
CS143 Notes: Introduction and lexical analysis (Spring 1997)�

David L. Dill

1 Introduction

1.1 What is a compiler?

The �rst thing that springs to mind when most people think of a compiler is a programming-
language translater. For example, the C compiler takes a C program text as input, and generates
binary or assembly language machine code that performs the speci�ed computation.

It is important to realize that compiler technology is useful for a more general class of applica-
tions. Many programs share the basic properties of compilers: they read textual input, organize it
into a hierarchical structure, and then process the structure. An understanding how programming
language compilers are designed and organized can make it easier to implement these compiler-like
applications as well. More importantly, tools designed for compiler writing, such as lexical analyzer
generators and parser generators, can make it vastly easier to implement such applications.

Document processing programs such as Tex have to break a document into hierarchical structures
(e.g. sections, paragraphs, sentences, words, list items, etc.) and produce output suitable for
printers. For example, many programs produce PostScript1 programs which are then sent to a
printer.

Silicon compilers are translators from some hardware description language to a circuit de-
scription that can be implemented in VLSI. For example, a logic synthesis program might take a
description of a circuit in Verilog HDL and produce a network of logic gates and latches implement-
ing the description. Silicon compilers draw on programming language technology both to interpret
their input languages, but also (sometimes) for optimizations that are used in the resulting circuits.

Compiler compilers are programs that take a description of a computer language, such as a
programming language, and generate parts of compilers, automatically. We will be using some
compiler compilers as part of this course.

Intermediate representations Lots of programs generate intermediate �les in some structured
format. There is a constant need to translate between formats. Compiler technology can be useful
for this task.

Unorthodox applications One of my friends once wrote an email processor that used a parser
generator to deal with mail headers. Once you know about context-free grammars and parser
generators, you will see a lot of unexpected problems to which they can be applied.

�Copyright c by David L. Dill, 1998. All rights reserved. This material may be freely distributed for educational

purposes, so long as (1) this copyright notice remains, (2) the notes are not modi�ed in any way, and (3) no fee is

charged. Other uses require the express written consent of the author.
1a trademark of Adobe Systems Incorporated.

1

Source Language

Front End

Intermediate Representation

Back End

Target or Object Language

Figure 1: At the highest level of abstraction, compilers are often partitioned into a front end that
deals only with language-speci�c issues, and a back end that deals only with machine-speci�c issues.

1.2 The structure of a compiler

Many compilers are organized as a stream of phases which communicate by intermediate represen-
tations. Even when actual structure of the compiler doesn't follow this organization, the ideas are
still often useful for understanding how the compiler works.

At the highest level, a compiler has a front end and a back end (see Figure 1). It is desirable
for the front end to deal with aspects of the input language, but to keep it as independent of
the machine (or, more generally, speci�c output format) as possible. Symmetrically, the back
end should concentrate on dealing with the speci�cs of the output language, and try to remain
independent of the input.

This structure is very important for retargetability. Think about the problem of generating a
suite of compilers for n di�erent languages to m di�erent machines. The above organization would
require m front ends and n back ends, for a total of m + n new programs. If input-speci�c and
output-speci�c issues were all mixed together (as they often are, unfortunately), each new input
and output would require m�n rewrites of the whole system. This situation is shown in Figure 2.

Of course, separating language and machine issues is not usually so simple. There is often a
requirement for a \middle" that is both language and machine dependent. I call the middle the
representations phase. It depends on the answers to questions, such as: \Where are global variables
store?", \How are arrays indexed?", and \How are procedure calls and return values handled?"

In reality, each new language/machine combination will require a certain amount of customiza-
tion of the compiler. One goal of the compiler structure is to minimize the amount of work that
needs to be done, and to isolate the dependencies so that they are easy to �nd.

2

Source Lang 1

Source Lang 2

Source Lang 3

Target Lang 1

Target Lang 2

Target Lang 3

Source Lang 1

Source Lang 2

Source Lang 3

Target Lang 1

Target Lang 2

Target Lang 3

Intermediate Lang

Figure 2: A clean separation between the front end and back end makes it easier to support many
source and target languages.

Lexical analyzer Syntactic analyzer Semantic analyzer
chars tokens tree intermediate

rep

Figure 3: The front end of a compiler generally consists of three phases: lexical analysis (lexing),
syntactic analysis (parsing), and semantic analysis.

1.3 Structure of the front end

A typical compiler front end consists of three phases: lexical analysis, syntactic analysis (generally
called parsing), and semantic analysis.

The lexical analyzer (\lexer" for short) is the �rst phase. It takes a stream of characters (the
textual input �le) and breaks it up into lexemes (i.e. \words"). Roughly speaking, lexemes are the
smallest program units that are individually meaningful. In Java and C, there are several types
of lexemes: identi�ers (abc), reserved words of various types (e.g. if and return), integer literals
(e.g. 42), oating point literals (e.g. 1.2E-3), various operators (e.g. +, <=), punctuation (e.g. {,
), ;), string literals (e.g. "a string"), and comments (e.g. /* a comment */). In most cases, the
lexer does some processing for each lexeme, returns a lexical type representing the kind of lexeme
discovered, along with a data structure with additional information about the lexeme. For example,
an identi�er may have the name of the identi�er associated with it. I'll call the values returned by
the lexer tokens.

The job of the parser is to recover the hierarchical structure of the program from the stream
of tokens received from the lexer. The output of the parser depends on the implementation of the
compiler. It may produce a tree representing the hierarchical structure of the input, or it may
perform actions as it parses. In the latter case, all of the subsequent compilation may be performed
during parsing. However, even if the parser does all the work, it is helpful to keep the parse tree in
mind in order to understand what is happening.

The semantic analyzer is the �rst phase that deals with the meanings of programming language

3

constructs. For example, it is the semantic analyzer that reports whether an identi�er is properly
declared, because the meaning of the identi�er is established in the declaration. The speci�cs
of semantic analysis depend crucially on the semantics of the language being processed, which
vary greatly from language to language. However, in most cases, the semantic analyzer processes
declarations of various kinds, decides what the types of expressions are (while checking for type
errors), makes sure that procedures are called with the right number of parameters, and so on.

A symbol table is frequently connected to the semantic analyzer. When the semantic analyzer
processes a declaration, it will store information about the declared entity in the symbol table. This
information will be looked up later when the entity is encountered again. In addition to keeping
track of de�nitions, the symbol table has to keep track of scoping information: for example, a
local variable is visible in the body of the procedure in which it is declared, but not outside the
procedure.

2 Lexical analysis

Lexical analysis is one of the simplest phases of compilation. If not implemented carefully, it can
also be the slowest, at least in simple compilers, because the lexer it handles more data than other
phases | it is the only phase that must read each input character individually.

Although it is not very di�cult to write a lexer by hand, there are good tools that make it even
easier. These tools are based on the theory of regular languages. They compile patterns, which are
regular expressions describing the lexemes, into �nite automata, which are then stored in tables or
compiled directly into code.

The development of these tools follows a pattern that has been repeated for other compiler
generation tools. First, the theory of formal languages is applied to de�ne aspects of a language
precisely. Then, the formal notation is computerized, and a compiler is built that translates a
language de�nition into compiler parts. Perhaps it is not surprising that compiler people end up
writing compilers to help them write compilers.

Although it is helpful to think of the lexical analyzer as a process that receives a stream of
characters and produces a stream of tokens, the usual implementation is a function (say, getlex)
which is called by the parser only when it needs the next token. The lexer maintains some global
variables, including some pointers into the input stream and its current state, which is updated on
each call to getlex.

2.1 Regular expressions

Since regular expressions are used for the patterns in the de�nition of a lexical analyzer, we review
that notation here.

2.1.1 Preliminaries

An alphabet is a �nite set of characters. For many compilers the ASCII character set is the alphabet
of interest. For Java, the alphabet consists of Unicode characters. A string is a �nite sequence over
the alphabet. A formal language (or just language) is a set of strings. The set may be �nite or
in�nite. The empty string (the string of zero length) is written �.

Two strings can be concatenated, yielding another string. The concatenation of string x and y

is written xy. The concatenated string consists of the elements of the �rst string followed by the
elements of the second.

4

A string can be exponentiated by repeatedly concatenating it with itself. Exponentiation can
be de�ned inductively: the basis is x0 = � and the induction is xi+1 = xxi.

The de�nition of regular expression uses some operations on sets of strings. Let X and Y be
strings. The concatenation of X and Y is written XY , and it is de�ned to be fxy j x 2 X ^y 2 Y g

| the set of strings that can be generated by concatenating some string in X with some string in
Y . For example, if X = fab; bag and Y = fcd; dcg, then XY = fabcd; bacd; abdc; badcg.

Sets of strings can also be exponentiated by repeatedly concatenating them. The induc-
tive de�nition is X0 = f�g and Xi+1 = XXi. For example, if X = fab; bag, then X2 =
fabab; baab; abba; babag. The Kleene closure, X� of a set of strings X is the union of all of the ex-
ponentiated sets, [1i=0X

i. In the above example, X� = f�; ab; ba; abab; baab; abba; baba; ababab; : : :g

(the Kleene closure of a nonempty set of strings is in�nite, so I can't write out the whole set).

2.1.2 Regular expressions

Regular expressions are a notation for a certain class of languages, called the regular languages.
A regular expression stands for a language. If R is a regular expression, we write L(R) for the
language R represents. The set of legal regular expressions can be de�ned inductively, as can the
language interpretation of each expression.

regular language
expression

� L(�) = f�g

a(2 �) L(a) = fag

(R1)j(R2) L((R1)j(R2)) = L(R1) [L(R2)

(R1)(R2) L((R1)(R2)) = L(R1)L(R2)

(R1)
� L(R1)

�

As a convention, we drop the parentheses when the meaning is clear, using a default grouping
that treats j as + in arithmetic, concatenation as �, and Kleene closure as exponentiation (so ajbc�
stands for (a)j((b)((c)�)).

Example:

If the alphabet is fa; bg, what is the regular expression for the set of all strings that have at least
one a and one b?

Answer: (ajb)�a(ajb)�b(ajb)�j(ajb)�b(ajb)�a(ajb)�.

2.1.3 Non-regular languages

Although regular expressions are very powerful, it is important to note that not all languages are
regular. A classic example is the language of balanced parentheses. I will use a to stand for left
parenthesis and b to stand for right parenthesis. The language is fanbn j n � 0g; in other words,
a sequence of n a's followed by n b's. There is no regular expression standing for exactly this
language. There are regular expressions for subsets or supersets, but, to de�ne a language, the
regular expression must allow exactly the strings in the language: no more, no fewer.

5

2.1.4 Extended notation for regular expressions

There are notations for regular languages which make it possible to de�ne languages more concisely,
without increasing the languages that can be de�ned.

The �rst extension is the ? operator. If R is a regular expression, R? means \zero or one
occurrence of R," or \R is optional." To see that the ? does not allow any new languages to be
de�ned, we need only note that any expression with ? in it can be converted to an equivalent
expression without ? by converting R? to (Rj�).

Another extension is positive closure, written R+. Positive closure is similar to Kleene closure,
but stands for \one or more occurrences of R" instead of \zero or more : : :." The positive closure
can also be eliminated by replacing it by RR� or R�R, so positive closure does not increase the
range of de�nable languages.

Another extension is to allow user-de�ned abbreviations for expressions. Each abbreviation
is a name followed by a regular expression; the �nal de�nition is the de�nition of the regular
language. If a set of de�nitions is not recursive, it can be converted into an equivalent single
regular expression by replacing each de�ned name by the corresponding expression until all names
have been eliminated (obviously, this can make the expression much larger). A simple policy for
preventing recursion is to require that every de�nition use only names that were de�ned previously.

Here is an example de�nition of Java oating point numbers using regular de�nitions (this
de�nition is for both \oats" and \doubles").

Digit (0j1j2j3j4j5j6j7j8j9)
Expt ((ejE)(+j�)?(Digit)+)
Su�x (f jF jdjD)
Float (Digit)+ : Digit�Expt?Su�x?

j : Digit+Expt?Su�x?
j Digit+ExptSu�x?
j Digit+Expt?Su�x

Writing a regular expression for this language would be even more painful without regular
de�nitions!

3 Deterministic �nite automata

One of the profound results of formal language theory is that there are several natural ways to
de�ne classes of languages that turn out to be equivalent. The simplest result is that regular
expressions and �nite automata both de�ne the regular languages. While regular expressions are
very good for user-level de�nitions, it is easier to write e�cient code for a lexical analyzer based
on an automaton. In particular, a deterministic �nite automaton (DFA) is especially appropriate
as a basis for generating an automatic lexical analyzer.

An automaton is a recognizer of the strings in a formal language. It takes a string as input,
and responds with \accept" if the string is in the language, or \reject" if it is not.

A DFA can be de�ned mathematically to consist of �ve components:

� A �nite alphabet �. The inputs to the automaton are strings over �.

� A �nite set of states Q.

� A next-state function � : Q� �! Q.

6

s0 s1
letter

letter j digit

Figure 4: The DFA for Modula 2 identi�ers

� A start state q0, which is a member of Q.

� A set of accepting states, F � Q.

In this class, we'll consider � to be a partial function, meaning that �(q; a) is unde�ned for some
q 2 Q and a 2 �. This is just a small convenience feature; such an automaton can always be
converted to a DFA with a total function for � by adding one more state.

Figure 4 shows a DFA for Modula 2 identi�ers which are described by the regular expression
letter(letter jdigit)+ (letter and digit represent sets of characters).

In this automaton, � is the ASCII character set; Q = fs0; s1g; � is de�ned so �(s0; a) = s1 when
a is a letter, �(s0; a) unde�ned when a is not a letter, �(s1; a) = s1 when a is a letter or digit, and
�(s0; a) is unde�ned when a is not a letter or digit; q0 = s0; and F = fs1g.

A run of a DFA is on an input string x = a1a1 : : : an is a sequence of states q0; q1; : : : ; qn where
q0 is the initial state and qi+1 = �(qi; ai+1). A run is said to be accepting if qn is a �nal state
(qn 2 F). There can be at most one run on any input string. Since we have permitted � to be
a partial function, there may be no runs when � is unde�ned at one of the steps of the run. The
automata accepts an input x if its run is accepting, and rejects if the run is not accepting or if
there is no run.

A run of the DFA in Figure 4 on the input \abc" would be s0; s1; s1; s1. This is an accepting
run since q1 is �nal.

A regular expression can be converted to a DFA automatically, although the process is not
trivial (it is better done by a computer than a human), and can result in very large DFAs in some
cases. Typically, the DFAs for lexers in programming languages are of reasonable size.

Let's consider a more complicated example of a lexical de�nition. Real number in Modula 2 are
simpler than real numbers in Java. The regular expression is digit+:digit�(E(+j�)?digit+)?. The
DFA is shown in Figure 5. When I ask the class to do this, there are frequently errors in handling
the (+j�)? at the beginning of the exponent, when someone tries to put an � transition from s4 to
s5. � transitions are not allowed in DFAs (intuitively, the � introduces nondeterminism, since there
can be several di�erent runs depending on whether the automaton chose to take the � transition or
not).

Nondeterministic �nite automata (NFAs) are not used very much in compilers. This may be
surprising at �rst, because we know that NFAs can be much smaller than DFAs for some languages.
However, there is usually not much savings for real programming languages (the DFAs and NFAs
are almost the same size), and the biggest problem is that a lexical analyzer based directly on an
NFA would generally be slow, since it must keep track of many possible runs. It is su�cient to
keep a set of states when each symbol is read, but that is still much slower than tracking a single
state, as in a DFA.

7

s0 s1 s2 s3

s4s5

digit

digit

:

digit

E

+;�
digit

digit

digit

Figure 5: A DFA for Modula 2 real numbers.

4 Theory versus practice

There is an almost perfect match between regular expressions to the lexical analysis problem, with
two exceptions:

1. There are many di�erent kinds of lexemes that need to be recognized. The lexer treats these
di�erently, so a simple accept/reject answer is not su�cient. There should be a di�erent kind
of accept answer for each di�erent kind of lexeme.

2. A DFA reads a string from beginning to end, then accepts or rejects. A lexer must �nd the
end of the lexeme in the input stream. Then, the next time it is called, it must �nd the next
lexeme in the string.

The solution to problem 1 is to build separate DFAs corresponding to the regular expressions
for each kind of lexeme, then merge them into a single combined DFA. In order to keep track of
which lexeme was recognized in the combined DFA, it can have many di�erent \colors" of accepting
states, one for each type of lexeme.

As a very simple example, suppose we had a lexer that recognized simple integers with pattern
digit+ and Modula 2 reals, as given by the pattern and DFA above. The combined DFA is shown
in Figure 6. Note that states are labelled with the type of lexeme they accept: if the run stops at
a state labelled \INT", the lexer performs the action for an integer; if it stops at a state labelled
\REAL", it performs the action for a real; otherwise, it rejects the input.

Making a combined DFA is not always this simple. Sometimes, states have to be split in order
to keep it deterministic. For example, the DFA in �gure 7 recognizes patterns for \if", \else", and
the general pattern for Modula 2 identi�ers above. (By the way, this happens on a much larger
scale if you have the lexer recognize a bunch of reserved words using patterns, instead of storing
them in a hash table.)

The last example illustrates a further di�culty that can occur in the combined DFA: now that
we have di�erent colors of �nal states, what do we do when a state has more than one color (which
lexeme have we found)? The policy in lexical analyzer generators like Lex and Flex is to choose

8

INT REAL

REAL

digit

digit

:

digit

E

+;�
digit

digit

digit

Figure 6: A combined DFA for Modula 2 Integers and Reals.

IF

ELSE

ID

i f

e
l s e

letter jdigit

Figure 7: A combined DFA for some reserved words and Module 2 Identi�ers. The transition from
the start state to the \ID" state should be taken on any letter except i or e. Other unlabelled
transitions should be taken on any letter or digit except those already labelling transitions out of
the state.

9

colors corresponding to the �rst de�nition appearing in �le the and discard the rest. This can
be extremely convenient when there is a simple general case with a collection of exceptions. The
patterns for the exceptions can be de�ned �rst, followed by the simple pattern for the general case.
On the other hand, it is always possible to write a regular expression for the general case with the
exceptions removed, but such an expression can be very complicated. There can also be dangers,
where the lexer depends on the order pattern unbeknownst to the user. The problem here is that
lexer does not do what the user expects, and it may be di�cult to detect the discrepancy by testing
it.

The combined DFA of Figure 6 illustrates the second problem. An input like \1.23" goes
through several colors of �nal states. When should it decide it is really at the end of the lexeme?
The best policy, which is used in most tools, seems to be the \longest lexeme rule." The lexer reads
characters until there is no hope of ever getting to another �nal state, then it backs up to the most
recent �nal state it saw, and uses that as the end of the lexeme (and the next input character as
the beginning of the next lexeme).

The longest lexeme rule does the right thing almost all of the time. There are some cases where
it fails, though. For example, suppose a lexer handled comments in Java by recognizing the lexemes
\/*" and \/**", then entering a special comment processing mode. The Java speci�cation says
that \/**/" is a complete comment, so, in this case, we want the �rst lexeme to be \/*", not
\/**". For another example, Modula 2 de�nes real literals so that \1." and \.2" are legal. But
it also demands that 1..2 be interpreted as a range declaration, consisting of lexemes \1", \..",
and \2". Both problems can be solved using an \explicit lookahead" feature of both Lex and Flex:
a pattern can be followed by \/" and another regular expression, meaning that the �rst pattern
matches only if it is followed by a string matching the second pattern. The Java comment problem
can be solved by matching \/**" only if it is not followed by */"; the Modula 2 problem can
be solved by recognizing \1." as a real only if it is not followed by another \.". Another simple
solution to the Java comment problem is to have a special pattern for \/**/" which will match in
preference to \/*" and \/**" because it is longer.

The longest lexeme rule raises an e�ciency and language design issue. The lexer may have
to read some input characters before discovering that it is beyond the end of the longest lexeme,
then it must back up. When it tries to match the next lexeme, it will see the same characters
again. In the worst case, it may have to read each character almost as many times as there are
characters in the �le, which would be very slow. It also has to save all of the lookahead characters,
which is annoying if it requires the lexers input bu�er to expand or to overow unnecessarily (most
languages have some unbounded constructs, such as strings, which may require growable bu�ers
even if there is not a lot of lookahead, but long lookaheads may lead to bu�er size problems where
there were none before).

Let's think about how a lexer implementing the longest lexeme rule would have to work. First,
there would be a pointer that says what the next character to read is (call it nextchar). There will
also have to be a pointer to the beginning of the lexeme, because the action associated with the
lexeme generally needs to know what string in the input �le matched the pattern (e.g. to construct
numbers or build identi�ers); let's call this startchar. Finally, the lexer may need to back up to
the longest lexeme so far, so it needs to keep a pointer to the end of the lexeme; for convenience,
we'll have it point to the character right after the lexeme, and call it lastchar.

We can imagine a loop in a lexical analyzer something like the following. The input is treated
as an array of characters, and the pointers are integer indices into this array. The � function is
encoded as an array that has �1 entries when the next state is unde�ned.

10

/* initialization */

startchar = lastchar = nextchar = 0;

curstate = start_state;

while (curstate != -1) {

/* take another step through the DFA */

curstate = delta[curstate, input[nextchar++]];

if (curstate == -1) {

/* we have found the longest lexeme. */

/* string is from input[startchar..lastchar-1] */

<perform lexical action on current lexeme>

/* start next lexeme just after this one. */

startchar = nextchar = lastchar;

}

else if (isaccepting(curstate)) {

/* found a longer lexeme */

lastchar = nextchar;

}

/* otherwise, continue looping */

}

Using this program, we can de�ne the lookahead on an input string x as nextchar� lastchar

then the lexical action is performed. Note that lookahead depends on all of the patterns in the
lexer (it depends on the entire combined DFA).

Consider the input \123+5" in the combined DFA for integer and real literals. The delta table
will return a �1 entry when + is read, at which point the lastchar pointer will be 3 (the index of
+) and the nextchar pointer will be 4 (the index of 5 in the input), so the lookahead for this input
will be 1.

On the other hand, if the input is \123E+XX", the delta table will return �1 after the �rst X is
read, at which time the longest lexeme will be 123. The lookahead will be nextchar� lastchar =
6� 3 = 3.

The maximum lookahead is de�ned to be the greatest lookahead for all possible strings. For
the combined DFA for integers and reals, maximum lookahead is 3, and \123+X" is an example of
an input that causes it. You can determine the maximum lookahead by inspecting the combined
DFA. It is the length of the longest sequence of non-accepting states that you can visit to a �nal
state from an initial state or another �nal state, plus one (for the character that is read at the end
for which � is unde�ned).

The maximum lookahead may actually be unbounded for some patterns. The longest path of
non-accepting states may be unbounded if there is a cycle along the path.

A �nal detail: according to the de�nition above, the lookahead for a string must be at least 1.
This doesn't seem right for examples like strings delimited by double quotes | once the closing
double-quote has been read, the lexer doesn't have to read anything to know it is at the end of the
lexeme. We could adjust the code for the lexer, above, to make the de�nition work right by marking
accepting states that have no successors. In such a case, it is clear that no possible next character
could ever lead to an accepting state, so the lexer might as well accept the input immediately, with
lookahead of zero.

11

5 Syntactic analysis

In general, programs have a tree-like structure. A node in the tree represents a part of the program,
and the node's children represent subparts. For example, an \if-then-else" construct will have three
children: an expressions for the if part, and statements for the then and else parts. Each of these
parts may be arbitrarily complex (so the children may be the roots of arbitrarily large subtrees).
However, program texts are at. The structure is implicit, but the representation is a sequence of
characters with no explicit structure other than the order of the characters.

Compilers need to recover the structure of the program from its textual representation. This
process is called parsing, and the algorithm that does it is called a parser. The parser reads the
program text and converts it to a tree structure. In many cases, the tree is stored explicitly.
However, in some cases, compilation can proceed on the y: processing can occur as the program
is being parsed. However, the parser can still be thought of as recovering the program structure:
as it parses, it is systematically traversing an implicit tree structure, and the processing is based
on this traversal.

Parsing in program languages is based on the theory of context-free languages. Context-free
languages were invented in an attempt to describe natural languages mathematically, and (ap-
parently independently) invented to describe the structure of programming languages. The �rst
use of context-free languages was to provide a precise de�nition of the structure of programming
languages, since natural language speci�cations were subject to ambiguity, leading to misunder-
standings about the de�nition of the programming language. However, once a formal notation
became available, the possibility of using it to generate a parser automatically became irresistable.

Parsing theory is one of the major triumphs of computer science. It draws on a deep and
independently interesting body of theory to solve important practical problems. The result is a
method that can be used to describe languages formally and precisely, and to automate a major
part of the processing of that language. Parsing theory has led to exceptionally e�cient parsing
algorithms (whether they are generated by hand or automatically). These algorithms run in time
linear in the length of the input, with very small constant factors. Parsing is emphasized in CS143
because it is so generally useful, but also as a case study in computer science at its best. We will
cover only the most widely used and useful algorithms, though. You should be aware that there is
a huge body of literature on di�erent algorithms and techniques.

Parsing theory has been so successful that it is taken for granted. For practical purposes,
the problem is (almost) completely solved. For example, research in new parsing algorithms for
computer languages (as opposed to natural language) is an excellent way to achieve anonymity {
the work will not get much attention because the problem is now regarded as uninteresting.

*** interaction with lexer?

5.1 Context-free grammars

A context-free grammar (also called BNF for \Backus-Naur form") is a recursive de�nition of the
structure of a context-free language.

Here is a standard example, for describing simple arithmetic expressions. This grammar will
be referred to as the \expression grammar" in the rest of this subsection.

12

E ! E +E

E ! E �E

E ! (E)
E ! Id

E ! Num

In this grammar, +, �, (,), Id, and Num are symbols that can actually appear in expressions,
while E is an symbol that stands for the set of all expressions. Note that, as in all good recursive
de�nitions, there are some base cases which are not recursive (E ! Id and E ! Num).

Theory

As with regular expressions, context-free grammars (CFGs) provide a way to de�ne an in�nite
language with a �nite set of rules. CFGs are more expressive than regular expressions (every
regular language can be described by a CFG, but not vice versa). Basically, CFGs allow recursion
to be used more freely than regular expressions.

A CFG is a four-tuple hV; T; P; Si.

� V is a non-empty �nite set of symbols, which we call nonterminals. Nonterminals are used
to represent recursively de�ned languages. In the expression grammar above, the only non-
terminal was E. In examples, nonterminals will usually be capital letters.

� T is a non-empty �nite set of terminal symbols. Terminal symbols actually appear in the
strings of the language described by the CFG. T and V are disjoint. In the expression
grammar above, the terminals are +, �, (,), Identi�er, and Number. In examples, lower-case
letters will often be terminal symbols.

� P is a non-empty �nite set of productions. The productions are rules that describe how
nonterminals can be expanded to sets of strings. A production has a left-hand side (LHS)

consisting of a single nonterminal, and a right-hand side (RHS) consisting of a (possibly
empty) string of terminals and nonterminals. In regular expression notation, a production is
a member of V ! (V [T)�. In the expression grammar above, there are six productions.

� S is the start symbol. It is a nonterminal representing the entire language of the CFG. The
start symbol in expression grammar is E (obviously, since there is only one nonterminal to
choose from).

In addition to the notation above, we use the convention that lower-case letters late in the
alphabet, like w; x; y; z, are used to represent strings of terminal symbols (i.e., members of T �),
while Greek letters early in the alphabet, like �; �; , represent strings of terminal and nonterminal
symbols (i.e., members of (V [T)�. However, the symbol � always represents the empty string.

The language of a context-free grammar

The purpose of a context-free grammar is to describe a language. A language that can be described
by a context-free grammar is called a context-free language. The basic idea is to de�ne a process
whereby a terminal string can be derived from S by repeatedly replacing symbols that occur on the
left-hand side of some production by the string of symbols on the right-hand side of the production.
Making this precise requires some preliminary de�nitions of relations between strings of terminals
and nonterminals.

13

De�nition 1 �A� immediately derives ��, or �� is immediately derived from �A�, (written

�A�) ��) if there is a production A! .

Note that �, �, or may be empty strings.
Example: In the expression grammar, E +E) E +E �E, where � is E + , � is �, A is E, and

 is E � E.

De�nition 2 A derivation is a nonempty sequence strings over (V [T) where each string in the

sequence immediately derives the next.

A derivation is often written as a sequence of strings separated by =), for example E +E =)
E +E � E =) E + (E) �E =) E + (E +E) � E.

De�nition 3 � eventually derives � (written �
�

=) �) if there exists a derivation with � as its

�rst string and � as its last.

Note that
�

=) is the reexive transitive closure of =).

De�nition 4 �
+
=) � if there is some such that � =) and

�

=) �.

De�nition 5 The language of a context free grammar G, written L(()G), is the set of all terminal
strings that can be derived from the sentence symbol. More symbolically, if G = hV; T; P; Si is a

CFG, L(()G) is fx j S
+
=) x ^ x 2 T �g.

(Of course, S is not in T �, so it would be equivalent to say L(()G) is fx j S
�

=) x ^ x 2 T �g.
Here is another way to look at this de�nition: to prove that a string x is in the language of a

CFG G, it is su�cient to exhibit a derivation of x from S using the productions of the grammar.
Proving that x is not in L(()G) is another matter. (It happens to be possible to �nd a proof that
x is in L(G) or not automatically. In other words, the problem of deciding whether x 2 L(G) is
decidable for all context-free grammars G.)

Parse trees

Parse trees provide a somewhat more abstract way of looking at derivations. Each node of a parse
tree is labelled with a symbol. The root of a parse tree is labelled with S. Whenever a node is
labelled with a nonterminal A, the children of the node, from left to right, are labelled with the
symbols from �, where A! � is a production in the grammar. If a node is labelled with a terminal
symbol, it has no children. The frontier string of a parse tree is the sequence of labels of its leaves,
from left to right.

Figure 8 shows a parse tree based on the expression grammar. Obviously there is a relationship
between derivations and parse trees. Is there a one-to-one correspondence? Interestingly, the
answer is \no": in general, there are many derivations corresponding to the same parse tree. In
the example above, the derivations

E =) E +E =) 1 +E =) 1 +E �E =) 1 + 2 � E =) 1 + 2 � 3

and
E =) E +E =) E +E � E =) E + 2 � E =) E + 2 � 3 =) 1 + 2 � 3

both correspond to the parse tree of Figure 8 The frontier string of this tree is 1 + 2 � 3.

14

E

E + E

1 E � E

2 3

Figure 8: A parse tree

There is no unique derivation for a given parse tree because the productions of the grammar may
be expanded in di�erent orders, and the parse tree does not capture the history of the expansion,
just the �nal result.

However, of the many derivations that correspond to a particular parse tree, we can choose

a unique one by constraining the order in which nonterminals are expanded. One useful rule is:
\always expand the leftmost nonterminal in the current string." A derivation that adheres to this
rule is called a leftmost derivation.

More speci�cally, suppose we have a string of terminals and nonterminals whose leftmost non-
terminal is A. Such a string can be written xA�, where x is a string of zero or more terminal

symbols. If A! � is a production, we can write xA�
L
=) x��. Let's call this a \leftmost deriva-

tion step." A leftmost derivation is a sequence of leftmost derivation steps. The �rst of the two
example derivations above is a leftmost derivation.

Of course, there are other rules that could select a unique derivation to go with a parse tree.
For example, a rightmost derivation expands the rightmost nonterminal in every string. Or a more
complex rules could be formulated (e.g. \expand the middle nonterminal, or the one to the left of
the middle if there are an even number of nonterminals").

Leftmost and rightmost derivations are interesting because certain parsing algorithms generate
them. It is useful to know what kind of derivation a parsing algorithm generates if actions are
associated with the productions, since the order of expansion a�ects the order of the actions. (I
know of no use for the \expand the middle nonterminal" rule.)

Ambiguous grammars

De�nition 6 A context-free grammar is ambiguous if there exists more than one parse tree with

the same frontier string.

Given the immediately forgoing discussion, it is obvious that \leftmost derivation" or \rightmost
derivation" could be substituted for \parse tree" in this de�nition without changing the meaning.

Is the expression grammar ambiguous? Very much so! Figure 9 shows an alternative parse for
1 + 2 � 3 to that in Figure 8. The parse of FIgure 8 corresponds to the grouping 1 + [2 � 3]. we
would expect, while Figure 9 corresponds to [1 + 2] � 3. (Note: If there are actually parenthesis
in the expression, the parse tree is di�erent from either Figure 8 or Figure 9.) Although we know
what parse tree is correct, the grammar doesn't specify which to use. The string 1 � 2 � 3 can be

15

E

E � E

3E + E

1 2

Figure 9: Another parse tree for 1 + 2 � 3.

parsed in two di�erent ways also. The trees are the same as in Figures 8 and 9, except that + is
replaced by �. In this case, performing the arithmetic operations would yield the same result (6)
for both expressions, but still there are two parse trees and the grammar is ambiguous.

Ambiguity is a problem for two reasons: First, as in our �rst example, it can represent a
failure to specify an important property of the language being de�ned (such as how to evaluate an
arithmetic expression). Second, even if the meaning of the construct is not a�ected, it tends to
cause problems for parsing algorithms. Most e�cient parsing algorithms simply fail for ambiguous
grammars, and even if they don't, there remains the question of how to choose the correct parse
tree if the parsing algorithm produces several.

There are several ways to cope with ambiguity. One is to �nd an equivalent but unambigu-
ous grammar. (Here, \equivalent" means \describes the same language.") The an unambiguous
grammar for expressions is

E ! E + T

E ! T

T ! T � F

T ! F

F ! (E)
F ! Id

F ! Num

Figure 10 shows the parse tree for 1 + 2 � 3 that results from this grammar. Suppose we are
generating a string with multiple + symbols. This CFG forces the derivation to generate all of
the + symbols at the top of the parse tree by repeatedly expanding the E ! E + T production.
Once the E ! T production is expanded, it is impossible to get another + from the T unless the
production F ! (E) is expanded (as it is for an expression like (1+2)�3. In addition, the grammar
makes + and � group to the left (they are left associative). Study this grammar carefully: generate
some parse trees and understand the intuition. How could you make � right associative?

It is not always possible to �nd an unambiguous grammar for a particular context-free language.
Some languages are inherently ambiguous. Also, when it is possible, it is not necessarily easy to
�nd it. There is provably no universal method for �nd an unambiguous grammar if one exists, or
even to determine if there is an unambiguous grammar (more precisely, the problem of determining
whether a context-free language has an unambiguous CFG is undecidable).

16

E

E + T

T

F

1

T � F

F

2

3

Figure 10: Parse tree for 1 + 2 � 3 using the unambiguous expression grammar.

5.2 Extended BNF

The context free grammar notation can be extended to make it more convenient and readable.
As with extended regular expressions, this additional notation adds no new power { any extended
context-free grammar can be reduced to an equivalent ordinary CFG by a series of transforma-
tions. Context-free grammar notation is sometimes called \BNF" for \Backus-Naur Form," and
the extended notation is often called \Extended BNF" (we will refer to it as \EBNF").

EBNF notation allows the use of extended regular expressions on the right hand sides of pro-
ductions. Hence, the productions can look like A ! a(bj(c?B)�) (in this example, only the letters
are terminals or nonterminals; the other symbols are EBNF notation). Here is an example, based
on the procedure call syntax of the Pascal language:

proccall ! ID (0(0 arglist 0)0)?
arglist ! expr (0;0 expr)�

(), ?, and * are symbols of the EBNF notation, not terminals, unless they are enclosed in
single quotes. In English, this says that a procedure call is an ID followed by an optional argument
list which is enclosed in parentheses. The argument list is a comma-separated list of one or more
expressions.

An EBNF grammar can be converted to an ordinary CFG by a series of transformations that
eliminate the extended regular expression constructs. Whenever we have and embedded j in a
production, which would have the structure A ! �(�j)�, where �, �, , and � are arbitrary
extended regular expressions, we can eliminate the j by choosing a new nonterminal that does
not appear in the grammar, say B, and replacing the old production with three new productions:
A! �B�, B ! �, and B ! .

Similarly, A ! ��? can be replaced by new productions A ! �B, B ! � and B ! �.
A ! ��� can be replaced by A ! �B, B ! B�, and B ! �. A ! ��+ can be treated
similarly, but using B ! � instead of B ! �. Both � and + can be converted to right-recursive
grammars instead of left recursive grammars by using the production B ! �B instead of B ! B�.
This is very useful to know, because some there are cases where left recursion or right recursion is
strongly preferable.

17

These transformations can be applied to the Pascal procedure call example above, yielding:

proccall ! ID A

A ! 0(0 arglist 0)0

A ! �

arglist ! expr B

B ! B 0;0 expr

B ! �

Of course, particular grammars can be rewritten into smaller or nicer CFGs. However, as with
many problems in mathematical manipulation, using your brain to produce a nicer result produces
a wrong result more frequently than you might expect. Mindless application of the transformations
is less risky.

Useless symbols and productions

Sometimes a grammar can have symbols or productions that cannot be used in deriving a string
of terminals from the sentence symbol. They are called, respectively, useless symbols and useless

productions.

Example

Consider the following CFG:

S ! SAB j a

A ! AA

B ! b

(From now on, we occasionally adopt the convention of allowing j at \top-level" in the right-
hand side of a production as an abbreviation for multiple productions with the same left-hand side
symbol. This is not considered extended BNF.) A is a useless symbol: No terminal strings can
be derived from A (because eliminating one A produces two more), so A can never appear in a
derivation that ends in a string of all terminals. Because of this, the production S ! SAB is also
useless: it introduces an A, so if this production is used, the derivation cannot result in a terminal
string. Also, the only way to introduce a B into a derivation is to use S ! SAB, so B is useless as
well. If we delete all the useless symbols and productions from the grammar, we get an equivalent,
but simpler, CFG:

S ! a

Here is a more formal de�nition:

De�nition 7 A terminal or nonterminal symbol X is useless if there do not exist strings of symbols
�, �, and a string of terminals x such that S

�

=) �X�
�

=) x.

From now to the end of the lectures on parsing, we assume there are no useless symbols or

productions in our CFGs, unless there is an explicit statement to the contrary.

18

6 Top down parsing

We have de�ned the language of a CFG in a \generative" fashion: the language is the set of strings
which can be derived from a sentence symbol via a set of rules. Parsing inverts the process of
generating a string. The parsing problem is to �nd a derivation of a given terminal string, or
report that none exists.

There are two important styles of parsing: top-down and bottom-up. In actuality, very many
parsing algorithms have been proposed, not all of which �t neatly into one of these categories. But
the top-down/bottom-up distinction �ts the parsing algorithms in CS143 very well, and is very
helpful for understanding parsing algorithms.

Top-down parsing can be thought of as expanding a parse tree or derivation from the sentence
symbol until the frontier matches the desired input string (or until it becomes clear that there is
no way to make them match). Obviously, there are in general an in�nite number of trees that
can be expanded. The tree that is expanded depends on which productions are used to replace
the nonterminals in the frontier of the tree at each step of the expansion. The di�erences among
top-down parsing methods are in the methods used to choose this production.

6.1 Top-down parsing by guessing

To introduce the idea of top-down parsing, let's temporarily disregard the exact method use to pick
the next production to expand. Instead, we'll do it by making a \lucky guess" at each step about
which production to expand. Later, instead of guessing, we'll look up what to do in a table.

At any point during the parse, the state of the parser is characterized by two items: the
remaining input and the stack. Once you know the values of these variables, you know what will
happen with the rest of the parse. The input contains a sequence of terminal symbols. It's initial
value is the input string to be parsed, x, with the leftmost symbol �rst. The stack contains terminal
and nonterminal symbols. Initially, the stack contains one symbol, which is S, the sentence symbol
of the CFG.

Intuitively, the stack stores a partially expanded parse tree. The top is a prediction about what
the parser will see next. If the top symbol is a terminal, it must match the next symbol in the input
stream. If the top symbol is a nonterminal, there must be some way to expand it to a string that
matches the beginning of the input (top-down parsing is sometimes called \predictive parsing").

Reecting the discussion of the previous paragraph, there are two basic actions that occur
during parsing. When there is a terminal symbol on top of the stack, it is matched with the next
symbol on the input. Matching compares the two symbols; if they are not equal, the input string
is rejected, meaning that the input string is not in the language of the CFG. If the symbols match,
the top symbol is popped o� of the stack and the input symbol is removed from the front of the
input. When there is a nonterminal A on top of the stack, it is expanded by choosing a production
A ! � from the CFG, popping A from the stack, and pushing the symbols in �, rightmost �rst,
onto the stack (so that the leftmost symbol of � ends up on top of the stack). (Note: if � = �,
expanding has the e�ect of simply popping A o� of the stack.)

Example

Let's parse the input \aab" using the CFG:

S ! AS j B

A ! a

B ! b

19

Here are the steps of the parse. $ represents \end of �le" and \bottom of stack." The actions
explain how we get from one step to the next. The top of the stack is drawn on the left. Whether
we expand or match is determined by whether the top symbol is a nonterminal or terminal; if it's
a terminal, we have to guess which production with that symbol on the left-hand side should be
expanded. At the end of the parse, we accept the input string if the input or stack is empty. If
there is a mismatch, we reject.

parse (top) stack action

aab$ S$ expand S ! AS

aab$ AS$ expand A! a

aab$ aS$ match
ab$ S$ expand S ! AS

ab$ AS$ expand A! a

ab$ aS$ match
b$ S$ expand S ! b

b$ b$ match
$ $ accept

If this parse algorithm accepts, we can be sure that the input is in the language of the CFG. If
the parse does not accept, the string may or may not be in the language. However, if we assume
that the best possible guess is made at each step, the parsing algorithm will accept if it is possible
to do so, and does not accept exactly when the input is not in the language.

A derivation and parse tree can be reconstructed from the history of expansions in the parse.
The derivation in this case is

S =) AS =) aS =) aAS =) aaS =) aab:

This is a leftmost derivation because we always expanded the top symbol on the stack, which was
the leftmost symbol of the string derived up to that point.

6.2 LL(1) parsing

If a computer could make lucky guesses with 100% reliability, as we have assumed above, they
wouldn't be lucky guesses, would they? Instead, we can construct a table where the proper action
can be looked up, based on the symbols on the top of the stack and at the beginning of the input.
This algorithm is called LL(1) parsing (for \leftmost (parse) lookahead 1 symbol"). LL(1) parsing
is almost the simplest top-down parsing scheme one could imagine. In essence, it says: \don't
choose a production unless it at least has a chance of matching the next input symbol."

LL(1) parsing is very e�cient (the running time is linear in the length of the input string, with
a very low constant factor). There is a tradeo�, however. Not all CFGs can be handled by LL(1)
parsing. If a CFG cannot be handled, we say it is \not LL(1)." There is an LL(1) parse table
generation algorithm that either successfully builds a parse table (if the CFG is LL(1)) or reports
that the CFG is not LL(1) and why.

The LL(1) parse table construction is somewhat involved, so it will take a little while to go
through all the steps. Before doing so, we �rst describe a transformation that increases the chances
that a CFG will be LL(1).

20

6.2.1 Removing left recursion

A CFG is said to be left recursive if there exists a nonterminal A such that A
+
=) A� (i.e., A can

expand to a string beginning with A). Left recursion in a CFG is fatal for LL(1) parsing, and for
most other top-down parsing algorithms. To see why, imagine that the parse table says to expand
A! � when a is at the beginning of the input. The parse algorithm will go through a sequence of
expand steps until it has A� on the top of the stack, without matching any inputs. But now we
have A on top of the stack and a at the beginning of the input, so we'll do exactly the same thing
ad in�nitum. (LL(k) algorithms generalize LL(1) parsing to use the �rst k input symbols to decide
what to expand. Although more powerful than LL(1) parsing when k > 1, the same argument
shows that they are also unable to deal with left recursion.)

Fortunately, there is an algorithm to eliminate left recursion from any CFG, without changing
its language. The general transformation is fairly di�cult and not really practical, so we'll consider
the important special case of removing immediate left recursion, which is when there is a production
of the form A! A� in the grammar.

Suppose we have a production A! A� in our CFG. First, collect all of the productions having
A on the left-hand side, and combine them into a single production using EBNF notation of the
form A! A�j�. For example, suppose the productions are

A ! A�1
A ! A�2
A ! �1
A ! �2

The EBNF production is A! A(�1j�2)j(�1j�2).
A production of the form A! A�j� can be written equivalently an non-recursively as A! ���

(to see this, expand A repeatedly and notice the pattern: A =) A� =) A�� =) : : : =)
� : : : �alpha).

All that remains is to convert this back to a (non-EBNF) CFG. Here we exploit our earlier
observation that �� can be expanded left recursively or right recursively:

A ! �B

B ! �

B ! �B

If � = �1j�2 and � = �1j�2 as in the example above, this �nally becomes

A ! �1B

A ! �2B

B ! �

B ! �1B

B ! �2B

Example

Consider the unambiguous expression grammar of the previous lecture, which had the left-recursive
productions

E ! E + T

E ! T

21

which can be rewritten as E ! E+T j T . In turn, this is E ! T (+T)�, which can be re-expanded
right recursively into

E ! TA

A ! +TA
A ! �

IMPORTANT NOTE: A real understanding of this material requires a hands-on approach. Try

generating some strings from each set of productions and see why they do the same thing. Try

working through this on the whole grammar. Try making up some other grammars and trying it.

Left factoring

A CFG has common left factors if the right-hand sides of two productions with the same left-hand
symbol start with the same symbol. The presence of common left factors CFGs sabotages LL(1)
parsing.

Suppose we have productions

A ! ��

A ! �

We can convert these to EBNF, also: A! �(�j), and convert back:

A ! �B

B ! �

B !

Example

Suppose we had a CFG with productions

E ! T +E

E ! T

This converts to E ! T (+Ej�), which converts back to

E ! TA

A ! +E
A ! �

A CFG may still not be LL(1) even after eliminating left recursion and left factors, but it
certainly will not be LL(1) if they are not eliminated.

Unfortunately, while these transformations preserve the language of a CFG, they do not preserve
the structure of the parse tree. The structure can be recovered from the parse with some trouble,
but it is a distinct disadvantage of LL(1) parsing that the original grammar must be rewritten into
a form that is probably not as natural as the original.

22

LL(1) parsing example

Before discussing in detail the construction the LL(1) parse tables, let's seen an example of how the
parsing algorithm uses one. This is the grammar that results when left recursion is removed from
the unambiguous expression grammar, as described above. We will call this our LL(1) expression
grammar. It will be referred to frequently below.

E ! TA

A ! +TA j �

T ! FB

B ! �FB j �

F ! (E) j a

Here is the LL(1) parse table for the grammar:

a + � () $

E E ! TA E ! TA

T T ! FB T ! FB

F F ! a F ! (E)

A A! +TA A! � A! �

B B ! � B ! �FB B ! � B ! �

The parsing algorithm is as before, except that when the top symbol on the stack is a nonter-
minal, we don't guess. Instead, we look in the table, in the row for the top-of-stack symbol and
column for the next input symbol (which can be $ if the entire input has been consumed). The
table entry uniquely determines which production to expand.inc

Here is what happens when we parse the string a+ a � a using this table.

(top) stack parse action

E$ a+a*a$ expand E ! TA

TA$ a+a*a$ expand T ! FB

FBA$ a+a*a$ expand F ! a

aBA$ a+a*a$ match
BA$ +a*a$ expand B ! �

A$ +a*a$ expand A! +TA
+TA$ +a*a$ match
TA$ a*a$ expand T ! FB

FBA$ a*a$ expand F ! a

aBA$ a*a$ match
BA$ *a$ expand B ! �FB

FBA$ *a$ match
FBA$ a$ expand F ! a

aBA$ a$ match
BA$ $ expand B ! �

A$ $ expand A! �

$ $ accept

23

LL(1) Parse Table Construction

The basic idea behind the LL(1) parse table is to �nd the set of terminal symbols that can appear
at the beginning of a string expanded from a production. If the nonterminal on top of the stack is
A and the next input is a, and there are two productions A! � and A! �, we choose A! � if
� can expand to something beginning with a. The choice must be unique; if � also expands to a
string beginning with a, the grammar is not LL(1) (LL(1) parsing won't work, so we either have
to change the grammar or use a di�erent parsing algorithm).

Constructing the LL(1) parse table is requires some preliminary de�nitions and computations.
The �rst is the set of nullable nonterminals. To compute them, we need the more general concept
of a nullable string:

De�nition 8 A string � in (V [T)� is nullable if �
�

=) �.

We would like to determine the set of nullable symbols in a context-free grammar. Instead of
giving an algorithm to compute these sets, we give a set of rules that can be used to compute a
function iteratively. The order of application of the rules does not matter, so long as each rule
is eventually applied whenever it can change the computed function (and as long is the rule is
not applied to unnecessary strings). The rules for nullable strings compute a Boolean function
Nullable. The domain of the function is all the strings consisting of single nonterminal symbols, or
right-hand-sides of productions. Initially, we assume that Nullable is false for all strings; the rules
can be applied to set it to true for some strings, whereupon other rules can set it to true for other
strings. The process terminates when no rule can change Nullable from false to true for any string.

1. Nullable(X1X2 : : : Xn) = true if, for all 1 � i � n, Nullable(i).

2. Nullable(A) = true if there is a production in the CFG A! � and Nullable(�).

In particular, rule 1 implies that � is nullable, since for all i � i � n applies to no i whatsever,
so all (zero) symbols are nullable.

Here is an example:

S ! ABC

A ! �

B ! �

C ! AB

Initially, Nullable is false for everything. Then

Nullable(�) = true rule 1 (X1X2 : : : Xn = �)
Nullable(A) = true rule 2 (A! �)
Nullable(B) = true rule 2 (B ! �)
Nullable(AB) = true rule 1
Nullable(C) = true rule 2 (C ! AB)
Nullable(ABC) = true rule 1
Nullable(S) = true rule 2 (S ! ABC)

In this case, everything is nullable, which is unusual.
By a much easier computation, the nullable symbols in the LL(1) expression grammar are A

and B.

24

The next function that needs to be computed is the FNE set. FNE stands for \First, no �". It
is unique to this course, but I think it is more clear than the standard approach, which I will also
describe. FNE (�) is the set of terminal symbols which can appear at the beginning of a terminal
string derived from �.

De�nition 9 If � is a string in (V [T)�, FNE (�) is fa j a 2 T ^A
�

=) ax; for some x 2 T �.g.

Note that since we've assumed there are no useless symbols in the CFG being analyzed, the
de�nition would be equivalent if we relaxed the requirement that x be a terminal string.

The domain of FNE consists of the set of all nonterminals and su�xes (i.e. tails) of strings
appearing on the right-hand sides of productions, but the codomain of FNE consists of the subsets
of T (i.e., FNE(�) is a set of terminal symbols). As with Nullable, we start with a \small" initial
value for FNE , the function that maps every string to the empty set, and apply a set of rules in
no particular order until no rules can change FNE .

Rule 2 below is partially obvious: the FNE set of a string X1X2 : : : Xn always includes the FNE
of X1. However, it may include the FNE of X2 and later symbols, also: If X1 is nullable, there
is a derivation X1X2 : : : Xn

�

=) �a : : : = a : : :, where X1 \expands" into the empty string, so the
�rst terminal symbol actually derives from X2. However, even if X1 is nullable, it may end up
contributing terminals to the FNE of X1X2 : : : Xn because there may also be deriviations where X1

expands to a non-empty string (nullable symbols may expand to �, but they may expand to other
strings as well). Clearly, if X1 : : : Xk are all nullable, the �rst terminal may come from Xk+1. The
�rst rule also implies that FNE(�) = ;.

The justi�cation for rule 3 below is simple: If �
�

=) ax, and A ! � is a production in the
CFG, then A =) �

�

=) ax, so a 2 FNE (A).

1. FNE (a) = fag

2. FNE (X1X2 : : : Xn) = if Nullable(X1)
then FNE (X1) [FNE (X2 : : : Xn)
else FNE (X1).

3. FNE (A) = [fFNE(�) j A! � 2 Pg

Let's use these rules to compute the FNE sets for our LL(1) expression CFG. These are purposely
done in a suboptimal order to show that rules sometimes have to be used on the same string multiple
times before the correct answer is reached.

25

String Added Reason

+ + rule 1
* rule 1

((rule 1
a a rule 1
+TA + rule 2
A + rule 3
FB * rule 2
B * rule 3
F a rule 3
FB a rule 2
T a rule 3
TA a rule 2
(E) (rule 2
F (rule 3
FB (rule 2
T (rule 3
TA (rule 2
E a,(rule 3

Note: You should work through these in detail to see how the rules work, and try another order

to see if you get the same result.

The resulting FNE sets for the nonterminals in the grammar are:

E f a,(g

T f a,(g

F f a,(g

A f + g

B f * g

Note: You should check the de�nition of FNE above and re-inspect the LL(1) expression gram-

mar to see why this makes sense.

This CFG didn't use rule 2 in it's full generality. Here is a simple example that does.

S ! ABC

A ! aA j �

B ! b j �

C ! c j d

Note that A and B are nullable. Applying the rules gives:

26

String Added Reason

a a rule 1
b b rule 1
c c rule 1
d d rule 1
C c,d rule 3
B b rule 2
a A a rule 2
A a rule 3
ABC a,b,c,d rule 2
S a,b,c,d rule 3

FNE (ABC) includes terminals from A but also from B (because A is nullable) and C (because
B is nullable). Suggestion: Show for each of member of FNE (S) that there is a way to derive a

string from S beginning with that terminal.

I will also describe the \standard" approach that appears in all textbooks on the subject, in
case you need to talk to someone else about this material who didn't take this class. The standard
approach is not to de�ne FNE sets, but FIRST sets. The only di�erence is that FIRST (�) includes
� if � is nullable. Rules for computing FIRST can be given that are very similar to the rules for
FNE. FIRST sets are de�ned the way they are because the concept generalizes to LL(k) parse table
construction for k > 1. But we don't care about that, and inclusion of � seems to lead to confusion,
so we use FNE sets, instead.

The last set that needs to be de�ned before constructing the LL(1) parse table is the FOLLOW
set for each nonterminal. The FOLLOW sets are only used for nullable productions. Recall that
the LL(1) parse table selects a production based on the nonterminal on top of the stack and the next
input symbol. We want to choose a production that is consistent with the next input. FNE sets
tell us what we want to know if the next terminal is going to be derived from the top nonterminal
on the stack (we just pick the production whose right-hand side has the next input in it's FNE
set). But, suppose the nonterminal on top of the stack \expands" to �! Then the next nonterminal
is going to come from some symbol after that nonterminal. The FOLLOW sets say exactly which
terminals can occur immediately after a nonterminal.

De�nition 10 FOLLOW (A) = fa j S$
�

=) �Aa�g, for some � 2 (V [T)�, � 2 (V [T)�, and
a 2 T .

This de�nition derives strings from S$ because we want $ to be in the FOLLOW set of a
nonterminal when the next input can be the end-of-�le marker. The domain of FOLLOW is just
the set of nonterminals (not strings, in contrast to the previous functions). The FOLLOW sets are
computed in the same style as Nullable and FNE. Initially, the FOLLOW sets are all empty, then
the following rules are applied in any order until no more changes are possible.

1. $ 2 FOLLOW (S)

2. FOLLOW (B) � FNE (�) when A! �B� appears in the CFG.

3. FOLLOW (B) � FOLLOW (A) when A! �B� appears in the CFG and � is nullable.

Rule 1 is justi�ed since S derive a complete input string, which will be followed by $. Rule 2 looks
for productions where B is followed by something that can have a at the beginning (so a immediately

27

follows whatever B expands to). Rule 3 deals with a more subtle case. If a is in FOLLOW (A),
and � is nullable, the follow derivation exists: S

�

=) : : : Aa : : : =) : : : �B�a : : :
�

=) : : : �Ba : : :, so
a is in FOLLOW (B), too.

Let's compute the FOLLOW sets for the LL(1) expression grammar.

String Added Reason

E $ rule 1
E) rule 2 (F ! (E))
T + rule 2 (E ! TA)
F * rule 2 (T ! FB)
A $,) rule 3 (E ! TA, � nullable)
T $,) rule 3 (E ! TA, A nullable)
B +,$,) rule 3 (T ! FB, � nullable)
F +,$,) rule 3 (T ! FB, B nullable)

The resulting FOLLOW sets are:

E f $;) g
T f +; $;) g
F f �;+; $;) g
A f $;) g
B f +; $;) g

The LL(1) parse table is a two-dimensional array, which we will call Table. The rows are indexed
by nonterminals (for what is on the top of the stack) and the columns by terminals (the next input
symbol). Given A on the top of the stack and a next in the input, we need to choose a production
A ! � to expand. Table[A; a] should be A ! � only if there is some way to expand A ! � that
can match a next in the input.

There are two ways that expanding A! � can expand to something that matches a. One way is
if � expands to something beginning with a, so we set Table[A; a] = A! � whenever a 2 FNE (�).
The other way is if � expands to �, and some symbol after � expands to a string beginning with a,
so we also set Table[A; a] = A! � when � is nullable and a 2 FOLLOW (A).

The LL(1) parse table for the LL(1) expression grammar appears in full, above, but let's look
at a few examples. E ! TA appears in Table[E; a] because a 2 FNE (TA). The only productions
with nullable right-hand sides in this grammar are A! � and B ! �. Table[B;+] = B ! � because
+ 2 FOLLOW (B).

There is one more extremely important point to make about the LL(1) parse table: If the
rules above set Table[A; a] to two di�erent productions, the parse table construction fails. In this
case, the CFG is not LL(1). LL(1) parsing demands that we be able to choose exactly the next
production to expand based solely on whether it is consistent with the next input symbol. So the
LL(1) parse table construction not only builds parse tables, it is a test for whether a CFG is LL(1)
or not.

What about the entries that have nothing in them? They are error entries: if the parser ever
looks at them, the input string can be rejected immediately. There is no way to expand anything
that can match the next input.

In spite of its limitations, LL(1) parsing is one of the two most widely used parsing algorithms.
The parsers can be built automatically, and the parsing algorithm is easy to understand. It is usually
simple to do processing associated with individual grammar rules, during the parsing process (this

28

is called syntax-directed translation). Furthermore, it can also be used as the basis for simple
hand-written parsers, which allow a great deal of exibility in handling special cases and in error
recovery and reporting (see below). However, LL(1) parsing has some limitations that can be
annoying. One of them is that it is not as general as the other common parsing algorithm, so
there are some common grammatical constructs it cannot handle. Another is the requirement to
eliminate left recursion and left factors, which can require rearranging a grammar in ways that
make it less clear.

LL(1) parsing and recursive descent

LL(1) parsing can be used with an automatic parser generator. It is also appropriate as a basis
for a simple hand-written parsing style, called recursive descent. The idea behind recursive descent
parsing is to write a collection of recursive functions, one associated with each nonterminal symbol
in the grammar. The function for a nonterminal is responsible for reading and parsing the part of
the input string that that nonterminal expands to.

The parsing function for B in our LL(1) expression grammar might be:

int parse_B() {

next = peektok(); /* look at next input, but don't remove it */

if (next == '*') {

gettok(); /* remove '*' from input */

parse_F(); /* should check error returns for these, */

parse_B(); /* but I want to keep the code short */

return 1; /* successfully parsed B */

}

else if ((next == '+') || (next == ')') || (next == EOF)) {

return 1; /* successfully parsed B */

}

else {

error("got %s, but expected *, +,) or EOF while parsing B\n", next);

return 0;

}

}

Recursive descent parsing is very widely used, because it requires no special parser generation
tools, it can be extended in ad hoc ways (for example, looking ahead to several inputs, or looking
at other context, when the next input does not uniquely determine the production choice), and it
allows the user great freedom in generating error messages and doing error recovery.

A looser style allows parsing of EBNF directly. For example:

int parse_T() {

parse_F(); /* again, I should check the return code */

while ((next = peektok()) == '*') {

gettok(); /* remove '*' from input */

parse_F();

}

}

While substantially di�erent from the previous code, this is still basically the same thing (it chooses
whether to parse F or not at each point based on one lookahead symbol.

29

7 Bottom-up parsing

The other major class of parsing methods are the bottom-up algorithms. As the name suggests,
bottom-up methods work by building a parse tree from the leaves up. This involves reading the
input until the right-hand side of a production is recognized, then reducing the production instead
of expanding productions until they match the input.

Shift-reduce parsing algorithms

The bottom-up algorithms we will study are all shift-reduce algorithms. Shift-reduce parsing uses
the same data structures as LL parsing: a stack and the input stream. However, the stack is used
in a di�erent way. Terminal symbols are shifted onto the stack, that is, a symbol is removed from
the beginning of the input and pushed onto the stack. If a sequence of symbols on the top of the
stack matches the right-hand side of some production, they can be reduced by popping them and
then pushing the symbol from the left-hand side of the same production. The parse is successful
when the entire input has been shifted on the stack and reduced to the sentence symbol of the
grammar.

As with LL parsing, there are choices to be made during this algorithm: there may be several
productions whose right-hand sides match the stack at any time. Which one should be reduced?
As with LL parsing, the choice is made by doing a table lookup with information from the current
state of the parse.

To show how the basic parsing algorithm works, we do a simple example where we hide the
details of the parse table and, instead, make the choices by guessing. Consider the simple CFG:

S ! (S)
S ! a

Here is the sequence of parser con�gurations that happens when parsing \((a))." The top of
stack will be on the right to make the shifting more obvious.

Stack (top) input action
$ ((a))$ shift
$((a))$ shift
$((a))$ shift
$((a))$ reduce S ! a

$((S))$ shift
$((S))$ reduce S ! (S)
(S) shift
$(S) $ reduce S ! (S)
$S $ accept

We can extract a derivation and parse tree from a shift-reduce parse. The sequence of reductions
represents the reverse of a derivation. In this case, it is S =) (S) =) ((S)) =) ((a)). Although
the example grammar doesn't show it, it is also a rightmost derivation. To see this, consider the
CFG:

S ! AB

A ! a

B ! b

30

The only string in the language is ab. Here is a parse:

Stack (top) input action
$ ab$ shift
$a b$ reduce A! a

$A b$ shift
$Ab $ reduce B ! b

$AB $ reduce S ! AB

$S $ accept

Although A ! a is reduced before B ! b, the derivation is reversed, so we end up with
S =) AB =) Ab =) ab, a rightmost derivation.

7.1 LR(0) parsing

The �rst shift-reduce parsing algorithm we will discuss is LR(0) parsing. It is an instance of LR(k)
parsing (which stands for \left-to-right (parsing), rightmost (derivation) (with lookahead) of k
symbols"). LR(0) parsing is pretty much useless as a stand-alone parsing algorithm, but it is the
basis for other extremely useful algorithms.

The key idea in all LR parsing algorithms is to run a �nite-state automaton from the bottom of
the parse stack to the top. The state of this automaton (at the top of the stack) is used, along with
some lookahed symbols, to choose whether to shift another symbol or reduce a production, and
(if the latter) which production to reduce. The construction of the �nite automaton is somewhat
involved.

The states of the automaton (which we will call the LR(0) state machine) consist of LR(0)
items. An LR(0) item is a production with a position marked in it.

De�nition 11 An LR(0) item is a pair consisting of a production A! � and a position i, where

0 � i � j�j, where j�j is the length of �.

An item is written A! � � �, where � marks the position. For example, A! �ab, A ! a � b,
and A ! ab� are all items. An � production has only one item, which is written A ! ��. Note
that this would be equivalent to A! ��, if we ever wrote that, which we don't.

The �nite-state automaton in this case is called the LR(0) machine. Each state of the LR(0)
machine is a set of items. If two states have the same set of items, they aren't two states { they are
the same state. Intuitively, the LR(0) machine keeps track of the productions that might eventually
be reduced when more stu� is pushed on the stack. The positions keep track of how much of the
production is already on the stack.

For convenience, the �rst step of any LR parsing algorithm is to add a new sentence symbol S0

and a new production S0 ! S to the CFG. Let's use the �rst example CFG above.

S0 ! S

S ! (S)
S ! a

The �rst state starts with the item that says: \we are parsing a sentence, and we haven't seen
anything yet:" S0 ! �S.

The construction of a state starts with a kernel, which is a core set of items. The kernel of the
our �rst state is S0 ! �S. The kernel is extended via the closure operation. The closure operation

31

takes into account that whenever we are in the middle of an item A! � � B� (meaning \I might
eventually be able to reduce A! �B�, and � is already on the stack"), it could be that the parser
will see something that can be reduced to B. The items that reect this are those of the form
B ! � (meaning \I might be able to reduce B ! , and I haven't seen anything in yet"). These
are called closure items.

De�nition 12 The LR(0) closure step adds all items of the form B ! � to a state whenever the

state contains an item A! � �B�.

There are two important points to make about the closure step:

� When a closure item begins with a nonterminal, adding it to the state may cause additional
closure items to be added.

� The state is a set of items, which means it has no duplicates { \adding" items that already
there has no e�ect.

To be explicit, the procedure for closure is:

repeat until no change

if there is an item A ! � � B� in the state add B ! � to the state for all
productions B ! in the grammar

Our �rst LR(0) state has a kernel of S0 ! �S. Closure introduces items S ! �(S) and S ! �a.
No additional items can or should be added (there are no more dots in front of non-terminals). So
the �rst state is:

S0 ! �S

S ! �(S)
S ! �a

A box is drawn around the state to indicate that the closure operation has been performed.
To complete the state machine, we need to de�ne the transitions between the states. This

is done by the goto function. If our state is q, whenever there is at least one item of the form
A! � �X�, where X is a terminal or nonterminal, goto(q;X) is de�ned. It is the set of all items
A! �X � � where A! � �X� is an item in q.

For each symbol X, goto generates the kernel of a successor state to q. There are several
important points to notice:

� For a given symbol X, goto operates on all of the items where X is the next symbol. There
is only one successor on each X.

� If q0 = goto(q;X), all of the items in q0 are of the form A ! �X � �. I.e., the � is always
immediately after an X.

Once the kernels of the successor states have been generated, the closure operation is applied
to each to complete the set of items in the state. Given an LR(0) state, it is possible to determine
which of its items were in its kernel and which were introduced by closure by checking whether the
� is at the beginning of the item (closure) or not (kernel) (the one exception to this rule is the item
that started everything, S0 ! �S, which is introduced by neither operation).

32

If, after applying closure, the set of items is exactly the same as some other set of items, the
two states are actually the same state. (An optimization to this is to look at whether the kernel
generated by goto is the same as the kernel of an existing state, in which case the states can be
merged before wasting a closure operation.)

Let's apply the goto operation to the one state we have generated so far (let us call it 0). There
are three symbols of interest: \S", \(", and \a". In each case, there is only one item with that
symbol next.

goto(0; S) = fS0 ! S�g

goto(0; \(") = fS ! (�S)g
goto(0; a) = fS ! a�g

In the resulting DFA, there is a transition from state qi to qj on symbol X if and only if
qj = closure(goto(qi;X)). The initial state of the DFA is the one whose kernel is S0 ! �S.

The complete LR(0) machine for the current example is:

S0 ! �S

S ! �(S)
S ! �a

S0 ! S�

2

S ! (�S)
S ! �(S)
S ! �a

3 S ! (S�) 4 S ! (S)�

5 S ! a�

S

(

S)

a (
a

0
1

2
3 4

5

Let's consider state 2 in more detail. The state was �rst generated by goto(0;0 (0) = fS ! (�S)g;
this is the kernel of state 2. Because of the : : :�S : : : in the kernel item, closure adds items S ! �(S)
and S ! �a, completing the state. goto(2;0 (0)) also generates fS ! (�S)g, so at this point, we
know we are going to state 2 (looping back to it, actually). Or we wait until we generate the
closure of our \new" state, and then notice that we have exactly the same items we had in state 2
and merge the states. State 2 is di�erent from state 0 because the kernel items are di�erent (even
though the closure items are the same).

It is illuminating to see how this machine directs parsing. When an item has : : : �a : : : for some
terminal a, we call it a shift item. It says that a should be shifted onto the stack if it appears as
the next input symbol.

An item of the form A! �� is a reduce item. It indicates that, when this state is reached, the
production A! � should be reduced (� will be guaranteed to be on top of the stack if the parser
gets to this state). Reducing the item S0 ! S� accepts the input string.

Unlike the example of shift-reduce parsing, an LR(0) parser does not actually shift symbols
onto the stack. Instead, it shifts states. No information is lost because of the special structure of
the LR(0) machine. Notice that every transition into a state has exactly the same symbol labelling

33

it. If you see a state q on the stack, it is as though a were shifted onto the stack. The stack will
also have states corresponding to nonterminal symbols.

In more detail, the LR(0) parsing algorithm starts with the �rst state (0 in our example) and
executes the following steps repeatedly:

shift If the next input is a and there is a transition on a from the top state on the stack (call it
qi) to some state qj, push qj on the stack and remove a from the input.

reduce If the state has a reduce item A! ��

1. Pop one state on the stack for every symbol in � (note: symbols associated with these
states will always match symbols in �).

2. Let the top state on the stack now be qi. There will be a transition in the LR(0) machine
on A to a state qj. Push qj on the stack

error If the state has no reduce item, the next input is a, and there is no transition on a, report
a parse error and halt.

accept When the item S0 ! S� is reduced accept if the next input symbol is $, otherwise report
an error and halt. (This rule is a bit weird. The remaining LR-style parsing algorithms don't
need to check if the input is empty. We de�ne it this way so LR(0) parsing can do our simple
example grammar.)

LR(0) parsing requires that each of these steps be uniquely determined by the LR(0) machine
and the input. Therefore, if a state has a reduce item, it must not have any other reduce items
or shift items. With this restriction, the current state determines whether to shift or reduce, and
which production to reduce, without looking at the next input. If it shifts, it can read the next
input to see which state to shift.

Let's parse the input \((a))" using this LR(0) machine.

Stack (top) input action
0 ((a))$ shift 2
$

02 (a))$ shift 2
$(

022 a))$ shift 5
$((

0225))$ reduce S ! a

$((a

0223))$ shift 4
$((S

02234))$ reduce S ! (S)
$((S)

023)$ shift 4
$(S

0234 $ reduce S ! (S)
$(S)

01 $ accept
$S

34

At each step, we have listed the symbols associated with the states on the stack (associating the
\bottom of stack" symbol, $, with state 0). Let's look at the reductions of S ! (S) in more detail.
When the �rst such reduction occurs, the stack is 02234; three symbols are popped of (because the
length of \(S)" is 3), leaving a stack of 02. There is a transition from the top state, 2, on S to
state 3, so we push a 3, leaving 023 on the stack. The second time it reduces S ! (S), the stack
is 0234. When three states are popped, this leaves a stack with just 0 on it(so top-of-stack state is
di�erent this time). There is a transition from state 0 to state 1 on S, so the new stack is 01. At
this point, the action is to reduce S0 ! S and the input has been consumed, so the parser accepts.
(It helps to visualize parsing by tracing the top-of-stack state in the diagram with your �nger as
you step through the parse.)

SLR(1) parsing

Here is an example of a CFG that is not LR(0):

0 S0 ! S

1 S ! Aa

2 S ! Bb

3 S ! ac

4 A ! a

5 B ! a

The productions are numbered because the numbers are used in the parse table construction below.
Here is the LR(0) machine that results

S0 ! �S

S ! �Aa

S ! �Bb

S ! �ac

A ! �a

B ! �a

S0 ! S�

S ! A � a S ! Aa�

S ! B � b S ! Bb�

S ! a � c

A ! �a

B ! �a

S ! ac�

S

A a

B

b

a

c

0

1

2 3

4 5

6
7

The machine is not LR(0) because of shift/reduce and reduce/reduce conicts in state 6 (there
is a shift item and two reduce items in the state, so the parser doesn't know whether to shift or
reduce, and if it decided to reduce, anyway, it wouldn't know which production to reduce). Hence,
this grammar is not LR(0).

35

However, if we allowed the parser to base its choice on the next input symbol, the correct choice
could be made reliably. If you examine the grammar carefully, you can see that A! a should only
be reduced when the next input is a, B ! a should only be reduced when the next input is b, and,
if the next input is c, the parser should shift.

How could we determine this algorithmically? The next three parsing algorithms all do it
in di�erent ways. The simplest method is SLR(1) parsing, which uses FOLLOW sets to compute
lookaheads for actions. Using the rules for computing FOLLOW sets in LL(1) parsing, we compute
FOLLOW (S) = f$g, FOLLOW (A) = fag, and FOLLOW (B) = fbg. We can then associate each
reduce item with a lookahead set consisting of the FOLLOW set of the symbol on the left-hand
side of the item. State 6 would then look like:

S ! a � c

A ! a�; fag

B ! b�; fbg

Since the lookahead sets for each shift item are disjoint from each other, and disjoint from the
symbols that can be shifted, this state has no SLR(1) conicts.

The parse table for SLR(1) has the same format as for the two other shift-reduce parsing
algorithms that are going to be discussed, LR(1) and LALR(1). The parse table consists of two
two-dimensional arrays: an ACTION table and a GOTO table. Here is the SLR(1) parse table for
the CFG above.

ACTION GOTO

a b c $ S A B

0 s6 1 2 4

1 acc

2 s3

3 r1

4 s5

5 r2

6 r4 r5 s7

7 r3

The rows of both tables are indexed by the states of the LR(0) machine. The columns of the
ACTION table are indexed by terminal symbols and the end-of-�le marker $. The columns of the
GOTO table are indexed by nonterminals.

The entries of the ACTION table are shift actions, of the form sn, where n is index of an LR(0)
state, or rp, where p is the index of a production in the CFG. At each step, the parser looks in
ACTION [q; a], where q is the current LR(0) state and a is the next input symbol. If the entry is
\sn," it shifts state number n onto the stack. If the entry is \rp," it reduces production p. If there
is no entry in the ACTION table, a parse error is reported (the input is not in the language of the
CFG).

The GOTO table gives the next-state transition function for nonterminals (given a current LR
state and a nonterminal, it gives the next LR state). It is used during reductions: after popping
states for the right-hand side of a production, it designates the state to be pushed for the left-hand
side symbol. Empty entries in the GOTO table are never referenced, even if the input string is not
parsable (if there were a parse error, it would have been caught earlier when an empty entry of the
ACTION table was referenced).

36

As with LL(1) parsing, all LR parsing algorithms require that the table uniquely determine the
next parse action: there must be at most one action in each entry of the parse table, or the CFG
cannot be handled by the parsing algorithm, in which case the CFG is said to be \not SLR(1)" (or
LR(1) or LALR(1)). When there are multiple actions in a table entry, there is said to be a conict.
There can be shift/reduce conicts (if there is a shift and a reduce action in the same table entry),
or reduce/reduce conicts (if there are several reduce actions in the same table entry). There is no
such thing as a shift/shift conict, because the LR machine goto operation ensure that each state
has at most one successor. Conicts only show up in the ACTION table, not the GOTO table.

The above table has no conicts. The most interesting row is for state 6 (the one with the LR(0)
conicts). Observe that the row has two di�erent reduce actions and a shift action, yet they do not
conict because they are in di�erent columns (because their lookahead symbols are disjoint).

LR parse algorithm

The table-driven version of the SLR(1) parsing algorithm is exactly the same for LR(1) and
LALR(1) parsing. The di�erences among these algorithms are in the table constructions.

When production p is reduced, the parser looks up the production, and pops one state o� of
the stack for each symbol on the right-hand side of production p. Then it looks up an entry in
the GOTO table. The columns of the GOTO table are indexed by nonterminal symbols, and the
entries in the table are the indexes of LR(0) states. The parser pushes onto the parse stack the
state in GOTO [n;A], where n is the LR(0) state on top of the stack (after popping one state for
each right-hand symbol), and A is the nonterminal on the left-hand side of production p.

We assume state 0 is the start state, whose kernel is fS0 ! �Sg. Initially, the stack has state 0
and nothing else on it, and the input is the input string followed by the end-of-�le marker, $.

1. Let q to the top state on the stack, let a be the next input symbol, and let act beACTION [q; a].

2. If act is \sn", push n on the stack and remove a from the input;

3. Else, if act is \rp", and supposing production p is A! �,

(a) Pop length(�) states o� of the stack. Let q0 be the top of stack symbol immediately after
doing this.

(b) Push GOTO [q0; A] onto the stack;

4. Else, if act is \acc", accept the input;

5. Else, if act is \error" (an empty entry), report an error (the input string is not in the language
of the CFG.

The \accept" action only ever appears in the column $, so it will only be found when the input
has been exhausted. Unlike LR(0) parsing, it is not necessary to have a separate check to see if the
input is empty before accepting.

Example SLR(1) parse

As an example, let us parse the input \ab" using our CFG and table.

37

Stack (top) input

0 ab$
$

06 b$
$a

04 b$
$B

045 b$
$Bb

01 $
$S

accept

Filling in the parse tables

. The ACTION table is �lled in according to the following rules.

� If there is a transition from state q to state number n on terminal symbol a, setACTION [q; a] =
sn.

� If there is a reduce item A! �� in state q and a is in FOLLOW (A), set ACTION [q; a] = rp,
where p is the number of A! �, unless the item is S0 ! S�, in which case set ACTION [q; a] =
acc (in this case a = $).

� If ACTION [q; a] already has an entry when one of the rules above applies, report that the
CFG is \not SLR(1)" and halt.

The de�nition GOTO table is quite simple: if there is a transition from state q to state n on
nonterminal A in the LR(0) machine, set GOTO [q;A] = n.

You should reconstruct the table above to see how the rules apply to it. We also recommend
that you try doing the SLR(1) parse table construction for the CFG S ! Sa j �.

Using ambiguous grammars

The family of shift-reduce parse algorithms describe here all fail for ambiguous grammars. Ambi-
guity means that, in at least one place in a parse, more than one shift or reduce action can lead to
a successful parse, so multiple conicting actions will appear at some point in the parse table.

However, there is a trick for resolving conicts in LR parse tables which sometimes \works,"
meaning that it results in a conict-free parse table that still parses the language of the original
grammar. The trick is especially useful for dealing with certain ambiguous grammars, and can lead
to parsers that are smaller and more e�cient than a parser built from an unambiguous grammar.
However, the trick is dangerous, because it is not obvious whether the resulting parser actually
parses the intended language.

The basic idea is this: whenever there are multiple actions in a particular entry of the ACTION
table, delete all but one of them so that the correct precedence and associativity is enforced in the
parse tree.

38

Example

The �rst expression grammar we gave was highly ambiguous:

E ! E +E

E ! E �E

: : :

If you try to construct the SLR(1) parser for this language, there will be many conicts (try
it!). One SLR(1) state is:

E ! E +E�

E ! E �+E
E ! E � �E

FOLLOW (E) = f+; �;); $g, so the SLR(1) lookahead symbols don't help.
The row from the ACTION table would be:

+ �) $

r1/s6 r1/s7 r1 r1

The \s6" and \s7" are made-up state numbers, representing the next states for + and �. The
SLR(1) parsing algorithm will report two shift/reduce conict in this state, with the reductions
and lookahead symbols involved.

Intuitively, the r1/s6 conict is whether to make + left associative or right associative. If we
reduce E ! E + E, and we're parsing 1 + 2 + 3, it is going to group it as [1 + 2] + 3. If we shift
instead, we'll reduce the 2 + 3 later, then 1 + [2 + 3], so we'll get the right-associative grouping.
The conict stems directly the ambiguity in the grammar.

Similarly, the conict on � is about the relative precedence of + and �. If we reduce, 1 + 2 � 3
will be grouped [1 + 2] � 3, while shifting will group it as 1 + [2 � 3].

In this case, the conicts can be resolved by the user by selectively removing table entries. To
make + left associative and make the precedence of + greater than �, the row from the table should
be:

+ �) $

r1 s7 r1 r1

Another LR(0) state that arises is:

E ! E �E�

E ! E �+E
E ! E � �E

The lookahead symbols for E ! E �E are the same as for E ! E +E, because they are based
on FOLLOW (E), so the table will have conicts between both shift items and the reduce item. In
this case, we should favor reducing E ! E � E over shifting +, because � has higher precedence
than + (when parsing 1 � 2+ 3, it will reduce after it sees 1 � 2, which will group as [1 � 2] + 3). We
should also favor reducing E ! E � E over shifting �, if we want � to be left associative.

39

Parser generators of the YACC family have a way for the user to declare for each operator
whether it is left or right associative, and its precedence relative to other operators. Shift/reduce
conicts are resolved automatically by comparing the next terminal in the shift item with the
rightmost terminal in the reduce item2, to see which has the highest precedence, or, if the operators
are the same, whether they are left or right associative. The reduce item is favored if its precedence
is greater than the shift item or if the precedences are the same and its operator is left associative.

There are also e�ciency advantages, compared with writing an unambiguous grammar. The
unambiguous grammar is usually much larger than the ambiguous grammar, and its LR state ma-
chine larger still. So the parse table for the ambiguous grammar may be much smaller than that
for the unambiguous grammar. This is a space advantage, which may translate into a speed advan-
tage when certain types of table compaction are used. A more direct reason that the ambiguous
grammar may be faster to parse is that it requires a lot fewer reductions of unit productions. A
unit production is one whose left-hand side is a single nonterminal. Our unambiguous expression
grammar had two of these E ! T and T ! F . In general, unambiguous expression grammars make
heavy use of unit productions, which may double or triple the number of reductions that happen
during parsing. On the other hand, although these e�ciency advantages are real, it is not clear how
important they are given that computers are so much faster and and so much more memory than
when these parsing algorithms were invented. For most application, LR parsing is so blindingly
fast that doubling the speed is not noticeable.

The use of these rules is dangerous. They can be used safely and advantageously in some
circumstances. For example, there is a long tradition of de�ning expression syntax with pre�x
and post�x unary operators and binary operators, with explicit precedence rules. The precedence
rules can be implemented very naturally using the above mechanism. Otherwise, you need to think
through the consequences of conict resolution very, very carefully. But thinking carefully might
not be su�cient to get it right, as I know from a few personal experiences.

Note that all uses of the conict resolution mechanism above resolve shift-reduce conicts.
Legitimate uses of this mechanism for reduce-reduce conicts are extremely rare.

LR(1) parsing

The most powerful parsing method I will discuss is LR(1) parsing. LR(1) parsing uses the same
parsing algorithms as SLR(1) parsing, but uses a di�erent state machine: the LR(1) machine.
The state machine keeps more information in its states and computes lookaheads for items more
accurately, so the resulting LR(1) parse table is less likely to have conicts. Hence, some CFGs are
LR(1) (meaning that the parse table has no conicts), that are not SLR(1). LR(1) parsing is not
widely used because there is not much practical di�erence in power between LR(1) and the next
parsing method we'll discuss, LALR(1), and LALR(1) parse tables are much smaller than LR(1).
However, LALR(1) parsing is based on LR(1) parsing.

Here is a CFG that is not SLR(1) but is LR(1):

S ! Aa

S ! Bb

S ! bAb

A ! a

B ! a

The �rst state of the LR(0) machine and state reached from it via goto on a are:

2There is also a mechanism to declare the precedence of a production to be the same as a token explicitly.

40

S0 ! �S

S ! �Aa

S ! �Bb

S ! �bAb

A ! �a

B ! �a

A ! a�

B ! a�

Note that the second state has an LR(0) conict, because there are two reductions. In this
case, FOLLOW (A) = fa; bg and FOLLOW (B) = fbg, so b is in the SLR(1) lookahead of both
reduce items. When we try to build the table, there will be two reduce actions in the row for this
state, column b. When the SLR(1) parse table has more than one action in an entry, the actions
are SLR(1) conicts.

SLR(1) lookahead sets are not as accurate as they could be. In fact, the lookahead set for an
item really depends on the symbols that were shifted before the current state. The CFG above has
two occurrences of A. If A occurs at the beginning of the input (after some reductions, of course),
it must be followed by a if the parse is to succeed. However, if A occurs right after b, it must be
followed by b. If the LR states kept track of this context, we would notice that there could never
be a b after A in the particular state where the conict occurs. This would remove the conict.

The LR(1) machine construction keeps track of context-dependent lookahead information by
putting the lookahead symbols in the items during the closure operation.

De�nition 13 An LR(1) item is a triple consisting of a production, a position in the right-hand

side of the production, and a lookahead symbol, which is a terminal or $.

LR(1) items look like [A! ���; a], where a is the lookahead symbol. Intuitively, this means \we
have seen � and we expect possibly to see �, followed by a." The LR(1) state machine construction
is similar to the LR(0) construction, except that the LR(1) states are sets of LR(1) items. This

means that one state in the LR(0) machine may be split into several states in the LR(1) machine,

with the same sets of LR(0) items but di�erent lookaheads. Hence, the LR(1) state machine is more
accurate, but potentially larger, than the LR(0) machine.

Here are the changes to the LR(0) state machine construction:

1. The �rst item is [S0 ! �S; $]. Obviously, the only symbol that can occur after S in this

context is end-of-�le.

2. The CLOSURE operation is modi�ed to compute lookaheads of items: Whenever [A !

� � B�; a] appears in a state and b 2 FNE(�a), add [B ! �; b] to the state for every
production B ! in the CFG. Intuitively, A! ��B�; a] means \we have seen � and expect
possibly to see B�a. Therefore, we should also expect to see followed by the �rst terminal
derived from �a.

3. The GOTO operation is unchanged, except that it copies LR(1) items, with their lookaheads
unchanged, instead of LR(0) items.

Here is the full LR(1) machine construction. Note that the more precise lookaheads have
eliminated all conicts. In this case, the states correspond exactly to LR(0) states, but this is
unusual. Once we have the machine, the parse table construction is exactly as in SLR(1) parsing,
so the parse table is not shown.

41

S0 ! �S; $
S ! �Aa; $
S ! �Bb; $
S ! �bAb; $
A ! �a; a

B ! �a; b

S0 ! S�; $

S ! A � a; $ S ! Aa�; $

S ! B � b; $ S ! Bb�; $

S ! b �Ab; $
A ! �a; b

S ! bA � b; $ S ! bAb�; $

A ! a�; b
A ! a�; a

B ! a�; b

S

A a

B

b

b

A b

a

a

0

1

2 3

4 5

6
7 8

9
10

LALR(1) parsing

LALR(1) parsing is probably the most widely used automatically generated bottom-up parsing
algorithm. It is almost as powerful as LR(1) parsing, but has parse tables that are much smaller
than full LR(1) tables. The LALR(1) machine can be constructed by �rst building the full LR(1)
machine, then merging states that have identical sets of LR(0) items. The result is an LR(0)
machine with more precise lookahead information than SLR(1).

The following CFG is LR(1) but not LALR(1).

S0 ! S

S ! Aa

S ! Bb

S ! bAb

S ! bBa

A ! a

B ! a

The leftmost state below is the initial state of the LR(1) machine for this CFG. The middle
state is the state that is reached via goto on a from the initial state, and the rightmost state is
reached by doing goto on b, then goto on a.

42

S0 ! �S; $
S ! �Aa$
S ! �Bb$
S ! �bAb$
S ! �bBa$
A ! �a; a

B ! �a; b

A ! a�; a

B ! a�; b

A ! a�; b

B ! a�; a

In this case, the sets of LR(0) items in the middle and right states are identical. Merging two
states with identical LR(0) item sets computes the union of the LR(1) items of the states. If states
1 and 2 are merged, all predecessors of 1 and 2 goto the merged state in the LALR(1) state machine.

In this example, the merged states are:

A ! a�; a

A ! a�; b

B ! a�; a

B ! a�; b

As a notational convenience, we generally combine the lookaheads for identical LR(1) items.
This state contains four items, but is written as:

A ! a�; fa; bg

B ! a�; fa; bg

In the merged state, we have reduce/reduce conicts on both a and b (the lookahead sets for the
reduce items are no longer disjoint). There were no conicts in the original LR(1) machine, so this
example shows that LR(1) parsing can handle more grammars than LALR(1) parsing. However, in
practice, the di�erence is almost never important. Generally, when a CFG for a real programming
language fails to be LALR(1), it also fails to be LR(1). LALR(1) parse tables are much smaller
than LR(1) parse tables (by a factor of 10 in typical examples), so LALR(1) has emerged as the
dominant LR parsing algorithm. It represents good engineering compromises between e�ciency
and generality, and matches the needs of programming languages very well.

The previous CFG was not only LR(1) but also LALR(1). The LR(1) machine has no two
states with the same LR(0) items, so no states will be merged.

The relative power of LR parsing algorithms

LR(0) parsing is a weak algorithm that handles almost nothing. Any LR(0) CFG is also SLR(1),
because SLR(1) parsing cannot introduce new conicts in an LR(0) grammar (it just puts in
lookahead information). However, the CFG we gave at the beginning of the description of SLR(1)
parsing was not LR(0), so we have a proof that SLR(1) parsing is more powerful than LR(0) parsing.
Here is the CFG again:

S ! Aa

S ! Bb

S ! ac

A ! a

B ! a

43

Every SLR(1) grammar is also LALR(1), because LALR(1) uses the same (LR(0)) state machine
as SLR(1) but has more re�ned lookaheads. So LALR(1) will never have conicts that SLR(1) does
not have. The CFG we gave at the beginning of the discussion of LR(1) parsing was not SLR(1),
so it proves that LALR(1) is more powerful than SLR(1):

S ! Aa

S ! Bb

S ! bAb

A ! a

B ! a

If there are conicts in an LR(1) grammar, there will certainly be conicts in the LALR(1)
parser for the same grammar, because LALR(1) just merges some of the LR(1) states. So LALR(1)
can never handle a CFG that LR(1) cannot handle. We just gave a grammar that was LR(1) and
not LALR(1), which proves that LR(1) is more powerful than LALR(1).

8 Syntax-directed translation

In a broad sense, syntax-directed translation is the idea of using the structure of a language to
organize processing and translation. Compilation is a complicated process, but it can often be
made simpler by breaking the processing into small parts associated with language constructs. The
most general approach to syntax-directed translation is to build a tree structure during parsing,
then traverse one or more times, calling special functions for each type of node in the tree.

We are not going to study this subject in detail. Instead, we will look speci�cally at the
processing that can be done during shift-reduce parsing. In many cases, a tree never needs to be
built. The parsing process can be thought of as traversing a \virtual tree" in a some way. LL(1)
or recursive-descent parsing does a top-down left-to-right traversal: each node of the parse tree is
visited before its children, and the children are visited in left-to-right order. Shift-reduce parsing
does a bottom-up, left-to-right traversal of the virtual parse tree. If the processing of a compiler
can be done in the same order that the parser traverses the tree, it is not in general necessary to
build the tree.

YACC and its clones (such as byacc and bison) provide a method to associate C or C++ code
with reductions in the grammar. Here is an example of a simple calculator, based on our ambiguous
expression grammar (this is, of course, not YACC syntax):

E ! E �E { $$=$1*$3; }

E ! E +E { $$=$1+$3; }

E ! (E) { $$=$2; }

E ! num { $$=$1; }

A calculator works by bottom-up evaluation of arithmetic expressions. To compute E+E, we �rst
compute the value of the right and left expressions, then add them. Hence, it is perfectly matched
to shift-reduce parsing.

In YACC, there is a value potentially associated with each symbol in a production. $$ stands for
the value associated with the left-hand side symbol, while $i stands for the value of the ith symbol
on the right-hand side. Bottom-up evaluation means the the right-hand values are computed before
the left-hand values. In this case, the lexer converts numbers like \123" to their numerical values,
which are associated with the token num that appears in the CFG.

44

In the grammar above, when E ! num is reduced, the value associated with num ($1) is copied
to the E on the left-hand side ($$). When E ! E � E is reduced, the values associated with the
two Es on the right-hand side are multiplied and associated with the E on the left-hand side.

How is this implemented? YACC has a second stack, called the value stack, which parallels the
parse stack and contains the values associated with symbols during the parse. The value stack is
represented as an array in C, which we will call values. The special symbols $i and $$ are translated
into C code that reads or write locations in the value stack. Suppose that, just before reducing
A ! �, the index of the top value on the value stack is t and j�j is the number of symbols in �.
Then $i is translated into values [t� (j�j � i)]. Hence, $1 is the value associated with the leftmost
symbol of the right-hand side, as it should be. When A ! � is reduced, the symbols of � are
popped and A is pushed, so the value associated with A will occupy the same place in the value
stack as $1. Hence, in YACC, $$ is actually the same array expression as $1.

This implementation has several natural consequences. First, { $$=$1; } is redundant, since
$$ and $1 are the same location (I personally prefer to put it in for clarity). Second, it is possible
to use locations like \$0" and \$-1," which access values associated with other symbols not in the
current production. This can be used to good e�ect if you are absolutely sure you know what is
there. For example, suppose that whenever B appears in the grammar, it is immediately after A
(e.g., in productions like S ! AB). Then, in a production with B on the left-hand side, $0 will
always be the value associated with A. Use this sort of trick with extreme caution, if at all. You
have been warned.

In the shift-reduce parse below, the parse stack is shown with symbols on it instead of states,
and the value stack is shown underneath it. Values that are not of interest are shown as �. num
is compressed to n.

Stack(top) input

$ 1 + 2 � 3$
-

$n +2 � 3$
- 1

$E +2 � 3$
- 1

$E+ 2 � 3$
- 1 -

$E+n �3$
- 1 - 2

$E+E �3$
- 1 - 2

$E+E* 3$
- 1 - 2 -

$E+E� n $
- 1 - 2 - 3

$E+E� $
- 1 - 6

$E $
- 7

45

Actions in the middle of productions

It is often useful to do some processing in a production before the end of the right-hand side (say, to
do a computation with side e�ects before processing that will happen when parsing the remainder
of the production). YACC o�ers an obvious way to include such actions in the grammar: just
insert some C code, in braces, between the symbols in the right-hand side of the production. For
example,

S : A { printf("%d\n", $1); } B { $$=$3; }

to print the value associated with A before parsing B.
The implementation of this feature is a little less obvious. YACC generates a fresh nonterminal

symbol inserts (let's say M5 in this case), which is guaranteed not to appear elsewhere in the
grammar, and inserts in the production where the action appeared. YACC also adds an � production
(e.g. M5 ! �). The new action is associated with the new production, and is executed when that
production is reduced. In the one-line example above, the value associated with B becomes $3
because the new nonterminal M5 has $2.

YACC �ddles with the $ variables to make things more convenient (and a little confusing).
Suppose we have something like

S : A { $$=$1; } B { $$=$2+$3; }

In this example, $1 is the value of A, and the �rst $$ is the same as $2, the value associated with
the \middle" action. In the action at the end of the production, $2 is the value of the middle action,
and $3 is the value of B. It is very useful to be able to associate values with middle actions, as we
shall see below.

There is one pitfall of using middle actions. If you have an LALR(1) grammar and add middle
actions, there is a signi�cant risk of introducing new conicts into the grammar, because the
grammar has changed. Adding a middle action at the left-hand end of a production is especially
likely to introduce conicts. Usually, these problems are solved by rearranging the grammar or
moving the middle action somewhere else.

Top-down propagation of information

Even in bottom-up parsing, information can be passed down the \virtual parse tree" without
actually building the tree, if the information is owing from left to right. The need for this arises
all the time, typically when something has been de�ned before it is going to be used.

In practice, top-down propagation is frequently handled through an auxilliary data structure,
such as a stack or symbol table (this will be the case in programming problem 3). However, it is
often convenient to be able to deal with it directly in the parser.

Let us add a somewhat contrived feature to the expression grammar to illustrate this. Following
languages like ML which allow binding of variables to values in a \let" expression, we will have a
single variable, x, in our new, improved calculator. x can be bound to a value via the new construct
let x = Ein E, where the �rst E is the new value for x, and the second E is an expression that
may refer to x, which will have its current bound value. let expressions can be nested, in which
case old bindings are restored when a let ends. For example,

let x = 10 in (let x = 20 in 3 � x) + x

46

returns 3 � 20 + 10 = 70 (ok, I admitted it was contrived). If x hasn't been bound, it has the value
0.

Here is an extended grammar:

E ! let x = E { $$=g; g=$4; } in E { g=$5; $$=$7; }

E ! E �E { $$=$1*$3; }

E ! E +E { $$=$1+$3; }

E ! (E) { $$=$2; }

E ! num { $$=$1; }

E ! x { $$=g; }

This code is subtle, but worth understanding. Assume that g is a new global variable that
is declared elsewhere, which stores the current bound value of x. Whenever an x appears in an
expression, the last production in the grammar is reduced and the action associates the current
value of g with E, achieving the same e�ect as if the actual number had appeared in that point of
the parse.

We are using the value stack to save and restore the old bindings of x at the end of a let

expression. In the �rst production, we �rst save the old value of g in $$ (which is also $5), then
assign the new value of x, $4, to g. When the E later in the same production is parsed, g will
have the current bound value of x. At the end of the production, the old value of g is restored (it
is still in $5), and the computed value of the second E is \returned" as the value of the entire let
expression. $5 has the correct value, even though other instances of the same production may have
occurred in the second E, because the value stack can keep multiple copies at the same time.

We could avoid the use of g by changing the �rst and last productions:

E ! let x = E in { $$=$4; } E { $$=$7; }

E ! E � { $$=$0; } E { $$=$1*$4; }

E ! E + { $$=$0; } E { $$=$1+$4; }

E ! ({ $$=$0; } E) { $$=$3; }

E ! num { $$=$1; }

E ! x { $$=$0; }

In this case, we have arranged for the current bound value of x to be $0 whenever we are in the
right-hand side of a production with E on the left-hand side. Whenever we have E that is not the
leftmost symbol on the right-hand side of a production, we insert a \middle" action that copies
the value into a point just below the next E (where it will be $0 in the right-hand side of the
production).

I do not endorse writing YACC actions that are this tricky. To do it, we've had to scatter extra
code through many di�erent productions, and the results are probably not very obvious. However,
it is worth understanding this example because it truly enhances ones intuition about how parsing
works.

9 Scoped symbol tables

The symbol table is a global data structure used to maintain information about the meanings of
names. The idea of a symbol table is su�ciently general that a \name" could be almost any data
structure. For concreteness, you may think of it as some representation (a string or record) of
something like an identi�er in Modula-2.

47

In Modula-2, a name can be de�ned in a declaration to mean one of several di�erent kinds of
things: a constant, a type, a variable, or a function, for example. In each case, di�erent information
should be associated with the name: a constant has a type and a declared value, while a variable
has a type and a description of a location which holds its value.

The most basic symbol table simply maps a name to a data structure representing a declaration
(for want of a better term, we will call this a \decl"). Symbol tables become more complicated
when this mapping depends on some other contextual information. The most obvious example
of a context dependency is block-structure. Block structure divides a program into a hierarchy of
begin/end blocks (delimited by { and }) in C). Declarations made inside the block disappear on
exit from the block. Packages (modules in Modula-2) provide even more elaborate and exible
contextual information. In these notes, we will discuss ways of handling scoping, but not packages
or modules.

\Flat" symbol table structure

The simplest symbol table does not maintain any contextual information. After an name is de�ned
in the symbol table, it can be looked up at anywhere, anytime. This type of symbol table is a
simple mapping from names to decls. The symbol table should support two abstract operations:

insert(name, decl) This procedure associates the name with the decl in the symbol table. If
the name is already de�ned, the action depends on how the symbol table is to be used. Reasonable
alternatives are: (1) replace the older decl with a newer one; (2) keep the old decl and discard
the new one; (3) merge the old and new decls somehow (for example, associate the name with
a list of decls instead of a single decl, and add the new decl to the list); or (4) report an error.
Sometimes you may want to choose di�erent alternatives depending on circumstances. In this case,
the behavior can be controlled by adding a parameter to insert that says what to do, or by having
several di�erent versions of insert.

lookup(name)->decl This procedure returns the decl associated with the name in the table.
There are many variations on these routines. One that is particularly useful is enter, which is

a combination of both insert and lookup that inserts something in the table only if it is not there
(alternative 2 in the description of insert) and returns either the old decl (if the name was already
de�ned) or the newly inserted decl.

Note: there is no common agreement on the names of these functions or speci�c arguments to
these functions. Some of these details are di�erent in Programming Problem 3.

Flat symbol tables are used in very simple compilers, including (some) assemblers and macro
processors. In our Subula compiler, there are actually two symbol tables, one of which is at. The
lexical analyzer handles identi�ers by treating the text string as the name of the identi�er. The
text string is entered into a at symbol table (implemented as a hash table). The decl in this case
is a pointer to a struct id (which we will call an ID pointer from now on).

After lexical analysis, ID pointers are used to represent identi�ers everywhere. In fact, they
are the names in a second, more complicated symbol table that handles scoping and records. The
advantage of this scheme is that the ID pointers to two identi�ers are equal exactly when the
identi�ers have the same strings. So, when we want to check whether two identi�ers are the same,
we can compare their pointers (typically one machine instruction) instead of comparing the strings
character-by-character (much more expensive). The more complicated symbol table is discussed
below.

However, when we think of names, we usually think of something like a string of letters and
digits, not a small integer. In this case, it is not convenient to index the array by the name because

48

the range of names is very large. There are, however, a vast array of data structures that have
been designed for this problem. In each case, the name and decl are stored together: either a new
record type is de�ned that puts them together, or the name can be stored in a �eld in the decl. We
will call name/decl pairs \de�nitions".

Linear search structures. The de�nitions can be stored in an array or linked list in no
particular order. insert puts the new de�nition someplace convenient (e.g. the beginning or
end of the list). lookup must search the list. lookup may potentially have to search the entire
list (especially if it is looking for something that is not de�ned). Linear structures are very easy
to implement, and may be the fastest implementation if the number of de�nitions are small or
advantageously distributed (for example, if almost all lookups are of symbols at the beginning of
the list).

Binary search structures. The decls are stored in sorted order in an array, or in sorted order
in a binary tree. The advantage of this method is that search can be much faster, since the search
space can be repeatedly divided into two halves. For a sorted array or balanced binary tree, this
takes time proportional to the logarithm of the number of stored de�nitions. While these data
structures seem attractive in theory, they are almost never the right thing to use in a compiler
symbol table from an engineering standpoint, because they are somewhat harder to program and
because the averaged-case performance is not as good as other methods (at least when constant
factors are taken into account).

Hash tables. There is an extensive discussion of hash tables in the course text, so we will not
describe them here. If there are a large number of symbols (so that linear search structures are
slow), a hash table is usually the right thing to use in a compiler. If implemented carefully, they
provide almost constant insert and lookup time in practice, with low overhead.

Block structure and scoping

Block structure is one of the most useful features of modern programming languages (e.g. not
FORTRAN). It allows a program to introduce de�nitions of names that exist over a con�ned
region of program text, and then disappear. This helps to prevent accidental name clashes, and
helps to make obvious where a de�nition is and is not used.

In C, the beginning and end of a block are marked with braces: { and }. New variables can be
declared between the opening brace and the �rst statement (command) in the block. The variables
disappear after the matching closing brace. Blocks are nested, and the declaration that holds at
any time is the innermost declaration of the name being referenced.

Two terms that are used in the discussion of programming languages are scope and extent. The
scope of a declaration the area of program text over which the declaration is \visible". Extent is a
concept that applies primarily to variables (and not, say, to type declarations); it means the lifetime
of the storage associated with the variable. Usually the two are almost the same, but there are
exceptions: for example, the declaration of a locally declared static variable in C (or own variable
in Algol 60 and several other languages) disappears at the end of the block in which it was de�ned,
but the storage lives forever (for example, a decl stored in one procedure call can be accessed in a
subsequent call). Hence, the scope of such a variable is the block in which it is declared, but the
extent is the entire time the program runs. Compiler symbol tables are concerned exclusively with
scope, not extent.

Scoping can be added to a symbol table by adding two more abstract operations:
push_scope() Create a new scope.
pop_scope() Delete the last scope pushed that has not been popped. This un-does all decla-

49

rations since the corresponding push scope.
The insert function in a scoped symbol table is basically the same as before, but we say that

it inserts the de�nition into the current scope (the most recently pushed scope that has not been
popped).

lookup must now search for the variable in all of the pushed but not popped scopes in the
reverse order in which they were pushed. It returns the �rst de�nition that it �nds, which will be
the innermost de�nition in the nested block structure of the program.

Let us consider a simple fragment of C text:

1 {

2 int x;

3 int y;

4 {

5 float x;

6 ... x ... /* a float */

7 ... y ... /* an int */

8 }

9 ... x ... /* an int */

10 }

The \{" at line 1 causes a push scope to occur. At lines 2 and 3, de�nitions of x and y are
inserted into the scope that was just pushed (these indicate that x and y are variables of type int).
At line 4, push scope is called again. Then at line 5, another de�nition of is inserted into the
current scope (the one pushed at line 4). At line 6, the reference to x causes a lookup, will �nd
the de�nition inserted at line 5. However, the reference to y on the next line �nds the declaration
at line 3, because the current scope does not have a de�nition of y | it is declared in the previous
scope. At line 8, the closing brace causes a pop scope, which kills the scope that was pushed at
line 4 (and undoes the declaration of x at line 5). The current scope is now the one pushed at line
1. When x is looked up at line 9, the declaration from line 2 is found. Finally, another pop scope

occurs at line 10, deleting the scope that was pushed at line 1 and returning the symbol table to
the state it was in just before line 1.

There are many ways to implement a scoped symbol table. One of the tradeo�s among these
is the relative cost of pushing and popping scopes versus the cost of inserting and looking up
de�nitions. The right implementation may depend on the relative frequency of these operations.
Another important question is the distribution of de�nitions among scopes: a good argument can
be made that in Modula-2 or Pascal, most variable references are to the current scope and almost
all of the rest are to the global scope. There are very few references to scopes in between. Of
course, ease of implementation varies, too.

Stack of at tables

As names like push scope suggest, it is convenient to think of the scopes as being on a stack. This
suggests an obvious implementation: implement a stack using an array. The array elements should
be at symbol tables as described above.

Each at symbol table is a scope, which is literally pushed and popped by push scope and
pop scope, and the current scope is the one on top of the stack. insert should insert the de�nition
in the current scope (using the at version of insert). lookup should do a at-symbol-table lookup
in each element of the stack, starting at the top and working down until the �rst successful lookup.

50

The problem with this implementation is that scopes are pushed and popped fairly frequently,
and usually do not have many de�nitions. If we used hash tables for the at tables, we would either
have to implement them so they could be made larger dynamically (complicated to program) or
waste tremendous amounts of space by allocating a relatively large hash table for each scope.
Using a more intelligent representation of the individual scopes, this method can be made e�cient.
However, it is easier to program the next suggestion.

Stack of de�nitions

A slight variation on this idea, which we will call \stack of de�nitions," leads to an acceptable
implementation: keep a stack of individual de�nitions (not scopes) and mark the scope boundaries,
somehow, so pop scope knows how many de�nitions to remove from the top of the stack. There
are two good ways to mark the stack: (1) push a psuedo-de�nition that is recognizable as a scope
marker, or (2) maintain a separate scope stack which points to the top of the stack as of the time
the scope was pushed. In this implementation, insert always puts the de�nition at the end of the
table (i.e. pushes the de�nition on the stack). lookup searches backwards in the table (searches
down the stack of de�nitions), so it will �nd the declaration in the innermost scope. pop scope

pops all of the de�nitions from the top of the stack down to the �rst scope boundary.
For Subula, we recommend this type of implementation. Speci�cally, we used a linked list and

marked the scope boundaries with a separate scope stack.
In terms of e�ciency, the stack of de�nitions implementation is not bad. Pushing a scope takes

almost no time, and popping is proportional to the number of de�nitions to be popped (unless the
stack is an array and the storage for the de�nitions does not have to be released, in which case it
is even faster). Inserting is immediate, unless it is necessary to look for duplicate de�nitions, in
which case it is about as costly as lookup. lookup is proportional to the average distance of the
de�nition from the top of the stack. It seems reasonable to assume that most references will be to
local variables that are very close to the top of the stack, so this will be fast on the average.

However, there are some possible performance problems with lookup. The easiest thing to
do is put global variables at the bottom of the stack (in the outermost scope), and consequently
lookup will take a long time to �nd them. This could be a problem when globals are heavily used.
Another potential problem is looking up undeclared identi�ers (the entire stack must be searched
to determine that there is no de�nition). In Subula, this always results in an error being reported,
so the cost of doing the search is be minor compared with the overhead of error reporting.

There are other, more elaborate implementations of symbol tables for which faster insert and
lookup are possible, at the expense of a slower pop scope. Unfortunately, there is not su�cient
time to go into them in more detail.

10 Modula 2 semantics

The third phase of a compiler front end is semantic analysis. \Semantics" is a term borrowed from
linguistics, which means the mapping from some utterance (say, sequence of sounds) to a meaning.
As with lexical structure and syntax, this concept has been borrowed by the programming language
community. In programming languages, it is also very important to know what programs mean,
and it is much easier to know what \meaning" is: the meaning of a program is the result of its
computation.

In lexical analysis and syntactic analysis, we could draw on very well worked-out theories (regu-
lar and context-free languages) to provide precise descriptions of aspects of programming languages;

51

moreover, it was possible to compile these descriptions into lexical and syntactic analyzers, auto-
matically. The state of the art in semantic analysis is unfortunately less advanced. There is a
great deal of investigation going on (as you read these notes) in formal semantics of various kinds
of programming languages. It is now possible, though di�cult, to write a precise description of the
semantics of a language like Modula-2. Such a description would be di�cult to read. The next
step, automatic compilation of such a description into a semantic analysis, is beyond the state of
the art. There have been a few promising steps in this direction, but the �eld has a long way to go
before it a�ects practical compiler construction.

One of the problems is that the semantics of a program is not entirely determined at compile-
time. In a typical programming language, the compiler decides some semantic issues (such as correct
use of types and name binding), and leaves some of them to the object code to be determined at
run-time (the compiler must, however, assure that the semantics is preserved in by the object
code). The compile-time part of the programming language semantics is sometimes called the
static semantics, while the run-time part is called dynamic semantics.

The semantic analysis phase deals with the static semantics of the programming language.
Pragmatically, the semantic analyzer should catch all of the compiler-time semantic errors that are
not caught by the lexer or the parser. Of course, it is not only interested in catching errors, but
also in keeping track of types, declarations, scoping, etc. for use in code generation.

Since there is no cut-and-dried theory for semantic analysis, I feel that the best way to teach the
subject is by example. These notes discuss the semantics of Modula-2 and implementation issues
that would arise in a compiler for that language.

11 Modula-2 Type System

The type system of a programming language consists of the set of possible types, type compatibility
rules for operands, assignment, procedure parameters, etc., and rules for computing the type of an
expression depending on the types of its operands and possibly the context in which the expression
appears.

12 Declarations and Scoping

Declarations establish the meaning of identi�ers. Modula-2 has several di�erent kinds of declaration,
for example, constant, variable, type, procedure, and module declarations. There is a common idea
linking all of them: a declaration associates something with an identi�er. In other words, the
declaration binds the identi�er to something. A constant declaration binds the identi�er to a
constant value, a type declaration binds it to a type representative, and so on.

The scope of a binding is the program text in which it holds. As in many languages, scopes
can be nested in Modula-2. The meaning of an identi�er at some point in the program text is
determined by the innermost scope in which the identi�er is declared.

Declarations in Modula-2

Let's examine some of the kinds of Modula-2 declarations. A constant declaration binds a name to
a constant value. For example, the declaration CONST N = 10; binds N to the INTEGER 10 (the
value has a type). Whenever N appears, it could be replaced with a 10 directly without changing
the meaning of the program. Constants may appear in expressions and as bounds in subrange
types (and possibly in other places as well).

52

A type declaration binds an identi�er to a type (the type is speci�ed by a type expression, as
discussed previously). The identi�er can then be used wherever a type expression could be used,
notably in other declarations. One advantage of type declarations is that the declared name is
often shorter than the associated declaration. Also, type declarations are very helpful if you want
to use the same array type (or other constructed type) in several di�erent places (you can't just
repeat ARRAY [1..3] OF INTEGER in two places, because each expression creates a new array type).
However, the name of the type is not a part of the type itself (see the example in the discussion of
name vs. structural equivalence, below).

A variable declaration creates a location (a place where a value can be stored, also called a
variable) and binds the identi�er to it. The meaning of the identi�er then depends on context.
If the identi�er appears in an expression, it's meaning is the contents of the location (the current
value of the variable). If on the left-hand-side of an assignment, the meaning is the location itself.
Assignment changes the contents of the location to a new value. Sometimes the interpretation of a
variable on the left-hand-side of an assignment is called its lval and the interpretation on the right
is called the rval. Most conventional programming languages treat variables this way. An exception
is the programming language BLISS, which uniformly translates identi�ers into locations. To get
the value of an identi�er in BLISS, you put a dot in front of it (so there are a lot of statements
like x = .x + 1). If you left out the dot, you get the location of the variable instead of the value.
This is a major source of bugs in BLISS programs because there is no type-checking to speak of.

In a procedure declaration, the identi�er is bound to a newly-created procedure. The procedure
can be called (it can also be passed around as an argument; we will ignore this possibility). The
procedure consists of a list of formal parameters, which are typed variables, an optional return type,
and a computation described by Modula statements (the body of the procedure). The creation of
the procedure involves signi�cant processing. A new scope is entered for the formal parameters,
which are then declared as variables in that scope. Another new scope is entered for the body
of the procedure, which starts with a set of declarations that are bound in that scope. Then the
statements of the body are processed as they would be normally, except that RETURN statements
(which return values) are checked to make sure that the value returned is the same type as the
declaredr return type of the procedure. At the end of the procedure, the scopes for the parameters
and procedure body are exited.

There is one more detail about procedures: parameter passing. A procedure call has a list of
actual parameters, whose types must match the formal parameters of the procedure declaration.
There are two kinds of parameters: normal and VAR. For normal parameters, the actual parameters
must be expressions. The procedure call creates new variables for the formal parameters and assigns
the values of the corresponding expressions to them. Hence, an assignment to a formal parameter
does not a�ect the actual parameter. This convention is sometimes called call by value.

For a VAR parameter, the actual parameter must be a variable. Semantically, the formal pa-
rameter is bound to the location (lval) of the variable. No new variable is created, so an assignment
to the formal is also an assignment to the actual { the value of the actual parameter changes. This
is called call by reference. In reality, this is handled by creating a new variable for the formal (after
all), copying a pointer to the actual, and automatically dereferencing the pointer everywhere it
appears in the body of the procedure, which has the equivalent e�ect.

A module declaration binds an identi�er to a module, which is a collection of declarations.
Modules are used to break large systems into parts with limited interfaces. Modules are actually
most like records; the declarations inside can be accessed through the module like record �elds,
using similar syntax. But the �elds are not just variables, but constants, types, procedures, and
even other modules.

53

There are other Modula constructs that can be regarded as declarations. User-de�ned enumer-
ations declare a name for each member of the enumeration. The name is bound to an enumeration

member (my terminology) which is a constant of the new enumeration type. So an enumeration
type implicitly contains a bunch of constant declarations.

Record �elds are also declarations. When a record type constructor is processed, a new scope
is entered for the record �elds (which are variables). They are declared in this scope, then the
scope is exited. However, the scope is associated with the record type, so that when a record �eld
is accessed, it can be looked up in that scope to determine whether it is genuinely a �eld of the
record and, if so, what its type is.

Subtleties about Declarations

The discussion above has not pinned down all the details about declarations. One important
question is whether a declaration is available over the entirety of the scope in which it was declared,
or just in the text after the declaration. In Modula-2, the general rule is that it is available in
the entire scope. This has some profound implementation consequences, because it means that
declarations can be used before they have been de�ned (in the text). In general, this means
that semantic analysis must be done in at least two passes: one to process the declarations and
one to use them. It is an important convenience feature, though. It allows mutually recursive
procedures without forward declarations, and mutually referential modules. However, Modula-2
makes a special note that declarations cannot be used in other declarations before they have been
de�ned (This is paraphrased from the Modula-2 book. I'm not sure exactly what it means, but I
think it is that type declarations cannot be used before they have been de�ned, except in pointer
declarations.)

Another questions is what to do when there are several declarations of the same identi�er. My
interpretation of the Modula rules is that it is illegal to declare the same identi�er twice in the same

scope but legal to declare it in di�erent scopes. Procedure declarations provide a subtle example. It
is illegal to declare two formal parameters with the same name or two local variables with the same
name, but it is legal to declare a formal parameter and a local with the same name. This follows
from the description of procedure declarations, which puts formal parameters and local variables
in separate scopes.

Modules

Modules are used to put boundaries around di�erent parts of a system, so as to control the infor-
mation that crosses the boundaries. This promotes clean system organization and makes interface
explicit, so that parts of the system can be designed and implemented more independently.

Modules in Modula are similar to procedures in that they cause another scope to be entered,
and they have a body of code that can be executed (however, they don't have parameters). An
important di�erence is that modules have closed scopes { declarations in outer scopes are not
automatically visible inside the module (so the rule for �nding the binding of an identi�er is \look
for the declaration in innermost scope inside the same module"). A declaration in a scope enclosing
the module can be made available by importing it (identi�ers are imported individually in a part of
the module declaration called the import clause.) Once imported, a de�nition is visible as though
it were declared in the module. It is illegal to import and undeclared identi�er.

There is a dual operation to importing, called exporting. If an identi�er is declared in the
module, it can be exported into the scope enclosing the module, after which it behaves as though
it were declared in that outer scope. By importing and exporting only the declarations that the

54

module needs to use or wants to advertise to the outside world, unnecessary dependencies on other
de�nitions can be minimized.

One consequence of this de�nition is that it is an error to import and identi�er that is already
de�ned inside the module or to export an identi�er that is already de�ned in the enclosing scope
(because otherwise there would be two declarations in the same scope).

There is a second way to export a variable, called quali�ed export that requires that to use the
identi�er, it must be quali�ed by the module name to say which module it comes from. The syntax
for quali�cation is just like a record �eld access: module.ident.

Modula-2 Types

Modula-2 has an in�nite set of possible types. There are some basic types (such as INTEGER) and
type constructors (such as ARRAY) for creating types out of other types.

The basic types provided by Modula-2 include INTEGER, CARDINAL, BOOLEAN, CHAR,
and user-de�ned enumeration types. An INTEGER is an integer that falls in the range �2N�1 �
x � 2N�1 � 1 where N is the number of bits available in the implementation machine architecture
(this is the range allowed by a signed twos-complement representation). A CARDINAL is an
integer that falls in the range 0 � x � 2N�1 (the range allowed by an unsigned twos-complement
representation). There are two values of type BOOLEAN: FALSE and TRUE. The values of type
CHAR are the members of some character set (usually ASCII). A user-de�ned enumeration type
consists of a sequence of distinct identi�ers.

All of the above types have the common characteristic that they can be placed in one-to-one
correspondence with a �nite subrange of the integers. From now on, I will call them enumerations.
In fact, this correspondence is a Modula-2 function, called ORD, that maps an element of one of
these types to a CARDINAL. Members of one of these types can be compared using the usual
arithmetic comparison operations (<;>, etc.). Also, the function INC can be used to �nd the
next larger element of the type, and DEC to �nd the next smaller (these are unde�ned in case the
argument is the largest or least element).

There is one more basic type: REAL. It is not an enumeration, although REALs can be com-
pared.

Additional types can be created by the use of type constructors. One such is SUBRANGE,
which speci�es a subrange of an enumeration. I'll write this function as SUBRANGE(basetype,
lower, upper) (note: this is not Modula syntax; it is a notation for describing the set of Modula
types). The basetype must be an enumeration, lower and upper must be members of the base type,
and lower � upper must be true.

Another constructor is SET(basetype). This creates a type whose elements are sets of members
of the basetype, which must be an enumeration. Modula-2 requires that the number of members
of the basetype is quite small (a small multiple of the number of bits in a machine word) for
implementation reasons.

A new array type is created by ARRAY(indextype, elementtype). The indextype must be
an enumeration and the element type can be any type (including another array, which is how
multi-dimensional array types are created).

Record types are created by the RECORD constructor, which takes a sequence of �eld name/type
pairs. The �eld name is an identi�er and the type may be any type. I'm going to ignore variant
records.

A pointer type can be created by using the POINTER(type) constructor.
Finally, a procedure type can be constructed by PROCEDURE(formaltypelist, returntype).

55

The formal type list is a sequence of type names and the return value is any type. I'm ignoring
VAR parameters in procedures.

Type Compatibility in Modula-2

In Modula-2, it is an error to add an INTEGER to a REAL { in this context, integers and reals are
incompatible types. Modula-2 has di�erent compatibility rules for operands and assignment. Both
kinds of compatibility are based on a strict de�nition of type equivalence.

Two types are equivalent in Modula-2 if they are de�ned by the same instance of a type
expression in the program text. This is a very strict concept of equivalence. For example, in the
program fragment

VAR x : ARRAY[1..2] OF INTEGER;

VAR y : ARRAY[1..2] OF INTEGER;

the types of x and y are not equivalent, because they were created by two di�erent instances of
expressions, even though the expressions are identical. However, in

VAR x,y : ARRAY[1..2] OF INTEGER;

x and y are compatible.
This raises the issue of structural versus name equivalence, which is discussed in the text. Two

types are structurally equivalent if their type expressions are the same. If Modula-2 used structural
equivalence, which it doesn't, the types of x and y would be compatible in both examples. Name
equivalence is more strict: two types are equivalent if their names are the same. C structures
provide a good example of name equivalence in a type system. In the C declarations

struct s1 {int x;};

struct s2 {int x;};

the two types are distinct because they have distinct names (s1 and s2), even though they have the
same internal structure.

Is type equivalence in Modula-2 structural or name equivalence? It is clearly not structural
equivalence: two identical instances of record types are not equivalent. However, name equivalence
does not seem to capture the relation, either. The main problem is that Modula types are basically
anonymous. In the example

VAR x : ARRAY[1..2] OF INTEGER;

VAR y : ARRAY[1..2] OF INTEGER;

the array types have no names, yet they are distinct.
A name can be associated with a type by using the TYPE declaration:

TYPE t = ARRAY[1..2] OF INTEGER;

Type declarations bind a name to a type similar to the way that var declaration binds a name to a
variable. This has the interesting consequence that types with di�erent names can be equivalent.
The declarations

TYPE t1 = ARRAY[1..2] OF INTEGER;

TYPE t2 = t1;

56

�rst bind t1 to the array type, then bind t2 to whatever t1 was bound to. So t2 is bound to

exactly the same type as t1, so t1 and t2 are equivalent. The code

TYPE myinteger = INTEGER;

VAR i: INTEGER;

VAR j: myinteger;

... i+j ...

is perfectly legal { myinteger is just an abbreviation for INTEGER.
Type compatibility rules determine what combinations of operations and operands are allowed

by the type system (for example, is it legal to add an integer and a real?). Generally, equivalent
types are compatible, but some non-equivalent types are compatible, too | type compatibility is
a weaker relation than type equivalence.

The strictest kind of compatibility in Modula-2 is operand compatibility (just called compatibility
in the Modula-2 book). Two types are operand compatible if they are equivalent, or if they are
subranges of operand compatible types (note that this applies recursively to subranges of subranges,
and so on). Operand compatibility applies in prede�ned operations, such as +. Unlike many
languages, it is illegal in Modula-2 to add incompatible operands: although it is legal to add integers
to integers, cardinals to cardinals, and reals to reals, it is illegal to add integers to cardinals.

Modula-2 is unusual in this regard (particularly with respect to cardinals). Many languages do
an implicit type conversion, called a coercion, when a real (or oat) is added to an integer. The
integer is converted to a real, the addition is performed using oating-point arithmetic. Not so in
Modula-2.

Almost no languages distinguish integers and cardinals (although C has signed and unsigned
integers of di�erent sizes). The stated reason for the distinction is that many machines have
di�erent instructions for signed and unsigned arithmetic, and the compiler needs to know which
kind of instruction to use. 3

The distinction between integers and cardinals leads to a complication in the language: there
is a second kind of type compatibility, called assignment compatibility that applies when a value of
one type is assigned to a variable declared to be of another type, or when an actual parameter is
assigned to a formal parameter in a procedure call. Two types are assignment compatible if they are
operand compatible or if one is a cardinal and the other is an integer. Presumably this feature was
added to make the distinction between cardinals and integers less inconvenient for programmers. I
personally think the distinction between CARDINALs and INTEGERs in Modula is a crock; this
\feature" is often deleted by compiler writers.

Type Determination.

Type determination is the process of discovering the types of constructs in a programming language.
Obviously, this is essential if types are to be checked. In Modula-2, the constructs that need to
have their types determined are expressions. An expression in Modula is a construct has a value,
for example, a+4. (Declarations (e.g. VAR x : INTEGER;) and statements (e.g. WHILE FALSE
DO ;) are examples of constructs that do not have values.)

Unlike the other types in Modula-2, subranges are basically ignored by the type compatibility
rules. In fact, it is impossible in general to determine whether the value of a variable falls in a given

3One di�erence between signed and unsigned twos-complement arithmetic is when overows occur (the ranges of

the types overlap but neither is included in the other). If the compiled program does not catch overow, so that the

arithmetic is done modulo 2N , the results of signed and unsigned computations are indistinguishable for addition and

subtraction.

57

range at compile time { this decision must be deferred until the code is actually run. A careful
compiler will generate code to do bounds checking on any assignment or array indexing that is
supposed to be in a particular subrange. (Bounds checking is quite expensive, so many compilers
provide a way for the user to turn it o�). When we refer to \types" in this subsection, we mean
all of the types except subranges.

Expressions have a recursive structure. The base cases are the expressions with no substructure,
such as literals (lexical constants, such as 1 and "astring") and identi�ers (which are declared
symbolic constants, variables, or procedure names). Expressions can be constructed recursively
from smaller expressions by combining an operator with expressions for its operands (e.g. x + y)
or a function with its actual parameters (e.g. f(x, y)).

Let us consider the simplest case. Suppose that it is possible to determine the types of the
base cases (literals and identi�ers) by inspection. For example, suppose that the literal 57 is of
type integer (because of its lexical type) and that the type of an identi�er is determined entirely by
declarations, not by other parts of the expression in which the identi�er appears. Suppose further
that the result type of any operation is purely a function of the types of its operands (for example
a + b is an integer if a and b are integers, a real if a and b are reals, and unde�ned otherwise).
Then type determination can be done in a single bottom-up traversal of the expression (easy to do
during LR parsing).

Modula-2 almost �ts this simple model. The exceptions are the literals. 1 can be either an
INTEGER or a CARDINAL, depending on context, and "a string" can be one of an in�nite
set of types (ARRAY [...] OF CHAR) since every instance of an array type constructor de�nes a
unique type in Modula-2. One way to deal with these problems is to think of the literal as possibly
representing any of a set of types. The set of types gets narrowed down to one by context. For
example, if a string literal is assigned to a variable of some ARRAY OF CHAR type, it is clear that
the only type for the string that will not result in an error is the type of the variable.

Is it always possible to determine the type of an integer or cardinal expression? A consequence
of the rule of operand compatibility (no mixed operations) is that if any operand in an arithmetic
expression is of a known type, the rest must be of the same type or there will be a type error.
However, if all of the operands are literals that could be either integer or cardinal, it may not be
possible to determine the type of the expression. Does it matter? Probably not, but it is possible
to contrive examples where it would seem to make a di�erence. For example, does an overow
occur in the expression MAXINT() + 1? Both operands could be legal INTEGERs or CARDINALs,
but the result is out of the range of INTEGER. Language de�nitions are usually fairly cavalier in
their treatment of overow, so this is probably not the most important ambiguity in the Modula-2
de�nition.

13 Representational issues

As we said at the beginning of this course, the front end of a compiler should, in general, be machine-
independent, while the back end should be language-independent. However, there is usually a set
of decisions that are inherently both language- and machine-dependent. I will call these represen-
tational decisions. There may be many ways to implement a particular aspect of a programming
language, but everyone needs to agree on these decisions in order to compile successfully.

We will focus on two important (and related) examples of representational decisions: repre-
sentations of language data types, and procedure calling conventions. The �rst is concerned with
the sizes, layout, and positions of data structures: How does the compiler �nd the address of
x.r[B[i+2].f]? The second is concerned with where to store information associated with a par-

58

ticular invocation of a procedure, especially when procedures can be recursive. This information
includes the parameters and local variables associated with the procedure.

Allocation of and access to data

The semantic distinction between variables and values is also important for code generation. A
value is a speci�c quantity that cannot change over time (e.g., the number \1"). A variable is a
memory address where a value can be stored. The value stored in a variable may change over time
(if the value is written between the two times).

For a simple programming language such as C or Subula, there are four classes of data variables
which are stored in qualitatively di�erent areas:

global variables Since there is only one instance of a global variable, they can be allocated at
�xed addresses within one or more sections of memory. We will assume that there is a single
area of memory, which is at a known constant address. Reality is more complex, but not
more interesting.

local variables If a procedure calls itself recursively, there may be several instances of the local
variables for the procedures in existence at the same time. The standard solution to this
problem is to store all the locals for a particular procedure call in a block which is kept on
a stack. We will assume that there is only one stack. The procedure calling conventions are
responsible for making sure that this area is properly set up when the procedure is called and
torn down when the procedure returns.

procedure parameters Procedure parameters are handled similarly to local variables. They are
in a block on the stack, but usually in a di�erent place from the locals.

heap variables Languages with pointers and run-time memory allocation (like malloc in C) have
an area of memory called the heap where storage is allocated while the program executes.
The heap is managed by a storage allocator which maintains data structures to keep track of
what memory is free and what is not. More sophisticated languages (such as Lisp and Java)
may have automatic storage allocation on the heap and reclamation, via garbage collection.
In C, the compiler doesn't need to know about the heap { heap management is part of the C
library. Subula doesn't have pointers, so the heap is not an issue.

Sizes of data types

To allocate values, we need to know how big they are. In a simple language like Mubula 2, the size
of every value can be determined from its type at compile time. In Modula 2, the size of a type
can be de�ned inductively, based on the recursive de�nition of the type structure. The size of data
type is inextricably related to the policy for arranging subparts of complex data types (layout will
be discussed shortly).

As a concrete example, let us de�ne the size of various data types in a subset Modula 2,
assuming that we are compiling for a byte-addressed machine. Almost all computers these days are
byte-addressed, meaning that each 8 bit byte has a di�erent address. Since most data values are 4
bytes or more, byte addressing results in a lot of multiplying by 4 and multiples thereof.

First, we de�ne the sizes of the basic types. INTEGERs, CHARs, BOOLEANs, and POINTERs
are each 4 bytes long (this is more than is needed for CHARs, which are typically one byte [except
for Unicode, in which each character is 2 bytes], and BOOLEANs, which require only one bit, but it

59

is simple to implement). REALs are assumed to be 8 bytes long (this is typical for double-precision
oating point). A pointer to anything is 4 bytes. Then we can deal with the recursively de�ned
types: RECORDS and ARRAYS.

The �elds of a record are assumed to be layed out sequentially in the body of the record with
no gaps, so the size of a record is simply the sum of the sizes of its �elds. Note that the �elds may
be complex objects such as arrays or records themselves, which is no problem: our size de�nition
is recursive, so no matter how complex the structure of the �eld is, we can compute its size before
computing the size of the record that contains it.

The elements of an array are also assumed to be layed out sequentially with no gaps, so the
size of the array is the number elements in the array times the size of each element (the elements
are all of the same size, of course). If the array is indexed by a subrange [ub: :lb], the number of
elements in the array is ub � lb + 1. As with records, we can compute the size an array element,
even if it is another record or array, before computing the size of the array containing it.

Layout of data types

As discussed above, we assume a simple layout for records and arrays, where all �elds or elements
are arranged sequentially with no gaps. Suppose a program accesses a record �eld or array element.
How do we �nd it? In each case, we assume that the address of the beginning of the record or array
is known, and we have to compute the address of the desired �eld or element.

For records, the compiler should compute an o�set of the �eld within the record, and store this
o�set in the symbol table for later use. The o�set of the �rst �eld is 0, the o�set of the next is the
size of the �rst �eld (which is the o�set of the �rst free location within the record after the �rst
�eld), the o�set of the next �eld is the sum of the sizes of the �rst two �elds, etc.

There is a remarkably simple implementation of the o�set computation. At the beginning of
the record �elds, initialize a variable (e.g. o�set) to 0. Then process the record �eld declarations
in a loop. The o�set of each �eld is the value of o�set just before the �eld is processed. Then, the
size of the �eld can be computed recursively and added into o�set, which will be the o�set for the
next �eld. When the loop exits, o�set will be the size of the record (the sum of the �eld sizes).

Variables are very similar to record �elds (especially in Modula 2). In fact, variables can be
regarded as �elds of a special record, which we will call an area. Global variables are o�sets within
the global area, and local variables and formal parameters are o�sets within special areas that
are stored on the program stack (this is necessary because recursive procedures may have several
collections of variables that are \active" at the same time, which must have separate areas). The
computation of the o�sets of the variables and the sizes of the areas are essentially the same as in
the processing of records.

The \o�sets" of elements in the array cannot in general be computed statically, since the array
index value is not known at compile time (it could be a function of a loop variable, or even of user
input). However, the elements are all the same size, so it is straightforward to generate the code to
compute the o�set at run time: if the index value is i, the o�set is (lb + i) � eltsize , where lb is the
lower bound of the subrange type indexing the array, and eltsize is the size of the array elements.

In reality, sizes and layout of data types are sometimes more complicated. One complicating
factor is the desire to save space. Often, di�erent amounts of space are allocated to data types
depending on where they are stored. For example, an individual character variable might be a full
word (four bytes) to make the code to manipulate it fast, but inside an array, it might be a single
byte, for compactness (many Pascal compilers had \packed array" types that did this). Many
machines have alignment constraints; for example, instructions to access a pointer or other 4 byte

60

quantity require that the value be placed at an address that is divisible by 4. Accessing such a
value at, say, an odd address would require several instructions to access the parts and reassemble
them in a register. Layout can be quite complicated if a compiler tries to allocate minimum-size
�elds in a record for one-byte types while satisfying alignment constraints. Smaller records may
be achieved by rearranging the order of the �elds, for example. Of course, optimizations like this
make the computation of o�sets and sizes more complicated.

An example

Here is an example involving size and o�set computations for a complex data type. The size of
each type and the o�set of each �eld (in that order) appear to the right of the relevant lines

MODULE orders;

TYPE FOOD = INTEGER 4 bytes

ORDER = RECORD 8 bytes

item: FOOD; 4 bytes offset 0

quantity: INTEGER 4 bytes offset 4

END;

CUSTOMER = RECORD 124 bytes

name: ARRAY[1..80] OF CHAR; 80 bytes offset 0

custno: INTEGER; 4 bytes offset 80

order: ARRAY[1..5] OF ORDER 40 bytes offset 84

END;

STOCKITEM = RECORD 16 bytes

ITEM: FOOD; 4 bytes offset 0

PRICE: REAL; 8 bytes offset 4

AMOUNT: INTEGER 4 bytes offset 12

END;

VAR customerlist: ARRAY[1..10] OF CUSTOMER; 1240 bytes

stocklist: ARRAY[1..4] OF STOCKITEM; 64 bytes

BEGIN

END orders.

INTEGER 4 bytes

REALS 8 bytes

ENUM 4 bytes

CHAR 1 byte

CHAR ARRAY (packed)

Accessing data

All of the work of computing o�sets and sizes happens during the processing of declarations. Later,
when code is being compiled, instructions must be generated that read and write values in complex
data structures. For example, the computation to compute the address of x.r[B[i+2].f] must
�nd x, then �nd �eld r within x, then compute i + 2, �nd the element of B indexed by it, index
into x:r by that, then �nd �eld f within the result.

61

There is one key idea that makes it simple to understand code generation for data access:
array indexing and record �eld accesses can be converted into ordinary arithmetic. We can de�ne a
recursive function to do this translation. In some compilers, this translation could be performed on a
syntax tree or other intermediate representation. Since our project uses on-the-y code generation,
we will use the translation to understand what code should be generated.

Suppose we have an expression � that computes the address of the beginning of a record. �

may be an arbitrarily complex expression, depending on how deeply nested the record is inside
other data structures. Regardless of the complexity of �, we can use it to build the expression for
accessing any �eld f of the record. The new expression is simply � + o�set , where o�set is the
o�set of f within the record, which was computed and stored in the symbol table (the record �eld
declaration) when the record declaration was processed.

To access an array element, suppose � is the beginning of the array, and � is an expression for
the array index. Then the array access expression is � + (� � lb) � elementsize, where elementsize
is the size of the array element type and lb is the lower bound of array index type.

The base case of the inductive de�nition is the address for basic variables (those that are not
array or record �eld accesses). As we noted earlier, all basic variables are o�sets within an \area,"
which depends on the kind of variable. If the variable is global, it is in a particular preallocated
area of memory with an constant address that is known to the compiler. 4 Parameters and local
variables are both stored on the stack, so each variable is usually o�set from a special register that
points into the stack (sometimes, this register is called a frame pointer). We distinguish between
parameters and locals because they are usually in separate areas in the stack.

Finally, there is one operation involved in accessing variables that is not simple arithmetic.
Variables are treated di�erently depending on whether they are being assigned to, in which case
their addresses are needed, or whether they appear in expressions, in which case the value stored
in the address must be obtained. In the latter case, there is a special operation called FETCH,
which gets the value stored in an address. FETCH is the \dereference" operation, which is * in
the C and C++ languages, and ^ in Pascal and Modula 2.

As an example, suppose we have the following variable declaration:

VAR A : ARRAY [3..8] OF

RECORD

f1: ARRAY [1..3] OF INTEGER;

f2: RECORD

f3: INTEGER;

f4: INTEGER;

END

END

Suppose A is a global variable at o�set 15 from the address of the global area, which we will
assume is 1000. Then the expression for the address of A[5].f2.f4 is: (1000 + 15 + (5-3)*20 + 12
+ 4). (You should double check this by computing the sizes and o�sets of the �elds in the records.)

It is interesting that this expression consists entirely of constants. Hence, it can be evaluated
at compile-time (before code is generated), to convert it to the single constant 1071. Obviously,
the generated code will run faster if it doesn't have to do a multiply and 4 additions every time it

4in reality, this address is often know known until object modules are loaded, statically or dynamically, so the

address is stored symbolically in an object �le. Object �les have binary code plus a lot of other information to allow

code to be moved around in memory and debugged. However, our simple model gets the basic point across with

minimum complexity.

62

performs this accesses. Compile-time evaluation of constant sub-expressions is one of the simplest
compiler optimizations; it is called constant folding.

Constant folding is often very important for optimizing access expressions. O�sets for record
�elds and for variables within their areas are always constant. Array indices are often constant as
well. The non-constant parts of access expressions come from the addresses of areas on the stack
(locals and parameters) and from array indices that are not compile-time constants.

Procedure calling conventions

Language and machine architecture must also be considered simultaneously when designing the
conventions for procedure call and return. In essence, procedure call conventions establish a contract
between the code where the procedure is called and the code for the body of the procedure, so that
the called procedure can �nd the arguments and local variables in a known location, and so that,
when it returns, the return value is available and the internal state of the calling procedure is
restored appropriately.

In programming languages with recursive procedures, procedure information is typically kept
on a stack, grouped together in a single chunk of storage called a stack frame. Some languages
have features, such as multiple threads of control, requiring procedure information to be stored in
multiple stacks or in records in the heap. However, the remaining discussion here is based on the
idea that procedure information is stored on a single stack.

There are many variations on procedure call conventions, including the formats of stack frames,
the exact information stored in them, and the division of responsibilities between the calling pro-
cedure (the caller) and the called procedure (the callee). The machine architecture inuences
these decisions: for example, various general-purpose and special registers may need to be saved at
each procedure call, and some machines provide built-in instructions for procedure call and return.
Rather than discuss all these variations, we will discuss procedure call conventions for the stack
machine architecture used in the programming project, which is fairly typical.

For now, we also assume that there is no up-level addressing. Up-level addressing occurs when
a procedure P is declared inside another procedure Q, and P accesses one of Qs local variables.
Up-level addressing will be discussed in detail later.

Stack machine and stack frames

Our programming project is based on a stack machine simulator. Stack machines are not widely
used, because register machines are generally more e�cient. However, stack machines are easy to
compile for. They may come back into vogue because of Java (several companies are working on
direct implementations of the Java virtual machine, which is a stack machine, in hardware).

The stack machine is de�ned in more detail in the programming projects. However, it has
a stack (surprise!) along with several special-purpose registers: a program counter (the PC), a
top-of-stack pointer (the SP), and a frame pointer (the FP). The PC holds the address of the next
instruction to execute, while the SP and FP always have the address of a location on the stack.
Stack locations above the current value of the SP are assumed to be invalid and should not be read
or written.

When a (potentially recursive) function is called, various information needs to be stored on the
stack for two possible reasons: to communicate between the caller and callee, and to save caller
information that would otherwise be overwritten by the callee. Actual parameter values and the
return address in the caller need to be communicated from the caller to the callee; the return

63

value needs to be communicated from the callee to the caller; and the callers FP needs to be saved
because the FP will have a di�erent value inside the callee.

In other architectures, additional information may be saved in the stack machine. Register
machines often provide the option of saving some registers on the stack. There may be special
registers that need to be saved (for example, a \processor status word," which has various bits
describing the processor state).

The stack is used for other things. Space for local variables of a procedure needs to be reserved,
and the top of the stack is used for temporary storage of intermediate results during expression
evaluation.

Here is a diagram of a stack frame, and the information surrounding it in the stack (stacks grow
up):

SP �!

temps

locals
saved

FP �! FP
return
address

actuals
return
value

temps

The layout of the stack frame was chosen to make sure that the proper information was available
at the right times, while making it relatively easy to generate code.

Suppose we have a procedure f that calls another procedure g. The procedure calling conven-
tions are implemented by some generated code in f just before and after the call to g (to set up
and tear down the stack frame), and at the beginning of g and when g returns. Hence, this code
is distributed among several di�erent locations in the object code, and it is generated at di�erent
points during the compilation process. We now discuss the generated code in more detail.

When the compiler is processing the body of f and sees a call to g, it generates code to do
the following actions. (At each step, look back to the stack diagram to see that the stack frame is
being built from bottom to top.)

1. Reserve space for the return value (advance the stack pointer by the size of the return value;
it doesn't matter what goes on the stack here because it will be overwritten). We do this
because we want the return value to be on the top of the stack after the procedure returns,
in case it is a function call in the middle of a larger expression (this will be clearer when we
discuss expression evaluation).

2. Push the actual parameter values on the stack. (In reality, all you have to do in the pro-
gramming project is let the parser parse the expressions for the actual parameters. The code
that is generated by the compiler will put the values in exactly the right place on the stack,
regardless of the complexity of the expressions { even if they have function calls).

64

3. Push the return address. (The return address is where we want execution to resume when
control returns from the callee. It will be several instructions later. The compiler could count
the number of words of instructions that it will generate before the jump, but the easy way
to do this is to generate a label for the return point and push the label, then put the label
out at the appropriate point. The stack machine simulator has a preliminary pass that �nds
out the values of all labels. Assemblers and loaders do this in more conventional machines.)

4. Push the value of the FP on the stack (because we are about to overwrite it, but we want to
restore it after we return).

5. Jump to start address of callee.

6. Write out label that we generated for the return address. When the callee returns here, it
will have popped the return address, so the SP will point to the top of the actual parameters
on the stack. The callee will also have stored a value in the return value slot in the stack
frame.

7. Pop the arguments o� of the stack. (The compiler knows the number and sizes of the param-
eters.)

At the end of this generated code, the only change in the stack is the same as before the call,
except that there is a return value pushed on top from the callee. The caller is ready to execute
instructures for whatever follows the procedure call.

The generated code at the beginning of the callee is:

1. Reserve space for the local variables (the compiler knows the size of the locals before it has
to generate any code for the body of the callee).

2. Execute the body of the procedure.

When the compiler processes a return statement in the body of the callee, it generates the
following code:

1. Store the value in the slot that was reserved in the stack frame (this is at a known o�set from
the current FP value).

2. Copy the FP value to the SP (this pops everything o� of the stack that was above the saved
FP).

3. Pop the saved FP into FP. (A single instruction can pop a value o� of the stack while storing
the value into a register. At this point, the FP has been restored to the value it had prior to
the call, and the return address is now on the top of the stack).

4. Pop the return value into the PC. (Setting the PC causes the program to jump to the new
PC value.)

After this code is executed, control returns to the appropriate place in the caller code, which
then pops the actual parameters so that the return value is on top of the stack.

65

14 Code generation for a stack machine

We've already gotten into the subject of code generation, to some extent, in dealing with procedure
call. This section discusses the remaining aspects of code generation for a simple stack machine
architecture. Code generation for other architectures is more complex, because of the need to
allocate temporary variables, and the need to match complex instructions against the computations
described in the source program (however, the advent of RISC machines simpli�ed code generation
greatly compared with CISC machines).

Code generation for expressions

In most languages, expressions are constructs that have values, while statements don't have values.
Statements are executed only because of side e�ects, such as updating variables or performing
I/O. A major issue in compiling expressions is where to put intermediate values that need to be
saved for a short time during the evaluation of the expressions. For example, an expression like
(a+ b) � (c+ d) + e � f might need to store a+ b while it computes c+ d, and (a+ b) � (c+ d) while
it computes e � f . There are optimizations to reduce the amount of temporary storage required
by expressions, but, in theory, a complex expression may require arbitrary amounts of temporary
storage.

The major reason that compiling is easy for stack machines is that the stack provides an easy-
to-use repository for temporary values: just push them on the top of the stack. Register machines
have a bounded set of registers, which can be exhausted during compilation of expressions, requiring
more complicated code in the compiler to store some of these values in main memory.

Expressions are evaluated bottom-up. The general rule is that, when a node in an expression
tree is to be evaluated, the values of the operands must be on top of the stack. A stack machine
will provide many operators that take the pop k items on the stack, and push a computed result.
For example, there is an add instruction in our stack machine that pops the top two value o� of
the stack and pushes their sum. Complex expressions can easily be compiled into a sequence of
these instructions, which evaluate the expressions bottom-up, keeping all intermediate values on
the stack. Our procedure call conventions leave the return value on top of the stack, so that the
procedure can be called in the middle of an expression, e.g. a+ f(x; y) + g.

Code generation is syntax-directed, like semantic analysis. The simplest expressions in Subula
are literal constants and identi�ers. The compiler generates an instruction to push the appropriate
constant value on the stack whenever it reduces a literal constant. When the compiler encounters
an identi�er, it looks it up in the symbol table. If there is no error, the identi�er can represent a
declared constant or a variable. If it is a constant, the compiler generates an instruction to push
the appropriate value on the stack.

If the identi�er represents a variable, the symbol table entry and declaration tell what kind of
variable it is, what the type (and size) are, and what it's o�set is within its area. The compiled
code, when executed, should leave the address of the variable on the stack, since the variable may
be on the left-hand side of an assignment. the compiler generates di�erent instructions depending
on whether it is a global or local variable, or a formal parameter. In our stack machine, there is a
special label representing the beginning of the global area, Lglob. An instruction is generated to
push Lglob on the stack, then the o�set, then an add instruction.

The code to compute the address of a parameter should compute FP � (1 + sizeargs) + o�set ,
where sizeargs is the total size of the parameters, and o�set is the o�set of the desired argument
within the argument block. FP � (1 + sizeargs) computes the address of the �rst actual (allowing
for the size of the return address, which is 1). (The programming project restricts the sizes of all

66

arguments to 1 to simplify code generation.) The compiler must generate the appropriate sequence
of instructions to compute this expression. The address of a local variable is similar to that of a
parameter, but the area is just above the saved FP: FP +1+ o�set . Here, the 1 allows for the size
of the saved FP.

The code for array indexing and record �elds generates the instructions to compute the access
expressions discussed above by adding o�sets, multiplying array indices by the array element size,
etc. Executing these instructions always leaves the address of appropriate memory location on top
of the stack.

At some point, the parser will reduce a production which can only occur if the expression is not
on the left-hand side of an assignment. At this point, it is known that we want the value of the
address, not the address itself, so the compiler should generate a fetch instruction, which replaces
an address on top of the stack by the value in memory at that address. Eventually, these values
may be used by arithmetic operators, as arguments to functions (both of which have already been
discussed), or as arguments to conditional branches (which will be discussed next).

Control constructs

Control constructs are those that change the normal sequencing of instructions. Examples are
the if-then-else and looping constructs that are found in most programming languages. Control
constructs make use of jump (which assign to the PC) and conditional branch instructions (which
assign to the PC only if a certain condition is satis�ed). Compiling control constructs usually
involves generating labels for targets of jumps and branches. Also, since control constructs can be
nested, it is important to make sure that inner ones can be compiled without corrupting bookkeeping
information in use by the compilation of outer constructs.

Compilation of a while loop raises all of these issues. The subula grammar has a production
like:

hstmti ! while hexpr i do hstmtlist i end,
where hexpr i is a Boolean expression and hstmtlist i is the body of the loop. Compilation of

the hexpr i is handled by other productions of the grammar. A sequence of instructions will be
generated for it that leaves the Boolean value on top of the stack. Compilation of the hstmtlisti is
also handled by other productions (or even other reductions of the same production, if there is a
while loop in the stmtlist!). Sequences of instructions are generated that execute the instructions,
while generally leaving the stack in the same condition as they found it.

We want to generate code for the while loop that looks something like:

loop1: // top of loop
h code for expression i // eval loop condition
branch false end1 // jump to end if false
h code for loop body i
jump loop1 // repeat loop

end1: // jump here at end
h code for after loop i

The branch false instruction pops the top value o� of the stack, and jumps to the given label
if the value was false.

Here is approximately how we could do it in YACC. This makes heavy use of \middle" actions.
Labels are numbered, and pre�xed by \L" when they are printed. The function newlabel increments

67

a global counter, giving a new label that is not used elsewhere.

WHILE {

$<intval>$ = newlabel(); /* top of loop label */

printf("L%d: ", $<intval>$);

}

expr DO {

/* parsing expr caused instructions to be generated

after the top of loop label and before here. */

$<intval>$ = newlabel(); /* end of loop label */

printf("branch_false\n"); /* jump to end if false */

}

stmtlist END {

/* parsing stmtlist generated instructions for all

statements, including any nested while loops */

printf("jump L%d\n", $2); /* jump back to top */

printf("L%d: ", $5); /* end of loop */

}

This remarkably concise code uses a lot of what we've learned about LR parsing and syntax-
directed translation. The values of the labels are stored in the value stack, associated with the
middle actions, so they will not be corrupted if the compiler encounters another while loop in the
body of this loop.

15 Up-level addressing

Languages such as Algol, Pascal, and Modula allow procedures to be declared inside other proce-
dures. Up-level addressing occurs when a procedure P is declared inside another procedure Q, and
P accesses a variable x that is not declared in P , but is declared as a local variable in Q.

Here is a simple example:

VAR i: INTEGER; level 0

PROC P() level 0

... i ... level 1

END;

PROC Q() level 0

VAR i: INTEGER; level 1

PROC R() level 1

... i ... level 2

... P() ... level 2

END;

IF ... level 1

THEN Q() level 1

68

ELSE R(); level 1

END;

We can assign a scope level to every statement in a program, as in the example above. The
global scope is at scope level 0, and the scope level of any statement inside a procedure is one more
than the scope level in which the procedure is nested.

For consistency in this section, we will treat the global scope as though it were just another
procedure, and assume that global variables are actually stored in the �rst stack frame on the
stack. This is a reasonable implementation, but di�erent from previous sections, where the global
variables were assumed to be in a di�erent area of memory.

Suppose the following events have occured:

1. Q was called from the top level.

2. Q called itself recursively

3. The recursive call to Q called R

At this point, there are three instances of the variable i in existence: the global variable i and
the local variable i in two active calls to Q. If R accesses i, it should get the address of the local
variable i of Q, because that was the declaration that was active when P was declared (according
to our scoping rules).

Suppose, next, that P is called. The same three variables named i exist, but P should get
the address of the global variable i, because that was the declaration that was active when P was
declared.

P

R

Q (i)

Q (i)

global (i)

How can we �nd the right variable? There are two classical solutions to this problem: static
links and displays.

Static links

A static link is pointer that is added to each stack frame. When a procedure P is declared directly
inside another procedure Q, the static link in a stack frame for P will point to the stack frame for
the most recent call to Q. If Q is not the global scope, Q's stack frame will point to the stack frame
for the procedure whose declaration enclosed Q, etc.

The static links for the example above are shown here:

69

P

R

Q (i)

Q (i)

global (i)

Using static links

For the moment, let us assume that the static links are set up properly and consider how to use
them. When the compiler generates code to access a variable, the code follows the static links
for the right number of steps until it �nds the stack frame that contains the variable. Then, the
address of the variable is computed by adding an o�set to the newly discovered stack frame, just
as any local variable is looked up in the stack frame that contains it.

How many steps should we take along the static links? Lets de�ne \zero steps" to be current
stack frame, in which local variables of the current procedure are looked up. If we want to look
up a variable that was declared in the scope of the immediate enclosing procedure declaration, we
should go one step up the static links. In general, if the current scope level is d and the accessed
variable was declared at level v, the desired stack frame is d� v steps along the static links. Note
that v is available in the symbol table when the variable is looked up; it can either be stored directly
in the decl struct for v or it can be inferred from the number scope in which v is bound.

Let's consider what happens in our example. If variable i is accessed in procedure procedure
R, then d is 2 and i is 1, the formula would indirect 2� 1 = 1 step through the static links, which
would �nd the topmost stack frame for Q (the correct one). An access to i in P would have d = 1
and v = 0; it would also go one step up the static links, �nding the global stack frame (which is
also correct).

Maintaining the static links

At any point where a variable can be accessed, the static links must be set up properly. The
procedure call and return conventions are responsible for ensuring that this is the case. Suppose
procedure P is called at scope level c, and but was declared at scope level d. From the top stack
frame (before the frame for P is pushed), we indirect down the static scope chain c�d steps to get
a pointer to another stack frame which we will call f . When the new stack frame for P is created,
its static link should point to f .

In the example, when R is called from Q, c is 1 (the scope level of the line where R was called)
and d is also 1 (the level of the declaration of R). Indirecting zero steps down the static links �nds
the stack frame on top of the stack (for Q), which R's static link then points to (correctly). When
P is called from R, we have c = 2 and d = 0, so f is found by indirecting two steps down the static
links from the stack frame for R, �nding the global stack frame, which is where P 's static link is
supposed to point.

It may be helpful to think about the division of responsibility between the compiler and the
generated code in this processing. The compiler knows all of the scope levels (of calls and declara-
tions of procedures and variables). They are compile-time constants. However, the static links may
vary at run time, which is why we need them. The compiler generates code to set up the static
links and use them to �nd stack frames. This code is executed at run time.

70

Displays

The static links form a linked list of stack frames. Abstractly, this is a sequence of stack frames
which is indexed into to �nd the desired stack frame (\indexed into" means that the desired stack
frame is the ith element of the list, for some i). Accessing the ith element of a linked list requires
time proportional to i. A more e�cient data structure would be an array, where indexing is constant
time. This is the idea behind displays.

A display is an array of stack frame pointers, which we will assume is named DISPLAY. When-
ever a variable needs to be accessed, the stack frame for scope level d is pointed to by DISPLAY [d].
So variable access is easy: look up the scope of the variable, get the stack frame out of the display,
and �nd the variable within the stack frame by o�setting as directed by the symbol table.

The display must be maintained as part of the procedure call conventions. Whenever a proce-
dure P is called that was declared at scope level d, DISPLAY [d+ 1] is updated (it is entry d+ 1
and not d because this stack frame will be used when local variables of P are accessed, and if P is
declared at scope level d, its locals are declared at scope level d+ 1). DISPLAY [d+ 1] is saved in
the new stack frame for the procedure being called, and then a pointer to the new stack frame for
P is stored in DISPLAY [d+ 1].

When returning from a procedure declared at scope level d, the saved display entry is stored
back into DISPLAY [d+1], restoring the display to the same state it had just before the procedure
was called.

Here is what the display looks like just before and after the call to P . The saved display pointers
are shown on the right of the stack frames. Saved display pointers are not shown when they are
uninitialized (you can imagine an arrow to \NULL" for these).

R

Q (i)

Q (i)

global (i)

3

2

1

0

P

R

Q (i)

Q (i)

global (i)

3

2

1

0

Note that when we return from P , the saved entry stored in the stack frame for P will be
restored, and the display will be the way it was before the call to P . Note also that, while we are
in P , the display pointer to R will not be used (we will never reference a variable at level 2 in P ,
since the body of P is at level 1). However, this display pointer is crucial because it becomes active
again after returning from P .

71

