
A Concurrent Programming Environment for the i486

Antônio A. Fröhlich, Hélder Savietto, Luciano Piccoli & Rafael B. Ávila

Universidade Federal de Santa Catarina
Departamento de Informática e de Estatística
88.049.970 - Florianópolis - SC - BRASIL

Tel.: +55 48 231-9543 Fax: +55 48 231-9770
E-mail: guto@inf.ufsc.br

ABSTRACT

This paper describes a concurrent programming envi-
ronment for the Intel's 486 processor family. The envi-
ronment uses the processor's advanced features, like
memory management, multitasking and protection, to
supply the application level with a compact and secure
execution environment.

Regarding process management, the environment sup-
ports multitasking, multithreading and dynamic priority
scheduling. The memory management strategy is based
on paging, which is used to map the available physical
memory into logical segments for the applications. Co-
operation among processes can then be achieved
through shared memory and semaphores.

1. INTRODUCTION

Since IBM has chosen Intel’s 8086 as the main proces-
sor for its personal computer line, this family of micro-
processors has been widely used. Nowadays, most per-
sonal computers are equipped with such processor. The
80x86 microprocessor family has evolved to include
several new resources, such as memory management
unit, multitasking support and protection mechanisms.
However, few operating systems make use of this ad-
vanced resources.

This paper describes a concurrent programming envi-
ronment for PCs based on the 486 family of microproc-
essor: i386, i486, Pentium and Pentium Pro. The main
advanced resources available in the processor are used
to provide a secure, efficient and compact programming
environment for applications. The proposed program-
ming environment is extremely versatile, what makes
possible for it to support the development of an operat-
ing system or to directly support applications. Besides,
its reduced size code allows it to be stored in ROM, thus
serving as support for dedicated systems.

This paper is organized as follow: at first, the i486 mi-
croprocessor and the environment structures are pre-
sented; next, process, memory and I/O management

strategies are described; at last, the perspectives for the
environment as well as authors’ personal conclusions
are presented.

2. THE I486 MICROPROCESSOR

Intel’s i486 [7][8] is a versatile CISC microprocessor
that can operate in three modes: real, virtual and pro-
tected. When operating in real mode, the processor
behaves as an ordinary 8086, except by the speed. In
this mode, memory is organized in fixed-size segments
of 64 Kbytes each, there are no protection mechanisms,
neither multitask support.

The virtual mode is an intermediate level between real
and protected modes. When in this mode, protection and
multitasking resources are available, but the instruction
set and memory address translation still the same as in
the 8086. This mode can be used to support several
virtual machines, each one equivalent to a real 8086.

Protected mode is the one that makes available all proc-
essor’s resources. This operating mode enables protec-
tion, multitasking and memory management. For mem-
ory management, two schemes are available: segmenta-
tion and segmentation + paging (it is really segmenta-
tion plus paging, not paged segmentation). In this mode,
memory segments have variable sizes in bytes or in
pages, while pages are 4 Kbytes, fixed-size elements.
Regarding protection, this mode makes available four
privilege levels that can be used to enforce memory and
CPU access restrictions. It is also available some support
for multitasking, with automatic context switch.

3. THE ENVIRONMENT STRUCTURE

The proposed environment is comprised of four mod-
ules: process management, memory management, syn-
chronization and I/O support. Over these modules lies
an interface layer that presents internal objects to appli-
cation, enforcing protection. Environment internal ob-
jects are: logical memory segments, tasks, threads,
semaphores, interruption handlers and I/O ports.

There are to basic way the environment can be used: to
support an operating system or to support applications.
Once the environment supplies only basic abstractions,
it is possible to develop a complete operating system
over it without any restriction. By the other hand, the
environment is complete enough to support some spe-
cific applications. Figure 1 illustrates the environment
structure.

Application

Process

Application

I n t e r f a c e

Memory Synch. I / O

H A R D W A R E

Operating System

Figure 1: The environment structure.

4. PROCESS MANAGEMENT

The process manager developed for this programming
environment had efficiency and flexibility as its main
goals. In order to be efficient, it supports multitasking,
multithreading and dynamic priority scheduling. In
order to be flexible, it abdicates from most abstractions
usually found in conventional systems, such as process
hierarchy, ownership and grouping. These characteris-
tics will be depicted next.

Process

Aiming for the most effective use of architecture’s re-
sources, the environment supports processes as combi-
nations of tasks and threads [1][10], where tasks are
passive entities, comprised of protected memory seg-
ments for code and global data; and threads are active
entities that eventually execute some task’s code. Each
thread has its own context and stack, thus, a single task
may present several concurrent threads. Besides sup-
porting multithread, the environment also supports the
coexistence of multiples tasks. Figure 2 presents the
environment process model.

Legend

 Task
 Thread
 Instruction pointer
 Process

(multithread) (monothread)

Figure 2: The environment process model.

Scheduling

The environment schedules threads independently of
which task they belong to. That is, threads of a single
task concur for CPU time in equality to other tasks'
threads.

The scheduling policy adopted by the environment is,
theoretically, dynamic priority. Nevertheless, there are
some ways to influence scheduling, even from outside
the environment. When a thread is created, its creator
thread can define a range of priorities for it. When it is
then scheduled, a timer is set to restrict its execution
time to a certain limit. Every time the thread leaves the
CPU, its priority is recomputed based on the portion of
the time-slice it has used, and then adjusted to the inter-
val defined for it.

This policy is similar to that adopted in UNIX operating
system [3]. Such a policy has been proved to be efficient
for interactive systems, as long as it benefits I/O bound
process. The main difference is the existence of a prior-
ity interval, which yields to other specific policies, once
the creator thread can redefine it anytime. By doing so,
the environment supports the implementation of a user
level scheduler.

Process Synchronization

Aiming for cooperative processing, the environment
supplies mechanism for communication and synchroni-
zation. Process communication is achieved by shared
memory, which is described in the next section, while
process synchronization is achieved by semaphores.

Semaphores can be used to synchronize threads of a
single task or they can be shared among tasks to syn-
chronize its threads. The environment implementation
of semaphore conforms to Dijikstra definitions [2], i. e.,
there are only two atomic valid operations on sema-
phores: P and V. The atomicity of these operations is
achieved through i486’s XCHG instruction, that atomi-
cally manipulates two memory positions.

5. MEMORY MANAGEMENT

The memory management scheme most commonly
available in multitasking systems is paging. However, as
stated before, i486 microprocessor does not support pure
paging and a more complex scheme is required to make
the segmentation transparent to applications. Actually,
only two flat (entire address space) i486 segments are
defined and shared by all applications: one for code and
one for data. These segments have no meaning to the
environment or to applications, they are defined just to
satisfy the processor.

Once this flat segmentation model is established, paging
can be used to implement logical paged segments for
applications. Protection is then achieved through control

bits associated to each logical segment that enable or
disable writing and enable or disable user level opera-
tions. Moreover, any logical segment can be expanded
or shrunk, but stack segments are auto-expandable, i. e.,
when a stack overflow is detected, a new page is allo-
cated to the segment. Similarly, when a stack page be-
comes free, it is automatically released.

Cooperation among threads of a single task is easily
achieved by the shared data segment. Threads of distinct
tasks can cooperate by sharing some of its logical seg-
ments. Threads can also use semaphores to avoid unde-
sired interference.

Shared Memory

Shared memory is managed in the environment by
mapping the same logical segment on different address
spaces. In such a way, it is possible to share either a
large segment or a single page. Besides, each process
can see the shared segment in a distinct area of its ad-
dress space, as memory segments are not tied to a fixed
address.

Each process can share as many segments as desired.
Threads of a same task implicitly share all of the task’s
segments, since segment allocation is handled on a per
task basis.

6. I/O SUPPORT

The proposed environment does not support any I/O
device, however it allows a process to request interrup-
tion handlers and I/O ports to be mapped into its ad-
dress space. In such a fashion, I/O management is
completely handled outside the environment by ordinary
applications. By doing so, the environment remains
compact and the operating system is free to manipulate
I/O devices as they wish.

7. PROTECTION

In order to protect internal objects, the environment uses
a capability scheme. A capability is comprised of four
elements: the object class identification, the object
identification inside its class, the object permissions and
a random number. This capability concept was first
proposed by AMOEBA [11], and is adequate to the pro-
posed environment.

Each internal object has an associated capability, de-
termined at creation time. Whenever a new object is
created, its capability is stored inside the environment
and a copy is given to the creator thread. In order to
gain access to an object, a thread must present a valid
capability, which is then compared to the one previously
stored.

8. FURTHER IMPLEMENTATIONS

The proposed environment has been developed with
extra care about portability. It has been written almost
completely in C and the i486 dependent code has been
isolated from the rest of the code, what makes possible
for environment to migrate to other platforms, perhaps
POWERPC or SPARC.

At present, a version to be used in automation as sup-
port for dedicated hardware it is being developed. This
integral functionality version is expected to fit in a 64
Kbytes ROM. Besides this project, the research group is
working in the consolidation of communication mecha-
nism to be incorporated into the environment.

9. CONCLUSIONS

This paper has described a concurrent programming
environment for the i486. This environment supports a
minimal set of abstractions that can be used as basis for
a complete operating system development or can be used
directly to support applications. A first prototype is now
fully operational and is being used in academia for
teaching and research.

It is hard to evaluate the environment performance,
because the absence of a similar system to compare. The
proposed environment can not be compared to any stan-
dard operating system, because their goals and com-
plexity differ a lot. Even micro-kernels such as Mach
includes support to virtual memory and several device
drives. Nevertheless, the scheduling policy has proved to
impose little overhead to process execution and the
shared memory scheme has also proved to be very effi-
cient.

REFERENCES

[1] ACCETTA, M. et alli, Mach: a New Kernel Foun-
dation for UNIX Development, In: Proceedings of
the Summer 1986 USENIX Conference, July 1986.

[2] ANDREWS, G., Concurrent Programming: Prin-
ciples and Practice, Redwood City: Benja-
min/Cummings, 1991.

[3] BACH, M., The Design of the UNIX Operating
System, Englewood Cliffs: Prentice-Hall, 1987.

[4] CORSO, T., Ambiente para Programação
Paralela em Multicomputador, Florianópolis:
UFSC/CTC/INE, 1993 (Relatório Técnico).

[5] ENGLER, D., KAASHOEK, M. & O'TOOLE, J.,
The Operating System Kernel as a Secure Pro-
grammable Machine, In: Proceedings of the Sixth
SIGOPS European Workshop, September 1994.

[6] INTEL CO., 80386 System Software Writer's
Guide, Santa Clara: Intel Corporation, 1987.

[7] INTEL CO., 80486 Programmers Reference Man-
ual, Santa Clara: Intel Corporation, 1990.

[8] LEFFLER, S. at alli, The Desing and Implementa-
tion of the 4.3 BSD Unix Operating System,
Reading: Addison-Wesley, 1989.

[9] STEIN, B., Projeto do Núcleo de um Sistema Op-
eracional Distribuído, Porto Alegre: UFRGS, 1992
(Dissertação de Mestrado).

[10] TANENBAUM, A., The Amoeba Distributed Op-
erating System, Amsterdam: Vrije Universiteit,
1992 (Relatório Técnico).

[11] TANENBAUM, A., Using Sparse Capabilities in
a Distributed Operating System, Amsterdam: Vrije
Universiteit, 1992 (Relatório Técnico).

