CL–78 C, C++, and Assembly Language Reference

Passing string arguments

Metrowerks C and C++ have two kinds of string parameters: C
strings and Pascal strings. Most C functions, such as the ANSI li-
braries, use C strings, arrays of characters whose last element is the
null byte (\0). Most Pascal routines, such as the Macintosh Toolbox,
use Pascal strings, arrays of characters whose initial element is the
number of characters in the string.

To create a Pascal string literal, use \p at the beginning of the string.
For example, this statement sets the title of a window:

SetWTitle (myWinPtr, "\pMy window");

To declare a variable or argument that is a Pascal string, use one of
these types: Str255, Str63, Str32, Str31, Str27, Str15. The
number in the type’s name specifies the number of characters that
the string may contain. For example, this statement declares a Pascal
string with 255 characters:

Str255 winTitle;

Since both string formats have an extra byte of information (either a
count at the beginning or a null byte at the end), the compiler can
transform a string in place from Pascal to C and vice versa. The rou-
tines c2pstr() and p2cstr(), declared in the header file
Strings.h, perform these conversions. They are declared like this:

char *p2cstr(StringPtr aStr);
StringPtr c2pstr(char *aStr);

The following example creates a window title that contains the
name of the current user. It gets the name of the user from a Pascal
routine, creates the window title with a C routine, and sets the win-
dow title with a Pascal routine:

char* winTitle[256];
Str32 userName;

err = GetDefaultUser(&ref, &userName);
sprintf(winTitle, "%s's window",
 p2cstr(userName));
SetWTitle(myWinPtr, c2pstr(winTitle));

C and C++ Language Notes
Calling Macintosh Toolbox Functions (Macintosh Only)

C, C++, and Assembly Language Reference CL–79

Generally, Macintosh Toolbox routines expect a string argument to
be a Pascal string. However, the universal headers sometimes de-
clare two versions of a function: one that uses C strings and one that
uses Pascal strings. When you come across a function like this, fol-
low these rules:

• If a Macintosh Toolbox routine name is all lower-case, use C
strings.

• If a Macintosh Toolbox routine name contains a mixture of
upper-case and lower-case letters, use Pascal strings.

For example, SetWTitle() expects a Pascal string:

SetWTitle (myWinPtr, "\pMy window");

And setwtitle() expects a C string:

setwtitle (myWinPtr, "My window");

Using the pascal keyword in PowerPC code

Since the PowerPC handles pascal functions differently from 68K,
you must be careful when you’re writing a filter or call-back func-
tion that works with a Macintosh Toolbox function. If your function
takes an argument which is a structure larger than 4 bytes, you must
declare that argument as a pointer to the structure. For example:

pascal OSErr MyOapp(AppleEvent aevt,
 AppleEvent reply, long refCon);
 // WRONG: On PPC, aevt and reply will
 // point to garbage. Code may work on 68K.

pascal OSErr MyOapp(AppleEvent *aevt,
 AppleEvent *reply, long refCon);
 // OK: Code will work on both PPC and 68K.

You were always encouraged to declare a large structure argument
as a pointer to the structure. But since the 68K would pass the struc-
ture on the stack anyway, you could get away with declaring a large
structure argument as the structure itself. However, the PowerPC is
much stricter and never passes a structure larger than 4 bytes on the
stack.

C and C++ Language Notes
Intrinsic PowerPC Functions (Macintosh Only)

CL–80 C, C++, and Assembly Language Reference

Intrinsic PowerPC Functions (Macintosh Only)
Metrowerks C/C++ for PowerPC provides intrinsic functions to
generate inline PowerPC instructions. These intrinsic functions are
faster than other functions, since the compiler translates them into
inline assembly instructions instead of function calls.

NOTE: These intrinsic functions are not part of the ANSI C or
C++ standards. They are available only with the Metrowerks C/
C++ for PowerPC compiler. They are not available with the
Metrowerks C/C++ for 68K compiler.

This section contains the following:

• “Low-level processor synchronization” on page 80

• “Floating-point functions” on page 81

• “Byte-reversing functions” on page 81

• “Floating-point instructions for the 603 and 604” on page 82

• “Setting the floating-point environment” on page 82

Low-level processor synchronization

These functions perform low-level processor synchronization.

void __eieio(void)
/* Enforce In-Order Execution of I/O */

void __sync(void)
/* Synchronize */

void __isync(void)
/* Instruction Synchronize */

For more information on these functions, see the instructions
eieio, sync, and isync in PowerPC Microprocessor Family: The Pro-
gramming Environments by Motorola.

C and C++ Language Notes
Intrinsic PowerPC Functions (Macintosh Only)

C, C++, and Assembly Language Reference CL–81

Floating-point functions

These functions generate inline instructions that take the absolute
value of a number.

int __abs(int);
/* Absolute value of an integer. */

float __fabs(float);
/* Absolute value of a float. */

float __fnabs(float);
/* Negative of the absolute value of a float.*/

long __labs(long);
/* Absolute value of a long int. */

Byte-reversing functions

These functions generate inline instructions than can dramatically
speed up certain code sequences, especially byte-reversal operations

int __cntlzw(int);
/* Count leading zeros in a integer. */

int __lhbrx(void *, int);
/* Load half word byte — reverse indexed. */

int __lwbrx(void *, int);
/* Load word byte — reverse indexed. */

void __sthbrx(unsigned short, void *, int);
/* Store half word byte — reverse indexed. */

void __stwbrx(unsigned int, void *, int);
/* Store word byte — reverse indexed. */

C and C++ Language Notes
Intrinsic PowerPC Functions (Macintosh Only)

CL–82 C, C++, and Assembly Language Reference

Setting the floating-point environment

This function lets you change the PowerPC processor’s Floating
Point Status and Control Register (FPSCR). It sets the FPSCR to its
argument and returns the original value of the FPSCR.

float __setflm(float);

This example shows how to set and restore the FPSCR:

double old_fpscr;
oldfpscr = __setflm(0.0);
 /* Clear all flag/exception/mode bits and
 * save the original settings. */

/* . . .
 * Peform some floating point operations
 */

__setflm(old_fpscr);
 /* Restore the FPSCR. */

Floating-point instructions for the 603 and 604
These floating-point instructions, which are available only on the
PowerPC 603 and 604, can speed up certain types of graphics code.

WARNING! On a Mac OS computer with a PowerPC 601, they
will raise an illegal instruction exception and may crash your pro-
gram.

float __fres(float);
 /* Floating Reciprocal Estimate Single */

double __fsqrte(double);
 /* Floating Reciprocal Square Root Estimate */

double __fsel(double, double, double)
 /* Floating Select */

C and C++ Language Notes
Intrinsic PowerPC Functions (Macintosh Only)

C, C++, and Assembly Language Reference CL–83

Rotating the contents of a variable

These functions rotate the contents of a variable to the left.

int __rlwinm(int, int, int, int);
 /* Rotate Left Word Immediate
 then AND with Mask */

int __rlwnm(int, int, int, int);
 /* Rotate Left Word then AND with Mask */

int __rlwimi(int, int, int, int, int);
 /* Rotate Left Word Immediate
 then Mask Insert */

Please note that the first argument to __rlwimi is overwritten.

C and C++ Language Notes
Intrinsic PowerPC Functions (Macintosh Only)

CL–84 C, C++, and Assembly Language Reference

C, C++, and Assembly Language Reference CL–85

3
C++ Language Notes
This chapter describes how Metrowerks C++ handles the parts of
the C++ language that are unique to C++ and not shared by C.

Overview of C++ Language Notes
This chapter describes how Metrowerks C++ handles the parts of
the C++ language that are unique to C++ and not shared by C. For
more information on the parts of the language that C and C++
share, see “Overview of C and C++ Language Notes” on page 19.

In the margins of this chapter are references to ARM, which is The
Annotated C++ Reference Manual (Addison-Wesley) by Ellis and
Stroustrap. These references show you where to look for more infor-
mation on the topics discussed in the near-by section.

This chapter contains the following sections:

• “Unsupported Extensions” on page 86 describes some com-
mon extensions to the C++ standard that Metrowerks C++
does not currently support.

• “Metrowerks Implementation of C++” on page 86 describes
how Metrowerks C++ implements certain sections of the C++
standard.

• “Setting C++ Options” on page 92 describes how to change
Metrowerks C++’s behavior by setting options in the C/C++
Language settings panel.

• “Using Run-Time Type Information (RTTI)” on page 96 de-
scribes the dynamic_cast and typeid operators.

• “Using Templates” on page 99 describes the best way set up
the files that define and declare your templates. It also docu-
ments an addition to the C++ standard which lets you explic-
itly instantiate templates.

C++ Language Notes
Unsupported Extensions

CL–86 C, C++, and Assembly Language Reference

• “Using Exceptions” on page 103 describes how to use the
try and catch statements to perform exception handling.

• “Declaring MPW-Compatible Classes” on page 104 describes
how to create classes you can use in libraries for either MPW
C++ or Metrowerks C++.

• “Creating Direct-to-SOM Code” on page 105 describes how
to write SOM code with Metrowerks C++.

Unsupported Extensions
The C++ compiler does not currently support these common exten-
sion to The Annotated C++ Reference Manual (Addison-Wesley) by
Ellis and Stroustrap:

• Overloading methods operator new[] and operator
delete[], which let you allocate and deallocate the memory
for a whole array of objects at once. Instead, overload oper-
ator new() and operator delete(), which are the func-
tions that operator new[] and operator delete[]
call. (ARM, §5.3.3, §5.3.4)

• Name spaces

• The mutable keyword

Metrowerks Implementation of C++
This section describes how Metrowerks C++ implements certain
parts of the C++ standard, as described in The Annotated C++ Refer-
ence Manual (Addison-Wesley) by Ellis and Stroustrap. It contains
the following:

• “Which keywords to put first” on page 87

• “Additional keywords” on page 87

• “Conversions in the conditional operator” on page 87

• “Default arguments in member functions” on page 88

• “Local class declarations with inline functions” on page 89

• “Copying and constructing class objects” on page 89

C++ Language Notes
Metrowerks Implementation of C++

C, C++, and Assembly Language Reference CL–87

• “Checking for resources to initialize static data” on page 90

• “Calling an inherited member function” on page 91

Which keywords to put first

(ARM §7.1.2, §11.4) If you use either the virtual or the friend
keyword in a declaration, it must be the first word in the declara-
tion. For example:

Listing 3.1 Using the virtual or friend keywords

class foo {
 virtual int f0(); // OK
 int virtual f1(); // ERROR

 friend int f2(); // OK
 int friend f3(); // ERROR
}

Additional keywords

(ARM §2.4, ANSI §2.8) In addition to reserving the symbols in §2.3
of the ARM as keywords, Metrowerks C++ reserves these symbols
from §2.8 of the ANSI Draft C++ Standard as keywords:

Metrowerks C++ does not implement the symbol wchar_t from
§2.8 of the ANSI Draft C++ Standard.

Conversions in the conditional operator

(ARM §5.16) The compiler does not apply reference conversions to
the second and third expressions of the conditional operator. In

bool const_cast dynamic_cast
explicit false mutable
namespace reinterpret_char static_cast
true typeid using

C++ Language Notes
Metrowerks Implementation of C++

CL–88 C, C++, and Assembly Language Reference

other words, unless the second and third expressions are numeric
types, they must be the same type.

Listing 3.2 A conversion in a conditional operator

class base { };
class derived : public base { };

static void foo(derived i)
{
 base &a = i;
 derived &b = i, c;

 c = (sizeof(0)?a:b);
 // ERROR: b is not converted to (base &)

 c = (sizeof(0)?a:(base &)b)
 // OK
}

Default arguments in member functions

(ARM, §8.2.6) The compiler does not bind default arguments in a
member function at the end of the class declaration. Before the de-
fault argument appears, you must declare any value that you use in
the default argument expression must be declared. For example:

Listing 3.3 Using default arguments in member functions

class foo {
 enum A { AA };
 int f(A a = AA); // OK
 int f(B b = BB); // ERROR: BB is not declared
 enum B { BB }; // yet
};

C++ Language Notes
Metrowerks Implementation of C++

C, C++, and Assembly Language Reference CL–89

Local class declarations with inline functions

(ARM, §9.8) If you’re declaring a class within a function, the class’s
inline functions cannot access the outer function’s local types or
variables. In other words, the compiler inserts the class’s inline func-
tions on global scope level. For example:

Listing 3.4 Using local class declarations with inline functions

int x;

void foo()
{
 static int s;

 class local {
 int f1() { return s; }
 // ERROR: cannot access 's'

 int f2() { return local::f1(); }
 // ERROR: cannot access local

 int f3() { return x; }
 // OK
 };
}

Copying and constructing class objects

(ARM, §12.1, §12.8) The compiler does not generate a copy construc-
tor or a default operator= for a simple class. A simple class is a
class that:

• Is a base class or is derived only from simple classes

• Has no class members or has only simple class members

• Has no virtual member functions

C++ Language Notes
Metrowerks Implementation of C++

CL–90 C, C++, and Assembly Language Reference

• Has no virtual base classes

• Has no constructor or destructor

Listing 3.5 Constructors

class Simple { int f; };

void simpleFunc (Simple s1)
{
 Simple s2=Simple(s1);
 // ERROR: An explicit copy constructor
 // call. The compiler generates
 // no default copy constructor.

 Simple s3=s1;
 // OK: The compiler performs a
} // bitwise copy

The compiler does not guarantee that generated assignment or copy
constructors will assign or initialize objects representing virtual base
classes only once.

Checking for resources to initialize static data

Sometimes you create static C++ objects that require certain re-
sources, such as a floating-point unit (FPU). You can check for these
resources by creating a function called __PreInit__() which the
compiler calls before it initializes static data. You cannot check for
these resources in your main() routine, since the compiler initial-
izes static data before it calls main().

You must declare the __PreInit__() function like this:

extern "C" void __PreInit__(void);

NOTE: The PPC compiler does not support this function.

C++ Language Notes
Metrowerks Implementation of C++

C, C++, and Assembly Language Reference CL–91

This stub checks for a floating-point unit: (Note that you must de-
fine the functions HasFPU() and DisplayNoFPU() yourself.)

Listing 3.6 Checking for an FPU before initializing static data

#include <Types.h>
#include <stdlib.h>

extern "C" void __PreInit__(void);

void __PreInit__(void)
{
 if(!HasFPU()) {
 DisplayNoFPU(); // Display "No FPU" Alert
 abort(); // Abort program exection
 }
}

Calling an inherited member function

(ARM, §10.2) Metrowerks C++ lets you incrementally build upon a
class’s behavior with the inherited keyword. Frequently when
you override a function, you just want to add some behavior to the
overridden function. Metrowerks C++ lets you call the overridden
function with the inherited keyword and then perform the addi-
tional behavior. The syntax is the following:

inherited::func-name(param-list);

The statement calls the func-name that the class’s base class would
call. If class has more than one base class and the compiler can’t de-
cide which func-name to call, the compiler generates an error.

C++ Language Notes
Setting C++ Options

CL–92 C, C++, and Assembly Language Reference

This example creates a Q class that draws its objects by adding be-
havior to the O class:

Listing 3.7 Using the inherited keyword to call an inherited member
function

class O { virtual void draw(Point); }
class Q : O { void draw(Point); }

void O::draw (Point p)
{
 Rect r = { p.x-5, p.y-5, p.x+5, p.y+5 };
 FrameOval(r); // Draw an O.
}

void Q::draw (Point p)
{
 inherited::draw(p); // Perform behavior of
 // base class
 MoveTo(p.x, p.y); // Perform added behavior
 Line(5, 5);
}

Setting C++ Options
This section describes how to change the behavior of Metrowerks
C++ by setting some options in the Language preference panel. Fig-
ure 3.1 shows where the C++ options are. For information on the
rest of the options in the C/C++ Language settings panel, see
“Overview of C and C++ Language Notes” on page 19.

C++ Language Notes
Setting C++ Options

C, C++, and Assembly Language Reference CL–93

Figure 3.1 Setting C++ Options in the C/C++ Languages Settings Panel

This section contains the following:

• “Using the C++ compiler always” on page 93

• “Enforcing strict ARM conformance” on page 94

• “Adding C++ extensions” on page 95

• “Allowing exception handling” on page 96

• “Using the bool type” on page 96

For more information on Direct to SOM, see “Creating Direct-to-
SOM Code” on page 105.

Using the C++ compiler always

If you turn on the Activate C++ Compiler option, the compiler com-
piles all the C source files in your project as C++ code. If you turn
this option off, the CodeWarrior IDE looks at a file name’s suffix to
determine whether to use the C or C++ compiler. These are the suf-
fixes it looks for:

• If the suffix is .cp, .cpp, or .c++, the CodeWarrior IDE uses
C++

• If the suffix is .c, the CodeWarrior IDE uses C.

This option corresponds to the pragma cplusplus, described on
“cplusplus” on page 179. To check whether this option is on, use

C++ Language Notes
Setting C++ Options

CL–94 C, C++, and Assembly Language Reference

__option (cplusplus), described on “cplusplus” on page 230.
By default, this option is off.

Enforcing strict ARM conformance

When the ARM Conformance option is on, Metrowerks C++ gener-
ates an error when it encounters certain ANSI C++ features that con-
flict with the C++ specification in The Annotated C++ Reference
Manual. Use this option only if you must make sure that your code
strictly follows the specification in The Annotated C++ Reference Man-
ual.

Turning on this option prevents you from doing the following

• Using protected base classes (ARM, §11.2). For example:

class X {};
class Y : protected X {};
 // OK in Metrowerks C++. Error in ARM.

• Changing the syntax of the conditional operator to let you
use assignment expressions without parentheses in the sec-
ond and third expressions (K&R, §A7.16). For example:

i ? x=y : y=z
 // OK in Metrowerks C++. Error in ARM
i ? (x=y):(y=z)
 // OK in ARM and Metrowerks C++

• Declaring variables in the conditions of if, while and
switch statements (K&R, §A9.4, §A9.5). For example:

while (int i=x+y) { . . . }
 // OK in Metrowerks C++. Error in ARM.

Turning on this option allows you to do the following:

• Using variables declared in the condition of an for statement
after the for statement (K&R, §9.5). For example:

for(int i=1; i<1000; i++) { /* . . . */ }
return i;
 // OK in ARM, Error in Metrowerks C++

This option corresponds to the pragma ARM_conform, described on
“ARM_conform” on page 174. To check whether this option is on,

C++ Language Notes
Setting C++ Options

C, C++, and Assembly Language Reference CL–95

use __option (ARM_conform), described on “ARM_conform” on
page 230. By default, this option is off.

Adding C++ extensions

If you turn on the pragma cpp_extensions, the compiler lets you
use these extensions to the ANSI C++ standard:

• Anonymous structs (ARM, §9). For example:

#pragma cpp_extensions on
void foo()
{
 union {
 long hilo;
 struct { short hi, lo; };
 // annonymous struct
 };
 hi=0x1234;
 lo=0x5678;
 // hilo==0x12345678
}

• Unqualified pointer to a member function (ARM, §8.1c). For
example:

#pragma cpp_extensions on
struct Foo { void f(); }
void Foo::f()
{
 void (Foo::*ptmf1)() = &Foo::f;
 // ALWAYS OK

 void (Foo::*ptmf2)() = f;
 // OK, if cpp_exptensions is on.
}

This pragma does not correspond to any option in the preference
panel. To check whether this option is on, use the __option
(cpp_extensions), described on “Options Checking” on page
229. By default, this option is off.

C++ Language Notes
Using Run-Time Type Information (RTTI)

CL–96 C, C++, and Assembly Language Reference

Allowing exception handling

Turn on the Enable C++ Exceptions option if you use PowerPlant or
the ANSI-standard try and catch statements. Otherwise, turn off
this option to generate smaller and faster code.

TIP: For more information on Metrowerks implements ANSI
C++’s exception handling mechanism, see “Using Exceptions” on
page 103.

This option corresponds to the pragma exceptions, described on
“exceptions (C++ only)” on page 185. To check whether this option
is on, use __option (exceptions), described on “exceptions” on
page 231. By default, this option is off.

Using the bool type

Turn on the Enable bool Support option if you want to use the stan-
dard C++ bool type to represent true and false. Turn this option
off if recognizing bool, true, or false as keywords would cause
problems in your program.

This option corresponds to the pragma bool, described on “bool
(C++ only)” on page 176. To check whether this option is on, use
__option (bool), described on “bool” on page 230. By default,
this option is off.

Using Run-Time Type Information (RTTI)
Metrowerks C++ supports Run-Time type Information (or RTTI), in-
cluding the dynamic_cast and typeid operators. To use these op-
erators, turn on the Enable RTTI option in the C/C++ Language
preference panel.

The rest of this section describes the two parts of RTTI:

• “Using the dynamic_cast operator” on page 97

• “Using the typeid operator” on page 98

C++ Language Notes
Using Run-Time Type Information (RTTI)

C, C++, and Assembly Language Reference CL–97

Using the dynamic_cast operator

The dynamic_cast operator lets you safely convert a pointer of
one type to a pointer of another type. Unlike an ordinary cast,
dynamic_cast returns 0 if the conversion is not possible. An ordi-
nary cast returns an unpredictable value that may crash your pro-
gram if the conversion is not possible

This is the syntax for dynamic_cast operator:

dynamic_cast<Type*>(expr)

The Type must be either void or a class with at least one virtual
function member. If the object that expr points to (*expr) is of type
Type or is derived from type Type, this expression converts expr to a
pointer of type Type* and returns it. Otherwise, it returns 0, the null
pointer.

For example, take these classes:

class Person { virtual void func(void) { ; } };
class Athlete : public Person { /* . . . */ };
class Superman : public Athlete { /* . . . */ };

And these pointers:

Person *lois = new Person;
Person *arnold = new Athlete;
Person *clark = new Superman;
Athlete *a;

This is how dynamic_cast would work with each:

a = dynamic_cast<Athlete*>(arnold);
 // a is arnold, since arnold is an Athlete.
a = dynamic_cast<Athlete*>(lois);
 // a is 0, since lois is not an Athelete.
a = dynamic_cast<Athlete*>(clark);
 // a is clark, since clark is both a Superman
 // and an Athlete.

You can also use the dynamic_cast operator with reference types.
However, since there is no equivalent to the null pointer for refer-

C++ Language Notes
Using Run-Time Type Information (RTTI)

CL–98 C, C++, and Assembly Language Reference

ences, dynamic_cast throws an exception of type bad_cast if it
cannot perform the conversion.

NOTE: The bad_cast type is defined in the header file excep-
tion. Whenever you use dynamic_cast with a reference, you
must #include exception.

This is an example of using dynamic_cast with a reference:

#include <exception>
// . . .
Person &superref = *clark;

try {
 Person &ref = dynamic_cast<Person&>(superref);
}
catch(bad_cast) {
 cout << "oops!" << endl;
}

Using the typeid operator

The typeid operator lets you determine the type of an object. Like
the sizeof operator, it takes two kinds of arguments:

• The name of a class

• An expression that evaluates to an object

NOTE: Whenever you use typeid operator, you must #include
the typeinfo header file.

The typeid operator returns a reference to a type_info object that
you can compare with the == and != operators. For example, take
these classes from above:

class Person { /* . . . */ };
class Athlete : public Person { /* . . . */ };

C++ Language Notes
Using Templates

C, C++, and Assembly Language Reference CL–99

Person *lois = new Person;
Athlete *arnold = new Athlete;
Athlete *louganis = new Athlete;

All these expressions are true:

#include <typeinfo>
// . . .
if (typeid(Athlete) == typeid(*arnold)) // ...
 // arnold is an Athlete.
if (typeid(*arnold) == typeid(*louganis)) //...
 // arnold and louganis are both Athletes.
if (typeid(*lois) != typeid(*arnold)) // ...
 // lois and arnold are not the same type.

You can access the name of a type with the name() member func-
tion in the type_info class. For example, these statements:

#include <typeinfo>
// . . .
cout << "Lois is a(n) "
 << typeid(*lois).name() << endl;
cout << "Arnold is a(n) "
 << typeid(*arnold).name() << endl;

Print this:

Lois is a(n) Person
Arnold is a(n) Athlete

Using Templates
(ARM, §14) This section describes the best way to organize your
template declarations and definitions in files. It also documents how
to explicitly instantiate templates, using a syntax that is not in the
ARM but is part of the ANSI C++ draft standard.

This section contains the following:

• “Declaring and defining templates” on page 100

• “Instantiating templates” on page 101

C++ Language Notes
Using Templates

CL–100 C, C++, and Assembly Language Reference

Declaring and defining templates

In a header file, declare your class functions and function templates,
as shown in Listing 3.8.

Listing 3.8 templ.h: A Template Declaration File

template <class T>
class Templ {
 T member;
public:
 Templ(T x) { member=x; }
 T Get();
};

template <class T>
T Max(T,T);

In a source file, include the header file, and define the function tem-
plates and the member functions of the class templates, as shown in
Listing 3.9. This is a template definition file. You’ll include this file in
any file that uses your templates. You do not need to add the tem-
plate definition file to your project.

Listing 3.9 templ.cp: A Template Definition File

#include "templ.h"

template <class T>
T Templ<T>::Get()
{
 return member;
}

C++ Language Notes
Using Templates

C, C++, and Assembly Language Reference CL–101

template <class T>
T Max(T x, T y)
{
 return ((x>y)?x:y);
}

NOTE: Although the template definition file is a source file and
ends in .cp, it is the file you will include in any other source file
that uses your templates. If you include the template declaration
file, which ends in .h, the compiler will generate an error saying
that the function or class is undefined.

Instantiating templates

The template definition file does not generate code. The compiler
cannot generate code for a template until you specify what values it
should substitute for the templates arguments. Specifying these val-
ues is called instantiating the template.

Metrowerks C++ gives you two ways to instantiate a template. You
can let the compiler instantiate it automatically when you first use
it, or you can explicitly create all the instantiations you’ll need in
one place:

• If you use automatic instantiation, the compiler may take
longer to compile your program since it has to determine on
its own which instantiations you’ll need. Also, the object
code for the template instantiations will be scattered
throughout your program.

• If you use explicit instantiation, the compiler compiles your
program quicker. Since the instantiations can be in one file,
with no other code, you can choose to put them all in one
segment or even in a separate library.

C++ Language Notes
Using Templates

CL–102 C, C++, and Assembly Language Reference

NOTE: Explicit instantiation is not in the ARM but is part of the
ANSI C++ draft standard.

To instantiate templates automatically, include the template defini-
tion file in all the source files that use the templates, and just use the
templates as you would any other type or function. The compiler
automatically generates code for a template instantiation whenever
it sees a new one. Listing 3.10 shows how to automatically instanti-
ate the templates in Listing 3.8 and Listing 3.9.

Listing 3.10 myprog.cp: A Source File that Uses Templates

#include <iostreams.h>
#include "templ.cp"
 // This statement includes both the template
 // declarations and the template defintions.

void main(void)
{
 Templ<long> a = 1, b = 2;
 // The compiler instantiates Templ<long> here.
 cout << Max(a.Get(), b.Get());
 // The compiler instantiates Max<long>() here.
}

To instantiate templates explicitly, include the template definition
file in a source file, and write a template instantiation statement for
every instantiation. The syntax for a class template instantiation is

template class class-name<templ-specs>;

The syntax for a function template instantiation is

template return-type func-name<templ-specs>(arg-specs)

Listing 3.11 shows how to explicitly instantiate the templates in List-
ing 3.8 and Listing 3.9.

C++ Language Notes
Using Exceptions

C, C++, and Assembly Language Reference CL–103

Listing 3.11 myinst.cp: Explicitly Instantiating Templates

#include "templ.cp"

template class Templ<long>;
 // class instantiation

template long Max<long>(long,long);
 // function instantiation

When you’re explicitly instantiating a function, you do not need to
include in templ-specs any arguments that the compiler can deduce
from arg-specs. For example, in Listing 3.11 you can instantiate
Max<long>() like this:

template long Max<>(long, long);
 // The compiler can tell from the arguments
 // that you’re instantiating Max<long>().

Using Exceptions
If you turn on the Enable C++ Exceptions options in the C/C++
Languages preference panel, you can use the try and catch state-
ments to perform exception handling. If your program doesn’t use
exception handling, turn this option to make your program smaller.

You can throw exceptions across any code that’s compiled by the
CodeWarrior 8 (or later) Metrowerks C/C++ compiler with the En-
able C++ Exceptions option turned on. You cannot throw excep-
tions across the following:

• Macintosh Toolbox function calls

• Libraries compiled with the Enable C++ Exceptions option
turned off

• Libraries compiled with versions of the Metrowerks C/C++
compiler earlier than CodeWarrior 8

• Libraries compiled with Metrowerks Pascal or other
compilers.

C++ Language Notes
Declaring MPW-Compatible Classes

CL–104 C, C++, and Assembly Language Reference

If you throw an exception across one of these, the code calls
terminate() and exits.

If you throw an exception when you’re allocating a class object or an
array of class objects, the code automatically destructs the partially
constructed objects and de-allocates the memory for them.

Declaring MPW-Compatible Classes
Metrowerks C++ lets you declare classes that save you some over-
head and that are automatically created on the application’s heap.
These classes are also the only type of Metrowerks C++ classes that
are compatible with MPW C++ code. Use them only when you need
to save as much space as possible or need to create a library you can
use with MPW C++.

These are the two types of objects:

• SingleObject objects are created on the stack.

• HandleObject objects are created in the application’s heap.

TIP: For more information on writing MPW-compatible C code,
see “Calling MPW Functions” on page 72.

Since these classes do not let you use multiple-inheritance or run-
time type information (RTTI), they can save you some overhead.
The compiler stores information about an object’s virtual functions
in a data structure called a virtual table. The virtual table for a single-
inheritance object can be much simpler and smaller than the one for
a multiple-inheritance object.

HandleObject has all the features as SingleObject, with one addi-
tional feature: Any object descended from it is automatically stored
on the application’s heap, and you reference the object with a han-
dle. You treat these handles as pointers, since the compiler automat-

C++ Language Notes
Creating Direct-to-SOM Code

C, C++, and Assembly Language Reference CL–105

ically changes the pointer references to handle references for you.
For example:

class myClass : HandleObject {
 int a;
 // . . .
}

MyClass *myObj = new MyClass
myObj->a = 0;
// The compiler automatically converts these
// pointer references to handle references.

These restrictions apply to objects descended from HandleObject:

• You cannot use multiple inheritance or run-time type infor-
mation.

• You must create a new HandleObject object with the new op-
erator.

• You cannot create a HandleObject local variable, global vari-
able, array, class member , or function parameter. However,
HandleObject pointers can be any of the above.

• You cannot cast a HandleObject pointer to another type,
other than a pointer to another HandleObject object. You can-
not cast any other type of pointer to a HandleObject pointer.

• When you dereference a HandleObject pointer , you can use
it only to refer to a class member. For example:

myObj->a = 0; // OK
*myObj.a = 0; // OK
func(*myObj); // ERROR

• Avoid taking the address of a member of a HandleObject ob-
ject (such as &myObj->a). Since the object is in the heap, it
may move unexpectedly and the address will point to gar-
bage.

Creating Direct-to-SOM Code
Metrowerks C/C++ lets you create SOM code directly in the Code-
Warrior IDE. SOM is an integral part of OpenDoc.

C++ Language Notes
Creating Direct-to-SOM Code

CL–106 C, C++, and Assembly Language Reference

There are two ways to create SOM code. You can turn select On or
On with Environment Checks from the Direct to SOM menu in the
C/C++ Language preference panel, or use the direct_to_som
pragma before you import any SOM header files, like this:

#pragma direct_to_som on

If you select On with Environment Checks from the Direct to SOM
menu, the compiler performs some automatic error checking, as de-
scribed in “Automatic SOM error checking” on page 109.

Note that when you turn on the Direct to SOM option, you should
turn on the Enums Always Int option in the C/C++ Language pref-
erence panel, described in “Enumerated constants of any size” on
page 51.

Also, when you define a SOM class, Metrowerks C/C++ uses
PowerPC alignment for that class. In other words, the compiler acts
as though you enclosed the class definition with #pragma op-
tions align=powerpc and #pragma options align=reset.
For more information on structure alignment, see Targeting Mac OS.

The rest of this section describes the restrictions SOM code must
abide by, some useful SOM header files, and pragmas for SOM
classes:

• “SOM class restrictions” on page 106

• “Using SOM headers” on page 109

• “Using SOM pragmas” on page 111

SOM class restrictions

Since you can develop SOM code in different languages and then
use that code under different operating systems, you must work
with several restrictions when developing SOM code.

These restrictions apply only to classes that are descended from
SOMObject. You can use SOMObjects and other classes together in a
project.

C++ Language Notes
Creating Direct-to-SOM Code

C, C++, and Assembly Language Reference CL–107

When you create a SOM class and define its members, keep these re-
strictions in mind:

• The base class must be SOMObject or a descendant of SOM-
Obect. If you use multiple inheritance, all parent classes must
be descendants of SOMObject. (You cannot mix SOM classes
with other classes in the base list for any class.)

• You must declare the class with the class keyword. A class
declared as struct or union cannot be a SOM class.

• All the class inheritance must be virtual.

• All the class’s data members must be private.

• The only member functions you can overload are inline
member functions that are not virtual. They are not consid-
ered to be SOM methods.

• The only operations you can overload are new and delete.

• The class must contain at least one member function that’s
not inline. MacSOM uses the first such class to determine
whether the class is implemented in a particular compilation
unit.

• The class cannot contain the following:

– nested class definitions

– static data or function members.

– constructors (ctors) with parameters.

– copy constructors

• In a member function, you cannot do the following:

– use long double parameters or return type

– use a variable length argument list

When you use a SOM class in your code, remember that you cannot
do the following:

• Create global SOM objects.

• Use sizeof() with SOM objects or classes.

• Create class templates that expand to SOM objects.

• Create arrays of SOM objects.

C++ Language Notes
Creating Direct-to-SOM Code

CL–108 C, C++, and Assembly Language Reference

• Use the placement and array forms of new (such as new(ad-
dress) T or new T[n]) or the array form of delete (such
as delete [] p).

• Declare SOM classes as members of other classes. (You can
declare pointers to SOM class objects as members.)

• Take the address of a member of a SOM class. For example,
&foo::bar is not allowed if foo is a SOM class.

• Pass aggregate parameters by value to a SOM member func-
tion.

• Use SOM objects as function parameters. (You can use a
pointer to a SOM object as a parameter.)

• Perform an assignment with SOM classes

• Return a SOM object as a function’s value

Also when you invoke a method with explicit scope (such as
obj->B::func()), the specified class (B) must be the same class as
the object (obj) or a direct parent of the object’s class.

For example, if class A is the parent of class B which is the parent of
class C, then

C* obj = new C;

obj->C::func(); // OK: C is obj’s class
obj->B::func(); // OK: B is a direct parent
 // of obj’s class
obj->A::func(); // ERROR: A is NOT a direct
 // parent of obj’s class

C++ Language Notes
Creating Direct-to-SOM Code

C, C++, and Assembly Language Reference CL–109

Using SOM headers

CodeWarrior includes several different header files for use in SOM
code. These are the most important and probably the only ones
you’ll need to use yourself:

Table 3.1 SOM Headers

Automatic SOM error checking

If you choose On with Environment Checks from the Direct to
SOM menu, the compiler performs some automatic error checking,
in addition to creating SOM code. It transforms every IDL method
call and new allocation into an expression which also calls an error-
checking function. You must define separate error-checking func-
tions for method calls and allocations.

For example, the compiler transforms this IDL method call:

SOMobj->func(&env, arg1, arg2) ;

This header Contains this…

somobj.hh SOMObject, a SOM base class. If your file sub-
classes from SOMObject, include this header. If
you’re converting a file from IDL to Metrowerks
C++, you can use this header as a replacement for
somobj.idl and somobj.xh.

somcls.hh SOMClass, the SOM base meta-class. If your file
sub-classes from SOMClass, include this header. If
you’re converting a file from IDL to Metrowerks
C++, you can use this header as a replacement for
somcls.idl and somcls.xh.

som.xh The procedural interface to SOMObjects for Mac
OS. It’s not needed for basic SOM programming.

somobj.xh Same as somobj.hh. Use somobj.hh instead.

somcls.xh Same as somcls.hh. Use somcls.hh instead.

C++ Language Notes
Creating Direct-to-SOM Code

CL–110 C, C++, and Assembly Language Reference

into something that is equivalent to this:

(temp=SOMobj->func(&env, arg1, arg2),
 __som_check_ev(&env), temp) ;

First, the compiler calls the method and stores the result in a tempo-
rary variable. Then it checks the environment pointer. Finally, it re-
turns the method’s result.

And, the compiler transforms this new allocation:

new SOMclass;

into something that is equivalent to this:

(temp=new SOMclass, __som_check_new(temp),
 temp);

First, the compiler creates the object and stores it in a temporary
variable. Then it checks the object and returns it.

You must define __som_check_ev() and __som_check_new()
to do something like this:

Listing 3.12 The __som_check_ev() and __som_check_new() functions

#include <somdts.h>
#pragma internal on

extern "C" void __som_check_ev(
 struct Environment *);
extern void __som_check_ev(
 struct Environment *envp)
{
 if(envp->_major)
 {
 // your error handling code here
 }
}

C++ Language Notes
Creating Direct-to-SOM Code

C, C++, and Assembly Language Reference CL–111

extern "C" void __som_check_new(SOMObject *);
extern void __som_check_new(SOMObject *SOMObj)
{
 if(somp==NULL)
 {
 // your error handling code here
 }
}

The PowerPC compiler uses an optimized error check that is smaller
but slightly slower than the one given above. To use the error check
show above in PowerPC code, use the pragma SOMCall-
Optimization. It looks like this:

#pragma SOMCallOptimization on | off | reset

The default is on.

You can also turn on SOM error checking with with this pragma:

#pragma SOMCheckEnvironment on | off | reset

The default is off.

Using SOM pragmas

The following pragmas let you give information on a SOM class to
the MacSOM software:

• SOMReleaseOrder declares the release order of a class’s
methods.

• SOMClassVersion declares the version number for a class.

• SOMMetaClass declares the metaclass for a class.

• SOMCallStyle declares the call style (IDL or OIDL) for a
class.

All pragmas besides SOMCheckEnvironment must appear within
the declaration of the class they apply to. These pragmas may ap-
pear more than once in a class declaration, but they must specify the
same information each time.

C++ Language Notes
Creating Direct-to-SOM Code

CL–112 C, C++, and Assembly Language Reference

Declaring the release order

A SOM class must specify the release order of its member functions.
As a convenience for when you’re first developing the class,
Metrowerks C++ lets you leave out the SOMReleaseOrder pragma
and assumes the release order is the same as the order in which the
functions appear in the class declaration. However, when you re-
lease a version of the class, use the pragma, since you’ll need to
modify its list in later versions of the class. The pragma looks like
this:

#pragma SOMRelaseOrder(func1, func2,... funcN)

You must specify every SOM method that the class introduces. Do
not specify inline member functions that are not virtual, since
they’re not considered to be SOM methods. Don’t specify overrid-
den functions.

If you remove a function from a later version of the class, leave its
name in the release order list. If you add a function, place it at the
end of the list. If you move a function up in the class hierarchy, leave
it in the original list and add it to the list for the new class.

Declaring the class’s version

SOM uses the class’s version number to make sure the class is com-
patible with other software you’re using. If you don’t declare the
version numbers, SOM assumes zeroes.

The SOMClassVersion pragma looks like this:

#pragma SOMClassVersion(class,majorVer,minorVer)

The version numbers must be positive or zero.

When you define the class, the program passes its version number
to the SOM kernel in the class’s metadata. When you instantiate an
object of the class, the program passes the version to the runtime
kernel, which checks to make sure the class is compatible with the
running software.

C++ Language Notes
Creating Direct-to-SOM Code

C, C++, and Assembly Language Reference CL–113

Declaring the metaclass for a class

A metaclass is a special kind of SOM class that defines the imple-
mentation of other SOM classes. All SOM classes have a metaclass,
including metaclasses themselves. By default, the metaclass for a
SOM class is SOMClass. If you want to use another metaclass, use
the SOMMetaClass pragma. It looks like this:

#pragma SOMMetaClass (class, metaclass)

The metaclass must be a descendant of SOMClass. Also, a class can-
not be its own metaclass. That is, class and metaclass must name dif-
ferent classes.

Declaring the call style for a class

SOM supports two call styles:

• OIDL, an older style that does not support DSOM

• IDL, a newer style that does support DSOM.

By default, Metrowerks C++ assumes that a class uses IDL. To use
OIDL, use the SOMCallStyle pragma, which looks like this:

#pragma SOMCallStyle OIDL

If a class uses the IDL style, its methods must have an Environment
pointer as the first parameter. Note that the SOMClass and SOMOb-
ject classes use OIDL, so if you override a method from one of them,
you should not include the Environment pointer.

C++ Language Notes
Creating Direct-to-SOM Code

CL–114 C, C++, and Assembly Language Reference

C, C++, and Assembly Language Reference CL–115

4
68K Assembler
Notes
This chapter describes the 68K assembler that is part of the
CodeWarrior package of compilers.

Overview of 68K Assembler Notes
Frequently you want to include a small amount of assembly code in
a program. For example, you may want to make sure that a fre-
quently-used function is written as efficiently as possible. Both the
PowerPC and 68K compilers include built-in assemblers that let you
do just that.

This chapter describes how to use the built-in 68K assembler with
either the 68K Macintosh compiler or the Magic Cap compiler, in-
cluding its syntax and special directives. It does not document all
the instructions available in 68K assembler. For more information,
see the MC68000 Family Programmer’s Reference Manual from Motor-
ola.

TIP: For more information on the built-in PowerPC assembler,
see “Overview of PowerPC Assembler Notes” on page 125.

The topics in this chapter include:

• “Writing an Assembly Function for 68K” on page 116

• “Assembler directives” on page 122

68K Assembler Notes
Writing an Assembly Function for 68K

CL–116 C, C++, and Assembly Language Reference

Writing an Assembly Function for 68K
This section details how to write a function for the 68K assembler.
The topics in this section include:

• “Defining a Function for 68K Assembly” on page 116

• “Using Global Variables in 68K Assembly” on page 119

• “Using Local Variables and Arguments in 68K Assembly” on
page 119

• “Using Structures in 68K Assembly” on page 120

• “Using the Preprocessor in 68K Assembly” on page 121

• “Returning From a Function in 68K Assembly” on page 121

Defining a Function for 68K Assembly

To include assembly in your 68K project, declare a function with the
asm qualifier, like this:

asm long f(void) { . . . } // OK: An assembly
 // function

Note that you cannot create an assembly statement block within a C
function:

long f(void)
{
 asm { . . . } // ERROR: Assembly statement
} // blocks are not supported.

The built-in assembler uses all the standard MC 680000 assembler
instructions. It accepts some additional directives described in “As-
sembler directives” on page 122. It also accepts the following 68020
assembler instructions, after you use one of these directives: ma-
chine 68020, machine 68030, or machine 68040:

bfchg bfclr bfexts bfextu

bfffo bfins bfset bftst

68K Assembler Notes
Writing an Assembly Function for 68K

C, C++, and Assembly Language Reference CL–117

You cannot use MC68020, MC68030, or MC68040 addressing modes.

TIP: If you know the opcode for an assembly statement that’s not
supported, you can include it in your function with the opword di-
rective, described at “opword” on page 124.

Keep these tips in mind as you write assembly functions:

• All statements must follow this syntax:

[LocalLabel:] (instruction | directive) [operands]

Each instruction must end with a newline or a semicolon (;).
• Hex constants must be in C-style , not Pascal-style. For exam-

ple:

 move.l 0xABCDEF, d5 // OK
 move.l $ABCDEF, d5 // ERROR

• Assembler directives, instructions, and registers are not case-
sensitive. For example these two statements are same:

 move.l b, DO // OK
 MOVE.L b, d0 // ALSO OK

• A label must end in a colon and may contain the @ character.
For example:

asm void foo(void)
{
x1: dc.b "Hello world!\n" // OK
@x2: dc.w 5 // OK
x3 dc.w 1,2,3,4 // ERROR: Needs a colon
}

divsl divs.l divul divu.l

muls.l mulu.l extb.l rtd

68K Assembler Notes
Writing an Assembly Function for 68K

CL–118 C, C++, and Assembly Language Reference

• You cannot begin comments with a semicolon (;), but you
can use C and C++ comments. For example:

 add.l d5,d5 ; ERROR
 add.l d5,d5 // OK
 add.l d5,d5 /* OK */

Listing 4.1 shows an example of an assembly function.

Listing 4.1 Creating an assembly function

long int b;
struct mystruct {
 long int a;
} ;

static asm long f(void) // Legal asm qualifier
{
 move.l struct(mystruct.a)(A0),D0
 // Accessing a struct.
 add.l b,D0 // Using a global variable and
 // putting return value in
D0.
 rts // Returning from the
 // function:
} // result = mystruct.a + b

The rest of this section describes how to create local variables, access
function parameters, refer to fields within a structure, and use the
preprocessor with the assembler. A section at the end of the chapter
describes some special assembler directives that the built-in assem-
bler allows.

68K Assembler Notes
Writing an Assembly Function for 68K

C, C++, and Assembly Language Reference CL–119

Using Global Variables in 68K Assembly

To refer to a global variable, just use its name, as shown below:

int x;
asm void f(void)
{
 move.w x,d0 // Moving x into d0
 // . . .
}

Using Local Variables and Arguments in 68K
Assembly

The built-in assembler gives you two ways to refer to local variables
and function arguments: you can do the work on your own or let
the built-in assembler do the work for you. To do it on your own,
you must explicitly save and restore processor registers and local
variables when entering and leaving your assembly function. You
cannot refer to the variables by name. You can refer to function ar-
guments off the stack pointer. For example, this function moves its
argument into d0:

asm void foo(short n)
{
 move.w 4(sp),d0 // n
 // . . .
}

To let the built-in assembler do it for you, use the directives
fralloc and frfree. Just declare your variables as you would in a
normal C function. Then use the fralloc directive. It makes space
on the stack for the local stack variables and reserves registers for
the local register variables (with the statement link #x,a6). In
your assembly, you can refer to the local variables and variable ar-
guments by name. Finally, use the frfree directive to free the stack
storage and restore the reserved registers.

68K Assembler Notes
Writing an Assembly Function for 68K

CL–120 C, C++, and Assembly Language Reference

Listing 4.2 is an example of using local variables and function argu-
ments.

Listing 4.2 Using the fralloc directive

static asm short f(short n)
{
 register short a; // Declaring a as a register
 short b; // variable and b as a stack
 // variable. Note that you need
 // semicolons at the ends of
 // these statements.

 fralloc + // Allocate space on stack
 // and reserve registers.
 move.w n,a // Using an argument and local var.
 add.w a,a
 move.w a,D0

 frfree // Free the space that
 // fralloc allocated
 rts
}

Using Structures in 68K Assembly

You can refer to a field in a structure with the struct construct, as
shown below:

struct(structTypeName.fieldName) structAddress

This instruction moves into D0 the refCon field in the Window-
Record that A0 points to:

 move.l struct(WindowRecord.refCon) (A0), D0

68K Assembler Notes
Writing an Assembly Function for 68K

C, C++, and Assembly Language Reference CL–121

Using the Preprocessor in 68K Assembly

You can use all preprocessor features, such as comments and mac-
ros, in the assembler. Just keep these points in mind when writing a
macro definition:

• End each assembly statement with a semicolon (;), since the
preprocessor ignores newlines. For example:

#define MODULO(x,y,result)\
 move.w x,D0; \
 ext.l D0; \
 divs.w y,D0; \
 swap D0; \
 move.w D0,result

• Use % instead of #, since the preprocessor uses # as an opera-
tor to concatenate token. For example:

#define ClearD0 moveq %0,D0

Returning From a Function in 68K Assembly

Every assembly function should end in an rts or a preturn state-
ment. If you forget to add one, the compiler does not add one for
you, and does not raise an error. Use the rts statement for ordinary
C functions. Use the preturn statement for Pascal functions, since
it performs the clean up that Pascal functions need. For example:

asm void f(void)
{
 add.l d4, d5
} // No RTS statement

asm void g(void)
{
 add.l d4, d5
 rts // OK
}

68K Assembler Notes
Assembler directives

CL–122 C, C++, and Assembly Language Reference

asm void pascal h(void)
{
 add.l d4, d5
 preturn // OK
}

Assembler directives
This section describes some special assembler directives that the
Metrowerks built-in assembler accepts. The directives are listed al-
phabetically.

dc
dc[.(b|w|l)] constexpr (,constexpr)*

Defines a block of constant expressions, constexpr, as initialized
bytes, words, or long words. If there is no qualifier, .w is assumed.
For dc.b you can specify any string constant (C or Pascal). For dc.w
you can specify any 16-bit relative offset to a local label. For exam-
ple:

asm void foo(void)
{
x1: dc.b "Hello world!\n" // Creating a string
x2: dc.w 1,2,3,4 // Creating an arrray
x3: dc.l 3000000000 // Creating a number
}

ds
ds[.(b|w|l)] size

Defines a block of size bytes, words, or longs. The block is initialized
with null characters. If there is no qualifier, .w is assumed. For ex-
ample, this statement defines a block big enough for the structure
DRVRHeader.

 ds.b sizeof(DRVRHeader)

68K Assembler Notes
Assembler directives

C, C++, and Assembly Language Reference CL–123

entry
entry [extern|static] name

Defines an entry point into the current function. Use the extern
qualifier to declare a global entry point and use the static qualifier
to declare a local entry point. If you leave out the qualifier, extern
is assumed.

Listing 4.3 Using the entry directive

static long MyEntry(void);
static asm long MyFunc(void)
{
 move.l a,d0
 bra.s L1

 entry static MyEntry
 move.l b,d0
L1: rts
}

fralloc
fralloc [+]

Lets you declare local variables in an assembly function. The fral-
loc directive makes space on the stack for your local stack variables
and reserves registers for your local register variables (with the
statement link #x,a6). For more information, see “Using Local
Variables and Arguments in 68K Assembly” on page 119.

There are two versions of fralloc. The fralloc directive (without
a +) , pushes modified registers onto the stack. The fralloc + di-
rective also pushes all register arguments into their 68K registers.

frfree
frfree

Frees the stack storage area and restores the registers (with the state-
ment unlk a6) that fralloc reserved. For more information, see

68K Assembler Notes
Assembler directives

CL–124 C, C++, and Assembly Language Reference

“Using Local Variables and Arguments in 68K Assembly” on page
119.

machine
machine number

Specifies which CPU the assembly code is for. The number must be
one of the following:

To use the following MC68020 assembler instructions, specify
68020, 68030, or 68040:

You cannot use MC68020, MC68030, or MC68040 addressing modes.
To disable the MC68020 assembler instructions, specify 68000 or
68010. The arguments 68349, 68881, 68882, and 68851 have no
effect.

opword
opword const-expr (,const-expr)*

Lets you include the opcode for an instruction. It works the same as
dc.w, but emphasizes that the expression is an instruction. For ex-
ample, this directive calls WaitNextEvent():

opword 0xA860 // WaitNextEvent

68000 68010 68020 68030

68040 68349 68881 68882

68851

bfchg bfclr bfexts bfextu

bfffo bfins bfset bftst

divsl divs.l divul divu.l

muls.l mulu.l extb.l rtd

C, C++, and Assembly Language Reference CL–125

5
PowerPC Assembler
Notes
This chapter describes the PowerPC assembler that is part of the
CodeWarrior package of compilers.

Overview of PowerPC Assembler Notes
Frequently you want to include a small amount of assembly code in
a program. For example, you may want to make sure that a fre-
quently-used function is written as efficiently as possible. Both the
PowerPC and 68K compilers include built-in assemblers that let you
do just that.

This chapter describes how to use the built-in PowerPC assembler,
including its syntax and special directives. It does not document all
the instructions available in PowerPC assembler. For more informa-
tion on the PowerPC programming model, see the IBM PowerPC
User Instruction Set Architecture. For more information on a particu-
lar PowerPC processor and its instruction set, refer to the appropri-
ate document such as the Motorola PowerPC 601 RISC Microprocessor
User’s Manual. The Apple Assembler for PowerPC for the MPW s PP-
CAsm assembler is also a good reference and is on the CodeWarrior
CD.

TIP: For more information on the built-in 68K assembler, see
“Overview of 68K Assembler Notes” on page 115.

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

CL–126 C, C++, and Assembly Language Reference

The sections in this chapter include:

• “Writing an Assembly Function for PowerPC” on page 126

• “PowerPC Assembler Directives” on page 134

• “PowerPC Assembler Instructions” on page 138

Writing an Assembly Function for PowerPC
This section details how to write a function for the PowerPC assem-
bler. The topics in this section include:

• “Defining a Function for PowerPC Assembly” on page 126

• “Creating Labels for PowerPC Assembly” on page 128

• “Using Comments for Power PCAssembly” on page 129

• “Using the Preprocessor for PowerPC Assembly” on page
129

• “Creating a Stack Frame for PowerPC Assembly” on page
129

• “Using Local Variables and Arguments for PowerPC Assem-
bly” on page 130

• “Specifying Instructions for PowerPC Assembly” on page
131

• “Specifying Operands for PowerPC Assembly” on page 132

Defining a Function for PowerPC Assembly

To include assembly in your PowerPC project, declare a function
with the asm qualifier, like this:

asm long f(void) { . . . }
 // OK: An assembly function

Note that you cannot create an assembly statement block within a C
function:

long f(void)
{
 asm { . . . } // ERROR: Assembly statement
} // blocks are not supported.

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

C, C++, and Assembly Language Reference CL–127

The built-in assembler uses all the standard PowerPC assembler in-
structions. It accepts some additional directives described in “Pow-
erPC Assembler Directives” on page 134. If you use the machine
directive, you can also use instructions that are available only in cer-
tain versions of the PowerPC. For more information, see “machine”
on page 136.

Keep these tips in mind as you write assembly functions:

• All statements must follow this syntax:

[LocalLabel:] (instruction | directive) [operands]

Each instruction must end with a newline or a semicolon (;).
• Hex constants must be in C-style , not Pascal-style. For exam-

ple:

 li r3, 0xABCDEF // OK
 li r3, $ABCDEF // ERROR

• Assembler directives, instructions, and registers are case-sen-
sitive and must be in lowercase. For example these two state-
ments are different:

 add r2,r3,r4 // ok
 ADD R2,R3,R4 // ERROR

• Every assembly function must end in an blr statement. The
compiler does not add one for you. For example:

asm void f(void)
{
 add r2,r3,r4
} // ERROR: No blr statement

asm void g(void)
{
 add r2,r3,r4
 blr // OK
}

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

CL–128 C, C++, and Assembly Language Reference

Listing 5.1 shows an example of an assembly function.

Listing 5.1 Creating an assembly function

asm void mystrcpy(char *tostr, char *fromstr)
{
 addi tostr,tostr,-1
 addi fromstr,fromstr,-1
@1 lbzu r5,1(fromstr)
 cmpwi r5,0
 stbu r5,1(tostr)
 bne @1
 blr
}

The rest of this section describes how to create local variables, access
function parameters, refer to fields within a structure, and use the
preprocessor with the assembler. A section at the end of the chapter
describes some special assembler directives that the built-in assem-
bler allows.

Creating Labels for PowerPC Assembly

A label can be any identifier that you haven’t already declared as a
local variable. The name may start with @, so these are legal names:
foo, @foo, and @1. Only labels that don’t start with @ need to end in
a colon. For example:

asm void foo(void)
{
x1: add r3,r4,r5 // OK
@x2: add r6,r7,r8 // OK
x3 add r9,r10,r11 // ERROR: Needs colon
@x4 add r12,r13,r14 // OK
}

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

C, C++, and Assembly Language Reference CL–129

NOTE: The first statement in an assembly function cannot be a
label that starts with @.

Using Comments for Power PCAssembly

You cannot begin comments with a pound sign (#), since the prepro-
cessor uses the pound sign. However, you can use C and C++ com-
ments. For example:

 add r3,r4,r5 # ERROR
 add r3,r4,r5 // OK
 add r3,r4,r5 /* OK */

Using the Preprocessor for PowerPC Assembly

You can use all preprocessor features, such as comments and mac-
ros, in the assembler. However you must end each assembly state-
ment with a semicolon (;), since the preprocessor ignores newlines.
For example:

#define remainder(x,y,z) \
 divw z,x,y; \
 mullw z,z,y; \
 subf z,z,x

Creating a Stack Frame for PowerPC Assembly

You need to create a stack frame for a function, if the function

• Calls other functions

• Uses more than 224 bytes of local variables

• Declares local register variables.

The easiest way to create a stack frame is to use the fralloc direc-
tive at the beginning of your function and the frfree directive just
before the blr statement. It automatically allocates and deallocates

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

CL–130 C, C++, and Assembly Language Reference

memory for your local variables and saves and restores the register
contents. This example shows where to put these directives:

asm void foo ()
{
 fralloc
 // Your code here
 frfree
 blr
}

The fralloc directive has an optional argument number which lets
you specify the size in bytes of the parameter area of the stack
frame. By default, the compiler creates a 32-byte parameter area. If
your assembly-language routine calls any function that takes more
than 32 bytes of parameters, you must specify a larger amount.

Using Local Variables and Arguments for
PowerPC Assembly

To refer to a memory location, you can use the name of a local vari-
able or argument.

NOTE: You can refer to local variables by name even if a function
does not contain the fralloc directive. The PowerPC in-line as-
sembler is different from the 68K in-line assembler in this matter.

The rule for assigning arguments to registers or memory depends
on whether the function has a stack frame. If function has a stack
frame, the in-line assembler assigns:

• Scalar arguments declared register to r13-r31

• Floating-point arguments declared register to fp14-fp31

• Other arguments to memory locations

• Scalar locals declared register to r13-r31

• Floating-point locals declared register to fp14-fp31

• Other locals to memory locations

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

C, C++, and Assembly Language Reference CL–131

If function has no stack frame, the in-line assembler assigns:

• Arguments that are declared register and passed in regis-
ters to the appropriate register

• Other arguments to memory locations

• All locals to memory locations

NOTE: If there is no stack frame, a function cannot have more
than 224 bytes of local variables.

For more information on PowerPC register conventions and argu-
ment-passing conventions, see the Apple Assembler for PowerPC on
the CodeWarrior CD.

Specifying Instructions for PowerPC Assembly

The PowerPC in-line assembler lets you use most of the basic and
extended assembly-language instructions described in the various
IBM and Motorola PowerPC User's Guides, such as the Motorola
PowerPC 601 RISC Microprocessor User’s Manual. The Apple Assem-
bler for PowerPC for the MPW s PPCAsm assembler is also a good ref-
erence and is on the CodeWarrior CD.

Each instruction statement corresponds to exactly one PowerPC ma-
chine code instruction. All instructions are exactly 4 bytes long. In-
struction names are case-sensitive and in all lowercase.

To set the branch prediction (y) bit for those branch instructions that
can use it, use + or -. For example:

@1 bne+ @2 // Predicts branch taken
@2 bne- @1 // Predicts branch not taken

Most integer instructions have four different forms:

• Normal

• Record, which sets register cr0 to whether the result is less,
than, equal to, or greater than zero. This form ends in a pe-
riod (".").

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

CL–132 C, C++, and Assembly Language Reference

• Overflow, which sets the SO and OV bits in the XER if the re-
sult overflows. This form ends in the letter "o".

• Overflow and Record, which sets both registers. This form
ends in "o.".

 add r3,r4,r5 // Normal add
 add. r3,r4,r5 // Add with record: sets cr0
 addo r3,r4,r5 // Add with overflow:sets XER
 addo. r3,r4,r5 // Add with overflow and
 // record: sets cr0 and XER

Some instructions only have a record form (with a period). Make
sure to include the period always:

 andi. r3,r4,7 // '.' is not optional here
 andis. r3,r4,7 // Or here
 stwcx. r3,r4,r5 // Or here

Specifying Operands for PowerPC Assembly

This section describes how to specify the operands for assembly lan-
guage instructions.

Using registers

For a register operand, you must use one of the register names of the
appropriate kind for the instruction. The register names are case-
sensitive. You can also use a symbolic name for an argument or local
variable that was assigned to a register.

The general registers are RTOC, SP, r followed by any number from
0 to 31 (r0, r1, r2, . . . r31), or gpr followed by any number from 0
to 31 (gpr0, gpr1, gpr2, . . . gpr31). The floating-point registers are
fp followed by any number from 0 to 31 (fp0, fp1, fp2, . . . fp31)
or f followed by any number from 0 to 31 (f0, f1, f2, . . . f31). The
condition registers are cr followed by any number from 0 to 7 (cr0,
cr1, cr2, . . . cr7).

Using labels

For a label operand, you can use the name of a label. For long
branches (such as b and bl instructions) you can also use function

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

C, C++, and Assembly Language Reference CL–133

names. For bla and la instructions, you use absolute addresses For
other branches, you must use the name of a label. For example:

 b @3 // OK: Branch to local label
 b foo // OK: Branch to external
 // function foo
 bl @3 // OK: Call local label
 bl foo // OK: Call external function foo
 bne foo // ERROR: Short branch outside
 // function

Using variable names as memory locations

Whenever an instruction requires a memory location (such as load
instruction, a store instruction, or la), you can use a local or global
variable name. You can modify local variable names with struct
member references, class member references, array subscripts, or
constant displacements. For example, all of the following are valid
local variable references:

 lwz r3,myVar(SP) // load myVar into r3
 la r3,myVar(SP) // load address of myVar
 // into r3
 lwz r3,myRect.top
 lwz r3,myArray[2](SP)
 lwz r3,myRectArray[2].top
 lbz r3,myRectArray[2].top+1(SP)

You can also use a register variable which is a pointer to a struct or
class to access a member of the struct. For example:

 register Rect *p;
 lwz r3,p->top;

Global variable names always refer to the TOC pointer for the vari-
able, not to the variable itself, so you cannot modify them:

 lwz r3,myGlobalRect(RTOC)
 // load TOC pointer for myGlobalRect
 lwz r4,Rect.top(r3)
 // fetch 'top' field
 lwz r3,myGlobalRect.top(RTOC)
 // nonsensical

PowerPC Assembler Notes
PowerPC Assembler Directives

CL–134 C, C++, and Assembly Language Reference

You use the same method for obtaining the address of a function:

 lwz r3,myFunction(RTOC)
 // load TOC-pointer for TVector
 // to myFunction

Using immediate operands

For an immediate operand, you can use an integer or enum con-
stant, sizeof expression, and any constant expression using any of
the C dyadic and monadic arithmetic operators. These expressions
follow the same precedence and associativity rules as normal C ex-
pressions. The in-line assembler carries out all arithmetic with 32-bit
signed integers.

An immediate operand can also be a reference to a member of a
struct or class type. You can use any struct or class name from a
typedef statement, followed by any number of member references.
This evaluates to the offset of the member from the start of the
struct. For example:

 lwz r4,Rect.top(r3)
 addi r6,r6,Rect.left

PowerPC Assembler Directives
This section describes some special assembler directives that the
Metrowerks built-in assembler accepts. The directives are listed al-
phabetically.

entry
entry [extern | static] name

Defines an entry point into the current function. Use the extern
qualifier to declare a global entry point and use the static qualifier
to declare a local entry point. If you leave out the qualifier, extern
is assumed.

PowerPC Assembler Notes
PowerPC Assembler Directives

C, C++, and Assembly Language Reference CL–135

Listing 5.2 Using the entry directive

void __save_fpr_15(void);
void __save_fpr_16(void);
asm void __save_fpr_14(void)
{
 stfd fp14,-144(SP)
 entry __save_fpr_15
 stfd fp15,-136(SP)
 entry __save_fpr_16
 stfd fp16,-128(SP)
 // ...
}

fralloc
fralloc [number]

Creates a stack frame for a function and reserves registers for your
local register variables. You need to create a stack frame, if the func-
tion

• Calls other functions

• Uses more than 224 bytes of local variables

• Declares local register variables.

For more information, see “Creating a Stack Frame for PowerPC As-
sembly” on page 129.

The fralloc directive has an optional argument number which lets
you specify the size in bytes of the parameter area of the stack
frame. By default, the compiler creates a 32-byte parameter area. If
your assembly-language routine calls any function that takes more
than 32 bytes of parameters, you must specify a larger amount.

PowerPC Assembler Notes
PowerPC Assembler Directives

CL–136 C, C++, and Assembly Language Reference

frfree
frfree

Frees the stack frame and restores the registers that fralloc re-
served. For more information, see “Creating a Stack Frame for Pow-
erPC Assembly” on page 129.

NOTE: The frfree directive does not generate a blr instruc-
tion. You must include one explicitly.

machine
machine number

Specifies which CPU the assembly code is for. The number must be
one of the following:

If you use all, you can use only those instructions that are available
on all PowerPC CPUs. If you don’t use the machine directive, the
compiler assumes all.

601 603 604 all

PowerPC Assembler Notes
PowerPC Assembler Directives

C, C++, and Assembly Language Reference CL–137

If you use 601, you can also use the following instructions:

If you use 603 or 604, you can also use the following instructions:

smclass
smclass PR | GL

Lets you set the class for a function. By default, all functions have
class {PR} which means they are normal executable code. If you’re
writing a glue routine, like the __ptr_glue routine that imple-
ments calls through function pointers, use smclass GL to set the
class to {GL}.

abs abs. abso abso. clcs

div div. divo divo. doz

doz. dozo dozo. dozi lscbx

lscbx. maskg maskg. markir markir.

mul mul. mulo mulo. nabs

nabs. nabso nabso. rlmi rlmi.

rrib rrib. sle sle. sleq

sleq. sliq sliq. slliq slliq.

sllq sllq. slq slq. sraig

sraig. sraq sraq. sre sre.

srea srea. sreq sreq. sriq

sriq. srliq srliq. srlq srlq.

srq srq. tlbie

fres fres. frsqrte frsqrte. fsel

fsel. mftb mftbl stfiwx tlbld

tlbli tlbsync

PowerPC Assembler Notes
PowerPC Assembler Instructions

CL–138 C, C++, and Assembly Language Reference

You shouldn't need this directive for your own code, but CodeWar-
rior PowerPC runtime library uses it frequently

PowerPC Assembler Instructions
The following table gives short descriptions of all the instructions
that the PowerPC in-line assembler accepts. If an instruction is
available only on certain PowerPC CPUs, the CPUs are listed in
brackets at the end of the description, like this: [603, 604].

For more information on the PowerPC programming model, see the
IBM PowerPC User Instruction Set Architecture. For complete infor-
mation on the instruction set for a particular PowerPC CP, refer to
the appropriate document such as the Motorola PowerPC 601 RISC
Microprocessor User’s Manual.

Instruction Arguments Description

abs rD,rA Absolute [601]

abs. rD,rA Absolute [601]

abso rD,rA Absolute [601]

abso. rD,rA Absolute [601]

add rD,rA,rB Add

add. rD,rA,rB Add

addo rD,rA,rB Add

addo. rD,rA,rB Add

addc rD,rA,rB Add Carrying

addc. rD,rA,rB Add Carrying

addco rD,rA,rB Add Carrying

addco. rD,rA,rB Add Carrying

adde rD,rA,rB Add Extended

adde. rD,rA,rB Add Extended

addeo rD,rA,rB Add Extended

addeo. rD,rA,rB Add Extended

PowerPC Assembler Notes
PowerPC Assembler Instructions

C, C++, and Assembly Language Reference CL–139

addi rD,rA,SIMM Add Immediate

addic rD,rA,SIMM Add Immediate Carrying

addic. rD,rA,SIMM Add Immediate Carrying and Record

addis rD,rA,SIMM Add Immediate Shifted

addme rD,rA Add to Minus One Extended

addme. rD,rA Add to Minus One Extended

addmeo rD,rA Add to Minus One Extended

addmeo. rD,rA Add to Minus One Extended

addze rD,rA Add to Zero Extended

addze. rD,rA Add to Zero Extended

addzeo rD,rA Add to Zero Extended

addzeo. rD,rA Add to Zero Extended

and rA,rS,rB AND

and. rA,rS,rB AND

andc rA,rS,rB AND with Complement

andc. rA,rS,rB AND with Complement

andi. rA,rS,UIMM AND Immediate

andis. rA,rS,UIMM AND Immediate

b target Branch

ba address Branch Absolute

bc BO,BI,target Branch Conditional

bcctr BO,BI Branch Conditional to Count Register

bcctrl BO,BI Branch Conditional to Count Register and Link

bcl BO,BI,target Branch Conditional and Link

bclr BO,BI Branch Conditional to Link Register

bclrl BO,BI Branch Conditional to Link Register and Link

bctr Branch to Count Register

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

CL–140 C, C++, and Assembly Language Reference

bctrl Branch to Count Register and Link

bdnz target Decrement CTR, branch if CTR non-zero

bdnzf BI,target Decrement CTR, branch if CTR non-zero and
condition False

bdnzfl BI,target Decrement CTR, branch if CTR non-zero and
condition False and Link

bdnzflr BI Decrement CTR, branch if CTR non-zero and
condition False to Link Register

bdnzflrl BI Decrement CTR, branch if CTR non-zero and
condition False to Link Register and Link

bdnzl target Decrement CTR, branch if CTR non-zero and
Link

bdnzlr Decrement CTR, branch if CTR non-zero to
Link Register

bdnzlrl Decrement CTR, branch if CTR non-zero to
Link Register and Link

bdnzt BI,target Decrement CTR, branch if CTR non-zero and
condition True

bdnztl BI,target Decrement CTR, branch if CTR non-zero and
condition True and Link

bdnztlr BI Decrement CTR, branch if CTR non-zero and
condition True to Link Register

bdnztlrl BI Decrement CTR, branch if CTR non-zero and
condition True to Link Register and Link

bdz target Decrement CTR, branch if CTR zero

bdzf BI,target Decrement CTR, branch if CTR zero and condi-
tion False

bdzfl BI,target Decrement CTR, branch if CTR zero and condi-
tion False and Link

bdzflr BI Decrement CTR, branch if CTR zero and condi-
tion False to Link Register

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

C, C++, and Assembly Language Reference CL–141

bdzflrl BI Decrement CTR, branch if CTR zero and condi-
tion False to Link Register and Link

bdzl target Decrement CTR, branch if CTR zero and Link

bdzlr Decrement CTR, branch if CTR zero to Link
Register

bdzlrl Decrement CTR, branch if CTR zero to Link
Register and Link

bdzt BI,target Decrement CTR, branch if CTR zero and condi-
tion True

bdztl BI,target Decrement CTR, branch if CTR zero and condi-
tion True and Link

bdztlr BI Decrement CTR, branch if CTR zero and condi-
tion True to Link Register

bdztlrl BI Decrement CTR, branch if CTR zero and condi-
tion True to Link Register and Link

beq [crf,]target Branch if Equal

beqctr [crf] Branch if Equal to Count Register

beqctrl [crf] Branch if Equal to Count Register and Link

beql [crf,]target Branch if Equal and Link

beqlr [crf] Branch if Equal to Link Register

beqlrl [crf] Branch if Equal to Link Register and Link

bf BI,target Branch if Condition False

bfctr BI Branch if Condition False to Count Register

bfctrl BI Branch if Condition False to Count Register
and Link

bfl BI,target Branch if Condition False and Link

bflr BI Branch if Condition False to Link Register

bflrl BI Branch if Condition False to Link Register and
Link

bge [crf,]target Branch if Greater or Equal

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

CL–142 C, C++, and Assembly Language Reference

bgectr [crf] Branch if Greater or Equal to Count Register

bgectrl [crf] Branch if Greater or Equal to Count Register
and Link

bgel [crf,]target Branch if Greater or Equal and Link

bgelr [crf] Branch if Greater or Equal to Link Register

bgelrl [crf] Branch if Greater or Equal to Link Register and
Link

bgt [crf,]target Branch if Greater

bgtctr [crf] Branch if Greater to Count Register

bgtctrl [crf] Branch if Greater to Count Register and Link

bgtl [crf,]target Branch if Greater and Link

bgtlr [crf] Branch if Greater to Link Register

bgtlrl [crf] Branch if Greater to Link Register and Link

bl target Branch and Link

bla address Branch and Link Absolute

ble [crf,]target Branch if Less or Equal

blectr [crf] Branch if Less or Equal to Count Register

blectrl [crf] Branch if Less or Equal to Count Register and
Link

blel [crf,]target Branch if Less or Equal and Link

blelr [crf] Branch if Less or Equal to Link Register

blelrl [crf] Branch if Less or Equal to Link Register and
Link

blr Branch to Link Register

blrl Branch to Link Register and Link

blt [crf,]target Branch if Less

bltctr [crf] Branch if Less to Count Register

bltctrl [crf] Branch if Less to Count Register and Link

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

C, C++, and Assembly Language Reference CL–143

bltl [crf,]target Branch if Less and Link

bltlr [crf] Branch if Less to Link Register

bltlrl [crf] Branch if Less to Link Register and Link

bne [crf,]target Branch if Not Equal

bnectr [crf] Branch if Not Equal to Count Register

bnectrl [crf] Branch if Not Equal to Count Register and
Link

bnel [crf,]target Branch if Not Equal and Link

bnelr [crf] Branch if Not Equal to Link Register

bnelrl [crf] Branch if Not Equal to Link Register and Link

bng [crf,]target Branch if Not Greater

bngctr [crf] Branch if Not Greater to Count Register

bngctrl [crf] Branch if Not Greater to Count Register and
Link

bngl [crf,]target Branch if Not Greater and Link

bnglr [crf] Branch if Not Greater to Link Register

bnglrl [crf] Branch if Not Greater to Link Register and
Link

bnl [crf,]target Branch if Not Less

bnlctr [crf] Branch if Not Less to Count Register

bnlctrl [crf] Branch if Not Less to Count Register and Link

bnll [crf,]target Branch if Not Less and Link

bnllr [crf] Branch if Not Less to Link Register

bnllrl [crf] Branch if Not Less to Link Register and Link

bns [crf,]target Branch if Not Summary Overflow

bnsctr [crf] Branch if Not Summary Overflow to Count
Register

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

CL–144 C, C++, and Assembly Language Reference

bnsctrl [crf] Branch if Not Summary Overflow to Count
Register and Link

bnsl [crf,]target Branch if Not Summary Overflow and Link

bnslr [crf] Branch if Not Summary Overflow to Link Reg-
ister

bnslrl [crf] Branch if Not Summary Overflow to Link Reg-
ister and Link

bnu [crf,]target Branch if Not Unordered

bnuctr [crf] Branch if Not Unordered to Count Register

bnuctrl [crf] Branch if Not Unordered to Count Register
and Link

bnul [crf,]target Branch if Not Unordered and Link

bnulr [crf] Branch if Not Unordered to Link Register

bnulrl [crf] Branch if Not Unordered to Link Register and
Link

bso [crf,]target Branch if Summary Overflow

bsoctr [crf] Branch if Summary Overflow to Count Regis-
ter

bsoctrl [crf] Branch if Summary Overflow to Count Regis-
ter and Link

bsol [crf,]target Branch if Summary Overflow and Link

bsolr [crf] Branch if Summary Overflow to Link Register

bsolrl [crf] Branch if Summary Overflow to Link Register
and Link

bt BI,target Branch if Condition True

btctr BI Branch if Condition True to Count Register

btctrl BI Branch if Condition True to Count Register and
Link

btl BI,target Branch if Condition True and Link

btlr BI Branch if Condition True to Link Register

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

C, C++, and Assembly Language Reference CL–145

btlrl BI Branch if Condition True to Link Register and
Link

bun [crf,]target Branch if Unordered

bunctr [crf] Branch if Unordered to Count Register

bunctrl [crf] Branch if Unordered to Count Register and
Link

bunl [crf,]target Branch if Unordered to Link Register

bunlr [crf] Branch if Unordered to Link Register and Link

bunlrl [crf] Branch if Unordered and Link

clcs rD,rA Cache Line Compute Size [601]

cmp crfD,L,rA,rB Compare

cmpi crfD,L,rA,SIMM Compare Immediate

cmpl crfD,L,rA,rB Compare Logical

cmpli crfD,L,rA,UIMM Compare Logical Immediate

cmplw [crfD,]rA,rB Compare Logical Word

cmplwi [crfD,]rA,UIMM Compare Logical Word Immediate

cmpw [crfD,]rA,rB Compare Word

cmpwi [crfD,]rA,SIMM Compare Word Immediate

cntlzw rA,rS Count Leading Zeros Word

crand crbD,crbA,crbB Condition Register AND

crandc crbD,crbA,crbB Condition Register AND with Complement

creqv crbD,crbA,crbB Condition Register Equivalent

crnand crbD,crbA,crbB Condition Register NAND

crnor crbD,crbA,crbB Condition Register NOR

cror crbD,crbA,crbB Condition Register OR

crorc crbD,crbA,crbB Condition Register OR with Complement

crxor crbD,crbA,crbB Condition Register XOR

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

CL–146 C, C++, and Assembly Language Reference

dcbf rA,rB Data Cache Block Flush

dcbi rA,rB Data Cache Block Invalidate

dcbst rA,rB Data Cache Block Store

dcbt rA,rB Data Cache Block Touch

dcbtst rA,rB Data Cache Block Touch for Store

dcbz rA,rB Data Cache Block Zero

div rD,rA,rB Divide [601]

div. rD,rA,rB Divide [601]

divo rD,rA,rB Divide [601]

divo. rD,rA,rB Divide [601]

divs rD,rA,rB Divide Short [601]

divs. rD,rA,rB Divide Short [601]

divso rD,rA,rB Divide Short [601]

divso. rD,rA,rB Divide Short [601]

divw rD,rA,rB Divide Word

divw. rD,rA,rB Divide Word

divwo rD,rA,rB Divide Word

divwo. rD,rA,rB Divide Word

divwu rD,rA,rB Divide Word Unsigned

divwu. rD,rA,rB Divide Word Unsigned

divwuo rD,rA,rB Divide Word Unsigned

divwuo. rD,rA,rB Divide Word Unsigned

doz rD,rA Difference or Zero [601]

doz. rD,rA Difference or Zero [601]

dozo rD,rA Difference or Zero [601]

dozo. rD,rA Difference or Zero [601]

dozi rD,rA,SIMM Difference or Zero Immediate [601]

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

C, C++, and Assembly Language Reference CL–147

eciwx rD,rA,rB External Control Input Word Indexed

ecowx rD,rA,rB External Control Output Word Indexed

eieio Enforce In-Order Execution of I/O

eqv rA,rS,rB Equivalent

eqv. rA,rS,rB Equivalent

extsb rA,rS Extend Sign Byte

extsb. rA,rS Extend Sign Byte

extsh rA,rS Extend Sign Halfword

extsh. rA,rS Extend Sign Halfword

fabs frD,frB Floating-Point Absolute Value

fabs. frD,frB Floating-Point Absolute Value

fadd frD,frA,frB Floating-Point Add

fadd. frD,frA,frB Floating-Point Add

fadds frD,frA,frB Floating-Point Add Single

fadds. frD,frA,frB Floating-Point Add Single

fcmpo [crfD,]frA,frB Floating-Point Compare Ordered

fcmpu [crfD,]frA,frB Floating-Point Compare Unordered

fctiw frD,frB Floating-Point Convert to Integer Word

fctiw. frD,frB Floating-Point Convert to Integer Word

fctiwz frD,frB Floating-Point Convert to Integer Word with
Round toward Zero

fctiwz. frD,frB Floating-Point Convert to Integer Word with
Round toward Zero

fdiv frD,frA,frB Floating-Point Divide

fdiv. frD,frA,frB Floating-Point Divide

fdivs frD,frA,frB Floating-Point Divide Single

fdivs. frD,frA,frB Floating-Point Divide Single

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

CL–148 C, C++, and Assembly Language Reference

fmadd frD,frA,frC,frB Floating-Point Multiply-Add

fmadd. frD,frA,frC,frB Floating-Point Multiply-Add

fmadds frD,frA,frC,frB Floating-Point Multiply-Add Single

fmadds. frD,frA,frC,frB Floating-Point Multiply-Add Single

fmr frD,frB Floating-Point Move Register

fmr. frD,frB Floating-Point Move Register

fmsub frD,frA,frC,frB Floating-Point Multiply-Subtract

fmsub. frD,frA,frC,frB Floating-Point Multiply-Subtract

fmsubs frD,frA,frC,frB Floating-Point Multiply-Subtract Single

fmsubs. frD,frA,frC,frB Floating-Point Multiply-Subtract Single

fmul frD,frA,frC Floating-Point Multiply

fmul. frD,frA,frC Floating-Point Multiply

fmuls frD,frA,frC Floating-Point Multiply Single

fmuls. frD,frA,frC Floating-Point Multiply Single

fnabs frD,frB Floating-Point Negative Absolute

fnabs. frD,frB Floating-Point Negative Absolute

fneg frD,frB Floating-Point Negate

fneg. frD,frB Floating-Point Negate

fnmadd frD,frA,frC,frB Floating-Point Negative Multiply-Add

fnmadd. frD,frA,frC,frB Floating-Point Negative Multiply-Add

fnmadds frD,frA,frC,frB Floating-Point Negative Multiply-Add Single

fnmadds. frD,frA,frC,frB Floating-Point Negative Multiply-Add Single

fnmsub frD,frA,frC,frB Floating-Point Negative Multiply-Subtract

fnmsub. frD,frA,frC,frB Floating-Point Negative Multiply-Subtract

fnmsubs frD,frA,frC,frB Floating-Point Negative Multiply-Subtract Sin-
gle

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

C, C++, and Assembly Language Reference CL–149

fnmsubs. frD,frA,frC,frB Floating-Point Negative Multiply-Subtract Sin-
gle

fres frD,frB Floating-Point Reciprocal Estimate Single [603,
604]

fres. frD,frB Floating-Point Reciprocal Estimate Single [603,
604]

frsp frD,frB Floating-Point Round to Single Precision

frsp. frD,frB Floating-Point Round to Single Precision

frsqrte frD,frB Floating-Point Reciprocal Square Root Esti-
mate [603, 604]

frsqrte. frD,frB Floating-Point Reciprocal Square Root Esti-
mate [603, 604]

fsel frD,frA,frC,frB Floating-Point Select [603, 604]

fsel. frD,frA,frC,frB Floating-Point Select [603, 604]

fsub frD,frA,frB Floating-Point Subtract

fsub. frD,frA,frB Floating-Point Subtract

fsubs frD,frA,frB Floating-Point Subtract Single

fsubs. frD,frA,frB Floating-Point Subtract Single

icbi rA,rB Instruction Cache Block Invalidate

isync Instruction Synchronize

la rD,d(rA) Load Address

lbz rD,d(rA) Load Byte and Zero

lbzu rD,d(rA) Load Byte and Zero with Update

lbzux rD,rA,rB Load Byte and Zero with Update Indexed

lbzx rD,rA,rB Load Byte and Zero Indexed

lfd frD,d(rA) Load Floating Double

lfdu frD,d(rA) Load Floating Double with Update

lfdux frD,rA,rB Load Floating Double with Update Indexed

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

CL–150 C, C++, and Assembly Language Reference

lfdx frD,rA,rB Load Floating Double Indexed

lfs frD,d(rA) Load Floating Single

lfsu frD,d(rA) Load Floating Single with Update

lfsux frD,rA,rB Load Floating Single with Update Indexed

lfsx frD,rA,rB Load Floating Single Indexed

lha rD,d(rA) Load Halfword Algebraic

lhau rD,d(rA) Load Halfword Algebraic with Update

lhaux rD,rA,rB Load Halfword Algebraic with Update In-
dexed

lhax rD,rA,rB Load Halfword Algebraic Indexed

lhbrx rD,rA,rB Load Halfword Byte-Reversed Indexed

lhz rD,d(rA) Load Halfword and Zero

lhzu rD,d(rA) Load Halfword and Zero with Update

lhzux rD,rA,rB Load Halfword and Zero with Update Indexed

lhzx rD,rA,rB Load Halfword and Zero Indexed

li rD,SIMM Load Immediate

lis rD,SIMM Load Immediate Shifted

lmw rD,d(rA) Load Multiple Word

lscbx rD,rA,rB Load String and Compare Byte Indexed [601]

lscbx. rD,rA,rB Load String and Compare Byte Indexed [601]

lswi rD,rA,NB Load String Word Immediate

lswx rD,rA,rB Load String Word Indexed

lwarx rD,rA,rB Load Word and Reserve Indexed

lwbrx rD,rA,rB Load Word Byte-Reversed Indexed

lwz rD,d(rA) Load Word and Zero

lwzu rD,d(rA) Load Word and Zero with Update

lwzux rD,rA,rB Load Word and Zero with Update Indexed

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

C, C++, and Assembly Language Reference CL–151

lwzx rD,rA,rB Load Word and Zero Indexed

maskg rA,rS,rB Mask Generate [601]

maskg. rA,rS,rB Mask Generate [601]

maskir rA,rS,rB Mask Insert from Register [601]

maskir. rA,rS,rB Mask Insert from Register [601]

mcrf crfD,crfS Move Condition Register Field

mcrfs crfD,crfS Move to Condition Register from FPSCR

mcrxr crfD Move to Condition Register from XER

mfcr rD Move from Condition Register

mfctr rD Move from Count Register

mffs frD Move from FPSCR Fields

mffs. frD Move from FPSCR Fields

mflr rD Move from Link Register

mfmsr rD Move from Machine State Register

mfspr rD,SPR Move from Special-Purpose Register

mfsr rD,SR Move from Segment Register

mfsrin rD,rB Move from Segment Register Indirect

mftb rD Move from Time Base Lower [603, 604]

mftbu rD Move from Time Base Upper [603, 604]

mfxer rD Move from XER

mr rA,rS Move Register

mr. rA,rS Move Register

mtcrf CRM,rS Move to Condition Register Fields

mtctr rS Move to Count Register

mtfsb0 crbD Move to FPSCR Bit 0

mtfsb0. crbD Move to FPSCR Bit 0

mtfsb1 crbD Move to FPSCR Bit 1

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

CL–152 C, C++, and Assembly Language Reference

mtfsb1. crbD Move to FPSCR Bit 1

mtfsf FM,frB Move to FPSCR Fields

mtfsf. FM,frB Move from FPSCR Fields

mtfsfi crfD,IMM Move to FPSCR Field Immediate

mtfsfi. crfD,IMM Move to FPSCR Field Immediate

mtlr rS Move to Link Register

mtmsr rS Move to Machine State Register

mtspr SPR,rS Move to Special Purpose Register

mtsr SR,rS Move to Segment Register

mtsrin rS,rB Move to Segment Register Indirect

mtxer rS Move to XER

mul rD,rA,rB Multiply [601]

mul. rD,rA,rB Multiply [601]

mulo rD,rA,rB Multiply [601]

mulo. rD,rA,rB Multiply [601]

mulhw rD,rA,rB Multiply High Word

mulhw. rD,rA,rB Multiply High Word

mulhwu rD,rA,rB Multiply High Word Unsigned

mulhwu. rD,rA,rB Multiply High Word Unsigned

mulli rD,rA,SIMM Multiply Low Immediate

mullw rD,rA,rB Multiply Low Word

mullw. rD,rA,rB Multiply Low Word

mullwo rD,rA,rB Multiply Low Word

mullwo. rD,rA,rB Multiply Low Word

nabs rD,rA Negative Absolute [601]

nabs. rD,rA Negative Absolute [601]

nabso rD,rA Negative Absolute [601]

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

C, C++, and Assembly Language Reference CL–153

nabso. rD,rA Negative Absolute [601]

nand rA,rS,rB NAND

nand. rA,rS,rB NAND

neg rD,rA Negate

neg. rD,rA Negate

nego rD,rA Negate

nego. rD,rA Negate

nop No Operation

nor rA,rS,rB NOR

nor. rA,rS,rB NOR

not rA,rS NOT

not. rA,rS NOT

or rA,rS,rB OR

or. rA,rS,rB OR

orc rA,rS,rB OR with Complement

orc. rA,rS,rB OR with Complement

ori rA,rS,UIMM OR Immediate

oris rA,rS,UIMM OR Immediate

rfi Return from Interrupt

rlmi rA,rS,rB,MB,ME Rotate Left then Mask Insert [601]

rlmi. rA,rS,rB,MB,ME Rotate Left then Mask Insert [601]

rlwimi rA,rS,SH,MB,ME Rotate Left Word Immediate then Mask Insert

rlwimi. rA,rS,SH,MB,ME Rotate Left Word Immediate then Mask Insert

rlwinm rA,rS,SH,MB,ME Rotate Left Word Immediate then AND with
Mask

rlwinm. rA,rS,SH,MB,ME Rotate Left Word Immediate then AND with
Mask

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

CL–154 C, C++, and Assembly Language Reference

rlwnm rA,rS,rB,MB,ME Rotate Left Word then AND with Mask

rlwnm. rA,rS,rB,MB,ME Rotate Left Word then AND with Mask

rrib rA,rS,rB Rotate Right and Insert Bit [601]

rrib. rA,rS,rB Rotate Right and Insert Bit [601]

sc System Call

sle rA,rS,rB Shift Left Extended [601]

sle. rA,rS,rB Shift Left Extended [601]

sleq rA,rS,rB Shift Left Extended with MQ [601]

sleq. rA,rS,rB Shift Left Extended with MQ [601]

sliq rA,rS,SH Shift Left Immediate with MQ [601]

sliq. rA,rS,SH Shift Left Immediate with MQ [601]

slliq rA,rS,SH Shift Left Long Immediate with MQ [601]

slliq. rA,rS,SH Shift Left Long Immediate with MQ [601]

sllq rA,rS,rB Shift Left Long with MQ [601]

sllq. rA,rS,rB Shift Left Long with MQ [601]

slq rA,rS,rB Shift Left with MQ [601]

slq. rA,rS,rB Shift Left with MQ [601]

slw rA,rS,rB Shift Left Word

slw. rA,rS,rB Shift Left Word

sraiq rA,rS,SH Shift Right Algebraic Immediate with MQ
[601]

sraiq. rA,rS,SH Shift Right Algebraic Immediate with MQ
[601]

sraq rA,rS,rB Shift Right Algebraic with MQ [601]

sraq. rA,rS,rB Shift Right Algebraic with MQ [601]

sraw rA,rS,rB Shift Right Algebraic Word

sraw. rA,rS,rB Shift Right Algebraic Word

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

C, C++, and Assembly Language Reference CL–155

srawi rA,rS,SH Shift Right Algebraic Word Immediate

srawi. rA,rS,SH Shift Right Algebraic Word Immediate

sre rA,rS,rB Shift Right Extended [601]

sre. rA,rS,rB Shift Right Extended [601]

srea rA,rS,rB Shift Right Extended Algebraic [601]

srea. rA,rS,rB Shift Right Extended Algebraic [601]

sreq rA,rS,rB Shift Right Extended with MQ [601]

sreq. rA,rS,rB Shift Right Extended with MQ [601]

sriq rA,rS,SH Shift Right Immediate with MQ [601]

sriq. rA,rS,SH Shift Right Immediate with MQ [601]

srliq rA,rS,SH Shift Right Long Immediate with MQ [601]

srliq. rA,rS,SH Shift Right Long Immediate with MQ [601]

srlq rA,rS,rB Shift Right Long with MQ [601]

srlq. rA,rS,rB Shift Right Long with MQ [601]

srq rA,rS,rB Shift Right with MQ [601]

srq. rA,rS,rB Shift Right with MQ [601]

srw rA,rS,rB Shift Right Word

srw. rA,rS,rB Shift Right Word

stb rS,d(rA) Store Byte

stbu rS,d(rA) Store Byte with Update

stbux rS,rA,rB Store Byte with Update Indexed

stbx rS,rA,rB Store Byte Indexed

stfd frS,d(rA) Store Floating Double

stfdu frS,d(rA) Store Floating Double with Update

stfdux frS,rA,rB Store Floating Double with Update Indexed

stfdx frS,rA,rB Store Floating Double Indexed

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

CL–156 C, C++, and Assembly Language Reference

stfiwx frS,rA,rB Store Floating-Point as Integer Word Indexed
[603, 604]

stfs frS,d(rA) Store Floating Single

stfsu frS,d(rA) Store Floating Single with Update

stfsux frS,rA,rB Store Floating Single with Update Indexed

stfsx frS,rA,rB Store Floating Single Indexed

sth rS,d(rA) Store Halfword

sthbrx rS,rA,rB Store Halfword Byte-Reversed Indexed

sthu rS,d(rA) Store Halfword with Update

sthux rS,rA,rB Store Halfword with Update Indexed

sthx rS,rA,rB Store Halfword Indexed

stmw rS,d(rA) Store Multiple Word

stswi rS,rA,NB Store String Word Immediate

stswx rS,rA,rB Store String Word Indexed

stw rS,d(rA) Store Word

stwbrx rS,rA,rB Store Word Byte-Reversed Indexed

stwcx. rS,rA,rB Store Word Conditional Indexed

stwu rS,d(rA) Store Word with Update

stwux rS,rA,rB Store Word with Update Indexed

stwx rS,rA,rB Store Word Indexed

sub rD,rB,rA Subtract

sub. rD,rB,rA Subtract

subo rD,rB,rA Subtract

subo. rD,rB,rA Subtract

subc rD,rB,rA Subtract Carrying

subc. rD,rB,rA Subtract Carrying

subco rD,rB,rA Subtract Carrying

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

C, C++, and Assembly Language Reference CL–157

subco. rD,rB,rA Subtract Carrying

subf rD,rA,rB Subtract From

subf. rD,rA,rB Subtract From

subfo rD,rA,rB Subtract From

subfo. rD,rA,rB Subtract From

subfc rD,rA,rB Subtract From Carrying

subfc. rD,rA,rB Subtract From Carrying

subfco rD,rA,rB Subtract From Carrying

subfco. rD,rA,rB Subtract From Carrying

subfe rD,rA,rB Subtract From Extended

subfe. rD,rA,rB Subtract From Extended

subfeo rD,rA,rB Subtract From Extended

subfeo. rD,rA,rB Subtract From Extended

subfic rD,rA,SIMM Subtract From Immediate Carrying

subfme rD,rA Subtract From Minus One Extended

subfme. rD,rA Subtract From Minus One Extended

subfmeo rD,rA Subtract From Minus One Extended

subfmeo. rD,rA Subtract From Minus One Extended

subfze rD,rA Subtract From Zero Extended

subfze. rD,rA Subtract From Zero Extended

subfzeo rD,rA Subtract From Zero Extended

subfzeo. rD,rA Subtract From Zero Extended

subi rD,rA,SIMM Subtract Immediate

subic rD,rA,SIMM Subtract Immediate Carrying

subic. rD,rA,SIMM Subtract Immediate Carrying and Record

subis rD,rA,SIMM Subtract Immediate Shifted

sync Synchronize

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

CL–158 C, C++, and Assembly Language Reference

tlbie rB Translation Lookaside Buffer Invalidate Entry
[601, 603]

tlbld rB Load Data TLB Entry [603, 604]

tlbli rB Load Instruction TLB Entry [603, 604]

tlbsync TLB Synchronize [603, 604]

trap Trap Unconditionally

tw TO,rA,rB Trap Word

tweq rA,rB Trap Word Equal

tweqi rA,SIMM Trap Word Equal Immediate

twge rA,rB Trap Word Greater or Equal

twgei rA,SIMM Trap Word Greater or Equal Immediate

twgt rA,rB Trap Word Greater Than

twgti rA,SIMM Trap Word Greater Than Immediate

twi TO,rA,SIMM Trap Word Immediate

twle rA,rB Trap Word Less or Equal

twlei rA,SIMM Trap Word Less or Equal Immediate

twlge rA,rB Trap Word Logical Greater or Equal

twlgei rA,SIMM Trap Word Logical Greater or Equal Immediate

twlgt rA,rB Trap Word Logical Greater Than

twlgti rA,SIMM Trap Word Logical Greater Than Immediate

twlle rA,rB Trap Word Logical Less or Equal

twllei rA,SIMM Trap Word Logical Less or Equal Immediate

twllt rA,rB Trap Word Logical Less Than

twllti rA,SIMM Trap Word Logical Less Than Immediate

twlng rA,rB Trap Word Logical Not Greater

twlngi rA,SIMM Trap Word Logical Not Greater Immediate

twlnl rA,rB Trap Word Logical Not Less

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

C, C++, and Assembly Language Reference CL–159

twlnli rA,SIMM Trap Word Logical Not Less Immediate

twlt rA,rB Trap Word Less Than

twlti rA,SIMM Trap Word Less Than Immediate

twne rA,rB Trap Word Not Equal

twnei rA,SIMM Trap Word Not Equal Immediate

twng rA,rB Trap Word Not Greater

twngi rA,SIMM Trap Word Not Greater Immediate

twnl rA,rB Trap Word Not Less

twnli rA,SIMM Trap Word Not Less Immediate

xor rA,rS,rB XOR

xor. rA,rS,rB XOR

xori rA,rS,UIMM XOR Immediate

xoris rA,rS,UIMM XOR Immediate

Instruction Arguments Description

PowerPC Assembler Notes
PowerPC Assembler Instructions

CL–160 C, C++, and Assembly Language Reference

C, C++, and Assembly Language Reference CL–161

6
MIPS Assembler
Notes
This chapter describes the MIPS assembler that is part of the
Metrowerks C/C++ compiler.

Overview of MIPS Assembler Notes
Frequently you want to include a small amount of assembly code in
a program. For example, you may want to make sure that a fre-
quently-used function is written as efficiently as possible. The Pow-
erPC, MIPS, and 68K compilers include built-in assemblers that let
you do just that.

This chapter describes how to use the built-in MIPS assembler, in-
cluding its syntax and special directives. It does not document all
the instructions available in MIPS assembler. For more information
on the MIPS programming model, see the hardware book for your
board.

Writing an Assembly Function
To include assembly in your MIPS project, declare a function with
the asm qualifier, like this:

asm long f(void) { . . . }
 // OK: An assembly function

MIPS Assembler Notes
Writing an Assembly Function

CL–162 C, C++, and Assembly Language Reference

Note that you cannot create an assembly statement block within a C
function:

long f(void)
{
 asm { . . . } // ERROR: Assembly statement
} // blocks are not supported.

The built-in assembler supports all the standard MIPS assembler in-
structions. It accepts some additional directives described in “As-
sembler Directive” on page 166, as well as macros.

Keep these tips in mind as you write assembly functions:

• All statements must either be a label, like this:

[LocalLabel:]

Or an instruction, like this:

((instruction | directive) [operands])

Each statement must end with a newline.
• Hex constants must be in C-style , not Pascal-style. For exam-

ple:

 li t0, 0xABCDEF // OK
 li t0, $ABCDEF // ERROR

• Assembler directives, instructions, and registers are case-sen-
sitive and must be in lowercase. For example these two state-
ments are different:

 add t2,t3,t4 // ok
 ADD T2,T3,T4 // ERROR

• Every assembly function must end in an jr statement. The
compiler does not add one for you. For example:

asm void f(void)
{
 add t2,t3,t4
} // ERROR: No jr ra statement

MIPS Assembler Notes
Writing an Assembly Function

C, C++, and Assembly Language Reference CL–163

asm void g(void)
{
 add t2,t3,t4
 jr ra // OK
}

• The assembler supports only the three-operand form of the
MIPS instructions. For example:

 add t0,t1 // ERROR
 add t0,t0,t1 // OK

The rest of this section describes how to create local variables, access
function parameters, refer to fields within a structure, and use the
preprocessor with the assembler. A section at the end of the chapter
describes some special assembler directives that the built-in assem-
bler allows.

Creating labels

A label can be any identifier that you haven’t already declared as a
local variable. A label must end with a colon. An instruction cannot
follow a label on the same line. For example:

x1: add t0,t1,t2 // ERROR
x2: // OK
 add t0,t1,t2 // OK

Using comments

You cannot begin comments with a pound sign (#), since the prepro-
cessor uses the pound sign. However, you can begin comments with
a semicolon (;) or use C and C++ comments. For example:

 add t3,t4,t5 # ERROR
 add t3,t4,t5 // OK
 add t3,t4,t5 /* OK */
 add t3,t4,t5 ; OK

MIPS Assembler Notes
Writing an Assembly Function

CL–164 C, C++, and Assembly Language Reference

Using the preprocessor

You can use all preprocessor features, such as comments and mac-
ros, in the assembler. However you must end each assembly state-
ment with a semicolon (;), since the preprocessor ignores newlines.
For example:

#define remainder(x,y,z) \
 div y,z; \
 mfhi x

Creating a stack frame

You need to create a stack frame for a function, if the function

• Calls other functions

• Declares local variables.

For more information on creating a stack frame, see the System V,
Application Binary Interface ,MIPS Processor Supplement.

Specifying operands

This section describes how to specify the operands for assembly lan-
guage instructions.

Using registers

For a register operand, you must use either:

• The register number with a dollar sign ($) in front

$0, $1, $2, . . . $32

• The software name

zero, v0, v1, a0–a3, t0–t9, k0, k1, gp, sp, fp, ra

$f0–$f31

MIPS Assembler Notes
Writing an Assembly Function

C, C++, and Assembly Language Reference CL–165

Using parameters

To refer to a parameter, you must use the hardware register it’s
passed in. For more information on parameter passing, see System V
Application Binary Interface, MIPS Processor Supplement .

For example:

asm int ADD (int x, int y)
{
 // return x + y
 .set reorder
 add v0, a0, a1
 jr ra
}

Using global variables

You can refer to global variables by their names. For example:

int Glob;
POINT P;

asm void INIT (void)
{
 .set reorder
 sw zero, Glob
 sw zero, P.x
 sw zero, P.y
 jr ra
}

Note that you cannot declare and use local variables in a MIPS as-
sembler function.

Using immediate operands

For an immediate operand, you can use an integer or enum con-
stant, sizeof expression, and any constant expression using any of
the C dyadic and monadic arithmetic operators. These expressions
follow the same precedence and associativity rules as normal C ex-

MIPS Assembler Notes
Assembler Directive

CL–166 C, C++, and Assembly Language Reference

pressions. The in-line assembler carries out all arithmetic with 32-bit
signed integers.

An immediate operand can also be a reference to a member of a
struct or class type. You can use any struct or class name from a
typedef statement, followed by any number of member references.
This evaluates to the offset of the member from the start of the
struct. For example:

 lw t0, Rect.top(a0)

Assembler Directive
The MIPS assembler supports one directive.

.set
.set [reorder | noreorder]

If you use the reorder option, the assembler reorders machine lan-
guage instructions to improve performance. By default, the assem-
bler uses noreorder, and does not reorder instructions. For
example:

asm int ADD1 (void){
 jr ra // return statement
 addi v0,a0,1 // increment in the branch
 // delay slot
}

C, C++, and Assembly Language Reference CL–167

7
Win32/x86
Assembler Notes
This chapter describes the Win32/x86 assembler that is part of the
Metrowerks C/C++ compiler.

Overview of Win32/x86 Assembler Notes
Frequently you want to include a small amount of assembly code in
a program. For example, you may want to make sure that a fre-
quently-used function is written as efficiently as possible. The Pow-
erPC, 68K, MIPS, and Win32/x86 compilers include built-in
assemblers that let you do just that.

This chapter describes how to use the built-in Win32 assembler, in-
cluding its syntax and special directives. It does not document the
instructions available in Win32 assembler.

Writing an Assembly Function
Assembly code for the Win32 compiler uses the following syntax:

asm (single_instruction)

or

asm {multiple_instructions}

An asm instruction or block may be used wherever a statement is al-
lowed. The assembly instructions are in the standard Intel assem-
bler format.

Assembly instructions may refer to local and global variables as op-
erands. They can use the name of a structure, class, or union as an

Win32/x86 Assembler Notes
Writing an Assembly Function

CL–168 C, C++, and Assembly Language Reference

immediate operand that evaluates to the size of the structure. To
specify the offset of a member, use the structure, union, or class
name qualified with the member name, separated by a dot (.).

Listing 7.1 shows an example of an assembler function to add two
64-bit integers.

Listing 7.1 Assembler function example

struct longlong {int low, high;};

void addlonglong(struct longlong *a,
 struct longlong b)
{
asm
{
mov eax, a
mov ebx, b+longlong.low
add longlong.low[eax], ebx
mov ebx, b+longlong.high
adc longlong.high[eax], ebx

}
}

TIP: If you write a function entirely in assembly language and do
not want the standard entry and exit code to be generated, use the
declaration modifier __declspec(naked), as described under
“Declaration specifiers” on page 27.

WARNING! Although you can mix assembly code and C/C++
code in the same function, you should generally avoid this prac-
tice, since it disables all code optimization for that function.

C, C++, and Assembly Language Reference CL–169

8
Pragmas and
Predefined Symbols
This chapter describes the pragmas and predefined symbols avail-
able with Metrowerks C/C++.

Overview of Pragmas and Predefined Symbols
This chapter discusses all the pragmas and predefined symbols
available with the Metrowerks C/C++ compiler. The sections in-
clude:

• Pragmas—lists each pragma

• Predefined Symbols—lists each symbol

• Options Checking—discusses how to check for the state of
the compiler

Pragmas
Metrowerks C and C++ let your source code change how the com-
piler compiles it with pragmas. Most of the pragmas correspond to
options in the Project Settings dialog. Usually, you’ll use the Prefer-
ence dialog to set the options for most of your code and use prag-
mas to change the options for special cases. For example, with the
Project Settings dialog, you can turn off a time-consuming optimiza-
tion and, with a pragma, turn it on only for the code it helps most.

Pragmas and Predefined Symbols
Pragmas

CL–170 C, C++, and Assembly Language Reference

TIP: If you use Metrowerks command-line tools, such as those
for MPW or Be OS, see the Command-Line Tools manual for infor-
mation on how to duplicate the effect of #pragma statements using
command-line tool options.

This section includes the following topics:

• Pragma Syntax—how to use pragmas in your code

• The Pragmas—a list of each pragma and its options

Pragma Syntax

Most pragmas have this syntax:

#pragma option-name on | off | reset

Generally, use on or off to change the option’s setting, and then use
reset to restore the option’s original setting, as shown below:

#pragma profile off
 /* If the option Generate Profiler Calls is ,
 * on, turn it off for these functions.
 */
#include <smallfuncs.h>
#pragma profile reset
 /* If the option Generate Profiler Calls was
 * on, turn it back on.
 * Otherwise, the option remains off
 */

Suppose that you use #pragma profile on instead of #pragma
profile reset. If you later turn off Generate Profiler Calls from
the Preference dialog, that pragma turns it on. Using reset ensures
that you don’t inadvertently change the settings in the Project Set-
tings dialog.

The Pragmas

The rest of this section is an alphabetical listing of all pragma op-
tions with descriptions.

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–171

a6frames (68K Macintosh and Magic Cap)
#pragma a6frames on | off | reset

If this pragma is on, the compiler generates A6 stack frames which
let debuggers trace through the call stack and find each routine.
Many debuggers, including the Metrowerks debugger and Jasik’s
The Debugger, require these frames. If this pragma is off, the com-
piler does not generate these frames, so the generated code is
smaller and faster.

This is the code that the compiler generates for each function, if this
pragma is on:

LINK #nn,A6
UNLK A6

This pragma corresponds to Generate A6 Stack Frames option in
the 68K Linker settings panel. To check whether this option is on,
use __option (a6frames), described in “Options Checking” on
page 229.

align (Macintosh and Magic Cap)
#pragma options align= alignment

This pragma specifies how to align structs and classes, where align-
ment can be one of the following values:

If alignment is The compiler …

mac68k Aligns every field on a 2-byte boundaries,
unless a field is only 1-byte long. This is the
standard alignment for 68K Macintosh com-
puters.

mac68k4byte Aligns every field on 4-byte boundaries.

Pragmas and Predefined Symbols
Pragmas

CL–172 C, C++, and Assembly Language Reference

Note there is a space between options and align.

This pragma corresponds to the Struct Alignment option in the 68K
Processor settings panel.

align_array_members (Macintosh and Magic Cap only)
#pragma align_array_members on | off | reset

This option lets you choose how to align an array in a struct or class.
If this option is on, the compiler aligns all array fields larger than a
byte according to the setting of the Struct Alignment option. If this
option is off, the compiler doesn’t align array fields.

power Align every field on its natural boundary.
This is the standard alignment for Power
Macintosh computers. For example, it aligns
a character on a 1-byte boundary and a 16-bit
integer on a 2-byte boundary. The compiler
applies this alignment recursively to struc-
tured data and arrays containing structured
data. So, for example, it aligns an array of
structured types containing an 4-byte float-
ing point member on an 4-byte boundary.

native Aligns every field using the standard align-
ment. It is equivalent to using mac68k for
68K Macintosh computers and power for
Power Macintosh computers.

packed Aligns ever field on a 1-byte boundary. It is
not available in any settings panel. This
alignment will cause your code to crash or
run slowly on many platforms. Use it with
caution.

reset Resets the option to the value in the previous
#pragma options align statement, if there
is one, or to the value in the 68K or PPC Pro-
cessor settings panel.

If alignment is The compiler …

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–173

Listing 8.1 Choosing how to align arrays

#pragma align_array_members off
struct X1 {
 char c; // offset==0
 char arr[4]; // offset==1 (char aligned)
};

#pragma align_array_members on
#pragma align mac68k
struct X2 {
 char c; // offset==0
 char arr[4]; // offset==2 (2-byte align)
};

#pragma align_array_members on
#pragma align mac68k4byte
struct X3 {
 char c; // offset==0
 char arr[4]; // offset==4 (4-byte align)
};

To check whether this option is on, use __option
(align_array_members), described in “Options Checking” on
page 229. By default, this option is off.

ANSI_strict
#pragma ANSI_strict on | off | reset

The common ANSI extensions are the following. If you turn on the
pragma ANSI_strict, the compiler generates an error if it encoun-
ters any of these extensions.

• C++-style comments. For example:

a = b; // This is a C++-style comment

Pragmas and Predefined Symbols
Pragmas

CL–174 C, C++, and Assembly Language Reference

• Unnamed arguments in function definitions. For example:

void f(int) {} /* OK, if ANSI Strict is off */
void f(int i) {} /* ALWAYS OK */

• A # token not followed by an argument in a macro definition.
For example:

#define add1(x) #x #1
 /* OK, if ANSI_strict is off,
 but probably not what you wanted:
 add1(abc) creates "abc"#1 */
#define add2(x) #x "2"
 /* ALWAYS OK: add2(abc) creates "abc2" */

• An identifier after #endif. For example:

#ifdef __MWERKS__
 /* . . . */
#endif __MWERKS__
 /* OK, if ANSI_strict is off */

#ifdef __MWERKS__
 /* . . . */
#endif /*__MWERKS__*/
 /* ALWAYS OK */

This pragma corresponds to the ANSI Strict option in the C/C++
Language settings panel. To check whether this option is on, use
__option (ANSI_strict), described in “Options Checking” on
page 229.

ARM_conform
#pragma ARM_conform on | off | reset

When pragma ARM_conform is on, the compiler generates an error
when it encounters certain ANSI C++ features that conflict with the
C++ specification in The Annotated C++ Reference Manual. Use this
option only if you must make sure that your code strictly follows
the specification in The Annotated C++ Reference Manual.

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–175

Turning on this pragma prevents you from doing the following

• Using protected base classes. For example:

class X {};
class Y : protected X {};
 // OK if ARM_conform is off.

• Changing the syntax of the conditional operator to let you
use assignment expressions without parentheses in the sec-
ond and third expressions . For example:

i ? x=y : y=z
 // OK if ARM_conform is off.
i ? (x=y):(y=z)
 // ALWAYS OK

• Declaring variables in the conditions of if, while and
switch statements. For example:

while (int i=x+y) { . . . }
 // OK if ARM_conform is off.

Turning on this option allows you to do the following:

• Using variables declared in the condition of an if statement
after the if statement. For example:

for(int i=1; i<1000; i++) { /* . . . */ }
return i;
 // OK if ARM_conform is on.

This pragma corresponds to the ARM Conformance option in the
C/C++ Language settings panel. To check whether this option is on,
use __option (ARM_conform), described in “Options Checking”
on page 229.

auto_inline
#pragma auto_inline on | off | reset

If this pragma is on, the compiler, automatically picks functions to
inline for you

Note that if either the Don’t Inline option (“Inlining functions” on
page 52) or the dont_inline pragma (“dont_inline” on page 183)

Pragmas and Predefined Symbols
Pragmas

CL–176 C, C++, and Assembly Language Reference

is on, the compiler ignores the setting of the auto_inline pragma
and doesn’t inline any functions.

This pragma corresponds to the Auto-Inline option of the Inlining
menu the C/C++ Language settings panel. To check whether this
option is on, use __option (auto_inline), described in “Op-
tions Checking” on page 229.

bool (C++ only)
#pragma bool on | off | reset

When this pragma is on, you can use the standard C++ bool type to
represent true and false. Turn this pragma off if recognizing
bool, true, or false as keywords would cause problems in your
program.

This pragma corresponds to the Enable bool Support option in the
C/C++ Language settings panel, described in “Using the bool type”
on page 96. To check whether this option is on, use
__option(bool), described in “Options Checking” on page 229.
By default, this option is off.

check_header_flags (precompiled headers only)
#pragma check_header_flags on | off | reset

When this pragma is on, the compiler makes sure that the precom-
piled header’s preferences for double size (8-byte or 12-byte), int
size (2-byte or 4-byte) and floating point math correspond to the
project’s preferences. If they do not match, the compiler generates
an error.

If your precompiled header file has settings that are independent
from those in the project, turn this pragma off. If your precompiled
header depends on these settings, turn this pragma on.

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use __option
(check_header_flags), described in “Options Checking” on
page 229. By default, this pragma is off.

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–177

code_seg (Win32/x86 only)
#pragma code_seg(name)

This pragma designates the segment into which compiled code is
placed. The name is a string specifying the name of the code seg-
ment. For example, the pragma

code_seg(".code")

places all subsequent code into a segment named .code.

code68020 (68K Macintosh and Magic Cap only)
#pragma code68020 on | off | reset

When this option is on, the compiler generates code that’s opti-
mized for the MC68020. The code runs on a Power Macintosh or a
Macintosh with a MC68020 or MC68040. The code does crash on a
Macintosh with a MC68000. When this option is off, the compiler
generates code that will run on any Macintosh.

WARNING! Do not change this option’s setting within a function
definition.

Before your program runs code optimized for the MC68020 , use the
gestalt() function to make sure the chip is available. For more in-
formation on gestalt(), see Chapter “Gestalt Manager” in Inside
Macintosh: Operating System Utilities.

In the Macintosh compiler, this option is off by default. In the Magic
Cap compiler, this option is on by default. If you change its setting,
be sure to change the setting of the pragma code68349 to the same
value.

This pragma corresponds to the 68020 Codegen option in the 68K
Processor settings panel. To check whether this option is on, use
__option (code68020), described in “Options Checking” on
page 229.

Pragmas and Predefined Symbols
Pragmas

CL–178 C, C++, and Assembly Language Reference

code68349 (Magic Cap only)
#pragma code68349 on | off | reset

Turning this pragma on automatically turns on the code68020
pragma as well.

If both this option and the 68020 Codegen options are on, the com-
piler does not use certain MC 68020 bitfield instructions which the
MC68349 cannot understand, but the compiler does use other
MC68020 optimizations. If the 68020 Codegen option is off, this op-
tion has no effect.

In the Macintosh compiler, this option is off by default. In Magic
Cap compiler, it’s on by default. If you change its setting, be sure to
change the setting of the pragma code68020 to the same value.

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use the __option
(code68349), described in “Options Checking” on page 229.

code68881 (68K Macintosh and Magic Cap only)
#pragma code68881 on | off | reset

When this option is on, the compiler generates code that’s opti-
mized for the MC68881 floating-point unit (FPU). This code runs on
a Macintosh with an MC68881 FPU, MC68882 FPU, or a MC68040
processor. (The MC68040 has a MC68881 FPU built in.) The code
does not run on a Power Macintosh, a Macintosh with an
MC68LC040, or a Macintosh with any other processor and no FPU.
When this option is off, the compiler generates code that will run on
any Macintosh.

WARNING! If you use the code68881 pragma to turn this option
on, place it at the beginning of your file, before you include any
files and declare any variables and functions.

Before your program runs code optimized for the MC68881, use the
gestalt() function to make sure an FPU is available. For more in-

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–179

formation on gestalt(), see Chapter “Gestalt Manager” in Inside
Macintosh: Operating System Utilities.

WARNING! Do not turn this option off in Magic Cap code. Al-
though the Magic Cap compiler lets you change the setting of this
option, your code will not run correctly if it’s off. It is on by default.

This pragma corresponds to the 68881 Codegen option in the 68K
Processor settings panel. To check whether this option is on, use
__option (code68881), described in “Options Checking” on
page 229.

cplusplus
#pragma cplusplus on | off | reset

When this pragma is on, the compiler compiles the code that fol-
lows as C++ code. When this option is off, the compiler uses the suf-
fix of the filename to determine how to compile it. If a file’s name
ends in .cp, .cpp, or .c++, the compiler automatically compiles it
as C++ code. If a file’s name ends in .c, the compiler automatically
compiles it as C code. You need to use this pragma only if a file con-
tains a mixture of C and C++ code.

This pragma corresponds to the Activate C++ Compiler option in
the C/C++ Language settings panel. To check whether this option is
on, use __option (cplusplus), described in “Options Check-
ing” on page 229.

Pragmas and Predefined Symbols
Pragmas

CL–180 C, C++, and Assembly Language Reference

cpp_extensions
#pragma cpp_extensions on | off | reset

If this option is on, it enables these extensions to the ANSI C++ stan-
dard:

• Anonymous structs. For example:

#pragma cpp_extensions on
void foo()
{
 union {
 long hilo;
 struct { short hi, lo; };
 // annonymous struct
 };
 hi=0x1234;
 lo=0x5678; // hilo==0x12345678
}

• Unqualified pointer to a member function. For example:

#pragma cpp_extensions on
struct Foo { void f(); }
void Foo::f()
{
 void (Foo::*ptmf1)() = &Foo::f;
 // ALWAYS OK

 void (Foo::*ptmf2)() = f;
 // OK, if cpp_exptensions is on.
}

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use the __option
(cpp_extensions), described in “Options Checking” on page
229. By default, this option is off.

d0_pointers (68K Macintosh only)
#pragma d0_pointers

This pragma lets you choose between two calling conventions: the
convention for MPW and Macintosh Toolbox routines and the con-

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–181

vention for Metrowerks C and C++ routines. In the MPW and Mac-
intosh Toolbox calling convention, functions return pointers in the
register DO. In the Metrowerks C and C++ convention, functions re-
turn pointers in the register A0.

When you declare functions from the Macintosh Toolbox or a li-
brary compiled with MPW, turn on the d0_pointers pragma.
After you declare those functions, turn off the pragma to start de-
claring or defining Metrowerks C and C++ functions.

In Listing 8.2, the Toolbox functions in Sound.h return pointers in
D0 and the user-defined functions in Myheader.h use A0.

Listing 8.2 Using #pragma pointers_in_A0 and #pragma pointers_in_D0

#pragma d0_pointers on // set for Toolbox calls
#include <Sound.h>
#pragma d0_pointers reset // set for my routines
#include "Myheader.h"

The pragmas pointers_in_A0 and pointers_in_D0 have much
the same meaning as d0_pointers and are available for back-
ground compatibility. The pragma pointers_in_A0 corresponds
to #pragma d0_pointers off and the pragma pointers_in_D0
corresponds to #pragma d0_pointers on. The pragma
d0_pointers is recommended for new code since it supports the
reset argument. For more information, see “pointers_in_A0,
pointers_in_D0 (68K Macintosh only)” on page 207.

WARNING! Do not turn this option off in Magic Cap code. Al-
though the Magic Cap compiler lets you change the setting of this
option, your code will not run correctly if it’s off. It is on by default.

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use the __option
(d0_pointers), described in “Options Checking” on page 229.

Pragmas and Predefined Symbols
Pragmas

CL–182 C, C++, and Assembly Language Reference

data_seg (Win32/x86 only)
#pragma data_seg(name)

Ignored. Included for compatibility with Microsoft. It designates the
segment into which initialized is placed. The name is a string speci-
fying the name of the data segment. For example, the pragma

data_seg(".data")

places all subsequent data into a segment named .data.

direct_destruction (C++ only)
#pragma direct_destruction on | off | reset

This option is available for backwards-compatibility only and is ig-
nored. Use #pragma exceptions instead.

direct_to_som (Macintosh and C++ only)
#pragma direct_to_som on | off | reset

This pragma lets you create SOM code directly in the CodeWarrior
IDE. SOM is an integral part of OpenDoc. For more information, see
“Creating Direct-to-SOM Code” on page 105.

Note that when you turn on this program, Metrowerks C/C++ au-
tomatically turns on the Enums Always Int option in the C/C++
Language settings panel, described in “Enumerated constants of
any size” on page 51.

This pragma corresponds to the Direct to SOM menu in the C/C++
Language settings panel. Selecting On from that menu is like setting
this pragma to on and setting the SOMCheckEnviornment pragma
to off. Selecting On with Environment Checks from that menu is
like setting both this pragma and SOMCheckEnviornment to on.
Selecting off from that menu is like setting both this pragma and
SOMCheckEnviornment to off. For more information on
SOMCheckEnviornment see “SOMCheckEnvironment (Macintosh
and C++ only)” on page 215.

To check whether this option is on, use the __option
(direct_to_SOM). See “Options Checking” on page 229. By de-
fault, this pragma is off.

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–183

disable_registers (PowerPC Macintosh only)
#pragma disable_registers on | off | reset

If this option is on, the compiler turns off certain optimizations for
any function that calls setjmp(). It disables global optimization
and does not store local variables and arguments in registers. These
changes ensures that all locals will have up-to-date values.

NOTE: This option disables register optimizations in functions
that use PowerPlant’s TRY and CATCH macros but not in functions
that use the ANSI-standard try and catch statements. The TRY
and CATCH macros use setjmp(), but the try and catch state-
ments are implemented at a lower level and do not use setjmp().

This pragma mimics a feature that’s available in THINK C and Sy-
mantec C++. Use this pragma only if you’re porting code that relies
on this feature, since it drastically increases your code’s size and de-
creases its speed. In new code, declare a variable to be volatile if
you expect its value to persist across setjmp() calls.

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use the __option
(disable_registers), described in “Options Checking” on page
229. By default, this option is off.

dont_inline
#pragma dont_inline on | off | reset

If the pragma dont_inline is on, the compiler doesn’t inline any
function calls, even functions declared with the inline keyword or
member functions defined within a class declaration. Also, it
doesn’t automatically inline functions, regardless of the setting of
the auto_inline pragma, described in “auto_inline” on page 175.
If this option is off, the compiler expands all inline function calls.

This pragma corresponds to the Don’t Inline option of the Inlining
menu the C/C++ Language settings panel. To check whether this
option is on, use __option (dont_inline), described in “Op-
tions Checking” on page 229.

Pragmas and Predefined Symbols
Pragmas

CL–184 C, C++, and Assembly Language Reference

dont_reuse_strings
#pragma dont_reuse_strings on | off | reset

If the pragma dont_reuse_strings is on, the compiler stores
each string literal separately. If this pragma is off, the compiler
stores only one copy of identical string literals. This pragma helps
you save memory if your program contains lots of identical string
literals which you do not modify.

For example, take this code segment:

char *str1="Hello";
char *str2="Hello"
*str2 = 'Y';

If this option is on, str1 is "Hello" and str2 is "Yello". If this
option is off, both str1 and str2 are "Yello".

This pragma corresponds to the Don’t Reuse Strings option in the
C/C++ Language settings panel. To check whether this option is on,
use __option (dont_reuse_strings), described in “Options
Checking” on page 229.

enumsalwaysints
#pragma enumsalwaysint on | off | reset

When pragma enumsalwaysint is on, the C or C++ compiler
makes an enumerated types the same size as an int. If an enumer-
ated constant is larger than int, the compiler generates an error.
When the pragma is off, the compiler makes an enumerated type
the size of any integral type. It chooses the integral type with the
size that most closely matches the size of the largest enumerated
constant. The type could be as small as a char or as large as a long
int.

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–185

For example:

enum SmallNumber { One = 1, Two = 2 };
 /* If enumsalwaysint is on, this type will
 be the same size as a char.
 If the pragma is off, this type will be
 the same size as an int. */

enum BigNumber
 { ThreeThousandMillion = 3000000000 };
 /* If enumsalwaysint is on, this type will
 be the same size as a long int.
 If this pragma is off, the compiler may
 generate an error. */

For more information on how the compiler handles enumerated
types, see “Enumerated types” on page 28.

This pragma corresponds to the Enums Always Int option in the C/
C++ Language settings panel. To check whether this option is on,
use __option (enumsalwaysint), described in “Options Check-
ing” on page 229.

exceptions (C++ only)
#pragma exceptions on | off | reset

If you turn on this pragma, you can use the try and catch state-
ments to perform exception handling. If your program doesn’t use
exception handling, turn this option to make your program smaller.

You can throw exceptions across any code that’s compiled by the
CodeWarrior 8 (or later) Metrowerks C/C++ compiler with the En-
able C++ Exceptions option turned on. You cannot throw excep-
tions across the following:

• Macintosh Toolbox function calls

• Libraries compiled with the Enable C++ Exceptions option
turned off

Pragmas and Predefined Symbols
Pragmas

CL–186 C, C++, and Assembly Language Reference

• Libraries compiled with versions of the Metrowerks C/C++
compiler earlier than CodeWarrior 8

• Libraries compiled with Metrowerks Pascal or other compil-
ers.

If you throw an exception across one of these, the code calls
terminate() and exits.

This pragma corresponds to the Enable C++ Exceptions option in
the C/C++ Language settings panel. To check whether this option is
on, use __option (exceptions), described in “Options Check-
ing” on page 229.

export (Macintosh only)
#pragma export on | off | reset | list names

The pragma export gives you another way to export symbols be-
sides using a .exp file. To export symbols with this pragma, choose
Use #pragma from the Export Symbols menu in the PPC PEF or
CFM68K settings panel. Then turn on this pragma to export vari-
ables and functions declared or defined in this file. If you choose
any other option from the Export Symbols menu, the compiler ig-
nores this pragma.

If you want to export all the functions and variables declared or de-
fined within a certain range, use #pragma export on at the begin-
ning of the range and use #pragma export off at the end of the
range. If you want to export all the functions and variables in a list,
use #pragma export list. If you want to export a single variable
or function, use __declspec(export) at the beginning of the dec-
laration

For example, this code fragment use #pragma export on and off
to export the variable w and the functions a1() and b1():

#pragma export on
int a1(int x, double y);
double b1(int z);
int w;
#pragma export off

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–187

This code fragment use #pragma export list to export the
symbols:

int a1(int x, double y);
double b1(int z);
int w;
#pragma export list a1, b1, w

This code fragment uses __declspec(internal) to export the
symbols:

__declspec(export) int a1(int x, double y);
__declspec(export) double b1(int z);
__declspec(export) int w;

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option(export), de-
scribed in “Options Checking” on page 229.

extended_errorcheck
#pragma extended_errorcheck on | off | reset

If the pragma extended_errorcheck is on, the C compiler gener-
ates a warning (not an error) if it encounters one of the following:

• A non-void function that does not contain a return state-
ment. For example, this would generate a warning:

main() /* assumed to return int */
{
 printf ("hello world\n");
} /* WARNING: no return
 statement */

This would be OK:

void main()
{
 printf ("hello world\n");
}

Pragmas and Predefined Symbols
Pragmas

CL–188 C, C++, and Assembly Language Reference

• Assigning an integer or floating-point value to an enum type.
For example:

enum Day { Sunday, Monday, Tuesday,
 Wednesday, Thursday,
 Friday, Saturday } d;

d = 5; /* WARNING */
d = Monday; /* OK */
d = (Day)3; /* OK */

NOTE: Both of these are always errors in C++.

The C and C++ compilers generate a warning if it encounters this:

• An empty return statement (return;) in a function that is
not declared void. For example, this code would generate a
warning:

int MyInit(void)
{
 int err = GetMyResources();
 if (err!=0) return;
 // WARNING: Empty return statement

 // . . .
}

This would be OK:

int MyInit(void)
{
 int err = GetMyResources();
 if (err!=0) return -1;
 // OK

 // . . .
}

This pragma corresponds to the Extended Error Checking option in
the C/C++ Warnings settings panel. To check whether this option is

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–189

on, use __option (extended_errorcheck), described in “Op-
tions Checking” on page 229.

far_code, near_code, smart_code (68K Macintosh and Magic
Cap only)

#pragma far_code,
#pragma near_code,
#pragma smart_code

These pragmas determine what kind of addressing the compiler
uses to refer to functions:

• #pragma far_code always generates 32-bit addressing,
even if 16-bit addressing can be used

• #pragma near_code always generates 16-bit addressing,
even if data or instructions are out of range.

• #pragma smart_code generates 16-bit addressing when-
ever possible and uses 32-bit addressing only when neces-
sary.

For more information on these code models, see the CodeWarrior
User’s Guide.

These pragmas correspond to the Code Model option in the 68K
Processor settings panel. The default is #pragma smart_code.

far_data (68K Macintosh and Magic Cap only)
#pragma far_data on | off | reset

If this pragma is on, you can have any amount of global data since
the compiler uses 32-bit addressing to refer to globals instead of 16-
bit addressing. Your program will also be slightly bigger and slower.
this pragma is off, your global data is stored as near data and add to
the 64K limit on near data.

This pragma corresponds to the Far Data option in the 68K Proces-
sor settings panel. To check whether this option is on, use __option
(far_data), described in “Options Checking” on page 229.

Pragmas and Predefined Symbols
Pragmas

CL–190 C, C++, and Assembly Language Reference

far_strings (68K Macintosh and Magic Cap only)
#pragma far_strings on | off | reset

If this pragma is on, you can have any number of string literals since
the compiler uses 32-bit addressing to refer to string literals, instead
of 16-bit addressing. Your program will also be slightly bigger and
slower. If this pragma is off, your string literals are stored as near
data and add to the 64K limit on near data.

This pragma corresponds to the Far String Constants option in the
68K Processor settings panel. To check whether this option is on, use
__option (far_strings), described in “Options Checking” on
page 229.

far_vtables (68K Macintosh only)
#pragma far_vtables on | off | reset

A class with virtual function members has to create a virtual func-
tion dispatch table in a data segment. If this pragma is on, that table
can be any size since a the compiler uses 32-bit addressing to refer to
the table, instead of 16-bit addressing. Your program will also be
slightly bigger and slower. If this pragma is off, the table is stored as
near data and adds to the 64K limit on near data.

Although the Magic Cap compiler does not raise an error if you use
this pragma, it ignores the pragma’s value since the Magic Cap com-
piler does not support C++

This pragma corresponds to the Far Method Tables option in the
68K Processor settings panel. To check whether this option is on, use
__option (far_vtables), described in “Options Checking” on
page 229.

force_active (68K Macintosh only)
#pragma force_active on | off | reset

If this option is on, the linker will not strip the following functions
out of the finished application, even if the functions are never called
in the program.

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–191

Although the Magic Cap compiler does not raise an error if you use
this pragma, it ignores the pragma’s value. In Magic Cap code, this
option is always on. In Macintosh code, this option is off by default.

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use the __option
(force_active), described in “Options Checking” on page 229.

fourbyteints (68K Macintosh only)
#pragma fourbyteints on | off | reset

When this option is on, the size of an int is 4 bytes. When this op-
tion is off, the size of an int is 2 byes.

WARNING! Do not turn this option off in Magic Cap code. Al-
though the Magic Cap compiler lets you change the setting of this
option, your code will not run correctly if it’s off. It is on by default.

This pragma corresponds to the 4-Byte Ints option in the 68K Pro-
cessor settings panel. To check whether this option is on, use
__option (fourbyteints), described in “Options Checking” on
page 229.

NOTE: Whenever possible, set this option from the settings
panel and not from a pragma. If you must set it from a pragma,
place the pragma at the beginning of your program, before you in-
clude any files or declare any functions or variables.

fp_contract (PowerPC Macintosh only)
#pragma fp_contract on | off | reset

If this pragma is on, the compiler uses such PowerPC instructions as
FMADD, FMSUB, and FNMAD to speed up floating-point computations.

Pragmas and Predefined Symbols
Pragmas

CL–192 C, C++, and Assembly Language Reference

However, certain computations give unexpected results when this
pragma is on. For example:

register double A, B, C, D, Y, Z;
register double T1, T2;

A = C = 2.0e23;
B = D = 3.0e23;

Y = (A * B) - (C * D);
printf("Y = %f\n", Y);
 /* prints 2126770058756096187563369299968.000000 */

T1 = (A * B);
T2 = (C * D);
Z = T1 - T2;
printf("Z = %f\n", Z);
 /* prints 0.000000 */

When this option is off, Y and Z have the same value.

This pragma corresponds to the Use FMADD & FMSUB option in
the PPC Processor settings panel. To check whether this option is on,
use __option (fp_contract), described in “Options Checking”
on page 229.

function (Win32/x86 only)
#pragma function(funcname1, funcname2, ...)

Ignored. Included for compatibility with Microsoft.

global_optimizer, optimization_level (PowerPC Macintosh only)
#pragma global_optimizer on | off | reset
#pragma optimization_level 1 | 2 | 3 | 4 | 5

These pragmas control the global optimizer performs. To turn the
global optimizer on and off, use the pragma global_optimizer.
To choose which optimizations the global optimizer performs, use
the pragma optimization_level with an argument from 1 to 5.
The higher the argument, the more optimizations that the global op-
timizer performs. If the global optimizer is turned off, the compiler
ignores the pragma optimization_level.

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–193

Level 1 is the same as the CW4 Global Optimizer. Its optimizations
include:

• Register coloring

Level 2 is best for most code. Its optimizations include all those in
Level 1 plus these:

• Global common subexpression elimination (also called CSE)

• Copy propagation

Level 3 is best for code with many loops. Its optimizations are all
those in Level 2 plus these:

• Moving invariant expressions out of loops (also called Code
motion)

• Strength reduction of induction variables

• Using the CTR register for loops that execute a known num-
ber of times.

• Loop unrolling.

Level 4 optimizes loops even more, but takes more time. Its options
include all those in Level 3 plus this:

• Performing CSE and Code motion a second time, in case the
loop optimizations create new opportunities.

These pragmas correspond to the Global Optimization option and
the Level menu in the PPC Processor settings panel. To check
whether the global optimizer is on, use __option
(global_optimizer), described in “Options Checking” on page
229.

IEEEdoubles (68K Macintosh only)
#pragma IEEEdoubles on | off | reset

This option, along with the 68881 Codegen option, specifies the
length of a double. The table below shows how these options work:

Pragmas and Predefined Symbols
Pragmas

CL–194 C, C++, and Assembly Language Reference

WARNING! Do not turn this option on in Magic Cap code. Al-
though the Magic Cap compiler lets you change the setting of this
option, your code will not run correctly if it’s on. It is off by default.

This pragma corresponds to the 8-Byte Doubles option in the 68K
Processor settings panel. To check whether this option is on, use
__option (IEEEdoubles), described in “Options Checking” on
page 229.

NOTE: Whenever possible, set this option from the settings
panel and not from a pragma. If you must set it from a pragma,
place the pragma at the beginning of your program, before you in-
clude any files or declare any functions or variables.

ignore_oldstyle
#pragma ignore_oldstyle on | off | reset

If pragma ignore_oldstyle is on, the compiler ignores old-style
function declarations and lets you prototype a function any way
you want. In old-style declarations, you don’t specify the types of
the arguments in the argument list but on separate lines. It’s the
style of declaration used in the first edition of The C Programming
Language (Prentice Hall) by Kernighan and Ritchie.

If IEEEDoubles
is…

and code68881
is…

Then a double is this
size…

on on or off 64 bits

off off 80 bits

off on 96 bits

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–195

For example, this code defines a prototype for a function with an
old-style declaration:

int f(char x, short y, float z);

#pragma ignore_oldstyle on

f(x, y, z)
char x;
short y;
float z;
{
 return (int)x+y+z;
}

#pragma ignore_oldstyle reset

This pragma does not correspond to an option in any settings panel.
By default this option is off. To check whether this option is on, use
__option (ignore_oldstyle), described in “Options Check-
ing” on page 229.

import (Macintosh only)
#pragma import on | off | reset | list names

This pragma lets you import variables and functions that are in
other fragments. Use this to import symbols that have been ex-
ported with the export pragma, an .exp file, or the Export Sym-
bols menu in the CFM68K and PPC PEF settings panel.

If you want to import all the functions and variables declared or de-
fine within a certain range, use #pragma import on at the begin-
ning of the range and use #pragma import off at the end of the
range. If you want to import all the functions and variables in a list,
use #pragma import list. If you want to import a single vari-
able or function, use __declspec(external) at the beginning of
the declaration

Pragmas and Predefined Symbols
Pragmas

CL–196 C, C++, and Assembly Language Reference

For example, this code fragment use #pragma import on and
off to import the variable w and the functions a1() and b1():

#pragma import on
int a1(int x, double y);
double b1(int z);
int w;
#pragma import off

This code fragment use #pragma import list to import the
symbols:

int a1(int x, double y);
double b1(int z);
int w;
#pragma import list a1, b1, w

And this code fragment uses __declspec(import) to import the
symbols:

__declspec(import) int a1(int x, double y);
__declspec(import) double b1(int z);
__declspec(import) int w;

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option (import), de-
scribed in “Options Checking” on page 229.

init_seg (Win32/x86 only)
pragma init_seg(compiler | lib | user | "name ")

This pragma controls the order in which initialization code is exe-
cuted.The initialization code for a C++ compiled module calls con-
structors for any statically declared objects. For C, no initialization
code is generated.

The order of initialization is

1.compiler

2.lib

3.user

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–197

If you specify the name of a segment, a pointer to the initialization
code is placed in the designated segment. In this case, the initializa-
tion code is not called automatically: it’s up to you to call it explic-
itly.

inline_depth (Win32/x86 only)
#pragma inline_depth(n)

Ignored. Included for compatibility with Microsoft. The number n is
an integer from 0 to 255.

internal (Macintosh only)
#pragma internal on | off | reset | list names

This pragma lets you specify that certain variables and functions are
internal and not imported. The compiler generates smaller and
faster code when it calls an internal function, even if you declared it
as extern.

If you want to declare all the functions and variables declared or de-
fine within a certain range as internal, use #pragma internal on
at the beginning of the range and use #pragma internal off at
the end of the range. If you want to declare all the functions and
variables in a list as internal, use #pragma internal list. If you
want to declare a single variable or function as internal, use
__declspec(internal) at the beginning of the declaration.

For example, this code fragment use #pragma internal on and
off to declare the variable w and the functions a1() and b1() as in-
ternal:

#pragma internal on
int a1(int x, double y);
double b1(int z);
int w;
#pragma internal off

Pragmas and Predefined Symbols
Pragmas

CL–198 C, C++, and Assembly Language Reference

This code fragment uses #pragma internal list to declare the
symbols as internal:

int a1(int x, double y);
double b1(int z);
int w;
#pragma internal list a1, b1, w

And this code fragment uses __declspec(internal) to declare
the symbols as internal:

__declspec(internal) int a1(int x, double y);
__declspec(internal) double b1(int z);
__declspec(internal) int w;

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option (internal),
described in “Options Checking” on page 229.

lib_export (Macintosh only)
#pragma lib_export on | off | reset

If this pragma is off, the compiler ignores the pragmas export, im-
port, and internal. It is available for compatibility with previous ver-
sions of the compiler. It corresponds to the
__declspec(lib_export) type qualifier, described in “Macin-
tosh and Magic Cap keywords” on page 50. To check whether this
option is on, use __option (lib_export), described in “Options
Checking” on page 229.

This pragma does not correspond to an option in any settings panel.

longlong
#pragma longlong on | off | reset

When the longlong pragma is on, the C or C++ compiler lets you
define a 64-bit integer with the type specifier long long. This is
twice as large as a long int, which is a 32-bit integer. A long long
can hold values from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. An unsigned long long can hold
values from 0 to 18,446,744,073,709,551,615.

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–199

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option (longlong),
described in “Options Checking” on page 229.

longlong_enums
#pragma longlong_enums on | off | reset

This pragma lets you use enumerators that large enough to be long
long integers. It’s ignored if the enumsalwaysint pragma is on
(described in “enumsalwaysints” on page 184).

For more information on how the compiler handles enumerated
types, see “Enumerated types” on page 28.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option
(longlong_enums), described in “Options Checking” on page
229. By default, this option is on.

macsbug, oldstyle_symbols (68K Macintosh and Magic Cap
only)

#pragma macsbug on | off | reset
#pragma oldstyle_symbols on | off | reset

These pragmas let you choose how the compiler generates Macsbug
symbols. Many debuggers, including Metrowerks debugger, use
Macsbug symbols to display the names of functions and variables.
The pragma macsbug lets you turn on and off Macsbug generation.
The pragma oldstyle_symbols lets you choose which type of
symbols to generate. The table below shows how these pragmas
work:

To do this… Use these pragmas…

Do not generate Macsbug
symbols

#pragma macsbug on

Generate old style Macs-
bug symbols

#pragma macsbug on
#pragma oldstyle_symbols on

Generate new style Macs-
bug symbols

#pragma macsbug on
#pragma oldstyle_symbols off

Pragmas and Predefined Symbols
Pragmas

CL–200 C, C++, and Assembly Language Reference

These pragmas corresponds to MacsBug Symbols option in the 68K
Linker settings panel. To check whether the macsbug pragma op-
tion is on, use __option (macsbug), described in “Options
Checking” on page 229. To check whether the old style pragma is
on, use __option (oldstyle_symbols) described in “Options
Checking” on page 229.

mark
#pragma mark itemName

This pragma adds itemName to the source file’s Function pop-up
menu. If you open the file in the CodeWarrior Editor and select the
item from the Function pop-up menu, the editor brings you to the
pragma. Note that if the pragma is inside a function definition, the
item will not appear in the Function pop-up menu.

This pragma does not correspond to an option in any settings panel.

mpwc (68k Macintosh only)
#pragma mpwc on | off | reset

When the pragma mpwc is on, the compiler does the following to be
compatible with MPW C’s calling conventions:

• Passes any integral argument that is smaller than 2 bytes as a
sign-extended long integer. For example, the compiler
converts this declaration:

int MPWfunc (char a, short b, int c,
 long d, char *e);

To this:

long MPWfunc(long a, long b, long c,
 long d, char *e);

• Passes any floating-point arguments as a long double. For
example, the compiler converts this declaration:

void MPWfunc(float a, double b,
 long double c);

To this:

void MPWfunc(long double a, long double b,
 long double c);

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–201

• Returns any pointer value in D0 (even if the pragma
pointers_in_D0 is off).

• Returns any 1-byte, 2-byte, or 4-byte structure in D0.

• If the 68881 Codegen option is on, returns any floating-point
value in FP0.

WARNING! Do not turn this option off in Magic Cap code. Al-
though the Magic Cap compiler lets you change the setting of this
option, your code will not run correctly if it’s off. It is on by default.

This pragma corresponds to the MPW C Calling Convention op-
tion in the 68K Processor settings panel. To check whether this op-
tion is on, use __option (mpwc), described in “Options Checking”
on page 229.

mpwc_newline
#pragma mpwc_newline on | off | reset

If you turn on the pragma mpwc_newline, the compiler uses the
MPW conventions for the '\n' and '\r' characters. If this pragma
is off, the compiler uses the Metrowerks C and C++ conventions for
these characters.

In MPW, '\n' is a Carriage Return (0x0D) and '\r' is a Line Feed
(0x0A). In Metrowerks C and C++, they’re reversed: '\n' is a Line
Feed and '\r' is a Carriage Return.

If you want to turn this pragma on, be sure you use the ANSI C and
C++ libraries that were compiled with this option on. The 68K ver-
sions of these libraries are marked with an N; for example, ANSI
(N/2i) C.68K.Lib. The PowerPC versions of these libraries are
marked with NL; for example, ANSI (NL) C.PPC.Lib.

If you turn this pragma on and use the standard ANSI C and C++ li-
braries, you won’t be able to read and write '\n' and '\r' prop-
erly. For example, printing '\n' brings you to the beginning of the
current line instead of inserting a new line.

Pragmas and Predefined Symbols
Pragmas

CL–202 C, C++, and Assembly Language Reference

WARNING! Do not turn this option off in Magic Cap code. Al-
though the Magic Cap compiler lets you change the setting of this
option, your code will not run correctly if it’s off. It is on by default.

This pragma corresponds to the Map Newlines to CR option in the
C/C++ Language settings panel. To check whether this option is on,
use __option (mpwc_newline), described in “Options Check-
ing” on page 229.

mpwc_relax
#pragma mpwc_relax on | off | reset

When you turn on this pragma, the compiler treats char*, un-
signed char*, and Ptr as the same type. This option is especially
useful if you’re using code written before the ANSI C standard. This
old code frequently used these types interchangeably.

This pragma corresponds to the Relaxed Pointer Type Rules option
in the C/C++ Language settings panel. To check whether this option
is on, __option (mpwc_relax), described in “Options Checking”
on page 229.

no_register_coloring (68K Macintosh and Magic Cap only)
#pragma no_register_coloring on | off | reset

When the no_register_coloring pragma is off, the compiler
performs register coloring. In this optimization, the compiler lets
two or more variables share a register: it assigns different variables
or parameters to the same register if you do not use the variables at
the same time. In this example, the compilers could place i and j in
the same register:

short i;
int j;

for (i=0; i<100; i++) { MyFunc(i); }
for (j=0; j<1000; j++) { OurFunc(j); }

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–203

However, if a line like the one below appears anywhere in the func-
tion, the compiler would realize that you’re using i and j at the
same time and place them in different registers:

int k = i + j;

If register coloring is on while you debug your project, it may ap-
pear as though there’s something wrong with the variables sharing
a register. In the example above, i and j would always have the
same value. When i changes, j changes in the same way. When j
changes, i changes in the same way. To avoid this confusion while
debugging, turn off register coloring or declare the variables you
want to watch as volatile.

The pragma corresponds to the Global Register Allocation option
in the 68K Processor settings panel. To check whether this option is
on, use __option (no_register_coloring), described in “Op-
tions Checking” on page 229. By default, this option is off.

NOTE: To turn off register coloring in code for a PowerPC Macin-
tosh, use the statement #pragma global_optimizer off. For
more information, see “global_optimizer, optimization_level (Pow-
erPC Macintosh only)” on page 192.

once
#pragma once [on | off]

Use this pragma to ensure that the compiler includes header files
only once in a source file. This pragma is especially useful in pre-
compiled header files.

There are two versions of this pragma: #pragma once and
#pragma once on. Use #pragma once in a header file to ensure
that the header file is included only once in a source file. Use
#pragma once on in a header file or source file to insure that any
file is included only once in a source file.

This pragma does not correspond to an option in any settings panel.
By default this option is off.

Pragmas and Predefined Symbols
Pragmas

CL–204 C, C++, and Assembly Language Reference

oldstyle_symbols (68K Macintosh and Magic Cap only)

See the pragma macsbug, described in “macsbug, oldstyle_symbols
(68K Macintosh and Magic Cap only)” on page 199.

only_std_keywords
#pragma only_std_keywords on | off | reset

The C and C++ compilers recognize additional reserved keywords.
If you’re writing code that must follow the ANSI standard strictly,
turn on the pragma only_std_keywords. For more information,
see “Additional keywords” on page 50.

This pragma corresponds to the ANSI Keywords Only option in
the C/C++ Language settings panel. To check whether this option is
on, use __option (only_std_keywords), described in “Options
Checking” on page 229.

optimization_level (PowerPC Macintosh only)

See the pragma global_optimizer, described in
“global_optimizer, optimization_level (PowerPC Macintosh only)”
on page 192.

optimize_for_size (Macintosh and Magic Cap only)
#pragma optimize_for_size on | off | reset

This option lets you choose what the compiler does when it must
decide between creating small code or fast code. If this option is on,
the compiler creates smaller object code at the expense of speed. If
this option is off, the compiler creates faster object code at the ex-
pense of size.

Most significantly if this option is on, the compiler ignores the in-
line directive, and generates function calls to call any function de-
clared inline.

The pragma corresponds to the Optimize for Size option in the 68K
Processor settings panel and to the Optimize For menu in the PPC
Processor settings panel. To check whether this option is on, use
__option (optimize_for_size), described in “Options Check-
ing” on page 229.

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–205

pack (Win32/x86 only)
#pragma pack([n | push, n | pop])

Sets the packing alignment for data structures. It affects all data
structures declared after this pragma until you change it again with
another pack pragma.

This pragma corresponds to the Byte Alignment option in the x86
CodeGen settings panel.

parameter (68K Macintosh and Magic Cap only)
#pragma parameter return-reg func-name(param-regs)

The compiler passes the parameters for the function func-name in the
registers specified in param-regs instead of the stack, and returns any
return value in the register return-reg. Both return-reg and param-regs
are optional.

Here are some samples:

#pragma parameter __D0 Gestalt(__D0, __A1)
#pragma parameter __A0 GetZone
#pragma parameter HLock(__A0)

This pragma… Does this…

#pragma pack(n) Sets the alignment modulus to n,
where n may be 1, 2, 4, 8 or 16.

#pragma pack(push, n) Pushes the current alignment mod-
ulus on a stack, then sets it to n,
where n may be 1, 2, 4, 8 or 16.
Use push and pop when you need
a specific modulus for some decla-
ration or set of declarations, but do
not want to disturb the default set-
ting.

#pragma pack(pop) Pops a previously pushed align-
ment modulus from the stack.

#pragma pack() Resets alignment modulus to the
value specified in the settings pan-
el.

Pragmas and Predefined Symbols
Pragmas

CL–206 C, C++, and Assembly Language Reference

When you define the function, you need to specify the registers
right in the parameter list, as described in “Specifying the registers
for arguments (68K Macintosh Only)” on page 45.

This pragma does not correspond to an option in any settings panel.

pcrelstrings (68K Macintosh only)
#pragma pcrelstrings on | off | reset

If this option is on, the compiler stores the string constants used in a
local scope in the code segment and addresses these strings with
PC-relative instructions. If this option is off, the compiler stores all
string constants in the global data segment. Regardless of how this
option is set, the compiler stores string constants used in the global
scope in the global data segment. For example:

#pragma pcrelstrings on
int foo(char *);

int x = f("Hello"); // "Hello" is allocated in
 // the global data segment
int bar()
{
 return f("World"); //"World" is allocated in
} // the code segment
 // (pc-relative)

Strings in C++ initialization code are always allocated in the global
data segment.

NOTE: If you turn the pool_strings pragma on, the compiler
ignores the setting of the pcrelstrings pragma.

WARNING! Do not turn this option off in Magic Cap code. Al-
though the Magic Cap compiler lets you change the setting of this
option, your code will not run correctly if it’s off. It is on by default.

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–207

This pragma corresponds to the PC-Relative Strings option in the
68K Processor settings panel. To check whether this option is on, use
__option (pcrelstrings), described in “Options Checking” on
page 229. By default, this option is off.

peephole (PowerPC Macintosh and Win32/x86 only)
#pragma peephole on | off | reset

If this pragma is on, the compiler performs peephole optimizations,
which are small local optimizations that eliminate some compare in-
structions and improve branch sequences.

This pragma corresponds to the Peephole Optimizer option in the
PPC Processor settings panel. To check whether this option is on,
use __option (peephole), described in “Options Checking” on
page 229.

pointers_in_A0, pointers_in_D0 (68K Macintosh only)
#pragma pointers_in_A0
#pragma pointers_in_D0

These pragmas let you choose between two calling conventions: the
convention for MPW and Macintosh Toolbox routines and the con-
vention for Metrowerks C and C++ routines. In the MPW and Mac-
intosh Toolbox calling convention, functions return pointers in the
register DO. In the Metrowerks C and C++ convention, functions re-
turn pointers in the register A0.

When you declare functions from the Macintosh Toolbox or a li-
brary compiled with MPW, use the pragma pointers_in_D0.
After you declare those functions, use the pragma
pointers_in_A0 to start declaring or defining Metrowerks C and
C++ functions.

Pragmas and Predefined Symbols
Pragmas

CL–208 C, C++, and Assembly Language Reference

In Listing 8.3, the Toolbox functions in Sound.h return pointers in
D0 and the user-defined functions in Myheader.h use A0.

Listing 8.3 Using #pragma pointers_in_A0 and #pragma pointers_in_D0

#pragma pointers_in_D0 // set for Toolbox calls
#include <Sound.h>
#pragma pointers_in_A0 // set for my own routines
#include "Myheader.h"

The pragmas pointers_in_A0 and pointers_in_D0 have much
the same meaning as d0_pointers and are available for backwards
compatibility. The pragma pointers_in_A0 corresponds to
#pragma d0_pointers off and the pragma pointers_in_D0
corresponds to #pragma d0_pointers on. The pragma
d0_pointers is recommended for new code since it supports the
reset argument. For more information, see “d0_pointers (68K Mac-
intosh only)” on page 180.

WARNING! Although the Magic Cap compiler lets you change
the settings of these option, your code will not run correctly if
pointers_in_A0 is on and pointers_in_D0 is off. By default,
pointers_in_A0 is off and pointers_in_D0 is on.

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use the __option
(d0_pointers), described in “Options Checking” on page 229.

pool_strings
#pragma pool_strings on | off | reset

If the pragma pool_strings in the C/C++ Language settings
panel is on, the compiler collects all string constants into a single
data object so your program needs one TOC entry for all of them. If
this pragma is off, the compiler creates a unique data object and
TOC entry for each string constant. Turning this pragma on de-
creases the number of TOC entries in your program but increases

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–209

your program’s size, since it uses a less efficient method to store the
string’s address.

This pragma is especially useful if your program is large and has
many string constants or uses the Metrowerks Profiler.

NOTE: If you turn the pool_strings pragma on, the compiler
ignores the setting of the pcrelstrings pragma.

This pragma corresponds to the Pool Strings option in the C/C++
Language settings panel. To check whether this option is on, use
__option (pool_strings), described in “Options Checking” on
page 229.

pop, push
#pragma push
#pragma pop

The pragma push saves all the current pragma settings. The pragma
pop restores all the pragma settings to what they were at the last
push pragma. For example, see Listing 8.4.

Listing 8.4 push and pop example

#pragma far_data on
#pragma pointers_in_A0
#pragma push
 // push all compiler options
#pragma far_data off
#pragma pointers_in_D0
 // pop restores "far_data" and "pointers_in_A0"
#pragma pop

These pragmas are available so you can use MacApp with Metro-
werks C and C++. If you’re writing new code and need to set a
pragma option to its original value, use the reset argument, de-
scribed in “Pragma Syntax” on page 170.

Pragmas and Predefined Symbols
Pragmas

CL–210 C, C++, and Assembly Language Reference

precompile_target
#pragma precompile_target filename

This pragma specifies the filename for a precompiled header file. If
you don’t specify the filename , the compiler gives the precompiled
header file the same name as its source file.

Filename can be a simple filename or an absolute pathname. If file-
name is a simple filename, the compiler saves the file in the same
folder as the source file. If filename is a path name, the compiler
saves the file in the specified folder.

Listing 8.5 shows sample source code from the MacHeaders pre-
compiled header source file. By using the predefined symbols
__cplusplus and powerc and the pragma precompile_target,
the compiler can use the same source code to create different pre-
compiled header files for C and C++, 680x0 and PowerPC.

Listing 8.5 Using #pragma precompile_target filename

#ifdef __cplusplus
 #ifdef powerc
 #pragma precompile_target "MacHeadersPPC++"
 #else
 #pragma precompile_target "MacHeaders68K++"
 #endif
#else
 #ifdef powerc
 #pragma precompile_target "MacHeadersPPC"
 #else
 #pragma precompile_target "MacHeaders68K"
 #endif
#endif

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–211

profile (Macintosh only)
#pragma profile on | off | reset

If this pragma is on, the compiler generates code for each function
that lets the Metrowerks Profiler collect information on it. For more
information, see the Metrowerks Profiler Manual.

This pragma corresponds to the Generate Profiler Calls option in
the 68K Processor settings panel and the Emit Profiler Calls in the
PPC Processor settings panel. To check whether this option is on,
use __option (profile) described in “Options Checking” on
page 229.

readonly_strings (PowerPC Macintosh only)
#pragma readonly_strings on | off | reset

This option determines where to stores string constants. If this op-
tion is off, the compiler stores string constants in the data section
(class RW). If this option is on, the compiler stores string constants
in the code section (class RO).

NOTE: Variables that are not initialized to the address of another
object at run time are always placed in the code section (class
RO). This includes C/C++ variables declared with the const stor-
age-class modifier.

This pragma corresponds to the Make Strings ReadOnly option in
the PPC Processor panel. To check whether this option is on, using
#if __option (readonly_strings), see “Options Checking”
on page 229.

require_prototypes
#pragma require_prototypes on | off | reset

When the pragma require_prototypes is on, the compiler gener-
ates an error if you use a function that does not have a prototype.
This pragma helps you prevent errors that happen when you use a
function before you define it.

Pragmas and Predefined Symbols
Pragmas

CL–212 C, C++, and Assembly Language Reference

This pragma corresponds to the Require Function Prototypes op-
tion in the C/C++ Language settings panel. To check whether this
option is on, use __option (require_prototypes), described
in “Options Checking” on page 229.

RTTI
#pragma RTTI on | off | reset

When the pragma RTTI is on, you can use Run-Time Type Informa-
tion (or RTTI) features, such as dyanamic_cast and typeid. The
other RTTI expressions are available even if the Enable RTTI option
is off. Note that *type_info::before(const type_info&) is
not yet implemented.

This pragma corresponds to the Enable RTTI option in the C/C++
Language settings panel. To check whether this option is on, use
__option (RTTI), described in “Options Checking” on page 229.

scheduling (PowerPC Macintosh only)
#pragma scheduling 601 | 603 | 604 |
 on | off | reset

This pragma lets you choose how the compiler rearranges instruc-
tions to increase speed. Some instructions, such as a memory load,
take more than one processor cycle. By moving an unrelated instruc-
tion between the load and the instruction that uses the loaded item,
the compiler saves a cycle when executing the program.

CodeWarrior lets you choose the type of scheduling that works best
for each PowerPC chip. You can use 601, 603, or 604. If you use on,
the compiler performs 601 scheduling.

However, if you’re debugging your code, turn this pragma off. Since
it rearranges the instructions produced from your code, the debug-
ger will not be able to match the statements in your source code to
the produced instructions.

This pragma corresponds to the Instruction Scheduling option in
the PPC Processor settings panel.

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–213

segment (Macintosh and Magic Cap only)
#pragma segment name

This pragma places all the functions that follow into the code seg-
ment named name. For more on function-level segmentation, con-
sult the CodeWarrior User’s Guide.

Generally, the PowerPC compilers ignore this directive since Pow-
erPC applications do not have code segments. However, if you turn
on the Order Code Sections option in the PPC PEF settings panel,
the PowerPC compilers group functions in the same segment to-
gether. For more information, see the CodeWarrior User’s Guide.

The Magic Cap compiler plugin for the CodeWarrior IDE ignores
this pragma and puts all your code in one segment. However, the
Magic Cap compiler for MPW does pay attention to this pragma
and can segment your code.

This pragma does not correspond to an option in any settings panel.

side_effects (Macintosh only)
#pragma side_effects on | off | reset

If your program does not contain pointer alias, turn off this pragma
to make your program smaller and faster. If your program does use
pointer aliases, turn on this pragma to avoid incorrect code. A
pointer alias looks like this:

int a, *p;
p = &a; // *p is an alias for a.

To understand why pointer aliases are so important, remember that
the compiler needs to load a variable into a register before perform-
ing arithmetic on it. So, in the example below, the compiler loads a
into a register before the first addition. If *p is an alias for a, the
compiler needs to load a into a register again before the second ad-
dition, since changing *p also changed a. If *p is not an alias for a,

Pragmas and Predefined Symbols
Pragmas

CL–214 C, C++, and Assembly Language Reference

the compiler doesn’t need to load a into a register again, since
changing *p does not change a.

x = a + 1;
*p = 0; // If *p is an alias for a,
y = a + 2; // this changes a.

NOTE: The PowerPC compilers ignore this pragma and always
assume that a program may contain pointer aliases.

This pragma does not correspond to an option in any settings panel.
To check whether this pragma is on, use __option
(side_effects), described in “Options Checking” on page 229.
By default, this pragma is on.

SOMCallOptimization (Macintosh and C++ only)
#pragma SOMCallOptimization on | off | reset

The PowerPC compiler uses an optimized error check that is smaller
but slightly slower than the one given above. To use the error check
show above in PowerPC code, turn this pragma on.

This pragma is ignored if the direct_to_SOM pragma, described in
“direct_to_som (Macintosh and C++ only)” on page 182, is off.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option (SOMCall-
Optimization). See on “Options Checking” on page 229. By de-
fault, this pragma is off.

SOMCallStyle (Macintosh and C++ only)
#pragma SOMCallStyle OIDL | IDL

The SOMCallStyle pragma chooses between two SOM call styles:

• OIDL, an older style that does not support DSOM

• IDL, a newer style that does support SOM.

If a class uses the IDL style, its methods must have an Environment
pointer as the first parameter. Note that the SOMClass and SOMOb-

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–215

ject classes use OIDL, so if you override a method from one of them,
you should not include the Environment pointer.

This pragma is ignored if the direct_to_SOM pragma, described in
“Creating Direct-to-SOM Code” on page 105, is off.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option (SOMCheckEn-
vironment). See “Options Checking” on page 229. By default, this
pragma is set to IDL.

SOMCheckEnvironment (Macintosh and C++ only)
#pragma SOMCheckEnvironment on | off | reset

When the pragma SOMCheckEnvironment is on, the compiler per-
forms automatic SOM environment checking. It transforms every
IDL method call and new allocation into an expression which also
calls an error-checking function. You must define separate error-
checking functions for method calls and allocations. For more infor-
mation on how to write these functions, see “Automatic SOM error
checking” on page 109.

For example, the compiler transforms this IDL method call:

SOMobj->func(&env, arg1, arg2) ;

into something that is equivalent to this:

(temp=SOMobj->func(&env, arg1, arg2),
 __som_check_ev(&env), temp) ;

First, the compiler calls the method and stores the result in a tempo-
rary variable. Then it checks the environment pointer. Finally, it re-
turns the method’s result.

And, the compiler transforms this new allocation:

new SOMclass;

into something that is equivalent to this:

(temp=new SOMclass, __som_check_new(temp),
 temp);

Pragmas and Predefined Symbols
Pragmas

CL–216 C, C++, and Assembly Language Reference

First, the compiler creates the object and stores it in a temporary
variable. Then it checks the object and returns it.

The PowerPC compiler uses an optimized error check that is smaller
but slightly slower than the one given above. To use the error check
show above in PowerPC code, use the pragma SOMCall-
Optimization, described in “SOMCallOptimization (Macintosh
and C++ only)” on page 214.

This pragma is ignored if the direct_to_SOM pragma, described in
“Creating Direct-to-SOM Code” on page 105, is off.

This pragma corresponds to the Direct to SOM menu in the C/C++
Language settings panel. Selecting On with Environment Checks
from that menu is like setting this pragma to on. Selecting anything
else from that menu is like setting this pragma to off. To check
whether this option is on, use __option (RTTI), described in
“Options Checking” on page 229. By default, this pragma is on.

SOMClassVersion (Macintosh and C++ only)
#pragma SOMClassVersion(class,majorVer,minorVer)

SOM uses the class’s version number to make sure the class is com-
patible with other software you’re using. If you don’t declare the
version numbers, SOM assumes zeroes. The version numbers must
be positive or zero.

When you define the class, the program passes its version number
to the SOM kernel in the class’s metadata. When you instantiate an
object of the class, the program passes the version to the runtime
kernel, which checks to make sure the class is compatible with the
running software.

This pragma is ignored if the direct_to_SOM pragma, described in
“Creating Direct-to-SOM Code” on page 105, is off.

This pragma does not correspond to an option in any settings panel.

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–217

SOMMetaClass (Macintosh and C++ only)
#pragma SOMMetaClass (class, metaclass)

A metaclass is a special kind of SOM class that defines the imple-
mentation of other SOM classes. All SOM classes have a metaclass,
including metaclasses themselves. By default, the metaclass for a
SOM class is SOMClass. If you want to use another metaclass, use
the SOMMetaClass pragma:

The metaclass must be a descendant of SOMClass. Also, a class can-
not be its own metaclass. That is, class and metaclass must name dif-
ferent classes.

This pragma is ignored if the direct_to_SOM pragma, described in
“Creating Direct-to-SOM Code” on page 105, is off.

This pragma does not correspond to an option in any settings panel.

SOMReleaseOrder (Macintosh and C++ only)
#pragma SOMRelaseOrder(func1, func2,... funcN)

A SOM class must specify the release order of its member functions.
As a convenience for when you’re first developing the class,
Metrowerks C++ lets you leave out the SOMReleaseOrder pragma
and assumes the release order is the same as the order in which the
functions appear in the class declaration. However, when you re-
lease a version of the class, use the pragma, since you’ll need to
modify its list in later versions of the class.

You must specify every SOM method that the class introduces. Do
not specify inline member functions that are virtual, since they’re
not considered to be SOM methods. Don’t specify overridden func-
tions.

If you remove a function from a later version of the class, leave its
name in the release order list. If you add a function, place it at the
end of the list. If you move a function up in the class hierarchy, leave
it in the original list and add it to the list for the new class.

Pragmas and Predefined Symbols
Pragmas

CL–218 C, C++, and Assembly Language Reference

This pragma is ignored if the direct_to_SOM pragma, described in
“Creating Direct-to-SOM Code” on page 105, is off.

This pragma does not correspond to an option in any settings panel.

static_inlines
#pragma static_inlines on | off | reset

The pragma static_inlines determines what the compiler does
if it cannot inline a call to a function declared inline and must cre-
ate a compiled version of the function. If the pragma is off, the com-
piler creates one compiled version for the whole project. If the
pragma is on, the compiler creates a different compiled version for
each file that needs a compiled version.

This pragma is available only so that the compiler can pass certain
validation suites. Generally, you’ll want to leave this pragma off to
make your code smaller without any loss of speed.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option
(static_inlines), described in “Options Checking” on page
229. By default, this pragma is off.

sym
#pragma sym on | off | reset

The compiler pays attention to this pragma only if you turn on the
debug diamond next to the file. If this pragma is off, the compiler
does not put debugging information into this source file’s SYM file
for the functions that follow. If this pragma is on, the compiler does
generate debugging information.

Note that the compiler always generates a SYM file for a source file
that has a debug diamond next to it in the project window. This
pragma changes only which functions have information in that
SYM file.

To check whether this option is on, use __option (sym), de-
scribed in “Options Checking” on page 229. By default, this pragma
is on.

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–219

toc_data (PowerPC Macintosh only)
#pragma toc_data on | off | reset

If the toc_data pragma is on, the compiler makes your code
smaller and faster. It stores static variables that are 4-bytes long or
smaller directly in the TOC, instead of allocating space for them
elsewhere and storing pointers to them in the TOC. Turn this
pragma off only if your code expects the TOC to contain pointers to
data.

This pragma corresponds to the Store Static Data in TOC option in
the PPC Processor settings panel. To check whether this option is on,
use __option (toc_data), described in “Options Checking” on
page 229.

trigraphs
#pragma trigraphs on | off | reset

If you’re writing code that must follow the ANSI standard strictly,
turn on the pragma trigraphs in the C/C++ Language settings
panel. Many common Macintosh character constants look like tri-
graph sequences, and this pragma lets you use them without in-
cluding escape characters. Be careful when you initialize strings or
multi-character constants that contain question marks. For example:

char c = '????'; // ERROR: Trigraph sequence
 // expands to '??^
char d = '\?\?\?\?'; // OK

This pragma corresponds to the Expand Trigraphs option in the C/
C++ Language settings panel. To check whether this option is on,
use __option (trigraphs), described in “Options Checking” on
page 229.

traceback (PowerPC Macintosh only)
#pragma traceback on | off | reset

This pragma helps other people debug your application or shared li-
brary if you do not distribute the source code. If this option is on,
the compiler generates an AIX-format traceback table for each func-
tion, which are placed in the executable code. Both the Metrowerks
and Apple debuggers can use traceback tables.

Pragmas and Predefined Symbols
Pragmas

CL–220 C, C++, and Assembly Language Reference

This pragma corresponds to the Emit Traceback Tables option in
the PPC Linker settings panel. To check whether this option is on,
use the __option (traceback), described in “Options Check-
ing” on page 229. By default, this option is off.

unsigned_char
#pragma unsigned_char on | off | reset

When the unsigned_char pragma is on, the C/C++ compiler
treats a char declaration as if it were an unsigned char declara-
tion.

NOTE: If you turn this pragma on, your code may not be compat-
ible with libraries that were compiled with it turned off. In particular,
your code may not work with the ANSI libraries included with
CodeWarrior.

This pragma corresponds to the Use unsigned chars option in the
C/C++ Language settings panel. To check whether this option is on,
use __option (unsigned_char), described in “Options Check-
ing” on page 229. By default, this option is off.

unused
#pragma unused (var_name [, var_name]...)

This pragma suppresses the compile time warnings for the unused
variables and parameters specified in its argument list. You can use
this pragma only within a function body, and the listed variables
must be within the function’s scope. You cannot use this pragma

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–221

with functions defined within a class definition or with template
functions. For example:

#pragma warn_unusedvar on
#pragma warn_unusedarg on

static void ff(int a)
{
 int b;
#pragma unused(a,b) // Compiler won't complain
 // that a and b are unused
 // . . .
}

This pragma does not correspond to any option in the settings
panel.

warn_emptydecl
#pragma warn_emptydecl on | off | reset

If the pragma warn_emptydecl is on, the compiler displays a
warning when it encounters a declaration with no variables. For ex-
ample:

int ; // WARNING
int i; // OK

This pragma corresponds to the Empty Declarations option in the
C/C++ Warnings settings panel. To check whether this option is on,
use __option (warn_emptydecl), described in “Options Check-
ing” on page 229.

warning_errors
#pragma warning_errors on | off | reset

When the pragma warning_errors is on, the compiler treats all
warnings as though they were errors. It will not compile a file until
all warnings are resolved.

This pragma corresponds to the Treat All Warnings as Errors option
in the C/C++ Warnings settings panel. To check whether this option

Pragmas and Predefined Symbols
Pragmas

CL–222 C, C++, and Assembly Language Reference

is on, use __option (warning_errors), described in “Options
Checking” on page 229.

warn_extracomma
#pragma warn_extracomma on | off | reset

If the pragma warn_extracomma is on, the compiler generates a
warning when it encounters an extra comma. For example, this
statement is legal in C, but it causes a warning when this pragma is
on:

int a[] = { 1, 2, 3, 4, };
 // ^ WARNING: Extra comma
 // after 4

This pragma corresponds to the Treat All Warnings as Errors option
in the C/C++ Warnings settings panel. To check whether this option
is on, use __option (warn_extracomma), described in “Options
Checking” on page 229.

warn_hidevirtual
#pragma warn_hidevirtual on|off|reset

If the pragma warn_hidevirtual is on, the compiler generates a
warning if you declare a non-virtual member function that hides a
virtual function in a superclass. One function hides another if it has
the same name but a different argument types. For example:

class A {
 public:
 virtual void f(int);
 virtual void g(int);
};

class B: public A {
 public:
 void f(char); // WARNING:
 // Hides A::f(int)
 virtual void g(int); // OK:
 // Overrides A::g(int)
};

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–223

This pragma corresponds to the Hidden virtual functions option in
the C/C++ Warnings settings panel. To check whether this option is
on, use __option (warn_hidevirtual). See “Options Check-
ing” on page 229. By default, this option is off.

warn_illpragma
#pragma warn_illpragma on | off | reset

If the pragma warn_illpragma is on, the compiler displays a
warning when it encounters an illegal pragma. For example, these
pragma statements generate warnings:

#pragma near_data off
 // WARNING: near_data is not a pragma.
#pragma far_data select
 // WARNING: select is not defined
#pragma far_data on
 // OK

This pragma corresponds to the Illegal Pragmas option in the C/
C++ Warnings settings panel. To check whether this option is on,
use __option (warn_illpragma), described in “Options Check-
ing” on page 229.

warn_possunwant
#pragma warn_possunwant on | off | reset

If the pragma warn_possunwant is on, the compiler checks for
some common typographical mistakes that are legal C and C++ but
that may have unwanted side effects, such as putting in unintended
semicolons or confusing = and ==. The compiler generates a warn-
ing if it encounters one of these:

• An assignment in a logical expression or the condition in an
if, while, or for expression. This check is useful if you fre-
quently use = when you meant to use ==. For example:

if (a=b) f(); // WARNING: a=b is an
 // assignment

if ((a=b)!=0) f(); // OK: (a=b)!=0 is a
 // comparison

Pragmas and Predefined Symbols
Pragmas

CL–224 C, C++, and Assembly Language Reference

if (a==b) f(); // OK: (a==b) is a
 // comparison

• An equal comparison in a statement that contains a single ex-
pression. This check is useful if you frequently use == when
you meant to use =. For example:

a == 0; // WARNING: This is a comparison.
a = 0; // OK: This is an assignment

• A semicolon (;) directly after a while, if, or for statement.
For example, the statement generates an error and is proba-
bly an unintended infinite loop:

while (i++); // WARNING: Unintended
 // infinite loop

If you intended to create an infinite loop, put white space or a com-
ment between the while statement and the a comment. For exam-
ple, these statements do not generate errors:

while (i++) ; // OK: White space separation
while (i++) /* OK: Comment separation */ ;

This pragma corresponds to the Possible Errors option in the C/
C++ Warnings settings panel. To check whether this option is on,
use __option (warn_possunwant), described in “Options
Checking” on page 229.

warn_unusedarg
#pragma warn_unusedarg on | off | reset

If the pragma warn_unusedarg is on, the compiler generates a
warning when it encounters an argument you declare but do not
use. This check helps you find misspelled argument names and ar-
guments you have written out of your program.

void foo(int temp, int errer)
{
 error = do_something(); // ERROR: Error is
 // undefined
} // WARNING: temp and error are unused.

This pragma corresponds to the Unused Arguments option in the
C/C++ Warnings settings panel. To check whether this option is on,

Pragmas and Predefined Symbols
Pragmas

C, C++, and Assembly Language Reference CL–225

use __option (warn_unusedarg), described in “Options Check-
ing” on page 229.

warn_unusedvar
#pragma warn_unusedvar on | off | reset

If the pragma warn_unusedvar is on, the compiler generates a
warning when it encounters a variable you declare but do not use.
This check helps you find misspelled variable names and variables
you have written out of your program. For example:

void foo(void)
{
 int temp, errer;
 error = do_something(); // ERROR: error is
 // undefined
} // WARNING: temp and error are unused.

This pragma corresponds to the Unused Variables option in the C/
C++ Warnings settings panel. To check whether this option is on,
use __option (warn_unusedvar), described in “Options Check-
ing” on page 229.

warning (Win32/x86 only)
#pragma warning(warning_specifier : warning_number_list)

Ignored. Included for compatibility with Microsoft. The
warning_number_list is a list of warning numbers separated by
spaces, and warning_specifier is one of the following:

once
default
1
2
3
4
disable
error

Pragmas and Predefined Symbols
Predefined Symbols

CL–226 C, C++, and Assembly Language Reference

Predefined Symbols
Metrowerks C and C++ define several preprocessor symbols that
give you information about the compile-time environment. Note
that these symbols are evaluated at compile time and not at run
time.

ANSI Predefined Symbols

The table below lists the symbols that the ANSI C standard requires.

Table 8.1 ANSI predefined symbols

This macro… is…

__DATE__ The date at which the file is compiled; for ex-
ample, "Jul 14, 1995".

__FILE__ The name of the file being compiled; for exam-
ple "prog.c".

__LINE__ The line number of the line being compiled.
This is the number before including any
header files.

__TIME__ The time at which the file is compiled in 24-
hour format; for example, "13:01:45".

__STDC__ Always 1. This macro lets you know that
Metrowerks C implements the ANSI C stan-
dard.

Pragmas and Predefined Symbols
Predefined Symbols

C, C++, and Assembly Language Reference CL–227

Listing 8.6 shows a small program that uses the ANSI predefined
symbols.

Listing 8.6 Using ANSI’s Predefined Symbols

#include <stdio.h>

void main(void)
{
 printf("Hello World!\n");

 printf("%s, %s\n",
 __DATE__, __TIME__);
 printf("%s, line: %d\n",
 __FILE__, __LINE__);
}

The program prints something like the following:

Hello World!
Oct 31 1995, 18:23:50
main.ANSI.c, line: 10

Pragmas and Predefined Symbols
Predefined Symbols

CL–228 C, C++, and Assembly Language Reference

Metrowerks Predefined Symbols

The table below lists additional symbols that Metrowerks C and
C++ provides.

Table 8.2 Predefined symbols for Metrowerks

This macro… is…

__A5__
(68K only.)

1 if data is A5-relative, 0 if data is A4 rela-
tive. It’s undefined in the PowerPC com-
piler.

__cplusplus Defined if you’re compiling this file as a
C++ file, undefined if you’re compiling
this file as a C file.

__fourbyteints__
(68K only.)

1, if you turn on the 4-byte Ints option in
the Processor settings panel. 0, if you turn
off that option. It’s undefined in the Pow-
erPC compiler.

__IEEEdoubles__
(68K only.)

1, if you turn on the 8-Byte Doubles op-
tion in the Processor settings panel. 0, if
you turn off that option. It’s undefined in
the PowerPC compiler.

__INTEL__ 1, if you’re compiling this code with the
Intel compiler. 0, otherwise.

__MC68K__ 1, if you’re compiling this code with the
68K compiler. 0, otherwise.

__MC68020__
(68K only.)

1, if you turn on the 68020 Codegen op-
tion in the Processor settings panel. 0, if
you turn that option off. It’s undefined in
the PowerPC compiler.

__MC68881__
(68K only.)

1, if you turn on the 68881 Codegen op-
tion in the Processor settings panel. 0, if
you turn that option off. It’s undefined in
the PowerPC compiler.

__MWBROWSER__ 1, if the CodeWarrior browser is parsing
your code. 0, otherwise.

Pragmas and Predefined Symbols
Options Checking

C, C++, and Assembly Language Reference CL–229

Options Checking
The preprocessor function __option() lets you test the setting of
many pragmas and options in the Project Settings dialog. Its syntax
is:

__option(option-name)

If the option is on , __option () returns 1; otherwise, it returns 0.

This function is useful when you want one source file to contains
code that’s used for different option settings. The example below
shows how to compile one series of lines if you’re compiling for ma-
chines with the MC68881 floating-point unit and another series if
you’re compiling for machines without out:

#if __option (code68881)
 // Code optimized for the floating point unit.
#else
 // Code for any Macintosh
#endif

__MWERKS__ The version number of the Metrowerks
C/C++ compiler, if you’re using CW7 or
later. For example, in Metrowerks C/C++
version 7.1 __MWERKS__ would be
0x0710. It’s 1, if you’re using an earlier
version.

__profile__ 1, if you turn on the Generate Profiler
Calls option in the Processor settings
panel. 0, if you turn that option off.

__powerc,
powerc,
__POWERPC__

1, if you’re compiling this code with the
PowerPC compiler. 0, otherwise.

macintosh 1, if you’re compiling this code with the
68K or PowerPC Macintosh compiler. 0,
otherwise.

This macro… is…

Pragmas and Predefined Symbols
Options Checking

CL–230 C, C++, and Assembly Language Reference

Options table

The table below lists all the option names.

This argument… Corresponds to the…

a6frames
(68K only)

Generate A6 Stack Frames option in
the 68K Linker settings panel and
pragma a6frames.

align_array_members Pragma align_array_members.

ANSI_strict ANSI Strict option in the C/C++ Lan-
guage settings panel and pragma
ANSI_strict.

ARM_conform ARM Conformance option in the C/
C++ Language settings panel and
pragma ARM_conform.

auto_inline Auto-Inline option of the Inlining
menu in the C/C++ Language settings
panel and pragma auto_inline.

bool Enable C++ bool/true/false option in
the C/C++ Language settings panel
and pragma bool.

check_header_flags Pragma check_header_flags.

code68020
(68K only)

68020 Codegen option in the 68K Pro-
cessor settings panel and pragma
code68020.

code68881
(68K only)

68881 Codegen option in the 68K Pro-
cessor settings panel and pragma
code68881.

code68349
(68K only)

Pragma code68349

cplusplus Whether the compiler is compiling
this file as a C++ file. Related to the
Activate C++ Compiler option in the
C/C++ Language settings panel, the
pragma cplusplus, and the macro
cplusplus

Pragmas and Predefined Symbols
Options Checking

C, C++, and Assembly Language Reference CL–231

cpp_extensions Pragma cpp_extensions

d0_pointers
(68K only)

Pragmas pointers_in_D0 and
pointers_in_A0.

direct_destruction Enable Exception Handling option in
the C/C++ Language settings panel
and pragma direct_destruction.

direct_to_SOM Direct to SOM menu in the C/C++
Language settings panel and pragma
direct_to_SOM

disable_registers
(PowerPC only)

Pragma disable_registers.

dont_inline Don’t Inline option in the C/C++
Language settings panel and pragma
dont_inline.

dont_reuse_strings Don’t Reuse Strings option in the C/
C++ Language settings panel and
pragma dont_reuse_strings.

enumsalwaysint Enums Always Int option in the C/
C++ Language settings panel and
pragma enumsalwaysint

exceptions Enable C++ Exceptions option in the
C/C++ Language settings panel and
pragma exceptions

export Pragma export.

extended_errorcheck Extended Error Checking option in
the C/C++ Warnings settings panel
and pragma extended_errorcheck.

far_data
(68K only)

Far Data option in the 68K Processor
settings panel and pragma
far_data.

far_strings
(68K only)

Far String Constants option in the
68K Processor settings panel and
pragma far_strings.

This argument… Corresponds to the…

Pragmas and Predefined Symbols
Options Checking

CL–232 C, C++, and Assembly Language Reference

far_vtables
(68K only)

Far Method Tables in the 68K Proces-
sor settings panel and pragma
far_vtables.

force_active
(68K only)

Pragma force_active.

fourbyteints
(68K only)

4-Byte Ints option in the 68K Proces-
sor settings panel and pragma four-
byteints.

fp_contract
(PowerPC only)

Use FMADD & FMSUB option in the
PPC Processor settings panel and
pragma fp_contract.

global_optimizer
(PowerPC only)

Global Optimization option in the
PPC Processor settings panel and
pragma global_optimizer.

IEEEdoubles
(68K only)

8-Byte Doubles option in the 68K Pro-
cessor settings panel and pragma
IEEEdoubles.

ignore_oldstyle Pragma ignore_oldstyle.

import Pragma import.

internal Pragma internal.

lib_export Pragma lib_export.

linksym a read-only option that is true when
the link SYM option in the linker dia-
log is set

little_endian No option. It is 1 if you’re compiling
for a little endian target (such as
Win32/x86) and 0 if you’re compiling
for a big endian target (such as Mac
OS or Magic Cap).

longlong Pragma longlong.

longlong_enums Pragma longlong_enums.

This argument… Corresponds to the…

Pragmas and Predefined Symbols
Options Checking

C, C++, and Assembly Language Reference CL–233

macsbug
(68K only)

MacsBug Symbols option in the 68K
Linker settings panel and pragma
macsbug.

mpwc
(68K only)

MPW C Calling Conventions option
in the 68K Processor settings panel
and pragma mpwc.

mpwc_newline Map Newlines to CR option in the C/
C++ Language settings panel and
pragma mpwc_newline.

mpwc_relax Relaxed Pointer Type Rules option in
the C/C++ Language settings panel
and pragma mpwc_relax.

no_register_coloring Global Register Allocation option in
the 68K Processor settings panel and
pragma no_register_coloring.

oldstyle_symbols
(68K only)

MacsBug Symbols option in the 68K
Linker settings panel and pragma
oldstyle_symbols

only_std_keywords ANSI Keywords Only option in the
C/C++ Language settings panel and
pragma only_std_keywords.

optimize_for_size This corresponds to the Optimize For
Size option in the 68K Processor set-
tings panel and to the Optimize For
menu in the PPC Processor settings
panel. Also corresponds to the pragma
optimize_for_size.

pcrelstrings
(68K only)

PC-Relative Strings option in the 68K
Processor settings panel and pragma
pcrelstrings.

peephole Peephole Optimization option in the
PPC Processor settings panel and
pragma peephole.

This argument… Corresponds to the…

Pragmas and Predefined Symbols
Options Checking

CL–234 C, C++, and Assembly Language Reference

pool_strings Pool Strings option in the C/C++
Language settings panel and pragma
pool_strings

precompile Whether the file is being pre-com-
piled.

preprocess Whether the file is being pre-pro-
cessed

profile Generate Profiler Calls option in the
68K Processor settings panel, Emit
Profiler Calls option in the PPC Pro-
cessor settings panel, and pragma
profile.

readonly_strings
(PowerPC only)

Make String Literals Readonly op-
tion in the PPC Processor settings
panel and pragma
readonly_strings.

require_prototypes Require Function Prototypes option
in the C/C++ Language settings panel
and pragma require_prototypes.

RTTI Enable RTTI option in the C/C++
Language settings panel and pragma
RTTI.

side_effects Pragma side_effects.

SOMCallOptimization Pragma SOMCallOptimization

SOMCheckEnvironment Direct to SOM menu in the C/C++
Language settings panel and pragma
SOMCheckEnvironment

static_inlines Pragma static_inlines

sym Generate SYM Files option in the 68K
and PPC Linker settings panels and
pragma sym

This argument… Corresponds to the…

Pragmas and Predefined Symbols
Options Checking

C, C++, and Assembly Language Reference CL–235

toc_data Store Static Data in TOC option in the
PPC Processor settings panel and
pragma toc_data

traceback
(PowerPC only)

Pragma traceback.

trigraphs Expand Trigraphs option in the C/
C++ Language settings panel and
pragma trigraphs.

unsigned_char Use Unsigned Chars option in the C/
C++ Language settings panel and
pragma unsigned_char.

warn_emptydecl Empty Declarations option in the C/
C++ Warnings settings panel and
pragma warn_emptydecl.

warn_extracomma Extra Commas option in the C/C++
Warnings settings panel and pragma
warn_extracomma.

warn_hidevirtual Hidden virtual functions option in
the C/++ Warnings settings panel and
pragma warn_hidevirtual.

warn_illpragma Illegal Pragmas option in the C/C++
Warnings settings panel and pragma
warn_illpragma.

warn_possunwant Possible Errors option in the C/C++
Warnings settings panel and pragma
warn_possunwant.

warn_unusedarg Unused Arguments option in the C/
C++ Warnings settings panel and
pragma warn_unusedarg.

This argument… Corresponds to the…

Pragmas and Predefined Symbols
Options Checking

CL–236 C, C++, and Assembly Language Reference

warn_unusedvar Unused Variables option in the C/
C++ Warnings settings panel and
pragma warn_unusedvar.

warning_errors Treat Warnings As Errors option in
the C/C++ Warnings settings panel
and pragma warning_errors.

This argument… Corresponds to the…

C, C++, and Assembly Language Reference CL–237

Index
Symbols
#, and macros 48
#else 48
#endif 48
#pragma statements 170

illegal 60
* 63
=

accidental 61
operator 89

?: conditional operator 87, 94
\n 76
\p 78
\r 76
__A5__ 228
__abs() 81
__cntlzw() 81
__cplusplus 228
__DATE__ 226
__declspec 27
__eieio() 80
__fabs() 81
__FILE__ 226
__fnabs() 81
__fourbyteints__ 228
__fres() 82
__fsel() 82
__fsqrte() 82
__ieeedoubles__ 228
__INTEL__ 228
__isync() 80
__labs() 81
__lhbrx() 81
__LINE__ 226
__lwbrx() 81
__MC68020__ 228
__MC68881__ 228
__MC68K__ 228
__MWBROWSER__ 228
__MWERKS__ 229
__option(), preprocessor function 229
__powerc 229

__POWERPC__ 229
__PreInit__() 90
__profile__ 229
__rlwimi() 83
__rlwinm() 83
__rlwnm() 83
__setflm() 82
__som_check_ev() 110
__som_check_new() 110
__STDC__ 226
__stdcall 51
__sthbrx() 81
__stwbrx() 81
__sync() 80
__TIME__ 226

Numerics
4-Byte Int option 30
__MC68020__ 228
68020 Codegen 70
__MC68881__ 228
68881 Codegen option 32, 71
68K assembly 115
8-Byte Doubles option 32

A
__A5__ 228
a6frames pragma 171
__abs() 81
Access Paths preference panel 22
Activate C++ Compiler option 93
address

specifying for variable 43
align pragma 171
align_array_members pragma 172
anonymous structs 95
ANSI Keywords Only option 50
ANSI Strict option 28, 47
ANSI_strict pragma 47, 173
arguments

default 88
passing in registers 45

Index

CL–238 C, C++, and Assembly Language Reference

unnamed 48
unused 63
VAR 77

ARM Conformance option 94
ARM_conform 94, 95
ARM_conform pragma 174
arrays

size of 26
asm instruction 167
asm keyword 50, 115, 125, 161, 167
asm<Default Para Text> statement 44
Assembler 167
assembler, inline 115, 125, 161, 167
assembly instructions 138
assembly, 68K 115
assembly, PowerPC 125
assembly, 68K 115
assignment, accidental 61
Auto-Inline option 53
auto_inline pragma 53, 175

B
base classes, protected 94
bfchg assembly statement 116
bfclr assembly statement 116
bfexts assembly statement 116
bfextu assembly statement 116
bfffo assembly statement 116
bfins assembly statement 116
bfset assembly statement 116
bftst assembly statement 116
bitfields

size of 26
bool keyword 87, 96
bool pragma 176
bool size 31, 33

C
c2pstr() 78
calling conventions 35

MPW 75
registers 45

carriage return 76
catch statement 86, 96, 103, 185

Cell 77
char 52
char size 31, 33
characters, multi-byte 43
check_header_flags pragma 176
CIncludes 22
class declaration, local 89
__cntlzw() 81
code_seg pragma 177
code68020 pragma 177
code68349 pragma 178
code68881 pragma 178
commas, extra 64
comments, C++-styles 48
conditional operator 87, 94
const_cast keyword 87
copy constructor 89
__cplusplus 228
cplusplus pragma 93, 179
cpp_extensions pragma 95, 180

D
d0_pointers pragma 180
__DATE__ 226
dc assembly statement 122
declaration

local class 89
of variable in statements 94

default arguments 88
direct-to-SOM 105, 113
direct_destruction pragma 182
direct_to_som pragma 106, 182
disable_registers pragma 183
divs.l assembly statement 117
divsl assembly statement 117
divu.l assembly statement 117
divul assembly statement 117
Don’t Inline option 53
Don’t Reuse Strings option 58
dont_inline pragma 53, 183
dont_reuse_strings pragma 59, 184
double size 32, 34
ds assembly statement 122
dyanamic_cast keyword 212

Index

C, C++, and Assembly Language Reference CL–239

dynamic_cast 97
dynamic_cast keyword 87

E
__eieio() 80
8-Byte Doubles option 32
#else 48
empty declarations 61
Empty Declarations option 61
Enable Exception Handling option 96
#endif 48
entry assembly statement 123, 134
Enum Always Int option 28
enumerated type 65

size of 51
enumerated types 28
Enums Always Int option 51
enumsalwaysint pragma 52, 184
=

accidental 61
operator 89

errors
and warnings 60

exception handling 96, 103
exceptions pragma 185
.exp file 195
Expand Trigraphs option 49
explicit keyword 87
export pragma 186
Export Symbols option 195
extb.l assembly statement 117
Extended Error Checking option 65
extended type 71
extended_errorchecking pragma 66, 187
extended80 71
Extra Commas option 64

F
__fabs() 81
false keyword 87
Far Data option 26
far keyword 26, 50
far_code pragma 189
far_data pragma 26, 189

far_strings pragma 190
far_vtables pragma 190
__FILE__ 226
float size 32, 34
floating-point formats 32, 34
floating-point unit 70
__fnabs() 81
for statement 62, 94
force_active pragma 190
4-Byte Int option 30
__fourbyteints__ 228
fourbyteints pragma 191
fp_contract pragma 191
FPSCR 82
FPU 70
fralloc assembly statement 119, 129
__fres() 82
frfree assembly statement 119, 129
friend keyword 87
__fsel() 82
__fsqrte() 82
function initialization 119

G
Global Register Allocation option 24, 233
global_optimizer pragma 192

H
HandleObject 104
header files 21
header files, for templates 100

I
identifiers 21
IEEE floating-point standards 71
__ieeedoubles__ 228
IEEEdoubles pragma 193
if statement 62, 94
ignore_oldstyle pragma 194
Illegal Pragmas option 60
import pragma 195
include files, see header files
infinite loop 62

Index

CL–240 C, C++, and Assembly Language Reference

infinite loop, creating 62
inherited keyword 91
init_seg pragma 196
initializing static data 90
inline assembler 115, 125, 161, 167
inline data 44
inline functions 43
inline_depth pragma 197
Inlining menu 53
instantiating templates 101
int size 31, 33
integer formats 30, 33, 46
__INTEL__ 228
internal pragma 197
intrinsic functions 80
__isync() 80

K
keywords, additional 50, 87

L
__labs() 81
Language preference panel 40
__lhbrx() 81
lib_export pragma 198
__LINE__ 226
local class declaration 89
long double size 32, 34
long long 46
long long size 31, 33
long size 31, 33
longlong 198
longlong pragma 46
longlong_enums pragma 199
__lwbrx() 81

M
machine assembly statement 116, 136
Macintosh Toolbox functions 77
macros

and # 48
and inline assembler 121, 129, 164

macsbug pragma 199
Magic Cap

calling conventions 39
number formats 33, 34

mangled names 21
Map Newlines to CR option 76
__MC68020__ 228
MC68020 processor 70
__MC68881__ 228
MC68881 floating-point unit 70
__MC68K__ 228
member function pointer 95
MPW C Calling Convention option 75
MPW compatibility 72, 104
mpwc pragma 76, 200
mpwc_newline pragma 77, 201
mpwc_relax pragma 56, 202
muls.l assembly statement 117
multi-byte characters 43
mulu.l assembly statement 117
mutable keyword 87
__MWBROWSER__ 228
__MWERKS__ 229

N
\n 76
namespace keyword 87
near_code pragma 189
newline 76
number formats 30

O
oldstyle_symbols pragma 199
once pragma 203
only_std_keywords pragma 50, 204
Opcode inline functions 43
OpenDoc 105
operator delete 86
operator new 86
operator= 89
optimization_level pragma 192
optimize_for_size pragma 204
__option(), preprocessor function 229
options align= pragma 171
opword assembly statement 124
OSType 77

Index

C, C++, and Assembly Language Reference CL–241

P
\p 78
p2cstr() 78
pack pragma 205
parameter pragma 45, 205
parameters, see arguments
pascal keyword 50

and PowerPC 79
Pascal strings 78
pcrelstrings pragma 58, 206
peephole pragma 207
Point 77
pointer to member function 95
pointer types 56
pointers_in_A0 pragma 207
pointers_in_D0 pragma 207
Pool Strings option 56
pool_strings pragma 57, 208
pop pragma 209
Possible Errors option 61
__powerc 229
__POWERPC__ 229
PowerPC assembly 125
PowerPC intrinsic functions 80
#pragma statements 170

illegal 60
precompile_target pragma 210
__PreInit__() 90
preprocessor

and # 48
and inline assembler 121, 129, 164

__profile__ 229
profile pragma 211
protected base classes 94
prototypes 54

requiring 54
push pragma 209

R
\r 76
readonly_strings pragma 211
Rect 77
registers

coloring 24

floating-point 72
passing arugments in 45
variables 23

reinterpret_char keyword 87
Relaxed Pointer Type Rules option 54, 56
Require Prototypes option 54
require_prototypes pragma 56, 211
ResType 77
return statement

empty 66
missing 65

return, carriage 76
__rlwimi() 83
__rlwinm() 83
__rlwnm() 83
rtd assembly statement 117
RTTI 96, 212
RTTI option 96
RTTI pragma 212
Run-time type information 96, 212

S
SANE.h 71
scheduling pragma 212
segment pragma 213
__setflm() 82
short double size 32, 34
short size 31, 33
side_effects pragma 213
signed char size 31, 33
simple class 89
SingleObject 104
68020 Codegen 70
68881 Codegen option 32, 71
68K assembly 115
size

of data structures 26
of enumerated types 51
of numbers 30

size_t 22
sizeof() operator 22
smart_code pragma 189
smclass assembly statement 137
SOM 105, 113

Index

CL–242 C, C++, and Assembly Language Reference

SOM Call Optimization pragma 111, 214
__som_check_ev() 110
__som_check_new() 110
SOMCallStyle pragma 113, 214
SOMCheckEnvironment pragma 111, 215
SOMClassVersion pragma 112, 216
SOMMetaClass pragma 217
SOMRelaseOrder pragma 112, 217
static data, initializing 90
static_cast keyword 87
static_inlines pragma 218
__STDC__ 226
__sthbrx() 81
string literals

PC-relative 57
pooling 56
reusing 58

strings
Pascal 78

struct assembly construct 120
structs

anonymous 95
size of 26

__stwbrx() 81
switch statement 94
sym pragma 218
__sync() 80

T
template class statement 102
templates 99

instantiating 101
__TIME__ 226
toc_data pragma 219
Toolbox functions 77
traceback pragma 219
Treat All Warnings as Errors option 60
trigraph characters 49
trigraphs pragma 49, 219
true keyword 87
try statement 86, 96, 103, 185
type-checking 56
type_info 99
typeid 98

typeid keyword 87
typeid keyword 212
Types.h 71

U
unnamed arguments 48
unsigned char 52
unsigned char size 31, 33
unsigned int size 31, 33
unsigned long long size 31, 33
unsigned long size 31, 33
unsigned short size 31, 33
unsigned_char pragma 220
Unused Arguments option 63
unused pragma 63, 220
Unused Variables option 62
Use Unsigned Chars option 41, 52
using keyword 87

V
VAR arguments 77
variables

declaring by address 43
register 23
unused 62
volatile 25

virtual keyword 87
volatile variables 25

W
warn_emptydecl pragma 61, 221
warn_extracomma pragma 64, 222
warn_hidevirtual pragma 222
warn_illpragma pragma 61, 223
warn_possunwant pragma 62, 223
warn_unusedarg pragma 64, 224
warn_unusedvar pragma 63, 225
warning pragma 225
warning_errors pragma 60, 221
warnings 59

as errors 60
wchar_t keyword 87
while statement 62, 94
Win32/x86

Index

C, C++, and Assembly Language Reference CL–243

keywords 51
number formats 33, 34, 39
registers 23

X
x80tox96() 71
x96tox80() 71

Index

CL–244 C, C++, and Assembly Language Reference

CodeWarrior

C, C++, and Assembly Language
Reference

Credits

engineering: Andreas Hommel,
John McEnerney, Jason Eckhardt

writing: Jeff Mattson

frontline warriors: Fred Peterson

Guide to CodeWarrior Documentation

961218-1821

If you need information about... See this
Installing updates to CodeWarrior QuickStart Guide
Getting started using CodeWarrior QuickStart Guide;

Tutorials (Apple Guide)
Using CodeWarrior IDE (Integrated Development Environment) IDE User’s Guide
Debugging Debugger Manual
Important last-minute information on new features and changes Release Notes folder
Creating Macintosh and Power Macintosh software Targeting Mac OS;

Mac OS folder
Creating Microsoft Win32/x86 software Targeting Win32;

Win32/x86 folder
Creating Java software Targeting Java

Sun Java Documentation folder
Creating Magic Cap software Targeting Magic Cap;

Magic Cap folder
Using ToolServer with the CodeWarrior editor IDE User’s Guide
Controlling CodeWarrior through AppleScript IDE User’s Guide
Using CodeWarrior to program in MPW Command Line Tools Manual
C, C++, or 68K assembly-language programming C, C++, and Assembly Reference;

MSL C Reference;
MSL C++ Reference

Pascal or Object Pascal programming Pascal Language Manual;
Pascal Library Reference

Fixing compiler and linker errors Errors Reference
Fixing memory bugs ZoneRanger Manual
Speeding up your programs Profiler Manual
PowerPlant The PowerPlant Book;

PowerPlant Advanced Topics;
PowerPlant reference documents

Creating a PowerPlant visual interface Constructor Manual
Creating a Java visual interface Constructor for Java Manual
Learning how to program for the Mac OS Discover Programming for Macintosh
Learning how to program in Java Discover Programming for Java
Contacting Metrowerks about registration, sales, and licensing Quick Start Guide
Contacting Metrowerks about problems and suggestions using
CodeWarrior software

email Report Forms in the Release Notes
folder

Sample programs and examples CodeWarrior Examples folder;
The PowerPlant Book;
PowerPlant Advanced Topics;
Tutorials (Apple Guide)

Problems other CodeWarrior users have solved Internet newsgroup [docs] folder

	Introduction
	Overview of the C/C++/ASM Reference
	Conventions Used in This Manual
	The C/C++ Project Settings Panels
	What’s New
	The long long type
	Turning off register coloring in the 68K compiler
	More information on enumerated types
	New pragmas
	New intrinsic functions
	Improved documentation

	C and C++ Language Notes
	Overview of C and C++ Language Notes
	The Metrowerks Implementation of C and C++
	Identifiers
	Include files
	The sizeof() operator
	Register variables
	Register coloring

	Volatile variables
	Limits on variable sizes
	Declaration specifiers
	Enumerated types

	Number Formats
	68K Macintosh integer formats
	68K Macintosh floating-point formats
	PowerPC Macintosh, Magic Cap, and Win32/ x86 integ...
	PowerPC Macintosh and Win32/x86 floating- point fo...
	Magic Cap Floating-Point Formats

	Calling Conventions
	68K Macintosh calling conventions
	PowerPC calling conventions
	Magic Cap calling conventions
	Win32/x86 calling conventions

	Extensions to C or C++
	ANSI extensions you can’t disable
	Multibyte characters (Macintosh Only)
	Declaring variables by address (Macintosh Only)
	Opcode inline functions (68K Macintosh Only)
	Inline data (68K Macintosh Only)
	Specifying the registers for arguments (68K Macint...
	64-bit integers

	ANSI extensions you disable with ANSI Strict
	C++-style comments
	Unnamed arguments in function definitions
	A # not followed by argument in macro definition
	An identifier after #endif
	Using typecasted pointers as lvalues

	Disabling trigraph characters
	Additional keywords
	Macintosh and Magic Cap keywords
	Win32/x86 keywords

	Enumerated constants of any size
	Chars always unsigned
	Inlining functions
	Using multibyte strings and comments
	Using prototypes
	Requiring prototypes
	Relaxing pointer checking

	Storing strings (Macintosh only)
	Pooling strings
	Using PC-relative strings
	Reusing strings

	Warnings for Common Mistakes
	Treat warnings as errors
	Illegal pragmas
	Empty declarations
	Possible unwanted side effects
	Unused variables
	Unused arguments
	Extra commas
	Extended type checking
	Function hiding

	Generating Code for Specific 68K Processors (Macin...
	Generating code for the MC68020
	Generating code for the MC68881
	Using the Extended data type
	Using floating-point registers

	Calling MPW Functions
	Adding an MPW library to a CodeWarrior project
	Declaring MPW C functions (Macintosh Only)
	Using MPW C newlines

	Calling Macintosh Toolbox Functions (Macintosh Onl...
	Passing string arguments
	Using the pascal keyword in PowerPC code

	Intrinsic PowerPC Functions (Macintosh Only)
	Low-level processor synchronization
	Floating-point functions
	Byte-reversing functions
	Setting the floating-point environment
	Floating-point instructions for the 603 and 604
	Rotating the contents of a variable

	C++ Language Notes
	Overview of C++ Language Notes
	Unsupported Extensions
	Metrowerks Implementation of C++
	Which keywords to put first
	Additional keywords
	Conversions in the conditional operator
	Default arguments in member functions
	Local class declarations with inline functions
	Copying and constructing class objects
	Checking for resources to initialize static data
	Calling an inherited member function

	Setting C++ Options
	Using the C++ compiler always
	Enforcing strict ARM conformance
	Adding C++ extensions
	Allowing exception handling
	Using the bool type

	Using Run-Time Type Information (RTTI)
	Using the dynamic_cast operator
	Using the typeid operator

	Using Templates
	Declaring and defining templates
	Instantiating templates

	Using Exceptions
	Declaring MPW-Compatible Classes
	Creating Direct-to-SOM Code
	SOM class restrictions
	Using SOM headers
	Automatic SOM error checking
	Using SOM pragmas
	Declaring the release order
	Declaring the class’s version
	Declaring the metaclass for a class
	Declaring the call style for a class

	68K Assembler Notes
	Overview of 68K Assembler Notes
	Writing an Assembly Function for 68K
	Defining a Function for 68K Assembly
	Using Global Variables in 68K Assembly
	Using Local Variables and Arguments in 68K Assembl...
	Using Structures in 68K Assembly
	Using the Preprocessor in 68K Assembly
	Returning From a Function in 68K Assembly

	Assembler directives
	dc
	ds
	entry
	fralloc
	frfree
	machine
	opword

	PowerPC Assembler Notes
	Overview of PowerPC Assembler Notes
	Writing an Assembly Function for PowerPC
	Defining a Function for PowerPC Assembly
	Creating Labels for PowerPC Assembly
	Using Comments for Power PCAssembly
	Using the Preprocessor for PowerPC Assembly
	Creating a Stack Frame for PowerPC Assembly
	Using Local Variables and Arguments for PowerPC As...
	Specifying Instructions for PowerPC Assembly
	Specifying Operands for PowerPC Assembly
	Using registers
	Using labels
	Using variable names as memory locations
	Using immediate operands

	PowerPC Assembler Directives
	entry
	fralloc
	frfree
	machine
	smclass

	PowerPC Assembler Instructions

	MIPS Assembler Notes
	Overview of MIPS Assembler Notes
	Writing an Assembly Function
	Creating labels
	Using comments
	Using the preprocessor
	Creating a stack frame
	Specifying operands
	Using registers
	Using parameters
	Using global variables
	Using immediate operands

	Assembler Directive
	.set

	Win32/x86 Assembler Notes
	Overview of Win32/x86 Assembler Notes
	Writing an Assembly Function

	Pragmas and Predefined Symbols
	Overview of Pragmas and Predefined Symbols
	Pragmas
	Pragma Syntax
	The Pragmas
	a6frames (68K Macintosh and Magic Cap)
	align (Macintosh and Magic Cap)
	align_array_members (Macintosh and Magic Cap only)...
	ANSI_strict
	ARM_conform
	auto_inline
	bool (C++ only)
	check_header_flags (precompiled headers only)
	code_seg (Win32/x86 only)
	code68020 (68K Macintosh and Magic Cap only)
	code68349 (Magic Cap only)
	code68881 (68K Macintosh and Magic Cap only)
	cplusplus
	cpp_extensions
	d0_pointers (68K Macintosh only)
	data_seg (Win32/x86 only)
	direct_destruction (C++ only)
	direct_to_som (Macintosh and C++ only)
	disable_registers (PowerPC Macintosh only)
	dont_inline
	dont_reuse_strings
	enumsalwaysints
	exceptions (C++ only)
	export (Macintosh only)
	extended_errorcheck
	far_code, near_code, smart_code (68K Macintosh and...
	far_data (68K Macintosh and Magic Cap only)
	far_strings (68K Macintosh and Magic Cap only)
	far_vtables (68K Macintosh only)
	force_active (68K Macintosh only)
	fourbyteints (68K Macintosh only)
	fp_contract (PowerPC Macintosh only)
	function (Win32/x86 only)
	global_optimizer, optimization_level (PowerPC Maci...
	IEEEdoubles (68K Macintosh only)
	ignore_oldstyle
	import (Macintosh only)
	init_seg (Win32/x86 only)
	inline_depth (Win32/x86 only)
	internal (Macintosh only)
	lib_export (Macintosh only)
	longlong
	longlong_enums
	macsbug, oldstyle_symbols (68K Macintosh and Magic...
	mark
	mpwc (68k Macintosh only)
	mpwc_newline
	mpwc_relax
	no_register_coloring (68K Macintosh and Magic Cap ...
	once
	oldstyle_symbols (68K Macintosh and Magic Cap only...
	only_std_keywords
	optimization_level (PowerPC Macintosh only)
	optimize_for_size (Macintosh and Magic Cap only)
	pack (Win32/x86 only)
	parameter (68K Macintosh and Magic Cap only)
	pcrelstrings (68K Macintosh only)
	peephole (PowerPC Macintosh and Win32/x86 only)
	pointers_in_A0, pointers_in_D0 (68K Macintosh only...
	pool_strings
	pop, push
	precompile_target
	profile (Macintosh only)
	readonly_strings (PowerPC Macintosh only)
	require_prototypes
	RTTI
	scheduling (PowerPC Macintosh only)
	segment (Macintosh and Magic Cap only)
	side_effects (Macintosh only)
	SOM�Call�Optimization (Macintosh and C++ only)
	SOMCallStyle (Macintosh and C++ only)
	SOMCheckEnvironment (Macintosh and C++ only)
	SOMClassVersion (Macintosh and C++ only)
	SOMMetaClass (Macintosh and C++ only)
	SOMReleaseOrder (Macintosh and C++ only)
	static_inlines
	sym
	toc_data (PowerPC Macintosh only)
	trigraphs
	traceback (PowerPC Macintosh only)
	unsigned_char
	unused
	warn_emptydecl
	warning_errors
	warn_extracomma
	warn_hidevirtual
	warn_illpragma
	warn_possunwant
	warn_unusedarg
	warn_unusedvar
	warning (Win32/x86 only)

	Predefined Symbols
	ANSI Predefined Symbols
	Metrowerks Predefined Symbols

	Options Checking
	Options table

	Index

