
Preface

Vision

Compiler construction brings together techniques from disparate parts of Com-
puter Science. The compiler deals with many big-picture issues. At its simplest,
a compiler is just a computer program that takes as input one potentially exe-
cutable program and produces as output another, related, potentially executable
program. As part of this translation, the compiler must perform syntax analysis
to determine if the input program is valid. To map that input program onto
the finite resources of a target computer, the compiler must manipulate several
distinct name spaces, allocate several different kinds of resources, and synchro-
nize the behavior of different run-time components. For the output program to
have reasonable performance, it must manage hardware latencies in functional
units, predict the flow of execution and the demand for memory, and reason
about the independence and dependence of different machine-level operations
in the program.

Open up a compiler and you are likely to find greedy heuristic searches that
explore large solution spaces, finite automata that recognize words in the input,
fixed-point algorithms that help reason about program behavior, simple theorem
provers and algebraic simplifiers that try to predict the values of expressions,
pattern-matchers for both strings and trees that match abstract computations
to machine-level operations, solvers for diophantine equations and Pressburger
arithmetic used to analyze array subscripts, and techniques such as hash tables,
graph algorithms, and sparse set implementations used in myriad applications,

The lore of compiler construction includes both amazing success stories
about the application of theory to practice and humbling stories about the limits
of what we can do. On the success side, modern scanners are built by applying
the theory of regular languages to automatic construction of recognizers. Lr

parsers use the same techniques to perform the handle-recognition that drives
a shift-reduce parser. Data-flow analysis (and its cousins) apply lattice theory
to the analysis of programs in ways that are both useful and clever. Some of
the problems that a compiler faces are truly hard; many clever approximations
and heuristics have been developed to attack these problems.

On the other side, we have discovered that some of the problems that com-
pilers must solve are quite hard. For example, the back end of a compiler for
a modern superscalar machine must approximate the solution to two or more

iii

iv

interacting np-complete problems (instruction scheduling, register allocation,
and, perhaps, instruction and data placement). These np-complete problems,
however, look easy next to problems such as algebraic reassociation of expres-
sions. This problem admits a huge number of solutions; to make matters worse,
the desired solution is somehow a function of the other transformations being
applied in the compiler. While the compiler attempts to solve these problems
(or approximate their solution), we constrain it to run in a reasonable amount
of time and to consume a modest amount of space. Thus, a good compiler for a
modern superscalar machine is an artful blend of theory, of practical knowledge,
of engineering, and of experience.

This text attempts to convey both the art and the science of compiler con-
struction. We have tried to cover a broad enough selection of material to show
the reader that real tradeoffs exist, and that the impact of those choices can
be both subtle and far-reaching. We have limited the material to a manage-
able amount by omitting techniques that have become less interesting due to
changes in the marketplace, in the technology of languages and compilers, or
in the availability of tools. We have replaced this material with a selection
of subjects that have direct and obvious importance today, such as instruction
scheduling, global register allocation, implementation object-oriented languages,
and some introductory material on analysis and transformation of programs.

Target Audience

The book is intended for use in a first course on the design and implementation
of compilers. Our goal is to lay out the set of problems that face compiler
writers and to explore some of the solutions that can be used to solve these
problems. The book is not encyclopedic; a reader searching for a treatise on
Earley’s algorithm or left-corner parsing may need to look elsewhere. Instead,
the book presents a pragmatic selection of practical techniques that you might
use to build a modern compiler.

Compiler construction is an exercise in engineering design. The compiler
writer must choose a path through a decision space that is filled with diverse
alternatives, each with distinct costs, advantages, and complexity. Each decision
has an impact on the resulting compiler. The quality of the end product depends
on informed decisions at each step of way.

Thus, there is no right answer for these problems. Even within “well under-
stood” and “solved” problems, nuances in design and implementation have an
impact on both the behavior of the compiler and the quality of the code that
it produces. Many considerations play into each decision. As an example, the
choice of an intermediate representation (ir) for the compiler has a profound
impact on the rest of the compiler, from space and time requirements through
the ease with which different algorithms can be applied. The decision, however,
is given short shrift in most books (and papers). Chapter 6 examines the space
of irs and some of the issues that should be considered in selecting an ir. We
raise the issue again at many points in the book—both directly in the text and
indirectly in the questions at the end of each chapter.

v

This book tries to explore the design space – to present some of the ways
problems have been solved and the constraints that made each of those solu-
tions attractive at the time. By understanding the parameters of the problem
and their impact on compiler design, we hope to convey both the breadth of
possibility and the depth of the problems.

This book departs from some of the accepted conventions for compiler con-
struction textbooks. For example, we use several different programming lan-
guages in the examples. It makes little sense to describe call-by-name parameter
passing in c, so we use Algol-60. It makes little sense to describe tail-recursion
in Fortran, so we use Scheme. This multi-lingual approach is realistic; over the
course of the reader’s career, the “language of the future” will change several
times. (In the past thirty years, Algol-68, apl, pl/i, Smalltalk, c, Modula-3,
c++, and even ada have progressed from being “the language of the future”
to being the “language of the future of the past.”) Rather than provide ten
to twenty homework-level questions at the end of each chapter, we present a
couple of questions suitable for a mid-term or final examination. The questions
are intended to provoke further thought about issues raised in the chapter. We
do not provide solutions, because we anticipate that the best answer to any
interesting question will change over the timespan of the reader’s career.

Our Focus

In writing this book, we have made a series of conscious decisions that have a
strong impact on both its style and its content. At a high level, our focus is to
prune, to relate, and to engineer.

Prune Selection of material is an important issue in the design of a compiler
construction course today. The sheer volume of information available has grown
dramatically over the past decade or two. David Gries’ classic book (Compiler
Construction for Digital Computers, John Wiley, 1971) covers code optimiza-
tion in a single chapter of less than forty pages. In contrast, Steve Muchnick’s
recent book (Advanced Compiler Design and Implementation, Morgan Kauff-
man, 1997) devotes thirteen chapters and over five hundred forty pages to the
subject, while Bob Morgan’s recent book (Building an Optimizing Compiler,
Digital Press, 1998) covers the material in thirteen chapters that occupy about
four hundred pages.

In laying out Engineering a Compiler, we have selectively pruned the mate-
rial to exclude material that is redundant, that adds little to the student’s insight
and experience, or that has become less important due to changes in languages,
in compilation techniques, or in systems architecture. For example, we have
omitted operator precedence parsing, the ll(1) table construction algorithm,
various code generation algorithms suitable for the pdp-11, and the union-

find-based algorithm for processing Fortran Equivalence statements. In their
place, we have added coverage of topics that include instruction scheduling,
global register allocation, implementation of object-oriented languages, string
manipulation, and garbage collection.

vi

Relate Compiler construction is a complex, multifaceted discipline. The so-
lutions chosen for one problem affect other parts of the compiler because they
shape the input to subsequent phases and the information available in those
phases. Current textbooks fail to clearly convey these relationships.

To make students aware of these relationships, we expose some of them di-
rectly and explicitly in the context of practical problems that arise in commonly-
used languages. We present several alternative solutions to most of the problems
that we address, and we discuss the differences between the solutions and their
overall impact on compilation. We try to select examples that are small enough
to be grasped easily, but large enough to expose the student to the full com-
plexity of each problem. We reuse some of these examples in several chapters
to provide continuity and to highlight the fact that several different approaches
can be used to solve them.

Finally, to tie the package together, we provide a couple of questions at the
end of each chapter. Rather than providing homework-style questions that have
algorithmic answers, we ask exam-style questions that try to engage the stu-
dent in a process of comparing possible approaches, understanding the tradeoffs
between them, and using material from several chapters to address the issue at
hand. The questions are intended as a tool to make the reader think, rather than
acting as a set of possible exercises for a weekly homework assignment. (We
believe that, in practice, few compiler construction courses assign weekly home-
work. Instead, these courses tend to assign laboratory exercises that provide
the student with hands-on experience in language implementation.)

Engineer Legendary compilers, such as the Bliss-11 compiler or the Fortran-H
compiler, have done several things well, rather than doing everything in mod-
eration. We want to show the design issues that arise at each stage and how
different solutions affect the resulting compiler and the code that it generates.

For example, a generation of students studied compilation from books that
assume stack allocation of activation records. Several popular languages include
features that make stack allocation less attractive; a modern textbook should
present the tradeoffs between keeping activation records on the stack, keeping
them in the heap, and statically allocating them (when possible).

When the most widely used compiler-construction books were written, most
computers supported byte-oriented load and store operations. Several of them
had hardware support for moving strings of characters from one memory location
to another (the move character long instruction – mvcl). This simplified the
treatment of character strings, allowing them to be treated as vectors of bytes
(sometimes, with an implicit loop around the operation). Thus, compiler books
scarcely mentioned support for strings.

Some risc machines have weakened support for sub-word quantities; the
compiler must worry about alignment; it may need to mask a character into
a word using boolean operations. The advent of register-to-register load-store
machines eliminated instructions like mvcl; today’s risc machine expects the
compiler to optimize such operations and work together with the operating
system to perform them efficiently.

vii

Trademark Notices

In the text, we have used the registered trademarks of several companies.

IBM is a trademark of International Business Machines, Incorporated.

Intel and IA-64 are trademarks of Intel Corporation.

370 is a trademark of International Business Machines, Incorporated.

MC68000 is a trademark of Motorola, Incorporated.

PostScript is a registered trademark of Adobe Systems.

PowerPC is a trademark of (?Motorola or IBM?)

PDP-11 is a registered trademark of Digital Equipment Corporation, now a
part of Compaq Computer.

Unix is a registered trademark of someone or other (maybe Novell).

VAX is a registered trademark of Digital Equipment Corporation, now a part
of Compaq Computer.

Java may or may not be a registered trademark of SUN Microsystems, Incor-
porated.

viii

Acknowledgements

We particularly thank the following people who provided us with direct and
useful feedback on the form, content, and exposition of this book: Preston
Briggs, Timothy Harvey, L. Taylor Simpson, Dan Wallach.

ix

x

Contents

1 An Overview of Compilation 1
1.1 Introduction . 1
1.2 Principles and Desires . 2
1.3 High-level View of Translation 5
1.4 Compiler Structure . 15
1.5 Summary and Perspective . 17

2 Lexical Analysis 19
2.1 Introduction . 19
2.2 Specifying Lexical Patterns . 20
2.3 Closure Properties of REs . 23
2.4 Regular Expressions and Finite Automata 24
2.5 Implementing a DFA . 27
2.6 Non-deterministic Finite Automata 29
2.7 From Regular Expression to Scanner 33
2.8 Better Implementations . 40
2.9 Related Results . 43
2.10 Lexical Follies of Real Programming languages 48
2.11 Summary and Perspective . 51

3 Parsing 53
3.1 Introduction . 53
3.2 Expressing Syntax . 53
3.3 Top-Down Parsing . 63
3.4 Bottom-up Parsing . 73
3.5 Building an LR(1) parser . 81
3.6 Practical Issues . 99
3.7 Summary and Perspective . 102

4 Context-Sensitive Analysis 105
4.1 Introduction . 105
4.2 The Problem . 106
4.3 Attribute Grammars . 107
4.4 Ad-hoc Syntax-directed Translation 116

xi

xii CONTENTS

4.5 What Questions Should the Compiler Ask? 127
4.6 Summary and Perspective . 128

5 Type Checking 131

6 Intermediate Representations 133
6.1 Introduction . 133
6.2 Taxonomy . 134
6.3 Graphical IRs . 136
6.4 Linear IRs . 144
6.5 Mapping Values to Names . 148
6.6 Universal Intermediate Forms . 152
6.7 Symbol Tables . 153
6.8 Summary and Perspective . 161

7 The Procedure Abstraction 165
7.1 Introduction . 165
7.2 Control Abstraction . 168
7.3 Name Spaces . 170
7.4 Communicating Values Between Procedures 178
7.5 Establishing Addressability . 182
7.6 Standardized Linkages . 185
7.7 Managing Memory . 188
7.8 Object-oriented Languages . 199
7.9 Summary and Perspective . 199

8 Code Shape 203
8.1 Introduction . 203
8.2 Assigning Storage Locations . 205
8.3 Arithmetic Expressions . 208
8.4 Boolean and Relational Values 215
8.5 Storing and Accessing Arrays . 224
8.6 Character Strings . 232
8.7 Structure References . 237
8.8 Control Flow Constructs . 241
8.9 Procedure Calls . 249
8.10 Implementing Object-Oriented Languages 249

9 Instruction Selection 251
9.1 Tree Walk Schemes . 251
9.2 Aho & Johnson Dynamic Programming 251
9.3 Tree Pattern Matching . 251
9.4 Peephole-Style Matching . 251
9.5 Bottom-up Rewrite Systems . 251
9.6 Attribute Grammars, Revisited 252

CONTENTS xiii

10 Register Allocation 253
10.1 The Problem . 253
10.2 Local Register Allocation and Assignment 258
10.3 Moving beyond single blocks . 262
10.4 Global Register Allocation and Assignment 266
10.5 Regional Register Allocation . 280
10.6 Harder Problems . 282
10.7 Summary and Perspective . 284

11 Instruction Scheduling 289
11.1 Introduction . 289
11.2 The Instruction Scheduling Problem 290
11.3 Local List Scheduling . 295
11.4 Regional Scheduling . 304
11.5 More Aggressive Techniques . 311
11.6 Summary and Perspective . 315

12 Introduction to Code Optimization 317
12.1 Introduction . 317
12.2 Redundant Expressions . 318
12.3 Background . 319
12.4 Value Numbering over Larger Scopes 323
12.5 Lessons from Value Numbering 323
12.6 Summary and Perspective . 323
12.7 Questions . 323
12.8 Chapter Notes . 323

13 Analysis 325
13.1 Data-flow Analysis . 325
13.2 Building Static Single Assignment Form 325
13.3 Dependence Analysis for Arrays 325
13.4 Analyzing Larger Scopes . 326

14 Transformation 329
14.1 Example Scalar Optimizations 329
14.2 Optimizing Larger Scopes . 329
14.3 Run-time Optimization . 331
14.4 Multiprocessor Parallelism . 331
14.5 Chapter Notes . 332

15 Post-pass Improvement Techniques 333
15.1 The Idea . 333
15.2 Peephole Optimization . 333
15.3 Post-pass Dead Code Elimination 333
15.4 Improving Resource Utilization 333
15.5 Interprocedural Optimization . 333

xiv CONTENTS

A ILOC 335

B Data Structures 341
B.1 Introduction . 341
B.2 Representing Sets . 341
B.3 Implementing Intermediate Forms 341
B.4 Implementing Hash-tables . 341
B.5 Symbol Tables for Development Environments 350

C Abbreviations, Acronyms, and Glossary 353

D Missing Labels 357

Chapter 1

An Overview of
Compilation

1.1 Introduction

The role of computers in daily life is growing each year. Modern microproces-
sors are found in cars, microwave ovens, dishwashers, mobile telephones, GPSS

navigation systems, video games and personal computers. Each of these devices
must be programmed to perform its job. Those programs are written in some
“programming” language – a formal language with mathematical properties and
well-defined meanings – rather than a natural language with evolved properties
and many ambiguities. Programming languages are designed for expressiveness,
conciseness, and clarity. A program written in a programming language must
be translated before it can execute directly on a computer; this translation is
accomplished by a software system called a compiler . This book describes the
mechanisms used to perform this translation and the issues that arise in the
design and construction of such a translator.

A compiler is just a computer program that takes as input an executable
program and produces as output an equivalent executable program.

compiler
source

program
target

program
� �

In a traditional compiler, the input language is a programming language and
the output language is either assembly code or machine code for some computer
system. However, many other systems qualify as compilers. For example, a
typesetting program that produces PostScript can be considered a compiler. It
takes as input a specification for how the document should look on the printed

1

2 CHAPTER 1. AN OVERVIEW OF COMPILATION

page and it produces as output a PostScript file. PostScript is simply a lan-
guage for describing images. Since the typesetting program takes an executable
specification and produces another executable specification, it is a compiler.

The code that turns PostScript into pixels is typically an interpreter, not a
compiler. An interpreter takes as input an executable specification and produces
as output the results of executing the specification.

interpreter
source

program results� �

Interpreters and compilers have much in common. From an implementation
perspective, interpreters and compilers perform many of the same tasks. For
example, both must analyze the source code for errors in either syntax or mean-
ing. However, interpreting the code to produce a result is quite different from
emitting a translated program that can be executed to produce the results.
This book focuses on the problems that arise in building compilers. However,
an implementor of interpreters may find much of the material relevant.

The remainder of this chapter presents a high-level overview of the transla-
tion process. It addresses both the problems of translation—what issues must
be decided along the way—and the structure of a modern compiler—where in
the process each decision should occur. Section 1.2 lays out two fundamental
principles that every compiler must follow, as well as several other properties
that might be desirable in a compiler. Section 1.3 examines the tasks that are
involved in translating code from a programming language to code for a target
machine. Section 1.4 describes how compilers are typically organized to carry
out the tasks of translation.

1.2 Principles and Desires

Compilers are engineered objects—software systems built with distinct goals in
mind. In building a compiler, the compiler writer makes myriad design decisions.
Each decision has an impact on the resulting compiler. While many issues
in compiler design are amenable to several different solutions, there are two
principles that should not be compromised. The first principle that a well-
designed compiler must observe is inviolable.

The compiler must preserve the meaning of the program being compiled

The code produced by the compiler must faithfully implement the “mean-
ing” of the source-code program being compiled. If the compiler can take
liberties with meaning, then it can always generate the same code, inde-
pendent of input. For example, the compiler could simply emit a nop or
a return instruction.

1.2. PRINCIPLES AND DESIRES 3

The second principle that a well-designed compiler must observe is quite prac-
tical.

The compiler must improve the source code in some discernible way.

If the compiler does not improve the code in some way, why should any-
one invoke it? A traditional compiler improves the code by making it
directly executable on some target machine. Other “compilers” improve
their input in different ways. For example, tpic is a program that takes
the specification for a drawing written in the graphics language pic, and
converts it into LATEX; the “improvement” lies in LATEX’s greater avail-
ability and generality. Some compilers produce output programs in the
same language as their input; we call these “source-to-source” translators.
In general, these systems try to restate the program in a way that will
lead, eventually, to an improvement.

These are the two fundamental principles of compiler design.
This is an exciting era in the design and implementation of compilers. In

the 1980’s almost all compilers were large, monolithic systems. They took as
input one of a handful of languages—typically Fortran or C—and produced
assembly code for some particular computer. The assembly code was pasted
together with the code produced by other compiles—including system libraries
and application libraries—to form an executable. The executable was stored on
a disk; at the appropriate time, the final code was moved from disk to main
memory and executed.

Today, compiler technology is being applied in many different settings. These
diverse compilation and execution environments are challenging the traditional
image of a monolithic compiler and forcing implementors to reconsider many of
the design tradeoffs that seemed already settled.

• Java has reignited interest in techniques like “just-in-time” compilation
and “throw-away code generation.” Java applets are transmitted across
the Internet in some internal form, called Java bytecodes; the bytecodes
are then interpreted or compiled, loaded, and executed on the target ma-
chine. The performance of the tool that uses the applet depends on the
total time required to go from bytecodes on a remote disk to a completed
execution on the local machine.

• Many techniques developed for large, monolithic compilers are being ap-
plied to analyze and improve code at link-time. In these systems, the
compiler takes advantage of the fact that the entire program is available
at link-time. The “link-time optimizer” analyzes the assembly code to
derive knowledge about the run-time behavior of the program and uses
that knowledge to produce code that runs faster.

• Some compilation techniques are being delayed even further—to run-time.
Several recent systems invoke compilers during program execution to gen-
erate customized code that capitalizes on facts that cannot be known any

4 CHAPTER 1. AN OVERVIEW OF COMPILATION

earlier. If the compile time can be kept small and the benefits are large,
this strategy can produce noticeable improvements.

In each of these settings, the constraints on time and space differ, as do the
expectations with regard to code quality.

The priorities and constraints of a specific project may dictate specific so-
lutions to many design decisions or radically narrow the set of feasible choices.
Some of the issues that may arise are:

1. Speed: At any point in time, there seem to be applications that need
more performance than they can easily obtain. For example, our ability
to simulate the behavior of digital circuits, like microprocessors, always
lags far behind the demand for such simulation. Similarly, large physical
problems such as climate modeling have an insatiable demand for compu-
tation. For these applications, the runtime performance of the compiled
code is a critical issue. Achieving predictably good performance requires
additional analysis and transformation at compile-time, typically resulting
in longer compile times.

2. Space: Many applications impose tight restrictions on the size of com-
piled code. Usually, the constraints arise from either physical or economic
factors; for example, power consumption can be a critical issue for any
battery-powered device. Embedded systems outnumber general purpose
computers; many of these execute code that has been committed per-
manently to a small “read-only memory” (rom). Executables that must
be transmitted between computers also place a premium on the size of
compiled code. This includes many Internet applications, where the link
between computers is slow relative to the speed of computers on either
end.

3. Feedback: When the compiler encounters an incorrect program, it must
report that fact back to the user. The amount of information provided
to the user can vary widely. For example, the early Unix compilers often
produced a simple and uniform message “syntax error.” At the other
end of the spectrum the Cornell pl/c system, which was designed as a
“student” compiler, made a concerted effort to correct every incorrect
program and execute it [23].

4. Debugging: Some transformations that the compiler might use to speed
up compiled code can obscure the relationship between the source code
and the target code. If the debugger tries to relate the state of the bro-
ken executable back to the source code, the complexities introduced by
radical program transformations can cause the debugger to mislead the
programmer. Thus, both the compiler writer and the user may be forced
to choose between efficiency in the compiled code and transparency in the
debugger. This is why so many compilers have a “debug” flag that causes
the compiler to generate somewhat slower code that interacts more cleanly
with the debugger.

1.3. HIGH-LEVEL VIEW OF TRANSLATION 5

5. Compile-time efficiency: Compilers are invoked frequently. Since the user
usually waits for the results, compilation speed can be an important issue.
In practice, no one likes to wait for the compiler to finish. Some users
will be more tolerant of slow compiles, especially when code quality is a
serious issue. However, given the choice between a slow compiler and a
fast compiler that produces the same results, the user will undoubtedly
choose the faster one.

Before reading the rest of this book, you should write down a prioritized list of
the qualities that you want in a compiler. You might apply the ancient standard
from software engineering—evaluate features as if you were paying for them with
your own money! Examining your list will tell you a great deal about how you
would make the various tradeoffs in building your own compiler.

1.3 High-level View of Translation

To gain a better understanding of the tasks that arise in compilation, consider
what must be done to generate executable code for the following expression:

w ← w × 2 × x × y × z.

Let’s follow the expression through compilation to discover what facts must be
discovered and what questions must be answered.

1.3.1 Understanding the Input Program

The first step in compiling our expression is to determine whether or not

w ← w × 2 × x × y × z.

is a legal sentence in the programming language. While it might be amusing to
feed random words to an English to Italian translation system, the results are
unlikely to have meaning. A compiler must determine whether or not its input
constitutes a well-constructed sentence in the source language. If the input is
well-formed, the compiler can continue with translation, optimization, and code
generation. If it is not, the compiler should report back to the user with a
clear error message that isolates, to the extent possible, the problem with the
sentence.

Syntax In a compiler, this task is called syntax analysis. To perform syntax
analysis efficiently, the compiler needs:

1. a formal definition of the source language,

2. an efficient membership test for the source language, and

3. a plan for how to handle illegal inputs.

6 CHAPTER 1. AN OVERVIEW OF COMPILATION

Mathematically, the source language is a set, usually infinite, of strings defined
by some finite set of rules. The compiler’s front end must determine whether
the source program presented for compilation is, in fact, an element in that
set of valid strings. In engineering a compiler, we would like to answer this
membership question efficiently. If the input program is not in the set, and
therefore not in the language, the compiler should provide useful and detailed
feedback that explains where the input deviates from the rules.

To keep the set of rules that define a language small, the rules typically refer
to words by their syntactic categories, or parts-of-speech, rather than individual
words. In describing English, for example, this abstraction allows us to state
that many sentences have the form

sentence → subject verb object period

rather than trying to enumerate the set of all sentences. For example, we use
a syntactic variable, verb, to represent all possible verbs. With English, the
reader generally recognizes many thousand words and knows the possible parts-
of-speech that each can fulfill. For an unfamiliar string, the reader consults a
dictionary. Thus, the syntactic structure of the language is based on a set of
rules, or a grammar, and a system for grouping characters together to form
words and for classifying those words into their syntactic categories.

This description-based approach to specifying a language is critical to compi-
lation. We cannot build a software system that contains an infinite set of rules,
or an infinite set of sentences. Instead, we need a finite set of rules that can gen-
erate (or specify) the sentences in our language. As we will see in the next two
chapters, the finite nature of the specification does not limit the expressiveness
of the language.

To understand whether the sentence “Compilers are engineered objects.”
is, in fact, a valid English sentence, we first establish that each word is valid.
Next, each word is replaced by its syntactic category to create a somewhat more
abstract representation of the sentence–

noun verb adjective noun period

Finally, we try to fit this sequence of abstracted words into the rules for an
English sentence. A working knowledge of English grammar might include the
following rules:

1 sentence → subject verb object
2 subject → noun
3 subject → modifier noun
4 object → noun
5 object → modifier noun
6 modifier → adjective
7 modifier → adjectival phrase

. . .

1.3. HIGH-LEVEL VIEW OF TRANSLATION 7

Here, the symbol → reads “derives” and means that an instance of the right
hand side can be abstracted to the left hand side. By inspection, we can discover
the following derivation for our example sentence.

Rule Prototype Sentence
— sentence
1 subject verb object period
2 noun verb object period
5 noun verb modifier noun period
6 noun verb adjective noun period

At this point, the prototype sentence generated by the derivation matches the
abstract representation of our input sentence. Because they match, at this
level of abstraction, we can conclude that the input sentence is a member of
the language described by the grammar. This process of discovering a valid
derivation for some stream of tokens is called parsing.

If the input is not a valid sentence, the compiler must report the error back
to the user. Some compilers have gone beyond diagnosing errors; they have
attempted to correct errors. When an error-correcting compiler encounters an
invalid program, it tries to discover a “nearby” program that is well-formed. The
classic game to play with an error-correcting compiler is to feed it a program
written in some language it does not understand. If the compiler is thorough,
it will faithfully convert the input into a syntactically correct program and
produce executable code for it. Of course, the results of such an automatic (and
unintended) transliteration are almost certainly meaningless.

Meaning A critical observation is that syntactic correctness depended entirely
on the parts of speech, not the words themselves. The grammatical rules are
oblivious to the difference between the noun “compiler” and the noun “toma-
toes”. Thus, the sentence “Tomatoes are engineered objects.” is grammatically
indistinguishable from “Compilers are engineered objects.”, even though they
have significantly different meanings. To understand the difference between
these two sentences requires contextual knowledge about both compilers and
vegetables.

Before translation can proceed, the compiler must determine that the pro-
gram has a well-defined meaning. Syntax analysis can determine that the sen-
tences are well-formed, at the level of checking parts of speech against gram-
matical rules. Correctness and meaning, however, go deeper than that. For
example, the compiler must ensure that names are used in a fashion consistent
with their declarations; this requires looking at the words themselves, not just
at their syntactic categories. This analysis of meaning is often called either se-
mantic analysis or context-sensitive analysis. We prefer the latter term, because
it emphasizes the notion that the correctness of some part of the input, at the
level of meaning, depends on the context that both precedes it and follows it.

A well-formed computer program specifies some computation that is to be
performed when the program executes. There are many ways in which the
expression

8 CHAPTER 1. AN OVERVIEW OF COMPILATION

w ← w × 2 × x × y × z

might be ill-formed, beyond the obvious, syntactic ones. For example, one or
more of the names might not be defined. The variable x might not have a
value when the expression executes. The variables y and z might be of different
types that cannot be multiplied together. Before the compiler can translate the
expression, it must also ensure that the program has a well-defined meaning, in
the sense that it follows some set of additional, extra-grammatical rules.

Compiler Organization The compiler’s front end performs the analysis to check
for syntax and meaning. For the restricted grammars used in programming lan-
guages, the process of constructing a valid derivation is easily automated. For
efficiency’s sake, the compiler usually divides this task into lexical analysis, or
scanning, and syntax analysis, or parsing. The equivalent skill for “natural” lan-
guages is sometimes taught in elementary school. Many English grammar books
teach a technique called “diagramming” a sentence—drawing a pictorial repre-
sentation of the sentence’s grammatical structure. The compiler accomplishes
this by applying results from the study of formal languages [1]; the problems
are tractable because the grammatical structure of programming languages is
usually more regular and more constrained than that of a natural language like
English or Japanese.

Inferring meaning is more difficult. For example, are w, x, y, and z declared
as variables and have they all been assigned values previously? Answering these
questions requires deeper knowledge of both the surrounding context and the
source language’s definition. A compiler needs an efficient mechanism for deter-
mining if its inputs have a legal meaning. The techniques that have been used
to accomplish this task range from high-level, rule-based systems through ad
hoc code that checks specific conditions.

Chapters 2 through 5 describe the algorithms and techniques that a com-
piler’s front end uses to analyze the input program and determine whether it
is well-formed, and to construct a representation of the code in some internal
form. Chapter 6 and Appendix B, explore the issues that arise in designing and
implementing the internal structures used throughout the compiler. The front
end builds many of these structures.

1.3.2 Creating and Maintaining the Runtime Environment

Our continuing example concisely illustrates how programming languages pro-
vides their users with abstractions that simplify programming. The language
defines a set of facilities for expressing computations; the programmer writes
code that fits a model of computation implicit in the language definition. (Im-
plementations of QuickSort in scheme, Java, and Fortran would, undoubtedly,
look quite different.) These abstractions insulate the programmer from low-level
details of the computer systems they use. One key role of a compiler is to put
in place mechanisms that efficiently create and maintain these illusions. For ex-
ample, assembly code is a convenient fiction that allows human beings to read
and write short mnemonic strings rather than numerical codes for operations;

1.3. HIGH-LEVEL VIEW OF TRANSLATION 9

somehow this is more intuitive to most assembly programmers. This particular
illusion—that the computer understands alphabetic names rather than binary
numbers—is easily maintained by a lookup-table in a symbolic assembler.

The example expression showcases one particular abstraction that the com-
piler maintains, symbolic names. The example refers to values with the names w,
x, y, and z. These names are not just values; a given name can take on multiple
values as the program executes. For example, w is used on both the right-hand
side and the left-hand side of the assignment. Clearly, w has one value before
execution of the expression and another afterwards (unless x × y × z ∼= 1

2).
Thus, w refers to whatever value is stored in some named location, rather than
a specific value, such as 15.

The memories of modern computers are organized by numerical addresses,
not textual names. Within the address space of an executing program, these
addresses correspond uniquely to storage locations. In a source-level program,
however, the programmer may create many distinct variables that use the same
name. For example, many programs define the variables i, j, and k in several
different procedures; they are common names for loop index variables. The
compiler has responsibility for mapping each use of the name j to the appro-
priate instance of j and, from there, into the storage location set aside for that
instance of j. Computers do not have this kind of name space for storage loca-
tions; it is an abstraction created by the language designer and maintained by
the compiler-generated code and its run-time environment.

To translate w ← w × 2 × x × y × z, the compiler must assign some
storage location to each name. (We will assume, for the moment, that the
constant two needs no memory location since it is a small integer and can
probably be obtained using a load immediate instruction.) This might be done
in memory, as in

0 w x y z

or, the compiler might elect to keep the named variables in machine registers
with a series of assignments:

r1 ← w; r2 ← x; r3 ← y; and r4 ← z;

The compiler must choose, based on knowledge of the surrounding context, a
location for each named value. Keeping w in a register will likely lead to faster
execution; if some other statement assigns w’s address to a pointer, the compiler
would need to assign w to an actual storage location.

Names are just one abstraction maintained by the compiler. To handle a
complete programming language, the compiler must create and support a variety
of abstractions, Procedures, parameters, names, lexical scopes, and control-
flow operations are all abstractions designed into the source language that the
compiler creates and maintains on the target machine (with some help from
the other system software). Part of this task involves the compiler emitting the
appropriate instructions at compile time; the remainder involves interactions
between that compiled code and the run-time environment that supports it.

10 CHAPTER 1. AN OVERVIEW OF COMPILATION

loadAI rarp, @w ⇒ rw // load ’w’
loadI 2 ⇒ r2 // constant 2 into r2

loadAI rarp, load ’x’
loadAI rarp, load ’y’
loadAI rarp, load ’z’
mult rw, r2 ⇒ rw // rw ← w×2
mult rw, rx ⇒ rw // rw ← (w×2) × x
mult rw, ry ⇒ rw // rw ← (w×2×x) × y
mult rw, rz ⇒ rw // rw ← (w×2×x×y) × z
storeAI rw ⇒ rarp, 0 // write rw back to ’w’

Figure 1.1: Example in iloc

Thus, designing and implementing a compiler involves not only translation
from some source language to a target language, but also the construction of a
set of mechanisms that will create and maintain the necessary abstractions at
run-time. These mechanisms must deal with the layout and allocation of mem-
ory, with the orderly transfer of control between procedures, with the trans-
mission of values and the mapping of name spaces at procedure borders, and
with interfaces to the world outside the compiler’s control, including input and
output devices, the operating system, and other running programs.

Chapter 7 explores the abstractions that the compiler must maintain to
bridge the gap between the programming model embodied in the source language
and the facilities provided by the operating system and the actual hardware.
It describes algorithms and techniques that the compilers use to implement the
various fictions contained in the language definitions. It explores some of the
issues that arise on the boundary between the compiler’s realm and that of the
operating system.

1.3.3 Creating the Output Program

So far, all of the issues that we have addressed also arise in interpreters. The
difference between a compiler and an interpreter is that the compiler emits
executable code as its output, while the interpreter produces the result of ex-
ecuting that code. During code generation, the compiler traverses the internal
data structures that represent the code and it emits equivalent code for the
target machine. It must select instructions to implement each operation that
appears in the code being compiled, decide when and where to move values be-
tween registers and memory, and choose an execution order for the instructions
that both preserves meaning and avoids unnecessary hardware stalls or inter-
locks. (In contrast, an interpreter would traverse the internal data structures
and simulate the execution of the code.)

Instruction Selection As part of code generation, the compiler must select a
sequence of machine instructions to implement the operations expressed in the
code being compiled. The compiler might choose the instructions shown in

1.3. HIGH-LEVEL VIEW OF TRANSLATION 11

Digression: About Iloc

Throughout the book, low-level examples are written in an notation that we
call iloc—an acronym that William LeFebvre derived from “intermediate
language for an optimizing compiler.” Over the years, this notation has
undergone many changes. The version used in this book is described in
detail in Appendix A.

Think of iloc as the assembly language for a simple risc machine. It has
a standard complement of operations Most operations take arguments that
are registers. The memory operations, loads and stores, transfer values
between memory and the registers. To simplify the exposition in the text,
most examples assume that all data is integer data.

Each operation has a set of operands and a target. The operation is
written in five parts: an operation name, a list of operands, a separator, a
list of targets, and an optional comment. Thus, to add registers 1 and 2,
leaving the result in register 3, the programmer would write

add r1,r2 ⇒ r3 // example instruction

The separator, ⇒, precedes the target list. It is a visual reminder that in-
formation flows from left to right. In particular, it disambiguates cases like
load and store, where a person reading the assembly-level text can easily
confuse operands and targets.

Figure 1.1 to implement

w ← w × 2 × x × y × z

on the iloc virtual machine. Here, we have assumed the memory layout shown
earlier, where w appears at memory address zero.

This sequence is straight forward. It loads all of the relevant values into
registers, performs the multiplications in order, and stores the result back to
the memory location for w. Notice that the registers have unusual names,
like rw to hold w and rarp to hold the address where the data storage for our
named values begins. Even with this simple sequence, however, the compiler
makes choices that affect the performance of the resulting code. For exam-
ple, if an immediate multiply is available, the instruction mult rw, r2 ⇒ rw

could be replaced with multI rw, 2 ⇒ rw, eliminating the need for the in-
struction loadI 2 ⇒ r2 and decreasing the number of registers needed. If
multiplication is slower than addition, the instruction could be replaced with
add rw, rw ⇒ rw, avoiding the loadI and its use of r2 as well as replacing
the mult with a faster add instruction.

Register Allocation In picking instructions, we ignored the fact that the target
machine has a finite set of registers. Instead, we assumed that “enough” registers
existed. In practice, those registers may or may not be available; it depends on
how the compiler has treated the surrounding context.

12 CHAPTER 1. AN OVERVIEW OF COMPILATION

In register allocation, the compiler decides which values should reside in the
registers of the target machine, at each point in the code. It then modifies the
code to reflect its decisions. If, for example, the compiler tried to minimize the
number of registers used in evaluating our example expression, it might generate
the following code

loadAI rarp, @w ⇒ r1 // load ’w’
add r1, r1 ⇒ r1 // r1 ← w × 2
loadAI rarp, @x ⇒ r2 // load ’x’
mult r1, r2 ⇒ r1 // r1 ← (w×2) × x
loadAI rarp, @y ⇒ r2 // load ’y’
mult r1, r2 ⇒ r1 // r1 ← (w×2×x) × y
loadAI rarp, @z ⇒ r2 // load ’z’
mult r1, r2 ⇒ r1 // r1 ← (w×2×x×y) × z
storeAI r1 ⇒ rarp, @w // write rw back to ’w’

This sequence uses two registers, plus rarp, instead of five.

Minimizing register use may be counter productive. If, for example, any
of the named values, w, x, y, or z, are already in registers, the code should
reference those registers directly. If all are in registers, the sequence could be
implemented so that it required no additional registers. Alternatively, if some
nearby expression also computed w × 2, it might be better to preserve that
value in a register than to recompute it later. This would increase demand for
registers, but eliminate a later instruction.

In general, the problem of allocating values to registers is np-complete.
Thus, we should not expect the compiler to discover optimal solutions to the
problem, unless we allow exponential time for some compilations. In practice,
compilers use approximation techniques to discover good solutions to this prob-
lem; the solutions may not be optimal, but the approximation techniques ensure
that some solution is found in a reasonable amount of time.

Instruction Scheduling In generating code for a target machine, the compiler
should be aware of that machine’s specific performance constraints. For exam-
ple, we mentioned that an addition might be faster than a multiplication; in
general, the execution time of the different instructions can vary widely. Mem-
ory access instructions (loads and stores) can take many cycles, while some
arithmetic instructions, particularly mult, take several. The impact of these
longer latency instructions on the performance of compiled code is dramatic.

Assume, for the moment, that a load or store instruction requires three
cycles, a mult requires two cycles, and all other instructions require one cycle.
With these latencies, the code fragment that minimized register use does not
look so attractive. The Start column shows the cycle in which the instruction
begins execution and the End column shows the cycle in which it completes.

1.3. HIGH-LEVEL VIEW OF TRANSLATION 13

Start End
1 3 loadAI rarp, @w ⇒ r1 // load ’w’
4 4 add r1, r1 ⇒ r1 // r1 ← w × 2
5 7 loadAI rarp, @x ⇒ r2 // load ’x’
8 9 mult r1, r2 ⇒ r1 // r1 ← (w×2) × x
10 12 loadAI rarp, @y ⇒ r2 // load ’y’
13 14 mult r1, r2 ⇒ r1 // r1 ← (w×2×x) × y
15 17 loadAI rarp, @z ⇒ r2 // load ’z’
18 19 mult r1, r2 ⇒ r1 // r1 ← (w×2×x×y) × z
20 22 storeAI r1 ⇒ rarp, @w // write rw back to ’w’

This nine instruction sequence takes twenty-two cycles to execute.
Many modern processors have the property that they can initiate new in-

structions while a long-latency instruction executes. As long as the results of a
long-latency instruction are not referenced until the instruction completes, exe-
cution proceeds normally. If, however, some intervening instruction tries to read
the result of the long-latency instruction prematurely, the processor “stalls”, or
waits until the long-latency instruction completes. Registers are read in the
cycle when the instruction starts and written when it ends.

In instruction scheduling, the compiler reorders the instructions in an at-
tempt to minimize the number cycles wasted in stalls. Of course, the scheduler
must ensure that the new sequence produces the same result as the original. In
many cases, the scheduler can drastically improve on the performance of “naive”
code. For our example, a good scheduler might produce

Start End
1 3 loadAI rarp, @w⇒ r1 // load ’w’
2 4 loadAI rarp, @x⇒ r2 // load ’x’
3 5 loadAI rarp, @y⇒ r3 // load ’y’
4 4 add r1, r1 ⇒ r1 // r1 ← w × 2
5 6 mult r1, r2 ⇒ r1 // r1 ← (w×2) × x
6 8 loadAI rarp, @z⇒ r2 // load ’z’
7 8 mult r1, r3 ⇒ r1 // r1 ← (w×2×x) × y
9 10 mult r1, r2 ⇒ r1 // r1 ← (w×2×x×y) × z
11 13 storeAIr1 ⇒ rarp, @w // write rw back to ’w’

This reduced the time required for the computation from twenty-two cycles to
thirteen. It required one more register than the minimal number, but cut the
execution time nearly in half. It starts an instruction in every cycle except eight
and ten. This schedule is not unique; several equivalent schedules are possible,
as are equal length schedules that use one more register.

Instruction scheduling is, like register allocation, a hard problem. In its
general form, it is np-complete. Because variants of this problem arise in so
many fields, it has received a great deal of attention in the literature.

Interactions Most of the truly hard problems that occur in compilation arise
during code generation. To make matters more complex, these problems inter-

14 CHAPTER 1. AN OVERVIEW OF COMPILATION

Digression: Terminology

A careful reader will notice that we use the word “code” in many places
where either “program” or “procedure” might naturally fit. This is a de-
liberate affectation; compilers can be invoked to translate fragments of code
that range from a single reference through an entire system of programs.
Rather than specify some scope of compilation, we will continue to use the
ambiguous term “code.”

act. For example, instruction scheduling moves load instructions away from the
arithmetic operations that depend on them. This can increase the period over
which the value is needed and, correspondingly, increase the number of regis-
ters needed during that period. Similarly, the assignment of particular values
to specific registers can constrain instruction scheduling by creating a “false”
dependence between two instructions. (The second instruction cannot be sched-
uled until the first completes, even though the values in the overlapping register
are independent. Renaming the values can eliminate this false dependence, at
the cost of using more registers.)

Chapters 8 through 11 describe the issues that arise in code generation and
present a variety of techniques to address them. Chapter 8 creates a base
of knowledge for the subsequent work. It discusses “code shape,” the set of
choices that the compiler makes about how to implement a particular source
language construct. Chapter 9 builds on this base by discussing algorithms
for instruction selection—how to map a particular code shape into the target
machine’s instruction set. Chapter 10 looks at the problem of deciding which
values to keep in registers and explores algorithms that compilers use to make
these decisions. Finally, because the order of execution can have a strong impact
on the performance of compiled code, Chapter 11 delves into algorithms for
scheduling instructions.

1.3.4 Improving the Code

Often, a compiler can use contextual knowledge to improve the quality of code
that it generates for a statement. If, as shown on the left side of Figure 1.2, the
statement in our continuing example was embedded in a loop, the contextual
information might let the compiler significantly improve the code. The compiler
could recognize that the subexpression 2 × x × y is invariant in the loop –
that is, its value does not change between iterations. Knowing this, the compiler
could rewrite the code as shown on the right side of the figure. The transformed
code performs many fewer operations in the loop body; if the loop executes
more than once, this should produce faster code.

This process of analyzing code to discover facts from context and using
that knowledge to improve the code is often called code optimization. Roughly
speaking, optimization consists of two distinct activities: analyzing the code
to understand its runtime behavior and transforming the code to capitalize on
knowledge derived during analysis. These techniques play a critical role in the

1.4. COMPILER STRUCTURE 15

x ← · · ·
y ← · · ·
w ← 1

for i = 1 to n
read z
w ← w × 2 × x × y × z
end

Surrounding context

x ← · · ·
y ← · · ·
ti ← 2 × x × y
w ← 1
for i = 1 to n

read z
w ← w × z × ti
end

Improved code

Figure 1.2: Context makes a difference

performance of compiled code; the presence of a good optimizer can change the
kind of code that the rest of the compiler should generate.

Analysis Compilers use several kinds of analysis to support transformations.
Data-flow analysis involves reasoning, at compile-time, about the flow of values
at runtime. Data-flow analyzers typically solve a system of simultaneous set
equations that are derived from the structure of the code being translated.
Dependence analysis uses number-theoretic tests to reason about the values that
can be assumed by subscript expressions. It is used to disambiguate references
to elements of arrays and indexed structures.

Transformation Many distinct transformations have been invented that try to
improve the time or space requirements of executable code. Some of these, like
discovering loop-invariant computations and moving them to less frequently
executed locations, improve the running time of the program. Others make the
code itself more compact. Transformations vary in their effect, the scope over
which they operate, and the analysis required to support them. The literature
on transformations is rich; the subject is large enough and deep enough to merit
a completely separate book.

The final part of the book introduces the techniques that compilers use to
analyze and improve programs. Chapter 13 describes some of the methods
that compilers use to predict the runtime behavior of the code being translated.
Chapter 14 then presents a sampling of the transformations that compilers apply
to capitalize on knowledge derived from analysis.

1.4 Compiler Structure

Understanding the issues involved in translation is different than knowing their
solutions. The community has been building compilers since 1955; over those
years, we have learned a number of lessons about how to structure a compiler.
At the start of this chapter, the compiler was depicted as a single box that
translated a source program into a target program. Reality is, of course, more
complex than that simple pictogram.

16 CHAPTER 1. AN OVERVIEW OF COMPILATION

The discussion in Section 1.3 suggested a dichotomy between the task of
understanding the input program and the task of mapping its functionality
onto the target machine. Following this line of thought leads to a compiler that
is decomposed into two major pieces, a front end and a back end.

source
code

target
code

front
end

back
end

errors

� ��

ir

�
�
��R

�
�
���

The decision to let the structure reflect the separate nature of the two tasks has
several major implications for compiler design.

First, the compiler must have some structure that encodes its knowledge of
the code being compiled; this intermediate representation (ir) or intermediate
language becomes the definitive representation of the code for the back end.
Now, the task of the front end is to ensure that the source program is well
formed and to map that code into the ir, and the task of the back end is to
map the ir onto the target machine. Since the back end only processes ir

created by the front end, it can assume that the ir contains no errors.
Second, the compiler now makes multiple passes over the code before com-

mitting itself to target code. This should lead to better code; the compiler can,
in effect, study the code in its first pass and record relevant details. Then, in the
second pass, it can use these recorded facts to improve the quality of translation.
(This idea is not new. The original Fortran compiler made several passes over
the code [3]. In a classic 1961 paper, Floyd proposed that the compiler could
generate better code for expressions if it made two passes over the code [31].) To
achieve this, however, the knowledge derived in the first pass must be recorded
in the ir, where the second pass can find it.

Finally, the two pass structure may simplify the process of retargeting the
compiler. We can easily envision constructing multiple back ends for a single
front end; doing so would produce compilers that accepted the same language
but targeted different machines. This assumes that the same ir program is
appropriate for both target machines; in practice, some machine-specific details
usually find their way into the ir.

The introduction of an ir into the compiler makes possible further passes
over the code. These can be implemented as transformers that take as input
an ir program and produce an equivalent, but improved, ir program. (Notice
that these transformers are, themselves, compilers according to our definition
in Section 1.1.) These transformers are sometimes called optimizations; they
can be grouped together to form an optimizer or a middle end. This produces
a structure that looks like:

1.5. SUMMARY AND PERSPECTIVE 17

source
code

machine
code

front
end

middle
end

errors

back
end

� � � �

ir ir

H
H
H
H
H
HHj �

�
�
�
�
�
���

We will call this a three-pass compiler ; it is often called an optimizing compiler.
Both are misnomers. Almost all compilers have more than three passes. Still,
the conceptual division into front end, middle end, and back end is useful. These
three parts of the compiler have quite different concerns. Similarly, the term
“optimization” implies that the compiler discovers an optimal solution to some
problem. Many of the problems in that arise in trying to improve compiled
code are so complex that they cannot be solved to optimality in a reasonable
amount of time. Furthermore, the actual speed of the compiled code depends
on interactions among all of the techniques applied in the optimizer and the
back-end. Thus, when a single technique can be proved optimal, its interactions
with other techniques can produce less than optimal results. As a result, a
good optimizing compiler can improve the quality of the code, relative to an
unoptimized version. It will often fail to produce optimal code.

The middle end can be a monolithic structure that applies one or more tech-
niques to improve the code, or it can be structured as a series of individual passes
that each read and write ir. The monolithic structure may be more efficient,
in that it avoids lots of input and output activity. The multi-pass structure
may lend itself to a less complex implementation and a simpler approach to
debugging the compiler. The choice between these two approaches depends on
the constraints under which the compiler is built and operates.

1.5 Summary and Perspective

A compiler’s primary mission is to translate its input program into an equivalent
output program. Many different programs qualify as compilers. Most of these
can be viewed as either two pass or three pass compilers. They have a front end
that deals with the syntax and meaning of the input language and a back end
that deals with the constraints of the output language. In between, they may
have a section that transforms the program in an attempt to “improve” it.

Different projects, of course, aim for different points in the compiler design
space. A compiler that translates c code for embedded applications like auto-
mobiles, telephones, and navigation systems, might be concerned about the size
of the compiled code, since the code will be burned into some form of read-only
memory. On the other hand, a compiler that sits inside the user-interface of a
network browser and translates compressed application code to drive the display
might be designed to minimize the sum of compile time plus execution time.

18 CHAPTER 1. AN OVERVIEW OF COMPILATION

Questions

1. In designing a compiler, you will face many tradeoffs. What are the five
qualities that you, as a user, consider most important in a compiler that
you purchased? Does that list change when you are the compiler writer?
What does your list tell you about a compiler that you would implement?

2. Compilers are used in many different circumstances. What differences
might you expect in compilers designed for the following applications?

(a) a just-in-time compiler used to translate user interface code down-
loaded over a network

(b) a compiler that targets the embedded processor used in a cellular
telephone

(c) a compiler used in the introductory programming course at a high
school

(d) a compiler used to build wind-tunnel simulations that run on a mas-
sively parallel processors (where all the processors are identical)

(e) a compiler that targets numerically-intensive programs to a large
network of diverse machines

Chapter 2

Lexical Analysis

2.1 Introduction

The scanner takes as input a stream of characters and produces as output a
stream of words, along with their associated syntactic categories. It aggregates
letters together to form words and applies a set of rules to determine whether
or not the word is legal in the source language and, if so, its syntactic category.
This task can be done quickly and efficiently using a specialized recognizer.

This chapter describes the mathematical tools and the programming tech-
niques that are commonly used to perform lexical analysis. Most of the work
in scanner construction has been automated; indeed, this is a classic exam-
ple of the application of theoretical results to solve an important and practi-
cal problem—specifying and recognizing patterns. The problem has a natural
mathematical formulation. The mathematics leads directly to efficient imple-
mentation schemes. The compiler writer specifies the lexical structure of the
language using a concise notation and the tools transform that specification into
an efficient executable program. These techniques have led directly to useful
tools in other settings, like the Unix tool grep and the regular-expression pat-
tern matching found in many text editors and word-processing tools. Scanning
is, essentially, a solved problem.

Scanners look at a stream of characters and recognize words. The rules that
govern the lexical structure of a programming language, sometimes called its
micro-syntax, are simple and regular. This leads to highly efficient, specialized
recognizers for scanning. Typically, a compiler’s front end has a scanner to
handle its micro-syntax and a parser for its context-free syntax, which is more
complex to recognize. This setup is shown in Figure 2.1. Separating micro-
syntax from syntax simplifies the compiler-writer’s life in three ways.

• The description of syntax used in the parser is written in terms of words
and syntactic categories, rather than letters, numbers, and blanks. This
lets the parser ignore irrelevant issues like absorbing extraneous blanks,
newlines, and comments. These are hidden inside the scanner, where they

19

20 CHAPTER 2. LEXICAL ANALYSIS

source
code scanner

words
parser

intermediate
code

� � �

Front end‘

Figure 2.1: Structure of a typical front end

are handled cleanly and efficiently.

• Scanner construction is almost completely automated. The lexical rules
are encoded in a formal notation and fed to a scanner generator. The
result is an executable program that produces the input for the parser.
Scanners generated from high-level specifications are quite efficient.

• Every rule moved into the scanner shrinks the parser. Parsing is harder
than scanning; the amount of code in a parser grows as the grammar
grows. Since parser construction requires more direct intervention from
the programmer, shrinking the parser reduces the compiler-writer’s effort.

As a final point, well-implemented scanners have lower overhead (measured by
instructions executed per input symbol) than well-implemented parsers. Thus,
moving work into the scanner improves the performance of the entire front end.

Our goal for this chapter is to develop the notations for specifying lexical
patterns and the techniques to convert those patterns directly into an executable
scanner. Figure 2.2 depicts this scenario. This technology should allow the
compiler writer to specify the lexical properties at a reasonably high level and
leave the detailed work of implementation to the scanner generator—without
sacrificing efficiency in the final product, the compiler.

First, we will introduce a notation, called regular expressions, that works
well for specifying regular expressions. We will explore the properties of regular
expressions and their relationship to a particular kind of recognizer, called a
finite automaton. Next, we will develop the techniques and methods that allow
us to automate the construction of efficient scanners from regular expressions.
We show some additional results that relate regular expressions and automata,
and conclude with an example of how complex the task of lexical analysis can
be in Fortran, a language designed before we had a good understanding of
the mathematics of lexical analysis.

2.2 Specifying Lexical Patterns

Before we can build a scanner, we need a way of specifying the micro-syntax
of the source language—of specifying patterns that describe the words in the
language. Some parts are quite easy.

• Punctuation marks like colons, semi-colons, commas, parentheses, and
square brackets can be denoted by their unique character representations:

2.2. SPECIFYING LEXICAL PATTERNS 21

lexical
patterns

scanner
generator

source
code scanner

words
parser

intermediate
code

�

�

� � �

front end

Figure 2.2: Automatic scanner generation

: ; , () []

• Keywords, like if, then, and integer are equally simple. These words
have a unique spelling, so we can represent them as literal patterns—we
simply write them down.

Some simple concepts have more complicated representations. For example, the
concept of a blank might require a small grammar.

WhiteSpace → WhiteSpace blank
| WhiteSpace tab
| blank
| tab

where blank and tab have the obvious meanings.
Thus, for many words in the source language, we already have a concise

representation—we can simply write down the words themselves. Other parts
of a programming language are much harder to specify. For these, we will write
down rules that can generate all of the appropriate strings.

Consider, for example, a pattern to specify when a string of characters forms
a number. An integer might be described as a string of one or more digits,
beginning with a digit other than zero, or as the single digit zero. A decimal
number is simply an integer, followed by a decimal point, followed by a string
of zero or more digits. (Notice that the part to the left of the decimal point
cannot have leading zeros unless it is a zero, while the fractional part must be
able to have leading zeros.) Real numbers and complex numbers are even more
complicated. Introducing optional signs (+ or -) adds yet more clauses to the
rules.

The rules for an identifier are usually somewhat simpler than those for a
number. For example, Algol allowed identifier names that consisted of a single
alphabetic character, followed by zero or more alphanumeric characters. Many
languages include special characters such as the ampersand (&), percent sign
(%), and underscore () in the alphabet for identifier names.

22 CHAPTER 2. LEXICAL ANALYSIS

The complexity of lexical analysis arises from the simple fact that several
of the syntactic categories used in a typical programming language contain an
effectively infinite set of words. In particular, both numbers and identifiers
usually contain sets large enough to make enumeration impractical.1 To simplify
scanner construction, we need to introduce a powerful notation to specify these
lexical rules: regular expressions.

A regular expression describes a set of strings over the characters contained
in some alphabet, Σ, augmented with a character ε that represents the empty
string. We call the set of strings a language. For a given regular expression, r,
we denote the language that it specifies as L(r). A regular expression is built
up from three simple operations:

Union – the union of two sets R and S, denoted R ∪ S, is the set
{s | s ∈ R or s ∈ S}.

Concatenation – the concatenation of two sets R and S, denoted RS, is the
set {st | s ∈ R and t ∈ S}. We will sometimes write R2 for RR, the
concatenation of R with itself, and R3 for RRR (or RR2).

Closure – the Kleene closure of a set R, denoted R∗, is the set
⋃∞

0 Ri. This is
just the concatenation of L with itself, zero or more times.

It is sometimes convenient to talk about the positive closure of R, denoted R+.
It is defined as

⋃∞
1 Ri, or RR∗.

Using these three operations, we can define the set of regular expressions
(res) over an alphabet Σ.

1. if a ∈ Σ, then a is also a re denoting the set containing only a.

2. if r and s are res, denoting sets L(r) and L(s) respectively, then

(r) is a re denoting L(r)

r | s is a re denoting the union of L(r) and L(s)

rs is a re denoting the concatenation of L(r) and L(s)

r∗ is a re denoting the Kleene closure of L(r).

3. ε is a re denoting the empty set.

To disambiguate these expressions, we assume that closure has highest prece-
dence, followed by concatenation, followed by union. (Union is sometimes called
alternation.)

As a simple example, consider our clumsy English description of the micro-
syntax of Algol identifiers. As a re, an identifier might be defined as:

1This is not always the case. Dartmouth Basic, an interpreted language from the early
1960’s, only allowed variable names that began with an alphabetic character and had at most
one digit following that character. This limited the programmer to two hundred and eighty
six variable names. Some implementations simplified the translation by statically mapping
each name to one of two hundred and eighty six memory locations.

2.3. CLOSURE PROPERTIES OF RES 23

alpha → (a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z)

digit → (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)

identifier → alpha (alpha | digit)∗

Here, we introduced names for the subexpressions alpha and digit. The entire
expression could have been written in one-line (with a suitably small font).
Where the meaning is clear, we will elide some of the enumerated elements in
a definition. Thus, we might write alpha → (a | b | c | · · · | z) as a shorthand
for the definition of alpha given previously. This allows us to write res more
concisely. For example, the Algol-identifier specification now becomes

(a | b | c | · · · | z) ((a | b | c | · · · | z) | (0 | 1 | 2 | · · · | 9))∗

A similar set of rules can be built up to describe the various kinds of numbers.

integer → (+ | − | ε) (0 | 1 | 2 | · · · | 9)+

decimal → integer . (0 | 1 | 2 | · · · | 9)∗

real → (integer | decimal) E integer

In the re real, the letter E is a delimiter that separates the mantissa from the
exponent. (Some programming languages use other letters to denote specific
internal formats for floating point numbers.)

Notice that the specification for an integer admits an arbitrary number of
leading zeros. We can refine the specification to avoid leading zeros, except for
the single, standalone zero required to write the number zero.

integer → (+ | − | ε) (0 | (1 | 2 | 3 | · · · | 9) (0 | 1 | 2 | · · · | 9)∗)

Unfortunately, the rule for real relied on leading zeros in its exponent, so we
must also rewrite that rule as

real → (integer | decimal) E 0∗integer, or

real → (integer | decimal) E (0 | 1 | 2 | · · · | 9)+

Of course, even more complex examples can be built using the three operations
of regular expressions—union, concatenation, and closure.

2.3 Closure Properties of REs

The languages generated by regular expressions have been studied extensively.
They have many important properties; some of those properties play an impor-
tant role in the use of regular expressions to build scanners.

Regular expressions are closed under many operations. For example, given
two regular expressions r and s ∈ Σ∗, we know that (r | s) is a regular expression
that represents the language

24 CHAPTER 2. LEXICAL ANALYSIS

{w | w ∈ L(r) or w ∈ L(s)}.

This follows from the definition of regular expressions. Because (r | s) is, by def-
inition, a regular expression, we say that the set of regular expressions is closed
under alternation. From the definition of regular expressions, we know that the
set of regular expressions is closed under alternation, under concatenation, and
under Kleene closure.

These three properties play a critical role in the use of regular expressions
to build scanners. Given a regular expression for each of syntactic categories
allowed in the source language, the alternation of those expressions is itself a
regular expression that describes the set of all valid words in the language. The
fact the regular expressions are closed under alternation assures us that the
result is a regular expression. Anything that we can do to the simple regular
expression for a single syntactic category will be equally applicable to the regular
expression for the entire set of words in the language.

Closure under concatenation allows us to build complex regular expressions
from simpler ones by concatenating them together. This property seems both
obvious and unimportant. However, it lets us piece together res in systematic
ways. Closure ensures that rs is a re as long as both r and s are res. Thus,
any techniques that can be applied to either r or s can be applied to rs; this
includes constructions that automatically generate recognizer implementations
from res.

The closure property for Kleene closure (or ∗) allows us to specify particular
kinds of infinite sets with a finite pattern. This is critical; infinite patterns are
of little use to an implementor. Since the Algol-identifier rule does not limit
the length of the name, the rule admits an infinite set of words. Of course, no
program can have identifiers of infinite length. However, a programmer might
write identifiers of arbitrary, but finite, length. Regular expressions allow us to
write concise rules for such a set without specifying a maximum length.

The closure properties for res introduce a level of abstraction into the con-
struction of micro-syntactic rules. The compiler writer can define basic notions,
like alpha and digit, and use them in other res. The re for Algol identifiers

alpha (alpha | digit)∗

is a re precisely because of the closure properties. It uses all three operators to
combine smaller res into a more complex specification. The closure properties
ensure that the tools for manipulating res are equally capable of operating on
these “composite” res. Since the tools include scanner generators, this issue
plays a direct role in building a compiler.

2.4 Regular Expressions and Finite Automata

Every regular expression, r, corresponds to an abstract machine that recognizes
L(r). We call these recognizers finite automata. For example, in a lexical
analyzer for assembly code, we might find the regular expression

r digit digit∗

2.4. REGULAR EXPRESSIONS AND FINITE AUTOMATA 25

The recognizer for this regular expression could be represented, pictorially, as

��
��

��
��

��
��

s0 s1 s2��
��

� �

	

�‘r’ digit

digit

The diagram incorporates all the information necessary to understand the rec-
ognizer or to implement it. Each circle represents a state; by convention, the
recognizer starts in state s0. Each arrow represents a transition; the label on
the transition specifies the set of inputs that cause the recognizer to make that
transition. Thus, if the recognizer was in state s0 when it encountered the input
character r, it would make the transition to state s1. In state s2, any digit takes
the recognizer back to s2. The state s2 is designated as a final state, drawn with
the double circle.

Formally, this recognizer is an example of a finite automaton (fa). An fa is
represented, mathematically, as a five-tuple (Q, Σ, δ, q0, F). Q is the set of states
in the automaton, represented by circles in the diagram. Σ is the alphabet of
characters that can legally occur in the input stream. Typically, Σ is the union
of the edge labels in the diagram. Both Q and Σ must be finite. δ : Q ×Σ → Q
is the transition function for the fa. It encodes the state changes induced by
an input character for each state; δ is represented in the diagram by the labeled
edges that connect states. The state q0 ∈ Q is the starting state or initial
state of the fa. F ⊆ Q is the set of states that are considered final or accepting
states. States in F are recognizable in the diagram because they are drawn with
a double circle.

Under these definitions, we can see that our drawings of fas are really pic-
tograms. From the drawing, we can infer Q, Σ, δ, q0 and F .

The fa accepts an input string x if and only if x takes it through a series of
transitions that leave it in a final state when x has been completely consumed.
For an input string ‘r29’, the recognizer begins in s0. On r, it moves to s1. On
2, it moves to s2. On 9, it moves to s2. At that point, all the characters have
been consumed and the recognizer is in a final state. Thus, it accepts r29 as a
word in L(register).

More formally, we say that the fa (Q, Σ, δ, q0, F) accepts the string x, com-
posed of characters x1x2x3 . . . xn if and only if

δ(δ(. . . δ(δ(δ(q0, x1), x2), x3) . . . , xn−1), xn) ∈ F .

Intuitively, x1x2x3 . . . xn corresponds to the labels on a path through the fas
transition diagram, beginning with q0 and ending in some qf ∈ Q. At each
step, qi corresponds to the label on the ith edge in the path.

In this more formal model, the fa for register names can be written as

26 CHAPTER 2. LEXICAL ANALYSIS

Q = {s0, s1, s2}
Σ = {r, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
δ = {(〈s0, r〉 → s1), (〈s1, digit〉 → s2), (〈s2, digit〉 → s2)}
q0 = s0

F = {s2}

Notice how this encodes the diagram. Q contains the states. Σ contains the
edge labels. δ encodes the edges.

Error Transitions What happens if we confront the recognizer for register names
with the string ‘s29’ ? State s0 has no transition for ‘s’. We will assume that
any unspecified input leads to an error state se. To make the recognizer work,
se needs a transition back to itself on every character in Σ.

��
��

��
��

��
��

s0 s1 s2��
��

� �

	

�‘r’ digit

digit

��
��

se

Q
Q
Q
QQs

�
�
�

����
‘r’ ‘r’digit

�

�

Σ

With these additions, if the recognizer reaches se, it remains in se and consumes
all of its input. By convention, we will assume the presence of an error state
and the corresponding transitions in every fa, unless explicitly stated. We will
not, however, crowd the diagrams by drawing them.

A More Precise Recognizer Our simple recognizer can distinguish between r29
and s29. It does, however, have limits. For example, it will accept r999; few
computers have been built that have 999 registers! The flaw, however, lies in
the regular expression, not in the recognizer. The regular expression specifies
the numerical substring as digit digit+; this admits arbitrary strings of digits.
If the target machine had just thirty-two registers, named r0 through r31, a
carefully crafted regular expression might be used, such as:

r ((0 | 1 | 2) (digit | ε) | (4 | 5 | 6 | 7 | 8 | 9) | (3 | 30 | 31)

This expression is more complex than our original expression. It will, however,
accept r0, r9, and r29, but not r999. The fa for this expression has more
states than the fa for the simpler regular expression.

2.5. IMPLEMENTING A DFA 27

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

� � �

�
�
���

�

Z
Z
ZZ�

s0 s1 s5 s6

s2 s3

s4

r 3 0,1

digit

0,1,2

4,5,6,7,8,9

Recall, however, that the fa makes one transition on each input character.
Thus, the new fa will make the same number of transitions as the original, even
though it checks a more complex micro-syntactic specification. This is a critical
property: the cost of operating a fa is proportional to the length of the input
string, not to the length or complexity of the regular expression that generated
the recognizer. Increased complexity in the regular expression can increase the
number of states in the corresponding fa. This, in turn, increases the space
needed to represent the fa the cost of automatically constructing it, but the
cost of operation is still one transition per input character.

Of course, the re for register names is fairly complex and counter-intuitive.
An alternative re might be

r0 r00 r1 r01 r2 r02 r3 r03 r4 r04 r5
r05 r6 r06 r7 r07 r8 r08 r9 r09 r10 r11
r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22

r23 r24 r25 r26 r27 r28 r29 r30 r31

This expression is conceptually simpler, but much longer than the previous ver-
sion. Ideally, we would like for both to produce equivalent automata. If we can
develop the technology to produce the same dfa from both these descriptions,
it might make sense to write the longer re since its correctness is far more
obvious.

2.5 Implementing a DFA

Dfas are of interest to the compiler writer because they lead to efficient imple-
mentations. For example, we can implement the dfa for

r digit digit∗

with a straightforward code skeleton and a set of tables that encode the informa-
tion contained in the drawing of the dfa. Remember that s0 is the start state;
that s2 is the sole final state; and that se is an error state. We will assume the
existence of a function T : state → {start,normal,final,error} to let the recognizer
switch into case logic based on the current state, and encode the transitions into
a function δ : state× character → state that implements the transition function.
These can both be encoded into tables.

28 CHAPTER 2. LEXICAL ANALYSIS

char ← next character;
state ← s0;
call action(char,state);

while (char 	= eof)
state ← δ(state,char);
call action(state, char);
char ← next character;

if T [state] = final then
report acceptance;

else
report failure;

action(state,char)
switch (T [state])

case start:
word ← char;
break;

case normal:
word ← word + char;
break;

case final:
word ← word + char;
break;

case error:
print error message;
break;

end

Figure 2.3: A Skeleton Recognizer for “r digit digit∗”

0,1,2,3,4

δ r 5,6,7,8,9 other
s0 s1 se se

s1 se s2 se

s2 se s2 se

se se se se

T action
s0 start
s1 normal
s2 final
se error

Notice that we have compacted the tables to let them fit on the page. We denote
this by listing multiple labels at the head of the column. This suggests the kind
of compaction that can be achieved with relatively simple schemes. Of course,
to use the compressed table, we must translate the input character into a table
index with another table lookup.

The tables are interpreted to implement the recognizer; the code to accom-
plish this is shown in Figure 2.3. The code is quite simple. The code that
precedes the while loop implements the recognizer’s actions for state s0. The
other states are handled by the case statement in the routine action. (We pulled
this out into a separate routine to make the structure of the skeleton parser more
apparent.) The while loop iterates until all input is consumed; for each input
character, it uses δ to select an appropriate transition, or next state. When it
reaches the end of the input string, symbolized by eof , it determines if its last
state is an accepting state by checking T [state].

To implement a second dfa, we can simply change the tables used with
the skeleton recognizer. In the previous section, we presented the following
refinement to the register specification.

r ((0 | 1 | 2) (digit | ε) | (4 | 5 | 6 | 7 | 8 | 9) | (3 | 30 | 31)

It restricts register names to the set r0 through r31. The tables in Figure 2.4
encode the recognizer that we showed for this regular expression. Thus, to

2.6. NON-DETERMINISTIC FINITE AUTOMATA 29

δ r 0,1,2 3 4-9 other
s0 s1 se se se se

s1 se s2 s5 s4 se

s2 se s3 s3 s3 se

s3 se se se se se

s4 se se se se se

s5 se s6 s6 se se

s6 se se se se se

se se se se se se

T action
s0 start
s1 normal

s2,3,4,5,6 final
se error

Figure 2.4: Recognizer Tables for the Refined Register Specification

implement this tighter register specification, we need only to build a different
set of tables for the skeleton recognizer.

2.6 Non-deterministic Finite Automata

Recall from the definition of a regular expression that we designated the empty
string, ε as a regular expression. What role does ε play in a recognizer? We
can use transitions on ε to combine fas and form fas for more complex regular
expressions. For example, assume that we have fas for the regular expressions
m and n.

��
��

s0 ��
��
��
��
s1�

m

��
��

s0 ��
��
��
��
s1�

n

We can build an fa for mn by adding a transition on ε from the final state of
fam to the initial state of fan, renumbering the states, and using Fn as the set
of final states for the new fa.

��
��

s0 ��
��

s1�

m
�

ε

��
��

s2 ��
��
��
��
s3�

n

For this fa, the notion of acceptance changes slightly. In s1, the fa takes a
transition on ε (or no input) to s2. Since ε is the empty string, it can occur
between any two letters in the input stream without changing the word. This
is a slight modification to the acceptance criterion, but seems intuitive.

By inspection, we can see that states s1 and s2 can be combined and the
transition on ε eliminated.

��
��

s0 ��
��

s1�

m

��
��
��
��
s2�

n

30 CHAPTER 2. LEXICAL ANALYSIS

As we will see Section 2.7, this can be done systematically to eliminate all
ε-transitions.

Sometimes, combining two dfas with an ε-transition introduces complica-
tions into the transition function. Consider the following dfas for the languages
a∗ and ab.

��
��
��
��
s0

	

�

a

��
��

s0 �
a

��
��

s1 �
b

��
��
��
��
s2

We can combine them with an ε-transition to form an fa for a∗ab.

��
��

s0

	

�

a

�
ε

��
��

s1 �
a

��
��

s2 �
b

��
��
��
��
s3

This fa has two possible transitions from state s0 for an input of a. It can
take the transition from s0 back to s0 labeled a. Alternatively, it can take the
transition from s0 to s1 labeled ε and then take the transition from s1 to s2

labeled a. This problem is more clear if we coalesce the states connected by the
ε-transition, s0 and s1.2

��
��

s0

	

�

a

�
a

��
��

s2 �
b

��
��
��
��
s3

For the input string aab, the appropriate sequence of transitions is s0, s0, s2,
s3. This consumes all of the input and leaves the fa in a final state. For
the input string ab, however, the appropriate sequence of transitions is s0, s1,
s2. To accept these strings, the fa must select the transition out of s0 that is
appropriate for the context to the right of the current input character. Since the
fa only has knowledge of the current state and the input character, it cannot
know about context to the right.. This presents a fundamental dilemma that we
will refer to as a nondeterministic choice. An fa that must make such a choice is
called a nondeterministic finite automata (nfa). In contrast, a fa with unique
character transitions in each state is a deterministic fa (dfa).

To make sense of this nfa, we need a new set of rules for interpreting its
actions. Historically, two quite different explanations for the behavior of an nfa

have been given.

• When the nfa confronts a nondeterministic choice, it always chooses the
“correct” transition—that is, the transition that leads to accepting the in-
put string, if any such transition exists. This model, using an omniscient

2In this case, we can safely coalesce s0 and s1. A general set of conditions for safely
coalescing states is given in Section 2.9.1.

2.6. NON-DETERMINISTIC FINITE AUTOMATA 31

nfa, is appealing because it maintains (on the surface) the well-defined ac-
cepting mechanism of the nfa. Of course, implementing nondeterministic
choice in this way would be quite difficult.

• When the nfa confronts a nondeterministic choice, it clones itself to pur-
sue each possible transition. When any instance of the nfa exhausts its
input and finds itself in a final state, it reports success and all its clones
terminate. This model, while somewhat more complex, clearly pursues the
complete set of paths through the nfa’s transition graph. It correspond
more closely to a realizable algorithm for interpreting the nfa’s behavior.

In either model, it is worthwhile to formalize the acceptance criteria for an nfa.
An nfa (Q, Σ, δ, q0, F) halts on an input string s1s2s3 . . . sk if and only if there
exists a path through the transition diagram that starts in q0 and ends in some
qk ∈ F such that the edge labels along the path spell out the input string. In
other words, the ith edge in the path must have the label si. This definition is
consistent with either model of the nfa’s behavior.

Any nfa can be simulated on a dfa. To see this intuitively, consider the set
of states that represent a configuration of the nfa at some point in the input
string. There can be, at most, a finite number of clones, each in a unique state.3

We can build a dfa that simulates the nfa. States in the dfa will correspond
to collections of states in the nfa. This may lead to an exponential blowup in
the state space, since QDFA might be as large as 2QNF A . But, the resulting dfa

still makes one transition per input character, so the simulation runs in time
that grows linearly in the length of the input string. The nfa to dfa simulation
has a potential space problem, but not a time problem. The actual construction
is described in Section 2.7.

Note that the following dfa recognizes the same input language as our nfa

for a∗ab

��
��

s0 �

a

��
��

s1

��
�

a

�
b

��
��
��
	

s2

Rather than recognizing the language as a∗ab, it recognizes the equivalent lan-
guage aa∗b, or a+b.

More Closure Properties The relationship between a regular expression and a
finite automaton provides a simple argument to show that regular expressions
are closed under complement and intersection.

To see the closure property for complement, consider a regular expression r.
To build a recognizer for the complement of r, written r, we must first make the
implicit transitions to an error state se explicit. This ensures that each state has
a transition on every potential input symbol. Next, we reverse the designation

3The number of clones cannot exceed the length of the input string multiplied times the
maximum number of nondeterministic transitions per state. Since both the input string and
the transition graph are finite, their product must be finite.

32 CHAPTER 2. LEXICAL ANALYSIS

��
��

si ��
��
��
��

sj�
a

nfa for a
��
��

sk ��
��
��
��

sl�
b

nfa for b

��
��

si ��
��

sj�
a

nfa for ab
��
��

sk ��
��
��
��

sl�
b

�
ε

��
��

sm
�
���ε

H
HHjε

��
��

si �a

��
��

sk �b

��
��

sj
H
HHj

ε

��
��

sl
�
���

ε
��
��
��
��

sn

nfa for a | b

��
��

sp �ε ��
��

si �a ��
��

sj �ε ��
��
��
��
�

ε

�

ε

sq

nfa for a∗

Figure 2.5: Components of Thompson’s Construction

of final states—every final state becomes a non-final state and every non-final
state becomes a final state. The resulting recognizer fails on every word in
L(r) and succeeds on every word not in L(r). By definition, this automaton
recognizes L(r) = {w ∈ Σ∗ | w 	 ∈L(r)}.

Closure under complement is not strictly necessary for scanner construction.
However, we can use this property to expand the range of input expressions
allowed by a scanner generator. In some situations, complement provides a
convenient notation for specifying a lexical pattern. Scanner generators often
allow its use.

The argument for closure under intersection is somewhat more complex. It
involves constructing an automaton whose state space contains the Cartesian
product of the state spaces of the recognizers for r and s. The details are left
as an exercise for the reader.

2.7. FROM REGULAR EXPRESSION TO SCANNER 33

2.7 From Regular Expression to Scanner

The goal of our work with fas is to automate the process of building an exe-
cutable scanner from a collections of regular expressions. We will show how to
accomplish this in two steps: using Thompson’s construction to build an nfa

from a re [50] (Section 2.7.1) and using the subset construction to convert the
nfa into a dfa (Section 2.7.2). The resulting dfa can be transformed into a
minimal dfa—that is, one with the minimal number of states. That transfor-
mation is presented later, in Section 2.8.1.

In truth, we can construct a dfa directly from a re. Since the direct con-
struction combines the two separate steps, it may be more efficient. However,
understanding the direct method requires a thorough knowledge of the indi-
vidual steps. Therefore, we first present the two-step construction; the direct
method is presented later, along with other useful transformations on automata.

2.7.1 Regular Expression to NFA

The first step in moving from a regular expression to an implemented scanner is
deriving an nfa from the re. The construction follows a straightforward idea.
It has a template for building the nfa that corresponds to a single letter re,
and transformations on the nfas to represent the impact of the re operators,
concatenation, alternation, and closure. Figure 2.5 shows the trivial nfa for the
res a and b, as well as the transformations to form the res ab, a|b, and a∗.

The construction proceeds by building a trivial nfa, and applying the trans-
formations to the collection of trivial nfas in the order of the relative prece-
dence of the operators. For the regular expression a(b|c)∗, the construction
would proceed by building nfas for a, b, and c. Next, it would build the nfa

for b|c, then (b|c)∗, and, finally, for a(b|c)∗. Figure 2.6 shows this sequence of
transformations.

Thompson’s construction relies on several properties of res. It relies on the
obvious and direct correspondence between the re operators and the transfor-
mations on the nfas. It combines this with the closure properties on res for
assurance that the transformations produce valid nfas. Finally, it uses ε-moves
to connect the subexpressions; this permits the transformations to be simple
templates. For example, the template for a∗ looks somewhat contrived; it adds
extra states to avoid introducing a cycle of ε-moves.

The nfas derived from Thompson’s construction have a number of useful
properties.

1. Each has a single start state and a single final state. This simplifies the
application of the transformations.

2. Any state that is the source or sink of an ε-move was, at some point in
the process, the start state or final state of one of the nfas representing a
partial solution.

3. A state has at most two entering and two exiting ε-moves, and at most
one entering and one exiting move on a symbol in the alphabet.

34 CHAPTER 2. LEXICAL ANALYSIS

��
��

s0 �
a

��
��

s1 ��
��

s2 �
b

��
��

s3 ��
��

�
cs4 ��
��

s5

nfas for a, b and c

��
��

s6
�
���ε

H
HHjε

��
��

s2 �b

��
��

s4 �c

��
��

s3
H
HHj

ε

��
��

s5
�
���

ε
��
��
��
��

s7

nfa for b | c

��
��

�εs8 ��
��

s6
�
���ε

H
HHjε

��
��

s2 �b

��
��

s4 �c

��
��

s3
H
HHj

ε

��
��

s5
�
���

ε
��
��

s7 �ε ��
��
��
��

s9

ε

ε

�

�

nfa for (b | c)∗

��
��

s0 �a ��
��

s1

�

ε

��
��

�εs8 ��
��

s6
�
���ε

H
HHjε

��
��

s2 �b

��
��

s4 �c

��
��

s3
H
HHj

ε

��
��

s5
�
���

ε
��
��

s7 �ε

��
��
��
��

s9

ε

ε

�

�

nfa for a(b | c)∗

Figure 2.6: Thompson’s construction for a(b|c)∗

2.7. FROM REGULAR EXPRESSION TO SCANNER 35

1. S ← ε-closure(q0N)
2. while (S is still changing)
3. for each si ∈ S
4. for each character α ∈ Σ
5. if ε-closure(move(si ,α) 	∈ S)
6. add it to S as sj

7. T [si, α] ← sj

Figure 2.7: The Subset Construction

These properties simplify an implementation of the construction. For exam-
ple, instead of iterating over all the final states in the nfa for some arbitrary
subexpression, the construction only needs to deal with a single final state.

Notice the large number of states in the nfa that Thompson’s construction
built for a(b|c)∗. A human would likely produce a much simpler nfa, like the
following:

��
��

s0 ��
��
��
��

s1�
a

	

�

a,b

We can automatically remove many of the ε-moves present in the nfa built by
Thompson’s construction. This can radically shrink the size of the nfa. Since
the subset construction can handle ε-moves in a natural way, we will defer an
algorithm for eliminating ε-moves until Section 2.9.1.

2.7.2 The Subset Construction

To construct a dfa from an nfa, we must build the dfa that simulates the
behavior of the nfa on an arbitrary input stream. The process takes as input
an nfa N = (QN , Σ, δN , q0N , FN) and produces a dfa D = (QD, Σ, δD, q0D, FD).
The key step in the process is deriving QD and δD from QN and δN (q0D and
FD will fall out of the process in a natural way.) Figure 2.7 shows an algorithm
that does this; it is often called the subset construction.

The algorithm builds a set S whose elements are themselves sets of states
in QN . Thus, each si ∈ S is itself a subset of QN . (We will denote the set of
all subsets of QN as 2QN , called the powerset of QN .) Each si ∈ S represents a
state in QD, so each state in QD represents a collection of states in QN (and,
thus, is an element of 2QN). To construct the initial state, s0 ∈ S, it puts q0N

into s0 and then augments s0 with every state in QN that can be reached from
q0N by following one or more ε-transitions.

The algorithm abstracts this notion of following ε-transitions into a function,
called ε-closure For a state, qi, ε-closure(qi) is the set containing qi and any
other states reachable from qi by taking only ε-moves. Thus, the first step is to
construct s0 as ε-closure(q0N).

36 CHAPTER 2. LEXICAL ANALYSIS

Once S has been initialized with s0, the algorithm repeatedly iterates over
the elements of S, extending the partially constructed dfa (represented by S)
by following transitions out of each si ∈ S. The while loop iterates until it
completes a full iteration over S without adding a new set. To extend the
partial dfa represented by S, it considers each si. For each symbol α ∈ Σ, it
collects together all the nfa states qk that can be reached by a transition on α
from a state qj ∈ si.

In the algorithm, the computation of a new state is abstracted into a function
call to move. Move(si , α) returns the set of states in 2QN that are reachable from
some qi ∈ QN by taking a transition on the symbol α. These nfa states form
the core of a state in the dfa; we can call it sj . To complete sj , the algorithm
takes its ε-closure. Having computed sj , the algorithm checks if sj ∈ S. If sj 	∈S,
the algorithm adds it to S and records a transition from si to sj on α.

The while loop repeats this exhaustive attempt to extend the partial dfa

until an iteration adds no new states to S. The test in line 5 ensures that S
contains no duplicate elements. Because each si ∈ S is also an element of 2Qn ,
we know that this process must halt.

Sketch of Proof

1. 2QN is finite. (It can be large, but is finite.)
2. S contains no duplicates.
3. The while loop adds elements to S; it cannot remove them.
4. S grows monotonically.
⇒ The loop halts.

When it halts, the algorithm has constructed model of the dfa that simulates
QN . All that remains is to use S to construct QD and T to construct δD. QD

gets a state qi to represent each set si ∈ S; for any si that contains a final state
of QN , the corresponding qi is added to FD, the set of final states for the dfa.
Finally, the state constructed from s0 becomes the initial state of the dfa.

Fixed Point Computations The subset construction is an example of a style of
computation that arises regularly in Computer Science, and, in particular, in
compiler construction. These problems are characterized by iterated application
of a monotone function to some collection of sets drawn from a domain whose
structure is known.4 We call these techniques fixed point computations, because
they terminate when they reach a point where further iteration produces the
same answer—a “fixed point” in the space of successive iterates produced by
the algorithm.

Termination arguments on fixed point algorithms usually depend on the
known properties of the domain. In the case of the subset construction, we
know that each si ∈ S is also a member of 2QN , the powerset of QN . Since QN

is finite, 2QN is also finite. The body of the while loop is monotone; it can only
add elements to S. These facts, taken together, show that the while loop can
execute only a finite number of iterations. In other words, it must halt because

4A function f is monotone if, ∀x in its domain, f(x) ≥ x.

2.7. FROM REGULAR EXPRESSION TO SCANNER 37

S ← ε-closure(q0N)
while (∃ unmarked si ∈ S)

mark si

for each character α ∈ Σ
t ← ε-closure(move(si ,α))
if t 	∈ S then

add t to S as an unmarked state
T [si, α] ← t

Figure 2.8: A faster version of the Subset Construction

it can add at most | 2QN | elements to S; after that, it must halt. (It may, of
course, halt much earlier.) Many fixed point computations have considerably
tighter bounds, as we shall see.

Efficiency The algorithm shown in Figure 2.7 is particularly inefficient. It re-
computes the transitions for each state in S on each iteration of the while loop.
These transitions cannot change; they are wholly determined by the structure
of the input nfa. We can reformulate the algorithm to capitalize on this fact;
Figure 2.8 shows one way to accomplish this.

The algorithm in Figure 2.8 adds a “mark” to each element of S. When
sets are added to S, they are unmarked. When the body of the while loop
processes a set si, it marks si. This lets the algorithm avoid processing each
si multiple times. It reduces the number of invocations of ε-closure(move(si ,α))
from O(| S |2 · | Σ |) to O(| S | · | Σ |). Recall that S can be no larger than
2QN .

Unfortunately, S can become rather large. The principal determinant of
how much state expansion occurs is the degree of nondeterminism found in the
input nfa. Recall, however, that the dfa makes exactly one transition per input
character, independent of the size of QD. Thus, the use of non-determinism in
specifying and building the nfa increases the space required to represent the
corresponding dfa, but not the amount of time required for recognizing an input
string.

Computing ε-closure as a Fixed Point To compute ε-closure(), we use one of two
approaches: a straightforward, online algorithm that follows paths in the nfa’s
transition graph, or an offline algorithm that computes the ε-closure for each
state in the nfa in a single fixed point computation.

for each state n ∈ N
E(n) ← ∅

while (some E(n) has changed)
for each state n ∈ N

E(n) ← ⋃
〈n,s,ε〉 E(s)

38 CHAPTER 2. LEXICAL ANALYSIS

Here, we have used the notation 〈n, s, ε〉 to name a transition from n to s on
ε. Each E(n) contains some subset of N (an element of 2N). E(n) grows
monotonically since line five uses ∪ (not ∩). The algorithm halts when no E(n)
changes in an iteration of the outer loop. When it halts, E(n) contains the
names of all states in ε-closure(n).

We can obtain a tighter time bound by observing that | E(n) | can be no
larger than the number of states involved in a path leaving n that is labeled
entirely with ε’s. Thus, the time required for a computation must be related
to the number of nodes in that path. The largest E(n) set can have N nodes.
Consider that longest path. The algorithm cannot halt until the name of the
last node on the path reaches the first node on the path. In each iteration of
the outer loop, the name of the last node must move one or more steps closer
to the head of the path. Even with the worst ordering for that path, it must
move along one edge in the path.

At the start of the iteration, nlast ∈ E(ni) for some ni. If it has not yet
reached the head of the path, then there must be an edge 〈ni, nj, ε〉 in the path.
That node will be visited in the loop at line six, so nlast will move from E(ni)
to E(nj). Fortuitous ordering can move it along more than one ε-transition in
a single iteration of the loop at line six, but it must always move along at least
one ε-transition, unless it is in the last iteration of the outer loop.

Thus, the algorithm requires at most one while loop iteration for each edge
in the longest ε-path in the graph, plus an extra iteration to recognize that the
E sets have stabilized. Each iteration visits N nodes and does E unions. Thus,
its complexity is O(N(N + E)) or O(max(N2, NE)). This is much better than
O(2N).

We can reformulate the algorithm to improve its specific behavior by using
a worklist technique rather than a round-robin technique.

for each state n ∈ N
E(n) ← ∅

WorkList ← N
while (WorkList 	= ∅)

remove ni from worklist
E(nj) ← ⋃

〈ni,nj,ε〉 E(nj)
if E(nj) changed then

WorkList ← WorkList ∪ {nk | 〈nk, ni, ε〉 ∈ δNFA}

This version only visits a node when the E set at one of its ε-successors has
changed. Thus, it may perform fewer union operations than the round robin
version. However, its asymptotic behavior is the same. The only way to improve
its asymptotic behavior is to change the order in which nodes are removed from
the worklist. This issue will be explored in some depth when we encounter
data-flow analysis in Chapter 13.

2.7. FROM REGULAR EXPRESSION TO SCANNER 39

2.7.3 Some final points

Thus far, we have developed the mechanisms to construct a dfa implementa-
tion from a single regular expression. To be useful, a compiler’s scanner must
recognize all the syntactic categories that appear in the grammar for the source
language. What we need, then, is a recognizer that can handle all the res for
the language’s micro-syntax. Given the res for the various syntactic categories,
r1, r2, r3, . . . , rk, we can construct a single re for the entire collection by forming
(r1 | r2 | r3 | . . . | rk).

If we run this re through the entire process, building nfas for the subex-
pressions, joining them with ε-transitions, coalescing states, constructing the
dfa that simulates the nfa, and turning the dfa into executable code, we get a
scanner that recognizes precisely one word. That is, when we invoke it on some
input, it will run through the characters one at a time and accept the string if it
is in a final state when it exhausts the input. Unfortunately, most real programs
contain more than one word. We need to transform either the language or the
recognizer.

At the language level, we can insist that each word end with some easily
recognizable delimiter, like a blank or a tab. This is deceptively attractive.
Taken literally, it would require delimiters surrounding commas, operators such
as + and -, and parentheses.

At the recognizer level, we can transform the dfa slightly and change the
notion of accepting a string. For each final state, qi, we (1) create a new state
qj, (2) remove qi from F and add qj to F , and (3) make the error transition
from qi go to qj. When the scanner reaches qi and cannot legally extend the
current word, it will take the transition to qj, a final state. As a final issue, we
must make the scanner stop, backspace the input by one character, and accept
in each new final state. With these modifications, the recognizer will discover
the longest legal keyword that is a prefix of the input string.

What about words that match more than one pattern? Because the methods
described in this chapter build from a base of non-determinism, we can union
together these arbitrary res without worrying about conflicting rules. For exam-
ple, the specification for an Algol identifier admits all of the reserved keywords of
the language. The compiler writer has a choice on handling this situation. The
scanner can recognize those keywords as identifiers and look up each identifier
in a pre-computed table to discover keywords, or it can include a re for each
keyword. This latter case introduces non-determinism; the transformations will
handle it correctly. It also introduces a more subtle problem—the final nfa

reaches two distinct final states, one recognizing the keyword and the other rec-
ognizing the identifier, and is expected to consistently choose the former. To
achieve the desired behavior, scanner generators usually offer a mechanism for
prioritizing res to resolve such conflicts.

Lex and its descendants prioritize patterns by the order in which they appear
in the input file. Thus, placing keyword patterns before the identifier pattern
would ensure the desired behavior. The implementation can ensure that the
final states for patterns are numbered in a order that corresponds to this priority

40 CHAPTER 2. LEXICAL ANALYSIS

P ← { F, (Q - F) }
while (P is still changing)

T ← ∅
for each set s ∈ P

for each α ∈ Σ
partition s by α

into s1, s2, s3, . . .sk

T ← T ∪ s1, s2, s3, . . . sk

if T 	= P then
P ← T

Figure 2.9: DFA minimization algorithm

ordering. When the scanner reaches a state representing multiple final states,
it uses the action associated with the lowest-numbered final state.

2.8 Better Implementations

A straightforward scanner generator would take as input a set of regular expres-
sions, construct the nfa for each re, combine them using ε-transitions (using the
pattern for a|b in Thompson’s construction), and perform the subset construc-
tion to create the corresponding dfa. To convert the dfa into an executable
program, it would encode the transition function into a table indexed by cur-
rent state and input character, and plug the table into a fairly standard skeleton
scanner, like the one shown in Figure 2.3.

While this path from a collection of regular expressions to a working scanner
is a little long, each of the steps is well understood. This is a good example
of the kind of tedious process that is well suited to automation by a computer.
However, a number of refinements to the automatic construction process can
improve the quality of the resulting scanner or speed up the construction.

2.8.1 DFA minimization

The nfa to dfa conversion can create a dfa with a large set of states. While
this does not increase the number of instructions required to scan a given string,
it does increase the memory requirements of the recognizer. On modern com-
puters, the speed of memory accesses often governs the speed of computation.
Smaller tables use less space on disk, in ram, and in the processor’s cache. Each
of those can be an advantage.

To minimize the size of the dfa, D = (Q, Σ, δ, q0, F), we need a technique
for recognizing when two states are equivalent—that is, they produce the same
behavior on any input string. Figure 2.9 shows an algorithm that partitions the
states of a dfa into equivalence classes based on their behavior relative to an
input string.

2.8. BETTER IMPLEMENTATIONS 41

Because the algorithm must also preserve halting behavior, the algorithm
cannot place a final state in the same class as a non-final state. Thus, the initial
partitioning step divides Q into two equivalence classes, F and Q − F .

Each iteration of the while loop refines the current partition, P , by split-
ting apart sets in P based on their outbound transitions. Consider a set
p = {qi, qj, qk} in the current partition. Assume that qi, qj, and qk all have
transitions on some symbol α ∈ Σ, with qx = δ(qi, α), qy = δ(qj, α), and
qz = δ(qk, α). If all of qx, qy, and qz are in the same set in the current partition,
then qi, qj, and qk should remain in the same set in the new partition. If, on the
other hand, qz is in a different set than qx and qy, then the algorithm splits p
into p1 = {qi, qj} and p2 = {qk}, and puts both p1 and p2 into the new partition.
This is the critical step in the algorithm.

When the algorithm halts, the final partition cannot be refined. Thus, for
a set s ∈ P , the states in s cannot be distinguished by their behavior on an
input string. From the partition, we can construct a new dfa by using a single
state to represent each set of states in P , and adding the appropriate transitions
between these new representative states. For each state s ∈ P , the transition
out of s on some α ∈ Σ must go to a single set t in P ; if this were not the case,
the algorithm would have split s into two or more smaller sets.

To construct the new dfa, we simply create a state to represent each p ∈ P ,
and add the appropriate transitions. After that, we need to remove any states
not reachable from the entry state, along with any state that has transitions back
to itself on every α ∈ Σ. (Unless, of course, we want an explicit representation
of the error state.) The resulting dfa is minimal; we leave the proof to the
interested reader.

This algorithm is another example of a fixed point computation. P is finite;
at most, it can contain | Q | elements. The body of the while loop can only
increase the size of P ; it splits sets in P but never combines them. The worst
case behavior occurs when each state in Q has different behavior; in that case,
the while loop halts when P has a unique set for each q ∈ Q. (This would occur
if the algorithm was invoked on a minimal dfa.)

2.8.2 Programming Tricks

Explicit State Manipulation Versus Table Lookup The example code in Figure 2.3
uses an explicit variable, state, to hold the current state of the dfa. The while
loop tests char against eof, computes a new state, calls action to interpret it,
advances the input stream, and branches back to the top of the loop. The
implementation spends much of its time manipulating or testing the state (and
we have not yet explicitly discussed the expense incurred in the array lookup
to implement the transition table or the logic required to support the switch
statement (see Chapter 8).

We can avoid much of this overhead by encoding the state information implic-
itly in the program counter. In this model, each state checks the next character
against its transitions, and branches directly to the next state. This creates a
program with complex control flow; it resembles nothing as much as a jumbled

42 CHAPTER 2. LEXICAL ANALYSIS

char ← next character;

s0: word ← char ;
char ← next character;
if (char = ’r’) then

goto s1;
else goto se;

s1: word ← word + char;
char ← next character;
if (’0’≤char≤’9’) then

goto s2;
else goto se;

s2: word ← word + char;
char ← next character;
if (’0’≤char≤’9’) then

goto s2;
else if (char = eof) then

report acceptance;
else goto se;

se: print error message;
return failure;

Figure 2.10: A direct-coded recognizer for “r digit digit∗”

heap of spaghetti. Figure 2.10 shows a version of the skeleton recognizer written
in this style. It is both shorter and simpler than the table-driven version. It
should be faster, because the overhead per state is lower than in table-lookup
version.

Of course, this implementation paradigm violates many of the precepts of
structured programming. In a small code, like the example, this style may be
comprehensible. As the re specification becomes more complex and generates
both more states and more transitions, the added complexity can make it quite
difficult to follow. If the code is generated directly from a collection of res,
using automatic tools, there is little reason for a human to directly read or
debug the scanner code. The additional speed obtained from lower overhead
and better memory locality5 makes direct-coding an attractive option.

Hashing Keywords versus Directly Encoding Them The scanner writer must
choose how to specify reserved keywords in the source programming language—
words like for, while, if, then, and else. These words can be written as
regular expressions in the scanner specification, or they can be folded into the
set of identifiers and recognized using a table lookup in the actions associated
with an identifier.

With a reasonably implemented hash table, the expected case behavior of
the two schemes should differ by a constant amount. The dfa requires time
proportional to the length of the keyword, and the hash mechanism adds a
constant time overhead after recognition.

From an implementation perspective, however, direct coding is simpler. It
avoids the need for a separate hash table of reserved words, along with the
cost of a hash lookup on every identifier. Direct coding increases the size of
the dfa from which the scanner is built. This can make the scanner’s memory
requirements larger and might require more code to select the transitions out

5Large tables may have rather poor locality.

2.9. RELATED RESULTS 43

of some states. (The actual impact of these effects undoubtedly depend on the
behavior of the memory hierarchy.)

On the other hand, using a reserved word table also requires both memory
and code. With a reserved word table, the cost of recognizing every identifier
increases.

Specifying Actions In building a scanner generator, the designer can allow ac-
tions on each transition in the dfa or only in the final states of the dfa. This
choice has a strong impact on the efficiency of the resulting dfa. Consider, for
example, a re that recognizes positive integers with a single leading zero.

0 | (1 | 2 | · · · | 9)(0 | 1 | 2 · · · | 9)∗

An scanner generator that allows actions only in accepting states will force the
user to rescan the string to compute its actual value. Thus, the scanner will
step through each character of the already recognized word, performing some
appropriate action to convert the text into a decimal value. Worse yet, if the
system provides a built-in mechanism for the conversion, the programmer will
likely use it, adding the overhead of a procedure call to this simple and frequently
executed operation. (On Unix systems, many lex-generated scanners contain
an action that invokes sscanf() to perform precisely this function.)

If, however, the scanner generator allows actions on each transition, the
compiler writer can implement the ancient assembly-language trick for this con-
version. On recognizing an initial digit, the accumulator is set to the value of
the recognized digit. On each subsequent digit, the accumulator is multiplied by
ten and the new digit added to it. This algorithm avoids touching the character
twice; it produces the result quickly and inline using the well-known conversion
algorithm; and it eliminates the string manipulation overhead implicit in the
first solution. (The scanner likely copies characters from the input buffer into
some result string before on each transition in the first scenario.)

In general, the scanner should avoid processing each character multiple
times. The more freedom that it allows the compiler writer in the placement of
actions, the simpler it becomes to implement effective and efficient algorithms
that avoid copying characters around and examining them several times.

2.9 Related Results

Regular expressions and their corresponding automata have been studied for
many years. This section explores several related issues. These results do not
play a direct role in scanner construction; however, they may be of intellectual
interest in the discussion of scanner construction.

2.9.1 Eliminating ε-moves

When we applied Thompson’s construction to the regular expression a(b|c)∗,
the resulting nfa had ten states and twelve transitions. All but three of the
transitions are ε-moves. A typical compiler-construction student would produce
a two state dfa with three transitions and no ε-moves.

44 CHAPTER 2. LEXICAL ANALYSIS

��
��

s0 ��
��
��
��

s1�
a

	

�

a,b

Eliminating ε-moves can both shrink and simplify an nfa. While it is not strictly
necessary in the process of converting a set of res into a dfa, it can be helpful
if humans are to examine the automata at any point in the process.

Some ε-moves can be easily eliminated. The nfa shown on the left can arise
from Thompson’s construction. The source of the ε-move, state sf , was a final
state for some subexpression of the re ending in α; the sink of the ε-move, state
t0, was the initial state of another subexpression beginning with either γ, δ, or
θ.

��
��

sf�α �ε

��
��

t0 HHj

���
γ

δ

��� β
⇒ ��
��

sf�α

��� β

HHj

���
γ

δ

In this particular case, we can eliminate the ε-move by combining the two states,
sf and t0, into a single state. To accomplish this, we need to make sf the source
of each edge leaving t0, and sf the sink of any edge entering t0. This produces
the simplified nfa shown on the right. Notice that coalescing can create a state
with multiple transitions on the same symbol:

��
��

si

��
��

sm

��
��

sj ��
��

sk

�
�Rα

�
��ε

�α

⇒ ��
��

sij

��
��

sm

��
��

sk

�
�Rα

�
��α

If sk and sm are distinct states, then both 〈sij, sk, α〉 and 〈sij , sm, α〉 should
remain. If sk and sm are the same state, then a single transition will suffice. A
more general version of this problem arises if sk and sm are distinct, but the
sub-nfas that they begin recognize the same languages. The dfa minimization
algorithm should eliminate this latter kind of duplication.

Some ε-moves can be eliminated by simply coalescing states. Obviously, it
works when the ε-move is the only edge leaving its source state and the only
edge entering its sink state. In general, however, the states connected by an
ε-move cannot be directly coalesced. Consider the following modification of the
earlier nfa, where we have added one additional edge—a transition from sf to
itself on ϕ.

��
��

sf�α �

��� ϕ

ε

��
��

t0 HHj

���
γ

δ

��� β
	⇒ ��
��

sf�α

���
ϕ, β

HHj

���
γ

δ

2.9. RELATED RESULTS 45

for each edge e ∈ E
if e = 〈qi, qj, ε〉 then

add e to WorkList

while (WorkList 	= ∅)
remove e = 〈qi, qj, α〉 from WorkList
if α = ε then

for each 〈qj, qk, β〉 in E
add 〈qi, qk, β〉 to E
if β = ε then

add 〈qi, qk, β〉 to WorkList
delete 〈qi, qj, ε〉 from E
if qj ∈ F then

add qi to F

for each state qi ∈ N
if qi has no entering edge then

delete qi from N

Figure 2.11: Removing ε-transitions

The nfa on the right would result from combining the states. Where the original
nfa accepted words that contained the substring ϕ∗β∗, the new nfa accepts
words containing (ϕ | β)∗. Coalescing the states changed the language!

Figure 2.11 shows an algorithm that eliminates ε-moves by duplicating tran-
sitions. The underlying idea is quite simple. If there exists a transition 〈qi, qj, ε〉,
it copies each transition leaving qj so that an equivalent transition leaves qi, and
then deletes 〈qi, qj, ε〉. This has the effect of eliminating paths of the form ε∗α
and replacing them with a direct transition on α.

To understand its behavior, let’s apply it to the nfa for a(b|c)∗ shown
in Figure 2.6. The first step puts all of the ε-moves onto a worklist. Next,
the algorithm iterates over the worklist, copying edges, deleting ε-moves, and
updating the set of final states, F . Figure 2.12 summarizes the iterations. The
left column shows the edge removed from the worklist; the center column shows
the transitions added by copying; the right column shows any states added to F .
To clarify the algorithm’s behavior, we have removed edges from the worklist in
phases. The horizontal lines divide the table into phases. Thus, the first section,
from 〈1,8,ε〉 to 〈7,9,ε〉 contains all the edges put on the worklist initially. The
second section includes all edges added during the first phase. The final section
includes all edges added during the second phase. Since it adds no additional
ε-moves, the worklist is empty and the algorithm halts.

46 CHAPTER 2. LEXICAL ANALYSIS

ε-move from Add
WorkList Adds transitions to F

1,8 〈1,9,ε〉 〈1,6,ε〉
8,6 〈8,2,ε〉 〈8,4,ε〉
8,9 — 8
6,2 〈6,3,b〉
6,4 〈6,5,c〉
3,7 〈3,6,ε〉 〈3,9,ε〉 3
5,7 〈5,6,ε〉 〈5,9,ε〉 5
7,6 〈7,2,ε〉 〈7,4,ε〉
7,9 — 7
1,9 — 1
1,6 〈1,3,b〉 〈1,5,c〉
8,2 〈8,3,b〉
8,4 〈8,5,c〉
3,6 〈3,2,ε〉 〈3,4,ε〉
3,9 — 3
5,6 〈5,2,ε〉 〈5,4,ε〉
5,9 — 5
7,2 〈7,3,b〉
7,4 〈7,5,c〉
3,2 〈3,3,b〉
3,4 〈3,5,c〉
5,2 〈5,3,b〉
5,4 〈5,5,c〉

Figure 2.12: ε-removal algorithm applied to a(b|c)∗

��
��

s0 �
a

��
��
��
��

s1
Q
QQsc

�
���b

��
��
��
��	

�
bs5

��
��
��
��	

�
cs3

�
c �b

The resulting nfa is much simpler than the original. It has four states and
seven transitions, none on ε. Of course, it is still somewhat more complex than
the two state, three transition nfa shown earlier. Applying the dfa minimiza-
tion algorithm would simplify this automaton further.

2.9.2 Building a RE from a DFA

In Section 2.7, we showed how to build a dfa from an arbitrary regular ex-
pression. This can be viewed as a constructive proof that dfas are at least as
powerful as res. In this section, we present a simple algorithm that constructs

2.9. RELATED RESULTS 47

for i = 1 to N
for j = 1 to N

R0
ij = {a | δ(si, a) = sj}

if (i = j) then

R0
ij = R0

ij ∪ {ε}
for k = 1 to N

for i = 1 to N
for j = 1 to N

Rk
ij = Rk−1

ik (Rk−1
kk)∗Rk−1

kj ∪ Rk−1
ij

L =
⋃

sj∈F RN
1j

Figure 2.13: From a dfa to a re

a re to describe the set of strings accepted by an arbitrary dfa. It shows that
res are at least as powerful as dfas. Taken together, these constructions form
the basis of a proof that res are equivalent to dfas.

Consider the diagram of a dfa as a graph with labeled edges. The problem
of deriving a re that describes the language accepted by the dfa corresponds to
a path problem over the dfa’s transition diagram. The set of strings in L(dfa)
consists of the set edge labels for every path from q0 to qi, ∀qi ∈ F . For any
dfa with a cyclic transition graph, the set of such paths is infinite. Fortunately,
the res have the Kleene-closure operator to handle this case and summarize the
complete set of sub-paths created by a cycle.

Several techniques can be used to compute this path expression. The algo-
rithm generates an expression that represents the labels along all paths between
two nodes, for each pair of nodes in the transition diagram. Then, it unions to-
gether the expressions for paths from q0 to qi, ∀qi ∈ F. This algorithm, shown
in Figure 2.13, systematically constructs the path expressions for all paths. As-
sume, without loss of generality, that we can number the nodes from 1 to N ,
with q0 having the number 1.

The algorithm computes a set of expressions, denoted Rk
ij, for all the relevant

values of i, j, and k. Rk
ij is an expression that describes all paths through the

transition graph, from state i to state j without going through a state numbered
higher than k. Here, “through” means both entering and leaving, so that R2

1,16

can be non-empty.
Initially, it sets R0

ij to contain the labels of all edges that run directly from
i to j. Over successive iterations, it builds up longer paths by adding to Rk−1

ij

the paths that actually pass through k on their way from i to j. Given Rk−1
ij ,

the set of paths added by going from k − 1 to k is exactly the set of paths that
run from i to j using no state higher than k − 1, concatenated with the paths
from k to itself that pass through no state higher than k − 1, followed by the
paths from k to j that pass through no state higher than k − 1. That is, each
iteration of the loop on k adds the paths that pass through k to each set Rk−1

ij .

48 CHAPTER 2. LEXICAL ANALYSIS

1. INTEGERFUNCTIONA
2. PARAMETER(A=6,B=2)
3. IMPLICIT CHARACTER*(A-B)(A-B)
4. INTEGER FORMAT(10),IF(10),DO9E1
5. 100 FORMAT(4H)=(3)
6. 200 FORMAT(4)=(3)
7. DO9E1=1
8. DO9E1=1,2
9. 9 IF(X)=1

10. IF(X)H=1
11. IF(X)300,200
12. 300 END
13. C this is a comment
14. $FILE(1)
15. END

Figure 2.14: Scanning Fortran

When the k-loop terminates, the various Rk
ij expressions account for all paths

in the transition graph. Now, we must compute the set of paths that being in
state 1 and end in some final state, sj ∈ F .

2.10 Lexical Follies of Real Programming languages

This chapter has dealt, largely, with the theory of specifying and automatically
generating scanners. Most modern programming languages have a simple lexi-
cal structure. In fact, the development of a sound theoretical basis for scanning
probably influenced language design in a positive way. Nonetheless, lexical dif-
ficulties do arise in the design of programming languages. This section presents
several examples.

To see how difficult scanning can be, consider the example Fortran frag-
ment shown in Figure 2.14. (The example is due to Dr. F.K. Zadeck.) In
Fortran 66 (and Fortran 77), blanks are not significant—the scanner ig-
nores them. Identifiers are limited to six characters, and the language relies on
this property to make some constructs recognizable.

In line 1, we find a declaration of A as an integer function. To break this into
words, the scanner must read INTEGE and notice that the next character, R, is
neither an open parenthesis, as in INTEGE(10) = J nor an assignment operator,
as in INTEGE = J This fact, combined with the six character limit on identifiers,
lets the scanner understand that INTEGE is the start of the reserved keyword
INTEGER. The next reserved keyword, FUNCTION requires application of the same
six character limit. After recognizing that FUNCTIONA has too many characters
to be an INTEGER variable, the scanner can conclude that it has three words on
the first line, INTEGER, FUNCTION, and A.

The second line declares A as a PARAMETER that is macro-expanded to 6 when

2.10. LEXICAL FOLLIES OF REAL PROGRAMMING LANGUAGES 49

Digression: The Hazards of Bad Lexical Design

An apocryphal story has long circulated in the compiler construction com-
munity. It suggests than an early Nasa mission to Mars (or Venus, or the
Moon,) crashed because of a missing comma in the Fortran code for a do

loop. Of course, the body of the loop would have executed once, rather than
the intended number of times. While we doubt the truth of the story, it has
achieved the status of an “urban legend” among compiler writers.

it occurs as a word on its own. Similarly, B expands to 2. Again, the scanner
must rely on the six character limit.

With the parameters expanded, line three scans as IMPLICIT CHARACTER*4
(A-B). It tells the compiler that any variable beginning with the letters A or B
has the data type of a four-character string. Of course, the six character limit
makes it possible for the scanner to recognize IMPLICIT.

Line four has no new lexical complexity. It declares INTEGER arrays of ten
element named FORMAT and IF, and a scalar INTEGER variable named DO9E1.

Line five begins with a statement label, 100. Since Fortran was designed
for punch cards, it has a fixed-field format for each line. Columns 1 through 5
are reserved for statement labels; a C in column 1 indicates that the entire line is
a comment. Column 6 is empty, unless the line is a continuation of the previous
line. The remainder of line five is a FORMAT statement. The notation 4H)=(3 is
a “Hollerith constant.” 4H indicates that the following four characters form a
literal constant. Thus, the entire line scans as:

〈label, 100〉, 〈format keyword〉, 〈’(’〉 〈constant, ‘‘)=(3’’〉 〈’)’〉

This is a FORMAT statement, used to specify the way that characters are read or
written in a READ, WRITE, or PRINT statement.

Line six is an assignment of the value 3 to the fourth element of the INTEGER
array FORMAT, declared back on line 4. To distinguish between the variable and
the keyword, the scanner must read past the (4) to reach the equals sign. Since
the equals sign indicates an assignment statement, the text to its left must be a
reference to a variable. Thus, FORMAT is the variable rather than the keyword.
Of course, adding the H from line 5 would change that interpretation.

Line 7 assigns the value 1 to the variable DO9E1, while line 8 marks the
beginning of a DO loop that ends at label 9 and uses the induction variable
E1. The difference between these lines lies in the comma following =1. The
scanner cannot decide whether DO9E1 is a variable or the sequence 〈keyword,DO〉,
〈label,9〉, 〈variable,E1〉 until it reaches either the comma or the end of the line.

The next three lines look quite similar, but scan differently. The first is an
assignment of the value 1 to the Xth element of the array IF declared on line
4. The second is an IF statement that assigns 1 to H if X evaluates to true.
The third branches to either label 200 or 300, depending on the relationship
between the value of X and zero. In each case, the scanner must proceed well
beyond the IF before it can classify IF as a variable or a keyword.

50 CHAPTER 2. LEXICAL ANALYSIS

The final complication begins on line 12. Taken by itself, the line appears
to be an END statement, which usually appears at the end of a procedure. It is
followed, on line 13, by a comment. The comment is trivially recognized by of
the character in column 1. However, line 14 is a continuation of the previous
statement, on line 12. To see this, the scanner must read line 13, discover that
it is a comment, and read line 13 to discover the $ in column 6. At this point,
it finds the string FILE. Since blanks (and intervening comment cards) are not
significant, the word on line 12 is actually ENDFILE, split across an internal
comment. Thus, lines 12 and 14 form an ENDFILE statement that marks the file
designated as 1 as finished.

The last line, 15, is truly an END statement.
To scan this simple piece of Fortran text, the scanner needed to look

arbitrarily far ahead in the text—limited only by the end of the statement.
In the process, it applied idiosyncratic rules related to identifier length, to the
placement of symbols like commas and equal signs. It had to read to the end of
some statements to categorize the initial word of a line.

While these problems in Fortran are the result of language design from
the late 1950’s, more modern languages have their own occasional lexical lapses.
For example, pl/i, designed a decade later, discarded the notion of reserved
keywords. Thus, the programmer could use words like if, then, and while
as variable names. Rampant and tasteless use of that “feature” led to several
examples of lexical confusion.

if then then then = else; else else = then;

This code fragment is an if-then-else construct that controls assignments be-
tween two variables named then and else. The choice between the then-part
and the else-part is based on an expression consisting of a single reference to
the variable then. It is unclear why anyone would want to write this fragment.

More difficult, from a lexical perspective, is the following set of statements.

declare (a1,a2,a3,a4) fixed binary;
declare (a1,a2,a3,a4) = 2;

The first declares four integer variables, named a1, a2, a3, and a4. The second
is an assignment to an element of a four-dimensional array named declare.
(It presupposes the existence of a declaration for the array.) This example ex-
hibits a Fortran-like problem. The compiler must scan to = before discovering
whether declare is a keyword or an identifier. Since pl/i places no limit on the
comma-separated list’s length, the scanner must examine an arbitrary amount
of right context before it can determine the syntactic category for declare. This
complicates the problem of buffering the input in the scanner.

As a final example, consider the syntax of c++, a language designed in the
late 1980s. The template syntax of c++ allows the fragment

PriorityQueue<MyType>

If MyType is itself a template, this can lead to the fragment

2.11. SUMMARY AND PERSPECTIVE 51

PriorityQueue<MyType<int>>

which seems straight forward to scan. Unfortunately, >> is a c++ operator
for writing to the output stream, making this fragment mildly confusing. The
c++ standard actually requires one or more blank between two consecutive
angle brackets that end a template definition. However, many c++ compilers
recognize this detail as one that programmers will routinely overlook. Thus, they
correctly handle the case of the missing blank. This confusion can be resolved
in the parser by matching the angled brackets with the corresponding opening
brackets. The scanner, of course, cannot match the brackets. Recognizing >>
as either two closing occurrences of > or as a single operator requires some
coordination between the scanner and the parser.

2.11 Summary and Perspective

The widespread use of regular expressions for searching and scanning is one of
the success stories of modern computer science. These ideas were developed
as an early part of the theory of formal languages and automata. They are
routinely applied in tools ranging from text editors to compilers as a means of
concisely specifying groups of strings (that happen to be regular languages).

Most modern compilers use generated scanners. The properties of determin-
istic finite automata match quite closely the demands of a compiler. The cost
of recognizing a word is proportional to its length. The overhead per charac-
ter is quite small in a careful implementation. The number of states can be
reduced with the widely-used minimization algorithm. Direct-encoding of the
states provides a speed boost over a table-driven interpreter. The widely avail-
able scanner generators are good enough that hand-implementation can rarely,
if ever, be justified.

Questions

1. Consider the following regular expression:

r0 | r00 | r1 | r01 | r2 | r02 | ... | r30 | r31

Apply the constructions to build

(a) the nfa from the re,
(b) the dfa from the nfa, and
(c) the re from the dfa.

Explain any differences between the original re and the re that you pro-
duced.

How does the dfa that you built compare with the dfa built in the chapter
from following re

r ((0 | 1 | 2) (digit | ε) | (4 | 5 | 6 | 7 | 8 | 9) | (3 | 30 | 31) ?

52 CHAPTER 2. LEXICAL ANALYSIS

Chapter 3

Parsing

3.1 Introduction

The parser’s task is to analyze the input program, as abstracted by the scanner,
and determine whether or not the program constitutes a legal sentence in the
source language. Like lexical analysis, syntax analysis has been studied exten-
sively. As we shall see, results from the formal treatment of syntax analysis lead
to the creation of efficient parsers for large families of languages.

Many techniques have been proposed for parsing. Many tools have been built
that largely automate parser construction. In this chapter, we will examine two
specific parsing techniques. Both techniques are capable of producing robust, ef-
ficient parsers for typical programming languages. Using the first method, called
top-down, recursive-descent parsing, we will construct a hand-coded parser in a
systematic way. Recursive-descent parsers are typically compact and efficient.
The parsing algorithm used is easy to understand and implement. The second
method, called bottom-up, LR(1) parsing, uses results from formal language the-
ory to construct a parsing automaton. We will explore how tools can directly
generate a parsing automaton and its implementation from a specification of the
language’s syntax. Lr(1) parsers are efficient and general; the tools for building
lr(1) parsers are widely available for little or no cost.

Many other techniques for building parsers have been explored in practice,
in the research literature, and in other textbooks. These include bottom-up
parsers like slr(1), lalr(1), and operator precedence, and automated top-down
parsers like ll(1) parsers. If you need a detailed explanation of one of these
techniques, we suggest that you consult the older textbooks listed in the chapter
bibliography for an explanation of how those techniques differ from lr(1).

3.2 Expressing Syntax

A parser is, essentially, an engine for determining whether or not the input
program is a valid sentence in the source language. To answer this question, we
need both a formal mechanism for specifying the syntax of the input language,

53

54 CHAPTER 3. PARSING

and a systematic method of determining membership in the formally-specified
language. This section describes one mechanism for expressing syntax: a simple
variation on the Backus-Naur form for writing formal grammars. The remainder
of the chapter discusses techniques for determining membership in the language
described by a formal grammar.

3.2.1 Context-Free Grammars

The traditional notation for expressing syntax is a grammar—a collection of
rules that define, mathematically, when a string of symbols is actually a sentence
in the language.

Computer scientists usually describe the syntactic structure of a language
using an abstraction called a context-free grammar (cfg). A cfg, G, is a set of
rules that describe how to form sentences; the collection of sentences that can
be derived from G is called the language defined by G, and denoted L(G). An
example may help. Consider the following grammar, which we call SN :

SheepNoise → SheepNoise baa
| baa

The first rule reads “SheepNoise can derive the string SheepNoise baa,” where
SheepNoise is a syntactic variable and baa is a word in the language described
by the grammar. The second rule reads “SheepNoise can also derive the string
baa.”

To understand the relationship between the SN grammar and L(SN), we
need to specify how to apply the rules in the grammar to derive sentences in
L(SN). To begin, we must identIfy the goal symbol or start symbol of SN . The
goal symbol represents the set of all strings in L(SN). As such, it cannot be one
of the words in the language. Instead, it must be one of the syntactic variables
introduced to add structure and abstraction to the language. Since SN has only
one syntactic variable, SheepNoise must be the goal symbol.

To derive a sentence, we begin with the string consisting of just the goal
symbol. Next, we pick a syntactic variable, α, in the string and a rule α → β
that has α on its left-hand side. We rewrite the string by replacing the selected
occurrence of α with the right-hand side of the rule, β. We repeat this process
until the string contains no more syntactic variables; at this point, the string
consists entirely of words in the language, or terminal symbols.

At each point in this derivation process, the string is a collection of symbols
drawn from the union of the set of syntactic variables and the set of words in the
language. A string of syntactic variables and words is considered a sentential
form if some valid sentence can be derived from it—that is, if it occurs in some
step of a valid derivation. If we begin with SheepNoise and apply successive
rewrites using the two rules, at each step in the process the string will be a
sentential form. When we have reached the point where the string contains
only words in the language (and no syntactic variables), the string is a sentence
in L(SN).

3.2. EXPRESSING SYNTAX 55

For SN , we must begin with the string “SheepNoise.” Using rule two, we
can rewrite SheepNoise as baa. Since the sentential form contains only terminal
symbols, no further rewrites are possible. Thus, the sentential form “baa” is a
valid sentence in the language defined by our grammar. We can represent this
derivation in tabular form.

Rule Sentential Form
SheepNoise

2 baa

We could also begin with SheepNoise and apply rule one to obtain the sen-
tential form “SheepNoise baa”. Next, we can use rule two to derive the sentence
“baa baa”.

Rule Sentential Form
SheepNoise

1 SheepNoise baa
2 baa baa

As a notational convenience, we will build on this interpretation of the symbol
→; when convenient, we will write →+ to mean “derives in one or more step.”
Thus, we might write SheepNoise →+ baa baa.

Of course, we can apply rule one in place of rule two to generate an even
longer string of baas. Repeated application of this pattern of rules, in a se-
quence (rule one)∗ rule two will derive the language consisting of one or more
occurrences of the word baa. This corresponds to the set of noises that a sheep
makes, under normal circumstances. These derivations all have the same form.

Rule Sentential Form
SheepNoise

1 SheepNoise baa
1 SheepNoise baa baa

. . . and so on . . .

1 SheepNoise baa . . .baa

2 baa baa . . .baa

Notice that this language is equivalent to the re baa baa∗ or baa+.
More formally, a grammar G is a four-tuple, G = (T, NT, S, P), where:

T is the set of terminal symbols, or words, in the language. Terminal symbols
are the fundamental units of grammatical sentences. In a compiler, the
terminal symbols correspond to words discovered in lexical analysis.

NT is the set of non-terminal symbols, or syntactic variables, that appear in
the rules of the grammar. NT consists of all the symbols mentioned in
the rules other than those in T . Non-terminal symbols are variables used
to provide abstraction and structure in the set of rules.

56 CHAPTER 3. PARSING

S is a designated member of NT called the goal symbol or start symbol. Any
derivation of a sentence in G must begin with S. Thus, the language
derivable from G (denoted L(G)) consists of exactly the sentences that
can be derived starting from S. In other words, S represents the set of
valid sentences in L(G).

P is a set of productions or rewrite rules. Formally, P : NT → (T ∪ NT)∗.
Notice that we have restricted the definition so that it allows only a single
non-terminal on the lefthand side. This ensures that the grammar is
context free.

The rules of P encode the syntactic structure of the grammar.
Notice that we can derive NT , T , and P directly from the grammar rules.

For the SN grammar, we can also discover S. In general, discovering the start
symbol is harder. Consider, for example, the grammar:

Paren → (Bracket) Bracket → [Paren]
| () | []

The grammar describes the set of sentences consisting of balanced pairs of al-
ternating parentheses and square brackets. It is not clear, however, if the out-
ermost pair should be parentheses or square brackets. Designating Paren as S
forces outermost parentheses. Designating Bracket as S forces outermost square
brackets. If the intent is that either can serve as the outermost pair of symbols,
we need two additional productions:

Start → Paren
| Bracket

This grammar has a clear and unambiguous goal symbol, Start. Because Start
does not appear in the right-hand side of any production, it must be the goal
symbol. Some systems that manipulate grammars require that a grammar have
a single Start symbol that appears in no production’s right-hand side. They use
this property to simplify the process of discovering S. As our example shows,
we can always create a unique start symbol by adding one more non-terminal
and a few simple productions

3.2.2 Constructing Sentences

To explore the power and complexity of context-free grammars, we need a more
involved example than SN . Consider the following grammar:

1. Expr → Expr Op Number
2. | Number
3. Op → +
4. | −
5. | ×
6. | ÷

3.2. EXPRESSING SYNTAX 57

Digression: Notation for Context-Free Grammars

The traditional notation used by computer scientists to represent a context-
free grammar is called Backus-Naur form, or bnf. Bnf denoted non-
terminals by wrapping them in angle brackets, like 〈SheepNoise〉. Terminal
symbols were underlined. The symbol ::= meant “derives”, and the symbol
| meant also derives. In bnf, our example grammar SN would be written:

〈SheepNoise〉 ::= 〈SheepNoise〉 baa
| baa

Bnf has its origins in the late 1950’s and early 1960’s. The syntactic con-
ventions of angle brackets, underlining, ::= and | arose in response to the
limited typographic options available to people writing language descriptions.
(For an extreme example, see David Gries’ book Compiler Construction for
Digital Computers, which was printed entirely using one of the print trains
available on a standard lineprinter.) Throughout this book, we use a slightly
updated form of bnf. Non-terminals are written with slanted text. Ter-
minals are written in the typewriter font (and underlined when doing so
adds clarity). “Derives” is written with a rightward-pointing arrow.

We have also forsaken the use of * to represent multiply and / to repre-
sent divide. We opt for the standard algebraic symbols × and ÷, except in
actual program text. The meaning should be clear to the reader.

It defines a set of expressions over Numbers and the four operators +, −, ×,
and ÷. Using the grammar as a rewrite system, we can derive a large set
of expressions. For example, applying rule 2 produces the trivial expression
consisting solely of Number. Using the sequence 1, 3, 2 produces the expression
Number + Number.

Rule Sentential Form
Expr

1 Expr Op Number
3 Expr + Number
2 Number + Number

Longer rewrite sequences produce more complex expressions. For example 1, 5,
1, 3, 2 derives the sentence Number + Number × Number.

Rule Sentential Form
Expr

1 Expr Op Number
5 Expr × Number
1 Expr Op Number × Number
3 Expr + Number × Number
2 Number + Number × Number

We can depict this derivation graphically.

58 CHAPTER 3. PARSING

Expr

Expr Op Number

Expr Op Number ×

Number +

�

�������

Q
Q
Qs

��

�
�
��

Q
Q
Qs

� �

This derivation tree, or syntax tree, represents each step in the derivation.
So far, our derivations have always expanded the rightmost non-terminal

symbol remaining in the string. Other choices are possible; the obvious alter-
native is to select the leftmost non-terminal for expansion at each point. Using
leftmost choices would produce a different derivation sequence for the same
sentence. For Number + Number × Number, the leftmost derivation would be:

Rule Sentential Form
Expr

1 Expr Op Number
1 Expr Op Number Op Number
2 Number Op Number Op Number
3 Number + Number Op Number
5 Number + Number × Number

This “leftmost” derivation uses the same set of rules as the “rightmost” deriva-
tion, but applies them in a different order. The corresponding derivation tree
looks like:

Expr

Expr Op Number

Expr Op Number ×

Number +

�

�������

Q
Q
Qs

��

�
�
��

Q
Q
Qs

� �

It is identical to the derivation tree for the rightmost derivation! The tree rep-
resents all the rules applied in the derivation, but not their order of application.

We would expect the rightmost (or leftmost) derivation for a given sentence
to be unique. If multiple rightmost (or leftmost) derivations exist for some sen-
tence, then, at some point in the derivation, multiple distinct expansions of the
rightmost (leftmost) non-terminal lead to the same sentence. This would pro-
duce multiple derivations and, possibly, multiple syntax trees—in other words,
the sentence would lack a unique derivation.

A grammar G is ambiguous if and only if there exists a sentence in L(G)
that has multiple rightmost (or leftmost) derivations. In general, grammatical
structure is related to the underlying meaning of the sentence. Ambiguity is
often undesirable; if the compiler cannot be sure of the meaning of a sentence,
it cannot translate it into a single definitive code sequence.

3.2. EXPRESSING SYNTAX 59

The classic example of an ambiguous construct in the grammar for a pro-
gramming language arises in the definition of the if-then-else construct found
in many Algol-like languages. The straightforward grammar for if-then-else
might be:

Stmt → if (Expr) then Stmt else Stmt
| if (Expr) then Stmt
| Assignment
| . . .

This fragment shows that the else part is optional. Unfortunately, with this
grammar the code fragment

if (Expr 1) then if (Expr 2) then Stmt 1 else Stmt 2s

has two distinct derivations. The difference between them is simple. Using in-
dentation to convey the relationship between the various parts of the statements,
we have:

if (Expr1)
then if (Expr2)

then Stmt1
else Stmt2

if (Expr1)
then if (Expr2)

then Stmt1
else Stmt2

The version on the left has Stmt2 controlled by the inner if statement, so it
executes if Expr1 is true and Expr2 is false. The version on the right associates
the else clause with the first if statement, so that Stmt2 executes if Expr1 is
false (independently of Expr2). Clearly, the difference in derivation will produce
different behavior for the compiled code.

To remove this ambiguity, the grammar must be modified to encode a rule
for determining which if controls an else. To fix the if-then-else grammar,
we can rewrite it as:

Stmt → WithElse
| LastElse

WithElse → if (Expr) then WithElse else WithElse
| Assignment
| other statements . . .

LastElse → if (Expr) then Stmt
| if (Expr) then WithElse else LastElse

The solution restricts the set of statements that can occur in the then-part of
an if-then-else construct. It accepts the same set of sentences as the original
grammar, but ensures that each else has an unambiguous match to a specific
if. It encodes into the grammar a simple rule—bind each else to the innermost
unclosed if.

60 CHAPTER 3. PARSING

This ambiguity arises from a simple shortcoming of the grammar. The solu-
tion resolves the ambiguity in a way that is both easy to understand and easy
for the programmer to remember. In Section 3.6.1, we will look at other kinds
of ambiguity and systematic ways of handling them.

3.2.3 Encoding Meaning into Structure

The if-then-else ambiguity points out the relationship between grammatical
structure and meaning. However, ambiguity is not the only situation where
grammatical structure and meaning interact. Consider again the derivation
tree for our simple expression, Number + Number × Number.

Expr

Expr Op Number3

Expr Op Number2 ×

Number1 +

�

�������

Q
Q
Qs

��

�
�
��

Q
Q
Qs

� �

We have added subscripts to the instances of Number to disambiguate the dis-
cussion. A natural way to evaluate the expression is with a simple postorder
treewalk. This would add Number1 and Number2 and use that result in the multi-
plication with Number3, producing (Number1+Number2)×Number3 This evalua-
tion contradicts the rules of algebraic precedence taught in early algebra classes.
Standard precedence would evaluate this expression as

Number1 + (Number2 × Number3).

The expression grammar should have the property that it builds a tree whose
“natural” treewalk evaluation produces this result.

The problem lies in the structure of the grammar. All the arithmetic op-
erators derive in the same way, at the same level of the grammar. We need
to restructure the grammar to embed the proper notion of precedence into its
structure, in much the same way that we embedded the rule to disambiguate
the if-then-else problem.

To introduce precedence into the grammar, we need to identify the appro-
priate levels of precedence in the language. For our simple expression grammar,
we have two levels of precedence: lower precedence for + and −, and higher
precedence for × and ÷. We associate a distinct non-terminal with each level
of precedence and isolate the corresponding part of the grammar.

1. Expr → Expr + Term
2. | Expr − Term
3. | Term
4. Term → Term × Number
5. | Term ÷ Number
6. | Number

3.2. EXPRESSING SYNTAX 61

Here, Expr represents the lower level of precedence for + and −, while Term
represents the higher level for × and ÷. Using this grammar to produce a
rightmost derivation for the expression Number1 + Number2 × Number3, we
get:

Rule Sentential Form
Expr

1 Expr + Term
4 Expr + Term × Number3

6 Expr + Number2 × Number3

3 Term + Number2 × Number3

6 Number1 + Number2 × Number3

This produces the following syntax tree:
Expr

Expr + Term

Term Term × Number3

Number1 Number2

�
�
�� �

PPPPPPq

�

�
�
�� �

Q
Q
Qs

� �

A postorder treewalk over this syntax tree will first evaluate Number2×Number3

and then add Number1 to the result. This corresponds to the accepted rules for
precedence in ordinary arithmetic. Notice that the addition of non-terminals to
enforce precedence adds interior nodes to the tree. Similarly, substituting the
individual operators for occurrences of Op removes interior nodes from the tree.

To make this example grammar a little more realistic, we might add optional
parentheses at the highest level of precedence. This requires introduction of
another non-terminal and an appropriate rewrite of the grammar. If we also
add support for both numbers and identifiers, the resulting grammar looks like:

1. Expr → Expr + Term
2. | Expr − Term
3. | Term
4. Term → Term × Factor
5. | Term ÷ Factor
6. | Factor
7. Factor → (Expr)
8. | Number
9. | Identifier

We will use this grammar as we explore parsing in the next several sections.
We will refer to it as the classic expression grammar. In discussing automatic
techniques, we may add one more production: Goal→Expr. Having a unique
goal symbol simplifies some of the algorithms for automatically deriving parsers.
For space reasons, we will often abbreviate Number as Num and Identifier as
Id.

62 CHAPTER 3. PARSING

3.2.4 Discovering a Specific Derivation

We have seen how to discover sentences that are in L(G) for our grammar G.
By contrast, a compiler must infer a derivation for a given input string that,
in fact, may not be a sentence. The process of constructing a derivation from
a specific input sentence is called parsing. The compiler needs an automatic,
algorithmic way to discover derivations. Since derivation trees are equivalent
to derivations, we can think of parsing as building the derivation tree from the
input string. Since parsing works by constructing a derivation tree, we often
call that tree a parse tree.

The root of the derivation tree is fixed; its is a single node representing the
goal symbol. The leaves of the tree are determined by the input string; the
leaves must match the stream of classified words returned by the scanner. The
remaining task is to discover an interior structure for the tree that connects the
leaves to the root and is consistent with the rules embodied in the grammar. Two
distinct and opposite approaches for constructing the tree suggest themselves.

Top-down parsers begin with the root and proceed by growing the tree to-
ward the leaves. At each step, a top-down parser selects some non-terminal
node and extends the tree downward from that node.

Bottom-up parsers begin with the leaves and proceed by growing the tree
toward the root. At each step, a bottom-up parser adds nodes that extend
the partially-built tree upward.

In either scenario, the parser makes a series of choices about which production
to apply. Much of the intellectual complexity in parsing lies in the mechanisms
for making these choices.

3.2.5 Context-Free Grammars versus Regular Expressions

To understand the differences between regular expressions and context-free
grammars, consider the following two examples.

((ident | num) op)∗ (ident | num)
op → + | − | × |÷

Expr → Expr Op Expr
| Number
| Identifier

Op → + | − | × |÷

where Identifier and Number have their accustomed meanings. Both the re

and the cfg describe the same simple set of expressions.
To make the difference between regular expressions and context-free lan-

guages clear, consider the notion of a regular grammar. Regular grammars have
the same expressive power as regular expressions—that is, they can describe the
full set of regular languages.

A regular grammar is defined as a four-tuple, R = (T, NT, S, P), with the
same meanings as a context-free grammar. In a regular grammar, however,
productions in P are restricted to one of two forms: α→a, or α→aβ, where

3.3. TOP-DOWN PARSING 63

α, β ∈ NT and a ∈ T . In contrast, a context-free grammar allows productions
with right-hand sides that contain an arbitrary set of symbols from (T ∪ NT).
Thus, regular grammars are a prOper subset of context-free grammars. The
same relationship holds for the regular languages and context-free languages.

(Expressing the difference as a re, the regular grammar is limited to right-
hand sides of the form T | T NT , while the context-free grammar allows right-
hand sides of the form (T | NT)∗.)

Of course, we should ask: “are there interesting programming language con-
structs that can be expressed in a cfg but not a rg?” Many important features
of modern programming languages fall into this gap between cfgs and rgs (or
res). Examples include matching brackets, like parentheses, braces, and pairs
of keywords (i.e., begin and end). Equally important, as the discussion in Sec-
tion 3.2.3 shows, it can be important to shape the grammar so that it encodes
specific information into the parse tree. For example, regular grammars cannot
encode precedence, or the structure of an if-then-else construct. In contrast,
all of these issues are easily encoded into a context-free grammar.

Since cfgs can recognize any construct specified by a re, why use res at
all? The compiler writer could encode the lexical structure of the language
directly into the cfg. The answer lies in the relative efficiency of dfa-based
recognizers. Scanners based on dfa implementations take time proportional
to the length of the input string to recognize words in the language. With
reasonable implementation techniques, even the constants in the asymptotic
complexity are small. In short, scanners are quite fast. In contrast, parsers for
cfgs take time proportional to the length of the input, plus the length of the
derivation. The constant overhead per terminal symbol is higher, as well.

Thus, compiler writers use dfa-based scanners for their efficiency, as well as
their convenience. Moving micro-syntax into the context-free grammar would
enlarge the grammar, lengthen the derivations, and make the front-end slower.
In general, res are used to classify words and to match patterns. When higher-
level structure is needed, to match brackets, to impart structure, or to match
across complex intervening context, cfgs are the tool of choice.

3.3 Top-Down Parsing

A top-down parser begins with the root of the parse tree and systematically
extends the tree downward until it matches the leaves of the tree, which rep-
resent the classified words returned by the scanner. At each point, the process
considers a partially-built parse tree. It selects a non-terminal symbol on the
lower fringe of the tree and extends it by adding children that correspond to the
right-hand side of some production for that non-terminal. It cannot extend the
frontier from a terminal. This process continues until either the entire syntax
tree is constructed, or a clear mismatch between the partial syntax tree and its
leaves is detected. In the latter case, two possibilities exist. The parser may
have selected the wrong production at some earlier step in the process; in which
case backtracking will lead it to the correct choice. Alternatively, the input
string may not be a valid sentence in the language being parsed; in this case,

64 CHAPTER 3. PARSING

token ← next token
root ← start symbol
node ← root

loop forever
if node ∈ T & node ∼= token then

advance node to next node on the fringe
token ← next token

else if node ∈ T & node 	∼= token then
backtrack

else if node ∈ NT then
pick a rule “node→β”
extend tree from node by building β
node ← leftmost symbol in β

if node is empty & token = eof then
accept

else if node is empty & token 	= eof then
backtrack

Figure 3.1: A leftmost, top-down parsing algorithm

backtracking will fail and the parser should report the syntactic error back to
the user. Of course, the parser must be able to distinguish, eventually, between
these two cases.

Figure 3.1 summarizes this process. The process works entirely on the lower
fringe of the parse tree—which corresponds to the sentential forms we used in
the examples in Section 3.2.2. We have chosen to expand, at each step, the
leftmost non-terminal. This corresponds to a leftmost derivation. This ensures
that the parser considers the words in the input sentence in the left-to-right
order returned by the scanner.

3.3.1 Example

To understand the top-down parsing algorithm, consider a simple example: rec-
ognizing x − 2 × y as a sentence described by the classic expression grammar.
The goal symbol of the grammar is Expr; thus the parser begins with a tree
rooted in Expr. To show the parser’s actions, we will expand our tabular rep-
resentation of a derivation. The leftmost column shows the grammar rule used
to reach each state; the center column shows the lower fringe of the partially
constructed parse tree, which is the most recently derived sentential form. On
the right, we have added a representation of the input stream. The ↑ shows the
position of the scanner; it precedes the current input character. We have added
two actions, → and ←, to represent advancing the input pointer and backtrack-
ing through the set of productions, respectively. The first several moves of the
parser look like:

3.3. TOP-DOWN PARSING 65

Rule or
Action Sentential form Input

– Expr ↑x - 2 × y
1 Expr + Term ↑x - 2 × y
3 Term + Term ↑x - 2 × y
6 Factor + Term ↑x - 2 × y
9 Identifier + Term ↑x - 2 × y
→ Identifier + Term x ↑- 2 × y

The parser begins with Expr, the grammar’s start symbol, and expands it, using
rule 1. Since it is deriving a leftmost derivation, at each step, it considers the
leftmost, unmatched symbol on the parse tree’s lower fringe. Thus, it tries to
rewrite Expr to derive Identifier. To do this, it rewrites the first non-terminal,
Expr, into Term using rule 3. Then, it rewrites Term into Factor using rule 6,
and Factor into Identifier using rule 9.

At this point, the leftmost symbol is a terminal symbol, so it checks for a
match against the input stream. The words match, so it advances the input
stream by calling the scanner (denoted by the → in the first column), and it
moves rightward by one symbol along the parse tree’s lower fringe.

After advancing, the parser again faces a terminal symbol as its leftmost
unmatched symbol. It checks for a match against the current input symbol
and discovers that the symbol + in the parse tree cannot match − in the input
stream. At this point, one of two cases must hold:

1. The parser made a poor selection at some earlier expansion; if this is the
case, it can backtrack and consider the alternatives for each choice already
made.

2. The input string is not a valid sentence; if this is the case, the parser can
only detect it by running out of possibilities in its backtracking.

In the example, the actual misstep occurred in the first expansion, when the
parser rewrote Expr using rule 1. To correct that decision, the parser would
need to retract the most recent rewrite, by rule 9, and try the other possibilities
for expanding Factor. Of course, neither rule 7 nor rule 8 generate matches
against the first input symbol, so it then backtracks on the expansion of Term,
considering rules 4 and 5 as alternatives to rule 6. Those expansions will even-
tually fail, as well, since neither × nor ÷ match −. Finally, the parser will
reconsider the rewrite of Expr with rule 1. When it tries rule 2, it can continue,
at least for a while. In the derivation tale, we denote the entire backtracking
sequence with the action “←”. This line reads “backtrack to this sentential form
and input state.”

66 CHAPTER 3. PARSING

Rule or
Action Sentential form Input

← Expr ↑x - 2 × y
2 Expr − Term ↑x - 2 × y
3 Term − Term ↑x - 2 × y
6 Factor − Term ↑x - 2 × y
9 Identifier − Term ↑x - 2 × y
→ Identifier − Term x ↑- 2 × y
→ Identifier − Term x - ↑2 × y

Working from the expansion by rule 2, the parser has worked its way back to
matching Identifier against x and advancing both the input symbol and the
position on the fringe. Now, the terminal symbol on the fringe matches the
input symbol, so it can advance both the fringe and the input symbol, again.
At this point, the parser continues, trying to match Term against the current
input symbol 2.

Rule or
Action Sentential form Input

6 Identifier − Factor x - ↑2 × y
8 Identifier − Number x - ↑2 × y
→ Identifier − Number x - 2 ↑× y

The natural way to rewrite the fringe toward matching 2 is to rewrite by rule 6
and then rule 8. Now, the parser can match the non-terminal Number against the
input symbol 2. When it goes to advance the input symbol and the unmatched
node on the fringe, it discovers that it has no symbols left on the fringe, but it
has more input to consume. This triggers another round of backtracking, back
to the rewrite of Term; when it rewrites Term with rule 4, it can proceed to a
final and correct parse.

Rule or
Action Sentential form Input

← Identifier − Term x - ↑2 × y
4 Identifier − Term × Factor x - ↑2 × y
6 Identifier − Factor × Factor x - ↑2 × y
8 Identifier − Number × Factor x - ↑2 × y
→ Identifier − Number × Factor x - 2 ↑× y
→ Identifier − Number × Factor x - 2 × ↑y
8 Identifier − Number × Number x - 2 × ↑y
→ Identifier − Number × Number x - 2 × y↑

Finally, the parser has reached a configuration where it has systematically elim-
inated all non-terminals from the lower fringe of the parse tree, matched each
leaf of the parse tree against the corresponding symbol in the input stream,
and exhausted the input stream. This was the definition of success, so it has
constructed a legal derivation for x − 2 × y.

3.3. TOP-DOWN PARSING 67

3.3.2 Left Recursion

Clearly, the choice of a rewrite rule at each step has a strong impact on the
amount of backtracking that the parser must perform. Consider another possible
sequence of reductions for the same input string

Rule or
Action Sentential form Input

– Expr ↑x - 2 × y
1 Expr + Term ↑x - 2 × y
1 Expr + Term + Term ↑x - 2 × y
1 Expr + Term + · · · ↑x - 2 × y
1 Expr + Term + · · · ↑x - 2 × y
1 · · · ↑x - 2 × y

Here, the parser follows a simple rule. For each instance of a non-terminal, it
cycles through the productions in the order that they appear in the grammar.
Unfortunately, rule 1 generates a new instance of Expr to replace the old in-
stance, so it generates an ever-expanding fringe without making any measurable
progress.

The problem with this example arises from the combination of left recursion
in the grammar and the top-down parsing technique. A production is said to be
left-recursive if the first symbol on its right hand side is the same as its left-hand
side, or if the left-hand side symbol appears in the right-hand side, and all the
symbols that precede it can derive the empty string. Left recursion can produce
non-termination in a top-down parser because it allows the algorithm to expand
the parse tree’s lower fringe indefinitely without generating a terminal symbol.
Since backtracking is only triggered by a mismatch between a terminal symbol
on the fringe and the current input symbol, the parser cannot recover from the
expansion induced by left recursion.

We can mechanically transform a grammar to remove left recursion. For an
obvious and immediate left recursion, shown on the left, we can rewrite it using
right recursion as shown on the right.

fee → fee α fee → β fie
| β fie → α fie

| ε

The transformation introduces a new non-terminal, fie, and transfers the recur-
sion onto fie. It also adds the rule fie→ε, where ε represents the empty string.
This ε-production requires careful interpretation in the parsing algorithm. If
the parser expands by the rule fie→ε, the effect is to advance the current node
along the tree’s fringe by one position.

For a simple, immediate left recursion, we can directly apply the transfor-
mation. In our expression grammar, this situation arises twice—in the rules for
Expr and the rules for Term;

68 CHAPTER 3. PARSING

Original Transformed
Expr → Expr + Term Expr → Term Expr ′

| Expr − Term Expr ′ → + Term Expr ′

| Term | − Term Expr ′

| ε

Term → Term × Factor Term → Factor Term ′

| Term ÷ Factor Term ′ → × Factor Term ′

| Factor | ÷ Factor Term ′

| ε

Plugging these replacements into the classic expression grammar yields:

1. Expr → Term Expr ′

2. Expr ′ → + Term Expr ′

3. | − Term Expr ′

4. | ε
5. Term → Factor Term ′

6. Term ′ → × Factor Term ′

7. | ÷ Factor Term ′

8. | ε
9. Factor → (Expr)
10. | Number
11. | Identifier

This grammar describes the same set of expressions as the classic expression
grammar. It uses right-recursion. It retains the left-associativity of the original
grammar. It should work well with a top-down parser.

Rule or
Action Sentential Form Input

– Expr ↑ x − 2 × y
1 Term Expr ′ ↑ x − 2 × y
5 Factor Term ′ Expr ′ ↑ x − 2 × y
11 Id Term ′ Expr ′ ↑ x − 2 × y
→ Id Term ′ Expr ′ x ↑− 2 × y
8 Id Expr ′ x ↑− 2 × y
3 Id − Term Expr ′ x ↑− 2 × y
→ Id − Term Expr ′ x − ↑2 × y
5 Id − Factor Term ′ Expr ′ x − ↑2 × y
10 Id − Num Term ′ Expr ′ x − ↑2 × y
→ Id − Num Term ′ Expr ′ x − 2 ↑× y
6 Id − Num × Factor Term ′ Expr ′ x − 2 ↑× y
→ Id − Num × Factor Term ′ Expr ′ x − 2 × ↑ y
11 Id − Num × Id Term ′ Expr ′ x − 2 × ↑ y
→ Id − Num × Id Term ′ Expr ′ x − 2 × y ↑
8 Id − Num × Id Expr ′ x − 2 × y ↑
4 Id − Num × Id x − 2 × y ↑

3.3. TOP-DOWN PARSING 69

arrange the non-terminals in some order
A1, A2, . . . , An

for i ← 1 to n
for j ← 1 to i-1

replace each production of the form
Ai→Ajγ with the productions
Ai→δ1γ | δ2γ | . . . | δkγ,
where Aj→δ1 | δ2 | . . . | δk

are all the current Aj productions.

eliminate any immediate left recursion on Ai

using the direct transformation

Figure 3.2: Removal of left recursion

The transformation shown above eliminates immediate left recursion. Left
recursion can occur indirectly, when a chain of rules such as α→β, β→γ, and
γ→αδ combines to create the situation that α→+αδ. This indirect left recursion
is not always obvious; it can be hidden through an arbitrarily long chain of
productions.

To convert these indirect left recursions into right recursion, we need a more
systematic approach than inspection followed by application of our transforma-
tion. Figure 3.2 shows an algorithm that achieves this goal. It assumes that the
grammar has no cycles (A →+ A) or ε productions (A → ε).

The algorithm works by imposing an arbitrary order on the non-terminals.
The outer loop cycles through the non-terminals in this order, while the inner
loop ensures that a production expanding Ai has no non-terminal Aj with j < i.
When it encounters such a non-terminal, it forward substitutes the non-terminal
away. This eventually converts each indirect left recursion into a direct left
recursion. The final step in the outer loop converts any direct recursion on Ai

to right recursion using the simple transformation shown earlier. Because new
non-terminals are added at the end of the order and only involve right recursion,
the loop can ignore them—they do not need to be checked and converted.

Considering the loop invariant for the outer loop may make this more clear.
At the start of the ith outer loop iteration

∀ k < i, 	 ∃ a production expanding Ak with Al in its rhs, for l < k.

At the end of this process, (i = n), all indirect left recursion has been eliminated
through the repetitive application of the inner loop, and all immediate left
recursion has been eliminated in the final step of each iteration.

3.3.3 Predictive Parsing

When we parsed x − 2 × y with the right-recursive expression grammar, we
did not need to backtrack. In fact, we can devise a parser for the right-recursive

70 CHAPTER 3. PARSING

expression grammar that never needs to backtrack. To see this, consider how
the parser makes a decision that it must retract through backtracking.

The critical choice occurs when the parser selects a production with which
to expand the lower fringe of the partially constructed parse tree. When it tries
to expand some non-terminal α, it must pick a rule α→β. The algorithm, as
shown in Figure 3.1, picks that rule arbitrarily. If, however, the parser could
always pick the appropriate rule, it could avoid backtracking.

In the right-recursive variant of the expression grammar, the parser can make
the correct choice by comparing the next word in the input stream against the
right-hand sides. Look at the situation that arose in the derivation of x − 2
× y in the previous section. When the parser state was in the state

Rule or
Action Sentential Form Input

8 Id Expr ′ x ↑− 2 × y

it needed to choose an expansion for Expr ′. The possible right-hand sides
were: + Term Expr ′, − Term Expr ′, and ε. Since the next word in the input
stream was −, the second choice is the only one that can succeed. The first
choice generates a leading +, so it can never match and will lead directly to
backtracking. Choosing ε can only match the end of string, since Expr ′ can
only occur at the right end of a sentential form.

Fortuitously, this grammar has a form where the parser can predict the
correct expansion by comparing the possible right-hand sides against the next
word in the input stream. We say that such a grammar is predictive; parsers
built on this property are called predictive parsers.

Before going further, we should define the property that makes a grammar
predictively parsable. For any two productions, A → α | β, the set of initial
terminal symbols derivable from α must be distinct from those derivable from
β. If we define First(α) as the set of tokens that can appear as the first symbol
in some string derived from α, then we want

First(α) ∩ First(β) = ∅

For an entire grammar G, the desired property is

∀ rules A→α1 | α2 | α3 | · · ·αn in a grammar G

First(α1) ∩First(α2) ∩ First(α3) ∩ · · ·First(αn) = ∅

If this property holds true for each non-terminal in the grammar, then the gram-
mar can be parsed predictively. Unfortunately, not all grammars are predictive.1

Consider, for example, a slightly more realistic version of our on-going ex-
ample. A natural extension to our right recursive expression grammar would
replace the production Factor→Identifier with a set of productions that de-
scribe the syntax for scalar variable references, array variable references, and
function calls.

1This condition is also called the LL(1) condition. Any grammar that meets this condition
can be used to construct a table-driven, LL(1) parser.

3.3. TOP-DOWN PARSING 71

For each NT A ∈ G
find the longest prefix α common to

two or more right-hand sides

if α 	=ε then
replace the rules expanding A,

A → αβ1 | αβ2 | · · · | αβn | γ

with
A → α fie | γ
fie → β1 | β2 | · · · | βn

and add fie to NT

Repeat until no common prefixes remain.

Figure 3.3: Left Factoring a Grammar

11. Factor → Identifier
12. | Identifier [Exprlist]
13. | Identifier (Exprlist)
20. Exprlist → Expr , Exprlist
21. | Expr

Here, we show the C syntactic convention of using parentheses for function
calls and square brackets for array references. This grammar fragment is not
predictive, because the initial terminal symbol generated in rules 11, 12, and 13
is the same. Thus, the parser, in trying to expand a Factor on the parse tree’s
lower fringe, cannot decide between 11, 12, and 13 on the basis of a single word
lookahead. Of course, looking ahead two tokens would allow it to predict the
correct expansion.

We can rewrite rules 11, 12, and 13 to make them predictive.

11. Factor → Identifier arguments
12. arguments → [Exprlist]
13. | (Exprlist)
14. | ε

In this case, we were able to transform the grammar into a predictive grammar.
In essence, we introduced a new non-terminal to represent the common prefix
of the three rules that were not predictive. We can apply this transformation,
systematically and mechanically, to an arbitrary grammar. Figure 3.3 shows a
simple algorithm that does this. However, left factoring the grammar will not
always produce a predictive grammar.

Not all languages can be expressed in a predictive grammar. Using left-
recursion elimination and left factoring, we may be able to transform a grammar
to the point where it can be predictively parsed. In general, however, it is
undecidable whether or not a predictive grammar exists for an arbitrary context-
free language. For example, the language

72 CHAPTER 3. PARSING

{an0bn | n ≥ 1} ∪ {an1b2n | n ≥ 1}

has no predictive grammar.

3.3.4 Top-Down Recursive Descent Parsers

Given a predictive grammar G, we can construct a hand-coded parser for G
that operates by recursive descent. A recursive descent parser is structured as
a set of mutually recursive routines, one for each non-terminal in the grammar.
The routine for non-terminal A recognizes an instance of A in the input stream.
To accomplish this, the routine invokes other routines to recognize the various
non-terminals on A’s right-hand side.

Consider a set of productions A → β1 | β2 | β3. Since G is predictive, the
parser can select the appropriate right hand side (one of β1, β2, or β3) using
only the input token and the First sets. Thus, the code in the routine for A
should have the form:

/* find an A */
if (current token ∈ First(β1))

find a β1 & return true
else if (current token ∈ First(β2))

find a β2 & return true
else if (current token ∈ First(β3))

find a β3 & return true
else {

report an error based on A and current token
return false

}

For each right hand side A → βi, the routine needs to recognize each term in
βi. The code must check for each term, in order.

• For a terminal symbol, the code compares the input symbol against the
specified terminal. If they match, it advances the input token and checks
the next symbol on the right hand side. If a mismatch occurs, the parser
should report the syntax error in a suitably informative message.

• For a non-terminal symbol, the code invokes the routine that recognizes
that non-terminal. That routine either returns true as an indication of
success, or it reports an error to the user and returns false. Success allows
the parser to continue, recognizing the next symbol on the right hand side,
if any more exist. A return value of false forces the routine to return false
to its calling context.

For a right hand side β1 = γδρ, with γ, ρ ∈ NT and δ ∈ T , the code needs
to recognize a γ, a δ, and an ρ (abstracted away as “find a β1 and return true”
in the previous code fragment). This code might look like:

3.4. BOTTOM-UP PARSING 73

if (current token ∈ First(β1)) {
if (Parse γ() = false)

return false
else if (current token 	= δ) {

report an error finding δ in A → γδρ
return false

}
current token ← next token()
if (Parse ρ() = false)

return false
else

return true
}

The routine Parse A will contain a code fragment like this for each alternative
right-hand side for A.

To construct a complete recursive descent parser, then, the strategy is clear.
For each non-terminal, we construct a routine that recognizes that non-terminal.
Each routine relies on the other routines to recognize non-terminals, and directly
tests the terminal symbols that arise in its own right hand sides. Figure 3.4
shows a top-down recursive descent parser for the predictive grammar that we
derived in Section 3.3.2. Notice that it repeats code for similar right hand sides.
For example, the code in ExprP() under the tests for ‘+’ and for ‘-’ could be
combined to produce a smaller parser.

Automating the Process Top-down recursive-descent parsing is usually consid-
ered a technique for hand coding a parser. Of course, we could build a parser
generator that automatically emitted top-down recursive descent parsers for
suitable grammars. The parser generator would first construct the necessary
First sets for each grammar symbol, check each non-terminal to ensure that
the First sets of its alternative right-hand sides are disjoint, and emit a suitable
parsing routine for each non-terminal symbol in the grammar. The resulting
parser would have the advantages of top-down recursive-descent parsers, such
as speed, code-space locality, and good error detection. It would also have
the advantages of a grammar-generated system, such as a concise, high-level
specification and a reduced implementation effort.

3.4 Bottom-up Parsing

To parse a stream of words bottom-up, the parser begins by creating leaves
in the parse tree for each word. This creates the base of the parse tree. To
construct a derivation, it adds layers of non-terminals on top of the leaves, in a
structure dictated by both the grammar and the input stream. The upper edge
of this partially-constructed parse tree is called its upper frontier. Each layer
extends the frontier upward, toward the tree’s root.

To do this, the parser repeatedly looks for a part of that upper frontier that
matches the right-hand side of a production in the grammar. When it finds a

74 CHAPTER 3. PARSING

Main()
token ← next token();
if (Expr() 	= false)

then
next compilation step

else return false

Expr()
result ← true
if (Term() = false)

then result ← false
else if (EPrime() = false)

then result ← false

return result

EPrime()
result ← true
if (token = ’+’) then

token ← next token()
if (Term() = false)

then result ← false
else if (EPrime() = false)

then result ← false
else if (token = ’-’) then

token ← next token()
if (Term() = false)

then result ← false
else if (EPrime() = false)

then result ← false
else result ← true /* ε */

return result

Term()
result ← true
if (Factor = false)

then result ← false
else if (TPrime() = false)

then result ← false

return result

TPrime()
result ← true
if (token = ×) then

token ← next token()
if (Factor() = false)

then result ← false
else if (TPrime() = false)

then result ← false
else if (token = ÷) then

token ← next token()
if (Factor() = false)

then result ← false
else if (TPrime() = false)

then result ← false;
else result ← true /* ε */

return result

Factor()
result ← true
if (token = ’(’) then

token ← next token()
if (Expr() = false)

then result ← false
else if (token 	= ’)’)

then
report syntax error
result ← false

else token ← next token()
else if (token = Number)

then token ← next token()
else if (token = identifier)

then token ← next token()
else

report syntax error
result ← false

return result

Figure 3.4: Recursive descent parser for expressions

3.4. BOTTOM-UP PARSING 75

Digression: Predictive parsers versus DFAs

Predictive parsing is the natural extension of dfa-style reasoning to parsers.
A dfa makes its transition based on the next input character. A predictive
parser requires that the expansions be uniquely determined by the next word
in the input stream. Thus, at each non-terminal in the grammar, there must
be a unique mapping from the first token in any acceptable input string to a
specific production that leads to a derivation for that string. The real differ-
ence in power between a dfa and a predictively-parsable, or ll(1), grammar,
derives from the fact that one prediction may lead to a right-hand side with
many symbols, whereas, in a regular grammar, it predicts only a single sym-
bol. This lets predictive grammars include productions like

p → (p)

which is beyond the power of a regular expression to describe. (Recall that
a regular expression can recognize (+ Σ∗)+, but this does not specify that
the opening and closing parentheses must match.)

Of course, a hand-constructed top-down, recursive-descent parser can
use arbitrary tricks to disambiguate production choices. For example, if a
particular left-hand side cannot be predicted with a single symbol lookahead,
the parser could use two symbols. Done judiciously, this should not cause
problems.

match, it builds a node to represent the non-terminal symbol on production’s
left-hand side, and adds edges to the nodes representing elements of the right-
hand side. This extends the upper frontier. This process terminates under one
of two conditions.

1. The parser reduces the upper frontier to a single node that represents the
grammar’s start symbol. If all the input has been consumed, the input
stream is a valid sentence in the language.

2. No match can be found. Since, the parser has been unable to build a
derivation for the input stream, the input is not a valid sentence. The
parser should issue an appropriate error message.

A successful parse runs through every step of the derivation. A failed parse
halts when it can find no further steps, at which point it can use the context
accumulated in the tree to produce a meaningful error message.

Derivations begin with the goal symbol and work towards a sentence. Be-
cause a bottom-up parser proceeds bottom-up in the parse tree, it discovers
derivation steps in reverse order. Consider a production α→β where β ∈ T .
A bottom-up parser will “discover” the derivation step α→β before it discovers
the step that derives α. Thus, if a derivation consists of a series of steps that
produces a series of sentential forms

S0 = γ0 ⇒γ1 ⇒γ2 ⇒· · · ⇒γn−1 ⇒γn = sentence,

76 CHAPTER 3. PARSING

the bottom-up parser will discover γn−1⇒γn before it discovers γn−2⇒γn−1. (It
must add the nodes implied by γn−1⇒γn to the frontier before it can discover
any matches that involve those nodes. Thus, it cannot discover the nodes in an
order inconsistent with the reverse derivation.) At each point, the parser will
operate on the frontier of the partially constructed parse tree; the current fron-
tier is a prefix of the corresponding sentential form in the derivation. Because
the sentential form occurs in a rightmost derivation, the missing suffix consists
entirely of terminal symbols.

Because the scanner considers the words in the input stream in a left-to-right
order, the parser should look at the leaves from left to right. This suggests a
derivation order that produces terminals from right to left, so that its reverse
order matches the scanner’s behavior. This leads, rather naturally, to bottom-up
parsers that construct, in reverse, a rightmost derivation.

In this section, we consider a specific class of bottom-up parsers called lr(1)

parsers. Lr(1) parsers scan the input from left-to-right, the order in which
scanners return classified words. Lr(1) parsers build a rightmost derivation,
in reverse. Lr(1) parsers make decisions, at each step in the parse, based on
the history of parse so far, and, at most, a lookahead of one symbol. The name
lr(1) derives from these three properties: left-to-right scan, reverse-rightmost
derivation, and 1 symbol of lookahead.2 Informally, we will say that a language
has the lr(1) property if it can be parsed in a single left-to-right scan, to build
a reverse rightmost derivation, using only one symbol of lookahead to determine
parsing actions.

3.4.1 Using handles

The key to bottom-up parsing lies in using an efficient mechanism to discover
matches along the tree’s current upper frontier. Formally, the parser must find
some substring βγδ of the upper frontier where

1. βγδ is the right-hand side of some production α → βγδ, and

2. α → βγδ is one step in the rightmost derivation of the input stream.

It must accomplish this while looking no more than one word beyond the right
end of βγδ.

We can represent each potential match as a pair 〈α→βγδ, k〉, where α→βγδ
is a production in G and k is the position on the tree’s current frontier of the
right end of δ. If replacing the occurrence of βγδ that ends at k with α is the next
step in the reverse rightmost derivation of the input string, then 〈α → βγδ, k〉
is a handle of the bottom-up parse. A handle concisely specifies the next step
in building the reverse rightmost derivation.

A bottom-up parser operates by repeatedly locating a handle on the frontier
of the current partial parse tree, and performing the reduction that it specifies.

2The theory of lr parsing defines a family of parsing techniques, the lr(k) parsers, for
arbitrary k ≥ 0. Here, k denotes the amount of lookahead that the parser needs for decision
making. Lr(1) parsers accept the same set of languages as lr(k) parsers.

3.4. BOTTOM-UP PARSING 77

Token Frontier Handle Action

1. Id — none — extend
2. − Id 〈Factor→Id,1〉 reduce
3. − Factor 〈Term→Factor,1〉 reduce
4. − Term 〈Expr→Term〉 reduce
5. − Expr — none — extend
6. Num Expr − — none — extend
7. × Expr − Num 〈Factor→Num,3〉 reduce
8. × Expr − Factor 〈Term→Factor〉 reduce
9. × Expr − Term — none — extend

10. Id Expr − Term × — none — extend
11. eof Expr − Term × Id 〈Factor→Id〉 reduce
12. eof Expr − Term × Factor 〈Term→Term × Factor〉 reduce
13. eof Expr − Term 〈Expr→Expr − Term〉 reduce
14. eof Expr 〈Goal→Expr〉 reduce
15. eof Goal — none — accept

Figure 3.5: States of the bottom-up parser on x − 2 × y

When the frontier does not contain a handle, the parser extends the frontier
by adding a single non-terminal to the right end of the frontier. To see how
this works, consider parsing the string x − 2 × y using the classic expression
grammar. At each step, the parser either finds a handle on the frontier, or it
adds to the frontier. The state of the parser, at each step, is summarized in
Figure 3.5, while Figure 3.6 shows the corresponding partial parse tree for each
step in the process; the trees are drawn with their frontier elements justified
along the top of each drawing.

As the example shows, the parser only needs to examine the upper frontier
of partially constructed parse tree. Using this fact, we can build a particularly
clean form of bottom-up parser, called a shift-reduce parser. These parsers use
a stack to hold the frontier; this simplifies the algorithm in two ways. First,
the stack trivializes the problem of managing space for the frontier. To extend
the frontier, the parser simply shifts the current input symbol onto the stack.
Second, it ensures that all handles occur with their right end at the top of the
stack; this eliminates any overhead from tracking handle positions.

Figure 3.7 shows a simple shift-reduce parser. To begin, it shifts an invalid
symbol onto the stack and gets the first input symbol from the scanner. Then,
it follows the handle-pruning discipline: it shifts symbols from the input onto
the stack until it discovers a handle, and it reduces handles as soon as they are
found. It halts when it has reduced the stack to Goal on top of invalid and
consumed all the input.

78 CHAPTER 3. PARSING

2. Id

3.

Id

Factor
�

4.

Id

Factor

Term

�

�

5.

Id

Factor

Term

Expr

�

�

�

6.

Id

Factor

Term

Expr

�

�

�

−

7.

Id

Factor

Term

Expr

�

�

�

− Num

8.

Id

Factor

Term

Expr

�

�

�

−

Num

Factor
�

9.

Id

Factor

Term

Expr

�

�

�

−

Num

Factor

Term
�

�

10.

Id

Factor

Term

Expr

�

�

�

−

Num

Factor

Term
�

�

×

11.

Id

Factor

Term

Expr

�

�

�

−

Num

Factor

Term
�

�

× Id

12.

Id

Factor

Term

Expr

�

�

�

−

Num

Factor

Term
�

�

×

Id

Factor
�

13.

Id

Factor

Term

Expr

�

�

�

−

Num

Factor

Term

�

�

×

Term
�
�
���
P
PPq

Id

Factor
�

14.

Id

Factor

Term

Expr

�

�

�

−

Expr
�
�
���
X
X
X
XXz

Num

Factor

Term

�

�

×

Term
�
�
���
P
PPq

Id

Factor
�

15.

Id

Factor

Term

Expr

�

�

�

−

Goal

Expr
�
�
���
X
X
X
XXz

�

Num

Factor

Term

�

�

×

Term
�
�
���
P
PPq

Id

Factor
�

Figure 3.6: Bottom-up parse of x − 2 × y

3.4. BOTTOM-UP PARSING 79

push invalid

token ← next token()

repeat until (top of stack = Goal & token = eof)

if we have a handle α → β on top of the stack
then reduce by α→β

pop | β | symbols off the stack
push α onto the stack

else if (token 	= eof)
then shift

push token
token ← next token()

else
report syntax error & halt

Figure 3.7: Shift-reduce parsing algorithm

Using this algorithm, Figure 3.5 can be reinterpreted to show the actions
of our shift-reduce parser on the input stream x − 2 × y. The row labelled
Token shows the contents of the variable token in the algorithm. The row
labelled Frontier depicts the contents of the stack at each step; the stack top is
to the right. Finally, the action extend indicates a shift; reduce still indicates a
reduction.

For an input stream of length s, this parser must perform s shifts. It must
perform a reduction for each step in the derivation, for r steps. It looks for a
handle on each iteration of the while loop, so it must perform s+r handle-finding
operations. If we can keep the cost of handle-finding to a small constant, we
have a parser that can operate in time proportional to the length of the input
stream (in words) plus the length of the derivation. Of course, this rules out
traversing the entire stack on each handle-find, so it places a premium on efficient
handle-finding.

3.4.2 Finding Handles

The handle-finding mechanism is the key to efficient bottom-up parsing. Let’s
examine this problem in more detail. In the previous section, handles appeared
in the example as if they were derived from an oracle. Lacking an oracle, we
need an algorithm.

As it parses an input string, the parser must track multiple potential handles.
For example, on every legal input, the parser eventually reduces to its goal
symbol. In the classic expression grammar, this implies that the parser reaches
a state where its has the handle 〈Goal→Expr,1〉 on its stack. This particular
handle represents one half of the halting condition—having Goal as the root of
the parse tree. (The only production reducing to Goal is Goal→Expr. Since it
must be the last reduction, the position must be 1.) Thus, 〈Goal→Expr〉 is a

80 CHAPTER 3. PARSING

potential handle at every step in the parse, from first to last.
In between, the parser discovers other handles. In the example of Figure 3.5,

it found eight other handles. At each step, the set of potential handles represent
all the legal completions of the sentential form that has already been recognized.
(The sentential form consists of the upper frontier, concatenated with the re-
mainder of the input stream—beginning with the current lookahead token.)
Each of these potential handles contains the symbol on top of the stack; that
symbol can be at a different location in each handle.

To represent the position of the top of stack in a potential handle, we intro-
duce a placeholder, •, into the right-hand side of the production. Inserting the
placeholder into α→βγδ gives rise to four different strings:

α→•βγδ, α→β • γδ, α→βγ • δ, and α→βγδ•.

This notation captures the different relationships between potential handles and
the state of the parser. In step 7 of the example, the parser has the frontier
Expr − Num, with the handle 〈Factor→Num,3〉. Using •, we can write this as
〈Factor→Num •〉; the position is implicit relative to the top of the stack. A
potential handle becomes a handle when • appears at the right end of the
production. It must also track a number of other potential handles.

For example, 〈Expr→Expr − • Term〉 represents the possibility that Num
will eventually reduce to Term, with a right context that allows the parser
to reduce Expr − Term to Expr. Looking ahead in the parse, this potential
handle becomes the active handle in step 13, after Num × Id has been reduced
to Term. Other potential handles at step 7 include 〈Term→ • Factor〉 and
〈Goal→ • Expr〉.

This notation does not completely capture the state of the parser. Consider
the parser’s action at step 9. The frontier contains Expr − Term, with poten-
tial handles including 〈Expr→Expr − Term •〉 and 〈Term→Term • × Factor〉.
Rather than reduce by 〈Expr→Expr − Term •〉, the parser extended the fron-
tier to follow the future represented by 〈Term→Term • × Factor〉. The example
demonstrates that this is the right action. Reducing would move the parser into
a state where it could make no further progress, since it cannot reduce subse-
quently Expr × Factor.

To choose between these two actions, the parser needs more context than
it has on the frontier. In particular, the parser can look ahead one symbol
to discover that the next word in the input stream is ×. This single-word
lookahead allows it to determine that the correct choice is pursuing the handle
represented by 〈Term→Term • × Factor〉, rather than reducing as represented
by 〈Expr→Expr − Term •〉. The key to making this decision is the value of the
next token, also called the lookahead symbol.

This suggests that we can represent each possible future decision of the
parser as a pair, 〈alpha→β • γδ, a〉, where α→βγδ ∈ P , and a ∈ T . This pair,
called an item, is interpreted as

The parser is in a state where finding an α, followed by the terminal
a, would be consistent with its left context. It has already found a

3.5. BUILDING AN LR(1) PARSER 81

β, so finding γδa would allow it to reduce by α→βγδ

At each step in the parse, a collection of these pairs represents the set of possible
futures for the derivation, or the set of suffixes that would legally complete the
left context that the parser has already seen. This pair is usually called an
lr(1) item. When written as an lr(1) item, it has square brackets rather than
angle brackets.

The set of lr(1) items is finite. If r is the maximal length of a right-hand
side for any production in P , then the number of lr(1) items can be no greater
than (r + 1)· | T |. For a grammar G, the set of lr(1) items includes all the
possible handles for G. Thus, the set of handles is finite and can be recognized
by a dfa. This is the central insight behind lr(1) parsers:

Because the set of lr(1) items is finite, we can build a handle-finder
that operates as a dfa.

The lr(1) parser construction algorithm builds the dfa to recognize handles.
It uses a shift-reduce parsing framework to guide the application of the dfa.
The framework can invoke the dfa recursively; to accomplish this, it stores
information about internal states of the dfa on the stack.

3.5 Building an LR(1) parser

The lr(1) parsers, and their cousins slr(1) and lalr(1), are the most widely
used family of parsers. The parsers are easy to build and efficient. Tools to
automate construction of the tables are widely available. Most programming
language constructs have a natural expression in a grammar that is parsable
with an lr(1) parser. This section explains how lr(1) parsers work, and shows
how to construct the parse tables for one kind of lr(1) parser, a canonical
lr(1) parser.

Lr(1) table construction is an elegant application of theory to practice.
However, the actual process of building tables is better left to parser generators
than to humans. That notwithstanding, the algorithm is worth studying because
it explains the kinds of errors that the parser generator can encounter, how they
arise, and how they can be remedied.

3.5.1 The LR(1) parsing algorithm

An lr(1) parser consists of a skeleton parser and a pair of tables that drive the
parser. Figure 3.8 shows the skeleton parser; it is independent of the grammar
being parsed. The bottom half of the figure shows the action and goto tables
for the classic expression grammar without the production Factor → (Expr).

The skeleton parser resembles the shift-reduce parser shown in Figure 3.7.
At each step, it pushes two objects onto the stack: a grammar symbol from the
frontier and a state from the handle recognizer. It has four actions:

1. shift: extends the frontier by shifting the lookahead token onto the stack,
along with a new state for the handle recognizer. This may result in a
recursive invocation of the recognizer.

82 CHAPTER 3. PARSING

push invalid

push s0

token ← next token()

while (true)
s ← top of stack

if action[s,token] = ”shift si”’ then
push token
push si

token ← next token()

else if action[s,token] = ”reduce A → β” then
pop 2 × | β | symbols
s ← top of stack
push A
push goto[s,A]

else if action[s, token] = ”accept” then
return

else error()

The Skeleton lr(1) Parser

Action Table

State EOF + - × ÷ Num id

0 s 4 s 5

1 acc s 6 s 7

2 r 4 r 4 r 4 s 8 s 9

3 r 7 r 7 r 7 r 7 r 7

4 r 8 r 8 r 8 r 8 r 8

5 r 9 r 9 r 9 r 9 r 9

6 s 4 s 5

7 s 4 s 5

8 s 4 s 5

9 s 4 s 5

10 r 2 r 2 r 2 s 8 s 9

11 r 3 r 3 r 3 s 8 s 9

12 r 5 r 5 r 5 r 5 r 5

13 r 6 r 6 r 6 r 6 r 6

Goto Table

Expr Term Factor

1 2 3

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 10 3

0 11 3

0 0 12

0 0 13

0 0 0

0 0 0

0 0 0

0 0 0

lr(1) Tables for the Classic Expression Grammar

Figure 3.8: An lr(1) parser

3.5. BUILDING AN LR(1) PARSER 83

Token Stack Action
1. Id $ 0 shift
2. - $ 0 id 5 reduce
3. - $ 0 Factor 3 reduce
4. - $ 0 Term 2 reduce
5. - $ 0 Expr 1 shift
6. Num $ 0 Expr 1 - 7 shift
7. × $ 0 Expr 1 - 7 Num 4 reduce
8. × $ 0 Expr 1 - 7 Factor 3 reduce
9. × $ 0 Expr 1 - 7 Term 11 shift
10. Id $ 0 Expr 1 - 7 Term 11 × 8 shift
11. eof $ 0 Expr 1 - 7 Term 11 × 8 id 5 reduce
12. eof $ 0 Expr 1 - 7 Term 11 × 8 Factor 12 reduce
13. eof $ 0 Expr 1 - 7 Term 11 reduce
14. eof $ 0 Expr 1 accept

Figure 3.9: lr(1) parser states for x − 2 × y

2. reduce: shrinks the frontier by replacing the current handle with its right
hand site. It discards all the intermediate states used to recognize the
handle by popping off two stack items for each symbol in the handle’s
right-hand side. Next, it uses the state underneath the handle and the
left-hand side to find a new recognizer state, and pushes both the left-
hand side and the new state onto the stack.

3. accept: reports success back to the user. This state is only reached when
the parser has reduced the frontier to the goal symbol and the lookahead
character is eof. (All other entries in state s1 indicate errors!)

4. error: reports a syntax error. This state is reached anytime the action
table contains an entry other than shift, reduce, or accept. In the figure,
these entries are left blank.

Entries in the action table are encoded using the letter ‘s’ as “shift” and ‘r’ as
“reduce”. Thus, the entry “s3” indicates the action “shift and go to state s3”,
while “r5” indicates “reduce by production 5”. On a reduce item, the new state
is determined by the goto table entry for the left-hand side of the production,
and the state revealed on top of the stack after the right hand side is popped.

To understand this parser, consider again our simple example. Figure 3.9
shows the succession of states that the lr(1) parser takes to parse the expression
x − 2 × y. The parser shifts id onto the stack, then reduces it to a Factor,
to a Term, and to an Expr. Next, it shifts the -, followed by the Num. At this
point, it reduces Num to Factor, then Factor to Term. At this point, it shifts ×
and then id onto the stack. Finally, it reduces id to Factor, Term × Factor to
Term, and then Expr - Term to Expr. At this point, with Expr on the stack
and eof as the next token, it accepts the input string. This is similar to the
sequence portrayed in Figure 3.5.

84 CHAPTER 3. PARSING

parser
generator

grammar
Action &

Goto

tables

source
code

scanner
table-driven

parser
ir

�

�

� � �

� �

Figure 3.10: Structure of an lr(1) parser generator system

The key to building an lr(1) parser is constructing the action and goto

tables. These tables encode the actions of the handle-recognizing dfa, along
with the information necessary to use limited right context to decide whether
to shift, reduce, or accept. While it is possible to construct these tables by
hand, the algorithm requires manipulation of lots of detail, as well as scrupulous
book-keeping. Building lr(1) tables is a prime example of the kind of task that
should be automated and relegated to a computer. Most lr(1) parse tables
are constructed by parser generator systems, as shown in Figure 3.10. Using
a parser generator, the compiler-writer creates a grammar that describes the
source language; the parser generator converts that into action and goto

tables. In most such systems, the individual productions can be augmented
with ad hoc code that will execute on each reduction. These “actions” are
used for many purposes, including context-sensitive error checking, generating
intermediate representations (see Section 4.4.3).

3.5.2 Building the tables

To construct action and goto tables, an lr(1) parser generator builds a
model of the handle-recognizing dfa and uses that model to fill in the tables.
The model uses a set of lr(1) items to represent each parser state; these sets
are constructed using a disciplined and systematic technique. The model is
called the canonical collection of sets of lr(1) items. Each set in the canonical
collection represents a parse state.

To explain the construction, we will use two examples. The SheepNoise
grammar, SN, is small enough to use as a running example to clarify the indi-
vidual steps in the process.

1. Goal → SheepNoise
2. SheepNoise → SheepNoise baa
3. | baa

This version of SN includes a distinct Goal production. Including a separate

3.5. BUILDING AN LR(1) PARSER 85

production for the goal symbol simplifies the implementation of the parser gen-
erator. As a second example, we will use the classic expression grammar. It
includes complexity not found in SN ; this makes it an interesting example, but
too large to include incrementally in the text. Thus, this subsection ends with
the classic expression grammar as a detailed example.

LR(1) Items An lr(1) item is a pair [α→β • γδ, a], where α→βγδ ∈ P is
production of the grammar, the symbol • is a placeholder in the right-hand
side, and a ∈ T is a word in the source language. Individual lr(1) items
describe configurations of a bottom-up parser; they represent potential handles
that would be consistent with the left context that the parser has already seen.
The • marks the point in the production where the current upper frontier of the
parse tree ends. (Alternatively, it marks the top of the parser’s stack. These
two views are functionally equivalent.)

For a production α→βγδ and a lookahead symbol a ∈ T , the addition of
the placeholder generates four possible items, each with its own interpretation.
In each case, the presence of the item in the set associated with some parser
state indicates that the input that the parser has seen is consistent with the
occurrence of an α followed by an a. The position of • in the item provides
more information.

[α→•βγδ, a] indicates that an α would be valid and that recognizing a β at this
point would be one step toward discovering an α.

[α→β • γδ, a] indicates that the parser has progressed from the state where an
α would be valid by recognizing β. The β is consistent with recognizing
an α. The next step would be to recognize a γ.

[α→βγ • δ, a] indicates that the parser has moved forward from the state where
α would be valid by recognizing βγ. At this point, recognizing a δ, followed
by a, would allow the parser to reduce βγδ to α.

[α→βγδ•, a] indicates that the parser has found βγδ in a context where an α
followed by a would be valid. If the lookahead symbol is a, the parser can
reduce βγδ to α (and the item is a handle).

The lookahead symbols in lr(1) items encode left-context that the parser has
already seen, in the sense that [α→βγδ•, a] only indicates a reduction if the
lookahead symbol is a.

The SheepNoise grammar produces the following lr(1) items:

[Goal → • SheepNoise, EOF] [SheepNoise → • SheepNoise baa, EOF]
[Goal → SheepNoise •, EOF] [SheepNoise → SheepNoise • baa, EOF]
[SheepNoise → • baa, EOF] [SheepNoise → SheepNoise baa •, EOF]
[SheepNoise → baa •, EOF] [SheepNoise → • SheepNoise baa, baa]
[SheepNoise → • baa, baa] [SheepNoise → SheepNoise • baa, baa]
[SheepNoise → baa •, baa] [SheepNoise → SheepNoise baa •, baa]

86 CHAPTER 3. PARSING

for each α ∈ T
First(α) ← α

for each α ∈ NT
First(α) ← ∅

while (First sets are still changing)
for each p ∈ P , where p has the form α → β

if β is ε
then First(α) ← First(α) ∪ {ε}

else if β is β1β2 . . . βk then
First(α) ← First(α) ∪ First(β1)
for i ← 1 to k − 1 by 1

if ε ∈ First(βi)
then First(α) ← First(α) ∪ First(βi+1)
else break

Figure 3.11: Computing First sets

SN generates two terminal symbols. The first, baa, comes directly from the
grammar. The second, EOF (for end of file) arises from the need to represent the
parser’s final state. The item [Goal → SheepNoise •, EOF] represents a parser
configuration where it has already recognized a string that reduces to Goal, and
it has exhausted the input, indicated by the lookahead of EOF.

Constructing First Sets The construction of the canonical collection of sets
of lr(1) items uses the First sets for various grammar symbols. This set was
informally defined in our discussion of predictive parsing (see Section 3.3.3). For
the lr(1) construction, we need a more constructive definition:

if α ⇒∗ aβ, a ∈ T, β ∈ (T ∪ NT)∗ then a ∈ First(α)

if α ⇒∗ ε then ε ∈ First(α)

To compute First sets, we apply these two rules inside a fixed-point framework.
Figure 3.11 shows an algorithm that computes the First set for every symbol
in a context-free grammar G = (T, NT, S, P).

On successive iterations, First(α) takes on some value in 2(T∪ε). The entire
collection of First sets is a subset of 2(T∪ε). Each iteration of the while loop
either increases the size of some First set, or it changes no set. The algorithm
halts when an iteration leaves all the First sets unchanged. The actual running
time of the algorithm depends on the structure of the grammar.

3.5. BUILDING AN LR(1) PARSER 87

The First sets for the augmented SN grammar are trivial.

Symbol First

Goal baa
SheepNoise baa
baa baa
EOF EOF

A more involved example of the First set computation occurs with the classic
expression grammar. (See the detailed example later in this section.)

Constructing the Canonical Collection The construction begins by building a
model of the parser’s initial state. To the grammar, G = (T, NT, S, P), the
construction adds an additional non-terminal, S′, and one production, S′→S.
Adding this production allows us to specify the parser’s start state concisely; it
is represented by the lr(1) item [S′→•S, eof].

Closure To this initial item, the construction needs to add all of the items
implied by [S′→•S, eof]. The procedure closure does this.

closure(si)
while (si is still changing)
∀ item [α→β • γδ, a] ∈ si

∀ production γ→ς ∈ P
∀ b ∈ First(δa)

if [γ→•ς, b] 	 ∈ si

then add [γ→•ς, b] to si

It iterates over the items in set. If an item has the • immediately before some
non-terminal γ, it adds every production that can derive a γ, with the • at
the left end of the right-hand side. The rationale is clear. If [α→β • γδ, a] is a
member of the set, then one potential completion for the left context is to find
the string γδa, possibly followed by more context. This implies that γ is legal;
hence, every production deriving a γ is part of a potential future handle. To
complete the item, closure needs to add the appropriate lookahead symbol. If
δ is non-empty, it generates items for every element of First(δa). If δ is ε, this
devolves into First(a) = a.

The closure computation is another fixed-point computation. At each
point, the triply-nested loop either adds some elements to si or leaves it intact.
Since the set of lr(1) items is finite, this loop must halt. In fact, si ⊆ 2items,
the power set of the set of all lr(1) items. The triply-nested loop looks expen-
sive. However, close examination should convince you that each item in si must
be processed exactly once. Only items added in the previous iteration need
be processed in the inner two loops. The middle loop iterates over the set of
alternative right-hand sides for a single production; this can easily be restricted
so that each left-hand side is processed once per invocation of closure. The

88 CHAPTER 3. PARSING

amount of work in the inner loop depends entirely on the size of First(δa); if
δ is ε, the loop makes a single trip for a. Thus, this computation may be much
more sparse than it first appears.

In SN, the item [Goal → • SheepNoise,EOF] represents the initial state of the
parser. (The parser is looking for an input string that reduces to SheepNoise,
followed by EOF.) Taking the closure of this initial state produces the set

Item Reason
1. [Goal → • SheepNoise,EOF] original item
2. [SheepNoise → • SheepNoise baa, EOF] from 1, δa is “EOF”
3. [SheepNoise → • baa,EOF] from 1, δa is “EOF”
4. [SheepNoise → • SheepNoise baa, baa] from 2, δa is “baa EOF”
5. [SheepNoise → • baa,baa] from 2, δa is “baa EOF”

Items two and three derive directly from the first item. The final two items
derive from item two; their lookahead symbol is just First(baa EOF). This set
represents the initial state, s0, of an lr(1) parser for SN.

Goto If closure([S′→•S, eof]) computes the initial state s0, the remaining
step in the construction is to derive, from s0, the other parser states. To accom-
plish this, we compute the state that would arise if we recognized a grammar
symbol X while in s0. The procedure goto does this.

goto(si, x)
new ← ∅
∀ items i ∈ si

if i is [α→β • xδ, a] then
moved ← [α→βx • δ, a]
new ← new ∪ moved

return closure(new)

Goto takes two arguments, a set of lr(1) items si and a grammar symbol x. It
iterates over the items in si. When it finds one where • immediately precedes
x, it creates the item resulting from recognizing x by moving the • rightward
past x. It finds all such items, then returns their closure to fill out the state.

To find all the states that can be derived directly from s0, the algorithm
iterates over x ∈ (T ∪NT) and computes Goto(s0, x). This produces all the sets
that are one symbol away from s0. To compute the full canonical collection, we
simply iterate this process to a fixed point.

In SN, the set s0 derived earlier represents the initial state of the parser.
To build a representation of the parser’s state after seeing an initial baa, the
construction computes Goto(s0,baa). Goto creates two items:

Item Reason
1. [SheepNoise → baa •,EOF] from item 3 in s0

2. [SheepNoise → baa •,baa] from item 5 in s0

The final part of goto invokes closure on this set. It finds no items to add
because • is at the end of the production in each item.

3.5. BUILDING AN LR(1) PARSER 89

The Algorithm The algorithm for constructing the canonical collection of
sets of lr(1) items uses closure and goto to derive the set S of all parser
states reachable from s0.

CC0 ← closure([S′→•S, EOF])
while(new sets are still being added)

for Sj ∈ S and x ∈ (T ∪ NT)
if Goto(Sj, x) is a new set, add it to S

and record the transition

It begins by initializing S to contain s0. Next, it systematically extends S by
looking for any transition from a state in S to a state outside S. It does this
constructively, by building all of the possible new states and checking them for
membership in S.

Like the other computations in the construction, this is a fixed-point compu-
tation. The canonical collection, S, is a subset of 2items. Each iteration of the
while loop is monotonic; it can only add sets to S. Since S can grow no bigger
than 2items, the computation must halt. As in closure, a worklist implemen-
tation can avoid much of the work implied by the statement of the algorithm.
Each trip through the while loop need only consider sets sj added during the
previous iteration. To further speed the process, it can inspect the items in sj

and only compute goto(sj , x) for symbols that appear immediately after the
• in some item in sj . Taken together, these improvements should significantly
decrease the amount of work required by the computation.

For SN, the computation proceeds as follows:

CC0 is computed as closure([Goal → • SheepNoise, EOF]):
[Goal → • SheepNoise, EOF] [SheepNoise → • SheepNoise baa, EOF]
[SheepNoise → • SheepNoise baa, baa] [SheepNoise → • baa, EOF]
[SheepNoise → • baa, baa]

The first iteration produces two sets:

goto(CC0,SheepNoise) is CC1: [Goal → SheepNoise •, EOF]
[SheepNoise → SheepNoise • baa, EOF] [SheepNoise → SheepNoise • baa, baa]

goto(CC0,baa) is CC2: [SheepNoise → baa •, EOF] [SheepNoise → baa •, baa]
The second iteration produces one more set:

goto(CC1,baa) is CC3: [SheepNoise → SheepNoise baa •, EOF]
[SheepNoise → SheepNoise baa •, baa]

The final iteration produces no additional sets, so the computation terminates.

Filling in the Tables Given S, the canonical collection of sets of lr(1) items,
the parser generator fills in the Action and Goto tables by iterating through
S and examining the items in each set sj ∈ S. Each set sj becomes a parser
state. Its items generate the non-empty elements of one column of Action; the
corresponding transitions recorded during construction of S specify the non-
empty elements of Goto. Three cases generate entries in the Action table:

90 CHAPTER 3. PARSING

∀ si ∈ S
∀ item i ∈ si

if i is [α → β • aγ, b] and goto(si, a) = sj , a ∈ T
then set Action[i,a] to “shift j”

else if i is [α → β•, a]
then set Action[i,a] to “reduce α → β”

else if i is [S′ → S•, EOF]
then set Action[i,EOF] to “accept”

∀ n ∈ NT
If goto(si, A) = sj

then set Goto[i, A] to j

Figure 3.12: lr(1) table-filling algorithm

1. An item of the form [α→β•bγ, a] indicates that encountering the terminal
symbol b would be a valid next step toward discovering the non-terminal
α. Thus, it generates a shift item on b in the current state. The next
state for the recognizer is the state generated by computing goto on the
current state with the terminal b. Either β or γ can be ε.

2. An item of the form [α→β•, a] indicates that the parser has recognized a
β, and if the lookahead is a, then the item is a handle. Thus, it generates
a reduce item for the production α→β on a in the current state.

3. The item [S′→S•, eof] is unique. It indicates the accepting state for
the parser; the parser has recognized an input stream that reduces to
the goal symbol. If the lookahead symbol is eof, then it satisfies the
other acceptance criterion—it has consumed all the input. Thus, this
item generates an accept action on eof in the current state.

The code in Figure 3.12 makes this concrete. For an lr(1) grammar, these
items should uniquely define the non-error entries in the Action and Goto

tables.
Notice that the table-filling algorithm only essentially ignores items where

the • precedes a non-terminal symbol. Shift actions are generated when • pre-
cedes a terminal. Reduce and accept actions are generated when • is at the
right end of the production. What if si contains an item [α→β • γδ, a], where
γ ∈ NT? While this item does not generate any table entries itself, the items
that closure derives from [α→β•γδ, a] must include some of the form [ν→•b, c],
with b ∈ T . Thus, one effect of closure is to directly instantiate the First set
of γ into si. It chases down through the grammar until it finds each member
of First(γ) and puts the appropriate items into si to generate shift items for
every x ∈ First(γ).

For our continuing example, the table-filling algorithm produces these two
tables:

3.5. BUILDING AN LR(1) PARSER 91

Action Table

State EOF baa
0 shift 2
1 accept shift 3
2 reduce 3 reduce 3
3 reduce 2 reduce 2

Goto Table

State SheepNoise
0 1
1 0
2 0
3 0

At this point, the tables can be used with the skeleton parser in Figure 3.8 to
create an lr(1) parser for SN.

Errors in the Process If the grammar is not lr(1), the construction will attempt
to multiply define one or more entries in the Action table. Two kinds of
conflicts occur:

shift/reduce This conflict arises when some state si contains a pair of items
[α→β • aγ, b] and [δ→ν•, a]. The first item implies a shift on a, while the
second implies a reduction by δ→[]ν. Clearly, the parser cannot do both.
In general, this conflict arises from an ambiguity like the if-then-else
ambiguity. (See Section 3.2.3.)

reduce/reduce This conflict arises when some state si contains both [α→γ•, a]
and [β→γ•, a]. The former implies that the parser should reduce γ to α,
while the latter implies that it should reduce the same γ to β. In general,
this conflict arises when the grammar contains two productions that have
the same right-hand side, different left-hand sides, and allows them both
to occur in the same place. (See Section 3.6.1.)

Typically, when a parser generator encounters one of these conflicts, it reports
the error to the user and fails. The compiler-writer needs to resolve the ambi-
guity, as discussed elsewhere in this chapter, and try again.

The parser-generator can resolve a shift-reduce conflict in favor of shifting;
this causes the parser to always favor the longer production over the shorter
one. A better resolution, however, it to disambiguate the grammar.

Detailed Example To make this discussion more concrete, consider the classic
expression grammar, augmented with a production Goal→Expr.

1. Goal → Expr
2. Expr → Expr + Term
3. | Expr − Term
4. | Term
5. Term → Term × Factor
6. | Term ÷ Factor
7. | Factor
8. Factor → (Expr)
9. | Num
10. | Id

92 CHAPTER 3. PARSING

Notice the productions have been renumbered. (Production numbers show up
in “reduce” entries in the Action table.)

The First sets for the augmented grammar are as follows:

First

Goal (, Num, Id
Expr (, Num, Id
Term (, Num, Id
Factor (, Num, Id
Num Num
Id Id

First

+ +
− −
× ×
÷ ÷
((
))

The initial step in constructing the Canonical Collection of Sets of lr(1)

Items forms an initial item, [Goal → • Expr,EOF] and takes its closure to produce
the first set.

CC0: [Goal → • Expr,EOF], [Expr → • Expr + Term,{EOF,+,-}],
[Expr → • Expr - Term,{EOF,+,-}], [Expr → • Term,{EOF,+,-}],
[Term → • Term × Factor,{EOF,+,-,×,÷}],
[Term → • Term ÷ Factor,{EOF,+,-,×,÷}],
[Term → • Factor,{EOF,+,-,×,÷}], [Factor → • (Expr),{EOF,+,-,×,÷}],
[Factor → • Num,{EOF,+,-,×,÷}], [Factor → • Id,{EOF,+,-,×,÷}],

The first iteration computes goto on cc0 and each symbol in the grammar. It
produces six new sets, designating them cc1 through cc6.

CC1: [Goal → Expr •,EOF], [Expr → Expr • + Term,{EOF,+,-}],
[Expr → Expr • - Term,{EOF,+,-}],

CC2: [Expr → Term •,{EOF,+,-}], [Term → Term • × Factor,{EOF,+,-,×,÷}],
[Term → Term • ÷ Factor,{EOF,+,-,×,÷}],

CC3: [Term → Factor •,{EOF,+,-,×,÷}],
CC4: [Expr → • Expr + Term,{+,-,)}], [Expr → • Expr - Term,{+,-,)}],

[Expr → • Term,{+,-,)}], [Term → • Term × Factor,{+,-,×,÷,)}],
[Term → • Term ÷ Factor,{+,-,×,÷,)}], [Term → • Factor,{+,-,×,÷,)}],
[Factor → • (Expr),{+,-,×,÷,)}], [Factor → (• Expr),{EOF,+,-,×,÷}],
[Factor → • Num,{+,-,×,÷,)}], [Factor → • Id,{+,-,×,÷,)}],

CC5: [Factor → Num •,{EOF,+,-,×,÷}],
CC6: [Factor → Id •,{EOF,+,-,×,÷}],

Iteration two examines sets from cc1 through cc6. This produces new sets
labelled cc7 through cc16.

CC7: [Expr → Expr + • Term,{EOF,+,-}],
[Term → • Term × Factor,{EOF,+,-,×,÷}],
[Term → • Term ÷ Factor,{EOF,+,-,×,÷}],
[Term → • Factor,{EOF,+,-,×,÷}], [Factor → • (Expr),{EOF,+,-,×,÷}],
[Factor → • Num,{EOF,+,-,×,÷}], [Factor → • Id,{EOF,+,-,×,÷}],

3.5. BUILDING AN LR(1) PARSER 93

CC8: [Expr → Expr - • Term,{EOF,+,-}],
[Term → • Term × Factor,{EOF,+,-,×,÷}],
[Term → • Term ÷ Factor,{EOF,+,-,×,÷}],
[Term → • Factor,{EOF,+,-,×,÷}], [Factor → • (Expr),{EOF,+,-,×,÷}],
[Factor → • Num,{EOF,+,-,×,÷}], [Factor → • Id,{EOF,+,-,×,÷}],

CC9: [Term → Term × • Factor,{EOF,+,-,×,÷}],
[Factor → • (Expr),{EOF,+,-,×,÷}], [Factor → • Num,{EOF,+,-,×,÷}],
[Factor → • Id,{EOF,+,-,×,÷}],

CC10: [Term → Term ÷ • Factor,{EOF,+,-,×,÷}],
[Factor → • (Expr),{EOF,+,-,×,÷}], [Factor → • Num,{EOF,+,-,×,÷}],
[Factor → • Id,{EOF,+,-,×,÷}],

CC11: [Expr → Expr • + Term,{+,-,)}], [Expr → Expr • - Term,{+,-,)}],
[Factor → (Expr •),{EOF,+,-,×,÷}],

CC12: [Expr → Term •,{+,-,)}], [Term → Term • × Factor,{+,-,×,÷,)}],
[Term → Term • ÷ Factor,{+,-,×,÷,)}],

CC13: [Term → Factor •,{+,-,×,÷,)}],

CC14: [Expr → • Expr + Term,{+,-,)}], [Expr → • Expr - Term,{+,-,)}],
[Expr → • Term,{+,-,)}], [Term → • Term × Factor,{+,-,×,÷,)}],
[Term → • Term ÷ Factor,{+,-,×,÷,)}], [Term → • Factor,{+,-,×,÷,)}],
[Factor → • (Expr),{+,-,×,÷,)}], [Factor → (• Expr),{+,-,×,÷,)}],
[Factor → • Num,{+,-,×,÷,)}], [Factor → • Id,{+,-,×,÷,)}],

CC15: [Factor → Num •,{+,-,×,÷,)}],

CC16: [Factor → Id •,{+,-,×,÷,)}],

Iteration three processes sets from cc7 through cc16. This adds sets cc16

through cc26 to the Canonical Collection.

CC17: [Expr → Expr + Term •,{EOF,+,-}],
[Term → Term • × Factor,{EOF,+,-,×,÷}],
[Term → Term • ÷ Factor,{EOF,+,-,×,÷}],

CC18: [Expr → Expr - Term •,{EOF,+,-}],
[Term → Term • × Factor,{EOF,+,-,×,÷}],
[Term → Term • ÷ Factor,{EOF,+,-,×,÷}],

CC19: [Term → Term × Factor •,{EOF,+,-,×,÷}],

CC20: [Term → Term ÷ Factor •,{EOF,+,-,×,÷}],

CC21: [Expr → Expr + • Term,{+,-,)}], [Term → • Term × Factor,{+,-,×,÷,)}],
[Term → • Term ÷ Factor,{+,-,×,÷,)}], [Term → • Factor,{+,-,×,÷,)}],
[Factor → • (Expr),{+,-,×,÷,)}], [Factor → • Num,{+,-,×,÷,)}],
[Factor → • Id,{+,-,×,÷,)}],

94 CHAPTER 3. PARSING

CC22: [Expr → Expr - • Term,{+,-,)}], [Term → • Term × Factor,{+,-,×,÷,)}],
[Term → • Term ÷ Factor,{+,-,×,÷,)}], [Term → • Factor,{+,-,×,÷,)}],
[Factor → • (Expr),{+,-,×,÷,)}], [Factor → • Num,{+,-,×,÷,)}],
[Factor → • Id,{+,-,×,÷,)}],

CC23: [Factor → (Expr) •,{EOF,+,-,×,÷}],
CC24: [Term → Term × • Factor,{+,-,×,÷,)}],

[Factor → • (Expr),{+,-,×,÷,)}], [Factor → • Num,{+,-,×,÷,)}],
[Factor → • Id,{+,-,×,÷,)}],

CC25: [Term → Term ÷ • Factor,{+,-,×,÷,)}],
[Factor → • (Expr),{+,-,×,÷,)}], [Factor → • Num,{+,-,×,÷,)}],
[Factor → • Id,{+,-,×,÷,)}],

CC26: [Expr → Expr • + Term,{+,-,)}], [Expr → Expr • - Term,{+,-,)}],
[Factor → (Expr •),{+,-,×,÷,)}],

Iteration four looks at sets cc17 through cc26. This adds five more sets to the
Canonical Collection, labelled cc27 through cc31.

CC27: [Expr → Expr + Term •,{+,-,)}], [Term → Term • × Factor,{+,-,×,÷,)}],
[Term → Term • ÷ Factor,{+,-,×,÷,)}],

CC28: [Expr → Expr - Term •,{+,-,)}], [Term → Term • × Factor,{+,-,×,÷,)}],
[Term → Term • ÷ Factor,{+,-,×,÷,)}],

CC29: [Term → Term × Factor •,{+,-,×,÷,)}],
CC30: [Term → Term ÷ Factor •,{+,-,×,÷,)}],
CC31: [Factor → (Expr) •,{+,-,×,÷,)}],

Iteration five finds that every set it examines is already in the Canonical Col-
lection, so the algorithm has reached its fixed point and it halts. Applying
the table construction algorithm from Figure 3.12 produces the Action table
shown in Figure 3.13 and the Goto table shown in Figure 3.14.

3.5.3 Shrinking the Action and Goto Tables

As Figures 3.13 and 3.14 show, the lr(1) tables generated for relatively small
grammars can be quite large. Many techniques exist for shrinking these tables.
This section describes three approaches to reducing table size.

Combining Rows or Columns If the table generator can find two rows, or two
columns, that are Identical, it can combine them. In Figure 3.13, the rows for
states zero and seven through ten are identical, as are rows 4, 14, 21, 22, 24,
and 25. The table generator can implement each of these sets once, and remap
the states accordingly. This would remove five rows from the table, reducing
its size by roughly fifteen percent. To use this table, the skeleton parser needs
a mapping from a parser state to a row index in the Action table. The table
generator can combine identical columns in the analogous way. A separate

3.5. BUILDING AN LR(1) PARSER 95

Action Table

State EOF + - × ÷ () Num Id
0 s 4 s 5 s 6
1 acc s 7 s 8
2 r 4 r 4 r 4 s 9 s 10
3 r 7 r 7 r 7 r 7 r 7
4 s 14 s 15 s 16
5 r 9 r 9 r 9 r 9 r 9
6 r 10 r 10 r 10 r 10 r 10
7 s 4 s 5 s 6
8 s 4 s 5 s 6
9 s 4 s 5 s 6
10 s 4 s 5 s 6
11 s 21 s 22 s 23
12 r 4 r 4 s 24 s 25 r 4
13 r 7 r 7 r 7 r 7 r 7
14 s 14 s 15 s 16
15 r 9 r 9 r 9 r 9 r 9
16 r 10 r 10 r 10 r 10 r 10
17 r 2 r 2 r 2 s 9 s 10
18 r 3 r 3 r 3 s 9 s 10
19 r 5 r 5 r 5 r 5 r 5
20 r 6 r 6 r 6 r 6 r 6
21 s 14 s 15 s 16
22 s 14 s 15 s 16
23 r 8 r 8 r 8 r 8 r 8
24 s 14 s 15 s 16
25 s 14 s 15 s 16
26 s 21 s 22 s 31
27 r 2 r 2 s 24 s 25 r 2
28 r 3 r 3 s 24 s 25 r 3
29 r 5 r 5 r 5 r 5 r 5
30 r 6 r 6 r 6 r 6 r 6
31 r 8 r 8 r 8 r 8 r 8

Figure 3.13: Action table for the classic expression grammar

96 CHAPTER 3. PARSING

Goto Table

State Expr Term Factor
0 1 2 3
1
2
3
4 11 12 13
5
6
7 17 3
8 18 3
9 19
10 20
11
12
13
14 26 12 13
15

Goto Table

State Expr Term Factor
16
17
18
19
20
21 27 13
22 28 13
23
24 29
25 30
26
27
28
29
30
31

Figure 3.14: Goto table for the classic expression grammar

inspection of the Goto table will yield a different set of state combinations—in
particular, all of the rows containing only zeros should condense to a single row.

In some cases, the table generator can discover two rows or two columns
that differ only in cases where one of the two has an “error” entry (denoted by
a blank in our figures). In Figure 3.13, the column for EOF and for Num differ
only where one or the other has a blank. Combining these columns produces
a table that has the same behavior on correct inputs. The error behavior of
the parser will change; several authors have published studies that show when
such columns can be combined without adversely affecting the parser’s ability
to detect errors.

Combining rows and columns produces a direct reduction in table size. If
this space reduction adds an extra indirection to every table access, the cost of
those memory operations must trade off directly against the savings in mem-
ory. The table generator could also use other techniques for representing sparse
matrices—again, the implementor must consider the tradeoff of memory size
against any increase in access costs.

Using Other Construction Algorithms Several other algorithms for constructing
lr-style parsers exist. Among these techniques are the slr(1) construction, for
simple lr(1), and the lalr(1) construction for lookahead lr(1). Both of these
constructions produce smaller tables than the canonical lr(1) algorithm.

The slr(1) algorithm accepts a smaller class of grammars than the canon-
ical lr(1) construction. These grammars are restricted so that the lookahead

3.5. BUILDING AN LR(1) PARSER 97

symbols in the lr(1) items are not needed. The algorithm uses a set, called
the follow set, to distinguish between cases where the parser should shift and
those where it should reduce. (The follow set contains all of the terminals that
can appear immediately after some non-terminal α in the input. The algorithm
for constructing follow sets is similar to the one for building first sets.) In
practice, this mechanism is powerful enough to resolve most grammars of prac-
tical interest. Because the algorithm uses lr(0 items, it constructs a smaller
canonical collection and its table has correspondingly fewer rows.

The lalr(1) algorithm capitalizes on the observation that some items in the
set representing a state are critical, and the remaining ones can be derived from
the critical items. The table construction item only represents these critical
items; again, this produces a smaller canonical collection. The table entries
corresponding to non-critical items can be synthesized late in the process.

The lr(1) construction presented earlier in the chapter is the most general of
these table construction algorithms. It produces the largest tables, but accepts
the largest class of grammars. With appropriate table reduction techniques, the
lr(1) tables can approximate the size of those produced by the more limited
techniques. However, in a mildly counter-intuitive result, any language that
has an lr(1) grammar also has an lalr(1) grammar and an slr(1) grammar.
The grammars for these more restrictive forms will be shaped in a way that
allows their respective construction algorithms to resolve the difference between
situations where the parser should shift and those where it should reduce.

Shrinking the Grammar In many cases, the compiler writer can recode the gram-
mar to reduce the number of productions that it contains. This usually leads
to smaller tables. For example, in the classic expression grammar, the distinc-
tion between a number and an identifier is irrelevant to the productions for
Goal, Expr, Term, and Factor. Replacing the two productions Factor → Num
and Factor → Id with a single production Factor → Val shrinks the grammar
by a production. In the Action table, each terminal symbol has its own col-
umn. Folding Num and Id into a single symbol, Val, removes a column from the
action table. To make this work, in practice, the scanner must return the same
syntactic category, or token, for both numbers and identifiers.

Similar arguments can be made for combining × and ÷ into a single terminal
MulDiv, and for combining + and − into a single terminal AddSub. Each of these
replacements removes a terminal symbol and a production. This shrinks the size
of the Canonical Collection of Sets of lr(1) Items, which removes rows from
the table. It reduces the number of columns as well.

These three changes produce the following reduced expression grammar:

1. Goal → Expr
2. Expr → Expr AddSub Term
3. | Term
4. Term → Term MulDiv Factor
5. | Factor
6. Factor → (Expr)
7. | Val

98 CHAPTER 3. PARSING

Action Table

Add- Mul-

EOF Sub Div () Val

0 s 4 s 5

1 acc s 6

2 r 3 r 3 s 7

3 r 5 r 5 r 5

4 s 11 s 12

5 r 7 r 7 r 7

6 s 4 s 5

7 s 4 s 5

8 s 15 s 16

9 r 3 s 17 r 3

10 r 5 r 5 r 5

11 s 11 s 12

12 r 7 r 7 r 7

13 r 2 r 2 s 7

14 r 4 r 4 r 4

15 s 11 s 12

16 r 6 r 6 r 6

17 s 11 s 12

18 s 15 s 21

19 r 2 s 17 r 2

20 r 4 r 4 r 4

21 r 6 r 6 r 6

Goto Table

Expr Term Factor

0 1 2 3

1

2

3

4 8 9 10

5

6 13 3

7 14

8

9

10

11 18 9 10

12

13

14

15 19 10

16

17 20

18

19

20

21

Figure 3.15: Tables for the reduced expression grammar

The resulting Action and Goto tables are shown in Figure 3.15. The Action

table contains 126 entries and the Goto table contains 66 entries, for a total of
198 entries. This compares favorably with the tables for the original grammar,
with their 384 entries. Changing the grammar produced a forty-eight percent
reduction in table size. Note, however, that the tables still contain duplicate
rows, such as 0, 6, and 7 in the Action table, or rows 4, 11, 15, and 17 in the
Action table, and all of the identical rows in the Goto table. If table size is
a serious concern, these techniques should be used together.

Directly Encoding the Table As a final improvement, the parser generator can
abandon completely the table-driven skeleton parser in favor of a hard-coded
implementation. Each state becomes a small case statement or a collection
of if–then–else statements that test the type of the next symbol and either
shift, reduce, accept, or produce an error. The entire contents of the Action

and Goto tables can be encoded in this way. (A similar transformation for
scanners is discusses in Section 2.8.2.)

The resulting parser avoids directly representing all of the “don’t care” states
in the Action and Goto tables, shown as blanks in the figures. This space

3.6. PRACTICAL ISSUES 99

savings may be offset by a larger code size, since each state now includes more
code. The new parser, however, has no parse table, performs no table lookups,
and lacks the outer loop found in the skeleton parser. While its structure makes
it almost unreadable by humans, it should execute more quickly than the table-
driven skeleton parser. With appropriate code layout techniques, the resulting
parser can exhibit strong locality in both the instruction cache and the paging
system, an arena where seemingly random accesses to large tables produces poor
performance.

3.6 Practical Issues

3.6.1 Handling Context-Sensitive Ambiguity

A second type of ambiguity arises from overloading the meaning of a word in
the language. One example of this problem arose in the definitions of Fortran
and PL/I. Both these languages use the same characters to enclose the index
expression of an array and the argument list of a subroutine or function. Given
a textual reference, such as foo(i,j), the compiler cannot tell if foo is a two-
dimensional array or a procedure that must be invoked. Differentiating between
these two cases requires knowledge of foo’s type. This information is not syn-
tactically obvious. The scanner undoubtedly classifies foo as an Identifier in
either case. A function call and an array reference can appear in many of the
same situations.

Resolving this ambiguity requires extra-syntactic knowledge. We have used
two different approaches to solve this problem over the years. First, the scan-
ner can should classify identifiers based on their declared type, rather than
their micro-syntactic properties. This requires some hand-shaking between the
scanner and the parser; the coordination is not hard to arrange as long as the
language has a define-before-use rule. Since the declaration is parsed before the
use occurs, the parser can make its internal symbol table available to the scanner
to resolve identifiers into distinct classes, like variable-name and function-name.
This allows the scanner to return a token type that distinguishes between the
function invocation and the array reference.

The alternative is to rewrite the grammar so that it recognizes both the
function invocation and the array reference in a single production. In this
scheme, the issue is deferred until a later step in translation, when it can be
resolved with information from the declarations. The parser must construct a
representation that preserves all the information needed by either resolution;
the later step will then rewrite the reference into its appropriate form as an
array reference or as a function invocation.

3.6.2 Optimizing a Grammar

In the parser for a typical Algol-like language, a large share of the time is
spent parsing expressions. Consider, again, the classic expression grammar from
Section 3.2.3.

100 CHAPTER 3. PARSING

1. Expr → Expr + Term
2. | Expr − Term
3. | Term
4. Term → Term × Factor
5. | Term ÷ Factor
6. | Factor
7. Factor → (Expr)
8. | Num
9. | Id

Each production causes some sequence of shift and reduce actions in the parser.
Some of the productions exist for cosmetic reasons; we can transform the gram-
mar to eliminate them and the corresponding reduce actions. (Shift operations
cannot be eliminated; they correspond to words in the input stream. Shorten-
ing the grammar does not change the input!) For example, we can replace any
occurrence of Factor on the right hand side of a production with each of the
right hand sides for Factor.

Term → Term × (Expr) | Term × Id | Term × Num
| Term ÷ (Expr) | Term ÷ Id | Term ÷ Num
| (Expr) | Id | Num

This increases the number of productions, but removes an additional reduce
action in the parser. Similarly, productions that have only one symbol on their
right hand side such as the production Expr → Term, can be eliminated by an
appropriate forward substitution.3

3.6.3 Left versus Right Recursion

As we have seen, top-down parsers need right recursive grammars rather than
left recursive grammars. Bottom-up parsers can accommodate either left re-
cursion or right recursion. Thus, the compiler writer has a choice between left
recursion and right recursion in laying out the grammar for a bottom-up parser.
Several factors plays into this decision.

Stack Depth In general, left recursion can lead to smaller stack depths. Con-
sider two alternative grammars for a simple list construct.

List → List Elt List → Elt List
| Elt | Elt

Using each grammar to produce a list of five elements, we produce the following
derivations.

3These productions are sometimes called useless productions. They serve a purpose—
making the grammar more compact and, perhaps, more readable. They are not, however,
strictly necessary.

3.6. PRACTICAL ISSUES 101

List List
List Elt5 Elt1 List
List Elt4 Elt5 Elt1 Elt2 List
List Elt3 Elt4 Elt5 Elt1 Elt2 Elt3 List
List Elt2 Elt3 Elt4 Elt5 Elt1 Elt2 Elt3 Elt4 List
Elt1 Elt2 Elt3 Elt4 Elt5 Elt1 Elt2 Elt3 Elt4 Elt5

Since the parser constructs this sequence in reverse, reading the derivation from
bottom line to top line allows us to follow the parser’s actions.

• The left recursive grammar shifts Elt1 onto its stack and immediately
reduces it to List. Next, it shifts Elt2 onto the stack and reduces it to
List. It proceeds until it has shifted each of the five Eltis onto the stack
and reduced them to List. Thus, the stack reaches a maximum depth of
two and an average depth of 10

6 = 1 2
3 .

• The right recursive version will shift all five Elti’s onto its stack. Next,
it reduces Elt5 to List using rule two, and the remaining Elti’s using rule
one. Thus, its maximum stack depth will be five and its average will be
20
6 = 3 2

3 .

The right recursive grammar requires more stack space; in fact, its maximum
stack depth is bounded only by the length of the list. In contrast, the maximum
stack depth of the left recursive grammar is a function of the grammar rather
than the input stream.

For short lists, this is not a problem. If, however, the list has hundreds of
elements, the difference in space can be dramatic. If all other issues are equal,
the smaller stack height is an advantage.

Associativity Left recursion naturally produces left associativity. Right recur-
sion naturally produces right associativity. In some cases, the order of evaluation
makes a difference. Consider the abstract syntax trees for the five element lists
constructed earlier.

Elt1 Elt2

Elt3

Elt4

Elt5
�

�
�
�
�
�
�����R

��R

��R

��R
•

•

•

•

Elt1

Elt2

Elt3

Elt4 Elt5

�
�
�
�
�
�
��R���

���

���

���
•

•

•

•

The left-recursive grammar reduces Elt1 to a List, then reduces List Elt1, and
so on. This produces the ast shown on the left. Similarly, the right recursive
grammar produces the ast on the right.

With a list, neither of these orders is obviously correct, although the right
recursive ast may seem more natural. Consider, however, the result if we
replace the list constructor with addition, as in the grammars

102 CHAPTER 3. PARSING

Expr → Expr + Operand Expr → Operand + Expr
| Operand | Operand

Here, the difference between the asts for a five-element sum is obvious. The
left-recursive grammar generates an ast that implies a left-to-right evaluation
order, while the right recursive grammar generates a right-to-left evaluation
order.

With some number systems, such as floating-point arithmetic on a computer,
this reassociation can produce different results. Since floating-point arithmetic
actually represents a small mantissa relative to the range of the exponent,
addition becomes an identity operation for two numbers that are far enough
apart in magnitude. If, for example, the processor’s floating-precision is four-
teen decimal digits, and Elt5 − Elt4 > 1015, then the processor will compute
Elt5 +Elt4 = Elt5. If the other three values, Elt1, Elt2, and Elt3 are also small
relative to Elt5, but their sum is large enough so that

Elt5 −
4∑

i=1

Elti > 1014,

then left-to-right and right-to-left evaluation produce different answers.
The issue is not that one evaluation order is inherently correct while the

other is wrong. The real issue is that the compiler must preserve the expected
evaluation order. If the source language specifies an order for evaluating expres-
sions, the compiler must ensure that the code it generates follows that order.
The compiler writer can accomplish this in one of two ways: writing the expres-
sion grammar so that it produces the desired order, or taking care to generate
the intermediate representation to reflect the opposite associativity, as described
in Section 4.4.3.

3.7 Summary and Perspective

Almost every compiler contains a parser. For many years, parsing was a subject
of intense interest. This led to the development of many different techniques
for building efficient parsers. The lr(1) family of grammars includes all of
the context-free grammars that can be parsed in a deterministic fashion. The
tools produce efficient parsers with provably strong error-detection properties.
This combination of features, coupled with the widespread availability of parser
generators for lr(1), lalr(1), and slr(1) grammars, has decreased interest in
other automatic parsing techniques (such as ll(1) and operator precedence).

Top-down, recursive descent parsers have their own set of advantages. They
are, arguably, the easiest hand-coded parsers to construct. They provide ex-
cellent opportunities for detecting and repairing syntax errors. The compiler
writer can more easily finesse ambiguities in the source language that might
trouble an lr(1) parser—such as, a language where keyword names can appear
as identifiers. They are quite efficient; in fact, a well-constructed top-down,
recursive-descent parser can be faster than a table-driven lr(1) parser. (The

3.7. SUMMARY AND PERSPECTIVE 103

direct encoding scheme for lr(1) may overcome this speed advantage.) A com-
piler writer who wants to construct a hand-coded parser, for whatever reason,
is well advised to use the top-down, recursive-descent method.

Questions

1. Consider the task of building a parser for the programming language
Scheme. Contrast the effort required for a top-down, recursive-descent
parser with that needed for a table-driven lr(1) parser. (Assume that
you have a table-generator handy.)

Now, consider the same contrast for the write statement in Fortran 77.
Its syntax is given by the following set of rules.

104 CHAPTER 3. PARSING

Chapter 4

Context-Sensitive Analysis

4.1 Introduction

Many of the important properties of a programming language cannot be speci-
fied in a context-free grammar. For example, to prepare a program for transla-
tion, the compiler needs to gather all of the information available to it for each
variable used in the code. In many languages, this issue is addressed by a rule
that requires a declaration for each variable before its use. To make checking
this rule more efficient, the language might require that all declarations occur
before any executable statements. The compiler must enforce these rules.

The compiler can use a syntactic mechanism to enforce the ordering of dec-
larations and executables. A production such as

ProcedureBody → Declarations Executables

where the non-terminals have the obvious meanings, ensures that all Decla-
rations occur before the Executables. A program that intermixes declarations
with executable statements will raise a syntax error in the parser. However, this
does nothing to check the deeper rule—that the program declares each variable
before its first use in an executable statement.

Enforcing this second rule requires a deeper level of knowledge than can
be encoded in the context-free grammar, which deals with syntactic categories
rather than specific words. Thus, the grammar can specify the positions in an
expression where a variable name can occur. The parser can recognize that
the grammar allows the variable name to occur and it can tell that one has
occurred. However, the grammar has no notation for matching up one instance
of a variable name with another; that would require the grammar to specify a
much deeper level of analysis.

Even though this rule is beyond the expressive power of a cfg, the compiler
needs to enforce it. It must relate the use of x back to its declaration. The
compiler needs an efficient mechanism to resolve this issue, and a host of others
like it, that must be checked to ensure correctness.

105

106 CHAPTER 4. CONTEXT-SENSITIVE ANALYSIS

4.2 The Problem

Before it can proceed with translation, the compiler must perform a number
of computations that derive information about the code being compiled. For
example, the compiler must record the basic information about the type, storage
class, and dimension of each variable that its declaration contains, and it must
use that information to check the type correctness of the various expressions
and statements in the code. It must determine where to insert a conversion
between data types, such as from a floating-point number to an integer.

These computations derive their basic facts from information that is implicit
in the source program. The compiler uses the results to translate the code
into another form. Thus, it is natural for these computations to follow the
grammatical structure of the code. This chapter explores two techniques that
tie the computation to the grammar used for parsing and use that structure to
automate many of the details of the computation.

In Chapter 2, we saw that regular expressions provide most of the features
necessary to automate the generation of scanners. The compiler writer specifies
a regular expression and a token value for each syntactic category, and the tools
produce a scanner. In Chapter 3, we saw that context-free grammars allow
automation of much of the work required for parser construction; some of the
rough edges must still be smoothed out by a skilled practitioner. The problems
of context-sensitive analysis have not yet yielded to a neat, packaged solution.

This chapter presents two approaches to context-sensitive analysis: attribute
grammars and ad hoc syntax directed translation.

• Attribute grammars provide a non-procedural formalism for associating
computations with a context-free grammar. The definition of the attribute
grammar consists of a set of equations; each equation is bound to a specific
production. Tools exist for generating automatic evaluators from the set of
rules. While attribute grammars have their strong points, they also have
weaknesses that have prevented widespread adoption of the formalism for
context-sensitive analysis.

• Ad hoc syntax-directed translation requires the compiler writer to produce
small small snippets of code, called actions, that perform computations
associated with a grammar. The technique draws on some of the insights
that underlie attribute grammars to organize the computation, but allows
the compiler writer to use arbitrary code in the actions. Despite the lack
of formalism, ad hoc syntax directed translation remains the dominant
technique used in compilers to perform context-sensitive analysis.

Formalism succeeded in both scanning and parsing, to the point that most com-
piler writers elect to use scanner generators based on regular expressions and to
use parser generators based on context-free grammars. It has not succeeded as
well with context-sensitive analysis. By exploring the strengths and weaknesses
of attribute grammars, this chapter lays the foundation for understanding the
principles that underlie syntax-directed translation. Next, this chapter explores

4.3. ATTRIBUTE GRAMMARS 107

Production Attribution Rules
1. Number → Sign List List.pos ← 0

if Sign.neg
then Number.val ← − List.val
else Number.val ← List.val

2. Sign → + Sign.neg ← false

3. Sign → - Sign.neg ← true

4. List → Bit Bit.pos ← List.pos
List.val ← Bit.val

5. List0 → List1 Bit List1.pos ← List0.pos + 1
Bit.pos ← List0.pos
List0.val ← List1.val + Bit.val

6. Bit → 0 Bit.val ← 0

7. Bit → 1 Bit.val ← 2Bit.pos

Figure 4.1: Attribute grammar for signed binary numbers

the mechanisms needed to build translators that perform ad hoc syntax-directed
translation and presents a series of examples to illustrate how such computa-
tions can be structured. Finally, it concludes with a brief discussion of typical
questions that a compiler might try to answer during context-sensitive analysis.

4.3 Attribute Grammars

An attributed context-free grammar, or attribute grammar, consists of a context-
free grammar, augmented by a set of rules that specify a computation. Each
rule defines one value, or attribute, in terms of the values of other attributes.
The rule associates the attribute with a specific grammar symbol; each instance
of the grammar symbol that occurs in a parse tree has a corresponding instance
of the attribute. Because of the relationship between attribute instances and
nodes in the parse tree, implementations are often described as adding fields for
the attributes to the nodes of the parse tree.

The simple example shown in Figure 4.1 makes some of these notions con-
crete. The grammar uses seven productions to describe the language of signed
binary numbers. Its grammar has four non-terminals, Number, Sign, List, and
Bit, and four terminals +, -, 0, and 1. This particular grammar only asso-
ciates values with non-terminal symbols. It defines the following attributes:
Number.val, Sign.neg, List.val, List.pos, Bit.val, and Bit.pos. Subscripts
are added to grammar symbols when needed to disambiguate a rule; i.e., the
occurrences of List in production 5. Notice that values flow from the right-hand
side to the left-hand side and vice versa.

Production 4 shows this quite clearly. The pos attribute of bit receives

108 CHAPTER 4. CONTEXT-SENSITIVE ANALYSIS

the value of list.pos. We call bit.pos an inherited attribute because its value is
derived from an attribute of its parent (or its siblings) in the parse tree. The val
attribute of list receives its value from bit.val. We call list.val a synthesized
attribute because its value is derived from an attribute of its children in the tree.

Given a string in the context free grammar, the attribute rules evaluate to
set number.val to the decimal value of the binary input string. For example,
the string -101 causes the attribution shown on the left side of Figure 4.2.
Notice that number.val has the value -5.

To evaluate an instance of the attribute grammar, the attributes specified
in the various rules are instantiated for each grammar symbol in the parse (or
each node in the parse tree). Thus, each instance of a List node in the example
has its own copy of both val and pos. Each rule implicitly defines a set of
dependences; the attribute being defined depends on each argument to the rule.
Taken over the entire parse tree, these dependences form an attribute dependence
graph. Edges in the graph follow the flow of values in the evaluation of a rule; an
edge from nodei.fieldj to nodek.fieldl indicates that the rule defining nodek.fieldl

uses the value of nodei.fieldj as one of its inputs. The right side of Figure 4.2
shows the dependence graph induced by the parse tree for the string -101.

Any scheme for evaluating attributes must respect the relationships encoded
implicitly in the attribute dependence graph. The rule that defines an attribute
cannot be evaluated until all of the attribute values that it references have been
defined. At that point, the value of the attribute is wholly defined. The attribute
is immutable; its value cannot change. This can produce an evaluation order
that is wholly unrelated to the order in which the rules appear in the grammar.
For a production with three distinct rules, the middle one might evaluate long
before the first or third. Evaluation order is determined by the dependences
rather than any textual order.

To create and use an attribute grammar, the compiler writer determines a
set of attributes for each terminal and non-terminal symbol in the grammar,
and designs a set of rules to compute their values. Taken together, these specify
a computation. To create an implementation, the compiler writer must create
an evaluator; this can be done with an ad hoc program or by using an evalu-
ator generator—the more attractive option. The evaluator generator takes as
input the specification for the attribute grammar. It produces the code for an
evaluator as its output. This is the attraction of an attribute grammar for the
compiler writer; the tools take a high-level, non-procedural specification and
automatically produce an implementation.

4.3.1 Evaluation Methods

The attribute grammar model has practical use only if we can build evaluators
that interpret the rules to automatically evaluate an instance of the problem—a
specific parse tree, for example. Many attribute evaluation techniques have been
proposed in the literature. In general, they fall into three major categories.

Dynamic Methods These techniques use the structure of a particular instance
of the attributed parse tree to determine the evaluation order. Knuth’s original

4.3. ATTRIBUTE GRAMMARS 109

-

Sign

1

Bit

List

Number

List

0

Bit

List

1

Bit

� �

�

�
��

PPPPPPq

�
��

�
�R

�

�
��

�
�R

�

neg:true

val:-5

val:4
pos:2

val:4
pos:2

val:4
pos:1

val:5
pos:0

val:0
pos:1

val:1
pos:0

Parse tree for -101

-

Sign

1

Bit

List

Number

List

0

Bit

List

1

Bit

neg:true

val:-5

val:4
pos:2

val:4
pos:2

val:4
pos:1

val:5
pos:0

val:0
pos:1

val:1
pos:0

�
���

HH
HH

HY

�
��I

�
���

�

�
���

�
��I

�

�

�

�
�
��R

�
���

�
��R

�
���

�
�

�

Dependence graph for -101

Figure 4.2: Signed binary number example

paper on attribute grammars proposed an evaluator that operated in a manner
similar to a dataflow architecture—each rule “fired” as soon as all its operands
were available. In practical terms, this might be implemented using a queue
of attributes that are ready for evaluation. As each attribute is evaluated, its
successors in the attribute dependence graph are checked for “readiness” (see
the description of “list scheduling” in Section 11.3).

A related scheme would build the attribute dependence graph, topologically
sort it, and use the topological order to evaluate the attributes.

Oblivious Methods In these methods, the order of evaluation is independent
of both the attribute grammar and the particular attributed parse tree. Pre-
sumably, the system’s designer selects a method deemed appropriate for both
the attribute grammar and the evaluation environment. Examples of this eval-
uation style include repeated left-to-right passes (until all attributes have val-
ues), repeated right-to-left passes, and alternating left-to-right and right-to-left
passes. These methods have simple implementations and relatively small run-
time overheads. They lack, of course, any improvement that can be derived
from knowledge of the specific tree being attributed.

Rule-based Methods The rule-based methods rely on a static analysis of the
attribute grammar to construct an evaluation order. In this framework, the
evaluator relies on grammatical structure; thus, the parse tree guides the appli-
cation of the rules. In the signed binary number example, the evaluation order
for production four should use the first rule to set Bit.pos, recurse downward to
Bit, and, on return, use Bit.val to set List.val. Similarly, for production five,
it should evaluate the first two rules to define the pos attributes on the right
hand side, then recurse downward to each child. On return, it can evaluate the

110 CHAPTER 4. CONTEXT-SENSITIVE ANALYSIS

third rule to set the List.val field of the parent List node. By performing the
needed static analysis offline, at compiler-generation time, the evaluators built
by these methods can be quite fast.

4.3.2 Circularity

If the attribute dependence graph contains a cycle, the tree cannot be completely
attributed. A failure of this kind causes serious problems—for example, the
compiler cannot generate code for its input. The catastrophic impact of cycles
in the dependence graph suggests that the issue deserves close attention.

If a compiler uses attribute-grammar techniques, it must avoid creating cir-
cular attribute dependence graphs. Two approaches are possible.

• The compiler-writer can restrict the attribute grammar to a class that can-
not give rise to circular dependence graphs. For example, restricting the
grammar to use only synthesized attributes eliminates any possibility of a
circular dependence graph. More general classes of non-circular attribute
grammars exist; some, like strongly-non-circular attribute grammars, have
polynomial-time tests for membership.

• The compiler-writer can design the attribute grammar so that it will not,
on legal input programs, create a circular attribute dependence graph.
The grammar might admit circularities, but some extra-grammatical con-
straint would prevent them. This might be a semantic constraint imposed
with some other mechanism, or it might be a known convention that the
input programs follow.

The rule-based evaluation methods may fail to construct an evaluator if the
attribute grammar is circular. The oblivious methods and the dynamic methods
will attempt to evaluate a circular dependence graph; they will simply fail to
compute some of the attribute instances.

4.3.3 An Extended Example

To better understand the strengths and weaknesses of attribute grammars as
a tool for specifying computations over the syntax of language, we will work
through a more detailed example—estimating the execution time, in cycles, for
a basic block.

A Simple Model Figure 4.3 shows a grammar that generates a sequence of as-
signment statements. The grammar is simplistic in that it allows only numbers
and simple identifiers; nonetheless, it is complex enough to convey the compli-
cations that arise in estimating run-time behavior.

The right side of the figure shows a set of attribution rules that estimate
the total cycle count for the block, assuming a single processor that executes
one instruction at a time. The estimate appears in the cost attribute of the
topmost Block node of the parse tree. The methodology is simple. Costs are
computed bottom up; to read the example, start with the productions for Factor

4.3. ATTRIBUTE GRAMMARS 111

Production Attribution Rules

Block0 → Block1 Assign { Block0.cost ← Block1.cost +
Assign.cost; }

| Assign { Block.cost ← Assign.cost; }

Assign → Ident = Expr ; { Assign.cost ← Cost(store) +
Expr.cost; }

Expr0 → Expr1 + Term { Expr0.cost ← Expr1.cost +
Cost(add) + Term.cost; }

| Expr1 − Term { Expr0.cost ← Expr1.cost +
Cost(sub) + Term.cost; }

| Term { Expr.cost ← Term.cost; }

Term0 → Term1 × Factor { Term0.cost ← Term1.cost +
Cost(mult) + Factor.cost; }

| Term1 ÷ Factor { Term0.cost ← Term1.cost +
Cost(div) + Factor.cost; }

| Factor { Term.cost ← Factor.cost; }

Factor → (Expr) { Factor.cost ← Expr.cost; }

| Number { Factor.cost ← Cost(loadI); }

| Ident { Factor.cost ← Cost(load); }

Figure 4.3: Simple attribute grammar for estimating execution time

and work your way up to the productions for Block. The function COST returns
the latency of a given iloc operation.

This attribute grammar uses only synthesized attributes—that is, all values
flow in the direction from the leaves of the parse tree to its root. Such grammars
are sometimes called S-attributed grammars. This style of attribution has a sim-
ple, rule-based evaluation scheme. It meshes well with bottom-up parsing; each
rule can be evaluated when the parser reduces by the corresponding right-hand
side. The attribute grammar approach appears to fit this problem well. The
specification is short. It is easily understood. It leads to an efficient evaluator.

A More Accurate Model Unfortunately, this attribute grammar embodies a
naive model for how the compiler handles variables. It assumes that each ref-
erence to an identifier generates a separate load operation. For the assignment
x = y + y;, the model counts two load operations for y. Few compilers would
generate a redundant load for y. More likely, the compiler would generate a

112 CHAPTER 4. CONTEXT-SENSITIVE ANALYSIS

Production Attribution Rules

Factor → (Expr) { Factor.cost ← Expr.cost;
Expr.Before ← Factor.Before;
Factor.After ← Expr.After; }

| Number { Factor.cost ← Cost(loadI);
Factor.After ← Factor.Before;}

| Ident { if (Ident.name 	 ∈ Factor.Before)
then

Factor.cost ← Cost(load);
Factor.After ← Factor.Before

∪ Ident.name;
else

Factor.cost ← 0;
Factor.After ← Factor.Before; }

Figure 4.4: Rules for tracking loads in Factor productions

sequence such as

loadAI r0,@y ⇒ ry

add ry,ry ⇒ rx

storeAI rx ⇒ r0,@x

that loads y once. To approximate the compiler’s behavior better, we can modify
the attribute grammar to charge only a single load for each variable used in the
block. This requires more complex attribution rules.

To account for loads more accurately, the rules must track references to each
variable by the variable’s name. These names are extra-grammatical, since the
grammar tracks the syntactic category Ident rather than individual names such
as x, y, and z. The rule for Ident should follow the general outline

if (Ident has not been loaded)
then Factor.cost ← Cost(load);
else Factor.cost ← 0;

The key to making this work is the test “Ident has not been loaded.”
To implement this test, the compiler writer can add an attribute that holds

the set of all variables already loaded. The production Block → Assign can
initialize the set. The rules must thread the expression trees to pass the set
through each assignment in the appropriate order. This suggests augmenting
each node with a set Before and a set After ; in practice, the sets are not necessary
on leaves of the tree because rules for the leaf can reference the sets of its parent.
The Before set for a node contains the names of all Idents that occur earlier in
the Block; each of these must have been loaded already. A node’s After set

4.3. ATTRIBUTE GRAMMARS 113

contains all the names in its Before set, plus any Idents that would be loaded
in the subtree rooted at that node.

The expanded rules for Factor are shown in Figure 4.4. The code assumes
that each Ident has an attribute name containing its textual name. The first
production, which derives (Expr), copies the Before set down into the Expr
subtree and copies the resulting After set back up to the Factor. The second
production, which derives Number, simply copies its parent’s Before set into its
parent’s After set. Number must be a leaf in the tree; therefore, no further
actions are needed. The final production, which derives Ident, performs the
critical work. It tests the Before set to determine whether or not a load is
needed and updates the parent’s cost and After attributes accordingly.

To complete the specification, the compiler writer must add rules that copy
the Before and After sets around the parse tree. These rules, sometimes called
copy rules, connect the Before and After sets of the various Factor nodes. Be-
cause the attribution rules can only reference local attributes—defined as the
attributes of a node’s parent, its siblings, and its children—the attribute gram-
mar must explicitly copy values around the grammar to ensure that they are
local. Figure 4.5 shows the required rules for the other productions in the gram-
mar. One additional rule has been added; it initializes the Before set of the first
Assign statement to ∅.

This model is much more complex than the simple model. It has over three
times as many rules; each rule must be written, understood, and evaluated. It
uses both synthesized and inherited attributes; the simple bottom-up evaluation
strategy will no longer work. Finally, the rules that manipulate the Before and
After sets require a fair amount of attention—the kind of low-level detail that
we would hope to avoid by using a system based on high-level specifications.

An Even More Complex Model As a final refinement, consider the impact of
finite register sets on the model. The model used in the previous section assumes
that the hardware provides an unlimited set of registers. In reality, computers
provide finite, even small, register sets. To model the finite capacity of the
register set, the compiler writer might limit the number of values allowed in the
Before and After sets.

As a first step, we must replace the implementation of Before and After with
a structure that holds exactly k values, where k is the size of the register set.
Next, we can rewrite the rules for the production Factor → Ident to model
register occupancy. If a value has not been loaded, and a register is available, it
charges for a simple load. If a load is needed, but no register is available, it can
evict a value from some register, and charge for the load. (Since the rule for
Assign always charges for a store, the value in memory will be current. Thus,
no store is needed when a value is evicted.) Finally, if the value has already
been loaded and is still in a register, then no cost is charged.

This model complicates the rule set for Factor → Ident and requires a
slightly more complex initial condition (in the rule for Block → Assign). It
does not, however, complicate the copy rules for all of the other productions.
Thus, the accuracy of the model does not add significantly to the complexity

114 CHAPTER 4. CONTEXT-SENSITIVE ANALYSIS

Production Attribution Rules

Block0 → Block1 Assign { Block0.cost ← Block1.cost +
Assign.cost;

Assign.Before ← Block1.After;
Block0.After ← Assign.After; }

| Assign { Block.cost ← Assign.cost;
Assign.Before ← ∅;
Block.After ← Assign.After; }

Assign → Ident = Expr; { Assign.cost ← Cost(store) +
Expr.cost;

Expr.Before ← Assign.Before;
Assign.After ← Expr.After; }

Expr0 → Expr1 + Term { Expr0.cost ← Expr1.cost +
Cost(add) + Term.cost;

Expr1.Before ← Expr0.Before;
Term.Before ← Expr1.After;
Expr0.After ← Term.After; }

| Expr1 − Term { Expr0.cost ← Expr1.cost +
Cost(sub) + Term.cost;

Expr1.Before ← Expr0.Before;
Term.Before ← Expr1.After;
Expr0.After ← Term.After; }

| Term { Expr.cost ← Term.cost;
Term.Before ← Expr.Before;
Expr.After ← Term.After; }

Term0 → Term1 × Factor { Term0.cost ← Term1.cost +
Cost(mult) + Factor.cost;

Term1.Before ← Term0.Before;
Factor.Before ← Term1.After;
Term0.After ← Factor.After; }

| Term1 ÷ Factor { Term0.cost ← Term1.cost +
Cost(div) + Factor.cost;

Term1.Before ← Term0.Before;
Factor.Before ← Term1.After;
Term0.After ← Factor.After; }

| Factor { Term.cost ← Factor.cost;
Factor.Before ← Term.Before;
Term.After ← Factor.After;}

Figure 4.5: Copy rules for tracking loads

4.3. ATTRIBUTE GRAMMARS 115

of using an attribute grammar. All of the added complexity falls into the few
rules that directly manipulate the model.

4.3.4 Problems with the Attribute Grammar Approach

The preceding example illustrates many of the computational issues that arise
in using attribute grammars to perform context-sensitive computations on parse
trees. Consider, for example, the “define before use” rule that requires a decla-
ration for a variable before it can be used. This requires the attribute grammar
to propagate information from declarations to uses. To accomplish this, the
attribute grammar needs rules that pass declaration information upward in the
parse tree to an ancestor that covers every executable statement that can refer
to the variable. As the information passes up the tree, it must be aggregated
into some larger structure that can hold multiple declarations. As the informa-
tion flows down through the parse tree to the uses, it must be copied at each
interior node. When the aggregated information reaches a use, the rule must
find the relevant information in the aggregate structure and resolve the issue.

The structure of this solution is remarkably similar to that of our example.
Information must be merged as it passes upward in the parse tree. Information
must be copied around the parse tree from nodes that generate the information
to nodes that need the information. Each of these rules must be specified.
Copy rules can swell the size of an attribute grammar; compare Figure 4.3
against Figures 4.4 and 4.5. Furthermore, the evaluator executes each of these
rules. When information is aggregated, as in the define-before-use rule or the
framework for estimating execution times, a new copy of the information must
be made each time that the rule changes its contents. Taken over the entire parse
tree, this involves a significant amount of work and creates a large number of
new attributes.

In a nutshell, solving non-local problems introduces significant overhead in
terms of additional rules to copy values from node to node and in terms of space
management to hold attribute values. These copy rules increase the amount
of work that must be done during evaluation, albeit by a constant amount
per node. They also make the attribute grammar itself larger—requiring the
compiler writer to specify each copy rule. This adds another layer of work to
the task of writing the attribute grammar.

As the number of attribute instances grows, the issue of storage manage-
ment arises. With copy rules to enable non-local computations, the amount
of attribute storage can increase significantly. The evaluator must manage at-
tribute storage for both space and time; a poor storage management scheme can
have a disproportionately large negative impact on the resource requirements of
the evaluator.

The final problem with using an attribute grammar scheme to perform
context-sensitive analysis is more subtle. The result of attribute evaluation
is an attributed tree. The results of the analysis are distributed over that tree,
in the form of attribute values. To use these results in later passes, the compiler
must navigate the tree to locate the desired information. Lookups must traverse

116 CHAPTER 4. CONTEXT-SENSITIVE ANALYSIS

the tree to find the information, adding cost to the process. During the design
process, the compiler-writer must plan where the information will be located at
compile time and how to locate it efficiently.

One way to address all of these problems is to add a central repository for
facts to the parser. In this scenario, an attribute rule can record information
directly into a global table, where other rules can read it. This hybrid approach
can eliminate many of the problems that arise from non-local information. Since
the table can be accessed from any attribution rule, it has the effect of providing
local access to any information already derived. This, in turn, introduces some
implicit ordering constraints. For example, if the table includes information
about the declared type and dimension of variables, the rules that enter this
information into the table must execute before those that try to reference the
information.1 Introducing a central table for facts, however, begins to corrupt
the purely functional nature of attribute specification.

It is not clear that attributed grammars are the right abstraction for perform-
ing the kinds of context-sensitive analysis that arise in a compiler. Advocates
of attribute grammar techniques argue that all of the problems are manageable,
and that the advantages of a high-level, non-procedural specification outweigh
the problems. However, the attribute grammar approach has never achieved
widespread popularity for a number of mundane reasons. Large problems, like
the difficulty of performing non-local computation and the need to traverse the
parse tree to discover answers to simple questions, have slowed the adoption of
these ideas. Myriad small problems, such as space management for short-lived
attributes, efficiency of evaluators, and the availability of high-quality, inexpen-
sive tools, have also made these tools and techniques less attractive.

Still, the simplicity of the initial estimation model is attractive. If attribute
flow can be constrained to a single direction, either synthesized or inherited,
the resulting attribute grammar is simple and the evaluator is efficient. One
example suggested by other authors is expression evaluation in a calculator or
an interpreter. The flow of values follows the parse tree from leaves to root, so
both the rules and the evaluator are straight forward. Similarly, applications
that involve only local information often have good attribute grammar solutions.
We will see an example of such a computation in Chapter 9, where we discuss
instruction selection.

4.4 Ad-hoc Syntax-directed Translation

The rule-based evaluators for attribute grammars introduced a powerful idea
that actually serves as the basis for the ad hoc techniques used for context-
sensitive analysis in many compilers. In the rule-based evaluators, the compiler
writer specifies a sequence of actions in terms of productions in the grammar.
The underlying observation, that the actions required for context-sensitive anal-
ysis can be organized around the structure of the grammar, leads to a powerful,
albeit ad hoc, approach to incorporating this kind of analysis into the process

1In fact, the copy rules in Figure 4.5 encode the same set of constraints. To see this clearly,
draw the attribute dependence graph for an example.

4.4. AD-HOC SYNTAX-DIRECTED TRANSLATION 117

of parsing a context-free grammar. We refer to this approach as ad hoc syntax-
directed translation.

In this scheme, the compiler writer provides arbitrary snippets of code that
will execute at parse time. Each snippet, or action, is directly tied to a produc-
tion in the grammar. Each time the parser reduces by the right-hand side of
some production, the corresponding action is invoked to perform its task. In a
top-down, recursive-descent parser, the compiler writer simply adds the appro-
priate code to the parsing routines. The compiler writer has complete control
over when the actions execute. In a shift-reduce parser, the actions are per-
formed each time the parser performs a reduce action. This is more restrictive,
but still workable.

The other points in the parse where the compiler writer might want to
perform an action are: (1) in the middle of a production, or (2) on a shift
action. To accomplish the first, the compiler writer can transform the grammar
so that it reduces at the appropriate place. Usually, this involves breaking the
production into two pieces around the point where the action should execute. A
higher-level production is added that sequences the first part, then the second.
When the first part reduces, the parser will invoke the action. To force actions
on shifts, the compiler writer can either move them into the scanner, or add a
production to hold the action. For example, to perform an action whenever the
parser shifts terminal symbol Variable, the compiler writer can add a production

ShiftedVariable → Variable

and replace every occurrence of Variable with ShiftedVariable. This adds an
extra reduction for every terminal symbol. Thus, the additional cost is directly
proportional to the number of terminal symbols in the program.

4.4.1 Making It Work

For ad hoc syntax-directed translation to work, the parser must provide mecha-
nisms to sequence the application of the actions, to pass results between actions,
and to provide convenient and consistent naming. We will describe these prob-
lems and their solution in shift-reduce parsers; analogous ideas will work for
top-down parsers. Yacc, an early lr(1) parser generator for Unix systems,
introduced a set of conventions to handle these problems. Most subsequent
systems have used similar techniques.

Sequencing the Actions In fitting an ad hoc syntax directed translation scheme
to a shift-reduce parser, the natural way to sequence actions is to associate each
code snippet with the right-hand side of a production. When the parser reduces
by that production, it invokes the code for the action. As discussed earlier, the
compiler writer can massage the grammar to create additional reductions that
will, in turn, invoke the code for their actions.

To execute the actions, we can make a minor modification to the skeleton
lr(1) parser’s reduce action (see Figure 3.8).

118 CHAPTER 4. CONTEXT-SENSITIVE ANALYSIS

else if action[s,token] = ”reduce A → β” then
invoke the appropriate reduce action
pop 2 × | β | symbols
s ← top of stack
push A
push goto[s,A]

The parser generator can gather the syntax-directed actions together, embed
them in a case statement that switches on the number of the production being
reduced, and execute the case statement just before it pops the right-hand side
from the stack.

Communicating Between Actions To connect the actions, the parser must pro-
vide a mechanism for passing values between the actions for related productions.
Consider what happens in the execution time estimator when it recognizes the
identifier y while parsing x÷ y. The next two reductions are

Factor → Ident
Term → Term ÷ Factor

For syntax-directed translation to work, the action associated with the first pro-
duction, Factor → Ident, needs a location where it can store values. The ac-
tion associated with the second production Term → Term ÷ Factor must know
where to find the result of the action caused by reducing x to Factor.

The same mechanism must work with the other productions that can derive
Factor, such as Term → Term × Factor and Term → Factor. For example, in
x ÷ y, the values for the Term on the right hand side of Term → Term ÷ Factor
is, itself, the result of an earlier reduction by Factor → Ident, followed by a
reduction of Term → Factor. The lifetimes of the values produced by the action
for Factor → Ident depend on the surrounding syntactic context; thus, the
parser needs to manage the storage for values.

To accomplish this, a shift-reduce parser can simply store the results in the
parsing stack. Each reduction pushes its result onto the stack. For the pro-
duction Term → Term ÷ Factor, the topmost result will correspond to Factor.
The second result will correspond to ÷, and the third result will correspond to
Term. The results will be interspersed with grammar symbols and states, but
they occur at fixed intervals in the stack. Any results that lie below the Term’s
slot on the stack represent the results of other reductions that form a partial
left context for the current reduction.

To add this behavior to the skeleton parser requires two further changes. To
keep the changes simple, most parser generators restrict the results to a fixed
size. Rather than popping 2 × | β | symbols on a reduction by A→β, it must
now pop 3 × | β | symbols. The result must be stacked in a consistent position;
the simplest modification pushes the result before the grammar symbol. With
these restrictions, the result that corresponds to each symbol on the right hand
side can be easily found. When an action needs to return multiple values, or a
complex value such as a piece of an abstract syntax tree, the action allocates a
structure and pushes a pointer into the appropriate stack location.

4.4. AD-HOC SYNTAX-DIRECTED TRANSLATION 119

Naming Values With this stack-based communication mechanism, the compiler
writer needs a mechanism for naming the stack locations corresponding to sym-
bols in the production’s right-hand side. Yacc introduced a concise notation
to address these problems. The symbol $$ refers to the result location for the
current production. Thus, the assignment $$ = 17; would push the integer
value seventeen as the result corresponding to the current reduction. For the
right-hand side, the symbols $1, $2, . . . , $n refer to the locations for the first,
second, and nth symbols in the right-hand side, respectively. These symbols
translate directly into offsets from the top of the stack. $1 becomes 3 × | β |
slots below the top of the stack, while $4 becomes 3 × (| β | −4 + 1) slots from
the top of the stack. This simple, natural notation allows the action snippets
to read and write the stack locations directly.

4.4.2 Back to the Example

To understand how ad-hoc syntax-directed translation works, consider rewriting
the execution-time estimator using this approach. The primary drawback of the
attribute grammar solution lies in the proliferation of rules to copy information
around the tree. This creates many additional rules in the specification. It
also creates many copies of the sets. Even a careful implementation that stores
pointers to a single copy of each set instance must create new sets whenever an
identifier’s name is added to the set.

To address these problems in an ad hoc syntax-directed translation scheme,
the compiler writer can introduce a central repository for information about
variables, as suggested earlier. For example, the compiler can create a hash
table that contains a record for each Ident in the code. If the compiler writer
sets aside a field in the table, named InRegister, then the entire copy problem
can be avoided. When the table is initialized, the InRegister field is set to
false. The code for the production Factor → Ident checks the InRegister field
and selects the appropriate cost for the reference to Ident. The code would
look something like:

i = hash(Ident);
if (Table[i].Loaded 	= true)

then
cost = cost + Cost(load);
Table[i].Loaded = true;

Because the compiler writer can use arbitrary constructs, the cost can be accu-
mulated into a single variable, rather than being passed around the parse tree.
The resulting set of actions is somewhat smaller than the attribution rules for
the simplest execution model, even though it can provide the accuracy of the
more complex model. Figure 4.6 shows the full code for an ad hoc version of
the example shown in Figures 4.4 and 4.5.

In the ad hoc version, several productions have no action. The remaining
actions are quite simple, except for the action taken on reduction by Ident. All
of the complication introduced by tracking loads falls into that single action;

120 CHAPTER 4. CONTEXT-SENSITIVE ANALYSIS

Production Syntax-directed Actions

Block0 → Block1 Assign

| Assign { cost = 0; }

Assign → Ident = Expr ; { cost = cost + Cost(store) }

Expr0 → Expr1 + Term { cost = cost + Cost(add); }

| Expr1 − Term { cost = cost + cost(sub); }

| Term

Term0 → Term1 × Factor { cost = cost + Cost(mult); }

| Term1 ÷ Factor { cost = cost + Cost(div); }

| Factor

Factor → (Expr)

| Number { cost = cost + Cost(loadI); }

| Ident { i = hash(Ident);
if (Table[i].Loaded 	= true)

then
cost = cost + Cost(load);
Table[i].Loaded = true; }

Figure 4.6: Tracking loads with ad hoc syntax-directed translation

contrast that with the attribute grammar version, where the task of passing
around the Before and After sets came to dominate the specification. Because it
can accumulate cost into a single variable and use a hash table to store global
information, the ad hoc version is much cleaner and simpler. Of course, these
same strategies could be applied in an attribute grammar framework, but doing
so violates the spirit of the attribute grammar paradigm and forces all of the
work outside the framework into an ad hoc setting.

4.4.3 Uses for Syntax-directed Translation

Compilers use syntax-directed translation schemes to perform many different
tasks. By associating syntax-directed actions with the productions for source-
language declarations, the compiler can accumulate information about the vari-
ables in a program and record it in a central repository—often called a symbol
table. As part of the translation process, the compiler must discover the answer
to many context-sensitive questions, similar to those mentioned in Section 4.1.
Many, if not all, of these questions can be answered by placing the appropri-
ate code in syntax-directed actions. The parser can build an ir for use by

4.4. AD-HOC SYNTAX-DIRECTED TRANSLATION 121

the rest of the compiler by systematic use of syntax-directed actions. Finally,
syntax-directed translation can be used to perform complex analysis and trans-
formations. To understand the varied uses of syntax-directed actions, we will
examine several different applications of ad hoc syntax-directed translation.

Building a Symbol Table To centralize information about variables, labels, and
procedures, most compilers construct a symbol table for the input program. The
compiler writer can use syntax-directed actions to gather the information, insert
that information into the symbol table, and perform any necessary processing.
For example, the grammar fragment shown in Figure 4.7 describes a subset of
the syntax for declaring variables in c. (It omits typedefs, structs, unions,
the type qualifiers const and volatile, and the initialization syntax; it also
leaves several non-terminals unelaborated.) Consider the actions required to
build symbol table entries for each declared variable.

Each Declaration begins with a set of one or more qualifiers that specify
either the variable’s type, its storage class, or both. The qualifiers are fol-
lowed by a list of one or more variable names; the variable name can include
a specification about indirection (one or more occurrences of *), about array
dimensions, and about initial values for the variable. To build symbol table
entries for each variable, the compiler writer can gather up the attributes from
the qualifiers, add any indirection, dimension, or initialization attributes, and
enter the variable in the table.

For example, to track storage classes, the parser might include a variable
StorageClass, initializing it to a value “none.” Each production that reduced
to StorageClass would would set StorageClass to an appropriate value. The
language definition allows either zero or one storage class specifier per declara-
tion, even though the context-free grammar admits an arbitrary number. The
syntax-directed action can easily check this condition. Thus, the following code
might execute on a reduction by StorageClass → register:

if (StorageClass = none)
then StorageClass = auto
else report the error

Similar actions set StorageClass for the reductions by static, extern, and
register. In the reduction for DirectDeclarator → Identifier, the action
creates a new symbol table entry, and uses StorageClass to set the appropriate
field in the symbol table. To complete the process, the action for the production
Declaration → SpecifierList InitDeclaratorList needs to reset StorageClass to
none.

Following these lines, the compiler writer can arrange to record all of the
attributes for each variable. In the reduction to Identifier, this information
can be written into the symbol table. Care must be taken to initialize and reset
the attributes in the appropriate place—for example, the attribute set by the
Pointer reduction should be reset for each InitDeclarator. The action routines
can check for valid and invalid TypeSpecifier combinations, such as signed
char (legal) and double char (illegal).

122 CHAPTER 4. CONTEXT-SENSITIVE ANALYSIS

DeclarationList → DeclarationList Declaration
| Declaration

Declaration → SpecifierList InitDeclaratorList ;

SpecifierList → Specifier SpecifierList
| Specifier

Specifier → StorageClass
| TypeSpecifier

StorageClass → auto
| static
| extern
| register

TypeSpecifier → char
| short
| int
| long
| unsigned
| float
| double

InitDeclaratorList → InitDeclaratorList, InitDeclarator
| InitDeclarator

InitDeclarator → Declarator = Initializer
| Declarator

Declarator → Pointer DirectDeclarator
| DirectDeclarator

Pointer → *
| * Pointer

DirectDeclarator → Identifier
| (Declarator)
| DirectDeclarator ()
| DirectDeclarator (ParameterTypeList)
| DirectDeclarator (IdentifierList)
| DirectDeclarator []
| DirectDeclarator [ConstantExpr]

Figure 4.7: A subset of c’s declaration syntax

4.4. AD-HOC SYNTAX-DIRECTED TRANSLATION 123

When the parser finishes building the DeclarationList, it has symbol table
entries for each variable declared in the current scope. At that point, the com-
piler may need to perform some housekeeping chores, such as assigning storage
locations to declared variables. This can be done in an action for the production
that leads to the DeclarationList. (That production has DeclarationList on its
right-hand side, but not on its left-hand side.)

Building a Parse Tree Another major task that parsers often perform is building
an intermediate representation for use by the rest of the compiler. Building a
parse tree through syntax-directed actions is easy. Each time the parser reduces
a production A → βγδ, it should construct a node for A and make the nodes
for β, γ, and δ children of A, in order. To accomplish this, it can push pointers
to the appropriate nodes onto the stack.

In this scheme, each reduction creates a node to represent the non-terminal
on its left-hand side. The node has a child for each grammar symbol on the
right-hand side of the production. The syntax-directed action creates the new
node, uses the pointers stored on the stack to connect the node to its children,
and pushes the new node’s address as its result.

As an example, consider parsing x − 2 × y with the classic expression
grammar. It produces the following parse tree:

Id

Factor

Term

Expr

�

�

�

−

Goal

Expr
�
�

���
XXXXXz

�

Num

Factor

Term

�

�

×

Term
�
�

���
P
PPq

Id

Factor
�

Of course, the parse tree is large relative to its information content. The com-
piler writer might, instead, opt for an abstract syntax tree that retains the essen-
tial elements of the parse tree, but gets rid of internal nodes that add nothing
to our understanding of the underlying code (see § 6.3.2).

To build an abstract syntax tree, the parser follows the same general scheme
as for a parse tree. However, it only builds the desired nodes. For a production
like A→B, the action returns as its result the pointer that corresponds to B.
This eliminates many of the interior nodes. To further simplify the tree, the
compiler writer can build a single node for a construct such as the if–then–
else, rather than individual nodes for the if, the then, and the else.

An ast for x − 2 × y is much smaller than the corresponding parse tree:

−

Id ×

Num Id

�
���

H
HHj

�
���

H
HHj

124 CHAPTER 4. CONTEXT-SENSITIVE ANALYSIS

Grammar Actions

List → List Elt $$ ← L($1,$2);
| Elt $$ ← $1;

Grammar Actions

List → Elt List $$ ← L($1,$2);
| Elt $$ ← $1;

Elt1 Elt2

Elt3

Elt4

Elt5
�
�

�
�
�
�
�����R

��R

��R

��R
•

•

•

•

Elt1

Elt2

Elt3

Elt4 Elt5

�
�
�
�
�
�
��R���

���

���

���
•

•

•

•

Left Recursion Right Recursion

Figure 4.8: Recursion versus Associativity

Changing Associativity As we saw in Section 3.6.3, associativity can make a
difference in numerical computation. Similarly, it can change the way that data
structures are built. We can use syntax-directed actions to build representations
that reflect a different associativity than the grammar would naturally produce.

In general, left recursive grammars naturally produce left-associativity, while
right-recursive grammars naturally produce right associativity. To see this
consider the left-recursive and right-recursive list grammars, augmented with
syntax-directed actions to build lists, shown at the top of Figure 4.8. Assume
that L(x,y) is a constructor that returns a new node with x and y as its children.
The lower part of the figure shows the result of applying the two translation
schemes to an input consisting of five Elts.

The two trees are, in many ways, equivalent. An in-order traversal of both
trees visits the leaf nodes in the same order. However, the tree produced from the
left recursive version is strangely counter-intuitive. If we add parentheses to re-
flect the tree structure, the left recursive tree is ((((Elt1,Elt2),Elt3,)Elt4), Elt5)
while the right recursive tree is (Elt1,(Elt2,(Elt3,(Elt4, Elt5)))). The ordering
produced by left recursion corresponds to the classic left-to-right ordering for al-
gebraic operators. The ordering produced by right recursion corresponds to the
notion of a list as introduced in programming languages like Lisp and Scheme.

Sometimes, it is convenient to use different directions for recursion and asso-
ciativity. To build the right-recursive tree from the left recursive grammar, we
could use a constructor that adds successive elements to the end of the list. A
straightforward implementation of this idea would have to walk the list on each
reduction, making the constructor itself take O(n2) time, where n is the length
of the list. Another classic solution to this problem uses a list-header node that
contains pointers to both the first and last node in the list. This introduces an
extra node to the list. If the system constructs many short lists, the overhead

4.4. AD-HOC SYNTAX-DIRECTED TRANSLATION 125

may be a problem.
A solution that we find particularly appealing is to use a list header node

during construction, and to discard it when the list is fully built. Rewriting the
grammar to use an ε-production makes this particularly clean:

Grammar Actions

List → ε {$$ ← MakeListHeader();}
| List Elt {$$ ← AddToEnd($1,$2);}

Quux → List {$$ ← RemoveListHeader($1);}

A reduction with the ε-production creates the temporary list header node; with
a shift-reduce parser, this reduction occurs first. On a reduction for List →
List Elt, the action invokes a constructor that relies on the presence of the
temporary header node. When List is reduced on the right-hand side of any
other production, the corresponding action invokes a function that discards the
temporary header and returns the first element of the list. This solution lets the
parser reverse the associativity at the cost of a small constant overhead in both
space and time. It requires one more reduction per list, for the ε-production.

Thompson’s Construction Syntax-directed actions can be used to perform more
complex tasks. For example, Section 2.7.1 introduced Thompson’s construction
for building a non-deterministic finite automaton from a regular expression.
Essentially, the construction has a small “pattern” nfa for each of the four base
cases in a regular expression: (1) recognizing a symbol, (2) concatenating two
res, (3) alternation to choose one of two res, and (4) closure to specify zero or
more occurrences of an re. The syntax of the regular expressions, themselves,
might be specified with a grammar that resembles the expression grammar.

RegExpr → RegExpr Alternation
| Alternation

Alternation → Alternation | Closure

| Closure
Closure → Closure∗

| (RegExpr)
| symbol

The nfa construction algorithm fits naturally into a syntax-directed translation
scheme based on this grammar. The actions follow Thompson’s construction.
On a case-by-case basis, it takes the following actions:

1. single symbol: On a reduction of Closure → symbol, the action constructs
a new nfa with two states and a transition from the start state to the final
state on the recognized symbol.

2. closure: On a reduction of Closure → Closure∗, the action adds an ε-move
to the the nfa for closure, from each of its final states to its initial state.

126 CHAPTER 4. CONTEXT-SENSITIVE ANALYSIS

RegExpr → RegExpr Alternation
{ add an ε-move from the final state of $1

to start state of $2
$$ ← resulting nfa }

| Alternation
{ $$ ← $1 }

Alternation → Alternation | Closure

{ create new states si and sj

add an edge from si to start states for $1 & $3

add an edge from each final state of $1 & $3 to sj

designate sj as sole final state of the new nfa

$$ ← resulting nfa }
| Closure

{ $$ ← $1 }
Closure → Closure∗

{ add an ε-move from final states of
nfa for closure to its start state
$$ ← $1 }

| (RegExpr)
{ $$ ← $2 }

| symbol

{ create two-state nfa for symbol
$$ ← the new nfa }

Figure 4.9: Syntax-directed version of Thompson’s construction

3. alternation: On a reduction of Alternation → Alternation | Closure, the
action creates new start and final states, si and sj respectively. It adds an
ε-move from si to the start state of the nfas for alternation and closure.
It adds an ε-move from each final state of the nfas for alternation and
closure to sj . All states other than sj are marked as non-final states.

4. concatenation: On a reduction of RegExpr → RegExpr Alternation the
action adds an ε-move from each final state of the nfa for the first rexpr
to the start state of the nfa for the second rexpr. It also changes the final
states of the first rexpr into non-final states.

The remaining productions pass the nfa that results from higher-precedence
sub-expressions upwards in the parse. In a shift-reduce parser, some represen-
tation of the nfa can be pushed onto the stack. Figure 4.9 shows how this would
be accomplished in an ad hoc syntax-directed translation scheme.

4.5. WHAT QUESTIONS SHOULD THE COMPILER ASK? 127

Digression: What about Context-Sensitive Grammars?

Given the progression of ideas from the previous chapters, it might seem
natural to consider the use of context-sensitive languages (csls) to address
these issues. After all, we used regular languages to perform lexical analysis,
and context-free languages to perform syntax analysis. A natural progres-
sion might suggest the study of csls and their grammars. Context-sensitive
grammars (csgs) can express a larger family of languages than can cfgs.

However, csgs are not the right answer for two distinct reasons. First,
the problem of parsing a csg is p-space complete. Thus, a compiler that used
csg-based techniques could run quite slowly. Second, many of the important
questions are difficult to encode in a csg. For example, consider the issue of
declaration before use. To write this rule into a csg would require distinct
productions for each combination of declared variables. With a sufficiently
small name space, this might be manageable; in a modern language with a
large name space, the set of names is too large to encode into a csg.

4.5 What Questions Should the Compiler Ask?

Recall that the goal of context-sensitive analysis is to prepare the compiler for
the optimization and code generation tasks that will follow. The questions
that arise in context-sensitive analysis, then, divide into two broad categories:
checking program legality at a deeper level than is possible with the cfg, and
elaborating the compiler’s knowledge base from non-local context to prepare for
optimization and code generation.

Along those lines, many context-sensitive questions arise.

• Given a variable a, is it a scalar, an array, a structure, or a function? Is
it declared? In which procedure is it declared? What is its datatype? Is
it actually assigned a value before it is used?

• For an array reference b[i,j,k], is b declared as an array? How many
dimensions does b have? Are i, j, and k declared with a data type that is
valid for an array index expression? Do i, j, and k have values that place
b[i,j,k] inside the declared bounds of b?

• Where can a and b be stored? How long must their values be preserved?
Can either be kept in a hardware register?

• In the reference *c, is c declared as a pointer? Is *c an object of the
appropriate type? Can *c be reached via another name?

• How many arguments does the function fee take? Do all of its invocations
pass the right number of arguments? Are those arguments of the correct
type?

• Does the function fie() return a known constant value? Is it a pure
function of its parameters, or does the result depend on some implicit
state (i.e., the values of static or global variables)?

128 CHAPTER 4. CONTEXT-SENSITIVE ANALYSIS

Most of these questions share a common trait. Their answers involve information
that is not locally available in the syntax. For example, checking the number and
type of arguments at a procedure call requires knowledge of both the procedure’s
declaration and the call site in question. In many cases, these two statements
will be separated by intervening context.

4.6 Summary and Perspective

In Chapters 2 and 3, we saw that much of the work in a compiler’s front end can
be automated. Regular expressions work well for lexical analysis. Context-free
grammars work well for syntax analysis. In this chapter, we examined two ways
of performing context-sensitive analysis.

The first technique, using attribute grammars, offers the hope of writing
high-level specifications that produce reasonably efficient executables. Attribute
grammars have found successful application in several domains, ranging from
theorem provers through program analysis. (See Section 9.6 for an application
in compilation where attribute grammars may be a better fit.) Unfortunately,
the attribute grammar approach has enough practical problems that it has not
been widely accepted as the paradigm of choice for context sensitive analysis.

The second technique, called ad hoc syntax-directed translation, integrates
arbitrary snippets of code into the parser and lets the parser provide sequencing
and communication mechanisms. This approach has been widely embraced,
because of its flexibility and its inclusion in most parser generator systems.

Questions

1. Sometimes, the compiler writer can move an issue across the boundary
between context-free and context-sensitive analysis. For example, we have
discussed the classic ambiguity that arises between function invocation and
array references in Fortran 77 (and other languages). These constructs
might be added to the classic expression grammar using the productions:

factor → ident (ExprList)
ExprList → expr

| ExprList , expr

Unfortunately, the only difference between a function invocation and an
array reference lies in how the ident is declared.

In previous chapters, we have discussed using cooperation between the
scanner and the parser to disambiguate these constructs. Can the problem
be solved during context-sensitive analysis? Which solution is preferable?

2. Sometimes, a language specification uses context-sensitive mechanisms to
check properties that can be tested in a context free way. Consider the
grammar fragment in Figure 4.7. It allows an arbitrary number of Stor-
ageClass specifiers when, in fact, the standard restricts a declaration to a
single StorageClass specifier.

4.6. SUMMARY AND PERSPECTIVE 129

(a) Rewrite the grammar to enforce the restriction grammatically.

(b) Similarly, the language allows only a limited set of combinations of
TypeSpecifier. long is allowed with either int or float; short is
allowed only with int. Either signed or unsigned can appear with
any form of int. signed may also appear on char. Can these re-
strictions be written into the grammar?

(c) Propose an explanation for why the authors structured the grammar
as they did. (Hint: the scanner returned a single token type for any
of the StorageClass values and another token type for any of the
TypeSpecifiers.)

(d) How does this strategy affect the speed of the parser? How does it
change the space requirements of the parser?

3. Sometimes, a language design will include syntactic constraints that are
better handled outside the formalism of a context-free grammar, even
though the grammar can handle them. Consider, for example, the follow-
ing “check off” keyword scheme:

phrase → keyword α β γ δ ζ

α → α-keyword
| ε

β → β-keyword
| ε

γ → γ-keyword
| ε

δ → δ-keyword
| ε

ζ → ζ-keyword
| ε

with the restrictions that α-keyword, β-keyword, γ-keyword, δ-keyword,
and ζ-keyword appear in order, and that each of them appear at most
once.

(a) Since the set of combinations is finite, it can clearly be encoded into
a series of productions. Give one such grammar.

(b) Propose a mechanism using ad hoc syntax-directed translation to
achieve the same result.

(c) A simpler encoding, however, can be done using a more permissive
grammar and a hard-coded set of checks in the associated actions.

(d) Can you use an ε-production to further simply your syntax-directed
translation scheme?

132 CHAPTER 4. CONTEXT-SENSITIVE ANALYSIS

Chapter 6

Intermediate
Representations

6.1 Introduction

In designing algorithms, a critical distinction arises between problems that must
be solved online, and those that can be solved offline. In general, compilers work
offline—that is, they can make more than a single pass over the code being
translated. Making multiple passes over the code should improve the quality of
code generated by the compiler. The compiler can gather information in one
pass and use that information to make decisions in later passes.

The notion of a multi-pass compiler (see Figure 6.1) creates the need for
an intermediate representation for the code being compiled. In translation,
the compiler must derive facts that have no direct representation in the source
code—for example, the addresses of variables and procedures. Thus, it must
use some internal form—an intermediate representation or ir—to represent the
code being analyzed and translated. Each pass, except the first, consumes
ir. Each pass, except the last, produces ir. In this scheme, the intermediate
representation becomes the definitive representation of the code. The ir must be
expressive enough to record all of the useful facts that might be passed between
phases of the compiler. In our terminology, the ir includes auxiliary tables, like
a symbol table, a constant table, or a label table.

Selecting an appropriate ir for a compiler project requires an understand-
ing of both the source language and the target machine, of the properties of
programs that will be presented for compilation, and of the strengths and weak-
nesses of the language in which the compiler will be implemented.

Each style of ir has its own strengths and weaknesses. Designing an ap-
propriate ir requires consideration of the compiler’s task. Thus, a source-to-
source translator might keep its internal information in a form quite close to the
source; a translator that produced assembly code for a micro-controller might
use an internal form close to the target machine’s instruction set. It requires

133

134 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

source
code

Multi-pass compiler

front
end

middle
end

back
end

� � � �

target
code

IR IR

Figure 6.1: The role of irs in a multi-pass compiler

consideration of the specific information that must be recorded, analyzed, and
manipulated. Thus, a compiler for C might have additional information about
pointer values that are unneeded in a compiler for Perl. It requires consid-
eration of the operations that must be performed on the ir and their costs, of
the range of constructs that must be expressed in the ir; and of the need for
humans to examine the ir program directly.

(The compiler writer should never overlook this final point. A clean, readable
external format for the ir pays for itself. Sometimes, syntax can be added to
improve readability. An example is the ⇒ symbol used in the iloc examples
throughout this book. It serves no real syntactic purpose; however, it gives the
reader direct help in separating operands from results.)

6.2 Taxonomy

To organize our thinking about irs, we should recognize that there are two major
axes along which we can place a specific design. First, the ir has a structural
organization. Broadly speaking, three different organizations have been tried.

• Graphical irs encode the compiler’s knowledge in a graph. The algorithms
are expressed in terms of nodes and edges, in terms of lists and trees.
Examples include abstract syntax trees and control-flow graphs.

• Linear irs resemble pseudo-code for some abstract machine. The algo-
rithms iterate over simple, linear sequences of operations. Examples in-
clude bytecodes and three-address codes.

• Hybrid irs combine elements of both structural and linear irs, with the
goal of capturing the strengths of both. A common hybrid representation
uses a low-level linear code to represent blocks of straight-line code and a
graph to represent the flow of control between those blocks.1

The structural organization of an ir has a strong impact on how the compiler
writer thinks about analyzing, transforming, and translating the code. For
example, tree-like irs lead naturally to code generators that either perform a

1We say very little about hybrid irs in the remainder of this chapter. Instead, we focus on
the linear irs and graphical irs, leaving it to the reader to envision profitable combinations of
the two.

6.2. TAXONOMY 135

tree-walk or use a tree pattern matching algorithm. Similarly, linear irs lead
naturally to code generators that make a linear pass over all the instructions
(the “peephole” paradigm) or that use string pattern matching techniques.

The second axis of our ir taxonomy is the level of abstraction used to repre-
sent operations. This can range from a near-source representation where a pro-
cedure call is represented in a single node, to a low-level representation where
multiple ir operations are assembled together to create a single instruction on
the target machine.

To illustrate the possibilities, consider the difference between the way that
a source-level abstract syntax tree and a low-level assembly-like notation might
represent the reference A[i,j] into an array declared A[1..10,1..10]).

�
�

�
�subscript

nA ni nj

�
��� �

�
��R

abstract syntax tree

load 1 ⇒ r1

sub rj, r1 ⇒ r2

loadi 10 ⇒ r3

mul r2, r3 ⇒ r4

sub ri, r1 ⇒ r5

add r4, r5 ⇒ r6

loadi @A ⇒ r7

loadAO r7, r6 ⇒ rAij

low-level linear code

In the source-level ast, the compiler can easily recognize that the computation
is an array reference; examining the low-level code, we find that simple fact
fairly well obscured. In a compiler that tries to perform data-dependence anal-
ysis on array subscripts to determine when two different references can touch
the same memory location, the higher level of abstraction in the ast may prove
valuable. Discovering the array reference is more difficult in the low-level code;
particularly if the ir has been subjected to optimizations that move the indi-
vidual operations to other parts of the procedure or eliminate them altogether.
On the other hand, if the compiler is trying to optimize the code generated for
the array address calculation, the low-level code exposes operations that remain
implicit in the ast. In this case, the lower level of abstraction may result in
more efficient code for the address calculation.

The high level of abstraction is not an inherent property of tree-based irs; it
is implicit in the notion of a syntax tree. However, low-level expression trees have
been used in many compilers to represent all the details of computations, such as
the address calculation for A[i,j]. Similarly, linear irs can have relatively high-
level constructs. For example, many linear irs have included a mvcl operation2

to encode string-to-string copy as a single operation.
On some simple Risc machines, the best encoding of a string copy involves

clearing out the entire register set and iterating through a tight loop that does
a multi-word load followed by a multi-word store. Some preliminary logic is
needed to deal with alignment and the special case of overlapping strings. By

2The acronym is for move character long, an instruction on the ibm 370 computers.

136 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

using a single ir instruction to represent this complex operation, the compiler
writer can make it easier for the optimizer to move the copy out of a loop or to
discover that the copy is redundant. In later stages of compilation, the single
instruction is expanded, in place, into code that performs the copy or into a call
to some system or library routine that performs the copy.

Other properties of the ir should concern the compiler writer. The costs of
generating and manipulating the ir will directly effect the compiler’s speed. The
data space requirements of different irs vary over a wide range; and, since the
compiler typically touches all of the space that is allocated, data-space usually
has a direct relationship to running time. Finally, the compiler writer should
consider the expressiveness of the ir—its ability to accommodate all of the facts
that the compiler needs to record. This can include the sequence of actions that
define the procedure, along with the results of static analysis, profiles of previous
executions, and information needed by the debugger. All should be expressed
in a way that makes clear their relationship to specific points in the ir.

6.3 Graphical IRs

Many irs represent the code being translated as a graph. Conceptually, all the
graphical irs consist of nodes and edges. The difference between them lies in
the relationship between the graph and the source language program, and in
the restrictions placed on the form of the graph.

6.3.1 Syntax Trees

The syntax tree, or parse tree, is a graphical representation for the derivation, or
parse, that corresponds to the input program. The following simple expression
grammar defines binary operations +, −, ×, and ÷ over the domain of tokens
number and id.

Goal → Expr
Expr → Expr + Term

| Expr − Term
| Term

Term → Term × Factor
| Term ÷ Factor
| Factor

Factor → Number

| Id

Simple Expression Grammar

Term

Factor

x

�

�

Expr

Term

×

�

����
�
�R

Goal

Expr

+

Factor

2

�

�

�

�
��

XXXXXXXz

Term

Factor

x

�

�

Term

×
����
�
�R

Term

×

Factor

2

�

�

�
��

�
�R

Factor

y
�

Syntax tree for x × 2 + x × 2 × y

The syntax tree on the right shows the derivation that results from parsing the
expression x × 2 + x × 2 × y. This tree represents the complete derivation, with

6.3. GRAPHICAL IRS 137

a node for each grammar symbol (terminal or non-terminal) in the derivation. It
provides a graphic demonstration of the extra work that the parser goes through
to maintain properties like precedence. Minor transformations on the grammar
can reduce the number of non-trivial reductions and eliminate some of these
steps. (See Section 3.6.2.) Because the compiler must allocate memory for the
nodes and edges, and must traverse the entire tree several times, the compiler
writer might want to avoid generating and preserving any nodes and edges that
are not directly useful. This observation leads to a simplified syntax tree.

6.3.2 Abstract Syntax Tree

The abstract syntax tree (ast) retains the essential structure of the syntax
tree, but eliminates the extraneous nodes. The precedence and meaning of the
expression remain, but extraneous nodes have disappeared.

x

×

2

+

x

×

2

×

y

�
��

�
�R

�
��

PPPPPq

�
��

�
�R

�
��

�
�R

Abstract syntax tree for x × 2 + x × 2 × y

The ast is a near source-level representation. Because of its rough correspon-
dence to the parse of the source text, it is easily built in the parser.

Asts have been used in many practical compiler systems. Source-to-source
systems, including programming environments and automatic parallelization
tools, generally rely on an ast from which the source code can be easily regen-
erated. (This process is often called “pretty-printing;” it produces a clean source
text by performing an inorder treewalk on the ast and printing each node as it
is visited.) The S-expressions found in Lisp and Scheme implementations are,
essentially, asts.

Even when the ast is used as a near-source level representation, the specific
representations chosen and the abstractions used can be an issue. For exam-
ple, in the Rn Programming Environment, the complex constants of Fortran
programs, written (c1,c2), were represented with the subtree on the left. This
choice worked well for the syntax-directed editor, where the programmer was
able to change c1 and c2 independently; the “pair” node supplied the parentheses
and the comma.

�
�
�
�pair

c1 c2
�� �R

ast for editing

�
�

�
�const.

(c1, c2)
�

ast for compiling

138 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

Digression: Storage Efficiency and Graphical Representations

Many practical systems have used abstract syntax trees to represent the
source text being translated. A common problem encountered in these sys-
tems is the size of the ast relative to the input text. The ast in the Rn

Programming Environment took up 1,000 bytes per Fortran source line—an
amazing expansion. Other systems have had comparable expansion factors.

No single problem leads to this explosion in ast size. In some systems, it
is the result of using a single size for all nodes. In others, it is the addition of
myriad minor fields used by one pass or another in the compiler. Sometimes,
the node size increases over time, as new features and passes are added.

Careful attention to the form and content of the ast can shrink its size.
In Rn, we built programs to analyze the contents of the ast and how it was
used. We combined some fields and eliminated others. (In some cases, it
was less expensive to recompute information than to record it, write it, and
read it.) In a few cases, we used hash-linking to record unusual facts—using
one bit in the field that stores each node’s type to indicate the presence of
additional information stored in a hash table. (This avoided allocating fields
that were rarely used.) To record the ast on disk, we went to a preorder
treewalk; this eliminated any internal pointers.

In Rn, the combination of all these things reduced to size of the ast in
memory by roughly 75 percent. On disk, after the pointers were squeezed
out, the files were about half that size.

However, this abstraction proved problematic for the compiler. Every part of
the compiler that dealt with constants needed to include special case code to
handle complex constants. The other constants all had a single const node that
contained a pointer to a textual string recorded in a table. The compiler might
have been better served by using that representation for the complex constant,
as shown on the right. It would have simplified the compiler by eliminating
much of the special case code.

6.3.3 Directed Acyclic Graph

One criticism of an ast is that it represents the original code too faithfully. In
the ongoing example, x × 2 + x × 2 × y, the ast contains multiple instances of
the expression x× 2. The directed acyclic graph (dag) is a contraction of the
ast that avoids unnecessary duplication. In a dag, nodes can have multiple
parents; thus, the two occurrences of x × 2 in our example would be represented
with a single subtree. Because the dag avoids duplicating identical nodes and
edges, it is more compact than the corresponding ast.

For expressions without assignment, textually identical expressions must
produce identical values. The dag for our example, shown in Figure 6.2, reflects
this fact by containing only one copy of x × 2. In this way, the dag encodes an
explicit hint about how to evaluate the expression. The compiler can generate
code that evaluates the subtree for x × 2 once and uses the result twice; know-

6.3. GRAPHICAL IRS 139

x 2

×

+

×

y
�
��

�
�R

�
��

�
�R

�
�R

�

Figure 6.2: dag for x × 2 + x × 2 × y

ing that the subtrees are identical might let the compiler produce better code
for the whole expression. The dag exposed a redundancy in the source-code
expression that can be eliminated by a careful translation.

The compiler can build a dag in two distinct ways.

1. It can replace the constructors used to build an ast with versions that
remember each node already constructed. To do this, the constructors
would record the arguments and results of each call in a hash table. On
each invocation, the constructor checks the hash table; if the entry already
exists, it returns the previously constructed node. If the entry does not
exist, it builds the node and creates a new entry so that any future invoca-
tions with the same arguments will find the previously computed answer
in the table. (See the discussion of “memo functions” in Section 14.2.1.)

2. It can traverse the code in another representation (source or ir) and build
the dag. The dag construction algorithm for expressions (without assign-
ment) closely resembles the single-block value numbering algorithm (see
Section 14.1.1). To include assignment, the algorithm must invalidate
subtrees as the values of their operands change.

Some Lisp implementations achieve a similar effect for lists constructed with the
cons function by using a technique called “hash-consing.” Rather than simply
constructing a cons node, the function consults a hash table to see if an identical
node already exists. If it does, the cons function returns the value of the pre-
existing cons node. This ensures that identical subtrees have precisely one
representation. Using this technique to construct the ast for x × 2 + x × 2 × y
would produce the dag directly. Since hash-consing relies entirely on textual
equivalence, the resulting dag could not be interpreted as making any assertions
about the value-equivalence of the shared subtrees.

6.3.4 Control-Flow Graph

The control-flow graph (cfg) models the way that the control transfers between
the blocks in the procedure. The cfg has nodes that correspond to basic blocks
in the procedure being compiled. Edges in the graph correspond to possible

140 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

if (x = y)
then stmt1
else stmt2

stmt3

A simple code fragment

if (x = y)

stmt1 stmt2

stmt3

��� ��R

��R ���

Its control-flow graph

Figure 6.3: The control-flow graph

transfers of control between basic blocks. The cfg provides a clean graphical
representation of the possibilities for run-time control flow. It is one of the
oldest representations used in compilers; Lois Haibt built a cfg for the register
allocator in the original Ibm Fortran compiler.

Compilers typically use a cfg in conjunction with another ir. The cfg

represents the relationships between blocks, while the operations inside a block
are represented with another ir, such as an expression-level ast, a dag, or a
linear three-address code.

Some authors have advocated cfgs that use a node for each statement, at
either the source or machine level. This formulation leads to cleaner, simpler
algorithms for analysis and optimization; that improvement, however, comes at
the cost of increased space. This is another engineering tradeoff; increasing the
size of the ir simplifies the algorithms and increases the level of confidence in
their correctness. If, in a specific application, the compiler writer can afford the
additional space, a larger ir can be used. As program size grows, however, the
space and time penalty can become significant issues.

6.3.5 Data-dependence Graph or Precedence Graph

Another graphical ir that directly encodes the flow of data between definition
points and use points is the dependence graph, or precedence graph. Dependence
graphs are an auxiliary intermediate representation; typically, the compiler con-
structs the dg to perform some specific analysis or transformation that requires
the information.

To make this more concrete, Figure 6.4 reproduces the example from Sec-
tion 1.3 on the left and shows its data-dependence graph is on the right. Nodes
in the dependence graph represent definitions and uses. An edge connects two
nodes if one uses the result of the other. A typical dependence graph does
not model control flow or instruction sequencing, although the latter can be
be inferred from the graph (see Chapter 11). In general, the data-dependence
graph is not treated as the the compiler’s definitive ir. Typically, the compiler
maintains another representation, as well.

Dependence graphs have proved useful in program transformation. They
are used in automatic detection of parallelism, in blocking transformations that
improve memory access behavior, and in instruction scheduling. In more sophis-
ticated applications of the data-dependence graph, the compiler may perform

6.3. GRAPHICAL IRS 141

1. loadAI r0, 0 ⇒ r1

2. add r1, r1 ⇒ r1

3. loadAI r0, 8 ⇒ r2

4. mult r1, r2 ⇒ r1

5. loadAI r0, 16 ⇒ r2

6. mult r1, r2 ⇒ r1

7. loadAI r0, 24 ⇒ r2

8. mult r1, r2 ⇒ r1

9. storeAI r1 ⇒ r0,0

1

2

3

4

5

6

7

8

9

� �
�
���R

�R

�R

�

�
�
�� �
�
��

Figure 6.4: The data-dependence graph

extensive analysis of array subscript values to determine when references to the
same array can overlap.

6.3.6 Static Single Assignment Graph

The static single assignment graph (ssa) directly represents the flow of values in
a manner similar to the data-dependence graph. Ssa form was designed to help
in analyzing and improving code in a compiler. It lacks the clear relationship
to original syntax found in a syntax tree or an ast. Similarly, it does not
cleanly encode the flow of control; deriving control-flow relationships from the
ssa graph may take some analysis, just as it would from the ast. However,
its orientation toward analysis and optimization can pay off in an optimizing
compiler (see Chapters 13 and 14).

In the ssa graph, the nodes are individual statements in the code. An edge
runs from each reference to a value (a use) back to the node where the value was
created (a definition). In a direct implementation of this notion, each reference
has one or more edges that lead back to definitions. Ssa simplifies this picture
with the addition of two simple rules.

1. Each definition has a unique name.

2. Each use refers to a single definition.

These two constraints simplify both the ssa graph and any code that manip-
ulates it. However, to reconcile these two rules with the reality of imperative
programs, the compiler must modify the code. It must create a new name space
and insert some novel instructions into the code to preserve its meaning under
this new name space.

SSA Names To construct ssa form, the compiler must make a pass over the
code to rename each definition and each use. To make the relationship
between ssa-names and original names explicit, all the literature on ssa

creates new names by adding subscripts to the original names. Thus, the
first definition of x becomes x0, while the second becomes x1. Renaming
can be done in a linear pass over the code.

142 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

Digression: Building SSA

Static single assignment form is the only ir we describe that does not have
an obvious construction algorithm. While the efficient algorithm is complex
enough to merit its own section in Chapter 13, a sketch of the construction
process will clarify some of the mysteries surrounding ssa.

Assume that the input program is already in iloc form. To convert it
to an equivalent linear form of ssa, the compiler must:

1. insert φ-functions
2. rename iloc-virtual registers

The difficult parts of the algorithm involve determining where φ-functions are
needed and managing the renaming process to work efficiently. The simplest
ssa-construction algorithm would insert a φ-function for each iloc-virtual
register at the start of each basic block that has more than one predecessor
in the control-flow graph. (This inserts many unneeded φ-functions.)

To rename variables, the compiler can process the blocks, in a depth-
first order. When a definition of ri is encountered, it increments the current
subscript for ri. At the end of a block, it looks down each control-flow edge
and rewrites the appropriate φ-function parameter in each block that has
multiple predecessors.

Of course, many bookkeeping details must be handled to make this work.
The resulting ssa form has extraneous φ-functions. Some of these could be
eliminated by noticing that a φ-function has identical arguments for each
entering edge. For example, the operation x17 ← φ(x7,x7,x7) serves no
useful purpose. More precise algorithms for ssa construction eliminate most
of the unneeded φ-functions.

φ-functions To reconcile the conflict that arises when distinct values flow along
different paths into a single basic block, the ssa construction introduces
new statements, called φ-functions. A φ-function takes as arguments the
ssa-names for the value on each control-flow edge entering the block. It
defines a new ssa name for use in subsequent references. When control
enters a block, all of its φ-functions execute concurrently. Each one defines
its output ssa-name with the value of its argument that corresponds to
the most recently traversed control-flow edge.

These properties make ssa-form a powerful tool. The name space eliminates any
issues related to the lifetime of a value. Since each value is defined in exactly one
instruction, it is available along any path that proceeds from that instruction.
The placement of φ-functions provides the compiler with information about the
flow of values; it can use this information to improve the quality of code that
it generates. The combination of these properties creates a representation that
allows for accurate and efficient analysis.

We have described ssa as a graphical form. Many implementations embed
this graphical form into a linear ir by introducing a new ir operator for the

6.3. GRAPHICAL IRS 143

x ← · · ·
y ← · · ·
while(x < k)

x ← x + 1
y ← y + x

Original code

x0 ← · · ·
y0 ← · · ·
if (x0 > k) goto next

loop: x1 ← φ(x0,x2)
y1 ← φ(y0,y2)
x2 ← x1 + 1
y2 ← y1 + x2

if (x2 < k) goto loop
next: · · ·

A linear ssa-form

y0 ← . . .

y1 ← φ(· , ·)

y2 ← · + ·

x0 ← . . .

x1 ← φ(· , ·)

x2 ← · + 1

Q
Q
Qs

Q
Q
Qs

�
�R

�
�R

K

K K

k← . . .

if · > · goto next

if · < · goto loop

�
�R

HHj

XXXXXXXXXXz

��

the ssa-graph

Figure 6.5: Static single assignment form

φ-function and directly renaming values in the code. This approach is also
useful; the reader should be aware of both approaches to implementing ssa.
The linear encoding of ssa can be used as a definitive ir, because the original
linear ir encodes all the necessary information about control-flow that is missing
or implicit in a pure ssa-graph. Figure 6.5 shows a small code fragment, along
with its ssa-graph and the equivalent linear form.

The linear form displays some oddities of ssa-form that bear explanation.
Consider the φ-function that defines x1. Its first argument, x0 is defined in the
block that precedes the loop. Its second argument, x2, is defined later in the
block containing the φ-function. Thus, when the φ first executes, one of its
arguments has never been defined. In many programming language contexts,
this would cause problems. The careful definition of the φ-function’s meaning
avoids any problem. The φ behaves as if it were a copy from the argument
corresponding to the entering edge into its output. Thus, along the edge that
enters the loop, the φ selects x0. Along the loop-closing edge, it selects x2.
Thus, it can never actually use the undefined variable.

The concurrent execution of φ-functions requires some care as well. Consider
what would happen entering a block for the first time if it began with the

144 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

following sequence of assignments:

x1 ← φ(x0, x2)
y1 ← φ(x1, y2)

Since the two φ-functions are defined to execute concurrently, they read their
arguments, then define their outputs. If the first entry was along the path
corresponding to the second argument, the meaning is well defined. However,
along the other path, y1 receives the uninitialized versions of x1, even though
the clear intent is that it receive the value of x1 after execution of the φ-function.
While this example seems contrived, it is a simplified version of a problem that
can arise if the compiler applies transformations to the ssa-form that rewrite
names. In the translation from ssa-form back into executable code, the compiler
must take care to recognize situations like this and generate code that serializes
the assignments in the appropriate order.

6.4 Linear IRs

The alternative to structural irs is, quite naturally, a linear form of ir. Some
of the earliest compilers used linear forms; this was a natural notation for the
authors, since they had previously programmed in assembly code.

The logic behind using linear forms is simple; the compiler must eventually
emit a stream of instructions for the code being translated. That target machine
code is almost always a linear form. Linear irs impose a clear and useful ordering
on the sequence of operations; for example, contrast the linear form of ssa with
the graphical form, both shown in Figure 6.5.

When a linear form is used as the definitive representation, it must include
a mechanism to encode transfers of control between different points in the pro-
gram. This is usually done with branch and conditional branch operations. The
code in a linear representation can be divided into basic blocks, or maximal
length sequences of straight-line code, and the control-flow related operations
that begin and end basic blocks. For our current purposes, every basic block
begins with a label and ends with a branch. We include the branch at the end of
the block, even if it is not strictly necessary. This makes it easier to manipulate
the blocks; it eliminates implicit ordering between blocks that might otherwise
exist.

6.4.1 One-Address Code

One-address code, also called stack machine code, assumes the presence of an
operand stack. Most operations manipulate the stack; for example, an integer
subtract operation would remove the top two elements from the stack and push
their difference onto the stack (push(pop() - pop()), assuming left to right
evaluation). The stack discipline creates a need for some new operations; for
example, stack irs usually include a swap operation that interchanges the top
two elements of the stack. Several stack-based computers have been built; one-
address code seems to have appeared in response to the demands of compiling
for these machines. The left column of Figure 6.6 shows an example.

6.4. LINEAR IRS 145

push 2

push y

multiply

push x

subtract

one-address code

loadi 2 ⇒ t1

load y ⇒ t2

mult t2 ⇒t1

load x ⇒t3

sub t1 ⇒t3

two-address code

loadi 2 ⇒ t1

load y ⇒ t2

mult t1,t2 ⇒ t3

load x ⇒ t4

sub t4, t3 ⇒ t5

three-address code

Figure 6.6: Linear representations of x − 2 × y

One-address code is compact. The stack creates an implicit name space that
does not need to be represented in the ir. This shrinks the size of a program in ir

form. Stack machine code is simple to generate and execute. Building complete
programming language implementations on a stack ir requires the introduction
of some control-flow constructs to handle branching and conditional evaluation.
Several languages have been implemented in this way.

The compact nature of one-address code makes it an attractive way of en-
coding programs in environments where space is at a premium. It has been used
to construct bytecode interpreters for languages like Smalltalk-80 and Java. It
has been used as a distribution format for complex systems that must be trans-
mitted in a compact form (over a relatively slow network, for example).

6.4.2 Two-Address Code

Two-address code is another linear ir. Two-address code allows statements of
the form x ← x 〈op〉 y, with a single operator and, at most, two names. The
middle column in Figure 6.6 shows an expression encoded in two-address form.
Using two names saves space in the instruction format, at the cost of introducing
destructive operations. The operation overwrites one of its operands; in practice,
this can become a code shape problem.

For commutative operators, the compiler must decide which operand to pre-
serve and which operand to destroy. With non-commutative operators, like shift,
the choice is dictated by the definition of the ir. Some non-commutative opera-
tions are implemented in both ways—for example, a reverse subtract operator.
When it chooses operands to preserve and to destroy, the compiler determines
which values are available for subsequent use and reuse. Making these choices
well is difficult.

Two-address code made technical sense when the compiler targeted a ma-
chine that used two-address, destructive operations (like the pdp-11). The de-
structive nature of these operations had a direct effect on the code that compilers
could generate for these machines. Typical risc machines offer the generality
of three-address instructions; using a two-address code on these machines pre-
maturely limits the space of values that can be named and used in the compiled
code.

146 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

6.4.3 Three-Address Code

The term three-address code is used to describe many different representations.
In practice, they all have a common feature; they admit statements of the form
x 〈op〉 y ⇒z with a single operator and, at most, three names. Practical forms of
three-address code have operators that take fewer operands; load immediate is a
common example. If ssa is being encoded into the three-address ir, the compiler
writer may add a mechanism for representing arbitrary arity φ-functions. Three-
address code can include forms of prefix or postfix code. The rightmost column
of Figure 6.6 shows an expression translated into three-address code.

Three-address code is attractive for several reasons. The code is compact,
relative to most graphical representations. It introduces a new set of names for
values; a properly chosen name space can reveal opportunities for generating
better code. It resembles many actual computers, particularly risc micropro-
cessors.

Within three-address codes, there exists a wide variation on the specific
operators and their level of abstraction. Often, a single ir will contain low-level
operations, such as branches, loads, and stores with no addressing modes, along
with relatively high-level operations like mvcl, copy, max, or min. The critical
distinction is that operations involving internal control flow are encoded in a
single high-level operation. This allows the compiler to analyze, transform, and
move them without respect to their internal control flow. At a later stage in
compilation, the compiler expands these high-level operations into lower level
operations for final optimization and code generation.

Quadruples Quadruples are a straight forward implementation of three-address
code. A quadruple has four fields, one operator, two operands, or sources, and
a destination operand. The set of quadruples that represents a program is held
in a k × 4 array of small integers. All names are explicit. This data structure
is easy to manipulate.

The iloc code used throughout this book is an example of quadruples. The
example code from Figure 6.6 would be represented as follows:

loadI 2 t1

load y t2

mult t1 t2 t3

load x t4

sub t4 t3 t5

The primary advantage of quadruples is simplicity; this leads to fast implemen-
tations, since most compilers generate good code for simple array accesses.

Triples Triples are a more compact form of three-address code. In a triples
representation, the index of the operation in the linear array of instructions is
used as an implicit name. This eliminates one fourth of the space required by
quadruples. The strength of this notation is its introduction of a unique and
implicit name space for values created by operations. Unfortunately, the name

6.4. LINEAR IRS 147

space is directly related to instruction placement, so that reordering instructions
is difficult. (The compiler must update all references with the new location.)
Here is the short example in a triples form:

(1) loadi 2
(2) load y
(3) mult (1) (2)
(4) load x
(5) sub (4) (3)

Using the implicit name space has reduced the necessary storage.

Indirect Triples Indirect triples address the primary shortcoming of triples—
the difficulty of reordering statements. In the indirect triple representation,
operations are represented in a table of triples. Additionally, the compiler keeps
a list of “statements” that specifies the order in which the triples occur. This
makes the implicit names in the triple array permanent; to reorder operations,
the compiler simply moves pointers in the statement list.

Statements
(1) (1) loadi 2
(2) (2) load y
(3) (3) mult (1) (2)
(4) (4) load x
(5) (5) sub (4) (3)

Indirect triples have two advantages over quadruples. First, reordering state-
ments involves moving a single pointer; in the quadruple representation it in-
volved moving all four fields. Second, if the same statement occurs multiple
times, it can be represented once and referenced several places in the statement
list. (The equivalent savings can be obtained in a dag or by hash-consing).

Static Single Assignment Form In Section 6.3.6, we described ssa as a graphical
ir. An alternate way to use ssa is to embed it into a linear ir, such as a three-
address code. In this scheme, the compiler writer simply adds a φ instruction
to the ir and has the compiler modify the code appropriately. This requires
insertion of φ instructions at the appropriate control-flow merge-points and
renaming variables and values to reflect the ssa name space.

The linear form of ssa is an attractive alternative to a graphical represen-
tation. It can be interpreted as the graph when desired; it can be treated as a
linear ir when that approach is preferable. If the compiler maintains some cor-
respondence between names and instructions in the ir, either through a naming
discipline or a lookaside table, the linear ssa can be interpreted as providing
pointers from references back to the definitions whose values they use. Such
pointers are useful in optimization; they are called use-definition chains.

The primary complication introduced by adding φ-instructions to iloc is the
fact that the φ-instruction needs an arbitrary number of operands. Consider the

148 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

end of a case statement. The control-flow graph has an edge flowing from each
individual case into the block immediately following the case statement. Thus,
the φ-functions in that block need an argument position for each individual case
in the preceding case statement.

Choosing Between Them Quadruples are simple, but they require the most
space. Triples achieve a space savings of twenty-five percent by making it ex-
pensive to reorder operations. Indirect triples make reordering better and have
the possibility of saving space by eliminating duplication. The real cost of
indirect triples lies in the extra memory operations required to reach each state-
ment; as memory latencies rise, this tradeoff becomes less desirable. Ssa can
be implemented in any of these schemes.

6.5 Mapping Values to Names

The irs described in Sections 6.3 and 6.4 represent the various operations that
form the source program. The choice of specific operations to represent the
code determines, to a large extent, how the compiler can translate and optimize
the code. The mapping of values to names also has a strong influence on the
code that the compiler can generate. If the name space hides the relationship
between values, the compiler may be unable to rediscover those connections.
Similarly, by implicitly encoding information about values in the name space,
the compiler can expose selected facts to subsequent analysis and optimization.

6.5.1 Naming Temporary Values

In translating source code into an ir, the compiler must invent names for many
of the intermediate stages in the compiler. We refer to the set of names used
to express a computation as the name space of the computation. The choice of
name spaces has a surprisingly strong impact on the behavior of the compiler.
The strategy for mapping names onto values will determine, to a large extent,
which computations can be analyzed and optimized.

Consider again the example of an array reference A[i,j] shown in Sec-
tion 6.2. The two ir fragments represent the same computation. The low-level
ir exposes more details to the compiler. These details can be inferred from
the ast and code can be generated. In a straight forward translation from the
ast, each reference to A[i,j] will produce the same code in the executable,
independent of context.

With the low-level ir, each intermediate step has its own name. This ex-
poses those results to analysis and to transformation. In practice, most of the
improvement that compilers can achieve in optimization arises from capitalizing
on context. As an alternative to the linear code, the compiler could use a lower-
level ast that exposed the entire address computation. This would probably
use more space, but it would allow the compiler to examine the component parts
of the address computation.

Naming is a critical part of ssa-form. Ssa imposes a strict discipline that
generates names for every value computed by the code—program variable or

6.5. MAPPING VALUES TO NAMES 149

Digression: The Impact of Naming

In the late 1980s, we built an optimizing compiler for Fortran. We tried
several different naming schemes in the front-end. The first version generated
a new temporary for each computation by bumping a “next register” counter.
This produced large name spaces, i.e., 985 names for the 210 line Singular
Value Decomposition (svd) routine from Forsythe, Malcolm, and Moler’s
book on numerical methods [32]. The large name space caused problems
with both space and speed. The data-flow analyzer allocated several sets for
each basic block. Each set was the size of the name space.

The second version used a simple allocate/free protocol to conserve
names. The front end allocated temporaries on demand and freed them
when the immediate uses were finished. This produced smaller name spaces,
i.e., svd used 60 names. This sped up compilation. For example, it reduced
the time to compute Live variables for svd by sixty percent.

Unfortunately, associating multiple expressions with a single temporary
name obscured the flow of data and degraded the quality of optimization.
The decline in code quality overshadowed any compile-time benefits.

Further experimentation led to a short set of rules that yielded strong
optimization while mitigating growth in the name space.

1. Each textual expression received a unique name, determined by entering
the operator and operands into a hash table. This ensured that each
occurrence of r17 + r21 targets the same register.

2. In 〈op〉 ri, rj ⇒ rk, k is chosen so that i < k and j < k.
3. Move operations, ri ⇒ rj, are allowed to have i > j, unless j repre-

sents a scalar program variable.. The virtual register corresponding to
such a variable is only set by move operations. Expressions evaluate
into their “natural” register, then are moved to a variable.

4. Whenever a store to memory occurs, like store ri ⇒ rj, it is immedi-
ately followed by a copy from ri into the variable’s virtual register.

This scheme space used about 90 names for svd, but exposed all the opti-
mizations found with the first name space. The compiler used these rules
until we adopted ssa-form, with its own naming discipline.

transitory intermediate value. This uniform treatment exposes many details to
the scrutiny of analysis and improvement. It encodes information about where
the value was generated. It provides a “permanent” name for the value, even if
the corresponding program variable gets redefined. This can improve the results
of analysis and optimization.

6.5.2 Memory Models

Just as the mechanism for naming temporary values affects the information that
can be represented in an ir version of a program, so, too, does the compiler’s

150 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

method of choosing storage locations for each value. The compiler must deter-
mine, for each value computed in the code, where that value will reside. For the
code to execute, the compiler must assign a specific location such as register r13

or sixteen bytes from the label L0089. Before the final stages of code generation,
however, the compiler may use symbolic addresses that encode a level in the
memory hierarchy, i.e. registers or memory, but not a specific location within
that level.

As an example, consider the iloc examples used throughout the book. A
symbolic memory address is denoted by prefixing it with the character @. Thus,
@x is the offset of x from the start of its storage area. Since r0 holds the
activation record pointer, an operation that uses @x and r0 to compute an
address depends, implicitly, on the decision to store the variable x in the memory
reserved for the current procedure’s activation record.

In general, compilers work from one of two memory models.

Register-to-register model: Under this model, the compiler keeps values in
registers aggressively, ignoring any limitations imposed by the size of the
machine’s physical register set. Any value that can legally be kept in a
register is kept in a register. Values are stored to memory only when
the semantics of the program require it—for example, at a procedure call,
any local variable whose address is passed as a parameter to the called
procedure must be stored back to memory. A value that cannot be kept
in a register is stored in memory. The compiler generates code to store its
value each time it is computed and to load its value at each use.

Memory-to-memory model: Under this model, the compiler assumes that
all values are kept in memory locations. Values move from memory to a
register just before they are used. Values move from a register to memory
just after they are defined. The number of register names used in the ir

version of the code is small compared to the register-to-register model. In a
memory-to-memory model, the designer may find it worthwhile to include
memory-to-memory forms of the basic operations, such as a memory-to-
memory add.

The choice of memory model is mostly orthogonal to the choice of ir. The
compiler writer can build a memory-to-memory ast or a memory-to-memory
version of iloc just easily as register-to-register versions of these irs. (One-
address code might be an exception; it contains its own unique memory model—
the stack. A one-address format makes much less sense without the implicit
naming scheme of stack-based computation.)

The choice of memory model has an impact on the rest of the compiler. For
example, with a register-to-register model, the compiler must perform register
allocation as part of preparing the code for execution. The allocator must map
the set of virtual registers onto the physical registers; this often requires insertion
of extra load, store, and copy operations. Under a register-to-register model, the
allocator adds instructions to make the program behave correctly on the target
machine. Under a memory-to-memory model, however, the pre-allocation code

6.5. MAPPING VALUES TO NAMES 151

Digression: The Hierarchy of Memory Operations in Iloc 9x

The iloc used in this book is abstracted from an ir named iloc 9x that was
used in a research compiler project at Rice University. Iloc 9x includes a
hierarchy of memory operations that the compiler uses to encode knowledge
about values. These operations are:

Operation Meaning
immediate
load

loads a known constant value into a
register

constant load loads a value that does not change
during execution. The compiler does
not know the value, but can prove
that it is not defined by a program
operation.

scalar load
& store

operates on a scalar value, not an ar-
ray element, a structure element, or a
pointer-based value.

general load
& store

operates on a value that may be an
array element, a structure element,
or a pointer-based value. This is the
general-case operation.

By using this hierarchy, the front-end can encode knowledge about the target
value directly into the iloc 9x code. As other passes discover additional
information, they can rewrite operations to change a value from a general
purpose load to a more restricted form. Thus, constant propagation might
replace a general load or a scalar load with an immediate load. If an analysis
of definitions and uses discovers that some location cannot be defined by any
executable store operation, it can be rewritten as a constant load.

typically uses fewer registers than a modern processor provides. Thus, register
allocation looks for memory-based values that it can hold in registers for longer
periods of time. In this model, the allocator makes the code faster and smaller
by removing some of the loads and stores.

Compilers for risc machines tend to use the register-to-register model for
two different reasons. First, the register-to-register model more closely reflects
the programming model of risc architecture. Risc machines rarely have a full
complement of memory-to-memory operations; instead, they implicitly assume
that values can be kept in registers. Second, the register-to-register model allows
the compiler to encode subtle facts that it derives directly in the ir. The fact
that a value is kept in a register means that the compiler, at some earlier point,
had proof that keeping it in a register is safe.3

3If the compiler can prove that only one name provides access to a value, it can keep that
value in a register. If multiple names might exist, it must behave conservatively and keep the

152 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

Smalltalk
code

� front
end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
���

���
���

���

Java
code

� front
end

�
�
�
�
�
�
���

���
���

���

XXXXXXXXz

Scheme
code

� front
end

���
���

���

XXXXXXXXz
�
�
�
�
�
�
��R

Fortran
code

� front
end

XXXXXXXXz
�
�
�
�
�
�
��R

A
A
A
A
A
A
A
A
A
A
A
A
A
A
AU

back
end

� target 3
code

back
end

� target 2
code

back
end

� target 1
code

Figure 6.7: Developing a universal intermediate form

6.6 Universal Intermediate Forms

Because compilers are complex, programmers (and managers) regularly seek
ways to decrease the cost of building them. A common, but profound, question
arises in these discussions: can we design a “universal” intermediate form that
will represent any programming language targeted for any machine? In one
sense, the answer must be “yes”; we can clearly design an ir that is Turing-
equivalent. In a more practical sense, however, this approach has not, in general,
worked out well.

Many compilers have evolved from a single front end to having front ends
for two or three languages that use a common ir and a single back end. This
requires, of course, that the ir and the back end are both versatile enough to
handle all the features of the different source languages. As long as they are
reasonably similar languages, such as Fortran and C, this approach can be
made to work.

The other natural direction to explore is retargeting the back end to multiple
machines. Again, for a reasonably small collection of machines, this has been
shown to work in practice.

Both of these approaches have had limited success in both commercial and
research compilers. Taken together, however, they can easily lead to a belief that
we can produce n front ends, m back ends, and end up with n × m compilers.
Figure 6.7 depicts the result of following this line of thought too far. Several

value in memory. For example, a local variable x can be kept in a register, unless the program
takes its address (&x in c) or passes it as a call-by-reference parameter to another procedure.

6.7. SYMBOL TABLES 153

projects have tried to produce compilers for dissimilar languages and multiple
machines, with the notion that a single ir can bind together all of the various
components.

The more ambitious of these projects have foundered on the complexity of
the ir. For this idea to succeed, the separation between front end, back end, and
ir must be complete. The front end must encode all language-related knowledge
and must encode no machine-specific knowledge. The back end must handle all
machine-specific issues and have no knowledge about the source language. The
ir must encode all the facts passed between front end and back end, and must
represent all the features of all the languages in an appropriate way. In practice,
machine-specific issues arise in front ends; language-specific issues find their way
into back ends; and “universal” irs become too complex to manipulate and use.

Some systems have been built using this model; the successful ones seem to
be characterized by

• irs that are near the abstraction level of the target machine

• target machines that are reasonably similar

• languages that have a large core of common features

Under these conditions, the problems in the front end, back end, and ir remain
manageable. Several commercial compiler systems fit this description; they
compile languages such as Fortran, C, and C++ to a set of similar architectures.

6.7 Symbol Tables

As part of translation, the compiler derives information about the various en-
tities that the program manipulates. It must discover and store many dis-
tinct kinds of information. It will encounter a variety of names that must
be recorded—names for variables, defined constants, procedures, functions, la-
bels, structures, files, and computer-generated temporaries. For a given textual
name, it might need a data type, the name and lexical level of its declaring
procedure, its storage class, and a base address and offset in memory. If the
object is an aggregate, the compiler needs to record the number of dimensions
and the upper and lower bounds for each dimension. For records or structures,
the compiler needs a list of the fields, along with the relevant information on
each field. For functions and procedures, the compiler might need to know the
number of parameters and their types, as well as any returned values; a more
sophisticated translation might record information about the modification and
use of parameters and externally visible variables.

Either the ir must store all this information, or the compiler must re-derive
it on demand. For the sake of efficiency, most compilers record facts rather
than recompute them. (The one common exception to this rule occurs when
the ir is written to external storage. Such i/o activity is expensive relative
to computation, and the compiler makes a complete pass over the ir when it
reads the information. Thus, it can be cheaper to recompute information than
to write it to external media and read it back.) These facts can be recorded

154 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

directly in the ir. For example, a compiler that builds an ast might record
information about variables as annotations (or attributes) on the nodes repre-
senting each variable’s declaration. The advantage of this approach is that it
uses a single representation for the code being compiled. It provides a uniform
access method and a single implementation. The disadvantage of this approach
is that the single access method may be inefficient—navigating the ast to find
the appropriate declaration has its own costs. To eliminate this inefficiency, the
compiler can thread the ir so that each reference has a link back to its declara-
tion. This adds space to the ir and overhead to the ir-builder. (The next step
is to use a hash table to hold the declaration link for each variable during ir

construction—in effect, creating a symbol table.)
The alternative, as we saw in Chapter 4, is to create a central repository for

these facts and to provide efficient access to it. This central repository, called a
symbol table, becomes an integral part of the compiler’s ir. The symbol table
localizes information derived from distant parts of the source code; it simplifies
the design and implementation of any code that must refer to information de-
rived earlier in compilation. It avoids the expense of searching the ir to find the
portion that represents a variable’s declaration; using a symbol table often elim-
inates the need to represent the declarations directly in the ir. (An exception
occurs in source-to-source translation. The compiler may build a symbol table
for efficiency and preserve the declaration syntax in the ir so that it can produce
an output program that closely resembles the input program.) It eliminates the
overhead of making each reference contain a pointer back to the declaration. It
replaces both of these with a computed mapping from the textual name back
to the stored information. Thus, in some sense, the symbol table is simply an
efficiency hack.

Throughout this text, we refer to “the symbol table.” In fact, the compiler
may include several distinct, specialized symbol tables. These include variable
tables, label tables, tables of constants, and reserved keyword tables. A careful
implementation might use the same access methods for all these tables. (The
compiler might also use a hash table as an efficient representation for some of
the sparse graphs built in code generation and optimization.)

Symbol table implementation requires attention to detail. Because nearly
every aspect of translation refers back to the symbol table, efficiency of access is
critical. Because the compiler cannot predict, before translation, the number of
names that it will encounter, expanding the symbol table must be both graceful
and efficient. This section provides a high-level treatment of the issues that
arise in designing a symbol table. It presents the compiler-specific aspects of
symbol table design and use. For deeper implementation details and design
alternatives, the reader is referred to Section B.4.

6.7.1 Hash Tables

In implementing a symbol table, the compiler writer must choose a strategy
for organizing and searching the table. Myriad schemes for organizing lookup
tables exist; we will focus on tables indexed with a “hash function.” Hashing,

6.7. SYMBOL TABLES 155

h(d)
�
�
�
���

a

c

b
0

1

2

3

4

5

6

7

8

9

Figure 6.8: Hash-table implementation — the concept

as this technique is called, has an expected-case O(1) cost for both insertion
and lookup. With careful engineering, the implementor can make the cost of
expanding the table and of preserving it on external media quite reasonable.
For the purposes of this chapter, we assume that the symbol table is organized
as a simple hash table. Implementation techniques for hash tables have been
widely studied and taught.

Hash tables are conceptually elegant. They use a hash function, h, to map
names into small integers, and take the small integer as an index into the table.
With a hashed symbol table, the compiler stores all the information that it
derives about the name n in the table at h(n). Figure 6.8 shows a simple
ten-slot hash table. It is a vector of records, each record holding the compiler-
generated description of a single name. The names a, b, and c have already
been inserted. The name d is being inserted, at h(d) = 2.

The primary reason for using hash tables is to provide a constant-time
lookup, keyed by a textual name. To achieve this, h must be inexpensive to
compute, and it must produce a unique small integer for each name. Given an
appropriate function h, accessing the record for n requires computing h(n) and
indexing into the table at h(n). If h maps two or more symbols to the same
small integer, a “collision” occurs. (In Figure 6.8, this would occur if h(d) = 3.)
The implementation must handle this situation gracefully, preserving both the
information and the lookup time. In this section, we assume that h is a perfect
hash function—that is, it never produces a collision. Furthermore, we assume
that the compiler knows, in advance, how large to make the table. Section B.4
describes hash-table implementation in more detail, including hash functions,
collision handling, and schemes for expanding a hash table.

6.7.2 Building a Symbol Table

The symbol table defines two interface routines for the rest of the compiler.

LookUp(name) returns the record stored in the table at h(name) if one exists.
Otherwise, it returns a value indicating that name was not found.

Insert(name,record) stores the information in record in the table at h(name).
It may expand the table to accommodate the record for name.

156 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

Digression: An Alternative to Hashing

Hashing is the most widely used method for organizing a compiler’s symbol
table. Multiset discrimination is an interesting alternative that eliminates any
possibility of worst-case behavior. The critical insight behind this technique
is that the index can be constructed off-line in the scanner.

To use multiset discrimination for the symbol table, the compiler writer
must take a different approach to scanning. Instead of processing the input in-
crementally, the compiler scans the entire program to find the complete set of
identifiers. As it discovers each identifier, it creates a tuple 〈name,position〉,
where name is the text of the identifier and position is its ordinal position in
the list of all tokens. It enters all the tuples into a large multiset.

The next step lexicographically sorts the multiset. In effect, this creates
a set of bags, one per identifier. Each bag holds the tuples for all of the
occurrences of its identifier. Since each tuple refers back to a specific token,
through its position value, the compiler can use the sorted multiset to rewrite
the token stream. It makes a linear scan over the multiset, processing each
bag in order. The compiler allocates a symbol table index for the entire bag,
then rewrites the tokens to include that index. This augments the identifier
tokens with their symbol table index. If the compiler needs a textual lookup
function, the resulting table is ordered alphabetically for a binary search.

The price for using this technique is an extra pass over the token stream,
along with the cost of the lexicographic sort. The advantages, from a com-
plexity perspective, are that it avoids any possibility of hashing’s worst case
behavior, and that it makes the initial size of the symbol table obvious, even
before parsing. This same technique can be used to replace a hash table in
almost any application where an off-line solution will work.

The compiler needs separate functions for LookUp and Insert. (The alternative
would have LookUp insert the name when it fails to find it in the table.) This en-
sures, for example, that a LookUp of an undeclared variable will fail—a property
useful for detecting a violation of the declare-before-use rule in syntax-directed
translation schemes, or for supporting nested lexical scopes.

This simple interface fits directly into the ad hoc syntax-directed translation
scheme for building a symbol table, sketched in Section 4.4.3. In processing
declaration syntax, the compiler builds up a set of attributes for the variable.
When the parser reduces by a production that has a specific variable name, it
can enter the name and attributes into the symbol table using Insert. If a
variable name can appear in only one declaration, the parser can call LookUp
first to detect a repeated use of the name. When the parser encounters a variable
name outside the declaration syntax, it uses LookUp to obtain the appropriate
information from the symbol table. LookUp fails on any undeclared name. The
compiler writer, of course, may need to add functions to initialize the table, to
store it and retrieve it using external media, and to finalize it. For a language
with a single name space, this interface suffices.

6.7. SYMBOL TABLES 157

6.7.3 Handling Nested Lexical Scopes

Few, if any, programming languages provide a single name space. Typically, the
programmer manages multiple names spaces. Often, some of these name spaces
are nested inside one another. For example, a C programmer has four distinct
kinds of name space.

1. A name can have global scope. Any global name is visible in any procedure
where it is declared. All declarations of the same global name refer to a
single instance of the variable in storage.

2. A name can have a file-wide scope. Such a name is declared using the
static attribute outside of a procedure body. A static variable is visible
to every procedure in the file containing the declaration. If the name is
declared static in multiple files, those distinct declarations create distinct
run-time instances.

3. A name can be declared locally within a procedure. The scope of the
name is the procedure itself. It cannot be referenced by name outside the
declaring procedure. (Of course, the declaring procedure can take its ad-
dress and store it where other procedures can reference the address. This
may produce wildly unpredictable results if the procedure has completed
execution and freed its local storage.)

4. A name can be declared within a block, denoted by a pair of curly braces.
While this feature is not often used by programmers, it is widely used by
macros to declare a temporary location. A variable declared in this way
is only visible inside the declaring block.

Each distinct name space is called a scope. Language definitions includes rules
that govern the creation and accessibility of scopes. Many programming lan-
guages include some form of nested lexical scopes.

Figure 6.9 shows some fragments of c code that demonstrate its various
scopes. The level zero scope contains names declared as global or file-wide
static. Both example and x are global, while w is a static variable with file-wide
scope. Procedure example creates its own local scope, at level one. The scope
contains a and b, the procedure’s two formal parameters, and its local variable
c. Inside example, curly braces create two distinct level two scopes, denoted
as level 2a and level 2b. Level 2a declares two variables, b and z. This new
incarnation of b overrides the formal parameter b declared in the level one scope
by example. Any reference to b inside the block that created 2a names the local
variable rather than the parameter at level one. Level 2b declares two variables,
a and x. Each overrides a variable declared in an outer scope. Inside level 2b,
another block creates level three and declares c and x.

All of this context goes into creating the name space in which the assignment
statement executes. Inside level three, the following names are visible: a from
2b, b from one, c from three, example from zero, w from zero, and x from three.
No incarnation of the name z is active, since 2a ends before three begins. Since

158 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

static int w; /* level 0 */
int x;

void example(a,b);
int a, b; /* level 1 */

{
int c;
{

int b, z; /* level 2a */
...

}
{

int a, x; /* level 2b */
...
{

int c, x; /* level 3 */
b = a + b + c + x;

}
}

}

Level Names
0 w, x, example
1 a, b, c
2a b, z
2b a, x
3 c, x

Figure 6.9: Lexical scoping example

example at level zero is visible inside level three, a recursive call on example
can be made. Adding the declaration “int example” to level 2b or level three
would hide the procedure’s name from level three and prevent such a call.

To compile a program that contains nested scopes, the compiler must map
each variable reference back to a specific declaration. In the example, it must
distinguish between the multiple definitions of a, b, c, and x to select the relevant
declarations for the assignment statement. To accomplish this, it needs a symbol
table structure that can resolve a reference to the lexically most recent definition.
At compile-time, it must perform the analysis and emit the code necessary to
ensure addressability for all variables referenced in the current procedure. At
run-time, the compiled code needs a scheme to find the appropriate incarnation
of each variable. The run-time techniques required to establish addressability
for variables are described in Chapter 8.

The remainder of this section describes the extensions necessary to let the
compiler convert a name like x to a static distance coordinate—a 〈level,offset〉
pair, where level is the lexical level at which x’s declaration appears and off-
set is an integer address that uniquely identifies the storage set aside for x.
These same techniques can also be useful in code optimization. For example,
the dvnt algorithm for discovering and removing redundant computations re-
lies on a scoped hash table to achieve efficiency on extended basic blocks (see
Section 12.1).

6.7. SYMBOL TABLES 159

level 3
level 2

level 1
level 0

�

�

�

�

current
level

c,· · ·

x,· · ·

a,· · ·

x,· · ·

a,· · ·

c,· · ·

b,· · ·

w,· · ·

x,· · ·

exa· · ·

Figure 6.10: Simple “sheaf-of-tables” implementation

The Concept To manage nested scopes, the parser must change, slightly, its ap-
proach to symbol table management. Each time the parser enters a new lexical
scope, it can create a new symbol table for that scope. As it encounters dec-
larations in the scope, it enters the information into the current table. Insert
operates on the current symbol table. When it encounters a variable reference,
LookUp must first search the table for the current scope. If the current table
does not hold a declaration for the name, it checks the table for the surround-
ing scope. By working its way through the symbol tables for successively lower
lexical levels, it will either find the most recent declaration for the name, or fail
in the outermost scope—indicating that the variable has no declaration visible
from the current scope.

Figure 6.10 shows the symbol table built in this fashion for our example
program, at the point where the parser has reached the assignment statement.
When the compiler invokes the modified LookUp function for the name b, it
will fail in level three, fail in level two, and find the name in level one. This
corresponds exactly to our understanding of the program—the most recent dec-
laration for b is as a parameter to example, in level one. Since the first block
at level two, block 2a, has already closed, its symbol table is not on the search
chain. The level where the symbol is found, two in this case, forms the first part
of the static distance coordinate for b. If the symbol table record includes a stor-
age offset for each variable, then LookUp can easily return the static distance
coordinate.

The Details To handle this scheme, two additional calls are required. The
compiler needs a call that can initialize a new symbol table and one that can
finalize the table for a level.

InitializeScope() increments the current level and creates a new symbol
table for that level. It links the previous level’s symbol table to the new
table, and updates the current level pointer used by both LookUp and
Insert.

FinalizeScope() changes the current level pointer so that it points at the

160 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

level 3
level 2b

level 1
level 0

�

�

�

current
level

c,· · ·

x,· · ·

a,· · ·

x,· · ·

a,· · ·

c,· · ·

b,· · ·

w,· · ·

x,· · ·

exa· · ·

level 2a

b,· · ·

z,· · ·

���

Figure 6.11: Final table for the example

table for the scope surrounding the current level, and then decrements
the current level. If compiler needs to preserve the level-by-level tables
for later use, FinalizeLevel can either leave the table intact in memory,
or it can write the table to external media and reclaim its space. (In a
system with garbage collection, FinalizeLevel should add the finalized
table to a list of such tables.)

To account for lexical scoping, the parser should call InitializeScope each
time it enters a new lexical scope and FinalizeScope each time it exits a
lexical scope.

With this interface, the program in Figure 6.9 would produce the following
sequence of calls

1. InitializeScope
2. Insert(a)
3. Insert(b)
4. Insert(c)
5. InitializeScope
6. Insert(b)
7. Insert(z)
8. FinalizeScope

9. InitializeScope
10. Insert(a)
11. Insert(x)
12. InitializeScope
13. Insert(c)
14. Insert(x)
15. LookUp(b)
16. LookUp(a)

17. LookUp(b)
18. LookUp(c)
19. LookUp(x)
20. FinalizeScope
21. FinalizeScope
22. FinalizeScope

As it enters each scope, the compiler calls InitializeScope(). It adds each
variable to the table using Insert(). When it leaves a given scope, it calls
FinalizeScope() to discard the declarations for that scope. For the assign-
ment statement, it looks up each of the names, as encountered. (The order of
the LookUp() calls will vary, depending on how the assignment statement is
traversed.)

If FinalizeScope retains the symbol tables for finalized levels in memory,
the net result of these calls will be the symbol table shown in Figure 6.11. The
current level pointer is set to an invalid value. The tables for all levels are
left in memory and linked together to reflect lexical nesting. The compiler can
provide subsequent passes of the compiler with access to the relevant symbol

6.8. SUMMARY AND PERSPECTIVE 161

table information by storing a pointer to the appropriate table into the ir at
the start of each new level.

6.7.4 Symbol Table Contents

So far, the discussion has focused on the organization and use of the symbol
table, largely ignoring the details of what information should be recorded in
the symbol table. The symbol table will include an entry for each declared
variable and each procedure. The parser will create these entries. As translation
proceeds, the compiler may need to create additional variables to hold values
not named explicitly by the source code. For example, converting x − 2 × y into
iloc creates a temporary name for the value 2 × y, and, perhaps, another for
x − 2 × y. Often, the compiler will synthesize a name, such as t00017, for each
temporary value that it creates. If the compiler names these values and creates
symbol table records for them, the rest of the compiler can treat them in the
same way that it handles programmer-declared names. This avoids special-case
treatment for compiler-generated variables and simplifies the implementation.
Other items that may end up in the symbol table, or in a specialized auxiliary
table, include literal constants, literal strings, and source code labels.

For each entry in the symbol table, the compiler will keep some set of infor-
mation that may include: its textual name, its source-language data type, its
dimensions (if any), the name and level of the procedure that contains its decla-
ration, its storage class (global, static, local, etc.), and its offset in storage from
the start of its storage class. For global variables, call-by-reference parameters,
and names referenced through a pointer, the table may contain information
about possible aliases. For aggregates, such as structures in c or records in
Pascal, the table should contain an index into a table of structure information.
For procedures and functions, the table should contain information about the
number and type of arguments that it expects.

6.8 Summary and Perspective

The choice of intermediate representations has a major impact on the design,
implementation, speed, and effectiveness of a compiler. None of the interme-
diate forms described in this chapter is, definitively, the right answer for all
compilers. The designer must consider the overall goals of the compiler project
when selecting an intermediate form, designing its implementation, and adding
auxiliary data structures such as symbol and label tables.

Contemporary compiler systems use all manner of intermediate representa-
tions, ranging from parse trees and abstract syntax trees (often used in source-
to-source systems) through lower-than-machine level linear codes (used, for
example, in the Gnu compiler systems). Many compilers use multiple irs—
building a second or third ir to perform a particular analysis or transformation,
then modifying the original, and definitive, ir to reflect the result.

162 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

Questions

1. In general, the compiler cannot pay attention to issues that are not repre-
sented in the ir form of the code being compiled. For example, performing
register allocation on one-address code is an oxymoron.

For each of the following representations, consider what aspects of program
behavior and meaning are explicit and what aspects are implicit.

(a) abstract syntax tree

(b) static single assignment form

(c) one-address code

(d) two-address code

(e) three-address code

Show how the expression x - 2 × y might be translated into each form.

Show how the code fragment

if (c[i] 	= 0)
then a[i] ← b[i] ÷ c[i];
else a[i] ← b[i];

might be represented in an abstract syntax tree and in a control-flow
graph. Discuss the advantages of each representation. For what applica-
tions would one representation be preferable to the other?

2. Some part of the compiler must be responsible for entering each identifier
into the symbol table. Should it be the scanner or the parser? Each has an
opportunity to do so. Is there an interaction between this issue, declare-
before-use rules, and disambiguation of subscripts from function calls in a
language with the Fortran 77 ambiguity?

3. The compiler must store information in the ir version of the program that
allows it to get back to the symbol table entry for each name. Among the
options open to the compiler writer are pointers to the original charac-
ter strings and subscripts into the symbol table. Of course, the clever
implementor may discover other options.

What are the advantages and disadvantages of each of these representa-
tions for a name? How would you represent the name?

Symbol Tables: You are writing a compiler for your favorite lexically-
scoped language.

Consider the following example program:

6.8. SUMMARY AND PERSPECTIVE 163

procedure main
integer a, b, c;
procedure f1(w,x);

integer a,x,y;
call f2(w,x);
end;

procedure f2(y,z)
integer a,y,z;
procedure f3(m,n)

integer b, m, n;
here → c = a * b * m * n;

end;
call f3(c,z);
end;

. . .
call f1(a,b);
end;

(a) Draw the symbol table and its contents at the point labelled here.

(b) What actions are required for symbol table management when the
parser enters a new procedure and when it exits a procedure?

Chapter Notes

The literature on intermediate representations and experience with them is
sparse. This is somewhat surprising because of the major impact that deci-
sions about irs have on the structure and behavior of a compiler. The classic
forms are described in textbooks dating back to the early 1970s. Newer forms
like ssa are described in the literature as tools for analysis and transformation
of programs.

In practice, the design and implementation of an ir has an inordinately
large impact on the eventual characteristics of the completed compiler. Large,
balky irs seem to shape systems in their own image. For example, the large
asts used in early 1980s programming environments like Rn limited the size
of programs that could be analyzed. The rtl form used in lcc is rather low-
level in its abstraction. Accordingly, the compiler does a fine job of managing
details like those needed for code generation, but has few, if any, transformations
that require source-like knowledge, such as loop blocking to improve memory
hierarchy behavior.

164 CHAPTER 6. INTERMEDIATE REPRESENTATIONS

Chapter 7

The Procedure Abstraction

7.1 Introduction

In an Algol-like language, the procedure is a programming construct that cre-
ates a clean, controlled, protected execution environment. Each procedure has
its own private, named storage. Statements executed inside the procedure can
access these private, or local, variables. Procedures execute when they are in-
voked, or called, by another procedure. The called procedure can return a value
to its caller, in which case the procedure is termed a function. This interface
between procedures lets programmers develop and test parts of a program in
isolation; the separation between procedures provides some insulation against
problems in other procedures.

Procedures are the base unit of work for most compilers. Few systems require
that the entire program be presented for compilation at one time. Instead, the
compiler can process arbitrary collections of procedures. This feature, known
as separate compilation, makes it feasible to to construct and maintain large
programs. Imagine maintaining a one million line program without separate
compilation. Any change to the source code would require a complete recom-
pilation; the programmer would need to wait while one million lines of code
compiled before testing a single line change. To make matters worse, all mil-
lion lines would need to be consistent; this would make it difficult for multiple
programmers to work simultaneously on different parts of the code.

The procedure provides three critical abstractions that allow programmers
to construct non-trivial programs.

Control abstraction A procedure provides the programmer with a simple
control abstraction; a standard mechanism exists for invoking a proce-
dure and mapping it arguments, or parameters, into the called proce-
dure’s name space. A standard return mechanism allows the procedure to
return control to the procedure that invoked it, continuing the execution
of this “calling” procedure from the point immediately after the call. This
standardization lets the compiler perform separate compilation.

165

166 CHAPTER 7. THE PROCEDURE ABSTRACTION

Digression: A word about time

This chapter deals with both compile-time and run-time mechanisms. The
distinction between events that occur at compile time and those that occur
at run time can be confusing. All run-time actions are scripted at compile
time; the compiler must understand the sequence of actions that will happen
at run time to generate the instructions that cause the actions to occur. To
gain that understanding, the compiler performs analysis at compile time and
builds moderately complex compile-time structures that model the run-time
behavior of the program. (See, for example, the discussion of lexically-scoped
symbol tables in Section 6.7.3.) The compiler determines, at compile time,
much of the storage layout that the program will use at run time; it then
generates the code necessary to create that layout, to maintain it during
execution, and to access variables and procedures in memory.

Name space Each procedure creates a new, protected name space; the pro-
grammer can declare new variables (and labels) without concern for con-
flicting declarations in other procedures. Inside the procedure, parameters
can be referenced by their local names, rather than their external names.
This lets the programmer write code that can be invoked in many different
contexts.

External interface Procedures define the critical interfaces between the dif-
ferent parts of large software systems. The rules on name scoping, ad-
dressability, and orderly preservation of the run-time environment create
a context in which the programmer can safely invoke code written by other
individuals. This allows the use of libraries for graphical user interfaces,
for scientific computation, and for access to system services.1 In fact, the
operating system uses the same interface to invoke an application program;
it simply generates a call to some designated entry point, like main.

The procedure is, in many ways, the fundamental programming abstraction that
underlies Algol-like languages. It is an elaborate facade created collaboratively
by the compiler, the operating system software, and the underlying hardware.
Procedures create named variables; the hardware understands a linear array of
memory locations named with integer addresses. Procedures establish rules for
visibility of names and addressability; the hardware typically provides several
variants of a load and a store operation. Procedures let us decompose large
software systems into components; these must be knit together into a complete
program before the hardware can execute it, since the hardware simply advances
its program counter through some sequence of individual instructions.

A large part of the compiler’s task is putting in place the various pieces of
the procedure abstraction. The compiler must dictate the layout of memory

1One of the original motivations for procedures was debugging. The user needed a known,
correct mechanism to dump the contents of registers and memory after a program terminated
abnormally. Keeping a dump routine in memory avoided the need to enter it through the
console when it was needed.

7.1. INTRODUCTION 167

program Main(input, output);
var x,y,z: integer;
procedure Fee;

var x: integer;
begin { Fee }

x := 1;
y := x * 2 + 1

end;

procedure Fie;
var y: real;
procedure Foe;

var z: real;
procedure Fum;

var y: real;
begin { Fum }

x := 1.25 * z;
Fee;
writeln(’x = ’,x)

end;
begin { Foe }

z := 1;
Fee;
Fum

end;
begin { Fie }

Foe;
writeln(’x = ’,x)

end;
begin { Main }

x := 0;
Fie

end.

Call Tree

�
�
�
�Main

nFeenFee

nFie

nFoe

nFum

��R

�

�
�
�
��

�

�

Execution History

1. Main calls Fie
2. Fie calls Foe
3. Foe calls Fee
4. Fee returns to Foe

5. Foe calls Fum
6. Fum calls Fee
7. Fee returns to Fum

8. Fum returns to Foe

9. Foe returns to Fie

10. Fie returns to Main

Figure 7.1: Non-recursive Pascal program

and encode that layout into the generated program. Since it may compile the
different components of the program at different times, without knowing of their
relationship to one another, this memory layout and all the conventions that it
induces must be standardized and uniformly applied. The compiler must also
understand the various interfaces provided by the operating system, to handle
input and output, to manage memory, and to communicate with other processes.

This chapter focuses on the procedure as an abstraction and the mechanisms
that the compiler uses to establish its control abstraction, its name space, and
its interface to the outside world.

168 CHAPTER 7. THE PROCEDURE ABSTRACTION

7.2 Control Abstraction

The procedure is, fundamentally, an abstraction that governs the transfer of
control and the naming of data. This section explores the control aspects of
procedure’s behavior. The next section ties this behavior into the naming dis-
ciplines imposed in procedural languages.

In Algol-like languages, procedures have a simple and clear call/return dis-
cipline. On exit from a procedure, control returns to the point in the calling
procedure that follows its invocation. If a procedure invokes other procedures,
they return control in the same way. Figure 7.1 shows a Pascal program with
several nested procedures. The call tree and execution history to its right sum-
marize what happens when it executes. Fee is called twice: the first time from
Foe and the second time from Fum. Each of these calls creates an instance, or
an invocation, of Fee. By the time that Fum is called, the first instance of Fee
is no longer active. It has returned control to Foe. Control cannot return to
that instance of Fee; when Fum calls Fee, it creates a new instance of Fee.

The call tree makes these relationships explicit. It includes a distinct node
for each invocation of a procedure. As the execution history shows, the only
procedure invoked multiple times in the example is Fee. Accordingly, Fee has
two distinct nodes in the call tree.

When the program executes the assignment x := 1; in the first invocation
of Fee, the active procedures are Fee, Foe, Fie, and Main. These all lie on the
path from the first instance of Fee to the program’s entry in Main. Similarly,
when it executes the second invocation of Fee, the active procedures are Fee,
Fum, Foe, Fie, and Main. Again, they all lie on the path from the current
procedure to Main.

The call and return mechanism used in Pascal ensures that all the currently
active procedures lie along a single path through the call graph. Any procedure
not on that path is uninteresting, in the sense that control cannot return to
it. When it implements the call and return mechanism, the compiler must
arrange to preserve enough information to allow the calls and returns to operate
correctly. Thus, when Foe calls Fum, the calling mechanism must preserve the
information needed to allow the return of control to Foe. (Foe may diverge,
or not return, due to a run-time error, an infinite loop, or a call to another
procedure that does not return.)

This simple call and return behavior can be modelled with a stack. As α
calls β, it pushes the address for a return onto the stack. When β wants to
return, it pops the address off the stack and branches to that address. If all
procedures have followed the discipline, popping a return address off the stack
exposes the next appropriate return address.

This mechanism is sufficient for our example, which lacks recursion. It works
equally well for recursion. In a recursive program, the implementation must
preserve a cyclic path through the call graph. The path must, however, have
finite length—otherwise, the recursion never terminates. Stacking the return
addresses has the effect of unrolling the path. A second call to procedure Fum
would store a second return address in the location at the top of the stack—in

7.2. CONTROL ABSTRACTION 169

main() {
printf("Fib(5) is %d.",

fibonacci(5));
}

int fibonacci(ord)
int ord;

{
int one, two;
if (ord < 1)
{

puts("Invalid input.");
return ERROR VALUE;

}
else if (ord == 1)

return 0;
else

return fib(ord,&one,&two);
}

int fib(ord, f0, f1)
int ord, *f0, *f1;

{
int result, a, b;
if (ord == 2)
{ /* base case */
*f0 = 0;
*f1 = 1;
result = 1;

}
else
{ /* recurse */
(void) fib(ord-1,&a,&b);
result = a + b;
*f0 = b;
*f1 = result;

}
return result;

}

Figure 7.2: Recursion Example

effect, creating a distinct space to represent the second invocation of Fum. The
same constraint applies to recursive and non-recursive calls: the stack needs
enough space to represent the execution path.

To see this more clearly, consider the c program shown in Figure 7.2. It com-
putes the fifth Fibonacci number using the classic recursive algorithm. When it
executes, the routine fibonacci invokes fib, and fib invokes itself, recursively.
This creates a series of calls:

Procedure Calls
main fibonacci(5)
fibonacci fib(5,*,*)
fib fib(4,*,*)
fib fib(3,*,*)
fib fib(2,*,*)

Here, the asterisk (*) indicates an uninitialized return parameter.
This series of calls has pushed five entries onto the control stack. The top

three entries contain the address immediately after the call in fib. The next
entry contains the address immediately after the call in fibonacci. The fourth
entry contains the address immediately after the call to fibonacci in main.

After the final recursive call, denoted fib(2,*,*) above, fib executes the
base case and the recursion unwinds. This produces a series of return actions:

170 CHAPTER 7. THE PROCEDURE ABSTRACTION

Call Returns to The result(s)
fib(2,*,*) fib(3,*,*) 1 (*one = 0; *two = 1;)
fib(3,*,*) fib(4,*,*) 1 (*one = 1; *two = 1;)
fib(4,*,*) fib(5,*,*) 2 (*one = 1; *two = 2;)
fib(5,*,*) fibonacci(5) 3 (*one = 2; *two = 3;)
fibonacci(5) main 3

The control stack correctly tracks these return addresses. This mechanism is
sufficient for Pascal-style call and return. In fact, some computers have hard-
wired this stack discipline into their call and return instructions.

More complex control flow Some programming languages allow a procedure
to return a procedure and its run-time context. When the returned object
is invoked, the procedure executes in the run-time context from which it was
returned. A simple stack is inadequate to implement this control abstraction.
Instead, the control information must be saved in some more general structure,
such as a linked list, where traversing the structure does not imply deallocation.
(See the discussion of heap allocation for activation records in the next section.)

7.3 Name Spaces

Most procedural languages provide the programmer with control over which
procedures can read and write individual variables. A program will contain
multiple name spaces; the rules that determine which statements can legally
access each name space are called scoping rules.

7.3.1 Scoping Rules

Specific programming languages differ in the set of name spaces that they allow
the programmer to create. Figure 7.3 summarizes the name scoping rules of
several languages. Fortran, the oldest of these languages, creates two name
spaces: a global space that contains the names of procedures and common
blocks, and a separate name space inside each procedure. Names declared inside
a procedure’s local name space supersede global names for references within the
procedure. Within a name space, different attributes can apply. For example,
a local variable can be mentioned in a save statement. This has the effect of
making the local variable a static variable—its value is preserved across calls to
the procedure.

The programming language c has more complex scoping rules. It creates
a global name space that holds all procedure names, as well as the names of
global variables. It introduces a separate name space for all of the procedures
in a single file (or compilation unit). Names in the file-level scope are declared
with the attribute static; they are visible to any procedure in the file. The file-
level scope holds both procedures and variables. Each procedure creates its own
name space for variables and parameters. Inside a procedure, the programmer
can create additional name spaces by opening a block (with { and }). A block
can declare its own local names; it can also contain other blocks.

7.3. NAME SPACES 171

Fortran 77

Global Name Space
– Procedure Names
– Common Blocks

– qualified variable names

Procedure Name Space
– Variables & Parameters

C

Global Name Space
– Procedures
– Global Variables

File Static Storage
– Procedures
– Variables

Procedure Name Space
– Variables & Parameters

Block Name Space
– Variables

PL/I

Global Name Space
– Variables
– Procedures

Procedure Name Space
– Variables & Parameters
– Procedures

Scheme

Global Name Space
– Objects
– Built-in objects

Local Name Space
– Objects

Figure 7.3: Name Space Structure of Different Languages

Pascal and pl/i have simple Algol-like scoping rules. As with Fortran, they
have a global name space that holds procedures and variables. As with Fortran,
each procedure creates its own local name space. Unlike Fortran, a procedure
can contain the declarations of other procedures, with their own name spaces.
This creates a set of nested lexical scopes. The example in Figure 7.1 does
this, nesting Fee and Fie in Main, and Fum inside Foe inside Fie. Section 7.3.5
examines nested scopes in more detail.

7.3.2 Activation Records

The creation of a new, separate, name space is a critical part of the procedure
abstraction. Inside a procedure, the programmer can declare named variables
that are not accessible outside the procedure. These named variables may be
initialized to known values. In Algol-like languages, local variables have lifetimes
that match the procedures that declare them. Thus, they require storage during
the lifetime of the invocation and their values are of interest only while the
invocation that created them is active.

To accommodate this behavior, the compiler arranges to set aside a region of
memory, called an activation record (ar), for each individual call to a procedure.
The ar is allocated when the procedure is invoked; under most circumstances,
it is freed when control returns from the procedure back to the point in the

172 CHAPTER 7. THE PROCEDURE ABSTRACTION

locals

caller arp

access link

return address

return value

register
save area

parameters

arp
�

�

Figure 7.4: A typical activation record

program that called it. The ar includes all the storage required for the pro-
cedure’s local variables and any other data needed to maintain the illusion of
the procedure. Unless a separate hardware mechanism supports call and return,
this state information includes the return address for this invocation of the pro-
cedure. Conveniently, this state information has the same lifetime as the local
variables.

When p calls q, the code sequence that implements the call must both pre-
serve p’s environment and create a new environment for q. All of the information
required to accomplish this is stored in their respective ars. Figure 7.4 shows
how the contents of an ar might be laid out. It contains storage space for local
variables, the ar pointer of the calling procedure, a pointer to provide access to
variables in surrounding lexical scopes, a slot for the return address in the call-
ing procedure, a slot for storing the returned value (or a pointer to it), an area
for preserving register values on a call, and an area to hold parameter values.
The entire record is addressed through an activation record pointer, denoted
arp. Taken together, the return address and the caller’s arp form a control
link that allows the code to return control to the appropriate point in the calling
procedure.

7.3.3 Local Storage

The activation record must hold all of the data and state information required
for each invocation of a procedure p. A typical ar might be laid out as shown
in Figure 7.4. The procedure accesses it ar through the arp. (By convention,
the arp usually resides in a fixed register. In the iloc examples, r0 holds the
arp.) The arp points to a designated location in the ar so that all accesses to
the ar can be made relative to the arp.

Items that need space in the ar include the arp of the calling procedure, a
return address, any registers saved in calls that the current procedure will make,
and any parameters that will be passed to those procedures. The ar may also
include space for a return value, if the procedure is a function, and an access
link that can be used to find local variables of other active procedures.

7.3. NAME SPACES 173

Space for Local Data Each local data item may need space in the ar. The
compiler should assign each location an appropriately-sized area, and record in
the symbol table its offset from the arp. Local variables can then be accessed as
offsets from the arp. In iloc, this is accomplished with a loadAO instruction.
The compiler may need to leave space among the local variables for pointers to
variable-sized data, such as an array whose size is not known at compile time.

Space for Variable-length Data Sometimes, the compiler may not know the size
of a data item at compile time. Perhaps its size is read from external media, or it
must grow in response to the amount of data presented by other procedures. To
accommodate such variable-sized data, the compiler leaves space for a pointer
in the ar, and then allocates space elsewhere (either in the heap or on the end
of the current ar) for the data once its size is known. If the register allocator
is unable to keep the pointer in a register, this introduces an extra level of
indirection into any memory reference for the variable-length data item. If
the compiler allocates space for variable-length data in the ar, it may need to
reserve an extra slot in the ar to hold a pointer to the end of the ar.

Initializing Variables A final part of ar maintenance involves initializing data.
Many languages allow the programmer to specify a first, or initial, value for a
variable. If the variable is allocated statically—that is, it has a lifetime that
is independent of any procedure—the data can be inserted directly into the
appropriate locations by the linker/loader. On the other hand, local variables
must be initialized by executing instructions at run-time. Since a procedure may
be invoked multiple times, and its ars may be placed at different addresses, the
only feasible way to set initial values is to generate instructions that store the
necessary values to the appropriate locations. This code must run before the
procedure’s first executable statement.

Space for Saved Register Values When p calls q, either p or q must save the
register values that p needs. This may include all the register values; it may
be a subset of them. Whichever procedure saves these values must restore
them after q’s body finishes executing. This requires space, in the ar, for the
saved registers. If the caller saves its own registers, then p’s register save area
will contain values related to its own execution. If the callee saves the caller’s
registers, then the value of p’s registers will be preserved in q’s register save
area.

7.3.4 Allocating Activation Records

The compiler must arrange for an appropriately sized activation record for each
invocation of a procedure. The activation record must be allocated space in
memory. The space must be available when the calling procedure begins to
execute the procedure call, so that it can fill in the various slots in the ar that
contain information not known at compile-time, establishing both the control
link and the access link. (Since a procedure can be called from many call sites,
this information cannot, in general, be known before the invocation.) In general,

174 CHAPTER 7. THE PROCEDURE ABSTRACTION

space
for A

pointer to A

�

locals

caller arp

· · ·arp
�

�

�

old
tos

�

new
tos

Figure 7.5: Allocating a dynamically sized array

the compiler has several choices for how to allocate activation records.

Stack Allocation of Activation Records When the contents of an ar are limited
to the lifetime of the procedure invocation that caused its creation, and a called
procedure cannot outlive its caller, the compiler can allocate ars using a stack
discipline. With these restrictions, calls and returns are balanced; each called
procedure eventually returns, and any returns occurring between a procedure p’s
invocation and p’s eventual return are the result (either directly or indirectly)
of some procedure call made inside p. Stack allocation is attractive because the
cost of both allocation and deallocation are small—a single arithmetic operation.
(In contrast, general heap management schemes require much more work. See
Section 7.7.)

Local variables whose sizes are not known at compile time can be handled
within a stack allocation scheme. The compiler must arrange to allocate them
at the end of the ar that matches the end of the stack. It must also keep an
explicit pointer to the end of the stack. With these provisions, the running
code can extend the ar and the stack to create space when the variable’s size
becomes known. To simplify addressing, the compiler may need to set aside a
slot in the local variable area that holds a pointer to the actual data. Figure 7.5
shows the lower portion of an activation record where a dynamically-sized array,
A, has been allocated at the end of the ar. The top of stack position (tos) is
shown both before and after the allocation of A.

With stack-allocated ars, the ar for the currently executing procedure al-
ways resides at the top of the stack. Unless the size of A exceeds the available
stack space, it can be added to the current ar. This allocation is inexpensive;
the code can simply store tos in the slot reserved for a pointer to A and in-
crement tos by the size of A. (Compare this to the cost of heap allocation and
deallocation in Section 7.7.) Of course, when it generates code for this alloca-
tion, the compiler can insert a test that checks the size of A against available

7.3. NAME SPACES 175

space. If insufficient stack space is available, it can either report an error or
try another allocation mechanism. To allocate A on the heap would require the
same pointer field for A in the ar. The code would simply use the standard
heap management routines to allocate and free the space.

Heap Allocation of Activation Records If a procedure can outlive its caller, as in
continuation-passing style, stack allocation is inappropriate because the caller’s
activation record cannot be freed. If a procedure can return an object that
includes, explicitly or implicitly, references to its local variables, stack alloca-
tion is inappropriate because it will leave behind dangling pointers. In these
situations, ars can be kept in heap storage. This lets the code dismantle and
free an ar when all the pointers to it have been discarded. Garbage collection
is the natural technology for reclaiming ars in such an environment, since the
collector will track down all the pointers and ensure safety. (See Section 7.7.)

Static Allocation of Activation Records If a procedure q calls no other proce-
dures, then q can never have more than a single active invocation. We call
q a leaf procedure since it terminates a path through a graph of the possible
procedure calls. The compiler can statically allocate activation records for leaf
procedures. If the convention requires a caller to save its own registers, q will
not need the corresponding space in its ar. This saves the run-time cost of ar

allocation.

At any point in the execution of the compiled code, only one leaf procedure
can be active. (To have two such procedures active, the first one would need
to call another procedure, so it would not be a leaf.) Thus, the compiler can
allocate a single static ar for use by all of the leaf procedures. The static ar

must be large enough to accommodate any leaf procedure. The static variables
declared in any of the leaf procedures can be laid out together in that single ar.
Using a single static ar for leaf procedures reduces the run-time space overhead
of static ar allocation.

Coalescing Activation Records If the compiler discovers a set of procedures that
are always invoked in a fixed sequence, it may be able to combine their activation
records. For example, if a call from fee to fie always results in calls to foe
and fum, the compiler may find it profitable to allocate the ars for fie, foe,
and fum at the same time. If ars are allocated on the heap, the savings are
obvious. For stack-allocated ars, the savings are minor.

If all the calls to fie cannot be changed to allocate the coalesced ar, then
the calls to foe and fum become more complex. The calling sequence generated
must recognize when to allocate a new ar and when one already exists. The
compiler must either insert conditional logic in the calling sequence to handle
this, or it can generate two copies of the code for the affected procedures and
call the appropriate routines. (The latter is a simple case of a transformation
known as procedure cloning. See Chapter 14.)

176 CHAPTER 7. THE PROCEDURE ABSTRACTION

program Main(input, output);

var x,y,z: integer;

procedure Fee;

var x: integer;

begin { Fee }
x := 1;

y := x * 2 + 1

end;

procedure Fie;

var y: real;

procedure Foe;

var z: real;

procedure Fum;

var y: real;

begin { Fum }
x := 1.25 * z;

Fee;

writeln(’x = ’,x)

end;

begin { Foe }
z := 1;

Fee;

Fum

end;

begin { Fie }
Foe;

writeln(’x = ’,x)

end;

begin { Main }
x := 0;

Fie

end.

Name Resolution

Scope x y z

Main Main.x Main.y Main.z

Fee Fee.x Main.y Main.z

Fie Main.x Fie.y Main.z

Foe Main.x Fie.y Foe.z

Fum Main.x Fum.y Foe.z

Nesting Relationships

�
�
�
�Main

nFee nFie

nFoe

nFum

��� ��R

�

�

Calling Relationships

�
�
�
�Main

nFee nFie

nFoe

nFum

��R

�HH
HHY

��
�
�
�I

Figure 7.6: Nested lexical scopes in Pascal

7.3.5 Nested lexical scopes

Many Algol-like languages allow the programmer to define new name spaces, or
lexical scopes, inside other scopes. The most common case is nesting procedure
definitions inside one another; this approach is exemplified by Pascal. Any
Pascal program that uses more than one procedure has nested scopes. C treats
each new block, denoted by brackets { and }, as a distinct scope. Thus, the
programmer can declare new variables inside each block.

Lexical scoping rules follow one general principle. Inside a given scope,
names are bound to the lexically closest declaration for that name. Consider,
again, our example Pascal program. It is shown, along with information about
the nesting of lexical scopes, in Figure 7.6. It contains five distinct scopes, one
corresponding to the program Main and one for each of the procedures Fee, Fie,

7.3. NAME SPACES 177

Foe, and Fum. Each procedure declares some set of variables drawn from the
set of names x, y, and z. Pascal’s name scoping rules dictate that a reference
to a variable is bound to the nearest declaration of that name, in lexical order.
Thus, the statement x := 1; inside Fee refers to the integer variable x declared
in Fee. Since Fee does not declare y, the next statement refers to the integer
variable y declared in Main. In Pascal, a statement can only “see” variables
declared in its procedure, or in some procedure that contains its procedure.
Thus, the assignment to x in Fum refers to the integer variable declared in Main,
which contains Fum. Similarly, the reference to z in the same statement refers
to the variable declared in Foe. When Fum calls Fee, Fum does not have access
to the value of x computed by Fee. These scoping relationships are detailed
in the table on the right-hand side of Figure 7.6. The nesting relationships are
depicted graphically immediately below the table. The bottom graph shows the
sequence of procedure calls that occur as the program executes.

Most Algol-like languages implement multiple scopes. Some, like Pascal,
pl/i, and Scheme, allow arbitrary nesting of lexical scopes. Others have a
small, constant set of scopes. Fortran, for example, implements a global name
space and a separate name space for each subroutine or function. (Features
such as block data, statement functions, and multiple-entry procedures slightly
complicate this picture.)

C implements nested scopes for blocks, but not for procedures. It uses
the static scope, which occurs at the file-level, to create a modicum of the
modularity and information hiding capabilities allowed by Pascal-style nested
procedures. Since blocks lack both parameter binding and the control abstrac-
tion of procedures, the actual use of nested scopes is far more limited in c. One
common use for the block-level scope is to create local temporary storage for
code generated by expanding a pre-processor macro.

In general, each scope corresponds to a different region in memory, sometimes
called a data area. Thus, the data area in a procedure’s activation record holds
its locally-declared variables. Global variables are stored in a data-area that
can be addressed by all procedures.

To handle references in languages that use nested lexical scopes, the compiler
translates each name that refers to a local variable of some procedure into a pair
〈level,offset〉, where level is the lexical nesting level of the scope that declared
the variable and offset is its memory location relative to arp. This pair is the
variable’s static distance coordinate. The translation is typically done during
parsing, using a lexically-scoped symbol table, described in Section 6.7.3. The
static distance coordinate encodes all the information needed by the code gen-
erator to emit code that locates the value at run time. The code generator must
establish a mechanism for finding the appropriate ar given level. It then emits
code to load the value found at offset inside that ar. Section 7.5.2 describes
two different run-time data structures that can accomplish this task.

178 CHAPTER 7. THE PROCEDURE ABSTRACTION

7.4 Communicating Values Between Procedures

The central notion underlying the concept of a procedure is abstraction. The
programmer abstracts common operations relative to a small set of names, or
parameters. To use the operation, the programmer invokes the procedure with
an appropriate binding of values to those parameters. The called procedure
also needs a mechanism to return its result. If it produces a result suitable for
assignment, we say that it returns a value and we call the procedure a function
rather than a plain procedure.

7.4.1 Passing Parameters

Parameter naming lets the programmer write the procedure in terms of its local
name space, and then invoke it in many different contexts to operate on many
different arguments. This notion of mapping arguments from the call into the
procedure’s name space is critical to our ability to write abstract, modular codes.

Most modern programming languages use one of two rules for mapping ac-
tual parameters at a call site into the formal parameters declared inside the
called procedure, call-by-value binding and call-by-reference binding. While
these techniques differ in their behavior, the distinction between them is best
explained by understanding their implementation. Consider the following pro-
cedure, written in c, and several call sites that invoke it.

int fee(x,y)
int x,y;

{
x = 2 * x;
y = x + y;
return y;

}

c = fee(2,3);
a = 2;
b = 3;
c = fee(a,b);
a = 2;
b = 3;
c = fee(a,a);

With call-by-value, as in c, the calling procedure creates a location for the
formal parameter in the called procedure’s ar and copies the value of the actual
parameter into that location. The formal parameter has its own storage and
its own value. The only way to modify its value is by referring directly to its
name. The sole constraint placed on it is its initial value, which is determined
by evaluating the actual parameter at the time of the call.

The three different invocations produce the same results under call-by-value.

Call by a b Return
Value in out in out Value

fee(2,3) – – – – 7
fee(a,b) 2 2 3 3 7
fee(a,a) 2 2 3 3 6

Because the actual parameters and formal parameters have the same value,
rather than the same address, the behavior is both intuitive and consistent.
None of the calls changes the value of either a or b.

7.4. COMMUNICATING VALUES BETWEEN PROCEDURES 179

Digression: Call-by-Name Parameter Binding

Algol introduced the notion of call-by-name parameter binding. Call-by-
name has a simple meaning. A reference to the formal parameter behaves
exactly as if the actual parameter had been textually substituted in place of
the formal. This can lead to some complex and interesting behavior. Consider
the following short example in Algol-60:

begin comment Call-by-Name example;

procedure zero(Arr,i,j,u1,u2);
integer Arr;
integer i,j,u1,u2;
begin;

for i := 1 step 1 until u1 do
for j := 1 step 1 until u2 do
Arr := 0;

end;

integer array Work[1:100,1:200];
integer p, q, x, y, z;

x := 100;
y := 200;

zero(Work[p,q],p,q,x,y);
end

The procedure zero assigns the value 0 to every element of the array Work.
To see this, rewrite zero with the text of the actual parameters.

This elegant idea fell from use because it was difficult to implement. In
general, each parameter must be compiled into a small function of the for-
mal parameters that returns a pointer. These functions are called thunks.
Generating competent thunks was complex; evaluating thunks for each ac-
cess to a parameter raised the cost of parameter access. In the end, these
disadvantages overcame any extra generality or transparency that the simple
rewriting semantics offered.

In a language that uses call-by-reference parameter passing, the calling pro-
cedure creates a location for a pointer to the formal parameter and fills that
location with a pointer to the result of evaluating the expression. Inside the
called procedure, references to the formal parameter involve an extra level of
indirection to reach the value. This has two critical consequences. First, any
redefinition of the call-by-reference formal parameter is reflected in the actual
parameter, unless the actual parameter is an expression rather than a variable
reference. Second, any call-by-reference formal parameter might be bound to a
variable that is accessible by another name inside the called procedure.

The same example, rewritten in pl/i, produces different results because of

180 CHAPTER 7. THE PROCEDURE ABSTRACTION

the call-by-reference parameter binding.

procedure fee(x,y)
returns fixed binary;
declare x,y fixed binary;
begin;

x = 2 * x;
y = x + y;
return y;
end;

c = fee(2,3);
a = 2;
b = 3;
c = fee(a,b);
a = 2;
b = 3;
c = fee(a,a);

Pl/i’s call-by-reference parameter passing produces different results than the c

code did.

Call by a b Return
Reference in out in out Value
fee(2,3) – – – – 7
fee(a,b) 2 4 3 7 7
fee(a,a) 2 8 3 3 8

Notice that the second call redefines both a and b; the behavior of call-by-
reference is intended to communicate changes made in the called procedure
back to the calling environment. The third call creates an alias between x and y
in fee. The first statement redefines a to have the value 4. The next statement
references the value of a twice, and adds the value of a to itself. This causes
fee to return the value 8, rather than 6.

In both call-by-value and call-by-reference, the space requirements for repre-
senting parameters are small. Since the representation of each parameter must
be copied into the ar of the called procedure on each call, this has an impact on
the cost of the call. To pass a large object, most languages use call-by-reference
for efficiency. For example, in c, the string representation passes a fixed-size
pointer rather than the text. C programmers typically pass a pointer to the
array rather than copying each element’s value on each call.

Some Fortran compilers have used an alternative binding mechanism known
as call-by-value/result. The call operates as in call-by-value binding; on exit,
values from the formal parameters are copied back to the actual parameters—
except when the actual is an expression.

Call-by-value/result produces the same results as call-by-reference, unless
the call site introduces an alias between two or more formal parameters. (See
Chapter 13 for a deeper discussion of parameter-based aliasing.) The call-
by-value/result binding scheme makes each reference in the called procedure
cheaper, since it avoids the extra indirection. It adds the cost of copying values
in and out of the called procedure on each call.

Our example, recoded in Fortran, looks like:

7.4. COMMUNICATING VALUES BETWEEN PROCEDURES 181

integer function fee(x,y)
integer x, y
x = 2 * x
y = x + y
return y
end

c = fee(2,3)
a = 2
b = 3
c = fee(a,b)
a = 2
b = 3
c = fee(a,a)

Since the Fortran standard forbids aliasing that involves formal parameters,
this program is not a legal Fortran program. The standard allows the compiler
to interpret a non-standard conforming program in any convenient way. How-
ever, most Fortran compilers will neither detect this particular problem, nor
implement it incorrectly.

A Fortran version of our program, implemented with value/result, would
produce the following behavior.

Call by a b Return
Value/Result in out in out Value
fee(2,3) – – – – 7
fee(a,b) 2 4 3 7 7
fee(a,a) 2 * 3 3 6

Note that, for the third call site, the value for a after the call is dependent on
the call-by-value/result implementation. Depending on the order of assignment
to a, a could have the value 6 or 4.

7.4.2 Returning Values

To return a value for the function, as opposed to changing the value of one
of its actual parameters, the compiler must set aside space for the returned
value. Because the return value, by definition, is used after the called procedure
terminates, it needs storage outside the called procedure’s ar. If the compiler-
writer can ensure that the return value is of small, fixed size, then it can store
the value in either the ar of the calling procedure (at a fixed offset) or in a
register.

To achieve this goal, the compiler can allocate a fixed slot in the ar of
the calling procedure or a designated hardware register, and use that slot to
hold a pointer to the actual value. This allows the called routine to return an
arbitrarily-sized value to the caller; space for the return value is allocated in the
caller’s ar prior to the call and the appropriate pointer is stored in the return
value slot of the caller’s ar. To return the value, the called procedure loads the
pointer from arp + offset(return value), and uses it to store the return value.

This scenario can be improved. If the return value is a small, simple value
such as a simple integer or a floating-point number, it can be returned in the
slot allocated for the pointer. As long as both the caller and the callee know
the type of the returned value, the compiler can safely and correctly eliminate
the indirection.

182 CHAPTER 7. THE PROCEDURE ABSTRACTION

7.5 Establishing Addressability

As part of the linkage convention, the compiler must ensure that each procedure
can generate an address for each variable that it references. In an Algol-like lan-
guage, this usually includes named global variables, some form of static storage,
the procedure’s own local variables, and some of the local variables of its lexical
ancestors. In general two cases arise; they differ in the amount of calculation
required to find the starting address, or base address, of the data area.

7.5.1 Trivial Base Addresses

For most variables, the compiler can emit code that generates the base address
in one or two instructions. The easiest case is a local variable of the current
procedure. If the variable is stored in the procedure’s ar, the compiler can use
the arp as its base address. The compiler can load the variable’s value with
a single loadAI instruction or a loadI followed by a loadAO. Thus, access to
local variables is fast.

(Sometimes, a local variable is not stored in the procedure’s ar. The value
might reside in a register, in which case loads and stores are not needed.
The variable might have an unpredictable or changing size, in which case the
compiler might need to allocate space for it in the run-time heap. In this case,
the compiler would likely reserve space in the ar for a pointer to the heap
location. This adds one extra level of indirection to any access for that variable,
but defers the need for its size until run-time.)

Access to global and static variables is handled similarly, except that the
base address may not be in a register at the point where the access occurs.
Thus, the compiler may need to emit code that determines the base address
at run-time. While that sounds complex, it is exactly the task that symbolic
assemblers were designed to accomplish. The compiler generates base addresses
for global and static data areas by using the name of the data area as part of
an assembly language label. To avoid conflicts with other labels, the compiler
“mangles” the name by adding a prefix, a suffix, or both, to the name. The
compiler deliberately adds characters that cannot appear in source-language
names.

For example, given a global variable fee, a c compiler might construct the
label &fee., counting on the fact that ampersand (&) cannot be used in a source
language name and that no legal c name can end with a period. It would emit
the appropriate assembly language pseudo-operation to reserve space for fee
or to initialize fee, attaching the label to the pseudo-operation. To obtain a
run-time address for fee, the compiler would emit the instruction

loadI &fee. ⇒ r1.

The next instruction would use r1 to access the memory location for fee.
Notice that the compiler has no actual knowledge of where fee is stored.

It uses a relocatable label to ensure that the appropriate run-time address is
written into the instruction stream. At compile-time, it makes the link between

7.5. ESTABLISHING ADDRESSABILITY 183

the contents of r1 and the location of fee by creating an assembly-level label.
That link is resolved by the operating system’s loader when the program is
loaded and launched.

Global variables may be labelled individually or in larger groups. In Fortran,
for example, the language collects global variables into “common blocks.” A
typical Fortran compiler establishes one label for each common block. It assigns
an offset to each variable in each common block and generates load and store
instructions relative to the common block’s label.

Similarly, the compiler may create a single static data area for all of the static
variables within a single static scope. This serves two purposes. First, it keeps
the set of labels smaller, decreasing the likelihood of an unexpected conflict. If
a name conflict occurs, it will be discovered during linking or loading. When
this occurs, it can be quite confusing to the programmer. To further decrease
the likelihood of this problem, the compiler can prepend part of the file name or
the procedure name to the variable’s name. Second, it decreases the number of
base addresses that might be required in a single procedure. This reduces the
number of registers tied up to hold base addresses. Using too many registers for
addressing may adversely affect overall run-time performance of the compiled
code.

7.5.2 Local Variables of Other Procedures

In a language that supports nested lexical scopes, the compiler must provide a
mechanism to map static distance coordinates into hardware addresses for the
corresponding variables. To accomplish this, the compiler must put in place data
structures that let it to compute the addresses of ars of each lexical ancestors
of the current procedure.

For example, assume that fee, at level x, references variable a declared
in fee’s level y ancestor fie. The parser converts this reference into a static
distance coordinate 〈(x−y), offset〉. Here, x−y specifies how many lexical levels
lie between fee and fie, and offset is the distance from the arp for an instance
of fie and the storage reserved for a in fie’s ar.

To convert 〈(x − y), offset〉 into a run-time address, the compiler must emit
two different kinds of code. First, the compiler writer must select a mechanism
for tracking lexical ancestry among activation records. The compiler must emit
the code necessary to keep this information current at each procedure call.
Second, the compiler must emit, at the point of reference, code that will interpret
the run-time data structure and the expression x− y to produce the address of
the appropriate arp and use that arp and offset to address the variable. Since
both x−y and offset are known at compile time, most of the run-time overhead
goes into traversing the data structure.

Several mechanisms have been used to solve this problem. We will examine
two: access links and a global display.

Access Links In this scheme, the compiler ensures that each ar contains a
pointer to the ar of its immediate lexical ancestor. We call this pointer an
access link, since it is used to access non-local variables. Starting with the

184 CHAPTER 7. THE PROCEDURE ABSTRACTION

locals

caller arp

access link
ret. address

ret. value

parameters

�

�

level 2

�
arp locals

caller arp

access link
ret. address

ret. value

parameters

�

�

level 1

locals

caller arp

access link
ret. address

ret. value

parameters

level 0

Figure 7.7: Using access links

current procedure, the access links form a chain of the ars for all of its lexical
ancestors. Any local variable of another procedure that can be accessed from
the current procedure must be stored in an ar on the chain of access links.
Figure 7.7 shows this situation.

To use access links, the compiler emits code that walks the chain of links
until it finds the appropriate arp. If the current procedure is at level x, and
the reference is to offset o at level y, the compiler emits code to follow x − y
pointers in the chain of access links. This yields the appropriate arp. Next,
it emits code to add the offset o to this arp, and to use the resulting address
for the memory access. With this scheme, the cost of the address calculation
is proportional to x − y. If programs exhibit shallow levels of lexical nesting,
the difference in cost between accessing two variables at different levels will be
fairly small. Of course, as memory latencies rise, the constant in this asymptotic
equation gets larger.

To maintain access links, the compiler must add code to each procedure
call to find the appropriate arp and store it into the ar for the called pro-
cedure. Two cases arise. If the called procedure is nested inside the current
procedure—that is, its lexical level is exactly one more than the level of the
calling procedure—then the caller uses its own arp as the access link of the
called procedure. Otherwise, the lexical level must be less than or equal to the
level of the calling procedure. To find the appropriate arp, the compiler emits
code to find the arp one level above the called procedure’s level. It uses the
same mechanism used in accessing a variable at that level; it walks the chain of
access links. It stores this arp as the called procedure’s access link.

Global Display In this scheme, the compiler allocates a globally accessible array
to hold the arps of the most recent instance of a procedure called at each level.
Any reference to a variable that resides in some lexical ancestor becomes an
indirect reference through this global table of arps. To convert 〈(x− y), offset〉
into an address, the compiler takes the arp stored in element y of the global
display, adds offset to it, and uses that as the address for the memory reference.

7.6. STANDARDIZED LINKAGES 185

locals

caller arp

saved ptr.

ret. address
ret. value

parameters

�

level 2

arp
� locals

caller arp

saved ptr.

ret. address
ret. value

parameters

�

level 1

locals

caller arp

saved ptr.

ret. address
ret. value

parameters

level 0level 0
level 1

level 2
level 3

Display

b

�

�

�

Figure 7.8: Using a display

Figure 7.8 shows this situation.
Using a global display, the cost of non-local access is independent of x − y.

The compiler knows y, so the overhead consists of a minor address calculation
(see Section 8.5) and an extra load operation. This still leaves an inequity be-
tween the cost of local access and the cost of non-local access, but the difference
is smaller than with access links and it is entirely predictable.

To maintain a global display, the compiler must add code to both the proce-
dure call and its corresponding return. On call, the procedure should store the
display entry for its lexical level in its ar, and replace that entry in the global
display with its own arp. On return, it should restore the value from its ar to
the global display. This simple scheme takes one more slot in the global display
than is strictly necessary, but this is a small price to pay for the simplicity of
the update scheme.

As an improvement, the compiler can omit the code to update the display
in any procedure that, itself, calls no other procedures. This eliminates some of
the wasted display updates. It does not eliminate all of them. If the procedure
never calls a procedure that is more deeply nested, then it can omit the display
update, because execution can only reach a more deeply nested procedure by
passing through some intervening procedure that calls down the lexical nesting
tree and will, therefore, preserve the appropriate arp.

7.6 Standardized Linkages

The procedure linkage is a social contract between the compiler, the operating
system, and the target machine that clearly divides responsibility for naming,
for allocation of resources, for addressability, and for protection. The procedure
linkage ensures interoperability of procedures between the user’s code, as trans-
lated by the compiler, and the operating system’s routines. Typically, all of the
compilers for a given combination of target machine and operating system use
the same procedure linkage.

The linkage convention serves to isolate each procedure from the different

186 CHAPTER 7. THE PROCEDURE ABSTRACTION

epilog

prolog

pre-call

post-return

epilog

prolog
�

�

�
�
�
���

H
H
H
HHY

procedure p

procedure q

Figure 7.9: A standard procedure linkage

environments found at call sites that invoke it. Assume that procedure p has an
integer parameter x. Different calls to p may bind x to a local variable stored
in the calling procedure’s stack frame, to a global variable, to an element of
some static array, and to the result of evaluating an integer expression such as
y+2. Because the procedure linkage specifies how to evaluate and store x in the
calling procedure, and how to access x in the called procedure, the compiler can
generate code for the body of the called procedure that ignores the differences
between the run-time environments at the different calls to p. As long as all the
procedures obey the linkage convention, the details will mesh together to create
the seamless transfer of values promised by the source-language specification.

The linkage convention is, of necessity, machine dependent. For example,
the linkage convention implicitly contains information such as the number of
registers available on the target machine, and the mechanism for executing a
call and a return.

Figures 7.9 shows how the pieces of a standard procedure linkage fit together.
Each procedure has a prolog sequence and an epilog sequence. Each call site
includes both a pre-call sequence and a post-return sequence.

pre-call The pre-call sequence is responsible for setting up the called proce-
dure’s ar. It allocates space for the basic ar and fills in each of the
locations. This includes evaluating each actual parameter to a value or an
address as appropriate, and storing the value in the parameter’s designated
slot in the ar. It also stores the return address, the calling procedure’s
arp, and, if necessary, the address of the space reserved for a return value
in their designated locations in the ar.

The caller cannot know how much space to reserve for the called proce-
dure’s local variables. Thus, it can only allocate space for the basic portion
of the called procedure’s ar. The remaining space must be allocated by
the called procedure’s prolog code.2

2The alternative is to arrange a link-time mechanism to place this information in a place
where the caller can find it. If ars are stack allocated, extending the ar in the called procedure

7.6. STANDARDIZED LINKAGES 187

post-return The post-call sequence must undo the actions of the pre-call se-
quence. It completes the process by deallocating the called procedure’s
ar. If any call-by-reference parameters need to be returned to registers,
the post-return sequence restores them.

prolog Each procedure’s prolog performs the same basic set of actions. It
completes the task of constructing the called procedure’s run-time envi-
ronment. The prolog extends the procedure’s basic ar to create space for
local variables, and initializes them as necessary. If the procedure contains
references to a procedure-specific static data area, the prolog may need to
establish addressability by loading the appropriate label into a register.

If the compiler is using a display to access local-variables of other pro-
cedures, the prolog updates the display entry for its lexical level. This
involves saving the current entry for that level into the ar and storing the
current arp into the display.

epilog A procedure’s epilog code undoes some of the actions of the prolog. It
may need to deallocate the space used for local variables. It must restore
the caller’s arp and jump to the return address. If the procedure returns
a value, that value is actually stored by code generated for the return
statement (whether the return is explicit or implicit).

This is, however, just a general framework for building the linkage convention.
Figure 7.10 shows one possible division of labor between the caller and the

callee. It includes most of the details that the linkage convention must handle.
It does not mention either a display or access links.

• To manage a display, the prolog sequence in the called procedure saves
the current display record for its own level into its ar and stores its own
arp into that slot in the display. This establishes the display pointer for
any call that it makes to a more deeply nested procedure. If the procedure
makes no calls, or only calls less nested procedures, it can skip this step.

• To manage access links, the pre-call sequence in the calling procedure
computes the appropriate first access link for the called procedure and
saves it into the access link slot in the called procedure’s ar. This can be
the caller’s own arp (if the callee is nested inside the caller), the caller’s
access link (if the callee is at the same lexical level as the caller), or some
link up the caller’s access link chain (if the callee is declared at an outer
lexical level).

As long as the called procedure is known at compile time, maintaining either a
display or access links is reasonably efficient.

One critical issue in the procedure linkage is preserving values kept in reg-
isters. This can be done by saving them in the pre-call sequence and restoring

is easy. If ars are allocated in the heap, the compiler writer may elect to use a separately
allocated block of memory to hold the local variables.

188 CHAPTER 7. THE PROCEDURE ABSTRACTION

Caller Callee

pre-call sequence prolog sequence
allocate basic ar preserve callee-save registers
evaluate & store parameters extend ar for local data

Call store return address & arp find static data area
save caller-save registers initialize locals
jump to callee fall through to code

post-return sequence epilog sequence
deallocate basic ar restore callee-save registers

Return restore caller-save registers discard local data
restore reference parameters restore caller’s arp

jump to return address

Figure 7.10: One possible division of responsibility in a linkage

them in the post-call sequence; this convention is called callee-saves. The al-
ternative is to save them in the prolog sequence and restore them in the epilog
sequence; this convention is called caller-saves. With callee saves, the enreg-
istered values are stored in the calling procedure’s ar. With caller saves, the
enregistered values are stored in the called procedure’s ar.

Each convention has arguments in its favor. The procedure that saves and
restores registers needs only to preserve a subset of the enregistered values. In
caller saves, the pre-call sequence only needs to save a value if it is used after
the call. Similarly, in callee saves, the prolog only needs to save a value if the
procedure actually uses the register that contains it. The linkage convention can
specify that all registers are caller-saves, that all registers are callee-saves, or it
can divide the register set into some caller-saves and some callee-saves registers.
For any specific division of responsibility, we can construct programs where the
division fits well and programs where it does not. Many modern systems divide
the register set evenly between these two conventions.

7.7 Managing Memory

Another issue that the compiler writer must face in implementing procedures
is memory management. In most modern systems, each program executes in
its own logical address space. The layout, organization, and management of
this address space requires cooperation between the compiler and the operat-
ing system to provide an efficient implementation that falls within rules and
restrictions imposed by the source language and the target machine.

7.7.1 Memory Layout

The compiler, the operating system, and the target machine cooperate to ensure
that multiple programs can execute safely on an interleaved (time-sliced) basis.

7.7. MANAGING MEMORY 189

Digression: More about time

In a typical system, the linkage convention is negotiated between the compiler
implementors and the operating system implementors at an early stage in
development. Thus, issues such as the distinction between caller-saves and
callee-saves registers are decided at design time. When the compiler runs,
it must emit the procedure prolog and epilog sequences for each procedure,
along with the pre-call and post-call sequences for each call site. This code
executes at run time. Thus, the compiler cannot know the return address
that it should store into a callee’s ar. (Neither can it know, in general,
the address of that ar.) It can, however, put in place a mechanism that
will generate that address at either link-time (using a relocatable assembly-
language label) or at run-time (using some offset from the program counter)
and store it into the appropriate location in the callee’s ar.

Similarly, in a system that uses a single global display to provide ad-
dressability for local variables of other procedures, the compiler cannot know
the run-time addresses of the appropriate ars. Nonetheless, it emits code to
maintain the display. The mechanism that achieves this requires two pieces
of information: the lexical nesting level of the current procedure and the ad-
dress of the global display. The former is known at compile time; the latter
can be arranged by using a relocatable assembly-language label. Thus, the
prolog code can simply store the current display entry for the procedure’s
level into its ar (using a loadAO from the display address) and store it into
the ar (using a storeAO from the frame pointer).

Many of the decisions about how to layout, manipulate, and manage the pro-
gram’s address space lie outside the purview of the compiler writer. However,
the decisions have a strong impact on the code that must be generated and
the performance achieved by that code. Thus, the compiler writer must have a
broad understanding of these issues.

Placing Run-time Data Structures At run-time, a compiled program consists of
executable code and several distinct categories of data. The compiled code is, in
general, fixed in size. Some of the data areas are also fixed in size; for example,
the data areas for global and static variables in languages like Fortran and c

neither grow nor shrink during execution. Other data areas have sizes that
change throughout execution; for example, the area that holds ars for active
procedures will both expand and shrink as the program executes.

Figure 7.11 shows a typical layout for the address space used by a single
compiled program. The executable code sits at the low end of the address
space; the adjacent region, labelled Static in the diagram, holds both static and
global data areas. The remainder of the address space is devoted to data areas
that expand and contract; if the language allows stack allocation of ars, the
compiler needs to leave space for both the heap and the stack. To allow best
utilization of the space, they should be placed at opposite ends of the open
space and allowed to grow towards each other. The heap grows toward higher

190 CHAPTER 7. THE PROCEDURE ABSTRACTION

low ∞

C
o
d
e

S
t
a
t
i
c

H
e
a
p

S
t
a
c
k

free
memory

� �

Figure 7.11: Logical address-space layout

addresses; the stack grows toward lower addresses. If activation records are kept
on the heap, the run-time stack may be unneeded.

From the compiler’s perspective, the logical address space is the whole pic-
ture. However, modern computer systems typically execute many programs
in an interleaved fashion. The operating system maps several different logical
address spaces into the single address space supported by the target machine.
Figure 7.12 shows this larger picture. Each program is isolated in its own logical
address space; each can behave as if it has its own machine.

A single logical address space can be spread across disjoint segments (or
pages) of the physical address space; thus, the addresses 100,000 and 200,000 in
the program’s logical address space need not be 100,000 bytes apart in physical
memory. In fact, the physical address associated with the logical address 100,000
may be larger than the physical address associated with the logical address
200,000. The mapping from logical addresses to physical addresses is maintained
cooperatively by the hardware and the operating system. It is, in large part,
beyond the compiler’s purview.

Impact of Memory Model on Code Shape The compiler writer must decide
whether to keep values aggressively in registers, or to keep them in memory.
This decision has a major impact on the code that the compiler emits for indi-
vidual statements.

With a memory-to-memory model, the compiler typically works within the
limited set of registers on the target machine. The code that it emits uses real
register names. The compiler ensures, on a statement-by-statement basis, that
demand for registers does not exceed the set of registers available on the target
machine. Under these circumstances, register allocation becomes an optimiza-
tion that improves the code, rather than a transformation that is necessary for
correctness.

With a register-to-register model, the compiler typically works with a set of
virtual registers, rather than the real register set of the target machine. The
virtual register set has unlimited size. The compiler associates a virtual register

7.7. MANAGING MEMORY 191

C
o

d
e

S
t
a
t
i
c

H
e
a
p

S
t
a
c

k

�

�

0 ∞

C
o

d
e

S
t
a
t
i
c

H
e
a
p

S
t
a
c

k

��

0 ∞

C
o

d
e

S
t
a
t
i
c

H
e
a
p

S
t
a
c

k

��

0 ∞

. . . C
o

d
e

S
t
a
t
i
c

H
e
a
p

S
t
a
c

k

��

0 ∞

JJ�� Compiler’s
view

Q
�

Operating
Systems’

view

Virtual
addresses

. . .
0 large

Physical
addresses

��JJ
Hardware

view

HHHHHHj

PPPPPPPPPq

�
�
�� �

HHHHHHj

�
�
�R

											

�
�

�
���

Figure 7.12: Different views of the address space

with each value that can legally reside in a register;3 such a value is stored
to memory only when it is passed as a call-by-reference parameter, when it is
passed as a return value, or when the register allocator spills it (see Chapter 10.
With a register-to-register memory model, the register allocator must be run to
reduce demand for registers and to map the virtual register names into target
machine register names.

Alignment and Padding Target machines have specific requirements on where
data items can be stored. A typical set of restrictions might specify that 32-bit
integers and 32-bit floating-point numbers begin on a full-word boundary (32-
bit), that 64-bit floating-point data begin on a double-word (64-bit) boundary,
and that string data begin on a half-word (16-bit) boundary. We call these rules
alignment rules.

Some machines have a specific instruction to implement procedure calls; it
might save registers or store the return address. Such support can add further
restrictions; for example, the instruction might dictate some portions of the ar

format and add an alignment rule for the start of each ar. The Dec Vax com-
puters had a particularly elaborate call instruction; it took a 32-bit argument
that specified which registers to save on call and restore on return.

To comply with the target machine’s alignment rules, the compiler may need
to waste some space. To assign locations in a data area, the compiler should
order the variables into groups, from those with the most restrictive alignment
rules to those with the least. (For example, double-word alignment is more
restrictive than full-word alignment.) Assuming that the data area begins on a
full-word boundary, it can place single-word variables at the start of the data
area until it reaches an address that satisfies the most restrictive alignment rule.
Then, it can place all the data in consecutive locations, without padding. It can

3In general, a value can be kept in a register if it can only be accessed using a single name.
We call such a value an unambiguous value.

192 CHAPTER 7. THE PROCEDURE ABSTRACTION

Digression: A Primer on Cache Memories

One way that architects try to bridge the gap between processor speed
and memory speed is through the use of cache memories. A cache is a small,
fast memory placed between the processor and main memory. The cache is
divided into a series of equal-sized frames. Each frame has an address field,
called its tag, that holds a main memory address.

The hardware automatically maps memory locations into cache frames.
The simplest mapping, used in a direct-mapped cache, computes the cache
address as the main memory address modulo the size of the cache. This
partitions the memory into a linear set of blocks, each the size of a cache
frame. The set of blocks that map to a given frame is called a line. At
any point in time, each cache frame holds a copy of the data from one of its
blocks. Its tag field holds the address in memory where that data normally
resides.

On each read access to memory, the hardware checks to see if the re-
quested block is already in its cache frame. If so, the requested bytes are
returned to the processor. If not, the block currently in the frame is evicted
and the requested block is brought into the cache.

Some caches use more complex mappings. A set-associative cache uses
multiple frames for each cache line, typically two or four frames per line. A
fully-associative cache can place any block in any frame. Both these use an
associative search over the tags to determine if a block is in cache. Associative
schemes a policy to determine which block to evict; common schemes are
random replacement and least-recently used (lru) replacement.

In practice, the effective memory speed is determined by memory band-
width, cache block length, the ratio of cache speed to memory speed, and the
percentage of accesses that hit in the cache. From the compiler’s perspective,
the first three are fixed. Compiler-based efforts to improve memory perfor-
mance focus on increasing the hit ratio and on ensuring that blocks are in
the cache when needed.

assign all the variables in the most restricted category, followed by the next most
restricted class, and so on, until all variables have offsets. Since alignment rules
almost always specify a power of two, the end of one category will naturally fit
the restriction for the next category. This scheme inserts padding if and only
if the number of full-word variables available to it is less than the difference
between the alignment of the word that begins the data area and the size of the
most restricted group of variables.

Relative Offsets and Cache Performance The widespread use of cache memories
in modern computer systems has subtle implications for the layout of variables
in memory. If two values are used in near proximity in the code, the compiler
would like to ensure that they can reside in the cache at the same time. This
can be accomplished in two ways. In the best situation, the two values would
share a single cache block. This would guarantee that the values are fetched

7.7. MANAGING MEMORY 193

from ram to cache together and that the impact of their presence in cache on
other variables is minimized. If this cannot be arranged, the compiler would
like to ensure that the two variables map into different cache lines—that is, the
distance between their two addresses is not a multiple of the cache size divided
by the cache line size.

If we consider just two variables, this issue seems quite manageable. When
all active variables are considered, however, the problem can become complex.
Most variables have interactions with many other variables; this creates a web
of relationships that the compiler may not be able to satisfy concurrently. If
we consider a loop that uses several large arrays, the problem of arranging
mutual non-interference becomes even worse. If the compiler can discover the
relationship between the various array references in the loop, it can add padding
between the arrays to increase the likelihood that the references hit different
cache lines and, thus, do not interfere with each other.

As we saw earlier, the mapping of the program’s logical address space onto
the hardware’s physical address space need not preserve the distance between
them. Carrying this thought to its logical conclusion, the reader should ask how
the compiler can ensure anything about relative offsets that are larger than the
size of a virtual memory page. The processor’s physical cache may use either
virtual addresses or physical addresses in its tag fields. A virtual-address cache
preserves the spacing between values that the compiler creates; with such a
cache, the compiler may be able to plan non-interference between large objects.
With a physical-address cache, the distance between two locations in different
pages is determined by the page mapping (unless cache size ≤ page size). Thus,
the compiler’s decisions about memory layout have little, if any, effect, except
within a single page. In this situation, the compiler should focus on getting
objects that are referenced together into the same page.

7.7.2 Algorithms for Managing the Heap

Many programming languages deal with objects that are dynamically created
and destroyed. The compiler cannot determine the size or lifetime of these
objects. To handle such objects, the compiler and the operating system create
a pool of dynamically allocatable storage that is commonly called the run-time
heap, or just the heap. Many issues arise in creating and managing the heap;
some of these are exposed at the programming language level, while others are
only visible to the authors of system software.

This section briefly explores the algorithms used to manage the heap, and
some of the tradeoffs that can arise in implementing programming language
interfaces to the heap management routines. We assume a simple interface to
the heap: a routine allocate(size) and a routine free(address). Allocate
takes an integer argument size and returns the address of a block of space in
the heap that contains at least size bytes. Free takes the address of a block of
previously allocated space in the heap and returns it to the pool of free space.

The critical issues that arise in designing heap management algorithms are
(1) the speed of both allocate and free, (2) the extent to which the pool

194 CHAPTER 7. THE PROCEDURE ABSTRACTION

of free space becomes fragmented into small blocks, and (3) the necessity of
using explicit calls to free. To introduce these issues, first consider a simple
allocation model, called first-fit allocation.

First-fit Allocation The goal of a first-fit allocator is to create fast versions of
allocate and free. As book-keeping overhead, every block in the heap has a
hidden field that holds its size. In general, the size field is located in the word
preceding the address returned by allocate. Blocks available for allocation
reside on a list called the free list. In addition to the mandatory size field, each
block on the free list has a pointer to the next block on the free list (or null),
and a pointer to the block itself in the last word of the block.

free block size

allocated block size • •
�

� next

The initial condition for the heap is a single large block placed on the algorithm’s
free list.

A call to allocate(k) causes the following sequence of events. Allocate
walks the free list until it discovers a block with size greater than or equal to k
plus one word for the size field. Assume it finds an appropriate block, bi. If
bi is larger than necessary, allocate creates a new free block from the excess
space at the end of bi and places that block on the free list. Allocate returns
a pointer to the second word of bi.

If allocate fails to find a large enough block, it tries to extend the heap.
If it succeeds in extending the heap, it returns a block of appropriate size from
this newly allocated portion of the heap. If extending the heap fails, allocate
reports the failure (typically by returning a null pointer).

To deallocate a block, the program calls free with the address of the block,
bj . The simplest implementation of free adds bj to the head of the free list and
returns. This produces a fast and simple free routine. Unfortunately, it leads
to an allocator that, over time, fragments memory into small blocks.

To overcome this flaw, the allocator can use the pointer at the end of a
freed block to coalesce adjacent blocks that are free. Free can load the word
preceding bj’s size field. If it is a valid pointer, and it points to a matching block
header (one that points back to the start of bj), then bj can be added to the
predecessor block by increasing its size field and storing the appropriate pointer
in the last word of bj. This action requires no update of the free list.

To combine bj with its successor in memory, the free routine can use its size
field to locate the next block. Using the successor’s size field, it can determine
if the end of that block points back to its header. If so, free can combine the
two blocks, leaving bj on the free list. Updating the free list is a little more
complex. To make it efficient, the free list needs to be doubly linked. Of course,
the pointers are stored in unallocated blocks, so the space overhead is irrelevant.
Extra time required to update the doubly-linked free list is minimal.

7.7. MANAGING MEMORY 195

Digression: Arena-based Allocation

Inside the compiler itself, the compiler writer may find it profitable to
use a specialized allocator. Compilers have phase-oriented activity. This
lends itself well to an arena-based allocation scheme [35].

With an arena-based allocator, the program creates an arena at the
beginning of an activity. It uses the arena to hold allocated objects that are
related in their use. Calls to allocate objects in the arena are satisfied in a
stack-like fashion; an allocation involves incrementing a pointer to the arena’s
high-water mark and returning a pointer to the newly allocated block. No
call is used to deallocate individual objects; instead, the entire arena is freed
at once.

The arena-based allocator is a compromise between traditional allocators
and garbage collecting allocators. With an arena-based allocator, the calls
to allocate can be made lightweight (as in the modern allocator). No calls
to free are needed; the program frees the entire arena in a single call when it
finishes the activity for which the arena was created.

Many variations on this scheme have been tried. They tradeoff the cost of
allocate, the cost of free, the amount of fragmentation produced by a long
series of allocations, and the amount of space wasted by returning blocks larger
than requested. Knuth has an excellent section describing allocation schemes
similar to first fit [37, § 2.5].

Modern Allocators Modern allocators use a simple technique derived from first
fit allocation, but simplified by a couple of observations about the behavior of
programs. As memory sizes grew in the early 1980s, it became reasonable to
waste some space if doing so led to faster allocation. At the same time, studies
of program behavior suggested that real programs allocate memory frequently
in a few common sizes and infrequently in large or unusual sizes.

Several modern allocators capitalize on these observations. They have sep-
arate memory pools for several common sizes. Typically, sizes are selected as
powers of two, starting with a reasonably small size (such as sixteen bytes) and
running up to the size of a virtual memory page (typically 2048 or 4096 bytes).
Each pool has only one size block, so allocate can return the first block on the
appropriate free list and free can simply add the block to the head of the ap-
propriate free list. For requests larger than a page, a separate first-fit allocator
is used.

These changes make both allocate and free quite fast. Allocate must
check for an empty free list and increase the appropriate pool by a page if it
is empty. Free simply inserts the block at the head of the free list for its size.
A careful implementation could determine the size of a freed block by checking
its address against the memory segments allocated for each pool. Alternative
schemes include using a size field as before, and placing a size marker for all the
blocks in the entire page in the first word on the page.

196 CHAPTER 7. THE PROCEDURE ABSTRACTION

7.7.3 Implicit Deallocation

Many programming languages specify that the implementation will implicitly
deallocate memory objects when they are no longer in use. This requires some
care in the implementation of both the allocator and the compiled code. To
perform implicit deallocation, the compiler and run-time system must include
a mechanism for determining when an object is no longer of interest, or dead,
and a mechanism for reclaiming and recycling that dead data.

The two classic techniques for implicit deallocation are reference counting
and garbage collection. Conceptually, the difference between these methods is
that reference counting occurs incrementally on individual assignments, while
garbage collection occurs as a large batch-oriented task that is run on demand.

Reference Counting This technique augments each object with a counter that
tracks the number of outstanding pointers that refer to it. Thus, at an ob-
ject’s initial allocation, its reference count is set to one. Every assignment to
a pointer variable involves adjusting two reference counts. The pointer’s pre-
assignment value is used to decrement the reference count of that object, and its
post-assignment value is used to increment the reference count of that object.
When an object’s reference count drops to zero, the object is added to the free
list. (In practice, the system may implement multiple free lists, as described
earlier.) When an object is freed, the system must account for the fact that
it is discarding any pointers contained in the object. Consider, for example,
discarding the last pointer to an abstract syntax tree. Freeing the root node of
the tree decrements the reference counts of its children, which decrement the
reference counts of their children, and so on, until all of the root’s descendants
are free.

The presence of pointers inside allocated objects creates three problems for
reference counting schemes:

1. the running code needs a mechanism for distinguishing pointers from other
data – To distinguish pointers from other data, reference counting systems
either store extra information in the header field for each object, or they
limit the range of pointers to less than a full word and use the remaining
bits to “tag” the pointer.

2. the amount of work done for a single decrement can grow quite large – In
systems where external constraints require bounded time for deallocation,
the run-time system can adopt a more complex protocol that limits the
number of objects deallocated on each pointer assignment. Keeping a
queue of objects with reference counts of zero and deallocating a small
fixed number on each reference-count adjustment can ensure bounded-time
operations, albeit at an increase in the number of instructions required per
deallocation.

3. the program can form cyclic graphs with pointers – The reference counts
for a cyclic data structure cannot be decremented to zero. When the last
external pointer is discarded, the cycle becomes both unreachable and

7.7. MANAGING MEMORY 197

non-recyclable. To ensure that such objects are freed, the programmer
must break the cycle before discarding its last external pointer.4

Reference counting incurs additional cost on every pointer assignment. The
amount of work done on a specific assignment can be bounded; in any well-
designed scheme, the total cost can be limited to some constant factor of the
number of pointer assignments executed plus the number of objects allocated.
Proponents of reference counting argue that these overheads are small enough,
and that the pattern of reuse in reference counting systems produces good pro-
gram locality. Opponents of reference counting argue that real programs do
more pointer assignments than allocations, so that garbage collection achieves
equivalent functionality with less total work.

Garbage Collection With these techniques, the allocator does no deallocation
until it has run out of free space. At that point, it pauses the program’s exe-
cution and examines the pool of allocated memory to discover unused objects.
When it finds unused objects, it reclaims their space by deallocating them.
Some techniques compact memory at the same time; in general, this requires an
extra level of indirection on each access. Other methods leave objects in their
original locations; this simplifies access at the cost of possible fragmentation of
the available memory pool.

Logically, garbage collection proceeds in two phases. The first phase dis-
covers the set of objects that can be reached from pointers stored in program
variables and compiler-generated temporaries. The collector assumes that any
object not reachable in this manner is dead. The second phase deallocates and
recycles dead objects. Two commonly used techniques are mark-sweep collec-
tors and copying collectors. They differ in their implementation of the second
phase of collection—recycling.

Identifying Live Data Collecting allocators discover live objects by using a
marking algorithm. The collector needs a bit for each object in the heap, called
a mark bit. These can be stored in the object’s header, alongside tag information
used to record pointer locations or object side. Alternatively, the collector can
create a dense bit-map for the heap when needed. The initial step clears all the
mark bits and builds a worklist that contains all of the pointers stored in registers
and in activation records that correspond to current or pending procedures. The
second phase of the algorithm walks forward from these pointers and marks every
object that is reachable from this set of visible pointers.

Figure 7.13 presents a high-level sketch of a marking algorithm. It is a simple
fixed-point computation that halts because the heap is finite and the marks
prevent a pointer contained in the heap from entering the Worklist more than
once. The cost of marking is proportional the number of pointers contained in
program variables plus the size of the heap.

The marking algorithm can be either precise or conservative. The difference
lies in how the algorithm determines that a specific data value is a pointer in

4The alternative—performing reachability analysis on the pointers at run-time—is quite
expensive. It negates most of the benefits of reference counting.

198 CHAPTER 7. THE PROCEDURE ABSTRACTION

Clear all marks
Worklist ← { pointer values from ars & registers }
while (Worklist 	= ∅)

p ← head of Worklist
if (p->object is unmarked)

mark p->object
add pointers from p->object to Worklist

Figure 7.13: A Marking Algorithm

the final line of the while loop.

• In a precise collector, the compiler and run-time system know the type of
each object, and, hence, its layout. This information can be recorded in
object headers, or it can be implicitly known from the type structure of
the language. Either way, with precise knowledge, only real pointers are
followed in the marking phase.

• In a conservative marking phase, the compiler and run-time system are
unsure about the type and layout of some, if not all, objects. Thus, when
an object is marked, the system considers each field as a possible pointer.
If its value might be a pointer, it is treated as a pointer.5

Conservative collectors fail to reclaim some objects that a precise collector would
find. However, they have been retrofitted successfully into implementations for
languages such as c that do not normally support garbage collection.

When the marking algorithm halts, any unmarked object must be unreach-
able from the program. Thus, the second phase of the collector can treat that
object as dead. (In a conservative collector, some marked objects may be dead,
too. The collector lets them survive because of the uncertainty of its knowl-
edge about object layout.) As the second phase traverses the heap to collect
the garbage, it can reset the mark fields to “unmarked.” This lets the collector
avoid the initial traversal of the heap in the marking phase.

Mark-Sweep Collectors The mark-sweep collectors reclaim and recycle ob-
jects by making a linear pass over the heap. The collector adds each unmarked
object to the free list (or one of the free lists), where the allocator will find it
and reuse it. With a single free-list, the same collection of tricks used to coalesce
blocks in the first-fit allocator apply. If compaction is desirable, it can be im-
plemented by incrementally shuffling live objects downward during the sweep,
or with a post-sweep compaction pass.

5For example, any value that does not represent a word-aligned address might be excluded,
as might values that fall outside the known boundaries of the heap. Using an indirection table
to facilitate compaction can further reduce the range of valid pointers.

7.8. OBJECT-ORIENTED LANGUAGES 199

Copying Collectors The copying collectors divide memory into two pools,
an old pool and a new pool. At any point in time, the allocator operates from
the old pool. The simplest copying collector is called stop-and-copy. When an
allocation fails, the stop-and-copy collector copies all the live data from the old
pool into the new pool, and swaps the names “old” and “new.” The act of
copying live data compacts it; after collection, all the free space is in a single
contiguous block. This can be done in two passes, like mark-sweep, or it can
be done incrementally, as live data is discovered. The incremental scheme can
modify the original copy of the in the old pool to avoid copying it more than
once.

Comparing the Techniques Implicit deallocation frees the programmer from
worrying about when to release memory and from tracking down the inevitable
storage leaks that result from attempting to manage allocation and dealloca-
tion explicitly. Both mark-sweep and copying collectors have advantages and
disadvantages. In practice, the benefits of implicit deallocation outweigh the
disadvantages of either scheme for most applications.

The mark-sweep collectors examine the complete pool of memory that can
be allocated, while copying collectors only touch live data. Copying collectors
actually move every live object, while mark-sweep collectors leave them in place.
The tradeoff between these costs will vary with the application’s behavior and
with the actual cost of various memory references.

Because it moves live objects, a copying collector can easily deallocate a
dead cyclic structure; it never gets copied. Mark-sweep collectors have problems
discovering that cyclic structures are dead, since they point to themselves.

Copying collectors require either a mechanism for updating stored pointers,
or the use of an indirection table for each object access. This added cost per
access, however, lets the collector compact memory and avoid fragmentation.
Mark-sweep collectors can compact memory, but it requires the addition of an
indirection table, just as with the copying collector.

In general, a good implementor can make either mark-sweep or copying work
well enough that they are acceptable for most applications. Some applications,
such as real-time controllers, will have problems with any unpredictable over-
head. These applications should be coded in a fashion that avoids reliance on
implicit deallocation.

7.8 Object-oriented Languages

This section will appear as a handout later in the semester.

7.9 Summary and Perspective

The primary rationale for moving beyond assembly language is to provide a
more abstract programming model and, thus, raise both programmer produc-
tivity and the understandability of programs. Each abstraction added to the
programming language requires translation into the isa of the target machine
before it can execute. This chapter has explored the techniques commonly used

200 CHAPTER 7. THE PROCEDURE ABSTRACTION

to translate some of these abstractions—in particular, how the introduction of
procedures creates new abstractions for the transfer of control, for naming, and
for providing interfaces for use by other procedures and other programmers.

Procedural programming was discovered quite early in the history of pro-
gramming. Some of the first procedures were debugging routines written for
early computers; the availability of these pre-written routines allowed program-
mers to understand the run-time state of an errant program. Without such
routines, tasks that we now take for granted, such as examining the contents
of a variable or asking for a trace of the call stack, required the programmer to
enter long machine language sequences (without error).

The introduction of lexical scoping in languages like Algol-60 influenced lan-
guage design for decades. Most modern programming languages carry forward
some of the Algol philosophy toward naming and addressability. The early im-
plementors of scoped languages developed clever techniques to keep the price of
abstraction low; witness the global display with its uniform cost for accessing
names across an arbitrary distance in lexical scope. These techniques are still
used today.

Modern languages have added some new twists. By treating procedures as
first-class objects, systems like Scheme have created new control-flow paradigms.
These require variations on traditional implementation techniques—for exam-
ple, heap allocation of activation records to support continuations. Similarly,
the growing acceptance of implicit deallocation requires occasional conservative
treatment of a pointer (as discussed in Chapter 14). If the compiler can exercise
a little more care and free the programmer from ever deallocating storage again,
that appears to be a good tradeoff.6

As new programming paradigms come into vogue, they will introduce new
abstractions that require careful thought and implementation. By studying the
successful techniques of the past, and understanding the constraints and costs
involved in real implementations, compiler writers will develop strategies that
decrease the run-time penalty for using higher levels of abstraction.

Questions

1. The compiler writer can optimize the allocation of ars in several ways.
For example, the compiler might:

(a) Allocate ars for leaf procedures (those that make no procedure calls)
statically.

(b) Combine the ars for procedures that are always called together.
(When α is called, it always calls β.)

(c) Use an arena-style allocator in place of heap allocation of ars.

For each scheme, consider the following questions:
6Generations of experience suggest that programmers are not effective at freeing all the

storage that they allocate. This is precisely the kind of detail that computers should be used
to track!

7.9. SUMMARY AND PERSPECTIVE 201

(a) What fraction of the calls might benefit? In the best case? In the
worst case?

(b) What is the impact on run-time space utilization?

2. What is the relationship between the notion of a linkage convention and
the construction of large programs? of inter-language programs? How can
the linkage convention provide for an inter-language call?

202 CHAPTER 7. THE PROCEDURE ABSTRACTION

Chapter 8

Code Shape

8.1 Introduction

One of the compiler’s primary tasks is to emit code that faithfully implements
the various source-language constructs used in the input program. In prac-
tice, some of these constructs have many different implementations on a specific
target-machine—variations that produce the same results using different opera-
tions or different techniques. Some of these implementations will be faster than
others; some will use less memory; some will use fewer registers; some might
consume less power during execution. The various implementations are equiv-
alent, in that they produce the same answers. They differ in layout, in cost, in
choice of instructions to implement various source-language constructs, and in
the mapping of storage locations to program values. We consider all of these
issues to be matters of ncode shape.

Code shape has a strong impact on the behavior of code generated by a
compiler, and on the ability of the optimizer and the back end to improve
it. Consider, for example, the way that a c compiler might implement a case
statement that switched on a single-byte character value. The compiler might
implement the the switch statement with a cascaded series of if–then–else
statements. Depending on the layout, this could produce quite different results.
If the first test is for zero, the second for one, and so on, the cost devolves
to linear search over a field of two-hundred fifty-six keys. If characters are
uniformly distributed, the average case would involve one hundred twenty-eight
tests and branches—an expensive way to implement a case statement. If the
tests perform a binary search, the average case would involve eight tests and
branches—a more palatable number. If the compiler is willing to spend some
data space, it can construct a table of two hundred fifty-six labels, and interpret
the character by loading the corresponding table entry and branching to it—
with a constant overhead per character.

All of these are legal implementations of the case statement. Deciding which
implementation makes sense for a particular instance of the case statement
depends on many factors. In particular, the number of individual cases and the

203

204 CHAPTER 8. CODE SHAPE

Source code Low-level, three address code

Code x + y + z
rx + ry → r1

r1 + rz → r2

rx + rz → r1

r1 + ry → r2

ry + rz → r1

r1 + rx → r2

Tree
+

x y z
���� ��R +

rx ry

rz

+

�� AU

�� AU
+

rx rz

ry

+

�� AU

�� AU
+

ry rz

rx

+

�� AU

�� AU

Figure 8.1: Alternate Code Shapes for x + y + z

relative frequency of execution are important, as is detailed knowledge of the
cost structure for branching on the target machine. Even when the compiler
cannot determine the information that it needs to make the best choice, it must
make a choice. The difference between the possible implementations, and the
compiler’s choice, are matters of code shape.

As another example, consider the simple expression x+y+z. Figure 8.1
shows several ways of implementing the expression. In source code form, we
may think of the operation as a ternary add, shown on the left. However,
mapping this idealized operation into a sequence of binary additions exposes
the impact of evaluation order. The three versions on the right show three
possible evaluation orders, both as three address code and as abstract syntax
trees. (We assume that each variable is in an appropriately-named register.)
Commutativity makes all three orders legal; the compiler must choose between
them.

Left associativity would produce the first binary tree. This tree seems “nat-
ural,” in that left associativity corresponds to our left-to-right reading style. If,
however, we replace y with the literal constant 2 and z with 3, then we discover
that this shape for the expression hides a simple optimization. Of course, x +
2 + 3 is equivalent to x + 5. The compiler should detect the computation of
2 + 3, evaluate it, and fold the result directly into the code. In the left associa-
tive form, however, 2 + 3 never occurs. The right associative form, of course,
exposes this optimization. Each prospective tree, however, has an assignment
of variables and constants to x, y, and z that makes it look bad.

As with the case statement, the best shape for this expression cannot be
known without understanding information that may not be contained in the
statement itself. Similar, but less obvious effects occur. If, for example, the
expression x + y has been computed recently and neither the value of x nor
the value of y has changed, then using the center form would let the compiler
replace the first operation rx + ry → r1 with a reference to the previously
computed value. In this situation, the best choice between the three evaluation
orders might depend on context from the surrounding code.

This chapter explores the code shape issues that arise in generating code
for common source-language constructs. It focuses on the code that should be

8.2. ASSIGNING STORAGE LOCATIONS 205

generated for specific constructs while largely ignoring the algorithms required
to pick specific assembly-language instructions. The issues of instruction selec-
tion, register allocation, and instruction scheduling are treated separately, in
subsequent chapters.

8.2 Assigning Storage Locations

A procedure computes many values. Some of these have names in the source
code; in an Algol-like language, the programmer provides a name for each vari-
able. Other values have no explicit names; for example, the value i-3 in the
expression A[i-3,j+2] has no name. Named values are exposed to other pro-
cedures and to the debugger. They have defined lifetimes. These facts limit
where the compiler can place them, and how long it must preserve them. For
unnamed values, such as i-3, the compiler must treat them in a way consistent
with the meaning of the program. This leaves the compiler substantial freedom
in determining where these values reside and how long they are retained.

The compiler’s decisions about both named and unnamed values have a
strong impact on the final code that it produces. In particular, decisions about
unnamed values determine the set of values exposed to analysis and transfor-
mation in the optimizer. In choosing a storage location for each value, the
compiler must observe the rules of both the source language and the target ma-
chine’s memory hierarchy. In general, it can place a value in a register or in
memory. The memory address space available to the program may be divided
into many distinct subregions, or data areas, as we saw in Figure 7.11.

Algol-like languages have a limited number of data-areas, defined by the
source language’s name scoping rules (see Section 7.3). Typically, each proce-
dure has a data area for its local scope; it may also have a procedure-related
static data area. Global variables can be treated as residing in either a single
global data area, or in a distinct data area for each global variable. Some lan-
guages add other scopes. For example, c has static storage that is accessible to
every procedure in a given file, but no procedure-related static storage. It also
adds a lexical scope for individual “blocks”, any code region enclosed in curly
braces.

Object-oriented languages have a richer set of data areas. They are, quite
naturally, organized around the name space of objects. Each object has its own
local data area, used to hold object-specific values—sometimes called instance
variables. Since classes are objects, they have a data area; typically some of the
values in the data area of a class are accessible to each method defined by the
class. The language may provide a mechanism for the method to define local
variables; this scope creates a data-area equivalent to the procedure local data
area of an Algol-like language. Objects themselves can be in the global scope;
alternatively, they can be declared as instance variables of some other object.

Any particular code fragment has a structured view of this sea of data areas.
It can access data local to the method that contains it, instance variables of the
object named as self, some instance variables of its class, and, depending on
inheritance, some instance variables of its superclasses. This inheritance of data

206 CHAPTER 8. CODE SHAPE

areas differs from the notion of accessibility provided by lexical scoping in an
Algol-like language. It arises from the inheritance relations among data objects,
rather than any property of the program text.

Laying Out Data Areas To assign variables in an Algol-like language to storage
classes, the compiler might apply rules similar to these:

1. x is declared locally, and

(a) its value is not preserved across invocations⇒ procedure-local storage
(b) its value is preserved across invocations ⇒ procedure-static storage

2. x is declared globally ⇒ global storage
3. x is allocated under program control ⇒ the run-time heap

The different storage locations have different access costs. Procedure-local stor-
age can reside in the procedure’s ar. Since the procedure always has a pointer to
its ar, these values can be accessed directly with operations like iloc’s loadAO
and storeAO (or their immediate forms loadAI and storeAI). In addition, be-
cause the typical procedure references its ar for parameters, for register-spill
locations, and for local variables, the ar is likely to remain in the processor’s
primary cache. Access to local variables of other procedures is more complex;
Section 7.5 detailed two mechanisms for accomplishing this task: access links
and a display.

Accessing static or global data areas may require additional work to establish
addressability. Typically, this requires a loadI to get the run-time address of
some relocatable symbol (an assembly-language label) into a register where it
can be used as a base address. If the procedure repeatedly refers to values in
the same data area, the base address may end up residing in a register. To
simplify address calculations, many compilers give each global variable a unique
label. This eliminates an addition by the variable’s offset; in iloc, that addition
comes without cost in a loadAO or loadAI operation.

Keeping a Value in a Register In addition to assigning a storage class and lo-
cation to each value, the compiler must determine whether or not it can safely
keep the value in a register. If the value can safely reside in a register, and the
register allocator is able to keep the value in a register for its entire lifetime, it
may not need space in memory. A common strategy followed by many mod-
ern compilers is to assign a fictional, or virtual, register to each value that can
legally reside in a register, and to rely on the register allocator to pare this set
down to a manageable number. In this scheme, the compiler either assigns a
virtual register or a memory address to each value, but not both. When the
register allocator decides that some virtual register must be converted into a
memory reference, the allocator assigns it space in memory. It then inserts the
appropriate loads and stores to move the value between a register and its home
in memory.

To determine whether or not a value can be kept in a register, the compiler
tries to determine the number of distinct names by which the code can access a

8.2. ASSIGNING STORAGE LOCATIONS 207

given value. For example, a local variable can be kept in a register as long as its
address is never taken and it is not passed as a call-by-reference parameter to
another procedure. Either of these actions creates a second path for accessing
the variable. Consider the following fragment in c:

void fee();
{
int a, *b;

· · ·
b = &a;

· · ·
}

The assignment of &a to b creates a second way for subsequent statements to
access the contents of a. Any reference to *b will return the contents of a. The
compiler cannot safely keep a in a register, unless it performs enough analysis
to prove that *b is never referenced while b has the value &a. This involves
examining every statement in the elided portion of the code. This may include
other pointer assignments, addressing operations, and indirect access. These
can make the analysis difficult.

For example, if we add *b = a++; after the assignment to b, what is the
value of a after the statement executes? Both sides of the new assignment
refer to the same location. Is the autoincrement to a performed before the store
through b, or vice-versa? If fee contains any conditionally executed paths, then
b can receive different values along different paths through the procedure. This
would require the compiler to prove small theorems about the different values
that can reach each assignment before deciding whether or not keeping a in a
register is safe. Rather than prove such theorems, the typical c compiler will
assign a to a memory location instead of a register.

A value that can be kept in a register is sometimes called an unambiguous
value; a value that can have more than one name is called an ambiguous value.
Ambiguity arises in several ways. Pointer-based variables are often ambiguous;
interactions between call-by-reference formal parameters and name scoping rules
can create ambiguity as well. Chapter 13 describes the analysis required to
shrink the set of ambiguous values.

Since treating an ambiguous value as an unambiguous value can cause in-
correct behavior, the compiler must treat any value as ambiguous unless it can
prove that the value is unambiguous. Ambiguous values are kept in memory
rather than in registers; they are loaded and stored as necessary.1 Careful rea-
soning about the language can help the compiler. For example, in c, any local
variable whose address is never taken is unambiguous. Similarly, the ansi c

standard requires that references through pointer variables be type consistent;

1The compiler could, in fact, keep an ambiguous value in a register over a series of state-
ments where no other ambiguous value is referenced. In practice, compilers simply relegate
ambiguous values to memory, rather than institute the kind of statement-by-statement track-
ing of values necessary to discover a region where this would be safe.

208 CHAPTER 8. CODE SHAPE

thus an assignment to *b can only change the value of a location for which b
is a legal pointer. (The ansi c standard exempts character pointers from this
restriction. Thus, an assignment to a character pointer can change a value of
any type.) The analysis is sufficiently difficult, and the potential benefits large
enough, that the ansi c standard has added the restrict keyword to allow the
programmer to declare that a pointer is unambiguous.

Machine Idiosyncrasies Within a storage class, some machine-specific rules may
apply. The target machine may restrict the set of registers where a value can
reside. These rules can take many forms.

• Some architectures have required double-precision, floating-point values to
occupy two adjacent registers; others limit the choices to pairs beginning
with specific registers, such as the even-numbered registers.

• Some architectures partition the register set into distinct sets of registers,
or register classes. Sometimes these are disjoint, as is commonly the case
with “floating-point” and “general purpose” registers. Sometimes these
classes overlap, as is often the case with “floating point” and “double
precision” registers. Other common register classes include condition code
registers, predicate registers, and branch target registers.

• Some architectures partition the register set into multiple disjoint register
files and group functional units around them; each functional unit has fast
access to the registers in its associated set and limited access to registers
in the other register sets. This allows the architect to add more functional
units; it requires that compiler pay attention to the placement of both
operations an data.

The compiler must handle all of these target-specific rules.
Target-specific issues arise with memory resident values, as well. Many archi-

tectures restrict the starting address of a value based on its perceived data type.
Thus, integer and single-precision floating-point data might be required to start
on a word boundary (an address that is an integral multiple of the word size),
while character data might begin at any even address. Other restrictions require
alignment to multi-word boundaries, like double-word or quad-word boundaries.

The details of storage assignment can directly affect performance. As mem-
ory hierarchies become deeper and more complex, issues like spatial locality and
reuse have a large effect on running time. Chapter 14 gives an overview of the
techniques developed to address this aspect of performance. Most of the work
operates as a post-pass to storage assignment, correcting problems rather than
predicting them before relative addresses are assigned.

8.3 Arithmetic Expressions

Modern processors provide broad support for arithmetic operations. A typical
risc-machine has a full complement of three-address operations, including ad-
dition, subtraction, multiplication, division, left and right shifts, and boolean

8.3. ARITHMETIC EXPRESSIONS 209

expr(node) {
int result, t1, t2;
switch(type(node))
{

case ×,÷, +,−:
t1 ← expr(left child(node));
t2 ← expr(right child(node));
result ← NextRegister();
emit(op(node), t1, t2, result);
break;

case IDENTIFIER:
t1 ← base(node);
t2 ← offset(node);
result ← NextRegister();
emit(loadAO, t1, t2, result);
break;

case NUMBER:
result ← NextRegister();
emit(loadI, val(node), none,

result);
break;

}
return result;

}

Treewalk Code Generator

−

×x

2 y

�
���

�
��R

�
���

�
��R

Expression Tree for
x − 2 × y

loadI @x ⇒ r1

loadAO r0,r1 ⇒ r2

loadI 4 ⇒ r3

loadI @y ⇒ r4

loadAO rarp, r4 ⇒ r5

mult r3, r5 ⇒ r6

sub r2, r6 ⇒ r7

Naive Code

Figure 8.2: Simple Treewalk for Expressions

operations. The three-address structure of the architecture provides the com-
piler with the opportunity to create an explicit name for the result of any op-
eration; this lets the compiler select a name space that preserves values which
may be re-used later in the computation. It also eliminates one of the major
complications of two-address instructions—deciding which operand to destroy
in each executed operation.

To generate code for a trivial expression, like x + y, the compiler first emits
code to ensure that the value of x and y are in known registers, say rx and ry.
If x is stored in memory, at some offset “@x” in the current activation record
the resulting code might be

loadI @x ⇒ r1

loadAO rarp, r1 ⇒ rx

If, however, the value of x is already in a register, the compiler can simply use
that register’s name in place of rx. The compiler follows a similar chain of

210 CHAPTER 8. CODE SHAPE

decisions to ensure that y is in a register. Finally, it emits an instruction to
perform the addition, such as

add rx, ry ⇒ rt

If the expression is a syntax tree, this scheme fits naturally into a postorder walk
of the tree. The code in Figure 8.2 does this by embedding the code-generating
actions into a recursive treewalk routine. Notice that the same code handles
+, −, ×, and ÷. From a code-generation perspective, the binary operators are
interchangeable (ignoring commutativity). Applying the routine from Figure 8.2
to the expression x − 2 × y, produces the results shown at the bottom of the
figure. This assumes that neither x nor y is already in a register.

Many issues affect the quality of the generated code. For example, the
choice of storage locations has a direct impact, even for this simple expression.
If y were in a global data area, the sequence of instructions needed to get y
into a register might require an additional loadI to obtain the base address,
and a register to hold that value. Alternatively, if y were in a register, the two
instructions used to load it into r5 would be omitted and the compiler would use
the name of the register holding y directly in the mult instruction. Keeping the
value in a register avoids both the memory access and any supporting address
calculation. If both x and y were in registers, the seven instruction sequence
would be shortened to a three instruction sequence (two if the target machine
supports an immediate multiply instruction).

Code shape decisions encoded into the treewalk code generator have an effect,
too. The naive code in the figure uses seven registers (plus rarp). It is tempting
to assume that the register allocator can reduce the number of registers to a
minimum. For example, the register allocator could rewrite the expression as:

loadI @x ⇒ r1

loadAO rarp, r1 ⇒ r1

loadI 2 ⇒ r2

loadI @y ⇒ r3

loadAO rarp, r3 ⇒ r3

mult r2, r3 ⇒ r2

sub r1, r2 ⇒ r2

This drops register use from seven registers to three (excluding rarp). (It leaves
the result in r2 so that both x, in r1, and y, in r3, are available for later use.)

However, loading x before computing 2 × y still wastes a register—an ar-
tifact of the decision in the treewalk code generator to evaluate the left child
before the right child. Using the opposite order would produce the following
code sequence:

8.3. ARITHMETIC EXPRESSIONS 211

loadI @y ⇒ r1

loadAO rarp, r1 ⇒ r2

loadI 2 ⇒ r3

mult r3, r2 ⇒ r4

loadI @x ⇒ r5

loadAO rarp,r5 ⇒ r6

sub r6, r4 ⇒ r7

The register allocator could rewrite this to use only two registers (plus rarp):

loadI @y ⇒ r1

loadAO rarp, r1 ⇒ r1

loadI 2 ⇒ r2

mult r2, r1 ⇒ r1

loadI @x ⇒ r2

loadAO rarp,r2 ⇒ r2

sub r2, r1 ⇒ r1

The allocator cannot fit all of x, y, and x + 2 × y into two registers. As
written, the code preserves x and not y.

Of course, evaluating the right child first is not a general solution. For
the expression 2 × y + x, the appropriate rule is “left child first.” Some
expressions, such as x + (5 + y) × 7 defy a static rule. The best evaluation
order for limiting register use is 5 + y, then × 7, and finally + x. This requires
alternating between right and left children.

To choose the correct evaluation order for subtrees of an expression tree,
the compiler needs information about the details of each subtree. To minimize
register use, the compiler should first evaluate the more demanding subtree—
the subtree that needs the most registers. The code must must preserve the
value computed first across the evaluation of the second subtree; thus, handling
the less demanding subtree first increases the demand for registers in the more
demanding subtree by one register. Of course, determining which subtree needs
more registers requires a second pass over the code.

This set of observations leads to the Sethi-Ullman labeling algorithm (see
Section 9.1.2). They also make explicit the idea that taking a second pass over
an expression tree can lead to better code than the compiler can generate in a
single pass [31]. This should not be surprising; the idea is the basis for multi-
pass compilers. An obvious corollary suggests that the second and subsequent
passes should know how large to make data structures such as the symbol table.

Accessing Parameter Values The treewalk code generator implicitly assumes
that a single access method works for all identifiers. Names that represent
formal parameters may need different treatment. A call-by-value parameter
passed in the ar can be handled as if it were a local variable. A call-by-reference
parameter passed in the ar requires one additional indirection. Thus, for the
call-by-reference parameter x, the compiler might generate

212 CHAPTER 8. CODE SHAPE

Digression: Generating loadAI instructions

A careful reader might notice that the code in Figure 8.2 never generates
iloc’s loadAI instruction. In particular, it generates the sequence

loadI @x ⇒ r1

loadAO rarp,r1 ⇒ r2

when the operation loadAI rarp,@x ⇒ r2 achieves the same effect with one
fewer register and one fewer instruction.

Throughout the book, we have assumed that it is preferable to generate
this two operation sequence rather than the single operation. Two reasons
dictate this choice:

1. The longer code sequence gives a register name to the label @x. If the
label is reused in contexts other than a loadAO instruction, having an
explicit name is useful. Since @x is typically a small integer, this may
occur more often than you would expect.

2. The two instruction sequence leads to a clean functional decomposition
in the code generator, as seen in Figure 8.2. Here, the code uses two
routines, base and offset, to hide the details of addressability. This
interface lets base and offset hide any data structures that they use.

Subsequent optimization can easily convert the two instruction sequence into
a single loadAI if the constant offset is not reused. For example, a graph-
coloring register allocator that implements rematerialization will do this con-
version if the intermediate register is needed for some other value.

If the compiler needs to to generate the loadAO directly, two approaches
make sense. The compiler writer can pull the case logic contained in base
and offset up into the case for IDENTIFIER in Figure 8.2. This accomplishes
the objective, at the cost of less clean and modular code. Alternatively,
the compiler writer can have emit maintain a small instruction buffer and
perform peephole-style optimization on instructions as they are generated
(see Section 15.2). Keeping the buffer small makes this practical. If the
compiler follows the “more demanding subtree first” rule, the offset will be
generated immediately before the loadAO instruction. Recognizing a loadI
that feeds into a loadAO is easy in the peephole paradigm.

loadI @x ⇒ r1

loadAO rarp,r1 ⇒ r2

load r2 ⇒ r3

to obtain x’s value. The first two operations move the memory address of the
parameter’s value into r2. The final operation moves that value into r3.

Many linkage conventions pass the first few parameters in registers. As
written, the code in Figure 8.2 cannot handle a value that is permanently kept
in a register. The necessary extension, however, is simple.

8.3. ARITHMETIC EXPRESSIONS 213

For call-by-value parameters, the IDENTIFIER case must check if the value
is already in a register. If so, it assigns the register number to result. Otherwise,
it uses the code to load the value from memory. It is always safe to keep call-
by-value parameters in a register in the procedure where they are declared.

For a call-by-reference parameter that is passed in a register, the compiler
only needs to emit the single operation that loads the value from memory. The
value, however, must reside in memory across each statement boundary, unless
the compiler can prove that it is unambiguous—that is, not aliased. This can
require substantial analysis.

Function Calls in an Expression So far, we have assumed that the basic operands
in an expression are variables and temporary values produced by other subex-
pressions. Function calls also occur as references in expressions. To evaluate
a function call, the compiler simply generates the calling sequence needed to
invoke the function (see Section 7.6 and 8.9) and emits the code necessary to
move the returned value into a register. The procedure linkage limits the impact
on the calling procedure of executing the function.

The presence of a function call may restrict the compiler’s ability to change
the expression’s evaluation order. The function may have side effects that mod-
ify the value of variables used in the expression. In that situation, the compiler
must adhere strictly to the source language’s evaluation order; without side ef-
fects, the compiler has the freedom to select an evaluation order that produces
better code. Without knowledge about the possible side effects of the call, the
compiler must assume the worst case—that the function call results in a modi-
fication to every variable that the function could possible touch. The desire to
improve on “worst case” assumptions such as this motivated much of the early
work in interprocedural data-flow analysis (see Section 13.4).

Other Arithmetic Operations To handle additional arithmetic operations, we
can extend our simple model. The basic scheme remains the same: get the
operands into registers, perform the operation, and store the result if neces-
sary. The precedence encoded in the expression grammar ensures the intended
ordering. Unary operators, such as unary minus or an explicit pointer deref-
erence, evaluate their sole subtree and then perform the specified operation.
Some operators require complex code sequences for their implementation (i.e.,
exponentiation, trigonometric functions, and reduction operators). These may
be expanded directly inline, or they may be handled with a function call to a
library supplied by the compiler or the operating system.

Mixed-type Expressions One complication allowed by many programming lan-
guages is an operation where the operands have different types. (Here, we
are concerned primarily with base types in the source language, rather than
programmer-defined types.) Consider an expression that multiplies a floating-
point number by an integer. First, and foremost, the source language must
define the meaning of such a mixed-type expression. A typical rule converts
both operands to the more general type, performs the operation in the more

214 CHAPTER 8. CODE SHAPE

general type, and produces its result in the more general type. Some machines
provide instructions to directly perform these conversions; others expect the
compiler to generate complex, machine-dependent code. The operation that
consumes the result value may need to convert it to another type.

The notion of “more general” type is specified by a conversion table. For
example, the Fortran 77 standard specifies the following conversions for addition:

+ Integer Real Double Complex

Integer integer real double complex

Real real real double complex

Double double double double illegal

Complex complex complex illegal complex

The standard further specifies a formula for each conversion. For example, to
convert integer to complex, the compiler converts the integer to a real,
and uses the real value as the real part of the complex number. The imaginary
part of the complex number is set to zero.

Most conversion tables are symmetric. Occasionally, one is asymmetric. For
example, pl/i had two different representations for integers: a straightforward
binary number, denoted fixed binary, and a binary-coded decimal (or bcd),
denoted fixed decimal. In the conversion table for addition, the result type
of adding a fixed decimal and a fixed binary depended on the order of the
arguments. The resulting operation had the type of the first argument.

For user-defined types, the compiler will not have a conversion table that de-
fines each specific case. However, the source language still defines the meaning of
the expression. The compiler’s task is to implement that meaning; if conversion
is illegal, then it should be prevented. As seen in Chapter 5, illegal conversions
can sometimes be detected at compile time. In such circumstances, the compiler
should report the possible illegal conversion. When such a compile-time check
is either impossible or inconclusive, the compiler must generate run-time checks
to test for the illegal cases. If the test discovers an illegal conversion, it should
raise a run-time error.

The ibm pl/i compilers include a feature that let the programmer avoid all
conversions. The unspec function converted any value, including the left-hand
side of an assignment statement, to a bit string. Thus, the programmer could
assign a floating-point number to an appropriately-sized character string. In
essence, unspec was a short cut around the entire type system.

Assignment as an Operator Most Algol-like languages implement assignment
with the following simple rules.

1. Evaluate the right hand side of the assignment to a value.
2. Evaluate the left hand side of the assignment to an address.
3. Move the value into the location specified by the left hand side.

Thus, in a statement like x ← y, the two expressions x and y are evaluated
differently. Since y appears to the right of the assignment, it is evaluated to a

8.4. BOOLEAN AND RELATIONAL VALUES 215

value. Since x is to the left of the assignment, it is evaluated to an address. The
right and left sides of an assignment are sometimes referred to as an rvalue and
an lvalue, respectively, to distinguish between these two modes of evaluation.

An assignment can be a mixed-type expression. If the rvalue and lvalue
have different types, conversion may be required. The typical source-language
rule has the compiler evaluate the rvalue to its natural type—the type it would
generate without the added context of the assignment operator. That result is
then converted to the type of the lvalue, and stored in the appropriate location.

Commutativity, Associativity, and Number Systems Sometimes, the compiler can
take advantage of algebraic properties of the various operators. For example,
addition, multiplication, and exclusive or are all commutative. Thus, if the
compiler sees a code fragment that computes x + y and then computes y + x,
with no intervening assignments to either x or y, it should recognize that they
compute the same value. Similarly, if it sees the expressions x + y + z and w
+ x + y, it should consider the fact that x + y is a common subexpression
between them. If it evaluates both expressions in a strict left-to-right order, it
will never recognize the common subexpression, since it will compute the second
expression as w + x and then (w + x) + y.

The compiler should consider commutativity and associativity as are dis-
cussed in Chapter 14. Reordering expressions can lead to improved code. How-
ever, a brief warning is in order.

Floating-point numbers on computers are not real numbers, in the
mathematical sense. They approximate a subset of the real numbers,
but the approximation does not preserve associativity. As a result,
compilers should not reorder floating-point computations.

We can assign values to x, y, and z such that (in floating-point arithmetic)
z − x = z, z − y = z, but z − (x + y) 	= z. In that case, reordering the
computation changes the numerical result. By adding the smaller values, x
and y, first, the computation maximizes the retained precision. Reordering the
computation to compute one of the other possible partial sums would throw
away precision. In many numerical calculations, this could change the results.
The code might execute faster, but produce incorrect results.

This problem arises from the approximate nature of floating-point numbers;
the mantissa is small relative to the range of the exponent. To add two numbers,
the hardware must normalize them; if the difference in exponents is larger than
the base ten precision of the mantissa, the smaller number will be truncated to
zero. The compiler cannot easily work its way around the issue. Thus, it should
obey the cardinal rule and not reorder floating-point computations.

8.4 Boolean and Relational Values

Most programming languages operate on a richer set of values than numbers.
Usually, this include boolean, or logical, values and relational, or comparison,
values. Programs use boolean and relational expressions to control the flow of

216 CHAPTER 8. CODE SHAPE

expr → ¬ or-term
| or-term

or-term → or-term ∨ and-term
| and-term

and-term → and-term ∧ bool
| bool

bool → r-expr
| true
| false

r-expr → r-expr < n-expr
| r-expr ≤ n-expr
| r-expr = n-expr
| r-expr 	= n-expr

| r-expr ≥ n-expr
| r-expr > n-expr
| n-expr

n-expr → n-expr + term
| n-expr − term
| term

term → term × factor
| term ÷ factor
| factor

factor → (expr)
| number
| identifier

Figure 8.3: Adding booleans and relationals to the expression grammar

execution. Much of the power of modern programming languages derives from
the ability to compute and test such values.

To express these values, language designers add productions to the standard
expression grammar, as shown in Figure 8.3. (We have used the symbols ¬ for
not, ∧ for and, and ∨ for or to avoid any confusion with the corresponding
iloc operations.) The compiler writer must, in turn, decide how to represent
these values and how to compute them. With arithmetic expressions, the design
decisions are largely dictated by the target architecture, which provides number
formats and instructions to perform basic arithmetic. Fortunately, processor
architects appear to have reached a widespread agreement about how to sup-
port arithmetic. The situation is similar for boolean values. Most processors
provide a reasonably rich set of boolean operations. Unfortunately, the han-
dling of relational expressions varies from processor to processor. Because the
relational operators in programming languages produce, at least conceptually,
boolean results, the issues of representation and code generation for relationals
and booleans are closely related.

8.4.1 Representations

Traditionally, two representations have been proposed for boolean and relational
values: a numerical representation and a positional encoding. The former as-
signs numerical values to true and false, then uses the arithmetic and logical
instructions provided on the target machine. The latter approach encodes the
value of the expression as a position in the executable code. It uses the hardware
comparator and conditional branches to evaluate the expression; the different
control-flow paths represent the result of evaluation. Each approach has exam-
ples where it works well.

8.4. BOOLEAN AND RELATIONAL VALUES 217

Numerical Representation When a boolean or relational value is stored into a
variable, the compiler must ensure that the value has a concrete representation.
To accomplish this, the compiler assigns numerical values to true and false so
that hardware instructions such as and, or, and not will work. Typical values
are zero for false and either one or negative one for true. (In two’s complement
arithmetic, negative one is a word of all ones.) With this representation, the
compiler can use hardware instructions directly for boolean operations.

For example, if b, c, and d are all in registers, the compiler might produce
the following code for the expression b ∨ c ∧ ¬d:

not rd ⇒ r1

and rc,r1 ⇒ r2

or rb,r2 ⇒ r3

For a comparison, like x < y, the compiler must generate code that compares
the two operations and then assigns the appropriate value to the result. If the
target machine supports a comparison operation that returns a boolean, the
code is trivial:

cmp LT rx, ry ⇒ r1

If, on the other hand, the comparison sets a condition code register that must be
read with a conditional branch, the resulting code is longer and more involved.

Iloc is deliberately ambiguous on this point. It includes a comparison oper-
ator (comp) and a corresponding set of branches that communicate through one
of a set of condition code registers, cci (see Appendix A). Using this encoding
leads to a messier implementation for x < y:

comp ra, rb ⇒ cc1

cbr LT cc1 → L1,L2

L1: loadI true ⇒ r2

br → L3

L2: loadI false ⇒ r2

L3: nop

This code uses more operations, including branches that are difficult to predict.
As branch latencies grow, these branches will become even less desirable.

If the result of x < y is used only to determine control flow, an optimization
is possible. The compiler need not create an explicit instantiation of the value.
For example, a naive translation of the code fragment:

if (x < y)
then statement1
else statement2

would produce the following code:

218 CHAPTER 8. CODE SHAPE

comp rx, ry ⇒ cc1 evaluate x < y
cbr LT cc1 → L1,L2

L1: loadI true ⇒ r2 result is true
br → L3

L2: loadI false ⇒ r2 result is false
br → L3

L3: comp r2,true ⇒ cc2 move r2 into cc2

cbr EQ cc2 → L4,L5 branch on cc2

L4: code for statement1
br → L6

L5: code for statement2
br → L6

L6: nop next statement

Explicitly representing x < y with a number makes this inefficient.

This sequence can be cleaned up. The compiler should combine the condi-
tional branches used to evaluate x < y with the corresponding branches that se-
lect either statement1 or statement2. This avoids executing redundant branches.
It eliminates the need to instantiate a value (true or false) as the result of
evaluating x < y. With a little thought, the compiler writer can ensure that
the compiler generates code similar to this:

comp rx, ry ⇒ cc1 evaluate x < y
cbr LT cc1 → L1,L2 and branch ...

L1: code for statement1
br → L6

L2: code for statement2
br → L6

L6: nop next statement

Here, the overhead of evaluating x < y has been folded into the overhead for se-
lecting between statement1 and statement2. Notice that the result of x < y has
no explicit value; its value is recorded implicitly—essentially in the processor’s
program counter as it executes either the statement at L1 or L2.

Positional Encoding The previous example encodes the expression’s value as a
position in the program. We call this representation a positional encoding. To
see the strengths of positional encoding, consider the code required to evaluate
the expression a<b or c<d and e<f. A naive code generator might emit:

8.4. BOOLEAN AND RELATIONAL VALUES 219

comp ra, rb ⇒ cc1

cbr LT cc1 → L3,L1

L1: comp rc, rd ⇒ cc2

cbr LT cc2 → L2,L4

L2: comp re, rf ⇒ cc3

cbr LT cc3 → L3,L4

L3: loadI true ⇒ r1

br → L5

L4: loadI false ⇒ r1

br → L5

L5: nop

Notice that this code only evaluates as much of the expression as is required to
determine the final value.

With some instruction sets, positional encoding of relational expressions
makes sense. Essentially, it is an optimization that avoids assigning actual values
to the expression until an assignment is required, or until a boolean operation
is performed on the result of the expression. Positional encoding represents
the expression’s value implicitly in the control-flow path taken through the
code. This allows the code to avoid some instructions. It provides a natural
framework for improving the evaluation of some boolean expressions through a
technique called short circuit evaluation. On an architecture where the result
of a comparison is more complex than a boolean value, positional encoding can
seem quite natural.

The compiler can encode booleans in the same way. A control-flow construct
that depends on the controlling expression (w < x ∧ y < z) might be imple-
mented entirely with a positional encoding, to avoid creating boolean values
that represent the results of the individual comparisons. This observation leads
to the notion of short-circuit evaluation for a boolean expression—evaluating
only as much of the expression as is required to determine its value. Short
circuiting relies on two boolean identities:

∀ x, false ∧ x = false
∀ x, true ∨ x = true

Some programming languages, like c, require the compiler to generate code
for short-circuit evaluation. For example, the c expression

(x != 0 && y/x > 0.001)

relies on short-circuit evaluation for safety. If x is zero, y/x is not defined.
Clearly, the programmer intends to avoid the hardware exception triggered for
division by zero. The language definition specifies that this code will never
perform the division if x has the value zero.

The real issue is implicit versus explicit representation. Positional encoding
of an ∧ operation, for example, only makes sense when both of the operands
are positionally encoded. If either operand is represented by a numerical value,
using the hardware ∧ operation makes more sense. Thus, positional encoding

220 CHAPTER 8. CODE SHAPE

occurs most often when evaluating an expression whose arguments are produced
by other operations (relationals) and whose result is not stored.

8.4.2 Hardware Support for Relational Expressions

A number of specific, low-level details in the instruction set of the target ma-
chine strongly influence the choice of a representation for relational values. In
particular, the compiler writer must pay attention to the handling of condition
codes, compare operations, and conditional move operations, as they have a ma-
jor impact on the relative costs of the various representations. We will consider
four different instruction-level schemes for supporting relational comparisons.
Each scheme is an idealized version of a real implementation.

Straight Condition Codes In this scheme, the comparison operation sets a con-
dition code register. The only instruction that interprets the condition code is
a conditional branch, with variants that branch on each of the six relations (<,
≤, =, ≥, >, and 	=).

This model forces the compiler to use conditional branches for evaluating
relational expressions. If the result is used in a boolean operation or is preserved
in a variable, the code converts it into a numerical representation of a boolean.
If the only use of the result is to determine control flow, the conditional branch
that “reads” the condition code can usually implement the source-level control-
flow construct, as well. Either way, the code has at least one conditional branch
per relational operator.

The strength of condition-codes comes from another feature that processors
usually implement alongside the condition codes. Typically, these processors
have arithmetic operations that set the condition code bits to reflect their com-
puted results. If the compiler can arrange to have the arithmetic operations,
which must be performed, set the condition code appropriately, then the com-
parison operation can be omitted. Thus, advocates of this architectural style
argue that it allows a more efficient encoding of the program—the code may
execute fewer instructions than it would with a comparator that returned a
boolean value to a general purpose register.

Conditional Move This scheme adds a conditional move instruction to the
straight condition code model. In iloc, we write conditional move as

i2i < cci,rj,rk ⇒ rl

If the condition code cci matches <, then the value of rj is copied to rl. Oth-
erwise, the value of rk is copied to rl.

Conditional move retains the potential advantage of the condition code
scheme—avoiding the actual comparison operation—while providing a single
instruction mechanism for obtaining a boolean from the condition code. The
compiler can emit the instruction

i2i < cci,rt,rf ⇒ rl

8.4. BOOLEAN AND RELATIONAL VALUES 221

Digression: Short-circuit evaluation as an optimization

Short-circuit evaluation arose naturally from a positional encoding of
the value of boolean and relational expressions. On processors that used
condition codes to record the result of a comparison and used conditional
branches to interpret the condition code, short-circuiting made sense.

As processors include features like conditional move, boolean-valued
comparisons, and predicated execution, the advantages of short-circuit eval-
uation will likely fade. With branch latencies growing, the cost of the con-
ditional branches required for short-circuiting will grow. When the branch
costs exceed the savings from avoiding evaluation, short circuiting will no
longer be an improvement. Instead, full evaluation would be faster.

When the language requires short-circuit evaluation, as does c, the com-
piler may need to perform some analysis to determine when it is safe to substi-
tute full evaluation for short-circuiting. Thus, future c compilers may include
analysis and transformation to replace short-circuiting with full evaluation,
just as compilers in the past have performed analysis and transformation to
replace full evaluation with short circuiting.

where rt is known to contain true and rf is known to contain false. The
effect of this instruction is to set r1 to true if condition code register cci has
the value <, and to false otherwise.

The conditional move instruction executes in a single cycle. At compile time,
it does not break a basic block; this can improve the quality of code produced
by local optimization. At execution time, it does not disrupt the hardware
mechanisms that prefetch and decode instructions; this avoids potential stalls
due to mispredicted branches.

Boolean-valued Comparisons This scheme avoids the condition code entirely.
The comparison operation returns a boolean value into either a general purpose
register or into a dedicated, single-bit register. The conditional branch takes
that result as an argument that determines its behavior.

The strength of this model lies in the uniform representation of boolean and
relational values. The compiler never emits an instruction to convert the result
of a comparison into a boolean value. It never executes a branch as part of
evaluating a relational expression, with all the advantages ascribed earlier to
the same aspect of conditional move.

The weakness of this model is that it requires explicit comparisons. Where
the condition-code models can often avoid the comparison by arranging to have
the condition code set by one of the arithmetic operations, this model requires
the comparison instruction. This might make the code longer than under the
condition branch model. However, the compiler does not need to have true and
false in registers. (Getting them in registers might require one or two loadIs.)

Predicated Execution The architecture may combine boolean-valued compar-
isons with a mechanism for making some, or all, operations conditional. This

222 CHAPTER 8. CODE SHAPE

Straight Condition Codes
comp ra,rb ⇒ cc1

cbr LT cc1 → L1,L2

L1: add rc,rd ⇒ ra

br → Lout

L2: add re,rf ⇒ ra

Lout: nop

Conditional Move
comp ra,rb ⇒ cc1

add rc,rd ⇒ rt1

add re,rf ⇒ rt2

i2i < cc1,rt1,rt2 ⇒ ra

Boolean Compare
cmp LT ra,rb ⇒ r1

cbr r1 → L1,L2

L1: add rc,rd ⇒ ra

br → Lout

L2: add re,rf ⇒ ra

Lout: nop

Predicated Execution
cmp LT ra,rb ⇒ r1

(r1): add rc,rd ⇒ ra

(¬r1): add re,rf ⇒ ra

Figure 8.4: Relational Expressions for Control-Flow

technique, called predicated execution, lets the compiler generate code that
avoids using conditional branches to evaluate relational expressions. In iloc,
we write a predicated instruction by including a predicate expression before the
instruction. To remind the reader of the predicate’s purpose, we typeset it in
parentheses and follow it with a question mark. For example,

(r17)? add ra,rb ⇒ rc

indicates an add operation (ra+rb) that executes if and only if r17 contains
the value true. (Some architects have proposed machines that always execute
the operation, but only assign it to the target register if the predicate is true.
As long as the “idle” instruction does not raise an exception, the differences
between these two approaches are irrelevant to our discussion.) To expose the
complexity of predicate expressions in the text, we will allow boolean expres-
sions over registers in the predicate field. Actual hardware implementations will
likely require a single register. Converting our examples to such a form requires
the insertion of some additional boolean operations to evaluate the predicate
expression into a single register.

8.4.3 Choosing a Representation

The compiler writer must decide when to use each of these representations. The
decision depends on hardware support for relational comparisons, the costs of
branching (particularly a mispredicted conditional branch), the desirability of
short-circuit evaluation, and how the result is used by the surrounding code.

Consider the following code fragment, where the sole use for (a < b) is to
alter control-flow in an if–then–else construct.

8.4. BOOLEAN AND RELATIONAL VALUES 223

Straight Condition Codes
comp ra, rb ⇒ cc1

cbr LT cc1 → L1,L2

L1: comp rc, rd ⇒ cc2

cbr LT cc2 → L3,L2

L2: loadI false ⇒ rx

br → L4

L3: loadI true ⇒ rx

br → L4

L4: nop

Conditional Move
comp ra,rb ⇒ cc1

i2i < cc1,rt,rf ⇒ r1

comp rc,rd ⇒ cc2

i2i < cc2,rt,rf ⇒ r2

and r1,r2 ⇒ rx

Boolean Compare
cmp LT ra, rb ⇒ r1

cmp LT rc, rd ⇒ r2

and r1, r2 ⇒ rx

Predicated Execution
cmp LT ra, rb ⇒ r1

cmp LT rc, rd ⇒ r2

and r1, r2 ⇒ rx

Figure 8.5: Relational Expressions for Assignment

if (a < b)
then a ← c + d
else a ← e + f

Figure 8.4 shows the code that might be generated under each hardware model.
The two examples on the left use conditional branches to implement the

if-then-else. Each takes five instructions. The examples on the right avoid
branches in favor of some form of conditional execution. The two examples on
top use an implicit representation; the value of a < b exists only in cc1, which
is not a general purpose register. The bottom two examples create an explicit
boolean representation for a < b in r1. The left two examples use the value,
implicit or explicit, to control a branch, while the right two examples use the
value to control an assignment.

As a second example, consider the assignment x ← a < b ∧ c < d. It
appears to be a natural for a numerical representation, because it uses ∧ and
because the result is stored into a variable. (Assigning the result of a boolean
or relational expression to a variable necessitates a numerical representation, at
least as the final product of evaluation.) Figure 8.5 shows the code that might
result under each of the four models.

Again, the upper two examples use condition codes to record the result
of a comparison, while the lower two use boolean values stored in a register.
The left side shows the simpler version of the scheme, while the right side
adds a form of conditional operation. The bottom two code fragments are
shortest; they are identical because predication has no direct use in the chosen
assignment. Conditional move produces shorter code than the straight condition
code scheme. Presumably, the branches are slower than the comparisons, so the
code is faster, too. Only the straight condition code scheme performs short-
circuit evaluation.

224 CHAPTER 8. CODE SHAPE

8.5 Storing and Accessing Arrays

So far, we have assumed that variables stored in memory are scalar values.
Many interesting programs use arrays or similar structures. The code required
to locate and reference an element of an array is surprisingly complex. This
section shows several schemes for laying out arrays in memory and describes
the code that each scheme produces for an array reference.

8.5.1 Referencing a Vector Element

The simplest form of an array has a single dimension; we call a one-dimensional
array a vector. Vectors are typically stored in contiguous memory, so that the
ith element immediately precedes the i + 1st element. Thus, a vector V[3..10]
generates the following memory layout.

3 4 5 6 7 8 9 10

V[3..10]

@V�

When the compiler encounters a reference, like V[6], it must use the index into
the vector, along with facts available from the declaration of V, to generate an
offset for V[6]. The actual address is then computed as the sum of the offset
and a pointer to the start of V, which we write as @V.

As an example, assume that V has been declared as V[low..high], where
low and high are the lower and upper bounds on the vector. To translate the
reference V[i], the compiler needs both a pointer to the start of storage for V
and the offset of element i within V. The offset is simply (i− low) × w, where
w is the length of a single element of V. Thus, if low is 3 and i is 6, the offset
is (6 − 3) × 4 = 12. The following code fragment computes the correct address
into ra.

loadI @i ⇒ r1 // @i is i’s address
subI r1, 3 ⇒ r2 // (offset - lower bound)
multI r2, 4 ⇒ r3 // × element length
addI r3, @V ⇒ r4 // @V is V’s address
load r4 ⇒ rv

Notice that the textually simple reference V[i] introduces three arithmetic
operations. These can be simplified. Forcing a lower bound of zero eliminates
the subtraction; by default, vectors in c have zero as their lower bound. If
the element length is a power of two, the multiply can be replaced with an
arithmetic shift; most element lengths have this property. Adding the address
and offset seems unavoidable; perhaps this explains why most processors include
an address mode that takes a base address and an offset and accesses the location
at base address + offset.2 We will write this as loadAO in our examples. Thus,
there are obvious ways of improving the last two operations.

2Since the compiler cannot eliminate the addition, it has been folded into hardware.

8.5. STORING AND ACCESSING ARRAYS 225

If the lower bound for an array is known at compile-time, the compiler can
fold the adjustment for the vector’s lower bound into its address. Rather than
letting @V point directly to the start of storage for V, the compiler can use @V0,
computed as @V− low×w. In memory, this produces the following layout.

3 4 5 6 7 8 9 10

V[3..10]

@V�@V0�

We sometimes call @V0 the “false zero” of V. If the bounds are not known at
compile-time, the compiler might calculate V0 as part of its initialization activity
and reuse that value in each reference to V. If each call to the procedure executes
one or more references to V, this strategy is worth considering.

Using the false zero, the code for accessing V[i] simplifies to the following
sequence:

loadI @V0 ⇒ r@V // adjusted address for V
load @i ⇒ r1 // @i is i’s address
lshiftI r1, 2 ⇒ r2 // × element length
loadAO r@V , r2 ⇒ rV

This eliminates the subtraction by low. Since the element length, w, is a power
of two, we also replaced the multiply with a shift. More context might produce
additional improvements. If either V or i appears in the surrounding code, then
@V0 and i may already reside in registers. This would eliminate one or both of
the loadi instructions, further shortening the instruction sequence.

8.5.2 Array Storage Layout

Accessing a multi-dimensional array requires more work. Before discussing the
code sequences that the compiler must generate, we must consider how the
compiler will map array indices into memory locations. Most implementations
use one of three schemes: row-major order, column-major order, or indirection
vectors. The source language definition usually specifies one of these mappings.

The code required to access an array element depends on the way that the
array is mapped into memory. Consider the array A[1..2,1..4]. Conceptually,
it looks like

A
1,1 1,2 1,3 1,4
2,1 2,2 2,3 2,4

In linear algebra, the row of a two-dimensional matrix is its first dimension,
and the column is its second dimension. In row-major order, the elements of A
are mapped onto consecutive memory locations so that adjacent elements of a
single row occupy consecutive memory locations. This produces the following
layout.

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4

226 CHAPTER 8. CODE SHAPE

The following loop nest shows the effect of row-major order on memory access
patterns.

for i ← 1 to 2
for j ← 1 to 4

A[i,j] ← A[i,j] + 1

In row-major order, the assignment statement steps through memory in se-
quential order, beginning with A[1,1] and ending with A[2,4]. This kind of
sequential access works well with most memory hierarchies. Moving the i loop
inside the j loop produces an access sequence that jumps between rows, access-
ing A[1,1], A[2,1], A[1,2], . . . , A[2,4]. With a small array like A, this is
not a problem. With larger arrays, the lack of sequential access could produce
poor performance in the memory hierarchy. As a general rule, row-major order
produces sequential access when the outermost subscript varies fastest.

The obvious alternative to row-major order is column-major order. It keeps
the columns of A in contiguous locations, producing the following layout.

1,1 2,1 1,2 2,2 1,3 ,2,3 1,4 2,4

Column major order produces sequential access when the innermost subscript
varies fastest. In our doubly-nested loop, moving the i loop to the innermost
position produces sequential access, while having the j loop inside the i loop
produces non-sequential access.

A third alternative, not quite as obvious, has been used in several languages.
This scheme uses indirection vectors to reduce all multi-dimensional arrays to
a set of vectors. For our array A, this would produce

X
Xz

�
��A 1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

Each row has its own contiguous storage. Within a row, elements are addressed
as in a vector (see Section 8.5.1). To allow systematic addressing of the row vec-
tors, the compiler allocates a vector of pointers and initializes it appropriately.

This scheme appears simple, but it introduces two kinds of complexity. First,
it requires more storage than the simpler row-major or column-major layouts.
Each array element has a storage location; additionally, the inner dimensions
require indirection vectors. The number of vectors can grow quadratically in
the array’s dimension. Figure 8.6 shows the layout for a more complex array,
B[1..2,1..3,1..4]. Second, a fair amount of initialization code is required to
set up all the pointers for the array’s inner dimensions.

Each of these schemes has been used in a popular programming language.
For languages that store arrays in contiguous storage, row-major order has been
the typical choice; the one notable exception is Fortran, which used column-
major order. Both bcpl and c use indirection vectors; c sidesteps the initial-
ization issue by requiring the programmer to explicitly fill in all of the pointers.

8.5. STORING AND ACCESSING ARRAYS 227

�

�
�
���

XXXz

�
����

XXXz

�
����

B

1,1,1 1,1,2 1,1,3 1,1,4

1,2,1 1,2,2 1,2,3 1,2,4

1,3,1 1,3,2 1,3,3 1,3,4

2,1,1 2,1,2 2,1,3 2,1,4

2,2,1 2,2,2 2,2,3 2,2,4

2,3,1 2,3,2 2,3,3 2,2,4

Figure 8.6: Indirection vectors for B[1..2,1..3,1..4]

8.5.3 Referencing an Array Element

Computing an address for a multi-dimensional array requires more work. It
also requires a commitment to one of the three storage schemes described in
Section 8.5.2.

Row-major Order In row-major order, the address calculation must find the
start of the row and then generate an offset within the row as if it were a vector.
Recall our example of A[1..2,1..4]. To access element A[i,j], the compiler
must emit code that computes the address of row i, and follow that with the
offset for element j, which we know from Section 8.5.1 will be (j − low2) × w.
Each row contains 4 elements, computed as high2 − low2 + 1, where high2 is
the the highest numbered column and low2 is the lowest numbered column—
the upper and lower bounds for the second dimension of A. To simplify the
exposition, let len2 = high2 − low2 + 1. Since rows are laid out consecutively,
row i begins at (i − low1) × len2 × w from the start of A. This suggests the
address computation:

@A + (i− low1) × len2 × w + (j− low2) ×w

Substituting actual values in for i, j, low1, high2, low2, and w, we find that
A[2,3] lies at offset

((2 − 1) × 4 + (3 − 1)) × 4 = 24

from A[0,0]. (A actually points to the first element, at offset 0.) Looking at A
in memory, we find that A[0,0]+ 24 is, in fact, A[2,3].

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4

In the vector case, we were able to simplify the calculation when upper and
lower bounds were known at compile time. Applying the same algebra to adjust
the base address in the two-dimensional case produces

@A + (i× len2 × w) − (low1 × len2 × w) + (j ×w) − (low2 ×w), or

@A + (i× len2 × w) + (j ×w) − (low1 × len2 ×w + low2 ×w)

The last term, (low1 × len2 × w + low2 × w), is independent of i and j, so it
can be factored directly into the base address to create

228 CHAPTER 8. CODE SHAPE

@A0 = @A− (low1 × len2 × w + low2 × w)

This is the two-dimensional analog of the transformation that created a false
zero for vectors in Section 8.5.1. Then, the array reference is simply

@A0 + i× len2 ×w + j×w

Finally, we can re-factor to move the w outside, saving extraneous multiplies.

@A0 + (i × len2 + j) × w

This form of the polynomial leads to the following code sequence:

load @i ⇒ ri // i’s value
load @j ⇒ rj // j’s value
loadI @A0 ⇒ r@a // adjusted base for A
multI ri, len2 ⇒ r1 // i × len2

add r1, rj ⇒ r2 // + j
lshiftI r2, 2 ⇒ r3 // × 4
loadAO r@a, r3 ⇒ rv

In this form, we have reduced the computation to a pair of additions, one
multiply, and one shift. Of course, some of i, j, and @A0 may be in registers.

If we do not know the array bounds at compile-time, we must either compute
the adjusted base address at run-time, or use the more complex polynomial that
includes the subtractions that adjust for lower bounds.

@A + ((i− low1) × len2 + j− low2) × w

In this form, the code to evaluate the addressing polynomial will require two
additional subtractions.

To handle higher dimensional arrays, the compiler must generalize the ad-
dress polynomial. In three dimensions, it becomes

base address + w ×
(((index1 − low1) × len2 + index2 − low2) × len3) + index3 − low3)

Further generalization is straight forward.

Column-major Order Accessing an array stored in column-major order is sim-
ilar to the case for row-major order. The difference in calculation arises from
the difference in storage order. Where row-major order places entire rows in
contiguous memory, column-major order places entire columns in contiguous
memory. Thus, the address computation considers the individual dimensions
in the opposite order. To access our example array, A[1..2,1..4], when it is
stored in column major order, the compiler must emit code that finds the start-
ing address for column j and compute the vector-style offset within that column
for element i. The start of column j occurs at offset (j− low2)× len1 ×w from
the start of A. Within the column, element i occurs at (i − low1) × w. This
leads to an address computation of

@A + ((j− low2) × len1 + i− low1) × w

Substituting actual values for i, j, low1, low2, len1, and w, A[2,3] becomes

8.5. STORING AND ACCESSING ARRAYS 229

@A+ ((3 − 1) × 2 + (2 − 1)) × 4 = 20,

so that A[2,3] is 20 bytes past the start of A. Looking at the memory layout
from Section 8.5.2, we see that A + 20 is, indeed, A[2,3].

1,1 2,1 1,2 2,2 1,3 2,3 1,4 2,4

The same manipulations of the addressing polynomial that applied for row-
major order work with column-major order. We can also adjust the base address
to compensate for non-zero lower bounds. This leads to a computation of

@A0 + (j× len1 + i) × w

for the reference A[i,j] when bounds are known at compile time and

@A0 + ((j − low2) × len1 + i− low1) ×w

when the bounds are not known.
For a three-dimensional array, this generalizes to

base address + w ×
(((index3 − low3) × len2 + index2 − low2) × len1) + index1 − low1)

The address polynomials for higher dimensions generalize along the same lines
as for row-major order.

Indirection Vectors Using indirection vectors simplifies the code generated to
access an individual element. Since the outermost dimension is stored as a set of
vectors, the final step looks like the vector access described in Section 8.5.1. For
B[i,j,k], the final step computes an offset from k, the outermost dimension’s
lower bound, and the length of an element for B. The preliminary steps derive
the starting address for this vector by following the appropriate pointers through
the indirection vector structure.

Thus, to access element B[i,j,k] in the array B shown in Figure 8.6, the
compiler would use B, i, and the length of a pointer (4), to find the vector for
the subarray B[i,*,*]. Next, it would use that result, along with j and the
length of a pointer to find the vector for the subarray B[i,j,*]. Finally, it
uses the vector address computation for index k, and element length w to find
B[i,j,k] in this vector.

If the current values for i, j, and k exist in registers ri, rj, and rk, respec-
tively, and that @B0 is the zero-adjusted address of the first dimension, then
B[i,j,k] can be referenced as follows.

loadI @B0 ⇒ r@B // assume zero-adjusted pointers
lshiftI ri, 2 ⇒ r1 // pointer is 4 bytes
loadAO r@B, r1 ⇒ r2

lshiftI rj, 2 ⇒ r3 // pointer is 4 bytes
loadAO r2, r3 ⇒ r4 // vector code from § 8.5.1
lshiftI rk, 2 ⇒ r5

loadAO r4, r5 ⇒ r6

This code assumes that the pointers in the indirection structure have already
been adjusted to account for non-zero lower bounds. If the pointers have not

230 CHAPTER 8. CODE SHAPE

been adjusted, then the values in rj and rk must be decremented by the corre-
sponding lower bounds.

Using indirection vectors, the reference requires just two instructions per
dimension. This property made the indirection vector implementation of arrays
efficient on systems where memory access was fast relative to arithmetic—for
example, on most computer systems prior to 1985. Several compilers used in-
direction vectors to manage the cost of address arithmetic. As the cost of
memory accesses has increased relative to arithmetic, this scheme has lost its
advantage. If systems again appear where memory latencies are small relative to
arithmetic, indirection vectors may again emerge as a practical way to decrease
access costs.3

Accessing Array-valued Parameters When an array is passed as a parameter,
most implementations pass it by reference. Even in languages that use call-by-
value for all other parameters, arrays are usually passed by reference. Consider
the mechanism required to pass an array by value. The calling procedure would
need to copy each array element value into the activation record of the called
procedure. For all but the smallest arrays, this is impractical. Passing the array
as a reference parameter can greatly reduce the cost of each call.

If the compiler is to generate array references in the called procedure, it
needs information about the dimensions of the array bound to the parameter.
In Fortran, for example, the programmer is required to declare the variable
using either constants or other formal parameters to specify its dimensions.
Thus, Fortran places the burden for passing information derived from the array’s
original declaration to the called procedure. This lets each invocation of the
procedure use the correct constants for the array that it is passed.

Other languages leave the task of collecting, organizing, and passing the
necessary information to the compiler. This approach is necessary if the array’s
size cannot be statically determined—that is, it is allocated at run-time. Even
when the size can be statically determined, this approach is useful because it ab-
stracts away details that would otherwise clutter code. In these circumstances,
the compiler builds a descriptor that contains both a pointer to the start of
the array and the necessary information on each dimension. The descriptor has
a known size, even when the array’s size cannot be known at compile time.
Thus, the compiler can allocate space for the descriptor in the ar of the called
procedure. The value passed in the array’s parameter slot is a pointer to this
descriptor. For reasons lost in antiquity, we call this descriptor a dope vector.

When the compiler generates a reference to an array that has been passed as
a parameter, it must draw the information out of the dope vector. It generates
the same address polynomial that it would use for a reference to a local array,
loading values out of the dope vector as needed. The compiler must decide, as a
matter of policy, which form of the addressing polynomial it will use. With the
naive address polynomial, the dope vector must contain a pointer to the start of

3On cache-based machines, locality is critical to performance. There is little reason to
believe that indirection vectors have good locality. It seems more likely that this scheme
generates a reference stream that appears random to the memory system.

8.5. STORING AND ACCESSING ARRAYS 231

program main;
begin;

declare x(1:100,1:10,2:50),
y(1:10,1:10,15:35) float;

...
call fee(x);
call fee(y);

end main;

procedure fee(A)
declare A(*,*,*) float;
begin;

declare x float;
declare i, j, k fixed binary;
... x = A(i,j,k);
...

end fee;

At the first call

@x0

100

10

49

A �

At the second call

@y0

10

10

21

A �

Figure 8.7: Dope Vectors

the array, the lower bound of each dimension, and all but one of the dimension
sizes. With the address polynomial based on the false zero, the lower bound
information is unnecessary. As long as the compiler always uses the same form
of the polynomial, it can generate code to build the dope vectors as part of the
prologue code for the procedure call.

A given procedure can be invoked from multiple call sites. At each call site,
a different array might be passed. The pl/i fragment in figure 8.7 illustrates
this. The program main contains two statements that call fee. The first passes
array x, while the second passes y. Inside fee, the actual parameter (x or y)
is bound to the formal parameter A. To allow the code for fee to reference the
appropriate location, it needs a dope vector for A. The respective dope vectors
are shown on the right hand side of the figure.

As a subtle point, notice that the cost of accessing an array-valued parameter
is higher than the cost of accessing an array declared locally. At best, the dope
vector introduces additional memory references to access the relevant entries.
At worst, it prevents the compiler from performing certain optimizations that
rely on complete knowledge of the array’s declaration.

8.5.4 Range Checking

Most programming language definitions assume, either explicitly or implicitly,
that a program only refers to array elements within the defined bounds of the
array. A program that references an out-of-bounds element is, by definition, not
well formed. Many compiler-writers have taken the position that the compiler
should detect out-of-bounds array accesses and report them in a graceful fashion
to the user.

232 CHAPTER 8. CODE SHAPE

The simplest implementation of range checking inserts a test before each
array reference. The test verifies that each index value falls in the valid range
for the dimension in which it will be used. In an array-intensive program, the
overhead of such checking can be significant. Many improvements on this simple
scheme are possible.

If the compiler intends to perform range checking on array-valued param-
eters, it may need to include additional information in the dope vectors. For
example, if the compiler uses the address polynomial based on the array’s false
zero, it will have lengths for each dimension, but not upper and lower bound
information. An imprecise test might be done by checking the offset against the
total array size; to perform the precise test would require passing upper and
lower bounds for each dimension.

When the compiler generates run-time code for range checking, it must in-
sert many copies of the code that reports the error. Typically, this involves a
branch to a run-time error routine. During normal execution, these branches
are rarely taken; if the error handler stops execution, then it can run at most
once execution. If the target machine provides a mechanism that lets the com-
piler predict the likely direction of a branch, these exception branches should
be predicted as not taken. Furthermore, the compiler may want to annotate its
internal representation to show that these branches lead to an abnormal termi-
nation. This allows subsequent phases of the compiler to differentiate between
the “normal” execution path and the “error” path; the compiler may be able to
use this knowledge to produce better code along the non-error path.

8.6 Character Strings

The operations provided for character-based data are often quite different from
those provided for string data. The level of programming language support
ranges from c, where most manipulation takes the form of calls to library rou-
tines, to pl/i, where assignment of individual characters, arbitrary substrings
of characters, and even concatenation of strings occur as first-class operators
in the language. To present the issues that arise in string implementation, this
section discusses the implementation of assigning substrings, of concatenating
two strings, and of computing a string’s length.

String operations can be costly. Older cisc architectures, such as the ibm

s/370 and the digital vax, provided strong support for string manipulation.
Modern risc machines rely more heavily on the compiler to encode these com-
plex operations into a set of simpler interactions. The basic operation, copying
bytes from one location to another, arises in many different contexts.

8.6.1 String Representation

The compiler writer must choose a representation for strings; the details of
the string representation have a strong impact on the cost of various string
operations.

Consider, for example, the difference between the two possible string repre-
sentations. The one on the left is used by c. It uses a simple vector of characters,

8.6. CHARACTER STRINGS 233

with a designated character as a terminator. The representation on the right
stores the length of the string (8) alongside its contents.

a 	b s t r i n g ⊥

Null-termination

8 a 	b s t r i n g

Explicit length field

Storing the length increases the size of the string in memory. However, it sim-
plifies several operations on strings. For fixed length strings, both Scheme and
pl/i use the length format. When the language allows varying length strings to
be stored inside a string allocated to some fixed length, the implementor might
also store the allocated length with the string. This allows the compiler to im-
plement run-time checking for overrunning the string length on assignment and
concatenation.

8.6.2 String Assignment

String assignment is conceptually simple. In c, an assignment from the third
character of b to the second character of a can be written as shown on the left:

a[1] = b[2];

loadI @b ⇒ rb

cloadAI rb,2 ⇒ r2

loadI @a ⇒ ra

cstoreAI r2 ⇒ ra,1

With appropriate support, this would translate directly into the code shown on
the right. It uses the operations from the cload and cstore family to perform
single character accesses. (Recall that a[0] is the first character in a, because
c uses a default lower bound of zero.)

If, however, the underlying hardware does not support character-oriented
memory operations, the compiler must generate more complex code. Assuming
that both a and b begin on word boundaries, the compiler might emit the
following code:

loadI @b ⇒ rb // get word
load rb ⇒ r1

loadI 0x0000FF00 ⇒ r2 // mask for 3rd char
and r1,r2 ⇒ r3 // ‘and’ away others
loadI 8 ⇒ r4

lshift r3,r4 ⇒ r5

loadI @a ⇒ ra // want 1st word
load ra ⇒ r6

loadI 0xFF00FFFF ⇒ r7 // mask for 2nd char
and r6,r7 ⇒ r8

and r3,r8 ⇒ r9 // new 1st word of a
storeAI r9 ⇒ ra,0 // put it back

This loads the appropriate word from b, extracts the desired character, shifts
it to a new position, masks it into the appropriate word from a, and stores the
result back into a.

234 CHAPTER 8. CODE SHAPE

With longer strings, the code is similar. Pl/i has a string assignment oper-
ator. The programmer can write an operation such as a = b;, where a and b
have been declared as character strings. Assuming that a has enough room to
hold b, the following simple loop will move the characters on a machine with
byte-oriented load and store operations:

loadI 1 ⇒ r1 // set up for loop
loadI 0 ⇒ r2

i2i r2 ⇒ r3

loadI @b ⇒ rb

loadAI rb,-4 ⇒ r5 // get b’s length
loadI @a ⇒ ra

loadAI ra,-4 ⇒ r6 // get a’s length
cmp LT r6,r5 ⇒ r7

cbr r7 → Lsov,L1 // raise error ?
L1: cmp LE r2,r5 ⇒ r8 // more to copy ?

cbr r8 → L2,L3

L2: cloadAO rb,r2 ⇒ r9 // get char from b
cstoreAO r9 ⇒ ra,r2 // put it in a
add r2,r1 ⇒ r2 // increment offset
cmp LE r2,r5 ⇒ r10 // more to copy ?
cbr r10 → L2,L3

L3: nop // next statement

Notice that this code tests the length of a and b to avoid overrunning a. The
label Lsov represents a run-time error handler for string overflow conditions.

With null-terminated strings, the code changes somewhat:

loadI @b ⇒ rb // get pointers
loadI @a ⇒ ra

loadI 1 ⇒ r1 // the increment
loadI NULL ⇒ r2 // EOS char
cload rb ⇒ r3 // get 1st char
cmp NE r2,r3 ⇒ r4 // test it
cbr r4 → L1,L2

L1: cstore r3 ⇒ ra // store it
add rb,r1 ⇒ rb // bump pointers
add ra,r1 ⇒ ra

cload rb ⇒ r3 // get next char
cmp NE r2,r3 ⇒ r4

cbr r4 → L1,L2

L2: nop // next statement

This code implements the classic character copying loop used in c programs.
It does not test for overrunning a. That would require a computation of the
length of both a and b (see Section 8.6.4).

8.6. CHARACTER STRINGS 235

loadI @b ⇒ rb // set up the loop
loadAI rb,-4 ⇒ r2 // get b’s length
loadI 0xFFFFFFFC ⇒ r3 // mask for full word
and r2,r3 ⇒ r4 // length(b), masked
loadI 4 ⇒ r5 // increment
loadI 0 ⇒ r6 // offset in string
loadI @a ⇒ ra

loadAI ra,-4 ⇒ r20 // get a’s length
cmp LT r20,r2 ⇒ r21

cbr r21 → Lsov,L1

L1: cmp LE r5,r2 ⇒ r7 // more for the loop?
cbr r7 → L2,L3

L2: loadAO rb,r6 ⇒ r9 // get char from b
storeAO r9 ⇒ ra,r6 // put it in a
add r6,r5 ⇒ r6 // increment offset
cmp LT r6,r4 ⇒ r10 // more for the loop?
cbr r10 → L2,L3

L3: sub r2,r4 ⇒ r11 // # bytes to move
loadAO rb,r6 ⇒ r9 // get last byte
loadI @MASK1 ⇒ r12 // get Source mask
and r9,r12 ⇒ r13

loadI @MASK2 ⇒ r14 // get Destination mask
loadAO ra,r6 ⇒ r15 // get Destination word
and r15,r14 ⇒ r16 // mask out destination
and r16,r13 ⇒ r17 // combine them
storeAO r17 ⇒ ra,r6 // put it in a

Figure 8.8: String assignment using whole-word operations

while (*b != ’\0’)
*a++ = *b++;

With hardware support for autoincrement on load and store operations, the
two adds in the loop would occur during the cload and cstore operations.
This reduces the loop to four operations. (Recall that c was designed for the
pdp/11, which supported auto-post-increment.) Without autoincrement, the
compiler would generate better code by using cloadAO and cstoreAO with a
common offset. That would require only one add operation inside the loop.

Without byte-oriented memory operations, the code becomes more complex.
The compiler could replace the load, store, add portion of the loop body
with the scheme for masking and shifting single characters into the body of the
loop shown earlier. The result is a functional, but ugly, loop. This increases
substantially the number of instructions required to move b into a.

236 CHAPTER 8. CODE SHAPE

The alternative is to adopt a somewhat more complex scheme that makes
whole-word load and store operations an advantage rather than a burden.
The compiler can use a word-oriented loop, followed by a post-loop clean-up
operation that handles any leftover characters at the end of the string. Figure 8.8
shows one way of implementing this.

The code required to set up the loop is more complex, because it must com-
pute the length of the substring that can be moved with whole-word operations
(�length(b)/4�). Once again, the loop body contains five instructions. However,
it uses just one quarter of the iterations used by the character-oriented loop.
The post-loop code that handles any remaining bytes relies on the presence of
two global arrays:

MASK1
Index Value

0 0x00000000
1 0xFF000000
2 0xFFFF0000
3 0xFFFFFF00

Source Mask

MASK2
Index Value

0 0xFFFFFFFF
1 0x00FFFFFF
2 0x0000FFFF
3 0x000000FF

Destination Mask
Using these arrays allows the code to handle one, two, or three leftover bytes
without introducing further branches.

Of course, if the compiler knows the length of the strings, it can avoid
generating the loop and, instead, emit the appropriate number of loads, stores,
and adds.

So far, we have assumed that both the source and destination strings begin
on word-aligned boundaries. The compiler can ensure that each string begins
on a word-aligned boundary. However, arbitrary assignments create the need
for code to handle arbitrary alignment of both the source and the destina-
tion strings. With character-oriented memory operations, the same code works
for arbitrary character-oriented alignment. With word-oriented memory oper-
ations, the compiler needs to emit a pre-loop code that brings both the source
and the destination to word-aligned boundaries, followed by a loop that loads
a word from the source, shuffles the characters into place for the destination,
and stores a word into the destination. Of course, the loop is followed by code
to clean up the final one, two, or three bytes.

8.6.3 String Concatenation

Concatenation is simply a shorthand for a sequence of one or more assignments.
It comes in two basic forms: appending string b to string a, and creating a new
string that contains a followed immediately by b.

The former case is a length computation followed by an assignment. The
compiler emits code to determine the length of a, and performs an assignment
of b to the space that immediately follows the contents of a.

The latter case requires copying each character in a and each character in b.

8.7. STRUCTURE REFERENCES 237

The compiler treats the concatenation as a pair of assignments and generates
code as shown in Section 8.6.2.

In either case, the compiler should ensure that length(a||b) is not greater
the space allocated to hold the result. In practice, this requires that either
the compiler or the run-time system record the allocated length of each string.
If the lengths are known at compile-time, the compiler can perform the check
during code generation and avoid emitting code for a run-time check. Often,
however, the compiler cannot know the length of a and b, so it must generate
code to compute the lengths at run-time and to perform the appropriate test
and branch.

8.6.4 String Length

Some applications need to compute the length of a character string. In c pro-
grams, the function strlen in the standard library takes a string as its argument
and returns the string’s length, expressed as an integer. In pl/i, the built-in
function length performs the same function. The two string representations
described earlier lead to radically different costs for the length computation.

Null-terminated string The length computation must start at the beginning
of the string and examine each character, in order, until it reaches the null
character. The code is quite similar to the c character copying loop. This
requires time proportional to the length of the string.

Explicit length field The length computation is a memory reference. In iloc,
this requires a loadI of the string address and a loadAI to obtain the
length. The cost is constant and small.

The tradeoff between these representations is simple; null-termination saves
space, while an explicit length field makes the length computation inexpensive.

The classic example of a string optimization problem is reporting the length
that would result from the concatenation of two strings, a and b. In a pl/i-like
notation, this would be written as length(a||b). In c, it would be written as
either strlen(strcat(a,b)) or strlen(a)+strlen(b). The desired solution
avoids building the concatenated string to measure its length. The two distinct
ways of writing it in c expose the difference and leave it up to the programmer
to determine which is used. Of course, with c’s representation for the string,
the computation must still touch each character in each string. With a pl/i-
style representation, the operation can be optimized to use two loads and an
add. (Of course, the programmer could directly write the form that produced
efficient code—length(a)+length(b) in pl/i.)

8.7 Structure References

The other kind of complex data structure that occurs in most programming
languages is a structure, or some variation on it. In c, a structure aggregates
together individually named elements, often of differing types. A list implemen-
tation, in c, might use the structures

238 CHAPTER 8. CODE SHAPE

union Node
{

struct ValueNode;
struct ConstructorNode;

};
struct ValueNode
{

int Value;
};

struct ConstructorNode
{

Node *Head;
Node *Tail;

};

ValueNode NilNode;
Node* NIL = &NilNode;

Using these two nodes, the programmer can construct lisp-like s-expressions.
A ConstructorNode can point to a pair of Nodes. A Node can be either a
ValueNode or a ConstructorNode.

Working with structures in c requires the use of pointer values. In the
declaration of ConstructorNode, both Head and Tail are pointers to data items
of type Node. The use of pointers introduces two distinct problems for the
compiler: anonymous objects and structure layout.

Loading and Storing Anonymous Values A c program creates an instance of a
structure in one of two ways. It can declare a structure instance; NilNode in
the example above is a declared instance of ValueNode. Alternatively, it can
dynamically allocate a structure instance. In c, this looks like:

NIL = (NODE *) malloc(sizeof(ValueNode));

The instance of ValueNode that this creates has no variable name associated
with it—the only access is through a pointer.

Because the only “name” for an anonymous value is a pointer, the compiler
cannot easily determine whether or not two pointer references specify the same
memory location. Consider the code fragment.

1. p1 = (NODE *) malloc(sizeof(ConstructorNode));
2. p2 = (NODE *) malloc(sizeof(ConstructorNode));
3. if (...)
4. then p3 = p1;
5. else p3 = p2;
6. p1->Head = ...;
7. p3->Head = ...;
8. ... = p1->Head;

The first two lines create anonymous ConstructorNodes. Line six initializes
the node reachable through p1. Line seven either initializes the node reachable
through p2 or overwrites the value recorded by line six. Finally, line eight
references the value stored in p1->Head.

To implement the sequence of assignments in lines six through eight, the
compiler would like to keep the value that is reused in a register. Unfortu-
nately, the compiler cannot easily determine whether line eight refers to the
value generated in line six or the value generated in line seven. To understand

8.7. STRUCTURE REFERENCES 239

the answer to that question, the compiler must be able to determine, with cer-
tainty, the value of the conditional expression evaluated in line three. While this
may be possible in certain specific instances (i.e., 1>2), it is undecidable in the
general case. Thus, the compiler must emit conservative code for this sequence
of assignments. It must load the value used in line eight from memory, even
though it had the value in a register quite recently (in either line six or line
seven).

This degree of uncertainty that surrounds references to anonymous objects
forces the compiler to keep values used in pointer-based references in memory.
This can make statements involving pointer-based references less efficient than
corresponding computations on local variables that are stored unambiguously
in the procedure’s ar. Analyzing pointer values and using the results of that
analysis to disambiguate references—that is, to rewrite references in ways that
let the compiler keep some values in registers—is a major source of improvement
for pointer intensive programs. (A similar effect occurs with code that makes
intensive use of arrays. Unless the compiler performs an in-depth analysis of the
array subscripts, it may not be able to determine whether or not two array ref-
erences overlap. When the compiler cannot distinguish between two references,
such as a[i,j,k] and a[i,j,l], it must treat both references conservatively.)

Understanding Structure Layouts To emit code for structure references, the com-
piler must know both the starting address of the structure instance and the offset
and length of each element. To maintain this information, the compiler typi-
cally builds a separate table of structure layouts. The table must include the
textual name for each structure element, its offset within the structure, and its
source-language data type. For the list example, the compiler might build the
following structures:

Structure Table
Name Length 1st El’t
ValueNode 4 0
ConstructorNode 8 1

Element Table
Name Length Offset Type Next
ValueNode.Value 4 0 int ⊥
ConstructorNode.Head 4 0 Node * 2
ConstructorNode.Tail 4 4 Node * ⊥

Entries in the element table use fully qualified name. This avoids conflicts due
to reuse of a name in several distinct structures. (Few languages insist that
programs use unique element names inside structures.)

With this information, the compiler can easily generate code for structure
references. The reference p1->Head might translate into the iloc sequence

loadI 0 ⇒ r1 // offset of ’Head’
loadAO rp1,r1 ⇒ r2 // value of p1->Head

240 CHAPTER 8. CODE SHAPE

Here, the compiler found the offset of Head by following the table from the
ConstructorNode entry in the structure table to the Head entry in the element
table. The start address of p1->Head resides in p1.

Many programming languages allow the user to declare an array of struc-
tures. If the user is allowed to take the address of a structure-valued element
of this array, then the compiler must lay out the data in memory as multiple
copies of the structure layout. If the programmer cannot take the address of a
structure-valued element of the array, the compiler might lay out the structure
as if it were a structure composed of elements that were, themselves, arrays.
Depending on how the surrounding code accesses the data, these two strategies
might have strikingly different performance on a system with cache memory.

To address an array of structures, laid out as multiple copies of the struc-
ture, the compiler uses the array address polynomials described in the previous
section. The overall length of the structure becomes the element size, w, in the
address polynomial. The polynomial generates the address of the start of the
structure instance. To obtain the value of a specific element, the element’s offset
is added to the instance address.

If the compiler has laid out the structure with elements that are arrays, it
must compute the starting location of the element array using the offset table
information and the array dimension. This address can then be used as the
starting point for an address calculation using the appropriate polynomial.

Unions and Run-time Tags For notational convenience, some programming lan-
guages allow union types. This allows a single memory location to be interpreted
in different ways. The Node declaration given earlier allows a single pointer to
refer to an object of type ValueNode or an object of type ConstructorNode. The
meaning of any reference is clear, because the two structures have no common
element names.

In general, the compiler (and the programming language) must make provi-
sion for the case when the meaning of a union-type reference is unclear. In prac-
tice, two alternatives arise: additional syntax and run-time tags. The language
can place the burden for disambiguating union references on the programmer,
by requiring fully qualified names. In the Node example, the programmer would
need to write p1->ConstructorNode.Head or p2->ValueNode.Value.

The alternative is to include a run-time tag in each allocated instance of the
union. Pl/i required that the programmer explicitly declare the tag and its
values. Other systems have relied on the translator to insert both the run-time
tag and the appropriate code to check for correct use at each reference to an
anonymous object. In fact, much of the practical motivation for stronger type
systems and compile-time algorithms that can prove type-correctness arose from
the desire to eliminate these automatically generated checks on run-time tags.
The overhead of run-time tag checking can be significant.

8.8. CONTROL FLOW CONSTRUCTS 241

8.8 Control Flow Constructs

A maximal-length sequence of assignment statements forms a basic block. Al-
most any other executable statement causes a control-flow transfer that ends
the preceding block, as does a statement that can be the target of a branch. As
the compiler generates code, it can build up basic blocks by simply aggregating
together consecutive assignment statements. If the generated code is held in
a simple linear array, each block can be described by a tuple, 〈first,last〉, that
holds the indices of the instruction that begins the block and the instruction
that ends the block.

To construct an executable program from the set of blocks, the compiler
needs to tie the blocks together with code that implements the control-flow op-
erations of the source program. To capture the relationship between the blocks,
many compilers build a control-flow graph (cfg, see Section 6.3.4) that gets
used for analysis, optimization, and code generation. In the cfg, nodes rep-
resent basic blocks and edges represent possible transfers of control between
blocks. Typically, the cfg is a lightweight representation that contains refer-
ences to a more detailed representation of each block.

Beyond basic blocks, the compiler must generate code for the control-flow
constructs used in the source language. While many different syntactic con-
ventions have been used to express control-flow, the number of underlying con-
structs is small. This section shows the kind of code that the compiler should
generate for most of the control-flow constructs found in modern programming
languages.

8.8.1 Conditional Execution

Most programming languages provide the functionality of the if-then-else
construct. Given the source text

if expr
then statement1
else statement2

the compiler must generate code that evaluates expr and branches to either
statement1 or statement2 based on the value of expr. As we saw in Section 8.4,
the compiler has many options for implementing if-then-else constructs.

Most languages evaluate the controlling expression, expr, to a boolean value.
If it has the value true, the statement under the then part executes. Otherwise,
the statement under the else part executes. The earlier discussion focussed on
evaluating the controlling expression; it showed how the underlying instruction
set influenced the strategies for handling both the controlling expression and,
in some cases, the controlled statements. It assumed that the code under the
then and else parts was reasonably compact; most of the examples translated
into a single instruction.

In practice, programmers can place arbitrarily large code fragments inside
the then and else parts. The size of these code fragments has an impact on the
compiler’s strategy for implementing the if–then–else construct. With trivial

242 CHAPTER 8. CODE SHAPE

Using Predicates

Unit 1 Unit 2
comparison ⇒ r1

(r1) op1 (¬r1) op2

(r1) op3 (¬r1) op4

(r1) op5 (¬r1) op6

(r1) op7 (¬r1) op8

(r1) op9 (¬r1) op10

(r1) op11 (¬r1) op12

(r1) op13 (¬r1) op14

(r1) op15 (¬r1) op16

(r1) op17 (¬r1) op18

(r1) op19 (¬r1) op20

Using Branches

Unit 1 Unit 2
compare & branch

L1: op1 op3

op5 op7

op9 op11

op13 op15

op17 op19

br → Lout

L2: op2 op4

op6 op8

op10 op12

op14 op16

op18 op20

br → Lout

Lout: nop

Figure 8.9: Predication versus Branching

then and else parts, as shown in Figure 8.4, the primary consideration for the
compiler is matching the expression evaluation to the underlying hardware. As
the then and else parts grow, the importance of efficient execution inside the
then and else parts begins to outweigh the cost of executing the the controlling
expression.

For example, on a machine that supports predicated execution, using pred-
icates for large blocks in the then and else parts can waste execution cycles.
Since the processor must issue each predicated instruction to one of its func-
tional units, the cost of a non-executed instruction is roughly the same as that
of an executed instruction. For an if–then–else construct with large blocks of
code under both the then and else parts, the cost of unexecuted instructions
may outweigh the overhead of using a conditional branch.

Figure 8.9 illustrates this tradeoff. The figure assumes that both the then
and else parts contain ten independent iloc operations, and that the target
machine can issue two instructions per cycle.

The left side shows code that might be generated using predication; it as-
sumes that the code evaluated the controlling expression into r1. The code
issues two instructions per cycle. One of those executes in each cycle. The code
avoids all branching. If each operation takes a single cycle, it takes ten cycles
to execute the controlled statements, independent of which branch is taken.

The right side shows code that might be generated using branches; it assumes
that control flows to L1 for the then part and to L2 for the else part. Because
the instructions are independent, the code issues two instructions per cycle.
Following the then path, it takes five cycles to execute the operations for the
taken path, plus the cost of the terminating branch. The cost for the else part

8.8. CONTROL FLOW CONSTRUCTS 243

Digression: Branch Prediction by Users

One story that has achieved the status of an urban legend concerns branch
prediction. Fortran has an arithmetic if statement that takes one of three
branches, based on whether the controlling expression evaluates to a negative
number, to zero, or to a positive number. One early ibm compiler allowed the
user to supply weights for each label that reflected the relatively probability
of taking that branch. The compiler then used the weights to order the
branches in a way that minimized total expected delay from branching.

After the compiler had been in the field for some time, the story goes, a
maintainer discovered that the branch weights were being used in the reverse
order—maximizing the expected delay. No one had complained. The story
is usually told as a moral fable about the value of a programmers’ opinions
about the behavior of code they have written. (Of course, no one reported
the improvement, if any, from using the branch weights in the correct order.)

is identical.
The predicated version avoids the initial conditional branch, as well as

the terminating branch. The branching version incurs the overhead of both
branches, but may execute faster. Each path contains a conditional branch,
five cycles of operations, and the terminal branch (which is easily predicted and
should have minimal cost.) The difference lies in the effective issue rate—the
branching version issues roughly half the instructions of the predicated version.
As the code fragments in the then and else parts grow larger, this difference
becomes larger.

Choosing between branching and predication to implement an if–then–else
requires some care. Several issues should be considered.

1. expected frequency of execution for each part: If one side of the conditional
is expected to execute significantly more often, techniques that speed exe-
cution of that path may produce faster code. This bias may take the form
of predicting a branch, of executing some instructions speculatively, or of
reordering the logic.

2. uneven amounts of code: If one path through the construct is contains
many more instructions than the other, this may weigh against predication
(unless it is infrequently executed).

3. control-flow inside the construct: If either path through the construct
contains non-trivial control flow, such as another if–then–else, a loop,
a case statement, or procedure call, predication may not be the most
efficient choice. In particular, nested if constructs create more complex
predicate expressions and lower the percentage of issued instructions that
are actually executed.

To make the best decision, the compiler must consider all these factors, as well
as the surrounding context. These factors may be difficult to assess early in
compilation; for example, optimization may change them in significant ways.

244 CHAPTER 8. CODE SHAPE

8.8.2 Loops and Iteration

Most programming languages include a control-flow construct to perform iter-
ation. These loops range from the original Fortran do loop through c’s for
loop, while loop, and until loop. All of these loops have a common structure;
a well-defined condition controls the iteration of the loop’s body. The basic
layout of these loops is as follows:

1. evaluate the controlling expression

2. if false, branch beyond the end of the loop
otherwise, fall into the loop’s body

3. at the end of the loop body, re-evaluate the controlling
expression

4. if true, branch to the top of the loop body
otherwise, fall through to the next statement

If the loop body contains no other control-flow, this produces a loop body with
only one branch. The latency of this branch might be hidden in one of two
ways. If the architecture allows the compiler to predict whether or not the
branch is taken, the compiler should predict the loop-ending branch as being
taken back to the next iteration. If the architecture allows the compiler to move
instructions into the delay-slot(s) of the branch, the compiler should attempt to
fill the delay slot(s) with instructions from the loop body.

For Loops and Do Loops To create a for loop, the compiler follows the layout
given previously. This produces a simple loop with two distinct sections: a
pre-loop section and a loop body. The pre-loop section initializes the induction
variable and performs the initial evaluation and test of the controlling expres-
sion. The loop body implements the statements inside the loop, followed by
the increment step from the loop’s header and an evaluation and test of the
controlling expression. Thus, the c code on the left might result in the iloc

code on the right.

for (i=1; i<=100; i++)
{

loop body
}

loadI 1 ⇒ r1

loadI 1 ⇒ r2

loadI 100 ⇒ r3

cmp GT r1,r3 ⇒ r4

cbr r4 → L2,L1

L1: loop body
add r1,r2 ⇒ r1

cmp LE r1,r3 ⇒ r6

cbr r6 → L1,L2

L2: next statement

If the compiler applies further transformations to the loop body, such as value
numbering or instruction scheduling, the fact that the body is a single basic
block may lead to better optimization.

8.8. CONTROL FLOW CONSTRUCTS 245

The alternative is to use an absolute branch at the bottom of the loop
that targets the update and conditional branch at the top of the loop body.
This avoids replicating the update and conditional branch. However, it creates
a two-block loop for even the simplest loops, and it typically lengthens the
path through the loop by at least one operation. However, if code size is a
serious consideration, then consistent use of this more compact loop form might
be worthwhile. The loop-ending branch is unconditional and, thus, trivially
predicted. Many modern processors avoid latency on unconditional branches
by prefetching their targets.

The code for a Fortran do loop has a similar form, except for one odd quirk.
The Fortran standard specifies that the number of iterations that a do loop
makes is completely determined before the loop begins execution. Modifications
to the induction variable made inside the loop body have no effect on the number
of times the loop iterates.

do 10 i = 1, 100
...
i = i * 2

10 continue

loadI 1 ⇒ r1

loadI 1 ⇒ r2

loadI 100 ⇒ r3

loadI 1 ⇒ r4

loadI 2 ⇒ r5

cmp GT r4,r3 ⇒ r6

cbr r6 → L2,L1

L1: loop body
mult r1,r5 ⇒ r1

add r1,r2 ⇒ r1

add r4,r2 ⇒ r4

cmp LE r4,r3 ⇒ r7

cbr r7 → L1,L2

L2: next statement

According to the Fortran standard, this example loop should execute its body
one hundred times, despite the modifications to i inside the loop. To ensure
this behavior, the compiler may need to generate a hidden induction variable,
r4, to control the iteration. This extra variable is sometimes called a shadow
variable.

Unless the compiler can determine that the loop body does not modify the
induction variable, the compiler must generate a shadow variable. If the loop
contains a call to another procedure and passes the induction variable as a call-
by-reference parameter, the compiler must assume that the called procedure
modifies the induction variable, unless the compiler can prove otherwise.4

4This is one case where analyzing the entire program (for example, with interprocedural
data-flow analysis) routinely wins. Programmers pass induction variables as parameters so
that they can include the induction value in debugging output. Interprocedural analysis easily
recognizes that this does not change the induction variable’s value, so the shadow variable is
unnecessary.

246 CHAPTER 8. CODE SHAPE

While Loops A while loop follows the same basic form, without the introduced
overhead of an induction variable. The compiler emits code to evaluate the
condition before the loop, followed by a branch that bypasses the loop’s body.
At the end of the loop, the condition is re-evaluated and a conditional branch
takes control back to the top of the loop.

while (x < y)
{

loop body
}

cmp GE rx,ry ⇒ r1

cbr r1 → L2,L1

L1: loop body
cmp LT rx,ry ⇒ r2

cbr r2 → L1,L2

L2: next statement

Again, replicating the evaluation and test at the end of the loop creates a single
basic block for the body of a simple loop. The same benefits that accrue to a
for loop from this structure occur with a while loop.

Until Loops For an until loop, the compiler generates code similar to the
while loop. However, it omits the first evaluation and test. This ensures that
control-flow always enters the loop; the test at the bottom of the loop body
handles the until part of the test.

until (x < y)
{

loop body
}

L1: loop body
cmp LT rx,ry ⇒ r2

cbr r2 → L1,L2

L2: next statement

The until loop is particularly compact, because it has no pre-loop sequence.

Expressing Iteration as Tail Recursion In Lisp-like languages, iteration is often
implemented (by programmers) using a stylized form of recursion. If the last
action of a function is a call, that call is considered a tail call. If the tail call
is a self-recursion, the call is considered a tail recursion. For example, to find
the last element of a list in Scheme, the programmer might write the following
simple function:

(define (last alon)
(cond

((empty? alon) empty)
((empty? (rest alon)) (first alon))
(else (last (rest alon)))))

Its final act is a tail-recursive call; this particular form of call can be optimized
into a branch back to the top of the procedure. This avoids the overhead of a
fully general procedure call (see Section 8.9). The effect is to replace a procedure
call with a branch that binds some parameters. It avoids most of the operations
of the procedure call and completely eliminates the space penalty for creating
new activation records on each tail call. The results can rival a for loop in
efficiency.

8.8. CONTROL FLOW CONSTRUCTS 247

8.8.3 Case Statements

Many programming languages include a variant on the case statement. Fortran
used the “computed goto.” Bcpl and c have a switch construct. Pl/i had
a generalized construct that mapped well onto a nested set of if–then–else
statements. As the introduction to this chapter hinted, implementing a case
statement efficiently is complex.

Consider c’s switch statement. The implementation strategy should be:

1. evaluate the controlling expression

2. branch to the selected case

3. execute the code for that case

4. branch to the following statement

Steps 1, 3, and 4 are well understood; they follow from discussions elsewhere in
this chapter. The complicated part of implementing a case statement is emitting
efficient code to locate the designated case.

Linear Search The simplest way to locate the appropriate case is to treat the
case statement as the specification for a nested set of if–then–else statements.
For example, the switch statement on the left could be translated into the nest
of if statements on the right.

switch (b×c+d)
{

case 0: block0;
break;

case 1: block1;
break;

...
case 9: block9;

break;
default: block10;

break;
}

t1 ← b × c + d
if (t1 = 0)

then block0

else if (t1 = 1)
then block1

else if (t1 = 2)
then block2

. . .
else if (t1 = 9)

then block9

else block10

This translation preserves the meaning of the case statement, but makes the cost
of reaching individual cases dependent on the order in which they are written.
In essence, this code uses linear search to discover the desired case. Still, with
a small number of cases, this strategy is reasonable.

Binary Search As the number of individual cases in the case statement rises, the
efficiency of linear search becomes a problem. The classic answers to efficient
search apply in this situation. If the compiler can impose an order on the case
“labels”, it can use binary search to obtain a logarithmic search rather than a
linear search.

The idea is simple. The compiler builds a compact, ordered table of case
labels, along with their corresponding branch labels. It uses binary search to

248 CHAPTER 8. CODE SHAPE

discover a matching case label, or the absence of a match. Finally, it branches
to the corresponding label.

For the case statement shown above, the following search routine and branch
table might be used.

Value Label
0 LB0

1 LB1

2 LB2

3 LB3

4 LB4

5 LB5

6 LB6

7 LB7

8 LB8

9 LB9

t1 ← b × c + d
down ← 0
up ← 9
while (down < up)
{

middle ← (up + down + 1) ÷ 2
if (Value[middle] ≤ t1)

then down ← middle
else up ← middle

}
if (Value[up] = t1)

then branch Label[up]
else branch LB10

The code fragments for each block are now independent. The code fragment for
block i begins with a label, LBi, and ends with a branch to Lnext.

The binary search discovers the appropriate case label, if it exists, in log2(n)
iterations, where n is the number of cases. If the label does not exist, it discovers
that fact and branches to the block for the default case.

Directly Computing the Address If the case labels form a dense set, the compiler
can do better than binary search. In the example, the case statement has labels
for every integer from zero to nine. In this situation, the compiler can build
a vector that contains the block labels, LBi, and find the appropriate label by
performing a simple address calculation.

For the example, the label can be found by computing t1 as before, and
using t1 as an index into the table. In this scenario, the code to implement the
case statement might be:

t1 ← b × c + d
if (0 > t1 || t1 > 9)

then branch to LB10

else
t2 ← memory(@Table + t1 × 4)
branch to t2

assuming that the representation of a label is four bytes.
With a dense set of labels, this scheme generates efficient code. The cost

is both small and constant. If a few holes exist in the label set, the compiler
can fill those slots with the label for the default case. If no default case exists,
the compiler can create a block that generates the appropriate run-time error
message and use that in place of the default label.

8.9. PROCEDURE CALLS 249

Choosing Between Them The compiler must select an appropriate implemen-
tation scheme for each case statement. The decision depends on the number
of cases and the properties of the set of case labels. For a handful of cases
(≤ 4), the nested if–then–else scheme works well. When a larger set of cases
exists, but the values do not form a compact set, binary search is a reasonable
alternative. (Although, a programmer who steps through the assembly code in
a debugger might be rather surprised to find a while loop embedded in the case
statement!) When the set is compact, a direct computation using a jump table
is probably preferred.

8.8.4 Break Statements

Several languages implement variations on a break statement. It appears inside
loops and inside case statements. It has the effect of causing execution to
continue immediately after the innermost executing control statement. Thus, a
break inside a loop transfers control to the statement that follows the innermost
loop that is currently active. In a case statement, a break transfers control to
the statement that follows the case statement.

These actions have simple implementations. Each of our loop and case ex-
amples ends with a label for the statement that follows the loop. A break would
be implemented as an unconditional branch to that label. Notice that a break
inside a loop implies that the loop body contains more than one basic block.
(Otherwise, the break would execute on the first iteration.) Some languages
have included a skip mechanism that jumps to the next iteration. It can be
implemented as a branch to the code that re-evaluates the controlling expression
and tests its value. Alternatively, the compiler can simply insert a copy of the
evaluation, test, and branch at the point where the skip occurs.

8.9 Procedure Calls

This section will appear later in the semester.

8.10 Implementing Object-Oriented Languages

This section has yet to be written.

250 CHAPTER 8. CODE SHAPE

Questions

1. Consider the character copying loop shown on page 234, using explicit
string lengths. It uses two cmp/cbr pairs to implement the end-of-loop
tests. In an environment where the size of compiled code is critical, the
compiler might replace the cmp/cbr pair at the end of the loop with a br
to L1.

How would this change affect execution time for the loop? Are there
machine models where it runs faster? Are there machine models where it
runs slower?

2. Figure 8.8 shows how to use word-oriented memory operations to perform
a character string assignment for two word-aligned strings. Arbitrary
assignments can generate misaligned cases.

(a) Write the iloc code that you would like your compiler to emit for
an arbitrary pl/i-style character assignment, such as

fee(i:j) = fie(k:l);

where j-i = l-k. Include versions using character-oriented memory
operations and versions using word-oriented memory operations. You
may assume that fee and fie do not overlap in memory.

(b) The programmer can create character strings that overlap. In pl/i,
the programmer might write

fee(i:j) = fee(i+1:j+1);

or, even more diabolically,
fee(i+k:j+k) = fee(i:j);

How does this complicate the code that the compiler must generate
for the character assignment.

(c) Are there optimizations that the compiler could apply to the various
character-copying loops that would improve run-time behavior? How
would they help?

Chapter Notes

Bernstein provides a detailed discussion of the options that arise in generating
code for the case statement [11].

Chapter 10

Register Allocation

10.1 The Problem

Registers are the fastest locations in the memory hierarchy. Often, they are the
only memory locations that most operations can access directly. The proximity
of registers to the functional units makes good use of registers a critical factor
in run-time performance. In compiled code, responsibility for making good use
of the target machine’s register set lies with register allocator.

The register allocator determines, at each point in the program, which values
will reside in registers, and which register will hold each such value. When the
allocator cannot keep a value in a register throughout its lifetime, the value
must be stored in memory and moved between memory and a register on a
reference-by-reference basis. The allocator might relegate a value to memory
because the code contains more interesting values than the target machine’s
register set can hold. Alternatively, the value might be confined to memory
because the allocator cannot tell if it can safely stay in a register.

Conceptually, the register allocator takes a program that uses some set of
registers as its input. It produces as its output an equivalent program that fits
into the register set of the target machine.

register
allocator

input
program

n registers
�

output
program

m registers
�

When the allocator cannot keep some value in a register, it must store the value
back to memory and load it again when it is next needed. This process is called
spilling the value to memory.

Typically, the register allocator’s goal is to make effective use of the register
set provided by the target machine. This includes minimizing the number of load
and store operations that execute to perform spilling. However, other goals are
possible. For example, in a memory-constrained environment, the user might
want the allocator to minimize the amount of memory needed by the running

253

254 CHAPTER 10. REGISTER ALLOCATION

program.
A bad decision in the register allocator causes some value to be spilled when

it might otherwise reside in a register. Because a bad decision leads to extra
memory operations, the cost of a misstep by the allocator rises with increasing
memory latency. The dramatic increases in memory latency in the 1990s led to
a spate of research work on improvements to register allocation.

The remainder of this section lays out the background material needed to
discuss the problems that arise in register allocation and the methods that
have been used to address them. Subsequent sections present algorithms for
allocating registers in a single basic block, across entire procedures, and across
regions that span more than a single block but less than the entire procedure.

10.1.1 Memory models

The compiler writer’s choice of a memory model (see Section 6.5.2) defines many
details of the problem that the register allocator must address.

Register-to-register model Under this model, the compiler treats the ir pro-
gram as a specification for which values can legally reside in registers. The
allocator’s task is to map the set of registers used in the input program,
called virtual registers, onto the registers provided by the target machine,
called physical registers. Register allocation is needed to produce correct
code. In this scheme, the allocator inserts additional loads and stores,
usually making the compiled code execute more slowly.

Memory-to-memory model Under this model, the compiler trusts the reg-
ister allocator to determine when it is both safe and profitable to promote
values into registers. The ir program keeps all values in memory, mov-
ing them in and out of registers as they are used and defined. Typically,
the input program uses fewer registers than are available in the target
machine. The allocator is an optional transformation that speeds up the
code by removing load and store operations.

Under both models, the allocator tries to minimize the number of memory op-
erations executed by the compiled code. However, the allocator must recognize
that some values cannot be kept in registers for any non-trivial period of time
(see Section 8.2). If the value can be accessed under more than one name, the
compiler may be unable to prove that keeping the value in a register is safe.
When the compiler cannot determine precisely where a value is referenced, it
must store the value in memory, where the addressing hardware will disam-
biguate the references at run-time (see Sections 10.6.3 and 8.2).

For some values, the compiler can easily discover this knowledge. Examples
include scalar local variables and call-by-value parameters, as long as the pro-
grammer does not explicitly assign their address to a variable. These values are
unambiguous. Other values require that the compiler perform extensive analysis
to determine whether or not it can keep the value in a register. Examples include
some references to array elements, pointer-based values, and call-by-reference

10.1. THE PROBLEM 255

main() {
int *A[], *B[], i, j;
int C[100], D[100];
if (fee()) {

A = C;
B = D;

}
else {

A = C;
B = C;

}
j = fie();
for (i=0; i<100; i++)

A[i] = A[i] * B[j];
}

Within a procedure

subroutine fum
integer x, y
...
call foe(x,x)
...
call foe(x,y)
end

subroutine foe(a,b)
integer a, b
...
end

Using parameters

Figure 10.1: Examples of ambiguity

formal parameters. These values are considered ambiguous, unless analysis can
prove otherwise. Unfortunately, even the best analysis cannot disambiguate all
memory references.

Programmers can easily write programs that defy analysis. The simplest
example uses a common code sequence in multiple contexts—some ambiguous,
others unambiguous. Consider the two examples shown in Figure 10.1. The
c code on the left creates two different contexts for the loop by performing a
pointer assignment in each side of the if–then–else construct. (The details of
fee() and fie() are irrelevant for this example.) If fee returns true, then A
and B point to different memory locations inside the loop and B[j] can be kept
in a register. Along the other path, A and B point to the same storage locations.
If 0 ≤ j < 100, then B[j] cannot be kept in a register.

The example on the right, in Fortran, creates the same effect using call-
by-reference parameters. The first call to foe creates an environment where
foe’s parameters a and b refer to the same storage location. The second call
creates an environment where a and b refer to distinct storage locations. Un-
less the compiler radically transforms the code, using techniques such as inline
substitution or procedure cloning (see Chapter 14), it must compile a single
executable code sequence that functions correctly in both these environments.
The compiler cannot keep either a or b in a register, unless it proves that every
invocation of foe occurs in an environment where they cannot occupy the same
storage location, or it proves that b is not referenced while a is in a register,
and vice-versa. (See Chapter 13).

For complex access patterns, the compiler may not know whether two dis-
tinct names refer to the same storage location. In this case, the compiler cannot

256 CHAPTER 10. REGISTER ALLOCATION

keep either value in a register across a definition of the other. In practice, the
compiler must behave conservatively, by leaving ambiguous values in memory,
and moving them into registers for short periods when they are defined or used.

Thus, lack of knowledge can keep the compiler from allocating a variable to
a register. This can result from limitations in the compiler’s analysis. It can
also occur when a single code sequence inherits different environments along
different paths. These limitations in what the compiler can know tend to favor
the register-to-register model. The register-to-register model provides a mecha-
nism for other parts of the compiler to encode knowledge about ambiguity and
uniqueness. This knowledge might come from analysis; it might come from un-
derstanding the translation of a complex construct; or it might be derived from
the source text in the parser.

10.1.2 Allocation versus Assignment

In a modern compiler, the register allocator solves two distinct problems—
register allocation and register assignment. These problems are related but
distinct.

Allocation Register allocation maps an unlimited set of names onto the finite
set of resources provided by the target machine. In a register-to-register
model, it maps virtual registers onto a new set of names that models the
physical register set, and spills any values that do not fit in the register
set. In a memory-to-memory model, it maps some subset of the memory
locations onto a set of names that models the physical register set. Allo-
cation ensures that the code will map onto the target machine’s register
set, at each instruction.

Assignment Register assignment maps an allocated name space onto the phys-
ical registers of the target machine. It assumes that the allocation has been
performed, so that code will fit into the set of the physical registers pro-
vided by the target machine. Thus, at each instruction in the generated
code, no more than k values are designated as residing in registers, where
k is the number of physical registers. Assignment produces the actual
register names required in the executable code.

Register allocation is, in almost any realistic example, np-complete. For a
single basic block, with one size of data value, optimal allocation can be done in
polynomial time, as long as the cost of storing values back to memory is uniform.
Almost any additional complexity in the problem makes it np-complete. For
example, add a second size of data item, such as a register pair that holds a
double-precision floating point number, and the problem becomes np-complete.
Alternatively, add a realistic memory model, or the fact that some values need
not be stored back to memory, and the problem becomes np-complete. Extend
the scope of allocation to include control flow and multiple blocks, and the
problem becomes np-complete. In practice, one or more of these problems arise
in compiling for almost any real system.

10.1. THE PROBLEM 257

Register assignment, in many cases, can be solved in polynomial time. Given
a feasible allocation for a basic block—that is, one where demand for physical
registers at each instruction does not exceed the number of physical registers—
an assignment can be produced in linear time using an analogy to interval graph
coloring. The related problem on an entire procedure can be solved in polyno-
mial time—that is, if, at each instruction, demand for physical registers does
not exceed the number of physical registers, then a polynomial time algorithm
exists for deriving an assignment.

The distinction between allocation and assignment is both subtle and im-
portant. It is often blurred in the literature and in implementation. As we shall
see, most “register allocators” perform both functions, often at the same time.

10.1.3 Register Classes

The physical registers provided by most processors do not form a homogenous
pool of interchangeable resources. Typical processors have distinct classes of
registers for different kinds of values.

For example, most modern computers have both general purpose registers
and floating-point registers. The former hold integer values and memory ad-
dresses, while the latter hold floating-point values. This dichotomy is not new;
the early Ibm 360 machines had 16 general-purpose registers and 4 floating-
point registers. Modern processors may add more classes. For example, the
Ibm/Motorola PowerPC has a separate register class for condition codes, and
the Intel ia-64 has separate classes for predicate registers and branch target
registers. The compiler must place each value in the appropriate register class.
The instruction set enforces these rules. For example, a floating-point multiply
operation can only take arguments from the floating-point register set.

If the interactions between two register classes are limited, the compiler may
be able to solve the problems independently. This breaks the allocation problem
into smaller, independent components, reduces the size of the data structures
and may produce faster compile times. When two register classes overlap, how-
ever, then both classes must be modeled in a single allocation problem. The
common architectural practice of keeping double-precision floating-point num-
bers in pairs of single-precision registers is a good example of this effect. The
class of paired, or double-precision registers and the class of singleton, or single-
precision registers both map onto the same underlying set of hardware registers.
The compiler cannot allocate one of these classes without considering the other,
so it must solve the joint allocation problem.

Even if the different register classes are physically and logically separate,
they interact through operations that refer to registers in multiple classes. For
example, on many architectures, the decision to spill a floating-point register
requires the insertion of an address calculation and some memory operations;
these actions use general-purpose registers and change the allocation problem for
general-purpose registers. Thus, the compiler can make independent allocation
decisions for the different classes, but those decisions can have consequences that
affect the allocation in other register classes. Spilling a predicate register or a

258 CHAPTER 10. REGISTER ALLOCATION

condition-code register has similar effects. This suggests that general-purpose
register allocation should occur after the other register classes.

10.2 Local Register Allocation and Assignment

As an introduction to register allocation, consider the problems that arise in
producing a good allocation for a single basic block. In optimization, methods
that handle a single basic block are termed local methods, so these algorithms
are local register-allocation techniques. The allocator takes as input a single
basic block that incorporates a register-to-register memory model.

To simplify the discussion, we assume that the program starts and ends
with the block; it inherits no values from blocks that executed earlier and leaves
behind no values for blocks that execute later. Both the target machine and the
input code use a single class of registers. The target machine has k registers.

The code shape encodes information about which values can legally reside in
a register for non-trivial amounts of time. Any value that can legally reside in a
register is kept in a register. The code uses as many register names as needed to
encode this information, so it may name more registers that the target machine
has. For this reason, we call these pre-allocation registers virtual register. For
a given block, the number of virtual registers that it uses is MaxVR.

The basic block consists of a series of N three-address operations op1, op2,
op3, . . . , opN . Each operation has the form opi vri1,vri2 ⇒ vri3 . The no-
tation vr denotes the fact that these are virtual registers, rather than physical
registers. From a high-level view, the goal of local register allocation is to create
an equivalent block where each reference to a virtual register is replaced with a
reference to a specific physical register. If MaxVR > k, the allocator may need to
insert loads and stores, as appropriate, to fit the code into the set of k physical
registers. An alternative statement of this property is that the output code can
have no more than k values in a register at any point in the block.

We will explore two approaches to this problem. The first approach counts
the number of references to a value in the block and uses these frequency counts
to determine which values will reside in registers. Because it relies on externally-
derived information—the frequency counts— to make its decisions, we consider
this approach a top-down approach. The second approach relies on detailed,
low-level knowledge of the code to make its decisions. It walks over the block
and computes, at each operation, where or not a spill is needed. Because it syn-
thesizes and combines many low-level facts to drive its decision-making process,
we consider this a bottom-up approach.

10.2.1 Top-down Local Register Allocation

The top-down local allocator works from a simple principle: the most heavily
used values should reside in registers. To implement this heuristic, it counts
the number of occurrences of each virtual register in the block, and uses these
frequency counts as priorities to allocate virtual registers to physical registers.

If there are more virtual registers than physical registers, the allocator must
reserve several physical registers for use in computations that involve values

10.2. LOCAL REGISTER ALLOCATION AND ASSIGNMENT 259

allocated to memory. The allocator must have enough registers to address and
load two operands, to perform the operation, and to store the result. The
precise number of registers depends on the target architecture; on a typical
Risc machine, the number might be two to four registers. We will refer to this
machine-specific number as “feasible.”

To perform top-down local allocation, the compiler can apply the following
simple algorithm.

(1) Compute a score to rank each virtual register by counting all the uses of
the virtual register. This takes a linear walk over the operations in the
block; it increments score[vri] each time it finds vri in the block.

(2) Sort the vrs into rank order. If blocks are reasonably small, it can use
a radix sort, since score[vri] is bound by a small multiple of the block
length.

(3) Assign registers in priority order. The first k − feasible virtual registers
are assigned physical registers.

(4) Rewrite the code. Walk the code a second time, rewriting it to reflect
the new allocation and assignment. Any vr assigned a physical register
is replaced with the name of that physical register. Any vr that did not
receive a register uses one of the registers reserved for temporary use. It
is loaded before each use and stored after each definition.

The strength of this approach is that it keeps heavily used virtual registers in
physical registers. Its primary weakness lies in the approach to allocation—it
dedicates a physical register to the virtual register for the entire basic block.
Thus, a value that is heavily used in the first half of the block and unused in
the second half of the block occupies the physical register through the second
half, even though it is no longer of use. The next section presents a technique
that addresses this problem. It takes a fundamentally different approach to
allocation—a bottom-up, incremental approach.

10.2.2 Bottom-up Local Allocation

The key idea behind the bottom-up local allocator is to focus on the transitions
that occur as each operation executes. It begins with all the registers unoccu-
pied. For each operation, the allocator needs to ensure that its operands are in
registers before it executes. It must also allocate a register for the operation’s
result. Figure 10.2 shows the basic structure of a local, bottom-up allocator.

The bottom-up allocator iterates over the operations in the block, making
allocation decisions on demand. There are, however, some subtleties. By con-
sidering vri1 and vri2 in order, the allocator avoids using two physical registers
for an operation with a repeated operand, such as add ry,ry ⇒ rz. Similarly,
trying to free rx and ry before allocating rz avoids spilling a register to hold the
result when the operation actually frees up a register. All of the complications
are hidden in the routines ensure, allocate and free.

The routine ensure is conceptually simple. In pseudo-code, it looks like:

260 CHAPTER 10. REGISTER ALLOCATION

for each operation, i, in order 1 to N
rx ← ensure(vri1 , class(vri1))
ry ← ensure(vri2 , class(vri2))

if rx is not needed after i then
free(rx,class(rx))

if ry is not needed after i then
free(ry,class(ry))

rz ←allocate(vri3 , class(vri3))

emit opi rx, ry ⇒ rz

Figure 10.2: The bottom-up, local register allocator

ensure(vr,class)

if (vr is already in class) then
result ← physical register holding vr

else
result ← allocate(vr,class)
emit code to move vr ⇒ result

return result

It takes two arguments, a virtual register holding the desired value, and a repre-
sentation for the appropriate register class, class. If the virtual register already
occupies a physical register, ensure’s job is done. Otherwise, it allocates a phys-
ical register for the virtual register and emits code to move the virtual register
into that physical register. In either case, it returns the physical register.

Allocate and free expose the details of the problem. Understanding their
actions requires more information about the representation of a register class.
The class contains information on each physical register in the class. In partic-
ular, at each point in the allocation, the class holds: a flag indicating whether
the physical register is allocated or free, the name of the virtual register, if any,
that it holds, and the index in the block of that virtual register’s next reference.
To make this efficient, it also needs a list of unallocated (or free) registers. The
implementation of class contains a stack for this purpose. Figure 10.3 shows
this might be declared in c. The routine on the right side of the figure shows
how the structure should be initialized.

With this level of detail, implementing both allocate and free is straight-
forward.

10.2. LOCAL REGISTER ALLOCATION AND ASSIGNMENT 261

struct Class {
int Size;
int Name[Size];
int Next[Size];
int Free[Size];
int Stack[Size];
int StackTop;

}

initialize(class,size)

class.Size ← size
class.StackTop ← -1
for i ← 1 to size-1

class.Name[i] ← ⊥
class.Next[i] ← ∞
class.Free[i] ← true
push(i,class)

Figure 10.3: Representing a register class in c

allocate(vr,class)

if (class.StackTop ≥ 0)
i ← pop(class)

else
i ← j that maximizes

class.Next[j]

store contents of i

class.Name[i] ← vr
class.Next[i] ← dist(vr)
class.Free[i] ← false

return i

free(i,class)

if (class.Free[i] 	= true)
push(i,class)
class.Name[i] ← ⊥
class.Next[i] ← ∞
class.Free[i] ← true

Each class maintains a list of free physical registers, in stack form. Allocate
returns a physical register from the free list of class, if one exists. Otherwise,
it selects the value stored in class that is used farthest in the future, stores it,
and re-allocates the physical register for vr. Free pushes the register onto the
stack and resets its fields in the class structure.

The function dist(vr) returns the index in the block of the next reference to
vr. The compiler can annotate each reference in the block with the appropriate
dist value by making a single backward pass over the block.

The net effect of this bottom-up technique is straightforward. Initially, it
assumes that the physical registers are unoccupied and places them on a free
list. For the first few operations, it satisfies demand from the free list. When
the allocator needs another register and discovers that the free list is empty,
it must spill some existing value from a register to memory. It picks the value
whose next use is farthest in the future. As long as the cost of spilling a value
is the same for all the registers, then this frees up the register for the longest
period of time. In some sense, it maximizes the benefit obtained for the cost of
the spill. This algorithm is quite old, it was first proposed by Sheldon Best for
the original Fortran compiler in the mid-1950s.

This algorithm produces excellent local allocations. Several authors have
argued that it produces optimal allocations. Complications that arise in practice
make the argument for optimality tenuous. At any point in the allocation, some

262 CHAPTER 10. REGISTER ALLOCATION

values in registers may need to be stored on a spill, while others may not. For
example, if the register contains a known constant value, the store is superfluous
since the allocator can recreate the value without a copy in memory. Similarly, a
value that was created by a load from memory need not be stored. A value that
need not be stored is considered clean, while a value that needs a store is dirty. A
version of the bottom-up local allocator that first spills the furthest clean value,
and, if no clean value remains, then spills the furthest dirty value, will produce
excellent local allocations—better than the top-down allocator described above.

The bottom-up local allocator differs from the top-down local allocator in the
way that it handles individual values. The top-down allocator devotes a physical
register to a virtual register for the entire block. The bottom-up allocator
assigns a physical register to a virtual register for the distance between two
consecutive references to the virtual register. It reconsiders that decision at
each invocation of allocate—that is, each time that it needs another register.
Thus, the bottom-up algorithm can, and does, produce allocations where a single
virtual register is kept in different locations at different points in its lifetime.
Similar behavior can be retrofitted into the top-down allocator. (See question
1 at the end of the chapter.)

10.3 Moving beyond single blocks

We have seen how to build good allocators for single blocks. Working top down,
we arrived at the frequency count allocator. Working bottom up, we arrived at
Best’s allocator. Using the lessons from Best’s allocator, we can improve the
frequency count allocator. The next step is to extend the scope of allocation
beyond single basic blocks.

Unfortunately, moving from a single block to multiple blocks invalidates
many of the assumptions that underlie the local allocation schemes. For exam-
ple, with multiple blocks, the allocator can no longer assume that values do not
flow between blocks. The entire purpose of moving to a large scope for alloca-
tion is to account for the fact that values flow between blocks and to generate
allocations that handle such flow efficiently. The allocator must correctly han-
dle values computed in previous blocks, and it must preserve values for uses in
later blocks. To accomplish this, the allocator needs a more sophisticated way
of handling “values” than the local allocators use.

10.3.1 Liveness and Live Ranges

Regional and global allocators try to assign values to registers in a way that
coordinates their use across multiple blocks. To accomplish this, the allocators
compute a new name space that reflects the actual patterns of definition and use
for each value. Rather than considering variables or values, the allocator works
from a basis of live ranges. A single live range consists of a set of definitions
and uses that are related to each other because their values flow together. That
is, a live range contains a set of definitions and a set of uses. This set is self-
contained, in the sense that every definition that can reach a use is in the same
live range. Symmetrically, every use that a definition can reach is in the same

10.3. MOVING BEYOND SINGLE BLOCKS 263

1. loadI @stack ⇒ rarp

2. loadAI rarp, 0 ⇒ rw

3. loadI 2 ⇒ r2

4. loadAI rarp, 8 ⇒ rx

5. loadAI rarp, 16 ⇒ ry

6. loadAI rarp, 24 ⇒ rz

7. mult rw, r2 ⇒ rw

8. mult rw, rx ⇒ rw

9. mult rw, ry ⇒ rw

10. mult rw, rz ⇒ rw

11. storeAI rw ⇒ rarp, 0

Live Register
Range Name Interval

1 rarp [1,11]
2 rw [2,7]
3 rw [7,8]
4 rw [8,9]
5 rw [9,10]
6 rw [10,11]
7 r2 [3,7]
8 rx [4,8]
9 ry [5,9]
10 rz [6,10]

Figure 10.4: Live ranges in a basic block

live range as the definition.
The term “live range” relies, implicitly, on the notion of liveness—one of the

fundamental ideas in compile-time analysis of programs.

At some point p in a procedure, a value v is live if it has been defined
along a path from the procedure’s entry to p and a path along which
v is not redefined exists from p to a use of v

Thus, if v is live at p, then v must be preserved because subsequent execution
may use v. The definition is carefully worded. A path exists from p to a use of
v. This does not guarantee that any particular execution will follow the path,
or that any execution will ever follow the path. The existence of such a path,
however, forces the compiler to preserve v for the potential use.

The set of live ranges is distinct from the set of variables or values. Every
value computed in the code is part of some live range, even if it has no name
in the original source code. Thus, the intermediate results produced by address
computations have live ranges, just the same as programmer-named variables,
array elements, and addresses loaded for use as a branch target. A specific
programmer-named variable may have many distinct live ranges. A register
allocator that uses live ranges can place those distinct live ranges in different
registers. Thus, a variable, x, might reside in different registers at two distinct
points in the executing program.

To make these ideas concrete, consider the problem of finding live ranges
in a single basic block. Figure 10.4 shows the block from Figure 1.1, with an
initial operation added to initialize rarp. All other references to rarp inside the
block are uses rather than definitions. Thus, a single value for rarp is used
throughout the block. The interval [1, 11] represents this live range. Consider
rw. Operation 1 defines rw; operation 6 uses that value. Operations 6, 7, 8,
and 9 each define a new value stored in rw; in each case, the following operation
uses the value. Thus, the register named rw in the figure holds a number of
distinct live ranges—specifically [2, 7], [7, 8], [8, 9], [9, 10], and [10, 1]. A register

264 CHAPTER 10. REGISTER ALLOCATION

loadAI r0,@x ⇒ r2B3 loadAI r0,@x ⇒ r4B4

storeAI r7 ⇒ ro,@xB1 storeAI r3 ⇒ ro,@xB2

�

X
X
X
X
X
X
X
X
X
X
X
X
XXz �

Figure 10.5: Problems with multiple blocks

allocator need not keep these distinct live ranges of rw in the same register.
Instead, each live range in the block can be treated as an independent value for
allocation and assignment. The table on the right side of Figure 10.4 shows all
of the live ranges in the block.

To find live ranges in regions larger than a single block, the compiler must
discover the set of values that are live on entry to each block, as well as those that
are live on exit from each block. To summarize this information, the compiler
can annotate each basic block b with sets LiveIn(b) and LiveOut(b)

LiveIn A value x ∈ LiveIn(b) if and only if it is defined along some path
through the control-flow graph that leads to b and it is either used directly
in b, or is in LiveOut(b). That is, x ∈ LiveIn(b) implies that x is live
just before the first operation in b.

LiveOut A value x ∈ LiveOut(b) if and only if it is used along some path
leaving b, and it is either defined in b or is in LiveIn(b). That is, x is live
immediately after the last operation in b.

Chapter 13 shows how to compute LiveIn and LiveOut sets for each block.
At any point p in the code, values that are not live need no register. Similarly,
the only values that need registers at point p are those values that are live at
p, or some subset of those values. Local register allocators, when implemented
in real compilers, use Live sets to determine when a value must be preserved
in memory beyond its last use in the block. Global allocators use analogous
information to discover live ranges and to guide the allocation process.

10.3.2 Complications at Block Boundaries

A compiler that uses local register allocation might compute LiveIn and Live-

Out sets for each block as a necessary prelude to provide the local allocator
with information about the status of values at the block’s entry and its exit.
The presence of these sets can simplify the task of making the allocations for
individual blocks behave appropriately when control flows from one block to
another. For example, a value in LiveOut(b) must be stored back to memory
after a definition in b; this ensures that the value will be in the expected loca-
tion when it is loaded in a subsequent block. In contrast, if the value is not in
LiveOut(b), it need not be stored, except as a spill for later use inside b.

Some of the effects introduced by considering multiple blocks complicate
either assignment or allocation. Figure 10.5 suggests some of the complications

10.3. MOVING BEYOND SINGLE BLOCKS 265

that arise in global assignment. Consider the transition that occurs along the
edge from block B1 to block B3.

B1 has the value of program variable x in r7. B3 wants it in r2. When it
processes B1, the allocator has no knowledge of the context created by the other
blocks, so it must store x back to x’s location in memory (at offset @x from
the arp in r0). Similarly, when the allocator processes B3, it has no knowledge
about the behavior of B1, so it must load x from memory. Of course, if it
knew the results of allocation on B1, it could assign x to r7 and make the load
unnecessary. In the absence of this knowledge, it must generate the load. The
references to x in B2 and B4 further complicate the problem. Any attempt to
coordinate x’s assignment across blocks must consider both those blocks since
B4 is a successor of B1, and any change in B4’s treatment of x has an impact in
its other predecessor, B2.

Similar effects arise with allocation. What if x were not referenced in B2?
Even if we could coordinate assignment globally, to ensure that x was always in
r7 when it was used, the allocator would need to insert a load of x at the end
of B2 to let B4 avoid the initial load of x. Of course, if B2 had other successors,
they might not reference x and might need another value in r7.

These fringe effects at block boundaries can become complex. They do not
fit into the local allocators because they deal with phenomena that are entirely
outside its scope. If the allocator manages to insert a few extra instructions that
iron out the differences, it may choose to insert them in the wrong block—for
example, in a block that forms the body of an inner loop rather than in that
loop’s header block. The local models assume that all instructions execute with
the same frequency; stretching the models to handle larger regions invalidates
that assumption, too. The difference between a good allocation and a poor one
may be a few instructions in the most heavily executed block in the code.

A second issue, more subtle but more problematic, arises when we try to
stretch the local allocation paradigms beyond single blocks. Consider using
Best’s algorithm on block B1. With only one block, the notion of the “furthest”
next reference is clear. The local algorithm has a unique distance to each next
reference. With multiple successor blocks, the allocator must choose between
references along different paths. For the last reference to some value y in B1, the
next reference is either the first reference to y in B3 or the first reference to y in
B4. These two references are unlikely to be in the same position, relative to the
end of B1. Alternatively, B3 might not contain a reference to y, while B4 does.
Even if both blocks use y, and the references are equidistant in the input code,
local spilling in one block might make them different in unpredictable ways. The
basic premise of the bottom-up local method begins to crumble in the presence
of multiple control-flow paths.

All of these problems suggest that a different approach is needed to move
beyond local allocation to regional or global allocation. Indeed, the successful
global allocation algorithms bear little resemblance to the local algorithms.

266 CHAPTER 10. REGISTER ALLOCATION

10.4 Global Register Allocation and Assignment

The register allocator’s goal is to minimize the execution time required for in-
structions that it must insert. This is a global issue, not a local one. From the
perspective of execution time, the difference between two different allocations
for the same basic code lies in the number of loads, stores, and copy operations
inserted by the allocator and their placement in the code. Since different blocks
execute different numbers of times, the placement of spills has a strong impact
on the amount of execution time spent in spill code. Since block execution
frequencies can vary from run to run, the notion of a best allocation is some-
what tenuous—it must be conditioned to a particular set of block execution
frequencies.

Global register allocation differs from local allocation in two fundamental
ways.

1. The structure of a live range can be more complex than in the local allo-
cator. In a single block, a live range is just an interval in a linear string of
operations. Globally, a live range is the set of definitions that can reach a
given use, along with all the uses that those definitions can reach. Finding
live ranges is more complex in a global allocator.

2. Distinct references to the same variable can execute a different number
of times. In a single block, if any operation executes, all the operations
execute (unless an exception occurs), so the cost of spilling is uniform. In
a larger scope, each reference can be in a different block, so the cost of
spilling depends on where the references are found. When it must spill,
the global allocator should consider the spill cost of each live range that
is a candidate to spill.

Any global allocator must address both these issues. This makes global alloca-
tion substantially more complex than local allocation.

To address the issue of complex live ranges, global allocators explicitly cre-
ate a name space where each distinct live range has a unique name. Thus, the
allocator maps a live range onto either a physical register or a memory location.
To accomplish this, the global allocator first constructs live ranges and renames
all the virtual register references in the code to reflect the new name space con-
structed around the live ranges. To address the issue of execution frequencies,
the allocator can annotate each reference or each basic block with an estimated
execution frequency. The estimates can come from static analysis or from pro-
file data gathered during actual executions of the program. These estimated
execution frequencies will be used later in the allocator to guide decisions about
allocation and spilling.

Finally, global allocators must make decisions about allocation and assign-
ment. They must decide when two values can share a single register, and they
must modify the code to map each such value to a specific register. To accom-
plish these tasks, the allocator needs a model that tells it when two values can
(and cannot) share a single register. It also needs an algorithm that can use the

10.4. GLOBAL REGISTER ALLOCATION AND ASSIGNMENT 267

Digression: Graph Coloring

Many global register allocators use graph coloring as a paradigm to model
the underlying allocation problem. For an arbitrary graph G, a coloring of
G assigns a color to each node in G so that no pair of adjacent nodes have
the same color. A coloring that uses k colors is termed a k coloring, and k is
the graph’s chromatic number. Consider the following graphs:

i1

i2 i3 i4

i5

�
�
�

�
�
�

�
�
�

�
�
�

i1

i2 i3 i4

i5

�
�
�

�
�
�

�
�
�

�
�
�

The graph on the left is 2-colorable. For example, assigning blue to nodes
1 and 5, and red to nodes 2, 3, and 4 produces the desired result. Adding
one edge, as shown on the right, makes the graph 3-colorable. (Assign blue
to nodes 1 and 5, red to nodes 2 and 4, and white to node 3.) No 2-coloring
exists for the right-hand graph.

For a given graph, the problem of finding its minimal chromatic num-
ber is np-complete. Similarly, the problem of determining if a graph is
k-colorable, for some fixed k, is np-complete. Algorithms that use graph-
coloring as a paradigm for allocating finite resources use approximate meth-
ods that try to discover colorings into the set of available resources.

model to derive effective and efficient allocations. Many global allocators oper-
ate on a graph-coloring paradigm. They build a graph to model the conflicts
between registers and attempt to find an appropriate coloring for the graph.
The allocators that we discuss in this section all operate within this paradigm.

10.4.1 Discovering Global Live Ranges

To construct live ranges, the compiler must discover the relationships that exist
between different definitions and uses. The allocator must derive a name space
that groups together all the definitions that reach a single use and all the uses
that a single definition can reach. This suggests an approach where the compiler
assigns each definition a unique name and merges definition names together
when they reach a common use.

The static single assignment form (ssa) of the code provides a natural start-
ing point for this construction. Recall, from Section 6.3.6, that ssa assigns a
unique name to each definition and inserts φ-functions to ensure that each use
refers to only one definition. The φ-functions concisely record the fact that
distinct definitions on different paths in the control-flow graph reach a single
reference. Two definitions that flow into a φ-function are belong in the same
live range because the φ-function creates a name representing both values. Any

268 CHAPTER 10. REGISTER ALLOCATION

operation that references the name created by the φ-function uses one of these
values; the specific value depends on how control-flow reached the φ-function.
Because the two definitions can be referenced in the same use, they belong in
the same register. Thus, φ-functions are the key to building live ranges.

To build live ranges from ssa, the allocator uses the disjoint-set union-find
algorithm [27] and makes a single pass over the code. First, the allocator assigns
a distinct set to each ssa name, or definition. Next, it examines each φ-function
in the program, and unions together the sets of each φ-function parameter.
After all the φ-functions have been processed, the resulting sets represent the
maximal live ranges of the code. At this point, the allocator can rewrite the
code to use the live range names. (Alternatively, it can maintain a mapping
between ssa names and live-range names, and add a level of indirection in its
subsequent manipulations.)

10.4.2 Estimating Global Spill Costs

To let it make informed spill decisions, the global allocator must estimate the
costs of spilling each value. The value might be a single reference, or it might
be an entire live range. The cost of a spill has three components: the address
computation, the memory operation, and an estimated execution frequency.

The compiler can choose the spill location in a way that minimizes the
cost of addressing; usually, this means keeping spilled values in the procedure’s
activation record. In this scenario, the compiler can generate an operation such
as loadAI or storeAI for the spill. As long as the arp is in a register, the spill
should not require additional registers for the address computation.

The cost of the memory operation is, in general, unavoidable. If the target
machine has local (i.e., on-chip) memory that is not cached, the compiler might
use that memory for spilling. More typically, the compiler needs to save the
value in the computer’s main memory and to restore it from that memory when
a later operation needs the value. This entails the full cost of a load or store
operation. As memory latencies rise, the cost of these operations grows. To
make matters somewhat worse, the allocator only inserts spill operations when
it absolutely needs a register. Thus, many spill operations occur in code where
demand for registers is high. This may keep the scheduler from moving those
operations far enough to hide the memory latency. The compiler must hope
that spill locations stay in cache. (Paradoxically, those locations only stay in
the cache if they are accessed often enough to avoid replacement—suggesting
that the code is executing too many spills.)

Negative Spill Costs A live range that contains a load, a store, and no other
uses should receive a negative spill cost if the load and store refer to the same
address. (Such a live range can result from transformations intended to improve
the code; for example, if the use were optimized away and the store resulted
from a procedure call rather than the definition of a new value.) Any live range
with a negative spill cost should be spilled, since doing so decreases demand for
registers and removes instructions from the code.

10.4. GLOBAL REGISTER ALLOCATION AND ASSIGNMENT 269

Infinite Spill Costs Some live ranges are short enough that spilling them never
helps the allocation. Consider a use that immediately follows its definition.
Spilling the definition and use produces two short live ranges. The first contains
the definition followed by a store; the second live range contains a load followed
by the use. Neither of these new live ranges uses fewer registers than the original
live range, so the spill produced no benefit. The allocator should assign the
original live range a spill cost of infinity.

In general, a live range should have infinite spill cost if no interfering live
range ends between its definitions and its uses, and no more than k − 1 values
are defined between the definitions and the uses. The first condition stipulates
that availability of registers does not change between the definitions and uses.
The second avoids a pathological situation that can arise from a series of spilled
copies—m loads followed by m stores, where m � k. This can create a set of
more than k mutually interfering live ranges; if the allocator assigns them all
infinite spill costs, it will be unable to resolve the situation.

Accounting for Execution Frequencies To account for the different execution
frequencies of the basic blocks in the control-flow graph, the compiler must
annotate each block (if not each reference) with an estimated execution count.
Most compilers use simple heuristics to estimate execution costs. A common
method is to assume that each loop executes ten times. Thus, it assigns a count
of ten to a load inside one loop, and a count of one hundred to a load inside
two loops. An unpredictable if-then-else might decrease the execution count
by half. In practice, these estimates ensure a bias toward spilling in outer loops
rather than inner loops.

To estimate the spill cost for a single reference, the allocator forms the
product

(addressing cost + cost of memory operation) × execution frequency .

For each live range, it sums the costs of the individual references. This requires
a pass over all the blocks in the code. The allocator can pre-compute these costs
for all live ranges, or it can wait until it discovers that it must spill a value.

10.4.3 Interferences and the Interference Graph

The fundamental effect that a global register allocator must model is the com-
petition between values for space in the target machine’s register set. Consider
two live ranges, lri and lrj . If there exists an operation where both lri and
lrj are live, then they cannot reside in the same register. (In general, a physical
register can hold only one value.) We say that lri and lrj interfere.

To model the allocation problem, the compiler can build an interference
graph, I. Nodes in I represent individual live ranges. Edges in I represent in-
terferences. Thus, an edge 〈ni, nj〉 ∈ I exists if and only if the corresponding
live ranges, lri and lrj are both live at some operation. The left side of Fig-
ure 10.6 shows a code fragment that defines four live ranges, lrh, lri, lrj , and
lrk. The right side shows the corresponding interference graph. lrh interferes

270 CHAPTER 10. REGISTER ALLOCATION

b0

lrh ← . . .

b1 lri ← . . .

. . .← lri
lrk ← . . .

b2 lrj ← . . .

lrk ← lrj

b3
. . .← lrh
. . .← lrk

�
��

�
�R

�
�R

�
��

Code fragment

lri lrj

lrh lrk

�
�
�

Interference graph

Figure 10.6: Live ranges and interference

with each of the other live ranges. The rest of the live ranges, however, do not
interfere with each other.

If the compiler can construct a k-coloring for I, where k ≤ the size of the
target machine’s register set, then it can map the colors directly onto physical
registers to produce a legal allocation. In the example, lrh receives its own
color because it interferes with the other live ranges. The other live ranges can
all share a single color. Thus, the graph is 2-colorable and the code fragment,
as shown, can be rewritten to use just two registers.

Consider what would happen if another phase of the compiler reordered
the two operations at the end of b1. This makes lrk and lri simultaneously
live. Since they now interfere, the allocator must add the edge 〈lrk, lri〉 to
I. The resulting graph is not 2-colorable. The graph is small enough to prove
this by enumeration. To handle this graph, the allocator has two options: use
three colors (registers), or, if the target machine has only two registers, to spill
one of lri or lrh before the definition of lrk in b1. Of course, the allocator
could also reorder the two operations and eliminate the interference between lri

and lrk. Typically, register allocators do not reorder operations to eliminate
interferences. Instead, allocators assume a fixed order of operations and leave
ordering questions to the instruction scheduler (see Chapter 11).

Building the Interference Graph Once the allocator has discovered global live
ranges and annotated each basic block in the code with its LiveOut set, it can
construct the interference graph by making a simple linear pass over each block.
Figure 10.7 shows the basic algorithm. The compiler uses the block’s LiveOut

set as an initial value for LiveNow and works its way backward through the
block, updating LiveNow to reflect the operations already processed. At each
operation, it adds an edge from the live range being defined to each live range

10.4. GLOBAL REGISTER ALLOCATION AND ASSIGNMENT 271

for each lr, i
create a node ni ∈ N

for each basic block b
LiveNow(b) ← LiveOut(b)
for opn, opn−1, opn−2, . . . op1 in b

with form opi lrj,lrk ⇒ lrl

for each lri in LiveNow(b),

add 〈lrl,lri〉 to E

remove lrl from LiveNow(b)
add lrj & lrk to LiveNow(b)

Figure 10.7: Constructing the Interference Graph

in LiveNow. It then incrementally updates LiveNow and moves up the block
by an instruction.

This method of computing interferences takes time proportional to the size
of the LiveNow sets at each operation. The naive algorithm would add edges
between each pair of values in LiveNow at each operation; that would require
time proportional to the square of the set sizes at each operation. The naive
algorithm also introduces interferences between inputs to an operation and its
output. This creates an implicit assumption that each value is live beyond its
last use, and prevents the allocator from using the same register for an input
and an output in the same operation.

Notice that a copy operation, such as i2i lri ⇒ lrj, does not create an
interference between lri and lrj. In fact, lri and lrj may occupy the same
physical register, unless subsequent context creates an interference. Thus, a
copy that occurs as the last use of some live range can often be eliminated by
combining, or coalescing, the two live ranges (see Section 10.4.6).

To improve efficiency later in the allocator, several authors recommend build-
ing two representations for I, a lower-diagonal bit-matrix and a set of adjacency
lists. The bit matrix allows a constant time test for interference, while the ad-
jacency lists make iterating over a node’s neighbors efficient. The bit matrix
might be replaced with a hash table; studies have shown that this can produce
space savings for sufficiently large interference graphs. The compiler writer may
also treat disjoint register classes as separate allocation problems to reduce both
the size of I and the overall allocation time.

Building an Allocator To build a global allocator based on the graph-coloring
paradigm, the compiler writer needs two additional mechanisms. First, the al-
locator needs an efficient technique for discovering k-colorings. Unfortunately,
the problem of determining if a k-coloring exists for a particular graph is np-

complete. Thus, register allocators use fast approximations that are not guar-
anteed to find a k-coloring. Second, the allocator needs a strategy for handling

272 CHAPTER 10. REGISTER ALLOCATION

the case when no color remains for a specific live range. Most coloring allocators
approach this by rewriting the code to change the allocation problem. The allo-
cator picks one or more live ranges to modify. It either spills or splits the chosen
live range. Spilling turns the chosen live range into a set of tiny live ranges, one
at each definition and use of the original live range. Splitting breaks the live
range into smaller, but non-trivial pieces. In either case, the transformed code
performs the same computation, but has a different interference graph. If the
changes are effective, the new interference graph is easier to color.

10.4.4 Top-down Coloring

A top-down, graph-coloring, global register allocator uses low-level information
to assign colors to individual live ranges, and high-level information to select
the order in which it colors live ranges. To find a color for a specific live range,
lri, the allocator tallies the colors already assigned to lri’s neighbors in I. If
the set of neighbors’ colors is incomplete—that is, one or more colors are not
used—the allocator can assign an unused color to lri. If the set of neighbors’
colors is complete, then no color is available for lri and the allocator must use
its strategy for uncolored live ranges.

To order the live ranges, the top-down allocator uses an external ranking.
The priority-based, graph-coloring allocators rank live ranges by the estimated
run-time savings that accrue from keeping the live range in a register. These
estimates are analogous to the spill-costs described in Section 10.4.2. The top-
down global allocator uses registers for the most important values, as identified
by these rankings.

The allocator considers the live ranges, in rank order, and attempts to assign
a color to each of them. If no color is available for a live range, the allocator
invokes the spilling or splitting mechanism to handle the uncolored live range.
To improve the process, the allocator can partition the live ranges into two
sets—constrained live ranges and unconstrained live ranges. A live range is
constrained if it has k or more neighbors—that is, it has degree ≥ k in I. (We
denote “degree of lri” as lr

◦
i , so lri is constrained if and only if lr

◦
i ≥ k.)

Constrained live ranges are colored first, in rank order. After all constrained
live ranges have been handled, the unconstrained live ranges are colored, in any
order. An unconstrained live range must receive a color. When lr

◦
i < k, no

assignment of colors to lri’s neighbors can prevent lri from receiving a color.
By handling constrained live ranges first, the allocator avoids some potential

spills. The alternative, working in a straight priority order, would let the allo-
cator assign all available colors to unconstrained, but higher priority, neighbors
of lri. This could force lri to remain uncolored, even though colorings of its
unconstrained neighbors that leave a color for lri must exist.

Handling Spills When the top-down allocator encounters a live range that can-
not be colored, it must either spill or split some set of live ranges to change
the problem. Since all previously colored live ranges were ranked higher than
the uncolored live range, it makes sense to spill the uncolored live range rather
than a previously colored live range. The allocator can consider re-coloring one

10.4. GLOBAL REGISTER ALLOCATION AND ASSIGNMENT 273

of the previously colored live ranges, but it must exercise care to avoid the full
generality and cost of backtracking.

To spill lri, the allocator inserts a store after every definition of lri and
a load before each use of lri. If the memory operations need registers, the
allocator can reserve enough registers to handle them. The number of registers
needed for this purpose is a function of the target machine’s instruction set
architecture. Reserving these registers simplifies spilling.

An alternative to reserving registers for spill code is to look for free colors
at each definition and each use; this strategy can lead to a situation where the
allocator must retroactively spill a previously colored live range. (The allo-
cator would recompute interferences at each spill site and compute the set of
neighbor’s colors for the spill site. If this process does not discover an open
color at each spill site (or reference to the live range being spilled), the allo-
cator would spill the lowest priority neighbor of the spill site. The potential
for recursively spilling already colored live ranges has led most implementors
of top-down, priority-based allocators to reserve spill registers, instead.) The
paradox, of course, is that reserving registers for spilling may cause spilling; not
reserving those registers can force the allocator to iterate the entire allocation
procedure.

Splitting the Live Range Spilling changes the coloring problem. The entire
uncolored live range is broken into a series of tiny live ranges—so small that
spilling them is counterproductive. A related way to change the problem is
to take the uncolored live range and break it into pieces that are larger than
a single reference. If these new live ranges interfere, individually, with fewer
live ranges than the original live range, then the allocator may find colors for
them. For example, if the new live ranges are unconstrained, colors must exist
for them. This process, called live-range splitting, can lead to allocations that
insert fewer loads and stores than would be needed to spill the entire live range.

The first top-down, priority-based coloring allocator broke the uncolored live
range into single-block live ranges, counted interferences for each resulting live
range, and then recombined live ranges from adjacent blocks when the combined
live range remained unconstrained. It placed an arbitrary upper limit on the
number of blocks that a split live range could span. Loads and stores were
added at the starting and ending points of each split live range. The allocator
spilled any split live ranges that remained uncolorable.

10.4.5 Bottom-up Coloring

Bottom-up, graph-coloring register allocators use many of the same mechanisms
as the top-down global allocators. These allocators discover live ranges, build
an interference graph, attempt to color it, and generate spill code when needed.
The major distinction between top-down and bottom-up allocators lies in the
mechanism used to order live ranges for coloring. Where the top-down allocator
uses high-level information to select an order for coloring, the bottom-up alloca-
tors compute an order from detailed structural knowledge about the interference
graph, I. These allocators construct a linear ordering in which to consider the

274 CHAPTER 10. REGISTER ALLOCATION

initialize stack

while (N 	= ∅)
if ∃ n ∈ N with n◦ < k

node ← n
else

node ← n picked from N

remove node and its edges from I
push node onto stack

Figure 10.8: Computing a bottom-up ordering

live ranges, and then assign colors in that order.
To order the live ranges, bottom-up, graph-coloring allocators rely on a

familiar observation:

A live range with fewer than k neighbors must receive a color, inde-
pendent of the assignment of colors to its neighbors.

The top-down allocators use this fact to partition the live ranges into constrained
and unconstrained nodes. The bottom-up allocators use it to compute the order
in which live ranges will be assigned colors, using the simple algorithm shown in
Figure 10.8. The allocator repeatedly removes a node from the graph and places
it on the stack. It uses two distinct mechanisms to select the node to remove
next. The first clause takes a node that is unconstrained in the graph from which
it is removed. The second clause, invoked only when every remaining node is
constrained, picks a node using some external criteria. When the loop halts,
the graph is empty and the stack contains all the nodes in order of removal.

To color the graph, the allocator rebuilds the interference graph in the order
represented by the stack—the reverse of the order in which the allocator removed
them from the graph. It repeatedly pops a node n from the stack, inserts n and
its edges back into I, and looks for a color that works for n. At a high-level,
the algorithm looks like:

while (stack 	= ∅)
node ← pop(stack)
insert node and its edges into I
color node

To color a node n, the allocator tallies the colors of n’s neighbors in the current
approximation to I and assigns n an unused color. If no color remains for n, it
is left uncolored.

When the stack is empty, I has been rebuilt. If every node received a color,
the allocator declares success and rewrites the code, replacing live range names
with physical registers. If any node remains uncolored, the allocator either spills
the corresponding live range or splits it into smaller pieces. At this point, the
classic bottom-up allocators rewrite the code to reflect the spills and splits, and

10.4. GLOBAL REGISTER ALLOCATION AND ASSIGNMENT 275

repeat the entire process—finding live ranges, building I, and coloring it. The
process repeats until every node in I receives a color. Typically, the allocator
halts in a couple of iterations. Of course, a bottom-up allocator could reserve
registers for spilling, as described with the top-down allocator. This would allow
it to halt after a single pass.

Why does this work? The bottom-up allocator inserts each node back into the
graph from which it was removed. Thus, if the node representing lri was
removed from I because it was unconstrained at the time, it is re-inserted into
an approximation to I where it is also unconstrained—and a color must exist
for it. The only nodes that can be uncolored, then, are nodes removed from
I using the spill metric in the second clause of Figure 10.8. These nodes are
inserted into graphs where they have k or more neighbors. A color may exist for
them. Assume that n◦ > k when the allocator inserts it into I. Those neighbors
cannot all have distinct colors. They can have at most k colors. If they have
precisely k colors, then the allocator finds no color for n. If, instead, they use
one color, or k−1 colors, or any number between 1 and k−1, then the allocator
discovers a color for n.

The removal process determines the order in which nodes are colored. This
order is crucial, in that it determines whether or not colors are available. For
nodes removed from the graph by virtue of having low degree in the current
graph, the order is unimportant with respect to the remaining nodes. The
order may be important with respect to nodes already on the stack; after all,
the current node may have been constrained until some of the earlier nodes
were removed. For nodes removed from the graph by the second criterion (“node
picked from N”), the order is crucial. This second criterion is invoked only when
every remaining node has k or more neighbors. Thus, the remaining nodes form
a heavily connected subset of I. The heuristic used to “pick” the node is often
called the spill metric. The original bottom-up, graph-coloring allocator used a
simple spill metric. It picked the node that minimized the fraction

estimated cost
current degree.

This picks a node that is relatively inexpensive to spill but lowers the degree of
many other nodes. (Each remaining node has more than k−1 neighbors.) Other
spill metrics have been tried, including minimizing estimated cost, minimizing
the number of inserted operations, and maximizing removed edges. Since the
actual coloring process is fast relative to building I, the allocator might try
several colorings, each using a different spill metric, and retain the best result.

10.4.6 Coalescing Live Ranges to Reduce Degree

A powerful coalescing phase can be built that uses the interference graph to
determine when two live ranges that are connected by a copy can be coalesced,
or combined. Consider the operation i2i lri ⇒ lrj. If lri and lrj do not
otherwise interfere, the operation can be eliminated and all references to lrj

rewritten to use lri. This has several beneficial effects. It directly eliminates the

276 CHAPTER 10. REGISTER ALLOCATION

add lrt,lru ⇒ lri

...
i2i lri ⇒ lrj

i2i lri ⇒ lrk

...
add lrj,lrw ⇒ lrx

add lrk,lry ⇒ lrz

Before

add lrt,lru ⇒ lrij

...

i2i lrij ⇒ lrk

...
add lrij,lrw ⇒ lrx

add lrk,lry ⇒ lrz

After

Figure 10.9: Coalescing live ranges

copy operation, making the code smaller and, potentially, faster. It reduces the
degree of any lrk that interfered with both lri and lrj. It shrinks the set of live
ranges, making I and many of the data structures related to I smaller. Because
these effects help in allocation, coalescing is often done before the coloring stage
in a global allocator.

Notice that forming lrij cannot increase the degree of any of its neighbors
in I. It can decrease their degree, or leave it unchanged, but it cannot increase
their degree.

Figure 10.9 shows an example. The relevant live ranges are lri, lrj, and
lrk. In the original code, shown on the left, lrj is live at the definition of lrk,
so they interfere. However, neither lrj nor lrk interfere with lri, so both of
the copies are candidates for coalescing. The fragment on the right shows the
result of coalescing lri and lrj to produce lrij.

Because coalescing two live ranges can prevent subsequent coalescing with
other live ranges, order matters. In principle, the compiler should coalesce the
most heavily executed copies first. In practice, allocators coalesce copies in order
by the loop nesting depth of the block where the copy is found. Coalescing works
from deeply nested to least deeply nested, on the theory that this gives highest
priority to eliminating copy operations in innermost loops.

To perform coalescing, the allocator walks each block and examines any
copy instructions. If the source and destination live ranges do not interfere, it
combines them, eliminates the copy, and updates I to reflect the combination.
The allocator can conservatively update I to reflect the change by moving all
edges from the node for the destination live range to the node representing
the source live range. This update, while not precise, allows the allocator to
continue coalescing. In practice, allocators coalesce every live range allowed by
I, then rewrite the code, rebuild I, and try again. The process typically halts
after a couple of rounds of coalescing. It can produce significant reductions in
the size of I. Briggs shows examples where coalescing eliminates up to one third
of the live ranges.

Figure 10.9 also shows the conservative nature of the interference graph
update. Coalescing lri and lrj into lrij actually eliminates an interference.

10.4. GLOBAL REGISTER ALLOCATION AND ASSIGNMENT 277

� � � �� �

no spills

find live
ranges

build
I

coalesce
spill
costs

find a
coloring

insert
spills

�

�

reserved
registers

�

��

spill and iterate

�
�

�
��

Figure 10.10: Structure of the coloring allocators

Careful scrutiny of the after fragment reveals that lrij does not interfere with
lrk, since lrk is not live at the definition of lrij and the copy defining lrk in-
troduces no interference between its source and its destination. Thus, rebuilding
I from the transformed code reveals that, in fact, lrij and lrk can be coalesced.
The conservative update left intact the interference between lrj and lrk, so it
unnecessarily prevented the allocator from coalescing lrij and lrk.

10.4.7 Review and Comparison

Both the top-down and the bottom-up coloring allocator work inside the same
basic framework, shown in Figure 10.10. They find live ranges, build the inter-
ference graph, coalesce live ranges, compute spill costs on the coalesced version
of the code, and attempt a coloring. The build-coalesce process is repeated un-
til it finds no more opportunities. After coloring, one of two situations occurs.
If every live range receives a color, then the code is rewritten using physical
register names and allocation terminates. If some live ranges remain uncolored,
then spill code is inserted.

If the allocator has reserved registers for spilling, then the allocator uses
those registers in the spill code, rewrites the colored registers with their physical
register names, and the process terminates. Otherwise, the allocator invents
new virtual register names to use in spilling and inserts the necessary loads and
stores to accomplish the spill. This changes the coloring problem slightly, so
the entire allocation process is repeated on the transformed code. When all live
ranges have a color, the allocator maps colors onto registers and rewrites the
code into its final form.

Of course, a top-down allocator could adopt the spill-and-iterate philosophy
used in the bottom-up allocator. This would eliminate the need to reserve
registers for spilling. Similarly, a bottom-up allocator could reserve several
registers for spilling and eliminate the need for iterating over the entire allocation
process. Spill-and-iterate trades additional compile time for a tighter allocation,
presumably using less spill code. Reserving registers produces a looser allocation
with improved speed.

The top-down allocator uses its priority ranking to order all the constrained
nodes. It colors the unconstrained nodes in arbitrary order, since the order
cannot change the fact that they receive a color. The bottom-up allocator con-

278 CHAPTER 10. REGISTER ALLOCATION

structs an order in which most nodes are colored in a graph where they are un-
constrained. Every node that the top-down allocator classifies as unconstrained
is colored by the bottom-up allocator, since it is unconstrained in the original
version of I and in each graph derived by removing nodes and edges from I.
The bottom-up allocator, using its incremental mechanism for removing nodes
and edges, classifies as unconstrained some of the nodes that the top-down al-
locator treats as constrained. These nodes may also be colored in the top-down
allocator; there is no clear way of comparing their performance on these nodes
without coding up both algorithms and running them.

The truly hard-to-color nodes are those that the bottom-up allocator re-
moves from the graph with its spill metric. The spill metric is only invoked
when every remaining node is constrained. These nodes form a densely con-
nected subset of I. In the top-down allocator, these nodes will be colored in an
order determined by their rank or priority. In the bottom-up allocator, the spill
metric uses that same ranking, moderated by a measurement of how many other
nodes have their degree lowered by each choice. Thus, the top-down allocator
chooses to spill low priority, constrained nodes, while the bottom-up allocator
spills nodes that are still constrained after all unconstrained nodes have been
removed. From this latter set, it picks the node that minimizes the spill metric.

10.4.8 Other Improvements to Graph-coloring Allocation

Many variations on these two basic styles of graph-coloring register allocation
have appeared in the literature. The first two address the compile-time speed
of global allocation. The latter two address the quality of the resulting code.

Imprecise Interference Graphs The original top-down, priority-based allocator
used an imprecise notion of interference: live ranges lri and lrj interfere if both
are live in the same basic block. This necessitated a prepass that performed
local allocation to handle values that are not live across a block boundary.
The advantage of this scheme is that building the interference graph is faster.
The weakness of the scheme lies in its imprecision. It overestimates the degree
of some nodes. It also rules out using the interference graph as a basis for
coalescing, since, by definition, two live ranges connected by a copy interfere.
(They must be live in the same block if they are connected by a copy operation.)

Breaking the Graph into Smaller Pieces If the interference graph can be sepa-
rated into components that are not connected, those disjoint components can be
colored independently. Since the size of the bit-matrix is O(N2), breaking it into
independent components saves both space and time. One way to split the graph
is to consider non-overlapping register classes separately, as with floating-point
registers and integer registers. A more complex alternative for large codes is to
discover clique separators that divide the interference graph into several disjoint
pieces. For large enough graphs, using a hash-table instead of the bit-matrix
may improve both speed and space, although the choice of a hash-function has
a critical impact on both.

10.4. GLOBAL REGISTER ALLOCATION AND ASSIGNMENT 279

Conservative Coalescing When the allocator coalesces two live ranges, lri and
lrj , the new live range, lrij , can be more constrained than either lri or lrj .
If lri and lrj have distinct neighbors, then lr

◦
ij > max(lr◦

i , lr
◦
j). If lr

◦
ij < k,

then creating lrij is strictly beneficial. However, if lr
◦
i < k and lr

◦
j < k,

but lr
◦
ij ≥ k, then coalescing lri and lrj can make I harder to color without

spilling. To avoid this problem, some compiler writers have used a limited form
of coalescing called conservative coalescing. In this scheme, the allocator only
combines lri and lrj when lr

◦
ij < k. This ensures that coalescing lri and lrj

does not make the interference graph harder to color.
If the allocator uses conservative coalescing, another improvement is pos-

sible. When the allocator reaches a point where every remaining live range
is constrained, the basic algorithm selects a spill candidate. An alternative ap-
proach is to reapply coalescing at this point. Live ranges that were not coalesced
because of the degree of the resulting live range may well coalesce in the reduced
graph. Coalescing may reduce the degree of nodes that interfere with both the
source and destination of the copy. Thus, this iterated coalescing can remove
additional copies and reduce the degree of nodes. It may create one or more
unconstrained nodes, and allow coloring to proceed. If it does not create any
unconstrained nodes, spilling proceeds as before.

Spilling Partial Live Ranges As described, both global allocators spill entire live
ranges. This can lead to overspilling if the demand for registers is low through
most of the live range and high in a small region. More sophisticated spilling
techniques can find the regions where spilling a live range is productive—that
is, the spill frees a register in a region where the register is needed. The splitting
scheme described for the top-down allocator achieved this result by considering
each block in the spilled live range separately. In a bottom-up allocator, sim-
ilar results can be achieved by spilling only in the region of interference. One
technique, called interference region spilling, identifies a set of live ranges that
interfere in the region of high demand and limits spilling to that region [9]. The
allocator can estimate the cost of several spilling strategies for the interference
region and compare those costs against the standard, spill-everywhere approach.
By letting the alternatives compete on an estimated cost basis, the allocator can
improve overall allocation.

Live Range Splitting Breaking a live range into pieces can improve the results of
coloring-based register allocation. In principle, splitting harnesses two distinct
effects. If the split live ranges have lower degree than the original, they may be
easier to color—possibly, unconstrained. If some of the split live ranges have
high degree and, therefore, spill, then splitting may prevent spilling other pieces
with lower degree. As a final, pragmatic effect, splitting introduces spills at the
points where the live range is broken. Careful selection of those split points
can control the placement of some spill code—for example, outside loops rather
than inside loops.

Many approaches to splitting have been tried. Section 10.4.4 described an
approach that breaks the live range into blocks and coalesces them back to-

280 CHAPTER 10. REGISTER ALLOCATION

gether when doing so does not change the allocator’s ability to assign a color.
Several approaches that use properties of the control-flow graph to choose split
points have been tried. Results from many have been inconsistent [13], however
two particular techniques show promise. A method called zero-cost splitting
capitalizes on holes in the instruction schedule to split live ranges and improve
both allocation and scheduling [39]. A technique called passive splitting uses a
directed interference graph to determine where splits should occur and selects
between splitting and spilling based on the estimated cost of each [26].

10.5 Regional Register Allocation

Even with global information, the global register allocators sometimes make
decisions that result in poor code quality locally. To address these shortcomings,
several techniques have appeared that are best described as regional allocators.
They perform allocation and assignment over regions larger than a single block,
but smaller than the entire program.

10.5.1 Hierarchical Register Allocation

The register allocator implemented in the compiler for the first Tera computer
uses a hierarchical strategy. It analyzes the control-flow graph to construct
a hierarchy of regions, or tiles, that capture the control flow of the program.
Tiles include loops and conditional constructs; the tiles form a tree that directly
encodes nesting and hierarchy among the tiles.

The allocator handles each tile independently, starting with the leaves of
the tile tree. Once a tile has been allocated, summary information about the
allocation is available for use in performing allocation for its parent in the tile
tree—the enclosing region of code. This hierarchical decomposition makes al-
location and spilling decisions more local in nature. For example, a particular
live range can reside in different registers in distinct tiles. The allocator inserts
code to reconcile allocations and assignments at tile boundaries. A preferenc-
ing mechanism attempts to reduce the amount of reconciliation code that the
allocator inserts.

This approach has two other benefits. First, the algorithm can accommodate
customized allocators for different tiles. For example, a version of the bottom-
up local allocator might be used for long blocks, and an allocator designed
for software pipelining applied to loops. The default allocator is a bottom-
up coloring allocator. The hierarchical approach irons out any rough edges
between these diverse allocators. Second, the algorithm can take advantage
of parallelism on the machine running the compiler. Unrelated tiles can be
allocated in parallel; serial dependences arise from the parent-child relationship
in the tile tree. On the Tera computer, this reduced the running time of the
compiler.

The primary drawback of the hierarchical approach lies in the code generated
at the boundaries between tiles. The preferencing mechanisms must eliminate
copies and spills at those locations, or else the tiles must be chosen so that those
locations execute less frequently than the code inside the tiles. The quality of

10.5. REGIONAL REGISTER ALLOCATION 281

allocation with a hierarchical scheme depends heavily on what happens in these
transitional regions.

10.5.2 Probabilistic Register Allocation

The probabilistic approach tries to address the shortcomings of graph-coloring
global allocators by trying to generalize the principles that underlying the
bottom-up, local allocator. The bottom-up, local allocator selects values to
spill based on the distance to their next use. This distance can be viewed as an
approximation to the probability that the value will remain in a register until its
next use; the value with the largest distance has the lowest probability of staying
in a register. From this perspective, the bottom-up, local allocator always spills
the value least likely to keep its register. (making it a self-fulfilling prophecy?)
The probabilistic technique uses this strong local technique to perform an initial
allocation. It then uses a combination of probabilities and estimated benefits to
make inter-block allocation decisions.

The global allocation phase of the probabilistic allocator breaks the code into
regions that reflect its loop structure. It estimates both the expected benefit
from keeping a live range in a register and the probability that the live range will
stay in a register throughout the region. The allocator computes a merit rank for
each live range as the product of its expected benefit and its global probability.
It allocates a register for the highest ranking live range, adjusts probabilities for
other live ranges to reflect this decision, and repeats the process. (Allocating
lri to a register decreases the probability that conflicting live ranges can receive
registers.) Allocation proceeds from inner loops to outer loops, and iterates until
no uses remain in the region with probability greater than zero.

Once all allocation decisions have been made, it uses graph coloring to per-
form assignment. It makes a clear separation of allocation from assignment;
allocation is performed using the bottom-up local method, followed by a prob-
abilistic, inter-block analog for global allocation decisions.

10.5.3 Register Allocation via Fusion

The fusion-based register allocator presents another model for using regional
information to drive global register allocation. The fusion allocator partitions
the code into regions, constructs interference graphs for each region, and then
fuses regions together to form the global interference graph. A region can be a
single block, an arbitrary set of connected blocks, a loop, or an entire function.
Regions are connected by control-flow edges.

The first step in the fusion allocator, after region formation, ensures that the
interference graph for each region is k-colorable. To accomplish this, the alloca-
tor may spill some values inside the region. The second step merges the disjoint
interference graphs for the code to form a single global interference graph. This
is the critical step in the fusion allocator, because the fusion operator main-
tains k-colorability. When two regions are fused, the allocator may need to split
some live ranges to maintain k-colorability. It relies on the observation that
only values live along an edge joining the two regions affect the new region’s

282 CHAPTER 10. REGISTER ALLOCATION

colorability. To order the fusion operations, it relies on a priority ordering of
the edges determined when regions are formed. The final step of the fusion
allocator assigns a physical register to each allocated live range. Because the
graph-merging operator maintains colorability, the allocator can use any of the
standard graph-coloring techniques.

The strength of the fusion allocator lies in the fusion operator. By only
splitting live ranges that are live across the edge or edges being combined, it
localizes the inter-region allocation decisions. Because fusion is applied in edge-
priority order, the code introduced by splitting tends to occur on low-priority
edges. To the extent that priorities reflect execution frequency, this should lead
to executing fewer allocator-inserted instructions.

Clearly, the critical problem for a fusion-based allocator is region formation.
If the regions reflect execution frequencies—that is, group together heavily exe-
cuted blocks and separate out blocks that execute infrequently, then it can force
spilling into those lower frequency blocks. If the regions are connected by edges
across which few values are live, the set of instructions introduced for splitting
can be kept small. However, if the chosen regions fail to capture some of these
properties, the rationalization for the fusion-based approach breaks down.

10.6 Harder Problems

This chapter has presented a selection of algorithms that attack problems in
register allocation. It has not, however, closed the book on allocation. Many
harder problems remain; there is room for improvement on several fronts.

10.6.1 Whole-program Allocation

The algorithms presented in this chapter all consider register allocation within
the context of a single procedure. Of course, whole programs are built from
multiple procedures. If global allocation produces better results than local al-
location by considering a larger scope, then should the compiler writer consider
performing allocation across entire programs? Just as the problem changes sig-
nificantly when allocation moves from a single block to an entire procedure,
it changes in important ways when allocation moves from single procedures
to entire programs. Any whole-program allocation scheme must deal with the
following issues.

To perform whole-program allocation, the allocator must have access to the
code for the entire program. In practice, this means performing whole-program
allocation at link-time. (While whole-program analyses and transformations can
be applied before link-time, many issues that complicate an implementation of
such techniques can be effectively side-stepped by performing them at link-time.)

To perform whole-program allocation, the compiler must have accurate esti-
mates of the relative execution frequencies of all parts of the program. Within
a procedure, static estimates (such as, “a loop executes 10 times”) have proven
to be reasonable approximations to actual behavior. Across the entire program,
this may no longer be true.

In moving from a single procedure to a scope that includes multiple proce-

10.6. HARDER PROBLEMS 283

r0 r1 r2 · · · r31

fu0 fu1 fu2 fu3

�
�

�
�

�
�

�
�

r32 r33 r34 · · · r63

fu4 fu5 fu6 fu7

�
�

�
�

�
�

�
�

r64 r65 r66 · · · r95

fu8 fu9 fu10 fu11

�
�

�
�

�
�

�
�

r97 r98 r99 · · · r127

fu12 fu13 fu14 fu15

�
�

�
�

�
�

�
�

� �

� �

� �

� �

inter-partition
interconnect

Figure 10.11: A clustered register-set machine

dures, the allocator must deal with parameter binding mechanisms and with
the side effects of linkage conventions. Each of these creates new situations for
the allocator. Call-by-reference parameter binding can link otherwise indepen-
dent live ranges in distinct procedures together into a single interprocedural live
range. Furthermore, they can introduce ambiguity into the memory model, by
creating multiple names that can access a single memory location. (See the
discussion of “aliasing” in Chapter 13.) Register save/restore conventions intro-
duce mandatory spills that might, for a single intraprocedural live range, involve
multiple memory locations.

10.6.2 Partitioned Register Sets

New complications can arise from new hardware features. For example, consider
the non-uniform costs that arise on machines with partitioned register sets. As
the number of functional units rises, the number of registers required to hold
operands and results rises. Limitations arise in the hardware logic required
to move values between registers and functional units. To keep the hardware
costs manageable, some architects have partitioned the register set into smaller
register files and clustered functional units around these partitions. To retain
generality, the processor typically provides some limited mechanism for moving
values between clusters. Figure 10.11 shows a highly abstracted view of such a
processor. Assume, without loss of generality, that each cluster has an identical
set of functional units and registers, except for their unique names.

Machines with clustered register sets layer a new set of complications onto
the register assignment problem. In deciding where to place lri in the register
set, the allocator must understand the availability of registers in each cluster,
the cost and local availability of the inter-cluster transfer mechanism, and the
specific functional units that will execute the operations that reference lri.
For example, the processor might allow each cluster to generate one off-cluster
register reference per cycle, with a limit of one off-cluster transfer out of each
cluster each cycle. With this constraint, the allocator must pay attention to

284 CHAPTER 10. REGISTER ALLOCATION

the placement of operations in clusters and in time. (Clearly, this requires
attention from both the scheduler and the register allocator.) Another processor
might require the code to execute a register-to-register move instruction, with
limitations on the number of values moving in and out of each cluster in a
single cycle. Under this constraint, cross-cluster use of a value requires extra
instructions; if done on the critical path, this can lengthen overall execution
time.

10.6.3 Ambiguous Values

A final set of complications to register allocation arise from shortcomings in
the compiler’s knowledge about the runtime behavior of the program. Many
source-language constructs create ambiguous references (see Section 8.2), in-
cluding array-element references, pointer-based references, and some call-by-
reference parameters. When the compiler cannot determine that a reference is
unambiguous, it cannot keep the value in a register. If the value is heavily used,
this shortcoming in the compiler’s analytical abilities can lead directly to poor
run-time performance.

For some codes, heavy use of ambiguous values is a serious performance
issue. When this occurs, the compiler may find it profitable to perform more
detailed and precise analysis to remove ambiguity. The compiler might perform
interprocedural data-flow analysis that reasons about the set of values that
might be reachable from a specific pointer. It might rely on careful analysis in
the front-end to recognize unambiguous cases and encode them appropriately
in the il. It might rely on transformations that rewrite the code to simplify
analysis.

To improve allocation of ambiguous values, several systems have included
transformations that rewrite the code to keep unambiguous values in scalar
local variables, even when their “natural” home is inside an array element or
a pointer-based structure. Scalar replacement uses array-subscript analysis to
identify reuse of array element values and to introduce scalar temporary vari-
ables that hold reused values. Register promotion uses data-flow analysis on
pointer values to determine when a pointer-based value can be kept safely in
a register throughout a loop nest, and to rewrite the code so that the value is
kept in a newly introduced temporary variable. Both of these transformations
move functionality from the register allocator into earlier phases of the compiler.
Because they increase the demand for registers, they increase the cost of a mis-
step during allocation, and, conversely, increase the need for stable, predictable
allocation. Ideally, these techniques should be integrated into the allocator, to
ensure a fair competition between these “promoted” values and other values
that are candidates for receiving a register.

10.7 Summary and Perspective

Because register allocation is an important component of a modern compiler, it
has received much attention in the literature. Strong techniques exist for local
allocation, for global allocation, and for regional allocation. Because the under-

10.7. SUMMARY AND PERSPECTIVE 285

lying problems are almost all np-complete, the solutions tend to be sensitive to
small decisions, such as how ties between identically ranked choices are broken.

We have made progress on register allocation by resorting to paradigms that
give us leverage. Thus, graph-coloring allocators have been popular, not because
register allocation is identical to graph coloring, but rather because coloring
captures some of the critical aspects of the global problem. In fact, most of the
improvements to the coloring allocators have come from attacking the points
where the coloring paradigm does not accurately reflect the underlying problem,
such as live range splitting, better cost models, and improved methods for live
range splitting.

Questions

1. The top-down local allocator is somewhat naive in its handling of values.
It allocates one value to a register for the entire basic block.

(a) An improved version might calculate live ranges within the block and
allocate values to registers for their live ranges. What modifications
would be necessary to accomplish this?

(b) A further improvement might be to split the live range when it cannot
be accommodated in a single register. Sketch the data structures and
algorithmic modifications that would be needed to (1) break a live
range around an instruction (or range of instructions) where a register
is not available, and to (2) re-prioritize the remaining pieces of the
live range.

(c) With these improvements, the frequency count technique should gen-
erate better allocations. How do you expect your results to compare
with using Best’s algorithm? Justify your answer.

2. When a graph-coloring global allocator reaches the point where no color
is available for a particular live range, lri, it spills or splits that live
range. As an alternative, it might attempt to re-color one or more of lri’s
neighbors. Consider the case where 〈lri, lrj〉 ∈ I and 〈lri, lrk〉 ∈ I, but
〈lrj, lrk〉 	∈I. If lrj and lrk have already been colored, and have received
different colors, the allocator might be able to re-color one of them to the
other’s color, freeing up a color for lri.

(a) Sketch an algorithm for discovering if a legal and productive re-
coloring exists for lri.

(b) What is the impact of your technique on the asymptotic complexity
of the register allocator?

(c) Should you consider recursively re-coloring lrk’s neighbors? Explain
your rationale.

3. The description of the bottom-up global allocator suggests inserting spill
code for every definition and use in the spilled live range. The top-down

286 CHAPTER 10. REGISTER ALLOCATION

global allocator first breaks the live range into block-sized pieces, then
combines those pieces when the result is unconstrained, and finally, assigns
them a color.

(a) If a given block has one or more free registers, spilling a live range
multiple times in that block is wasteful. Suggest an improvement
to the spill mechanism in the bottom-up global allocator that avoids
this problem.

(b) If a given block has too many overlapping live ranges, then splitting
a spilled live range does little to address the problem in that block.
Suggest a mechanism (other than local allocation) to improve the
behavior of the top-down global allocator inside blocks with high
demand for registers.

Chapter Notes

Best’s algorithm, detailed in Section 10.2.2 has been rediscovered repeatedly.
Backus reports that Best described the algorithm to him in the mid-1950’s,
making it one of the earliest algorithms for the problem [3, 4]. Belady used
the same ideas in his offline page replacement algorithm, min, and published
it in the mid-1960’s [8]. Harrison describes these ideas in connection with a
regional register allocator in the mid-1970’s [36]. Fraser and Hanson used these
ideas in the lcc compiler in the mid-1980s. [28]. Liberatore et al. rediscovered
and reworked this algorithm in the late 1990s [42]. They codified the notion of
spilling clean values before spilling dirty values.

Frequency counts have a long history in the literature. . . .
The connection between graph coloring and storage allocation problems

that arise in a compiler was originally suggested by the Soviet mathematician
Lavrov [40]. He suggested building a graph that represented conflicts in stor-
age assignment, enumerating its various colorings, and using the coloring that
required the fewest colors. The Alpha compiler project used coloring to pack
data into memory [29, 30].

Top-down graph-coloring begins with Chow. His implementation worked
from a memory-to-memory model, so allocation was an optimization that im-
proved the code by eliminating loads and stores. His allocator used an imprecise
interference graph, so the compiler used another technique to eliminate extra-
neous copy instructions. The allocator pioneered live range splitting, using the
scheme described on page 273 Larus built a top-down, priority-based alloca-
tor for Spur-Lisp. It used a precise interference graph and operated from a
register-to-register model.

The first coloring allocator described in the literature was due to Chaitin
and his colleagues at Ibm [22, 20, 21]. The description of a bottom-up alloca-
tor in Section 10.4.5 follows Chaitin’s plan, as modified by Briggs et al. [17].
Chaitin’s contributions include the fundamental definition of interference, the
algorithms for building the interference graph, for coalescing, and for handling
spills. Briggs modified Chaitin’s scheme by pushing constrained live ranges

10.7. SUMMARY AND PERSPECTIVE 287

onto the stack rather than spilling them directly; this allowed Briggs’ allocator
to color a node with many neighbors that used few colors. Subsequent improve-
ments in bottom-up coloring have included better spill metrics [10], methods for
rematerializing simple values [16], iterated coalescing [33], methods for spilling
partial live ranges [9], and methods for live range splitting [26]. The large size of
precise interference graphs led Gupta, Soffa, and Steele to work on splitting the
graph with clique separators [34]. Harvey et al. studied some of the tradeoffs
that arise in building the interference graph [25].

The problem of modeling overlapping register classes, such as singleton regis-
ters and paired registers, requires the addition of some edges to the interference
graph. Briggs et al. describe the modifications to the interference graph that
are needed to handle several of the commonly occurring cases [15]. Cytron &
Ferrante, in their paper “What’s in a name?”, give a polynomial-time algo-
rithm for performing register assignment. It assumes that, at each instruction,
| Live | < k. This corresponds to the assumption that the code has already
been allocated.

Beatty published one of the early papers on regional register allocation [7].
His allocator performed local allocation and then used a separate technique to
remove unneeded spill code at boundaries between local allocation regions—
particularly at loop entries and exits. The hierarchical coloring approach was
described by Koblenz and Callahan and implemented in the compiler for the
Tera computer [19]. The probabilistic approach was presented by Proebsting
and Fischer[44].

288 CHAPTER 10. REGISTER ALLOCATION

Chapter 11

Instruction Scheduling

11.1 Introduction

The order in which operations are presented for execution can have a significant
affect on the length of time it takes to execute them. Different operations may
take different lengths of time. The memory system may take more than one
cycle to deliver operands to the register set or to one of the functional units.
The functional units themselves may take several execution cycles to deliver
the results of a computation. If an operation tries to reference a result before
it is ready, the processor typically delays the operation’s execution until the
value is ready—that is, it stalls. The alternative, used in some processors, is
to assume that the compiler can predict these stalls and reorder operations to
avoid them. If no useful operations can be inserted to delay the operation, the
compiler must insert one or more nops. In the former case, referencing the
result too early causes a performance problem. In the latter case, the hardware
assumes that this problem never happens, so when it does, the computation
produces incorrect results. In either case, the compiler should carefully consider
the ordering of instructions to avoid the problem.

Many processors can initiate execution on more than one operation in each
cycle. The order in which the operations are presented for execution can de-
termine the number of operations started, or issued, in a cycle. Consider, for
example, a simple processor with one integer functional unit and one floating-
point functional unit and a compiled loop that consists of one hundred integer
operations and one hundred floating-point operations. If the compiler orders the
operations so that the first seventy five operations are integer operations, the
floating-point unit will sit idle until the processor can (finally) see some work for
the floating-point unit. If all the operations were independent (an unrealistic
assumption), the best order would be to alternate operations between the two
units.

Most processors that issue multiple operations in each cycle have a simple
algorithm to decide how many operations to issue. In our simple two functional
unit machine, for example, the processor might examine two instructions at a

289

290 CHAPTER 11. INSTRUCTION SCHEDULING

Start

1 loadAI r0, 0 ⇒ r1

4 add r1, r1 ⇒ r1

5 loadAI r0, 8 ⇒ r2

8 mult r1, r2 ⇒ r1

9 loadAI r0, 16 ⇒ r2

12 mult r1, r2 ⇒ r1

13 loadAI r0, 24 ⇒ r2

16 mult r1, r2 ⇒ r1

18 storeAI r1 ⇒ r0,0

Original code

Start

1 loadAI r0, 0 ⇒ r1

2 loadAI r0, 8 ⇒ r2

3 loadAI r0, 16⇒ r3

4 add r1, r1 ⇒ r1

5 mult r1, r2 ⇒ r1

6 loadAI r0, 24⇒ r2

7 mult r1, r3 ⇒ r1

9 mult r1, r2 ⇒ r1

11 storeAI r1 ⇒ r0,0

Scheduled code

Figure 11.1: Scheduling Example From Introduction

time. It would issue the first operation to the appropriate functional unit, and,
if the second operation can execute on the other unit, issue it. If both operations
need the same functional unit, the processor must delay the second operation
until the next cycle. Under this scheme, the speed of the compiled code depends
heavily on instruction order.

This kind of sensitivity to the order of operations suggests that the compiler
should reorder operations in a way that produces faster code. This problem,
reordering a sequence of operations to improve its execution time on a specific
processor, has been called instruction scheduling. Conceptually, an instruction
scheduler looks like

instruction
scheduler

�

slow

code
�

fast

code

The primary goals of the instruction scheduler are to preserve the meaning of
the code that it receives as input, to minimize execution time by avoiding wasted
cycles spent in interlocks and stalls, and to avoid introducing extra register spills
due to increased variable lifetimes. Of course, the scheduler should operate
efficiently.

This chapter examines the problem of instruction scheduling, and the tools
and techniques that compilers use to solve it. The next several subsections
provide background information needed to discuss scheduling and understand
both the algorithms and their impact.

11.2 The Instruction Scheduling Problem

Recall the example given for instruction scheduling in Section 1.3. Figure 11.1
reproduces it. The column labelled “Start” shows the cycle in which each oper-
ation executes. Assume that, the processor has a single functional unit; memory

11.2. THE INSTRUCTION SCHEDULING PROBLEM 291

operations take three cycles; a mult takes two cycles; all other operations com-
plete in a single cycle; and r0 holds the activation record pointer (arp). Under
these parameters, the original code, shown on the left, takes twenty cycles.

The scheduled code, shown on the right, is much faster. It separates long-
latency operations from operations that reference their results. This allows
operations that do not depend on these results to execute concurrently. The
code issues load operations in the first three cycles; the results are available
in cycles 4, 5, and 6 respectively. This requires an extra register, r3, to hold
the result of the third concurrently executing load operation, but it allows the
processor to perform useful work while waiting for the first arithmetic operand
to arrive. In effect, this hides the latency of the memory operations. The same
idea, applied throughout the block, hides the latency of the mult operation.
The reordering reduces the running time to thirteen cycles, a thirty-five percent
improvement.

Not all blocks are amenable to improvement in this fashion. Consider, for
example, the following block that computes x256:

Start

1 loadAI r0,@x ⇒ r1

2 mult r1,r1 ⇒ r1

4 mult r1,r1 ⇒ r1

6 mult r1,r1 ⇒ r1

8 storeAI r1 ⇒ r0,@x

The three mult operations have long latencies. Unfortunately, each instruction
uses the result of the previous instruction. Thus, the scheduler can do little
to improve this code because it has no independent instructions that can be
issued while the mults are executing. Because it lacks independent operations
that it can execute in parallel, we say that this block has no instruction-level
parallelism (ilp). Given enough ilp, the scheduler can hide memory latency
and functional-unit latency.

Informally, instruction scheduling is the process whereby a compiler reorders
the operations in the compiled code in an attempt to decrease its running time.
The instruction scheduler takes as input an ordered list of instructions; it pro-
duces as output a list of the same instructions.1 The scheduler assumes a fixed
set of operations—that is, it does not add operations in the way that the reg-
ister allocator adds spill code. The scheduler assumes a fixed name space—it
does not change the number of enregistered values, although a scheduler might
perform some renaming of specific values to eliminate conflicts. The scheduler
expresses its results by rewriting the code.

To define scheduling more formally requires introduction of a precedence
graph P = (N, E) for the code. Each node n ∈ N is an instruction in the input
code fragment. An edge e = (n1, n2) ∈ E if and only if n2 uses the result of n1

as an argument. In addition to its edges, each node has two attributes, a type
1Throughout the text, we have been careful to distinguish between operations—individual

commands to a single functional unit—and instructions—all of the operations that execute in
a single cycle. Here, we mean “instructions.”

292 CHAPTER 11. INSTRUCTION SCHEDULING

a : loadAI r0, 0 ⇒ r1

b : add r1, r1 ⇒ r1

c : loadAI r0, 8 ⇒ r2

d : mult r1, r2 ⇒ r1

e : loadAI r0, 16 ⇒ r2

f : mult r1, r2 ⇒ r1

g : loadAI r0, 24 ⇒ r2

h : mult r1, r2 ⇒ r1

i : storeAI r1 ⇒ r0,0

Example code

a

b

c

d

e

f

g

h

i

� �
�
���R

�R

�R

�

�
�
�� �
�
��

Its precedence graph

Figure 11.2: Precedence Graph for the Example

and a delay. For a node n, the instruction corresponding to n must execute on a
functional unit of type type(n) and it requires delay(n) cycles to complete. The
example in Figure 11.1 produces the precedence graph shown in Figure 11.2.

Nodes with no predecessors in the precedence graph, such as a, c, e, and g
in the example, are called leaves of the graph. Since the leaves depend on no
other operations, they can be scheduled at any time. Nodes with no successors
in the precedence graph, such as i in the example, are called roots of the graph.
A precedence graph can have multiple roots. The roots are, in some sense, the
most constrained nodes in the graph because they cannot execute until all of
their ancestors execute. With this terminology, it appears that we have drawn
the precedence graph upside down—at least with relationship to the syntax
trees and abstract syntax trees used earlier. Placing the leaves at the top of
the figure, however, creates a rough correspondence between placement in the
drawing and eventual placement in the scheduled code. A leaf is at the top of
the tree because it can execute early in the schedule. A root is at the bottom
of the tree because it must execute after each its ancestors.

Given a precedence graph for its input code fragment, a schedule S maps
each node n ∈ N into a non-negative integer that denotes the cycle in which
it should be issued, assuming that the first operation issues in cycle one. This
provides a clear and concise definition of an instruction: the ith instruction is
the set of operations n � S(n) = i. A schedule must meet three constraints.

1. S(n) ≥ 0, for each n ∈ N . This constraint forbids operations from being
issued before execution starts. Any schedule that violates this constraint
is not well formed. For the sake of uniformity, the schedule must also have
at least one operation n′ with S(n′) = 1.

2. If (n1, n2) ∈ E, S(n1) + delay(n1) ≤ S(n2). This constraint enforces cor-
rectness. It requires that an operation cannot be issued until the opera-
tions that produce its arguments have completed. A schedule that violates
this rule changes the flow of data in the code and is likely to produce in-

11.2. THE INSTRUCTION SCHEDULING PROBLEM 293

correct results.

3. Each instruction contains no more operations of type t than the target ma-
chine can issue. This constraint enforces feasibility, since a schedule that
violates it contains instructions that the target machine cannot possibly
issue.2

The compiler should only produce schedules that meet all three constraints.
Given a well-formed schedule that is both correct and feasible, the length of

the schedule is simply the cycle number in which the last operation completes.
This can be computed as

L(S) = max
n∈N

(S(n) + delay(n)).

Assuming that delay captures all of the operational latencies, schedule S should
execute in L(S) time.3 With a notion of schedule length comes the notion of a
time-optimal schedule. A schedule Si is time-optimal if L(Si) ≤ L(Sj), for all
other schedules Sj .

The precedence graph captures important properties of the schedule. Com-
puting the total delay along the paths through the graph exposes additional
detail about the block. Annotating the precedence graph from Figure 11.1 with
information about cumulative latency yields the following graph:

a13

b10

c12

d9

e10

f 7

g8

h5

i3

� �
�
���R

�R

�R

�

�
�
�� �
�
��

The path length from a node to the end of the computation is shown as a super-
script on the node. The values clearly show that the path abdfhi is longest—it
is the critical path that determines overall execution time.

How, then, should the compiler schedule this computation? An operation
can only be scheduled when its operands are available for use. Thus, operations

2Some machines require that each instruction contain precisely the number of operations
of type t that the hardware can issue. We think of these machines as vliw computers. This
scheme produces a fixed-length instruction with fixed fields and simplifies the implementation
of instruction decode and dispatch in the processor. More flexible schemes allow instructions
that leave some functional units idle or processing operations issued in earlier cycles.

3Of course, some operations have variable delays. For example, a load operation on a
machine with a complex memory hierarchy may have an actual delay that ranges from zero
cycles if the requested value is in cache to hundreds or thousands of cycles if the value is in
distant memory. If the scheduler assumes the worst case delay, it risks idling the processor
for large periods. If it assumes the best case delay, it will stall the processor on a cache miss.

294 CHAPTER 11. INSTRUCTION SCHEDULING

a, c, e, and g are the initial candidates for scheduling. The fact that a lies on the
critical path strongly suggests that operation it be scheduled first. Once a has
been scheduled, the longest remaining path is cdefhi, suggesting that operation
c be scheduled second. With a schedule of ac, b and e tie for the longest path.
However, b needs the result of a, which will not be available until the fourth
cycle. This makes e followed by b, the better choice. Continuing in this fashion
leads to the schedule acebdgfhi. This matches the schedule shown on the left
side of Figure 11.1.

However, the compiler cannot simply rearrange the instructions into the
proposed order. Notice that operations c and e both define r2. In reordering
the code, the scheduler cannot move e before d, unless it renames the result
of e to avoid the conflict with the definition of r2 by c. This constraint arises
not from the flow of data, as with the dependences modelled in the precedence
graph. Instead, it arises from the need to avoid interfering with the dependences
modelled in the graph. These constraints are often called anti-dependences.

The scheduler can produce correct code in two ways. It can discover the
anti-dependences that exist in the input code and respect them in the final
schedule, or it can rename values to avoid them. The example contains four
anti-dependences: e to c, e to d, g to e, and g to f. All of them involve the re-
definition of r2. (Constraints exist based on r1 as well, but any anti-dependence
on r1 duplicates a constraint that also arises from a dependence based on the
flow of values.)

Respecting the anti-dependence changes the set of schedules that the com-
piler can produce. For example, it cannot move e before either c or d. This
forces it to produce a schedule such as acbdefghi, which requires eighteen cy-
cles. While this schedule is a ten percent improvement over the unscheduled
code (abcdefghi), it is not competitive with the thirty-five percent improvement
obtained by renaming to produce acebdgfhi, as shown on the right side of Fig-
ure 11.1.

The alternative is to systematically rename the values in the block to elimi-
nate anti-dependences, to schedule, and then to perform register allocation and
assignment. This approach frees the scheduler from the constraints imposed
by anti-dependences; it creates the potential for problems if the scheduled code
requires spill code. The act of renaming, however, does not change the num-
ber of live variables; it simply changes their names. It does, however, give the
scheduler freedom to move definitions and uses in a way that increases the num-
ber of concurrently live values. If the scheduler drives this number too high,
the allocator will need to insert spill code—adding long-latency operations and
necessitating further scheduling.

The simplest renaming scheme assigns a new name to each value as it is
produced. In the ongoing example, this produces the following code:

11.3. LOCAL LIST SCHEDULING 295

a : loadAI r0, 0 ⇒ r1

b : add r1, r1 ⇒ r2

c : loadAI r0, 8 ⇒ r3

d : mult r2, r3 ⇒ r4

e : loadAI r0, 16 ⇒ r5

f : mult r4, r5 ⇒ r1

g : loadAI r0, 24 ⇒ r6

h : mult r5, r6 ⇒ r7

i : storeAI r7 ⇒ r0,0

This version of the code has the same pattern of definitions, and uses. How-
ever, the dependence relationships are expressed unambiguously in the code. It
contains no anti-dependences, so naming constraints cannot arise.

Other Measures of Schedule Quality Schedules can be measured in terms other
than time. Two schedules Si and Sj for the same input code might produce
different actual demand for registers—that is, the maximum number of live
values in Sj may be less than in Si. Both Si and Sj might use the same space of
register names, and the corresponding operations might use the same registers
for operands and results. If the processor requires the scheduler to insert nops
for idle functional units, then Si might have fewer operations than Sj . This
need not depend solely on schedule length. If the processor includes a variable-
cycle nop, as does the tms320c6200, then bunching nops together produces
fewer operations. Finally, Sj might require less power to execute on the target
machine because it never uses one of the functional units, or because it causes
fewer bit-transitions in the processor’s instruction decoder.

What Makes Scheduling Hard? The scheduler must choose a cycle in which to
issue each operation and it must determine, for each cycle in the execution,
which operations can be issued. In balancing these two viewpoints, it must
ensure that an operation only issues when its operands have been computed
and are available. In a given cycle, more than one operations may meet this
criterion, so the scheduler must choose between them. Since values are live
from their definitions to their uses, the decisions it makes can shorten register
lifetimes (if uses move closer to definitions) or lengthen them (if uses move away
from their definitions). If too many values become live, the schedule may be
infeasible because it requires too many registers. Balancing all of these issues,
while searching for a time-optimal schedule, makes scheduling complex.

In practice, almost all the scheduling algorithms used in compilers are based
on a single family of heuristic techniques, called list scheduling. The following
section describes list scheduling in detail. Subsequent sections show how to
extend the paradigm to larger and more complex regions of code.

11.3 Local List Scheduling

List scheduling is a greedy, heuristic approach to scheduling the operations in a
basic block. It has been the dominant paradigm for instruction scheduling since

296 CHAPTER 11. INSTRUCTION SCHEDULING

Digression: How Does Scheduling Relate to Allocation?

The use of specific names can introduce anti-dependences that limit
the scheduler’s ability to reorder operations. The scheduler can avoid anti-
dependences by renaming; however, renaming creates a need for the compiler
to perform register assignment after scheduling. Instruction scheduling and
register allocation interact in complex ways.

The core function of the instruction scheduler is to reorder operations.
Since most operations use some values and produce a new value, changing
the relative order of two instructions can change the lifetimes of some values.
If operation a defines r1 and b defines r2, moving b before a can have several
effects. It lengthens the lifetime of r2 by one cycle, while shortening the
lifetime of r1. If one of a’s operands is a last use, then moving b before a
lengthens its lifetime. Symmetrically, if one of b’s operands is a last use, the
move shortens that operand’s lifetime.

The net effect of moving b before a depends on the details of a and b, as
well as the surrounding code. If none of the uses involved are last uses, then
the swap has no net effect on demand for registers. (Each operation defines
a register; swapping them changes the lifetimes of specific registers, but not
the aggregate demand.)

In a similar way, register allocation can change the instruction scheduling
problem. The core functions of a register allocator are to rename references
and to insert memory operations when demand for registers is too high.
Both these functions affect the ability of the scheduler to produce fast code.
When the allocator maps a large virtual name space into the name space of
target machine registers, it can introduce anti-dependences that constrain the
scheduler. Similarly, when the allocator inserts spill code, it adds instructions
to the code that must, themselves, be scheduled to hide their latencies.

We know, mathematically, that solving these problems together might
produce solutions that cannot be obtained by running the scheduler followed
by the allocator, or the allocator followed by the scheduler. However, both
problems are complex enough that we will treat them separately. In practice,
most compilers treat them separately, as well.

the late 1970s, largely because it discovers reasonable schedules and adapts easily
to changes in the underlying computer architectures. However, list scheduling
describes an approach rather than a specific algorithm. Wide variation exists
in how it is implemented and how it attempts to prioritize instructions for
scheduling. This section explores the basic framework of list scheduling, as well
as a couple of variations on the idea.

Classic list scheduling operates over a single basic block. Limiting our consid-
eration to straight-line sequences of code allows us to ignore situations that can
complicate scheduling. For example, with multiple blocks, an operand might
depend on more than one previous definition; this creates uncertainty about
when the operand is available for use. With several blocks in its scope, the

11.3. LOCAL LIST SCHEDULING 297

scheduler might move an operation from one block to another. This cross-block
code motion can force duplication of the operation—moving it into a successor
block may create the need for a copy in each successor block. Similarly, it can
cause an operation to execute on paths where it did not in the original code—
moving it into a predecessor block puts it on the path to each of that block’s
successors. Restricting our consideration to the single block case avoids these
complications.

To apply list scheduling to a block, the scheduler follows a four step plan:

1. Rename to avoid anti-dependences. To reduce the set of constraints on the
scheduler, the compiler renames values. Each definition receives a unique
name. This step is not strictly necessary. However, it lets the scheduler
find some schedules that the anti-dependences would have prevented. It
also simplifies the scheduler’s implementation.

2. Build a precedence graph, P. To build the precedence graph, the scheduler
walks the block from bottom to top. For each operation, it constructs a
node to represent the newly created value. It adds edges from that node to
each node that uses the value. The edges are annotated with the latency
of the current operation. (If the scheduler does not perform renaming, P
must represent anti-dependence as well.)

3. Assign priorities to each operation. The scheduler will use these priorities
to guide it as it picks from the set of available operations at each step.
Many priority schemes have been used in list schedulers. The scheduler
may compute several different scores for each node, using one as the pri-
mary ordering and the others to break ties between equally-ranked nodes.
The most popular priority scheme uses the length of the longest latency-
weighted path from the node to a root of P. We will describe other priority
schemes later.

4. Iteratively select an operation and schedule it. The central data structure
of the list scheduling algorithm is a list of operations that can legally
execute in the current cycle, called the ready list. Every operation on the
ready list has the property that its operands are available. The algorithm
starts at the first cycle in the block and picks as many operations to issue
in that cycle as possible. It then advances the cycle counter and updates
the ready list to reflect both the previously issued operations and the
passage of time. It repeats this process until every operation has been
scheduled.

Renaming and building P are straight forward. The priority computations
typically involve a traversal of P. The heart of the algorithm, and the key to
understanding it, lies in the final step. Figure 11.3 shows the basic framework
for this step, assuming that the target machine has a single functional unit.

The algorithm performs an abstract simulation of the code’s execution. It
ignores the details of values and operations to focus on the timing constraints

298 CHAPTER 11. INSTRUCTION SCHEDULING

Cycle ← 1
Ready ← leaves of P
Active ← ∅
while (Ready ∪ Active 	= ∅)

if Ready 	= ∅ then
remove an op from Ready
S(op) ← Cycle
Active ← Active ∪ op

Cycle ← Cycle + 1

for each op ∈ Active
if S(op) + delay(op) ≤ Cycle then

remove op from Active
for each successor s of op in P

if s is ready then
Ready ← Ready ∪ s

Figure 11.3: List Scheduling Algorithm

imposed by edges in P. To accomplish this, it maintains a simulation clock, in
the variable Cycle. Cycle is initialized to one, the first operation in the code,
and incremented until every operation in the code has been assigned a time to
execute.

The algorithm uses two lists to track operations. The first list, called the
Ready list, holds any operations that can execute in the current cycle. If an
operation is in Ready, all of its operands have been computed. Initially, Ready
contains all the leaves of P, since they depend on no other operations. The
second list, called the Active list, holds any operations that were issued in an
earlier cycle but have not yet completed. At each time step, the scheduler
checks Active to find operations that have finished. As each operation finishes,
the scheduler checks its successors s in P (the operations that use its result) to
determine if all of the operands for s are now available. If they are, it adds s to
Ready.

At each time step, the algorithm follows a simple discipline. It accounts for
any operations completed in the previous cycle, then it schedules an operation
for the current cycle. The details of the implementation slight obscure this
structure because the first time step always has an empty Active list. The
while loop begins in the middle of the first time-step. It picks an operation
from Ready and schedules it. Next, it increments Cycle to begin the second
time step. It updates Active and Ready for the beginning of the new cycle,
then wraps around to the top of the loop, where it repeats the process of pick,
increment, and update.

The process terminates when every operation has executed to completion.
At the end, Cycle contains the simulated running time of the block. If all
operations execute in the time specified by delay, and all operands to the leaves

11.3. LOCAL LIST SCHEDULING 299

of P are available in the first cycle, this simulated running time should match
the actual execution time.

An important question, at this point, is “how good is the schedule that this
method generates?” The answer depends, in large part, on how the algorithm
picks the operation to remove from the Ready list in each iteration. Consider the
simplest scenario, where the Ready list contains at most one item in each itera-
tion. In this restricted case, the algorithm must generate an optimal schedule.
Only one operation can execute in the first cycle. (There must be at least one
leaf in P, and our restriction ensures that there is at most one.) At each sub-
sequent cycle, the algorithm has no choices to make—either Ready contains an
operation and the algorithm schedules it, or Ready is empty and the algorithm
schedules nothing to issue in that cycle. The difficulty arises when multiple
operations are available at some point in the process.

In the ongoing example, P has four leaves: a, c, e, and g. With only one
functional unit, the scheduler must select one of the four load operations to
execute in the first cycle. This is the role of the priority computation—it assigns
each node in P a set of one or more ranks that the scheduler uses to order
the nodes for scheduling. The metric suggested earlier, the longest latency-
weighted distance to a root in P, corresponds to always choosing the node on
the critical path for the current cycle in the current schedule. (Changing earlier
choices might well change the current critical path.) To the limited extent that
the impact of a scheduling priority is predictable, this scheme should provide
balanced pursuit of the longest paths.

Efficiency Concerns To pick an operation from the Ready list, as described this
far, requires a linear scan over Ready. This makes the cost of creating and
maintaining Ready approach O(n2). Replacing the list with a priority queue
can reduce the cost of these manipulations to O(n log2 n), for a minor increase
in the difficulty of implementation. If the

A similar approach can reduce the cost of manipulating the Active list. When
the scheduler adds an operation to Active, it can assign it a priority equal to the
cycle in which the operation completes. A priority queue that seeks the smallest
priority will push all the operations completed in the current cycle to the front,
for a small increase in cost over a simple list implementation.

Further improvement is possible with the implementation of Active. The
scheduler can maintain a set of separate lists, one for each cycle in which an
operation can finish. The number of lists required to cover all the operation
latencies is MaxLatency = maxn∈Pdelay(n). When the compiler schedules op-
eration n in Cycle, it adds n to WorkList[(Cycle + delay(n)) mod MaxLatency].
When it goes to update the Ready queue, all of the operations with successors
to consider are found in WorkList[Cycle mod MaxLatency]. This schemes uses a
small amount of extra space and some extra time to reduce the quadratic cost of
searching Active to the linear cost of walking through and emptying the Work-
List. (The number of operations in the WorkLists is identical to the number in
the Active, so the space overhead is just the cost of having multiple WorkLists.
The extra time comes from introducing the subscript calculations on WorkList,

300 CHAPTER 11. INSTRUCTION SCHEDULING

including the mod calculations.)

Caveats: As described, the local list scheduler assumes that all operands for
leaves are available on entry to the block. This requires that previous blocks’
schedules include enough slack time at the end for all operations to complete.
With more contextual knowledge, the scheduler might prioritize leaves in a way
that creates that slack time internally in the block.

The local list scheduler we have described assumes a single functional unit
of a single type. Almost no modern computers fit that model. The critical loop
of the iteration must select an operation for each functional unit, if possible.
If it has several functional units of a given type, it may need to bias its choice
for a specific operation by other features of the target machine—for example, if
only one of the units can issue memory operations, loads and stores should be
scheduled onto that unit first. Similarly, if the register set is partitioned (see
Section 10.6.2), the scheduler may need to place an operation on the unit where
its operands reside or in a cycle when the inter-partition transfer apparatus is
free.

11.3.1 Other Priority Schemes

Instruction scheduling, even in the local case, is np-complete for most realistic
scenarios. As with many other np-complete problems, greedy heuristic tech-
niques like list scheduling produce fairly good approximations to the optimal
solution. However, the behavior of these greedy techniques is rarely robust—
small changes in the input may make large differences in the solution.

One algorithmic way of addressing this instability is careful tie-breaking.
When two or more items have the same rank, the implementation chooses among
them based on another priority ranking. (In contrast, the max function typi-
cally exhibits deterministic behavior—either it retains the first value of maximal
rank or the last such value. This introduces a systematic bias toward earlier
nodes or later nodes in the list.) A good list scheduler will use several different
priority rankings to break ties. Among the many priority schemes that have
been suggested in the literature are:

• A node’s rank is the total length of the longest path that contains it.
This favors, at each step, the critical path in the original code, ignoring
intermediate decisions. This tends toward a depth-first traversal of P.

• A node’s rank is the number of immediate successors it has in P. This en-
courages the scheduler to pursue many distinct paths through the graph—
closer to a breadth first approach. It tends to keep more operations on
the Ready queue.

• A node’s rank is the total number of descendants it has in P. This ampli-
fies the effect seen in the previous ranking. Nodes that compute critical
values for many other nodes are scheduled early.

• A node’s rank is higher if it has long latency. This tends to schedule the

11.3. LOCAL LIST SCHEDULING 301

long latency nodes early in the block, when more operations remain that
might be used to cover the latency.

• A node’s rank is higher if it contains the last use of a value. This tends to
decrease demand for registers, by moving last uses closer to definitions.

Unfortunately, there is little agreement over either which rankings to use or
which order to apply them.

11.3.2 Forward versus Backward List Scheduling

An alternate formulation of list schedule works over the precedence graph in the
opposite direction, scheduling from roots to leaves. The first operation scheduled
executes in the last cycle of the block, and the last operation scheduled executes
first. In this form, the algorithm is called backward list scheduling, making the
original version forward list scheduling.

A standard practice in the compiler community states is to try several ver-
sions of list scheduling on each block and keep the shortest schedule. Typically,
the compiler tries both forward and backward list scheduling; it may try more
than one priority scheme in each direction. Like many tricks born of experience,
this one encodes several important insights. First, list scheduling accounts for
a small portion of the compiler’s execution time. The compiler can afford to
try several schemes if it produces better code. Notice that the scheduler can
reuse most of the preparatory work—renaming, building P, and some of the
computed priorities. Thus, the cost of using multiple schemes amounts to re-
peating the iterative portion of the scheduler a small number of times. Second,
the practice suggests that neither forward scheduling nor backward scheduling
always wins. The difference between forward and backward list scheduling lies
in the order in which operations are considered. If the schedule depends criti-
cally on the careful ordering of some small set of operations, the two directions
may produce radically different results. If the critical operations occur near the
leaves, forward scheduling seems more likely to consider them together, while
backward scheduling must work its way through the remainder of the block
to reach them. Symmetrically, if the critical operations occur near the roots,
backward scheduling may examine them together while forward scheduling sees
them in an order dictated by decisions made at the other end of the block.

To make this latter point more concrete, consider the example shown in Fig-
ure 11.4. It shows the precedence graph for a basic block found in the Spec

benchmark program go. The compiler added dependences from the store op-
erations to the block-ending branch to ensure that the memory operations com-
plete before the next block begins execution. (Violating this assumption could
produce an incorrect value from a subsequent load operation.) Superscripts on
nodes in the precedence graph give the latency from the node to the branch;
subscripts differentiate between similar operations. The example assumes oper-
ation latencies that appear in the table below the precedence graph.

This example demonstrates the difference between forward and backward list
scheduling. The five store operations take most of the time in the block. The

302 CHAPTER 11. INSTRUCTION SCHEDULING

1br

2cmp 5store1
5store2

5store3
5store4

5store5
XXXXXXXXXXXXz

PPPPPPPq
�
�R

�
��

��������

�������������

� � � � �

7add1
7add2

7add3
7add4

7addI

A
AU

A
AU

	
		

PPPPPPq
	

		

	

		

	

		

8loadI1
8lshift 8loadI2

8loadI3
8loadI4

Opcode loadI lshift add addI cmp store
Latency 1 1 2 1 1 4

Figure 11.4: Precedence graph for a block from go

schedule that minimizes execution time must begin executing stores as early as
possible.

Forward list scheduling, using latency-to-root for priority, executes the op-
erations in priority order, except for the comparison. It schedules the five op-
erations with rank eight, then the five operations with rank seven. It begins
on the operations with weight five, and slides the cmp in alongside the stores,
since the cmp is a leaf. If ties are broken arbitrarily by taking left-to-right order,
this produces the schedule shown on the left side of Figure 11.5. Notice that
the memory operations begin in cycle five, producing a schedule that issues the
branch in cycle thirteen.

Using the same priorities with reverse list scheduling, the compiler first places
the branch in the last slot of the block. The cmp precedes it by delay(cmp) = 1
cycle. The next operation scheduled is store1 (by the left-to-right tie breaking
rule). It is assigned the issue slot on the memory unit that is delay(store) = 4
cycles earlier. The scheduler fills in successively earlier slots on the memory
unit with the other store operations, in order. It begins filling in the integer
operations, as they become ready. The first is add1, two cycles before store1.
When the algorithm terminates, it has produces the schedule shown on the right
side of Figure 11.5.

The schedule produced by the backward scheduler takes one fewer cycle than
the schedule produced by the forward scheduler. It places the addI earlier in
the block, allowing store5 to issue in cycle four—one cycle earlier than the
first memory operation in the forward schedule. By considering the problem
in a different order, using the same underlying priorities and tie-breakers, the
backward algorithm achieves a different result. Using the same graph structure,
one can construct a block where the forward scheduler beats the backward

11.3. LOCAL LIST SCHEDULING 303

Forward Schedule Backward Schedule
Int. Int. Mem. Int. Int. Mem.

1. loadI1 lshift --- 1. loadI4 --- ---
2. loadI2 loadI3 --- 2. addI lshift ---
3. loadI4 add1 --- 3. add4 loadI3 ---
4. add2 add3 --- 4. add3 loadI2 store5

5. add4 addI store1 5. add2 loadI1 store4

6. cmp --- store2 6. add1 --- store3

7. --- --- store3 7. --- --- store2

8. --- --- store4 8. --- --- store1

9. --- --- store5 9. --- --- ---
10. --- --- --- 10. --- --- ---
11. --- --- --- 11. cmp --- ---
12. --- --- --- 12. br --- ---
13. br --- ---

Figure 11.5: Schedules for the block from go

scheduler.
Why does this happen? The forward scheduler must place all the rank eight

operations in the schedule before any rank seven operations. Even though the
addI operation is a leaf, its lower rank causes the forward scheduler to defer
handling it. By the time that the scheduler runs out of rank eight operations,
other rank seven operations are available. In contrast, the backward scheduler
places the addI before three of the rank eight operations—a result that the
forward scheduler could not consider.

The list scheduling algorithm uses a greedy heuristic to construct a reason-
able solution to the problem, but the ranking function does not encode com-
plete knowledge of the problem. To construct a ranking that encoded complete
knowledge, the compiler would need to consider all possible schedules—making
the ranking process itself np-complete. Thus, an optimal ranking function is
impractical, unless p = np.

11.3.3 Why Use List Scheduling?

List scheduling has been the dominant algorithm for instruction scheduling for
many years. The technique, in its forward and backward forms, uses a greedy
heuristic approach to assign each operation an issue slot in the basic block. In
practice, it produces excellent results for single blocks.

List scheduling is efficient. It removes an operation from the Ready queue
once. It examines each operation for addition to the Ready queue once for each
edge that enters its node in P. If an operation has m operands, the scheduler
visits its node m times. Each visit looks at each of its m operands, so the
amount of work involved in placing it on the ready queue is O(m2). However,
for most operations, m is one or two, so this quadratic cost is trivial.

304 CHAPTER 11. INSTRUCTION SCHEDULING

Digression: What About Out-of-Order Execution?

Some processors include hardware support for executing instructions out-of-
order (ooo). We refer to such processors as dynamically scheduled machines.
This feature is not new; for example, it appeared on the ibm 360/91. To sup-
port out-of-order execution, a dynamically-scheduled processor looks ahead
in the instruction stream for operations that can execute before they would in
a statically-scheduled processor. To do this, the dynamically-scheduled pro-
cessor builds and maintains a portion of the precedence graph at run-time.
It uses this piece of the precedence graph to discover when each operation
can execute and issues each operation at the first legal opportunity.

When can an out-of-order processor improve on the static schedule? It
cannot avoid waiting for a data dependence, since that represents the actual
transmission of a value. It can issue an operation early precisely when the
scheduler could have placed the operation earlier—that is, all of the operands
are ready before the operation’s appointed cycle. Taken over an entire block,
this can snowball—one operation executing early may create opportunities
for its descendants in P. The result is a dynamic rewriting of the compiler-
specified schedule.

Ooo execution does not eliminate the need for instruction scheduling.
Because the lookahead window is finite, bad schedules can defy improvement.
For example, a lookahead window of fifty operations will not let the processor
execute a string of 100 integer operations followed by 100 floating-point opera-
tions in interleaved (integer, floating-point) pairs. It may, however, interleave
shorter strings, say of length thirty. Ooo execution helps the compiler by
improving good, but non-optimal, schedules.

A related processor feature is dynamic register renaming. This scheme
provides the processor with more physical registers than the isa allows the
compiler to name. The processor can break anti-dependences that occur
within its lookahead window by using physically distinct registers to imple-
ment two references connected by an anti-dependence.

List scheduling forms the basis for most algorithms that perform scheduling
over regions larger than a single block. Thus, understanding its strengths and
its weaknesses is important. Any improvement made to local list scheduling has
the potential to improve the regional scheduling algorithms, as well.

11.4 Regional Scheduling

As we saw with register allocation, moving from single basic blocks to larger
scopes can sometimes improve the quality of code that the compiler generates.
With instruction scheduling, many different approaches have been proposed for
regions larger than a block, but smaller than a whole procedure. This section
examines three approaches that derive from list scheduling.

11.4. REGIONAL SCHEDULING 305

a
b
c
d

e
f g

h
i

j
k

l

�
��

�
�R

�
��

�
�R

�
��

�
�R

�
��

B1

B2 B3

B4 B5

B6

Figure 11.6: Extended basic block scheduling example

11.4.1 Scheduling Extended Basic Blocks

An extended basic block (ebb) consists of a series of blocks b1, b2, b3, . . . bn where
b1 has multiple predecessors in the control-flow graph and the other blocks bi

each have precisely one predecessor, bi−1, ∀ 2 ≤ i ≤ n. Extending list scheduling
to handle an ebb allows the compiler to consider a longer run of execution during
scheduling. Some care must be taken, however, to ensure correct behavior at
interim exits from the ebb.

Consider the simple branching structure shown in Figure 11.6. It has sev-
eral distinct ebbs: (B1, B2, B4), (B1, B3), (B5), and (B6). Each of these ebbs
could be subject to ebb scheduling. Notice, however, that the first two ebbs,
(B1, B2, B4), (B1, B3) share a common prefix—the block B1. The compiler
cannot schedule block B1 in two conflicting ways.

The conflict over B1 can exhibit itself in two ways. The scheduler might
move an operation from B1, for example c, past the branch at the end of B1

and down into B2. In this case, c would no longer be on the path from the
entry of B1 to the entry of B3, so the scheduler would need to insert a copy of c
into B3 to maintain correctness along the path through B3. Alternatively, the
scheduler might move an operation from B2, for example f , up into B1. This
puts f on the path from the entry of B1 to the entry of B3, where it did not
previously execute. This lengthens the path through B3, with the possibility of
slowing down execution along that path.

(Without renaming to avoid anti-dependences, it might also change the cor-
rectness of that path. To perform renaming in the presence of control flow may
require the insertion of copy operations along some of the edges in the control-
flow graph in order to maintain correctness. See the discussion of translating
from ssa-form back into a linear representation in Section 13.2.)

The compiler has several alternatives for managing these intra-block con-

306 CHAPTER 11. INSTRUCTION SCHEDULING

flicts. To handle the problems that arise from downward motion, it can insert
compensation code into blocks that are along exits from the ebb. Any time
that it moves an operation from block Bi into one of Bi’s successors, it must
consider creating a copy of the instruction in every other successor of Bi. If the
value defined by the moved instruction is live in the successor, the instruction is
necessary. To handle the problems arising from upward motion, It can restrict
the scheduler to prohibit it from moving an operation from its original block
into a predecessor block. This avoids lengthening other paths that leave the
predecessor block.

(A third choice exists. The compiler might make multiple copies of the block,
depending on the surrounding context. In the example, B5 could be cloned to
provide two implementations, B′

5 and B′′
5 , with the edge from B2 connected

to B′
5 and the edge from B3 connected to B′′

5 . This would create longer ebbs
containing the new blocks. This kind of transformation is beyond the scope of
the current discussion. See Section 14.1.8 for a discussion of cloning.)

To schedule an entire ebb, the compiler performs renaming, if necessary,
over the region. Next, it builds a single precedence graph for the entire ebb,
ignoring any exits from the ebb. It computes the priority metrics needed to
select among ready operations and to break any ties. Finally, it applies the
iterative scheduling scheme as with a single block. Each time that it assigns an
operation to a specific cycle in the schedule, it must insert any compensation
code required by that choice.

The compiler typically schedules each block once. Thus, in our example,
the compiler might schedule (B1, B2, B4) first, because it is the longest ebb.
Choosing this ebb breaks up the ebb (B1, B3), so only (B3) remains to be
scheduled. Thus, the compiler might next schedule (B3), then (B5), and finally,
(B6). If the compiler has reason to believe that one ebb executes more often
than another, it should give preference to that ebb and schedule it first so that
it remains intact for scheduling.

11.4.2 Trace Scheduling

Trace scheduling uses information about actual run-time behavior of the pro-
gram to select regions for scheduling. It uses profile information gathered by
running an instrumented version of the program to determine which blocks ex-
ecute most frequently. From this information, it constructs a trace, or a path
through the control-flow graph, representing the most frequently executed path.

Given a trace, the scheduler applies the list scheduling algorithm to the
entire trace, in much the same way that ebb scheduling applies it to an ebb.
With an arbitrary trace, one additional complication arises—the scheduler may
need to insert compensation code at points where control-flow enters the trace
(a merge point). If the scheduler has moved an operation upward across the
merge point, it needs to copy those operations to the end of the predecessors to
the merge that lie outside the trace.

To schedule the entire procedure, the trace scheduler constructs a trace and
schedules it. It then removes the blocks in the trace from consideration, and

11.4. REGIONAL SCHEDULING 307

selects the next most frequently executed trace. This trace is scheduled, with
the requirement that it respect any constraints imposed by previously scheduled
code. The process continues, picking a trace, scheduling it, and removing it from
consideration, until all the blocks have been scheduled.

Ebb scheduling can be considered a degenerate case of trace scheduling,
where the trace is selected using some static approximation to profiling data.

11.4.3 Scheduling Loops

Because loops play a critical role in many computationally-intensive tasks, they
have received a great deal of attention in the literature on compilation. Ebb

scheduling can handle a portion of the loop body,4 but it cannot address laten-
cies that “wrap around” from the bottom of the loop back to the top. Trace
scheduling can address these wrap around problems, but do so by creating mul-
tiple copies of any block that appears more than once in the trace. These
shortcomings have led to several techniques that directly address the problem
of generating excellent schedules for the body of an innermost loop.

Specialized loop scheduling techniques make sense only when the default
scheduler is unable to produce compact and efficient code for the loop. If the
loop, after scheduling, has a body that contains no stalls, interlocks, or nops,
using a specialized loop scheduler is unlikely to improve its performance. Simi-
larly, if the body of the loop is long enough that the end-of-block effects are a
tiny fraction of the running time of the loop, a specialized scheduler is unlikely
to help.

Still, there are many small, computationally-intensive loops that benefit from
loop scheduling. Typically, these loops have too few instructions relative to the
length of their critical paths to keep the underlying hardware busy. The key
to scheduling these loops is to wrap the loop around itself. With a loop folded
once, the first cycle in the loop might issue instructions from the start of the ith

iteration and from the middle of the i−1st iteration. With the loop folded twice,
it would execute three iterations concurrently. Thus, the first cycle in the loop
body might execute an early instruction from the ith iteration, an instruction in
the middle third of the i−1st iteration, and an instruction from the final third of
the i−2nd iteration. Loops folded in this manner are often called pipelined loops
because of the resemblance between this software technique and the hardware
notion of pipelining a functional unit. (In both, multiple operations execute
concurrently.)

For a folded loop to execute correctly, it must first execute a prolog section
that fills up the pipeline. If the loop has three iterations executing at once in
its kernel, the prolog must execute the first two thirds of iteration one, and the
first third of iteration two. After the loop kernel completes, a corresponding
epilog is needed to unwind the final iterations and complete them. The need
for separate prolog and epilog sections increases code size. While the specific

4If the loop contains only one block, it does not need an extended basic block. If it
contains any internal control-flow except for break-style jumps to the loop bottom, an ebb

cannot include all of its blocks.

308 CHAPTER 11. INSTRUCTION SCHEDULING

Cycle Functional Unit 0 Comments
-4 loadI @x ⇒ r@x Set up the loop
-3 loadI @y ⇒ r@y with initial loads
-2 loadI @z ⇒ r@z

-1 addI rx,792 ⇒ rub

1 L1: loadAO rsp,r@x ⇒ rx get x[i] & y[i]
2 loadAO rsp,r@y ⇒ ry

3 addI r@x, 4 ⇒ r@x bump the pointers
4 addI r@y, 4 ⇒ r@y in shadow of loads
5 mult rx,ry ⇒ rz the real work
6 cmp LT r@x,rub ⇒ rcc shadow of mult
7 store rz ⇒ rsp,r@z save the result
8 addI r@z, 4 ⇒ r@z bump z’s pointer
9 cbr rcc → L1,L2 loop-closing branch

Figure 11.7: Example loop scheduled for one functional unit

increase is a function of the loop and the number of iterations that the kernel
executes concurrently, it is not unusual for the prolog and epilog to double the
amount of code required for the pipelined loop.

An example will make these ideas more concrete. Consider the following
loop, written in c:

for (i=1; i < 200; i++)
z[i] = x[i] * y[i];

Figure 11.7 shows the code that a compiler might generate for this loop, after
some optimization. The figure shows the loop scheduled for a single functional
unit. The cycle counts, in the first column, have been normalized to the first
operation in the loop (at label L1).

To generate this code, the compiler performed operator strength reduction
which transformed the address computations into simple additions by the size
of the array elements (four in this case). It also replaced the loop-ending test on
i with an equivalent test on the address generated for x’s next element, using
a transformation called linear function test replacement. The last element of x
accessed should be the 199th element, for an offset of (199− 1) × 4 = 792.

The pre-loop code initializes a pointer for each array and computes an upper
bound for the range of r@x into rub. The loop uses rub in cycle six to test for
the end of the loop. The loop body loads x and y, performs the multiply, and
stores the result into z. It increments the pointers to x, y, and z during the
latency of the various memory operations. The comparison fills the cycle after
the multiply, and the branch fills the final cycle of the store’s latency.

Figure 11.8 shows the loop scheduled for a machine with two functional units.
It assumes a target machine with two functional units, and relies on the strict
ordering of iloc operations. All operands are read at the start of the cycle in

11.4. REGIONAL SCHEDULING 309

Cycle Functional Unit 0 Functional Unit 1
-2 loadI @x ⇒ r@x loadI @y ⇒ r@y

-1 loadI @z ⇒ r@z addI rx,792 ⇒ rub

1 L1: loadAO rsp,r@x ⇒ rx addI r@x, 4 ⇒ r@x

2 loadAO rsp,r@y ⇒ ry addI r@y, 4 ⇒ r@y

5 mult rx,ry ⇒ rz cmp LT r@x,rub ⇒ rcc

7 store rz ⇒ rsp,r@z addI r@z, 4 ⇒ r@z

8 cbr rcc → L1,L2 nop

Figure 11.8: Example loop scheduled for two functional units

which an operation issues, and all definitions are performed at the end of the
cycle in which the operation completes. Loads and stores must execute on unit
zero, a typical restriction. The pre-loop code requires two cycles, as compared
to four with a single functional unit. The loop body takes eight cycles; when
the loop branches back to L1, the store operation is still executing. (On many
machines, the hardware would stall the loads until the store completed, adding
another cycle to the loop ’s execution time.)

With two functional units, the loop runs in either eight or nine cycles, de-
pending on how the hardware handles the interaction between the store to z
and the load from x. The presence of a second functional unit halved the time
for the pre-loop code, but did little or nothing for the loop body itself. The
scheduled loop still spends a significant portion of its time waiting for loads,
stores, and multiplies to finish. This makes it a candidate for a more aggressive
the loop scheduling techniques like pipelining.

Figure 11.9 shows the same loop after the compiler has pipelined it. The
scheduler folded the loop once, so the kernel works on two distinct iterations
concurrently. The prolog section starts up the pipeline by executing the first
half of the first iteration. Each iteration of the kernel executes the second half of
the ith iteration and the first half of the i+1st iteration. The kernel terminates
after processing the first half of the final iteration, so the epilog finishes the job
by performing the second half of the final iteration.

On first examination, the relationship between the code in Figure 11.9 and
the original loop is hard to see. Consider the pipelined loop on a line-by-line
basis, referring back to Figure 11.8 for reference. All references to specific lines
use the cycle number from the leftmost column of Figure 11.9.

The loop prolog To start the loop’s execution, the code must perform all the
operations in the pre-loop sequence of the original, along with the first half of
iteration number one.

-4: The loadIs are from the pre-loop code. In the non-pipelined loop, they
execute in cycle -2 of the pre-loop code.

-3: This is the first instruction of the first iteration. In the non-pipelined loop,
it executes as cycle 1 of the loop body.

310 CHAPTER 11. INSTRUCTION SCHEDULING

Cycle Functional Unit 0 Functional Unit 1
-4 loadI @x ⇒ r@x loadI @y ⇒ r@y

-3 loadAO rsp,r@x ⇒ rx addI r@x, 4 ⇒ r@x

-2 loadAO rsp,r@y ⇒ ry addI r@y, 4 ⇒ r@y

-1 loadI @z ⇒ r@z addI rx,788 ⇒ rub

1 L1: loadAO rsp,r@x ⇒ rx addI r@x, 4 ⇒ r@x

2 loadAO rsp,r@y ⇒ ry mult rx′,ry ⇒ rz

3 i2i rx ⇒ rx′ addI r@y, 4 ⇒ r@y

4 storeAO rz ⇒ rsp,r@z cmp LT r@x,rub ⇒ rcc

5 cbr rcc → L1,L2 addI r@z, 4 ⇒ r@z

+1 L2: mult rx′,ry ⇒ rz nop
+3 store rz ⇒ rsp,r@z nop

Figure 11.9: Example loop after pipeline scheduling

-2: This is the second instruction of the first iteration. In the non-pipelined
loop, it executes as cycle 2 of the loop body.

-1: These are the other two operations of the pre-loop code. In the non-pipelined
loop, they form the instruction at cycle -1.

At the end of the prolog, the code has executed all of the code from the pre-
loop sequence of the original loop, plus the first two instructions from the first
iteration. This “fills the pipeline” so that the kernel can begin execution.

The loop kernel Each trip through the loop kernel executes the second half of
iteration i, alongside the first half of the i + 1st iteration.

1: In this instruction, the loadAO is from iteration i + 1. It fetches x[i+1].
The addI increments the pointer for x so that it points to x[i+2]. The
functional unit reads the value of r@x at the start of the cycle, and stores
its new value back at the end of the iteration.

2: In this instruction, the loadAO is from iteration i +1, while the mult is from
iteration i. The mult cannot be scheduled earlier because of the latency
of the load for y in the prolog (at cycle -2).

3: In this instruction, the addI is from iteration i+1; it updates the pointer to y.
The i2i operation is new. It copies the value of x into another register so
that it will not be overwritten before its use in the mult operation during
the next kernel operation. (No copy is needed for y because the loadAO
for y issues in the same cycle as the mult that uses its old value.

4: In this instruction, the storeAO is from iteration i while the cmp LT is from
iteration i + 1. The upper bound on x’s pointer, stored in rub has been

11.5. MORE AGGRESSIVE TECHNIQUES 311

adjusted to terminate the kernel after iteration 198, where the unpipelined
loop terminated after iteration 199. The storeAO is scheduled as soon after
the corresponding mult as possible, given the latency of the multiply.

5: In this instruction, the conditional branch is from iteration i, as is the addI
that increments the pointer to z.

When the kernel finishes execution and branches to L2, all the iterations have
executed, except for the second half of the final iteration.

The loop epilog The epilog unwinds the final iteration. Because the scheduler
knows that this code implements the last iteration, it can elide the update to
r@z and the comparison and branch instructions. (Of course, if the code uses
r@z after the loop, the scheduler will discover that it is Live on exit and will
include the final increment operation.)

+1: This instruction executes the final multiply operation. Because the sched-
uler has eliminated the remaining updates and compares, the other oper-
ation is a nop.

+3: This instruction executes the final store. Again, the second operation is
shown as a nop.

If the scheduler had more context surrounding the loop, it might schedule these
epilog operations into the basic block that follows the loop. This would allow
productive operations to replace the two nops and to fill cycle +2.

Review In essence, the pipeline scheduler folded the loop in half to reduce the
number of cycles spent per iteration. The kernel executes one fewer time than
the original loop. Both the prolog and the epilog perform one half of an iteration.
The pipelined loop uses many fewer cycles to execute the same operations, by
overlapping the multiply and store from iteration i with the loads from iteration
i + 1.

In general, the algorithms for producing pipelined loops require analysis
techniques that are beyond the scope of this chapter. The curious reader should
consult a textbook on advanced optimization techniques for details.

11.5 More Aggressive Techniques

Architectural developments in the 1990s increased the importance of instruc-
tion scheduling. The widespread use of processors with multiple functional
units, increased use of pipelining, and growing memory latencies combined to
make realized performance more dependent on execution order. This led to
development of more aggressive approaches to scheduling. We will discuss two
such approaches.

11.5.1 Cloning for Context

In the example from Figure 11.6, two of the ebbs contain more than one block—
(B1, B2, B4) and (B1, B3). When the compiler schedules (B1, B2, B4) it must

312 CHAPTER 11. INSTRUCTION SCHEDULING

B1
a
b
c
d

B2
e
f

B3 g

B4
h
i

B5
j
k

B′
5

j
k

B6 l B′
6 l B′′

6 l

�
��

�
�R

�
��

�
�R

�
�R

� � �

Figure 11.10: Cloning to Increase Scheduling Context

split (B1, B3) in half. B1 is scheduled into the larger ebb, leaving B3 to be
scheduled as a single block. The other two ebbs in the example consist of
single blocks as well—(B5) and (B6). Thus, any benefits derived from ebb

scheduling occur only on the path B1, B2, B4. Any other path through the
fragment encounters code that has been subjected to local list scheduling.

If the compiler chose correctly, and B1, B2, B4 is the most executed path,
then splitting (B1, B3) is appropriate. If, instead, another path executes much
more frequently, such as (B1, B3, B5, B6), then the benefits of ebb scheduling
have been wasted. To increase the number of multiple-block ebbs that can be
scheduled, the compiler may clone basic blocks to recapture context. (Cloning
also decreases the performance penalty when the compiler’s choice of an exe-
cution path is wrong.) With cloning, the compiler replicates blocks that have
multiple predecessors to create longer ebbs.

Figure 11.10 shows the result of performing this kind of cloning on the exam-
ple from Figure 11.6. Block B5 has been cloned to create separate instances for
the path from B2 and the path from B3. Similarly, B6 has been cloned twice, to
create an instance for each path entering it. This produces a graph with longer
ebbs.

If the compiler still believes that (B1, B2, B4) is the hot path, it will schedule
(B1, B2, B4, B6) as a single ebb. This leaves two other ebbs to schedule. It
will schedule (B5, B

′
6), using the result of scheduling (B1, B2) as context. It will

schedule (B3, B
′
5, B

′′
6), using (B1) as context. Contrast that with the simple ebb

scheduler, which scheduled (B3), (B5), and (B6) separately. In that scheme,
only (B3) could take advantage of any contextual knowledge about the code
that executed before it, since both (B5) and (B6) have multiple predecessors
and, therefore, inconsistent context. This extra context cost a second copy of
statements j and k and two extra copies of statement l.

Of course, the compiler writer must place some limits on this style of cloning,

11.5. MORE AGGRESSIVE TECHNIQUES 313

�
entry B1

B2

�

� �

�� �exit

Original Code

�entry B1

B2

�

�exit

B1′� �
�

�
�
� �

�
exit

After Cloning

Figure 11.11: Cloning a Tail-call

to avoid excessive code growth and to avoid unwinding loops. A typical im-
plementation might clone blocks within an innermost loop, stopping when it
reaches a loop-closing edge (sometimes called a back-edge in the control-flow
graph). This creates a situation where the only multiple-entry block in the loop
is the first block in the loop. All other paths have only single-entry blocks.

A second example that merits consideration arises in tail-recursive programs.
Recall, from Section 8.8.2, that a program is tail recursive if its last action is a
recursive self-invocation. When the compiler detects a tail-call, it can convert
the call into a branch back to the procedure’s entry. This implements the
recursion with an ad hoc looping construct rather than a full-weight procedure
call. From the scheduler’s point of view, however, cloning may improve the
situation.

The left side of Figure 11.11 shows an abstracted control-flow graph for a
tail-recursive routine, after the tail-call has been converted to iteration. Block
B1 is entered along two paths, the path from the procedure entry and the path
from B2. This forces the scheduler to use worst-case assumptions about what
precedes B1. By cloning B1, as shown on the right, the compiler can create the
situation where control enters B1′ along only one edge. This may improve the
results of regional scheduling, with an ebb scheduler or a loop scheduler. To
further simplify the situation, the compiler might coalesce B1′ onto the end of
B2, creating a single block loop body. The resulting loop can be scheduled with
either a local scheduler or a loop scheduler, as appropriate.

11.5.2 Global Scheduling

Of course, the compiler could attempt to take a global approach to scheduling,
just as compilers take a global approach to register allocation. Global scheduling
schemes are a cross between code motion, performed quite late, and regional
scheduling to handle the details of instruction ordering. They require a global
graph to represent precedence; it must account for the flow of data along all
possible control-flow paths in the program.

These algorithms typically determine, for each operation, the earliest posi-
tion in the control-flow graph that is consistent with the constraints represented
in the precedence graph. Given that location, they may move the operation later
in the control-flow graph to the deepest location that is controlled by the same

314 CHAPTER 11. INSTRUCTION SCHEDULING

Digression: Measuring Run-time Performance

The primary goal of instruction scheduling is to improve the running time of
the generated code. Discussions of performance use many different metrics;
the two most common are:

Operations per second The metric commonly used to advertise comput-
ers and to compare system performance is the number of operations
executed in a second. This can be measured as instructions issued per
second or instructions retired per second.

Time to complete a fixed task This metric uses one or more programs
whose behavior is known, and compares the time required to complete
these fixed tasks. This approach, called benchmarking, provides infor-
mation about overall system performance, both hardware and software,
on a particular workload.

No single metric contains enough information to allow evaluation of the qual-
ity of code generated by the compiler’s back end. For example, if the measure
is operations per second, does the compiler get extra credit for leaving ex-
traneous (but independent) operations in code? The simple timing metric
provides no information about what is achievable for the program. Thus, it
allows one compiler to do better than another, but fails to show the distance
between the generated code and what is optimal for that code on the target
machine.

Numbers that the compiler writer might want to measure include the
percentage of executed instructions whose output is actually used, and the
percentage of cycles spent in stalls and interlocks. The former gives insight
into some aspects of predicated execution, while the latter directly measures
some aspects of schedule quality.

set of conditions. The former heuristic is intended to move operations out of
deeply nested loops and into less frequently executed positions. Moving the
operation earlier in the control-flow graph often increases, at least temporarily,
the size of its live range. That leads to the latter heuristic, which tries to move
the operation as close to its subsequent use without moving it any deeper in the
nesting of the control-flow graph.

The compiler writer may be able to achieve similar results in a simpler
way—using a specialized algorithm to perform code motion (such as Lazy Code
Motion, described in Chapter 14) followed by a strong local or regional scheduler.
The arguments for global optimization and for global allocation may not carry
over to scheduling; the emphasis on scheduling is to avoid stalls, interlocks, and
nops. These latter issues tend to be localized in their impact.

11.6. SUMMARY AND PERSPECTIVE 315

11.6 Summary and Perspective

Algorithms that guarantee optimal schedules exist for simplified situations. For
example, on a machine with one functional unit and uniform operation latencies,
the Sethi-Ullman labelling algorithm creates an optimal schedule for an expres-
sion tree [47]. It can be adapted to produce good code for expression dags.
Fischer and Proebsting built on the labelling algorithm to derive an algorithm
that produces optimal or near optimal results for small memory latencies [43].
Unfortunately, its has trouble when either the number of functional units or
their latencies rise.

In practice, modern computers have become complex enough that none of the
simplified models adequately reflect their behavior. Thus, most compilers use
some form of list scheduling. The algorithm is easily adapted and parameterized;
it can be run for forward scheduling and backward scheduling. The technology
of list scheduling is the base from which more complex schedulers, like software
pipeliners, are built.

Techniques that operate over larger regions have grown up in response to
real problems. Trace scheduling was developed for vliw architectures, where the
compiler needed to keep many functional units busy. Techniques that schedule
extended basic blocks and loops are, in essence, responses to the increase in both
the number of pipelines that the compiler must consider and their individual
latencies. As machines have become more complex, schedulers have needed a
larger scheduling context to discover enough instruction-level parallelism to keep
the machines busy.

The example for backward versus forward scheduling in Figure 11.4 was
brought to our attention by Philip Schielke [46]. It is from the Spec benchmark
program go. It captures, concisely, an effect that has caused many compiler
writers to include both forward and backward schedulers in their back ends.

334 CHAPTER 11. INSTRUCTION SCHEDULING

Appendix A

ILOC

Introduction

Iloc is the linear assembly code for a simple abstract machine. The iloc

abstract machine is a risc-like architecture. We have assumed, for simplicity,
that all operations work on the same type of data—sixty-four bit integer data.

It has an unlimited number of registers. It has a couple of simple addressing
modes, load and store operations, and three address register-to-register opera-
tors.

An iloc program consists of a sequential list of instructions. An instruction
may have a label; a label is followed immediately by a colon. If more than one
label is needed, we represent it in writing by adding the special instruction nop

that performs no action. Formally:

iloc-program → instruction-list

instruction-list → instruction
| label : instruction
| instruction instruction-list

Each instruction contains one or more operations. A single-operation instruction
is written on a line of its own, while a multi-operation instruction can span
several lines. To group operations into a single instruction, we enclose them in
square brackets and separate them with semi-colons. More formally:

instruction → operation
| [operation-list]

operation-list → operation
| operation ; operation-list

An iloc operation corresponds to an instruction that might be issued to a single
functional unit in a single cycle. It has an optional label, an opcode, a set of
source operands, and a set of target operands. The sources are separated from
the targets by the symbol ⇒, pronounced “into.”

335

336 APPENDIX A. ILOC

operation → opcode operand-list ⇒ operand-list

operand-list → operand
| operand , operand-list

operand → register
| number
| label

Operands come in three types: register, number, and label. The type of
each operand is determined by the opcode and the position of the operand in
the operation. In the examples, we make this textually obvious by beginning
all register operands with the letter r and all labels with a letter other than
r (typically, with an l).

We assume that source operands are read at the beginning of the cycle when
the operation issues and that target operands are defined at the end of the cycle
in which the operation completes.

Most operations have a single target operand; some of the store operations
have multiple target operations. For example, the storeAI operation has a
single source operand and two target operands. The source must be a register,
and the targets must be a register and an immediate constant. Thus, the iloc

operation

storeAI ri ⇒ rj, 4

computes an address by adding 4 to the contents of rj and stores the value
found in ri into the memory location specified by the address. In other words,

Memory(rj+4) ← Contents(ri)

The non-terminal opcode can be any of the iloc operation codes. Unfortu-
nately, as in a real assembly language, the relationship between an opcode and
the form of its arguments is less than systematic. The easiest way to specify the
form of each opcode is in a tabular form. Figure A.2 at the end of this appendix
shows the number of operands and their types for each iloc opcode used in the
book.

As a lexical matter, iloc comments begin with the string // and continue
until the end of a line. We assume that these are stripped out by the scanner;
thus they can occur anywhere in an instruction and are not mentioned in the
grammar.

To make this discussion more concrete, let’s work through the example used
in Chapter 1. It is shown in Figure A.1. To start, notice the comments on the
right edge of most lines. In our iloc-based systems, comments are automatically
generated by the compiler’s front end, to make the iloc code more readable by
humans. Since the examples in this book are intended primarily for humans,
we continue this tradition of annotating the iloc

This example assumes that register rsp holds the address of a region in
memory where the variables w, x, y, and z are stored at offsets 0, 8, 16, and 24,
respectively.

337

loadAI rsp, 0 ⇒ rw // w is at offset 0 from rsp

loadI 2 ⇒ r2 // constant 2 into r2

loadAI rsp, 8 ⇒ rx // x is at offset 8
loadAI rsp, 12 ⇒ ry // y is at offset 12
loadAI rsp, 16 ⇒ rz // z is at offset 16
mult rw, r2 ⇒ rw // rw ← w×2
mult rw, rx ⇒ rw // rw ← (w×2) × x
mult rw, ry ⇒ rw // rw ← (w×2×x) × y
mult rw, rz ⇒ rw // rw ← (w×2×x×y) × z
storeAI rw ⇒ rsp, 0 // write rw back to ’w’

Figure A.1: Introductory example, revisited

The first instruction is a loadAI operation, or a load address-immediate.
From the opcode table, we can see that it combines the contents of rsp with the
immediate constant 0 and retrieves the value found in memory at that address.
We know, from above, that this value is w. It stores the retrieved value in rw.
The next instruction is a loadi operation, or a load immediate. It moves the
value 2 directly into r2. (Effectively, it reads a constant out of the instruction
stream and into a register.) Instructions three through five load the values of x
into rx, y into ry, and z into rz.

The sixth instruction multiplies the contents of rw and r2, storing the result
back into rw. Instruction seven multiplies this quantity by rx. Instruction eight
multiplies in ry, and instruction nine picks up rz. In each instruction from six
through nine, the value is accumulated into rw.

Finally, instruction ten saves the value to memory. It uses a storeAI, or
store address-immediate, to write the contents of rw into the memory location
at offset 0 from rsp. As pointed out in Chapter 1, this sequence evaluates the
expression

w ← w × 2 × x × y × z

The opcode table, at the end of this appendix, lists all of the opcodes used in
iloc examples in the book.

Comparison and Conditional Branch In general, the iloc comparison operators
take two values and return a boolean value. The operations cmp LT, cmp LE,
cmp EQ, cmp NE, cmp GE, and cmp GT work this way. The corresponding condi-
tional branch, cbr, takes a boolean as its argument and transfers control to one
of two target labels. The first label is selected if the boolean is true; the second
label is selected if the label is false.

Using two labels on the conditional branch has two advantages. First, the
code is somewhat more concise. In several situations, a conditional branch might
be followed by an absolute branch. The two-label branch lets us record that
combination in a single operation. Second, the code is easier to manipulate.
A single-label conditional branch implies some positional relationship with the
next instruction; there is an implicit connection between the branch and its

338 APPENDIX A. ILOC

“fall-through” path. The compiler must take care, particularly when reading
and writing linear code, to preserve these relationships. The two-label condi-
tional branch makes this implicit connection explicit, and removes any possible
positional dependence.

Because the two branch targets are not “defined” by the instruction, we
change the syntax slightly. Rather than use the ⇒ arrow, we write branches
with the smaller → arrow.

In a few places, we want to discuss what happens when the comparison re-
turns a complex value written into a designated area for a “condition code.”
The condition code is a multi-bit value that can only be interpreted with a
more complex conditional branch instruction. To talk about this mechanism,
we use an alternate set of comparison and conditional branch operators. The
comparison operator, comp takes two values and sets the condition code appro-
priately. We always designate the target of comp as a condition code register by
writing it cci. The corresponding conditional branch has six variants, one for
each comparison result. Figure A.3 shows these instructions and their meaning.

Note: In a real compiler that used iloc, we would need to introduce some
representation for distinct data types. The research compiler that we built
using iloc had several distinct data types—integer, single-precision floating-
point, double-precision floating-point, complex, and pointer.

A.0.1 Naming Conventions

1. Memory offsets for variables are represented symbolically by prefixing the
variable name with the @ character.

2. The user can assume an unlimited supply of registers. These are named
with simple integers, as in r1776.

3. The register r0 is reserved as a pointer the current activation record.
Thus, the operation loadAI r0,@x ⇒r1 implicitly exposes the fact that
the variable x is stored in the activation record of the procedure containing
the operation.

A.0.2 Other Important Points

An iloc operation reads its operands at the start of the cycle in which it issues.
It writes its target at the end of the cycle in which it finishes. Thus, two
operations in the same instruction can both refer to a given register. Any uses
receive the value defined at the start of the cycle. Any definitions occur at the
end of the cycle. This is particularly important in Figure 11.9.

339

Opcode Sources Targets Meaning
add r1, r2 r3 r1 + r2 → r3

sub r1, r2 r3 r1 − r2 → r3

mult r1, r2 r3 r1 × r2 → r3

div r1, r2 r3 r1 ÷ r2 → r3

addI r1, c1 r2 r1 + c1 → r2

subI r1, c1 r2 r1 − c1 → r2

multI r1, c1 r2 r1 × c1 → r2

divI r1, c1 r2 r1 ÷ c1 → r2

lshift r1, r2 r3 r1 � r2 → r3

lshiftI r1, c2 r3 r1 � c2 → r3

rshift r1, r2 r3 r1 � r2 → r3

rshiftI r1, c2 r3 r1 � c2 → r3

loadI c1 r2 c1 → r2

load r1 r2 Memory(r1) → r2

loadAI r1, c1 r2 Memory(r1+c1) → r2

loadAO r1, r2 r3 Memory(r1+r2) → r3

cload r1 r2 character load
cloadAI r1, r2 r3 character loadAI
cloadAO r1, r2 r3 character loadAO
store r1 r2 r1 → Memory(r2)
storeAI r1 r2, c1 r1 → Memory(r2+c1)
storeAO r1 r2, r3 r1 → Memory(r2+r3)
cstore r1 r2 character store
cstoreAI r1 r2, r3 character storeAI
cstoreAO r1 r2, r3 character storeAO
br l1 l1 → pc

cbr r1 l1, l2 r1 = true ⇒ l1 → pc

r1 = false ⇒ l2 → pc

cmp LT r1, r2 r3 r1 < r2 ⇒ true → r3

(otherwise, false → r3)
cmp LE r1, r2 r3 r1 ≤ r2 ⇒ true → r3

cmp EQ r1, r2 r3 r1 = r2 ⇒ true → r3

cmp NE r1, r2 r3 r1 	= r2 ⇒ true → r3

cmp GE r1, r2 r3 r1 ≥ r2 ⇒ true → r3

cmp GT r1, r2 r3 r1 > r2 ⇒ true → r3

i2i r1 r2 r1 → r2

c2c r1 r2 r1 → r2

c2i r1 r2 converts character to integer
i2c r1 r2 converts integer to character

Figure A.2: Iloc opcode table

340 APPENDIX A. ILOC

Opcode Sources Targets Meaning
comp r1, r2 cc1 defines cc1

cbr LT cc1 l1, l2 cc1 = LT ⇒ l1 → pc

(otherwise l2 → pc)
cbr LE cc1 l1, l2 cc1 = LE ⇒ l1 → pc

cbr EQ cc1 l1, l2 cc1 = EQ ⇒ l1 → pc

cbr GE cc1 l1, l2 cc1 = GE ⇒ l1 → pc

cbr GT cc1 l1, l2 cc1 = GT ⇒ l1 → pc

cbr NE cc1 l1, l2 cc1 = NE ⇒ l1 → pc

Figure A.3: Alternate Compare/Branch Syntax

Appendix B

Data Structures

B.1 Introduction

Crafting a successful compiler requires attention to many details. This appendix
explores minor design details that have an impact on a compiler’s implementa-
tion. In most cases, the details would burden the discussion in the body of the
book. Thus, we have gathered them together into this appendix.

B.2 Representing Sets

B.3 Implementing Intermediate Forms

B.4 Implementing Hash-tables

The two central problems in hash-table implementation are ensuring that the
hash function produces a good distribution of integers (at any of the table sizes
that will be used), and providing conflict resolution in an efficient way.

Finding good hash functions is difficult. Fortunately, hashing has been in
use long enough that many good functions have been described in the literature.
Section B.4.1 describes two related approaches that, in practice, produce good
results.

The problem of collision handling drives the layout of hash tables. Many
collision-resolution schemes have been proposed. We will discuss the two most
widely used schemes. Section B.4.2 describes open hashing, sometimes called a
bucket hash, while Section B.4.3 presents an alternative scheme called open ad-
dressing, or rehashing. Section B.4.5 shows how to incorporate the mechanisms
for lexical scoping into these schemes. The final section deals with a practical
issue that arises in a compiler development environment—frequent changes to
the hash-table definition.

341

342 APPENDIX B. DATA STRUCTURES

Digression: Organizing a Search Table

In designing a symbol table, the first decision that the compiler writer faces
concerns the organization of the table and its searching algorithm. As in
many other applications, the compiler writer has several choices.

• Linear List: A linear list can expand to arbitrary size. The search algo-
rithm is a single, small, tight loop. Unfortunately, the search algorithm
requires O(n) probes per lookup, on average. This single disadvantage
probably outweighs simplicity of implementation and expansion. To
justify using a linear list, the compiler writer needs strong evidence
that the procedures being compiled have very few names.

• Binary Search: To retain the easy expansion of the linear list while im-
proving search time, the compiler writer might use a balanced binary
tree. Ideally, a binary tree should allow lookup in O(log2 n) probes per
lookup; this is a considerable improvement over the linear list. Many al-
gorithms have been published for balancing search trees [27, 12]. (Simi-
lar effects can be achieved by using a binary search of an ordered table,
but the table makes insertion and expansion more difficult.)

• Hash Table: A hash table may minimize access costs. The implemen-
tation computes a table index directly from the name. As long as that
computation produces a good distribution of indices, the average access
cost should be O(1). Worst-case, however, can devolve to linear search.
The compiler writer can take steps to decrease the likelihood of this
happening, but pathological cases may still occur. Many hash-table
implementations have inexpensive schemes for expansion.

• Multi-set Discrimination: To avoid worst-case behavior, the compiler
writer can use an off-line technique called multiset discrimination. It
creates a unique index for each identifier, at the cost of an extra pass
over the source text. This technique avoids the possibility of patholog-
ical behavior that always exists with hashing. (See the digression “An
Alternative to Hashing” on page 156 for more details.)

Of these organizations, the most common choice appears to be the hash table.
It provides better compile-time behavior than the linear list or binary tree,
and the implementation techniques have been widely studied and taught.

B.4. IMPLEMENTING HASH-TABLES 343

B.4.1 Choosing a Hash Function

The importance of a good hash function cannot be overemphasized. A hash
function that produces a bad distribution of index values directly increases the
average cost of inserting items into the table and finding such items later. For-
tunately, many good hash functions have been documented in the literature.
The multiplicative hash function, described by Knuth and Cormen Cormen et
al. [38, 27] works well and has efficient implementations. The notion of a uni-
versal hash function described by Cormen et al. [27] leads to a related hash
function, but incorporates randomization to avoid pathological behavior.

Multiplicative Hash Function The multiplicative hash function is deceptively
simple. The programmer chooses a single constant, C, and use it in the following
formula

h(key) = �TableSize((C · key) mod 1)�

where C is the constant, key is the integer being used as a key into the table,
and TableSize is, rather obviously, the current size of the hash table. Knuth
suggests computing C as an integer constant A divided by the wordsize of the
computer. In our experience, C should be between The effect of the function is
to compute C · key, take its fractional part with the mod function, and multiply
the result by the size of the table.

Universal Hash Functions To implement a universal hash function, the program-
mer designs a family of functions that can be parameterized by a small set of
constants. At execution time, a set of values for the constants are chosen at
random—either using random numbers for the constants or selecting a random
index into a set of previously tested constants. (The same constants are used
throughout a single execution of the program that uses the hash function, but
the constants vary from execution to execution.) By varying the hash function
on each execution of the program, a universal hash function produces different
distributions on each run of the program. In a compiler, if the input program
produced pathological behavior in some particular compile, it should not pro-
duce the same behavior in subsequent compiles.

To implement a universal version of the multiplicative hash function, the
programmer has two choices. The simplest strategy is to randomly generate
an integer A at the beginning of execution, form A

w , and use that as C in the
computation. The other alternative is to pick a set of ten to twenty integer
constants A, encode them in a table, and, at run-time, select one constant at
random for use in computing C (as A

w). The advantage of the latter method
is that the programmer can screen constants for good behavior. In the former
approach, the random number generator directly changes the distribution of
keys across the table. In the latter approach, the random number generator
only needs to be good enough to pick an integer index into the table—the keys
in the table have been pre-selected for reasonable behavior.

344 APPENDIX B. DATA STRUCTURES

Digression: The Perils of Poor Hash Functions

The choice of a hash function has a critical impact on the cost of table
insertions and lookups. This is a case where a small amount of attention can
make a large difference.

Many years ago, we saw a student implement the following hash function
for character strings: (1) break the key in four byte chunks, (2) exclusive-or
them together, and (3) take the resulting number, modulo table size, as the
index. The function is relatively fast. It has a straight forward implementa-
tion. With some table sizes, it produces adequate distributions.

When the student inserted this implementation into a system that per-
formed source-to-source translation on Fortran programs, several indepen-
dent facts combined to create an algorithmic disaster. First, the implemen-
tation language padded character strings with blanks to reach a four-byte
boundary. Second, the student chose an initial table size of 2048. Finally,
Fortran programmers use many one and two character variable names, such
as i, j, k, x, y, and z.

All the short variable names fit in a single word string, so no exclusive-or
is needed. However, taking x mod 2048 simply masks out the final eleven bits
of x. Thus, all short variable names produce the same index—the final bits
of the string consisting of two blanks. Thus, the table devolved rapidly into
a linear search. While this particular hash function is far from ideal, simply
changing the table size to 2047 eliminated the most noticeable effects.

B.4.2 Open Hashing

Open hashing, also called bucket hashing, assumes that the hash function h
will produce collisions. It relies on h to partition the set of input keys into a
fixed number of sets, or buckets. Each bucket contains a linear list of records,
one record per name. LookUp(n) walks the linear list stored in the bucket
indexed by h(n) to find n. Thus, LookUp requires one evaluation of h(n) and
the traversal of a linear list. Evaluating h(n) should be fast; the list traversal
will take time proportional to the length of the list. For a table of size S, with
N names, the cost per lookup should be roughly O(N

S
). As long as h distributes

names fairly uniformly and the ratio of buckets to names is kept small, this cost
approximates our goal: O(1) time for each access.

Figure B.1 shows a small hash table implemented with this scheme. It
assumes that h(a) = h(d) = 3 to create a collision. Thus, a and d occupy the
same slot in the table. The list structure links them together and reveals that a
was entered before d; after all, Insert should add to the front of the list rather
than the end of the list.

Open hashing has several advantages. Because it creates a new node in one of
the linked lists for every inserted name, it can handle an arbitrarily large number
of names without running out of space. An excessive number of entries in one
bucket does not affect the cost of access in other buckets. Because the concrete
representation for the buckets is usually an array of pointers, the overhead for

B.4. IMPLEMENTING HASH-TABLES 345

h(d)�
�
�
���

0

1 � b
2

3 � d � a
4

5

6

7

8

9 � c

Figure B.1: Open hashing table

increasing S is small—one pointer for each added bucket. (This makes it less
expensive to keep N

S small. The cost per name is constant.) Choosing S as
a power of two reduces the cost of the inevitable mod operation required to
implement h.

The primary drawbacks for open hashing relate directly to these advantages.
Both can be managed.

1. Open hashing can be allocation intensive. Each insertion allocates a new
record. When implemented on a system with heavyweight memory allo-
cation, this may be noticeable. Using a lighter-weight mechanism, such
as arena-based allocation (see the digression on 195) can alleviate this
problem.

2. If any particular set gets large, LookUp degrades into linear search. With a
reasonably behaved hash function, this only occurs when N � S. The im-
plementation should detect this problem and enlarge the array of buckets.
Typically, this involves allocating a new array of buckets and re-inserting
each entry from the old table into the new table.

A well implemented open hash table provides efficient access with a low overhead
in both space and time.

To improve the behavior of the linear search performed inside a single bucket,
the compiler can dynamically reorder the chain. Rivest and Tarjan showed that
the appropriate strategy is to move a node up the chain by one position on each
lookup.

B.4.3 Open Addressing

Open addressing, also called rehashing, handles collisions by computing an al-
ternative index for the names whose normal slot, at h(n), is already occupied.
In this scheme, LookUp(n) computes h(n) and examines that slot. If it is empty,
LookUp fails. If it finds n, LookUp succeeds. If it finds a name other than h(n), it
uses a second function g(n) to compute an increment for the search and probes
the table at (h(n)+g(n)) mod S, (h(n)+2×g(n))modS, (h(n)+3×g(n))modS,
and so on, until it either finds n, finds an empty slot, or returns to h(n) a second
time. If it finds an empty slot, or it returns to h(n) a second time, LookUp fails.

346 APPENDIX B. DATA STRUCTURES

h(d)�
�
�
���

0

1 b
2

3 a
rehash
�d

4

5

6

7

8

9 c

Figure B.2: Open Addressing Table

Figure B.2 shows a small hash table implemented with this scheme. It uses
the same data as the table shown in Figure B.1. As before, h(a) = h(d) = 3,
while h(b) = 1 and h(c) = 9. When d was inserted, it produced a collision
with a. The secondary hash function g(d) produced 2, so Insert placed d at
index 5 in the table. In effect, open addressing builds chains of items similar to
those used in open hashing. In open addressing, however, the chains are stored
directly in the table, and a single table location can serve as the starting point
for multiple chains, each with a different increment produced by g.

This scheme makes a subtle tradeoff of space against speed. Since each key
is stored in the table, S must be larger than N . If collisions are infrequent,
because h and g produce good distributions, then the rehash chains stay short
and access costs stay low. Because it can recompute g inexpensively, it need not
store pointers to form the rehash chains—a savings of N pointers. This saved
space goes into making the table larger; the larger table improves behavior by
lowering the collision frequency. The primary advantage of open addressing is
simple: lower access costs through shorter rehash chains.

Open addressing has two primary drawbacks. Both arise as N approaches
S and the table becomes full.

1. Because rehash chains thread through the index table, a collision be-
tween n and m can induce interfere with a subsequent insertion of p. If
h(n) = h(m) and (h(m)+g(m)) mod S = h(p), then inserting n, followed
by m fills p’s slot in the table. When the scheme behaves well, this problem
has a minor impact. As N approaches S, it can become pronounced.

2. Because S must be at least as large as N , the table must be expanded if
N grows too large. (Similarly, the implementation may expand S when
some chain becomes too long.) Expansion is needed for correctness; with
open hashing, it is a matter of efficiency.

Some implementations use a constant function for g. This simplifies the imple-
mentation and reduces the cost of computing secondary indices. However, it
creates a single rehash chain for each value of h and it has the effect of merging
rehash chains whenever a secondary index encounters an already occupied table
slot. These two disadvantages outweigh the cost of evaluating a second hash

B.4. IMPLEMENTING HASH-TABLES 347

h(c)��
����

0

1 HHHHH

HHj

2

3

�
�
�
�
�
�R

4

5

6

7

8

9
���

����

a
b
c

next
slot
�

Index set Stack

Figure B.3: Stack allocation for records

function. A more reasonable choice is to use two multiplicative hash functions
with different constants—selected randomly at startup from a table of constants,
if possible.

The table size, S, plays an important role in open addressing. LookUp must
recognize when it reaches a table slot that it has already visited; otherwise, it
will not halt on failure. To make this efficient, the implementation should ensure
that it eventually returns to h(n). If S is a prime number, then any choice of
0 < g(n) < S generates a series of probes, p1, p2, . . . , pS with the property
that p1 = pS = h(n) and pi 	= h(n), ∀ 1 < i < S. That is, LookUp will examine
every slot in the table before it returns to h(n). Since the implementation may
need to expand the table, it should include a table of appropriately-sized prime
numbers. A small set of primes will suffices, due to the realistic limits on both
program size and memory available to the compiler.

B.4.4 Storing Symbol Records

Neither open hashing nor open addressing directly addresses the issue of how
to allocate space for the recorded information associated with each hash table
key. With open hashing, the temptation is to allocate the records directly in the
nodes that implement the chains. With open addressing, the temptation is to
avoid the pointers and make each entry in the index table be a symbol record.
Both these approaches have drawbacks. We may achieve better results by using
a separately allocated stack to hold the records.

Figure B.3 depicts this implementation. In an open hashing implementation,
the chain lists themselves can be implemented on the stack. This lowers the
cost of allocating individual records—particularly if allocation is a heavyweight
operation. In an open addressing implementation, the rehash chains are still
implicit in the index set, preserving the space saving that motivated the idea.

In this design, the actual records form a dense table, better for external i/o.
With heavyweight allocation, this scheme amortizes the cost of a large allocation
over many records. With a garbage collector, it decreases the number of objects
that must be marked and collected. In either case, having a dense table makes
it more efficient to iterate over all of the symbols in the table—an operation

348 APPENDIX B. DATA STRUCTURES

h(a)

h(c)

h(b)

h(x)

h(z)

c,2 a,1 c,0 a,0

b,0

x,2 x,1

�

��

�

�

�

� � � �

�

� �

Figure B.4: Lexical Scoping in an Open Hashing Table

that the compiler will use to perform tasks such as assigning storage locations.
As a final advantage, this scheme drastically simplifies the task of expanding

the index set. To expand the index set, the compiler discards the old index set,
allocates a larger set, and then reinserts the records into the new table, working
from the bottom of the stack to the top. This eliminates the need to have,
temporarily, both the old and new table in memory. Iterating over the dense
table takes less work, in general, than chasing the pointers to traverse the lists
in open hashing. It avoids iterating over empty table slots, as can happen when
open addressing expands the index set to keep chain lengths short.

The compiler need not allocate the entire stack as a single object. Instead,
the stack can be implemented as a chain of nodes that each hold k records.
When a node is full, the implementation allocates a new node, adds it to the
end of the chain, and continues. This provides the compiler writer with fine-
grain control over the tradeoff between allocation cost and wasted space.

B.4.5 Adding Nested Lexical Scopes

Section 6.7.3 described the issues that arise in creating a symbol table to han-
dle nested lexical scopes. It described a simple implementation that created
a sheaf of symbol tables, one per level. While that implementation is concep-
tually clean, it pushes the overhead of scoping into LookUp, rather than into
InitializeScope, FinalizeScope, and Insert. Since the compiler invokes
LookUp many more times than it invokes these other routines, other implemen-
tations deserve consideration.

Consider again the code in Figure 6.9. It generates the following actions:

↑ 〈a,0〉 〈b,0〉 〈c,0〉 ↑ 〈b,1〉 〈z,1〉 ↓ ↑ 〈a,1〉 〈x,1〉 ↑ 〈c,2〉, 〈x,2〉 ↓ ↓ ↓
where ↑ shows a call to InitializeScope(), ↓ is a call to FinalizeScope(),
and a pair 〈name,n〉 is a call to Insert that adds name at level n.

Adding Lexical Scopes to Open Hashing Consider what would happen in an
open-hashing table if we simply added a lexical-level field to the record for each
name, and inserted new names at the front of its chain. Insert could check for
duplicates by comparing both names and lexical levels. LookUp would return
the first record that it discovered for a given name. InitializeScope simply

B.4. IMPLEMENTING HASH-TABLES 349

h(a)

h(c)

h(b)

h(x)

h(z)
a,0
b,0
c,0
a,1
x,1
c,2
x,2

�

��

�

�

�

�
�
�
��

�
�

�

S
S
S
S
S �

��
��

�

�

tos

�

Figure B.5: Lexical Scoping in a Stack Allocated Open Hashing Table

bumps an internal counter for the current lexical level. This scheme pushes the
complications into FinalizeScope, which must not only decrement the current
lexical level, but also must remove the records for any names inserted in this
scope.

If open hashing is implemented with individually allocated nodes for its
chains, as shown in Figure B.1, then FinalizeScope must find each record for
the scope being discarded and remove them from their respective chains. If
they will not be used later in the compiler, it must deallocate them; otherwise,
it must chain them together to preserve them. Figure B.4 shows the table that
this approach would produce, at the assignment statement in Figure 6.9.

With stack allocated records, FinalizeScope can iterate from the top of the
stack downward until it reaches a record for some level below the level being
discarded. For each record, it updates the index set entry with the record’s
pointer to the next item on the chain. If the records are being discarded,
FinalizeScope resets the pointer to the next available slot; otherwise, the
records are preserved, together, on the stack. Figure B.5 shows the symbol
table for our example, at the assignment statement.

With a little care, dynamic reordering of the chain can be added to this
scheme. Since FinalizeScope() uses the stack ordering, rather than the chain
ordering, it will still find all the top-level names at the top of the stack. With
reordered chains, the compiler either needs to walk the chain to remove each
deleted name record, or to doubly-link the chains to allow for quicker deletion.

Adding Lexical Scopes to Open Addressing With an open addressing table, the
situation is slightly more complex. Slots in the table are a critical resource, when
all the slots are filled, the table must be expanded before further insertion can
occur. Deletion from a table that uses rehashing is difficult; the implementation
cannot easily tell if the deleted record falls in the middle of some rehash chain.
Thus, marking the slot empty breaks any chain that passes through that location
(rather than ending there). This argues against storing discrete records for each
variant of a name in the table. Instead, the compiler should link only one record
per name into the table; it can create a chain of superseded records for older
variants. Figure B.6 depicts this situation for the continuing example.

This scheme pushes most of the complexity into Insert and FinalizeScope.

350 APPENDIX B. DATA STRUCTURES

h(a)

h(c)

h(b)

h(x)

h(z)
a,0
b,0
c,0
a,1
x,1
c,2
x,2

�

rehash
�
��

�

�

�

A
A
A
A
A
A�

�

HHHH�

�

S
S
S
S
S �

��
��

�

�

tos

�

Figure B.6: Lexical Scoping in an Open Addressing Table

If Insert creates a new record on the top of the stack. If it finds an older declara-
tion of the same in the index set, it replaces that reference with a reference to the
new record, and links the older reference into the new record. FinalizeScope
iterates over the top of the stack, as in open hashing. To remove a record that
has an older variant, it simply relinks the index set to point at the older variant.
To remove the final variant of a name, it must insert a reference to a specially-
designated record that denotes a deleted reference. LookUp must recognize the
deleted reference as occupying a slot in the current chain. Insert must know
that it can replace a deleted reference with any newly inserted symbol.

This scheme, in essence, creates separate chains for collisions and for redec-
larations. Collisions are threaded through the index set. Redeclarations are
threaded through the stack. This should reduce the cost of LookUp slightly,
since it avoids examining more than one record name for any single name.

Consider a bucket in open hashing that contains seven declarations for x and
a single declaration for y at level zero. LookUp might encounter all seven records
for x before finding y. With the open addressing scheme, LookUp encounters
one record for x and one record for y.

B.5 Symbol Tables for Development Environments

Most compilers use a symbol table as a central repository for information about
the various names that arise in the source code, in the ir, and in the generated
code. During compiler development, the set of fields in the symbol table seems
to grow monotonically. Fields are added to support new passes. Fields are
added to communicate information between passes. When the need for a field
disappears, it may or may not be removed from the symbol table definition. As
each field is added, the symbol table swells in size and any parts of the compiler
with direct access to the symbol table must be recompiled.

We encountered this problem in the implementation the Rn and ParaScope
Programming Environments. The experimental nature of these systems led to a
situation where additions and deletions of symbol table fields were common. To
address the problem, we implemented more complex, but more flexible structure
for the symbol table—a two-dimensional hash table. This eliminated almost all
changes to the symbol table definition and its implementation.

B.5. SYMBOL TABLES FOR DEVELOPMENT ENVIRONMENTS 351

•

�

• •

�

• •

�

• •

�

• •

h(name)

�

fee
fie
foe
fum

h(type)

�

int
real
real
char

h(offset)

�

0
4
8
16

h(length)

�

4
4
4
12

•PPPPq

•Q
Q
QQs

•
A
A
A
A
A
A
AU

•
B
B
B
B
B
B
B
B
B
BNh(fie) �

h(fum) �

h(fee) �

h(foe) �

Figure B.7: Two-dimensional, hashed, symbol table

The two-dimensional table, shown in Figure B.7, uses two distinct hash
index tables. The first, shown along the left edge of the drawing, corresponds
to the sparse index table from Figure B.3. The implementation uses this table
to hash on symbol name. The second, shown along the top of the drawing, is a
hash table for field-names. The programmer references individual fields by both
their textual name and the name of the symbol; the implementation hashes a
the symbol name to obtain an index and the field name to select a vector of
data. The desired attribute is stored in the vector under the symbol’s index.
It behaves as if each field has its own hash table, implemented as shown in
Figure B.3.

While this seems complex, it is not particularly expensive. Each table access
requires two hash computations rather than one. The implementation need not
allocate storage for a given field until a value is stored in the field; this avoids
the space overhead of unused fields. It allows individual developers to create
and delete symbol table fields without interfering with other programmers.

Our implementation provided entry points for setting initial values for a field
(by name), for deleting a field (by name), and for reporting statistics on field
use. This scheme allows individual programmers to manage their own symbol
table use in a responsible and independent way, without interference from other
programmers and their code.

As a final issue, the implementation should be abstracted with respect to
a specific symbol table. That is, it should always take a table instance as a
parameter. This allows the compiler to reuse the implementation in many cases.
For example, a well-written set of symbol table routines greatly simplifies the
implementation of value numbering, using either the classic algorithm for single

352 APPENDIX B. DATA STRUCTURES

blocks or Simpson’s scc algorithm for entire procedures.

Appendix C

Abbreviations, Acronyms,
and Glossary

The text follows common practice in Computer Science by taking long phrases,
such as world-wide web and replacing them with abbreviations or acronyms, such
as www. This simplifies writing; www is much shorter than world-wide web.
Sometimes, it simplifies conversation. (Sometimes, it does not; for example,
world-wide web has the misfortune of beginning with a letter whose name is,
itself, two syllables. Thus, www has six syllables when world-wide web has
three!).

This list combines abbreviations, acronyms, and terms that simply need an
easily located definition.

ag attribute grammar

ar activation record

arp activation record pointer – The activation record for the current procedure
contains critical information that is needed for proper execution of the
program. (See Chapters 7 and 8.) The arp is the code’s run-time pointer
to the current activation record. Typically, it is kept in a designated
register. The iloc examples throughout the book assume that r0 contains
the arp. (Some authors refer to the arp as a “frame pointer.”)

ast abstract syntax tree

code shape The term “code shape” appears to have originated in the Bliss-11
compiler project at Carnegie-Mellon University [51]. The term is some-
what intuitive; it refers to the high-level decisions that go into choos-
ing a particular instruction sequence to implement a fragment of source-
language code.

cfg context-free grammar

353

354 APPENDIX C. ABBREVIATIONS, ACRONYMS, AND GLOSSARY

cfl context-free language

csl context-sensitive language

csg context-sensitive grammar

definition the point in the code where a value is defined; in common use, it
refers to the operation whose evaluation creates the value. (See also use).

degree used, with reference to a node in a graph, as the number of edges that
connect to that node. In the text, the degree of a node n is sometimes
denoted n◦, using a notation due to the Babylonians.

dfa deterministic finite automaton

dg data dependence graph

dope vector The vector of information passed at a call site to describe an
array and its dimensions. The vector contains the ”inside dope” on the
array—a late fifties slang term.

fa finite automaton – used to refer, without bias, to either a dfa or an nfa

fp frame pointer – see arp. The term “frame” refers to a “stack frame”. Ac-
tivation records that are kept on the run-time stack are sometimes called
stack frames. This abbreviation should not occur in the text. If it does,
please report it to eac@cs.rice.edu.

heuristic a rule used to guide some complex process. Heuristic techniques are
often used to approximate the solution of an instance of some np-complete
problem.

A classic heuristic for whitewater canoeing is ”don’t hit rocks and don’t
fall out of the boat.” The amateur who follows this heuristic improves the
chances of survival for both canoeist and canoe.

il intermediate language (or intermediate representation) See Chapter 6.

instruction the collection of operations that are issued in the same cycle.

ir intermediate representation (or intermediate language) See Chapter 6.

iloc Intermediate language for an optimizing compiler – the low-level inter-
mediate language used in most of the examples in this book. See Ap-
pendix A).

interval graph 〈need a good definition〉

lr(1) a popular, bottom-up, deterministic parsing technique. The name derives
from the fact that the parser makes a left-to right scan while building a
reverse rightmost derivation using a lookahead of at most 1 symbol.

nfa non-deterministic finite automaton

355

np-complete A specific class of problems in the hierarchy of computational com-
plexity. It is an open question whether or not deterministic polynomial-
time algorithms exist for these problems. If a deterministic polynomial-
time algorithm exists for any of these problems, one exists for all of these
problems. See a good text on algorithms, such as Cormen et al. [27] for a
deeper discussion of this issue.

In practical, compiler-related terms, the only known algorithms that guar-
antee optimal solutions to instances of an np-complete problem require
O(2n) time, where n is some measure of the problem size. Compilers
must approximate solutions to several np-complete problems, including
the realistic versions of register allocation and instruction scheduling.

ool object-oriented language

oop object-oriented programming

operation an indivisible unit of work performed by one functional unit on a
modern processor. Examples include loading or storing a value, adding
two registers, or taking a branch.

re regular expression – a notation used to describe a regular language. See
Section 2.2.

rom read-only memory – used to describe several types of non-volatile memory
where the contents are immutable. In common use, it refers to a semi-
conductor memory with predetermined contents. The term is also used to
refer to the contents of a compact disc (cd-rom) or a digital video disk
(dvd-rom).

tos top of stack – For many languages, a stack discipline can be used to allocate
activation records. (See Chapters 7 and 8.) The tos is a pointer to the
current location of the extendable end of the stack. If the compiler needs
to generate code that extends the current ar, it needs a pointer to tos in
addition to the arp.

use a reference that uses some value, usually as an operand to some operation.
In common use, the term refers to the point in the code where the reference
occurs. (See also definition.)

358 APPENDIX C. ABBREVIATIONS, ACRONYMS, AND GLOSSARY

Index

Ambiguous value, 207
Array addressing, 224

Basic block
extended, 305

Cache Memory
A primer, 192

Chromatic number, 267
Coalescing copies, 275
Compiler, 1
Copy propagation, 275

Digression
A Primer on Cache Memories, 192
A word about time, 166
About Iloc, 11
An Alternative to Hashing, 156
Arena-based Allocation, 195
Branch Prediction by Users, 243
Building SSA, 142
Call-by-Name Parameter Binding, 179
Generating loadAI instructions, 212
Graph Coloring, 267
How Does Scheduling Relate to Allocation?, 296
Measuring Run-time Performance, 314
More about time, 189
Notation for Context-Free Grammars, 57
Organizing a Search Table, 342
Predictive parsers versus DFAs, 75
Short-circuit evaluation as an optimization, 221
Storage Efficiency and Graphical Representations, 138
Terminology, 14
The Hazards of Bad Lexical Design, 49
The Hierarchy of Memory Operations in Iloc 9x, 151

359

360 INDEX

The Impact of Naming, 149
The Perils of Poor Hash Functions, 344
What about Context-Sensitive Grammars?, 127
What About Out-of-Order Execution?, 304

Garbage collection, 197
Graph Coloring, 267

Hash Table
Open hashing, 344

Hash Table, Bucket hashing, 344
Hash tables

Implementation, 341

Interference, 269
Interference graph, 269
Interpreter, 2

Live-range splitting, 273

Memory model
Memory-to-memory, 150, 254
Register-to-register, 150, 254

Nondeterministic finite automata (nfa), 30

Reference counting, 196
Regular expression, 22

Short-circuit evaluation, 219
Static distance coordinate, 158

Unambiguous value, 207

Bibliography

[1] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation,
and Compiling. Prentice-HalL, Inc., Englewood Cliffs, New Jersey, 1973.

[2] Andrew Ayers, Richard Schooler, and Robert Gottlieb. Aggressive inlin-
ing. SIGPLAN Notices, 32(6):134–145, June 1997. Proceedings of the ACM
SIGPLAN ’97 Conference on Programming Language Design and Imple-
mentation.

[3] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L.
Herrick, R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A.
Hughes, and R. Nutt. The FORTRAN automatic coding system. In Pro-
ceedings of the Western Joint Computer Conference, pages 188–198, Febru-
ary 1957.

[4] John Backus. The history of Fortran I, II, and III. In Wexelblat, editor,
History of Programming Languages, pages 25–45. Academic Press, 1981.

[5] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler trans-
formatiosn for high-performance computing. ACM Computing Surveys, to
appear.

[6] John T. Bagwell, Jr. Local optimizations. SIGPLAN Notices, 5(7):52–66,
July 1970. Proceedings of a Symposium on Compiler Optimization.

[7] J.C. Beatty. Register assignment algorithm for generation of highly opti-
mized object code. IBM Journal of Research and Development, 1(18):20–
39, January 1974.

[8] L. A. Belady. A study of replacement algorithms for a virtual storage
computer. IBM Systems Journal, pages 78–101, 1966.

[9] Peter Bergner, Peter Dahl, David Engebretsen, and Matthew O’Keefe.
Spill code minimization via interference region spilling. SIGPLAN No-
tices, 32(6):287–295, June 1997. Proceedings of the ACM SIGPLAN ’97
Conference on Programming Language Design and Implementation.

361

362 BIBLIOGRAPHY

[10] David Bernstein, Dina Q. Goldin, Martin C. Golumbic, Hugo Krawczyk,
Yishay Mansour, Itai Nahshon, and Ron Y. Pinter. Spill code minimiza-
tion techniques for optimizing compilers. SIGPLAN Notices, 24(7):258–263,
July 1989. Proceedings of the ACM SIGPLAN ’89 Conference on Program-
ming Language Design and Implementation.

[11] Robert L. Bernstein. Producing good code for the case statement.
Software—Practice and Experience, 15(10):1021–1024, October 1985.

[12] Andrew Binstock and John Rex. Practical Algorithms for Programmers.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1995.

[13] Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice
University, April 1992.

[14] Preston Briggs, Keith D. Cooper, and L. Taylor Simpson. Value numbering.
Software–Practice and Experience, 00(00), June 1997. Also available as a
Technical Report From Center for Research on Parallel Computation, Rice
University, number 95517-S.

[15] Preston Briggs, Keith D. Cooper, and Linda Torczon. Coloring register
pairs. ACM Letters on Programming Languages and Systems, 1(1):3–13,
March 1992.

[16] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization.
SIGPLAN Notices, 27(7):311–321, July 1992. Proceedings of the ACM
SIGPLAN ’92 Conference on Programming Language Design and Imple-
mentation.

[17] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to
graph coloring register allocation. ACM Transactions on Programming
Languages and Systems, 16(3):428–455, May 1994.

[18] Michael Burke and Linda Torczon. Interprocedural optimization: Elim-
inating unnecessary recompilation. ACM Transactions on Programming
Languages and Systems, 15(3):367–399, July 1993.

[19] David Callahan and Brian Koblenz. Register allocation via hierarchical
graph coloring. SIGPLAN Notices, 26(6):192–203, June 1991. Proceedings
of the ACM SIGPLAN ’91 Conference on Programming Language Design
and Implementation.

[20] Gregory J. Chaitin. Register allocation and spilling via graph coloring.
SIGPLAN Notices, 17(6):98–105, June 1982. Proceedings of the ACM SIG-
PLAN ’82 Symposium on Compiler Construction.

[21] Gregory J. Chaitin. Register allocation and spilling via graph coloring.
United States Patent 4,571,678, February 1986.

BIBLIOGRAPHY 363

[22] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke,
Martin E. Hopkins, and Peter W. Markstein. Register allocation via graph
coloring. Computer Languages, 6(1):47–57, January 1981.

[23] R.W. Conway and T.R. Wilcox. Design and implementation of a diagnostic
compiler for pl/i. Communications of the ACM, pages 169–179, 1973.

[24] Keith D. Cooper, Ken Kennedy, and Linda Torczon. The impact of inter-
procedural analysis and optimization in the IRn programming environment.
ACM Transactions on Programming Languages and Systems, 8(4):491–523,
October 1986.

[25] Keith D. Cooper and L. Taylor Simpson. Optimistic global value number-
ing. In preparation.

[26] Keith D. Cooper and L. Taylor Simpson. Live range splitting in a graph col-
oring register allocator. In Proceedings of the Seventh International Com-
piler Construction Conference, CC ’98, Lecture Notes in Computer Science
1383, 1998.

[27] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. The MIT Press, 1992.

[28] Jack W. Davidson and Christopher W. Fraser. Register allocation and
exhaustive peephole optimization. Software–Practice and Experience,
14(9):857–865, September 1984.

[29] Andrei P. Ershov. Reduction of the problem of memory allocation in
programming to the problem of coloring the vertices of graphs. Doklady
Akademii Nauk S.S.S.R., 142(4), 1962. English translation in Soviet Math-
ematics 3:163–165, 1962.

[30] Andrei P. Ershov2 Alpha – an automatic programming system of high
efficiency. Journal of the ACM, 13(1):17–24, January 1966.

[31] R.W. Floyd. An algorithm for coding efficient arithmetic expressions. Com-
munications of the ACM, pages 42–51, January 1961.

[32] George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler. Computer
Methods for Mathematical Computations. Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1977.

[33] Lal George and Andrew W. Appel. Iterated register coalescing. In Con-
ference Record of POPL ’96: 23rd ACM SIGPLAN/SIGACT Symposium
on Princples of Programming Languages, pages 208–218, St. Petersburg,
Florida, January 1996.

2The modern spelling is Ershov. Older variations include Yershov and Eršov.

364 BIBLIOGRAPHY

[34] Rajiv Gupta, Mary Lou Soffa, and Tim Steele. Register allocation via clique
separators. SIGPLAN Notices, 24(7):264–274, July 1989. Proceedings of
the ACM SIGPLAN ’89 Conference on Programming Language Design and
Implementation.

[35] David R. Hanson. Fast allocation and deallocation of memory based on
object lifetimes. Software—Practice and Experience, 20(1):5–12, January
1990.

[36] William Harrison. A class of register allocation algorithms. Technical
report, IBM Thomas J. Watson Research Center, 1975.

[37] Donald E. Knuth. The Art Of Computer Programming. Addison-Wesley,
1973.

[38] Donald E. Knuth. The Art of Computer Programming, Volume 3, Sort-
ing and Searching. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1973.

[39] Steven M. Kurlander and Charles N. Fischer. Zero-cost range splitting.
SIGPLAN Notices, 29(6):257–265, June 1994. Proceedings of the ACM
SIGPLAN ’94 Conference on Programming Language Design and Imple-
mentation.

[40] S. S. Lavrov. Store economy in closed operator schemes. Journal of Compu-
tational Mathematics and Mathematical Physics, 1(4):687–701, 1961. En-
glish translation in U.S.S.R. Computational Mathematics and Mathemati-
cal Physics 3:810-828, 1962.

[41] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Transactions on Programming Languages
and Systems, 1(1):121–141, July 1979.

[42] Vincenczo Liberatore, Martin Farach, and Ulrich Kremer. Hardness and
algorithms for local register allocation. Technical Report LCSR-TR332,
Rutgers University, June 1997.

[43] Todd A. Proebsting and Charles N. Fischer. Linear-time, optimal code
scheduling for delayed-load architectures. SIGPLAN Notices, 26(6):256–
267, June 1991. Proceedings of the ACM SIGPLAN ’91 Conference on
Programming Language Design and Implementation.

[44] Todd A. Proebsting and Charles N. Fischer. Probalistic register alloca-
tion. SIGPLAN Notices, 27(7):300–310, July 1992. Proceedings of the
ACM SIGPLAN ’92 Conference on Programming Language Design and
Implementation.

[45] R.T. Prosser. Applications of boolean matrices to the analysis of flow
diagrams. In Proceedings of the Eastern Joint Computer Conference, pages
133–138. Spartan Books, NY, USA, December 1959.

BIBLIOGRAPHY 365

[46] Philip J. Schielke. To be announced. PhD thesis, Rice University, August
1999.

[47] Ravi Sethi and Jeffrey D. Ullman. The generation of optimal code for
arithmetic expressions. Journal of the ACM, 17(7):715–728, July 1970.

[48] L. Taylor Simpson. Value-Driven Redundancy Elimination. PhD thesis,
Rice University, 1996.

[49] Philip H. Sweany and Steven J. Beaty. Dominator-path scheduling—a
global scheduling method. SIGMICRO Newsletter, 23(12):260–263, De-
cember 1992. In Proceedings of the 25th Annual International Symposium
on Microarchitecture.

[50] Ken Thompson. Regular expression search algorithm. Communications of
the ACM, 11(6):419–422, 1968.

[51] William Wulf, Richard K. Johnson, Charles B. Weinstock, Steven O.
Hobbs, and Charles M. Geschke. The Design of an Optimizing Compiler.
Programming Language Series. American Elsevier Publishing Company,
1975.

