
A Modular Language for Concurrent Programming

Peter Grogono
Concordia University

Montreal, Quebec, Canada
grogono@cse.concordia.ca

Brian Shearing
The Software Factory, UK

ShearingBH@aol.com

ABSTRACT
How will programmers respond to the long-promised con-
currency revolution, which now appears both inevitable and
imminent? One common answer is “by adding threads to
objects”. This paper presents an alternative answer that we
believe will reduce rather than add complexity to the soft-
ware of the future. Building on the ideas of an earlier gener-
ation, we propose a modern programming language based on
message passing. A module cannot invoke a method in an-
other module, but can only send data to it. Modules may be
constructed from other modules, thus permitting processes
within processes. Our goal is to provide the flexibility and
expressiveness of concurrent programming while limiting, as
much as possible, the complexity caused by nondeterminism.

The principle innovations reported in the paper derive from
bringing together ideas—some well known, but others al-
most forgotten—found in the historical software literature,
and combining these ideas to solve problems facing modern
software developers. In addition, at least one idea reported
here appears to be novel, namely the introduction of an in-
terface hierarchy based not on data elements or methods,
but on path expressions, on the actual flow of control within
a module. It is more natural to classify components of a
process-oriented system by control flow rather than data
content.

Another novel feature is the integration of unit tests into the
source of each component, thus reducing the possibilities for
testing to get out of step with development.

1. INTRODUCTION
For many years, we have been reading about the “software
crisis”. During the same period, we have been reading about
new ways of solving the software crisis, often put forward by
the very people who complain about it. Whether there is in
fact a “crisis” in the sense of a particular hurdle that must
be cleared is perhaps questionable [13]. However, there is
clearly a software gap between what can easily be developed

and what is actually needed. Software engineers are always
building at the limit of, or sometimes just beyond, their
competence.

Programs tend to grow incrementally. As they grow, they
become harder to maintain. The simple elegance of the
original architecture is engulfed by hastily-added accretions.
Programming languages evolve in a similar way. From sim-
ple beginnings, they grow into complex monsters. Like old
and brittle programs, they must eventually be scrapped.

The popular languages in current use are showing signs of
their age. Each change leads to greater complexity, and fur-
ther changes are announced at regular intervals. We propose
an alternative path.

2. WHAT WILL WE NEED?
Each generation of systems makes greater demands on soft-
ware development techniques than its predecessors. Below,
we list a few of the areas in which software developers are
working at the limit of software development technology and
urgently need better techniques. The discussion is framed in
terms of the programming languages that are currently used
for application development such as Java and C++. The ar-
guments do not necessarily apply to areas for which special-
ized tools have already been developed, such as operating
systems, databases, telecommunications, and aerospace.

Programming has reached a level of abstraction at which
programmers are not concerned with details of implemen-
tation such as bus width of memory, sector and track sizes
of disks, or the instruction set of the processor. Memory
management is on the cusp, automatic in many languages
but still manual in a few. Future programming languages
should free programmers from concerns with distributing
processes over memory spaces, communication between pro-
cessors, and low-level management of concurrency.

As in any engineering discipline, trade-offs are necessary: an
acceptable system must be efficient, reliable, and affordable.
In software, this means that resources such as memory, disks,
communication channels, and displays must be managed by
appropriate, well-designed algorithms. Future programmers
will expect automatic management to be applied not only
to memory and disk access, but to higher level aspects of
systems such as load balancing, multiplexing, and network
topology.

Software development tools have evolved from unadorned
compilers and linkers to full-fledged IDEs. Today’s compiler
knows more about the code than any other tool and most of
the developers. It is wasteful to use the compiler only to de-
tect obvious errors and generate code. Future compilers will
assist developers in refactoring, documenting, and testing.

Testing is recognized as an essential part of modern soft-
ware development. Process models such as XP require tests
to be written before code. Automated unit testing has be-
come popular. But application code and test code are still
separate entities. The programmer who, rushing to meet a
deadline, has time to write either application code or test
code will write the application code and skip the tests. In
future, tests will be an integral part of the code, like asser-
tions and comments, making them harder to omit.

Since software is a major investment, there is a strong in-
centive to keep it running for as long as possible (and some-
times a little longer). As time passes, things change: re-
quirements, hardware, and deployment. The software must
adapt to the changes, by enhancement, when new features
are needed, or by refactoring, when the functionality does
not change but the environment does. Enhancement and
refactoring are both difficult in current systems. A project
as simple in principle as replacing fat clients by thin clients,
or multiplexing a component to handle increased loads, may
founder as time, money, or expertise run out. Future lan-
guages will be designed specifically to support enhancement
and refactoring.

There was a time when a program started, ran for a while,
and stopped. No longer: most applications today run con-
tinuously, with downtime of the order of minutes per year, if
that. For future systems, incorporating changes without in-
terrupting service will be at least highly desirable and often
mandatory.

In summary, we expect the compiler of the future to accept
directives such as these:

• Compile package X in its own address space

• Compile Y as a remote server using CORBA for com-
munication

• Compile Z as middleware with multiplexing and load-
balancing

• Compile and execute the system tests

• Show me the structure of system component K

• Show me the dataflows that occur when P executes

We also expect that development environments will improve
to match the capabilities of the compiler.

These are some of the challenges facing the next generation
of software development. Can we meet them?

3. WHAT’S WRONG WITH OBJECTS?
The concept of modules, and the criteria for making them
reusable, were introduced by McIlroy [26] and Parnas [30].

Objects were advertised as having the required character-
istics. Alan Kay, the inventor of Smalltalk, said that after
reading Simula code, no procedural program would ever look
the same [20]. He stated the principle that an object with
data and code was a recursive decomposition of a computer,
thus taking software one step towards scale-free organiza-
tion.

Today, the prevailing paradigm is object-oriented program-
ming (OOP) or, more precisely, OOP with a sprinkling of
concurrency. OOP has served us well; the transition to OOP
that occurred during the 80s and 90s enabled software that
would never have got off the ground with earlier paradigms.
Consider our earlier criteria of enhancement and refactor-
ing. Companies often proffer a portfolio of products that
are variations on a theme; such as the accounts offered by
a bank. If software to support products is organised in an
OOP manner, with an abstraction named Product as super-
type, then adding a new product can be done simply and
with little or no disruption of software for existing products.
Enhancement of this kind is well handled by OOP. It is also
the case that refactoring the methods of an inheritance tree
can often be a rewarding process, yielding simplifications,
and providing the basis for further enhancements in the fu-
ture. However, these examples of enhancement and refac-
toring relate to programming in-the-small. OOP is of little
help in tackling major enhancement, and a positive barrier
to refactoring in-the-large. Because code often relates to its
class, and sometimes to its super-classes, in intimate ways,
changing one class structure into another can be tantamount
to a rewrite rather than a refactoring.

In a historical context, it is clear that OOP was a natural
and important step forward, just as structured program-
ming was for an earlier generation of programmers [11]. It
is also clear that for the complex requirements posed by to-
day’s requirements of flexibility and scale, OOP is running
out of steam. It has inherent weaknesses that will not be
fixed by patching. Symptoms of these weaknesses are obvi-
ous: although inheritance is a cornerstone of OOP, it has no
clear, uncontroversial definition; Java has no less than four-
teen ways of controlling access to variables;1 the inability
to handle cross-cutting concerns has led to aspect-oriented
programming, adding a further layer of complexity.

Objects are passive. They just sit there, waiting to be told
what to do next. An object with several methods has no
control over the order in which the methods are invoked and
cannot even prevent interleaving. Suppose that a method in
an object myObject executes the code

x = 5;

yourObject.doIt();

// What is the value of x?

in which x is a private instance variable of myObject and
yourObject is another object. It is possible (and, in a large
system, not unlikely) that doIt could invoke another method
in myObject, perhaps changing the value of x. Objects have
no control over their own state!

1C++ is probably no better: it’s just harder to count the
ways.

The interface of an object is usually identified as its set of
public methods. But this is only part of the story. If any
method invokes new, the object requires a memory manager.
If a method raises an exception, the object requires a han-
dler. If a method sends a message, there must be another
object ready to receive the message. The object may need
the support of other objects that already exist or that it cre-
ates itself. Thus, an object may have complex interactions
with other parts of the system that are not revealed by its
interface.

Methods do not scale well. Popular advice is to keep meth-
ods short, but the practical effect of many short methods is
just to distribute complexity through the system.

The response of the OO world to the need for concurrency
has been to add threads to objects. But as Lee observes
[23]:

We must and can build concurrent computation
models that are far more deterministic, and we
must judiciously introduce nondeterminism where
needed. . . . Threads take the opposite approach.
They make programs absurdly nondeterministic
and rely on a programming style to constrain
that nondeterminism to achieve deterministic aims.

It is not surprising that novice programmers are taught that
functions and methods are easy and natural but processes
are difficult and unnatural. The reckless programmer who
tinkers with concurrency will be punished with deadlock,
race conditions, and non-reproducible bugs.

Perhaps the best-known software engineering mantra is “low
coupling, high cohesion”. Objects cannot enable low cou-
pling because the glue between them is too strong. Adding
concurrency just strengthens the glue.

4. LESSONS FROM THE PAST
The history of software development has many paths not
taken. Often, this is a good thing: the chosen paths were
often better and the alternative paths were abandoned for
good reasons. Occasionally, however, a promising approach
is abandoned for reasons that either became invalid or were
invalid in the first place.

Such is the story of concurrency. Pioneer programmers such
as Dijkstra, Brinch Hansen, and Hoare, working in the 60s,
were inevitably involved in the implementation of operat-
ing systems. They recognized that concurrency or, more
precisely, processor multiplexing, had to be done properly.
They developed sound methods for reasoning about concur-
rency and algorithms to match. But “a subsequent genera-
tion has lost that understanding” [17].

Coroutines, introduced by Conway [10] and used in Sim-
ula [29] and Smalltalk [20], demonstrated early recognition
of the advantages of processes over procedures. Since most
programs at this time were executed on single processors,
true concurrency with its accompanying problems was obvi-
ously not required. Coroutines provided an effective way of

simplifying program structure without sacrificing efficiency.
But coroutines have never become popular.

In fact, processes are in many respects easier to work with
than procedures. Hoare showed this by example in CSP
[15, 16]. Jackson advocated modeling systems as processes
and then transforming the models into procedural imple-
mentations [18, 19]. The reason that Jackson’s method re-
quired transformation was efficiency. When he proposed his
methodology, process switching was slower than procedure
invocation by orders of magnitude. Although hardware de-
signers have worked hard to speed procedure invocation but
have done little to speed up process switching, we now know
how to change contexts quickly; systems with thousands of
processes are now feasible [2, 34].

There are a few fundamental problems, such as those in-
volving producers, filters, and consumers, for which the pro-
cess model is obviously simpler than the procedural model.
Consider a slightly harder problem, such as coding a tree
iterator. A procedural implementation must save state be-
tween calls. The state will probably be represented as a
stack of pointers to tree nodes, simulating the processor’s
own, more efficient, stack. A process implementation, on
the other hand, is a straightforward tree traversal with a
‘send’ as each node is visited. A compiler provides a more
complex example. In the procedural implementation, each
component must be designed in a specific way to communi-
cate with other components: the scanner must provide one
token each time it is called, and so on. In the process imple-
mentation, each component is a process that can be coded
in any way that is compatible with its input and output
requirements but is independent of the overall organization
of the compiler. Finally, consider GUI programming. The
rat’s nest of method registration and callbacks can be re-
placed by simple processes that wait for external events and
send messages to appropriate modules when they arrive.

Experienced unixTM programmers are, of course, familiar
with the advantages of processes. They write small pro-
grams, with input and output statements positioned natu-
rally in accordance with the underlying logic, and connect
these programs with pipes. The programs can then be used
in a variety of ways to build useful application [21]. They
are, in fact, reusable components.

Specialized areas of software development have always pro-
vided features that have not become part of mainstream ap-
plication programming. Operating systems must run mul-
tiple applications, giving each application the resources it
needs, preventing it from accessing resources it does not
own, avoiding deadlock, and doing all of this efficiently.
Databases must provide rapid access to large amounts of
data to many clients simultaneously, while maintaining trans-
action integrity and surviving system failures. Telecommu-
nications software must provide high levels of concurrency
and reliability with minimal downtime. A modern program-
ming language should incorporate techniques from software
developed for specialized applications.

The knowledge is there; we just need to tap into it.

5. WHAT COMES NEXT?
As Jackson and others recognized, modeling with processes
is more natural, for many applications, than modeling with
procedures. Kay saw objects as small computers [20], but
processes make even better small computers. As well as data
and code, a process has a life of its own. Implementation
with processes does not have to be significantly less efficient
than implementation with procedures. We expect that the
next programming paradigm will be based on processes.

Accordingly, the goal of our research is a language and sup-
porting tools, all based on concurrent processes. The provi-
sional name for the system is Erasmus.2

An Erasmus module is called a cell, a term with intentionally
biological nuance. A cell is an instantiation of a process.
A cell is to a process as an object is to a class. A process
may be strictly sequential, or may be a composition of other
processes. When instantiated, a cell whose text is composite
has the appearance of a container of nested cells, all of which
are executing independently and in parallel.

Multiple threads are permitted within a cell, but not true
concurrency. A cell executes in a single processor and does
not need true concurrency. Thus cells have a single thread of
control but provide a form of coroutine. A single thread of
control significantly simplifies cell design and implementa-
tion. A typical cell runs a main process and several daemons,
all accessing shared data. Processes and daemons have lower
coupling than regular coroutines because they swap control
by exchanging signals and messages rather than by the con-
ventional suspend/resume mechanism. See Section 5.9 for
more on this feature of the Erasmus model.

Cells communicate solely by exchanging data. This gives
cells more autonomy than objects, because each cell is in full
control of its actions and state. The Erasmus language is pre-
cise about the semantics of cells but somewhat vague about
their deployment. A program may state that cell C com-
municates with cell C′, specify the type of data, the order
of transfer, and so on. But the means of communication—
direct memory copy, transfer across partition boundaries,
LAN, WAN, or general internet protocol—is not decided
until later; perhaps at link time or even at run-time.

5.1 Data Transfer
Programs spend much of their time moving data about.
Erasmus assigns meanings to three common types of trans-
fer: copy, move, and alias.3 These meanings are indepen-
dent of the physical nature of the transfer, which might be
an assignment in a single memory space, a communication
between continents, or anything in between.

We describe the transfer of data from a source src to a desti-
nation dst. We suppose that there is an object of some kind
at src initially. After the transfer, there are three possibili-
ties, depending on the transfer mode:

2Desiderius Gerhard Erasmus, 1466–1536. “The fox has
many tricks. The hedgehog has but one. But that is the
best of all.”
3Java distinguishes different kinds of aliasing, such as hard,
weak, and soft. Eventually, Erasmus may also recognize
these distinctions.

Copy: there are two distinct objects, the original at src and
a copy of it at dst.

Move: there is one object that is accessible at dst but not
at src.

Alias: there is one object that is accessible from both src
and dst.

Data transfer requires a sending process and a receiving pro-
cess. (These processes are not necessarily distinct.) The
sending process executes p ! mode src to send data src using
port p, where mode is one of copy, move, or alias. The
receiving process executes p ? dst to receive data using port
p.

The sending and receiving processes must agree to commu-
nicate at a particular time. The agreement results in a ren-
dezvous;4 during the rendezvous, data are transferred from
sender to receiver. If the sending and receiving processes
share the same address space the rendezvous reduces to a
conventional assignment. In the general case, the first pro-
cess to reach the rendezvous blocks until the other process
is ready. Basic transfers of this kind are unbuffered. We
use unbuffered transfers as the primitive operation, as in
CSP [16], because it is easy to define buffered transfer using
unbuffered primitives.

Communication semantics are defined in terms of several
basic operations that are outlined informally below.

In defining the semantics of data transfer operations, we
assume the most general case: src and dst are on differ-
ent processors with different architectures. In order to ef-
fect the transfer, the data at src is first marshalled into an
architecture-independent format, sent over a network, and
then unmarshalled.

Formally, there is a generic marshalling function parameter-
ized by the type T of the object to be transferred

M(T) : T\S → Secret

where T\S is the type T without its transient fields, and an
inverse unmarshalling function

M−1(T) : Secret→ T.

The actual moving of data across the network is called trans-
porting. Since data are always transported in marshalled
form, the only values that can be transported are those of
type Secret. We write

transport x to y

to indicate that data of type Secret is transported from x at
src to y at dst.

The third kind of data transfer, aliasing, requires that only a
single object, or the illusion of a single object, exists after the
transfer. The operation that achieves this is named synch.
The effect of

4The term is from Ada: [1, §9.5.2].

synch x with y

is to maintain objects x and y in a state of mutual equality.
This effect can be achieved in various ways. For example,
by making x and y references to the same memory loca-
tion or by maintaining two copies of the object in different
memory spaces and notifying one copy whenever the other
copy is updated. Synchronization is transitive and, in the
general case, an arbitrary number of objects may have to be
maintained in the same state.

We use ← to denote a primitive assignment operator. The
statement x ← e binds the name x to the value of the ex-
pression e.

When an object is moved from src to dst, it is no longer
accessible at src. Also, if a variable v refers to an object o,
and is changed to reference another object o′, then o is no
longer accessible via v. In both cases, an access path to an
object is lost and the object becomes inaccessible if there
are no other access paths to it. We indicate that the access
path v is lost by writing

dispose v

Processes communicate by matching a send operation p ! mode
src from a port p in one process to a receive operation p ? dst
in another process. We write the communication as

p ! mode src −→ p ? dst

in which mode indicates the protocol, copy, move, or alias.

The fundamental operation, p ! copy src −→ p ? dst, is per-
formed in four steps as follows:

Source Network Destination
1. x←M(src)
2. transport x to y
3. dispose dst
4. dst←M−1(y)

The move and alias operations are defined in terms of copy;
Figure 1 illustrates the effect of each operation. The dashed
line in alias mode represents synchronization.

p ! move src −→ p ? dst ≡
p ! copy src −→ p ? dst
dispose src

p ! alias src −→ p ? dst ≡
p ! copy src −→ p ? dst
synch src with dst

These definitions assume that src is the name of (i.e., refer-
ence to) an object. If src is an expression exp, we evaluate
the expression, store the result in a temporary location, treat
that as the source of the operation, and dispose the tempo-
rary after the transfer. For each of the modes above:

p ! mode exp −→ p ? dst ≡
tmp← eval(exp)
p ! mode(tmp) −→ p ? dst
dispose tmp

Assignment is written dst := mode src and defined in terms
of the data transfer operations by:

dst := mode src ≡
p : port(T)
p ! mode src −→ p ? dst
dispose p

where mode is one of copy, move, or alias, and T is the type
of src, and the declaration p : port(T) introduces a new port
capable of transferring instances of T .

If exp is an expression:

dst := exp ≡
tmp← eval(exp)
dst := move tmp

As an example of how these definitions work together, the
result of expanding the simple assignment dst := exp is:

tmp← eval(exp)
p : port(T)
p ! copy tmp −→ p ? dst
dispose tmp

dispose p

In practice, the compiler generates the best code for the
particular transfer, which could be anything from a simple
memory move to full internet protocol. In order to do this,
it needs information in addition to the source code. Current
languages provide such information by means of pragmas,
but pragmas tend to be embedded in source code. An Eras-
mus compiler will read both source code and, from an inde-
pendent stream, directives indicating how the processes are
to be deployed. Looking further ahead, we expect that these
decisions will often be made dynamically, by a just-in-time
(JIT) compiler generating code for the current configuration.

5.2 Types and Typestates
The type system of Erasmus is based on standard principles.
There is a conventional set of basic types and a collection
of rules for constructing other types, such as arrays and
records from them. User-defined types may be parameter-
ized. There is a relation on types that respects Liskov’s
“behavioral subtyping” [24]. One application of subtypes
is to data transfer, where an object of type S can be sent
through a port of type T provided that S is a subtype of T .

Following Hermes [32], Erasmus performs typestate analy-
sis. The typestate of a variable describes both its type and
its state: uninitialized, initialized, or (for complex types)
perhaps partially initialized. A declaration introduces an
uninitialized variable. Each operation has an implicit pre-
condition specifying the typestate it requires and a postcon-
dition specifying the typestate it ensures. The compiler uses
flow-analysis to check the preconditions and postconditions
statically and to insert run-time checks when necessary.

5.3 Aliasing
In earlier times programmers were encouraged to employ
aliasing wherever possible ‘in the interests of efficiency.’ We
were taught that a parameter of a subroutine that was a
string or an array should be passed by reference rather than

X Y

src dst

Initial situation

X YX

src dst

After move

X YX

src dst

After copy

X YX

src dst

After alias

Figure 1: Transfer operations

by value ‘to avoid copying’, even though the parameter might
logically be a value not a reference. Object-oriented pro-
gramming has placed this style of programming at its heart;
almost everything is passed as an object pointer, and shared
by client and service. Yet aliasing is a mixed blessing. Apart
from the danger of corruption by a rogue client the claims
to efficiency can sometimes be misplaced, for example, when
the time taken for collecting garbage is considered. Indeed,
if it were possible to devise a style of programming that
avoided aliasing altogether, the heap could be managed by
calls injected by the compiler, and the garbage collector
would be redundant. But of course, variables do need to
be aliased on occasion. Shared data is at the heart of most
business applications, and we must make provision for it.
Nevertheless, Erasmus discourages the use of aliasing except
where the business model mandates it. Copying and moving
are the preferred modes of data transfer.

The policy of discouraging aliasing might appear to impose
an undue burden of inefficiency on situations such as pass-
ing large arrays as parameters, but this is not necessarily
so. The typestate analysis discussed in Section 5.2 above
is usually capable of detecting when a large structure can
safely be passed by reference rather than copied. It is time
to take decisions such as these out of the hands of humans
and leave them to an automaton.

Aliasing in the presence of processes does however pose a
new problem, that of introducing the possibility of race con-
ditions and deadlocks. In Joyce [8] shared variables are sim-
ply not allowed. We take a more pragmatic approach, and
permit aliased variables but insist that the programmer de-
clare aliasing clearly. One mechanism for avoiding real-time
bugs is for the compiler to associate a lock with every aliased

variable, and to arrange that if a process refers to aliased
variables then it most acquire the locks of each. In effect,
processes that refer to aliased variables become monitors.
This strategy causes locks to be held for longer than man-
ual locking might achieve, as in [14] for example, but the
approach is safe, and follows our policy of applying gentle
disincentives to aliasing.

5.4 Capabilities
When a cell is created, it is provided with the capabilities
that it needs to perform its tasks. These capabilities al-
low the cell to access a particular region of memory, com-
municate with specified peripherals, send and receive data
through typed ports, and so on. Once started, a cell can
only communicate with other cells; it cannot acquire new
resources directly, but may receive further capabilities via
its ports.

A simple Erasmus program might start like this:5

type MyProtocol =

type MyCellType =

[

main: process(init: port(MyProtocol)) =

var caps: MyProtocol;

init ? caps;

....

]

In this example, the type MyProtocol defines the type of an
object that can represent the capabilities needed by a cell.

5This example uses the syntax of the prototype language.
Later versions of the language will provide syntactic sugar
to sweeten this kind of code.

MyCellType is the type of some kind of cell that will be used
in the program. Each cell contains a process called main

that is the principal process of the cell. This process has a
parameter that is used by the cell to read the capabilities
into the variable caps. The cell does not have access to any
resources other than the ones in caps.

Another cell can create an instance of MyCellType by exe-
cuting

var caps: MyProtocol =;

new MyCellType !caps;

....

The new statement creates a new cell but does not introduce
a variable denoting the new cell. If the creating cell wants
to communicate with the new cell, it must include a suitable
port amongst the capabilities. The creating cell will usually
do this but, in principle, it might pass only capabilities for
communicating with other cells, and have no way of com-
municating directly with the new cell after creating it. In
this way, unnecessary coupling is avoided.

5.5 Scale-Free Structure
Most current programming language have a fixed hierarchy
of structure. The first level consists of expressions and state-
ments. These are grouped into named functions, procedures,
or methods. These two levels are shared by most languages.
At the third level, the way in which functions are grouped,
into modules or classes, tends to characterize the language.
At higher levels, there is even less consistency but we find,
for example, packages in Ada and Java and clusters in Eiffel
[27]. The hierarchy makes it easier to design small programs
than large programs. Small program components, up to the
class level, receive all the benefits of the structuring features
of the language. Large program units have no such benefits,
although patterns such as Façade [12] can help.

In principle, we would like to have a language in which pro-
grams of all sizes look similar: in modern jargon, scale-free
programming. This is harder to do than it seems at first
sight. Curiously, one of the earliest languages was scale-
free: in Algol 60, the principal structuring feature was the
Algol block, which contained statements and functions, and
which could be nested. The freedom from scale of Algol
programs, however, is technical but not practical. Separate
compilation, for example, is infeasible.

Erasmus would be scale-free if cells could be nested. How-
ever, we have rejected this approach for several reasons.
First, it seems to lead to the same problems as Algol’s nested
blocks and nested classes in more recent languages. Second,
it destroys the concept of a cell as a simple unit with a single
process and controlled access to its environment. Instead,
we say that an Erasmus program of any size, or any part
of a program, is a collection of communicating cells. The
large-scale organization of a program is determined by the
patterns of communication. Extending the biological anal-
ogy, groups of cells are like the organs of a body.

Section 5.2 above discusses the general principles of types in
Erasmus. The following sections illustrate the three concrete
kinds of type that we employ to build a system. We dub the

types message, interface, and process. We reiterate that no
significance should be attached to the concrete syntax of
the examples below. The style is chosen to expose underly-
ing mechanisms rather than for convenience of expression.
Choice of a concrete syntax will be take place only once the
underlying model has stabilised.

5.6 Messages
A message is a data structure that passes from one process to
another. Messages are defined in an hierarchy of types much
as classes are defined in an object-oriented system. The
following example defines a message employed to initialise a
process that is a filter—which is a process that reads from
one port and writes to another. The initialisation method
passes the ports to the process. In this example the type of
the items of data that pass through the filter is integer.

message FilterInit = [

producer, consumer: port(int)

];

As with other kinds of type in Erasmus, messages can be
generic. The following example illustrates a version of the
filter initialisation message that can be used for filters of any
type.

message FilterInit(T) = [

producer, consumer: port(T)

];

Like objects, messages can have methods as well as data.
The following example adds methods read and write to the
filter initialisation message.

message FilterInit(T) = [

producer, consumer: port(T);

function read(): T =

var v: T;

producer ? v;

producer !ack;

return v

end;

procedure write(v: T) =

consumer !v

end

];

The statement ‘producer !ack’ in method read above marks
the end of the rendezvous between two communicating pro-
cesses.

Various things can go wrong during a rendezvous, and the
possible failures can be categorised as follows:

• genuine hardware failure;

• failure of communication protocol;

• violation of a process protocol (See Section 5.7 below);

• violation of assertion; or

• explicit return of a nak under program control.

In the Erasmus model the signalling of an acknowledgment,
an ‘ack’, or of a ‘nak’, is explicit. This provides a unified
framework for raising and handling communication failure,
whatever its nature. See Section 5.8 below for examples of
acks and naks, and of how the programmer can respond to
a nak.

5.7 Interfaces and Protocols
In a large system, or library, many processes will have similar
overall behaviour. For example there will be many processes
that act as filters. We capture this commonality by stating
that a process satisfies the definition of a named interface.
Unlike an interface in a language such as Java, an Erasmus
interface is not defined in terms of its methods but in terms
of its ports. For example, a filter process has three ports: an
initialisation port, a port to read values from, and a port to
write filtered values to. The following example show how we
might declare Interface Filter, which is generic in Type T.

interface Filter(T) = [

init: port(FilterInit(T));

inp, out: port(T)

]

As well as having a signature defined by its ports, an inter-
face has a protocol, which is a path expression defining the
allowable sequence in which messages may be read from or
written to its ports. The following elaboration of Interface
Filter declares that its sequence is an initialisation followed
by an indefinite alternation of reads and writes.

interface Filter(T) = [

init: port(FilterInit(T));

inp, out: port(T);

protocol init?, (inp?, out!)*

]

A path expression defines a Finite State Machine against
which the compiler can check that only valid sequences oc-
cur. The compiler will often be able to make such checks
statically, but even when it is necessary to generate code to
carry out the checks during execution, the number of ma-
chine instructions is but one or two for each read or write.

The strength of an interface can be further enhanced by
attributing pre- and post-conditions to its ports, as in the
following:

interface Filter(T) = [

init: port(FilterInit(T));

pre "Producer defined":

init.producer 6= null;

post "Consumer defined":

init.consumer 6= null;

inp: port(x: T);

pre "Given value defined":

x 6= null;

out: port(y: T);

post "Filtered value defined":

y 6= null;

protocol init?, (inp?, out!)*

]

Interfaces form an inheritance hierarchy based on their pro-

tocols. The following example defines Interface Bifilter, which
acts like Interface Filter except that it reads two items for
every one that it writes.

interface Bifilter(T) extends Filter(T) = [

protocol init?, (inp?, inp?, out!)*

]

Figure 2 illustrates inheritance of interfaces. The supertype
of all interfaces is the do-nothing process defined by Interface
Stop.

Stop

Filter
init?, (inp?, out!)*

Bifilter
init?, (inp?, inp?, out!)*

Figure 2: Inheritance of Protocol-based Interfaces

5.8 Processes
With an initialisation message defined, and the signature
and protocol of an interface to satisfy, we can write a process.
The following is a filter named Inc that reads a stream of
integers and writes each integer, incremented by unity.

process Inc implements Filter(int) =

var parms: FilterInit(int); init ? parms;

out :=alias parms.consumer;

connect inp to parms.producer;

init !ack;

loop

var v: int; inp ? v; inp !ack;

out !v+1

end

end;

Alternatively we could employ methods read and write de-
fined in Message FilterInit to write the loop of the process
as follows.

process Inc implements Filter(int) =

· · ·
loop

var f: FilterInit(int);

f = FilterInit(int)(inp, out);

f.write(f.read() + 1)

end

end;

Pre- and post-conditions can be included in processes as well
as in interfaces. Figure 3 is an example of a Bifilter named
Sum that reads consecutive pairs of integers and writes their
sum. It includes the artificial constraint that the range of
values that it can process is limited to three digit values.

process Sum implements Bifilter(int) =

pre "Only three-digit values allowed":

0 ≤ inp.x < 1000;

pre "Only three-digit result allowed":

0 ≤ out.y < 1000;

var parms: FilterInit(int); init ? parms;

out :=alias parms.consumer;

connect inp to parms.producer;

init !ack;

loop

var u: int; inp ? u; inp !ack;

var v: int; inp ? v; inp !ack;

out !u+v

end

end;

Figure 3: Process with pre- and post-conditions

Although trying to add 600 to 700 would cause an exception—
as it should—the failure would not necessarily manifest it-
self in the most convenient manner, as this check is a post-
condition on the send to the output channel. A thought-
ful programmer might choose to arrange that the input be
faulted rather than the output. Leaving the existing post-
condition in place—in the manner of belt and braces—Figure
4 is a refinement of Figure 3 that might be considered more
friendly.

process Sum implements Bifilter(int) =

pre "Only three-digit values allowed":

0 ≤ inp.x < 1000;

pre "Only three-digit result allowed":

0 ≤ out.y < 1000;

var parms: FilterInit(int); init ? parms;

out :=alias parms.consumer;

connect inp to parms.producer;

init !ack;

loop

var u: int; inp ? u; inp !ack;

var v: int; inp ? v;

if 0 ≤ u+v < 1000 then

inp !ack;

out !u+v

else

inp !nak "Result must be 3 digits"

end

end

end;

Figure 4: Process with better error reporting

Figure 5 shows how a process sending a value to Process Sum
might deal with the possibility of a nak being returned. The
otherwise clause is supplied with an port to an exception
handling cell. The port is polymorphic, and can respond
to a message requesting the reason for the exception, to a
message requesting a traceback, and so on. The statement
fail(r) is assumed to end execution for reason r.

Processes Inc and Sum above are simple processes. Figure

var o: port(int);

o !700

otherwise(exc: port(Exception))

var query: port(text);

exc !ReasonForException(query);

var reason: text;

query ? reason;

fail(reason)

end

Figure 5: Responding to a nak

6 is a composite process named Dinc. Like Process Inc, it
is a filter. Process Dinc bumps its inputs by two rather
than by one. It achieves this not in the obvious way, but by
arranging for two instances of Process Inc to be placed in a
line.

process Dinc implements Filter(int) =

var parms: FilterInit(int); init ? parms;

out :=alias parms.consumer;

connect inp to parms.producer;

init !ack;

var q: port(int) = new port(int);

var q: port(int); connect p to q;

new Inc() !FilterInit(inp, p);

new Inc() !FilterInit(q, out)

end;

Figure 6: A Composite Process

5.9 Coroutines and Aspects
One Erasmus process may implement more than one inter-
face. Each interface provides an aspect of a cell’s behaviour.
Here are examples of aspects that an industrial-quality cell
may have.

• client services: perhaps of several kinds;

• logging;

• publication of selected activities to registered listeners;

• communication with services required by the cell, such
as databases or email servers;

• control:

– start a client service;

– stop a client service;

– suspend a client service;

– resume a client service;

– replace the software for this cell with a new ver-
sion;

– move this cell to another address space, whilst
retaining all active connections to other cells;

• timing and usage statistics;

• state queries; and

• documentation and meta-queries about the operation
of the cell.

Each interface implemented by a process has its own pro-
tocol and hence its own flow of control. Flows associated
with distinct interfaces execute independently within the
cell. Conceptually they execute in parallel but in practice
they share a single program counter—they are coroutines.
This policy ensures that considerations of shared variables
(see Section 5.3 above) do not give rise to race conditions
and other real-time problems.

The separation of the behaviour of a cell into distinct inter-
faces contributes to the modularity of an Erasmus system.
For example, the interface and ports concerned with control
are not visible to clients of a service.

Aspects in Erasmus encompass not only the services a cell
provides to its various clients but also the services that the
cell itself employs. See the entry ‘communication with ser-
vices required by the cell’ in the list of aspects above. This
feature of the Erasmus model is a significant contribution
to making refactoring-in-the-large a reality. It exposes, in
a controlled way, not only the conventional front-end ser-
vices that a module provides—often dubbed its ‘API’—but
also the services it depends on. We dub the hiding of ser-
vices inside the implementation of a model as ‘calling out
the back’. It is common to the design of all modern soft-
ware libraries, and we consider it to be a mistaken attempt
at providing modularity. Quite the contrary, its pervasive-
ness is a major contribution to explaining why it is difficult
to restructure large systems once their architecture has been
decided. Part of the rationale for Erasmus is to try to restore
the true meaning of ‘information hiding’.

5.10 Tests
One improvement in programming practice in recent years is
the incorporation into many software development shops of
unit testing frameworks such as JUnit [3]. However, rather
like design documents expressed in the likes of UML [6]
there is a tendency for unit tests not to be maintained, es-
pecially under the pressures of product delivery. When a
new parameter is added to a method to solve an immediate
problem, all too often the associated test methods are not
updated, the test suite fails to compile, and testing is set
aside—often never to be picked up again. In Erasmus we
have tried to reduce the temptation to sideline unit tests
by allowing the programmer to place the code of tests not
in a separate test script but right at the heart of the code.
Every process may have at its head a sequence of test cases.
Each test is written as a path-expression satisfying the pro-
tocol of the process—a test is a trace of execution of the
process [15]. Figure 7 illustrates Process Dinc embellished
with some unit tests.

The Erasmus compiler generates two executables for each
process. The first corresponds to the executable code itself,
and the second is a program which when run carries out the
tests defined for the process. In a strict shop the executable
of a process would not be published if execution of any of its
tests failed. The test suites defined for Erasmus processes are

process Dinc implements Filter(int) =

test "Dinc minimum int OK":

init(), inp(-2147483648), out(-2147483646);

test "Dinc zero OK":

init(), inp(0), out(2);

test "Dinc to maximum int OK":

init(), inp(2147483645), out(2147483647);

var parms: FilterInit(int); init ? parms;

· · ·
end;

Figure 7: Unit Tests within a Process

less likely to be discarded than tests scripts for the likes of
JUnit because they are expressed as path expressions rather
than in terms of methods and arguments.

6. RELATED WORK
As Sutter and Larus point out [33], the movement towards
concurrency is not new:

Concurrency has long been touted as the “next
big thing” and “the way of the future,” but for
the past 30 years, mainstream software devel-
opment has been able to ignore it. Our paral-
lel future has finally arrived: new machines will
be parallel machines, and this will require major
changes in the way we develop software.

However, most current approaches are based on adding con-
currency to object-oriented programming. Sutter and Larus
continue: “What we need is OO for concurrency”.

The object-oriented language Eiffel was extended for con-
currency by the addition of the single keyword separate

[27, Chapter 30]. When separate is applied to an entity X,
it means that X “may become attached to objects handled
by a different processor”. When separate is applied to a
class, it means that instances of that class will behave as
if qualified by separate. Normal invocations of methods in
an Eiffel object are synchronous; invocations of methods in
a separate object are asynchronous.

Microsoft’s C# relies on the multi-threaded environment
.NET. There are various proposals for extending C# with
concurrency primitives at a higher level than simple locks.
At Microsoft, Benton et al. have introduced asynchronous
methods and chords in Polyphonic C#; programs in this
language are transformed into C# [4]. Active C# enhances
C# with concurrency and a new model for object commu-
nication [14]. There is a new kind of class member, called
an activity and run as a separate thread within an object.
Communication is controlled by formal dialogs. Activities
and dialogs provide an expressive notation that can be used
to solve complex concurrent problems in a natural way. The
full power of object orientation is retained, with concurrency
superimposed.

UML 2 has responded to the call for concurrency by provid-
ing more flexibility for modeling concurrent systems than

UML 1.x. Concurrency is still modeled by forks and joins
in control flows, but there is no synchronization following a
fork [7]. Following the practice of architecture description
languages, system components have ports and communicate
via connectors [31].

Many projects do not build on existing object oriented lan-
guages. For example, Per Brinch Hansen has designed a
number of languages for concurrent programming [9]. Joyce
was developed as a programming language for distributed
systems [8]. The program components are agents which
exchange messages via synchronous, typed channels. The
features of Joyce that distinguished it from earlier message-
passing languages such as CSP were: port variables; channel
alphabets; output polling; channel sharing; and recursive
agents. Static checking ensured a higher degree of security
than was provided by earlier concurrent languages. Our
prototype language is quite similar to Joyce in concept and
makes use of several of Brinch Hansen’s ideas. However,
Erasmus is considerably richer in features than Joyce.

The language occam-π has a number of features that are
relevant to our project [2]. First, it demonstrates the possi-
bility of efficient execution of processes: On an 800 MHz P3
processor, context switching or communication require 70ns
and process startup/shutdown time takes 20ns. Second,
occam-π provides mobile processes—processes that may be
suspended, sent to another site, and resumed. Third, it has
a formal semantics based on Milner’s π-calculus [28].

Hermes is an experimental language developed at IBM but
never used in production [22]. Since Hermes was designed
as a system language for writing applications that might not
be protected by hardware and operating system facilities, a
new process is provided with the capabilities it needs and
cannot obtain any more. We have adapted this idea, and
also typestates (Section 5.2), for Erasmus.

The Mozart Programming System [34] is based on the lan-
guage Oz, which supports “declarative programming, object-
oriented programming, constraint programming, and con-
currency as part of a coherent whole”6. Oz actually provides
both message-passing and shared-state concurrency. Its de-
signers state that message-passing concurrency is important
because it is: the basic framework for multi-agent systems;
the natural style for distributed systems; suitable for build-
ing highly reliable systems. It is for these very reasons that
we have adopted message-passing as the foundation for con-
currency in Erasmus.

The Erasmus idea of a process protocol follows the approach
of treating each process of a multi-process model as a finite
state machine, an approach that is developed in FSP, Finite
State Processes [25].

Typical middleware for distributed systems either attempts
to hide all of the implementation details of communica-
tion (e.g., RPC) or to require programmers to do the dirty
work themselves. Infopipes [5] provides a different approach,
wherein the various aspects of communication are reified,
giving programmers a collection of abstractions from which

6Quoted from http://www.mozart-oz.org/.

they can build customized communication systems. Infopipes
are compositional : the properties of a channel can be in-
ferred systematically from the components used to build the
channel. For example, the result of joining two infopipes,
with latencies t1 and t2, in series, is an infopipe with la-
tency t1 + t2. We hope to incorporate similar abstractions
into Erasmus.

In summary, the related work provides strong evidence that
the goals of the Erasmus project are feasible. We are not
attempting to do anything that has not been tried before in
some form. The trick is to put it all together.

7. CONCLUSION
We have described the first, tentative steps towards a pro-
gramming language and development environment of the
kind that will be needed for the next generation of software
construction. Although quite different from today’s lan-
guages, Erasmus builds on well-established theoretical and
practical past work. The project combines what we con-
sider to be excellent, but hitherto unexploited, ideas.

Much work remains to be done. The prototype language
lacks a number of features. When these features have been
added, we will be able to validate our claims. Concur-
rently, we will work on the development environment that
will match our needs and desires as well as, we hope, those
of others.

Acknowledgments The research described in this paper
was funded in part by the Natural Sciences and Engineering
Research Council of Canada.

8. REFERENCES
[1] Ada. Ada 95 reference manual. Revised International

Standard ISO/IEC 8652:1995, 1995.
www.adahome.com/rm95.

[2] F. R. Barnes and P. H. Welch. occam-π: blending the
best of CSP and the π-calculus.
www.cs.kent.ac.uk/projects/ofa/kroc, 2006.

[3] K. Beck and E. Gamma. JUnit test infected:
Programmers love writing tests. www.junit.org, 2000.

[4] N. Benton, L. Cardelli, and C. Fournet. Modern
concurrency abstractions for C]. ACM Transactions
on Programming Languages and Systems,
26(5):769–804, Sept. 2004.

[5] A. P. Black, J. Huang, R. Koster, J. Walpole, and
C. Pu. Infopipes: An abstraction for multimedia
streaming. Multimedia Systems, 8:406–419, 2002.

[6] C. Bock. UML 2 activity and action models. Journal
of Object Technology (www.jot.fm), 2(4):43–53,
July–August 2003.
www.jot.fm/issues/issue 2003 07/column3.

[7] C. Bock. UML 2 activity and action models part 3:
Control nodes. Journal of Object Technology
(www.jot.fm), 2(6):7–23, Nov. 2003.
www.jot.fm/issues/issue 2003 11/column1.

[8] P. Brinch Hansen. Joyce—a programming language
for distributed systems. Software—Practice and
Experience, 17(1):29–50, Jan. 1987.

[9] P. Brinch Hansen. Monitors and Concurrent Pascal: A
personal history. In HOPL-II: The second ACM
Conference on the History of Programming Languages,
pages 1–35. ACM Press, Apr. 1993.

[10] P. Brinch Hansen. The Search for Simplicity—Essays
in Parallel Programming. IEEE Computer Society
Press, 1996.

[11] M. E. Conway. Design of a separable
transition-diagram compiler. Communications of the
ACM, 6(7):396–408, 1963.

[12] O.-J. Dahl, E. Dijkstra, and C. Hoare. Structured
Programming. Academic Press, 1972.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[14] R. L. Glass. The Standish Report: does it really
describe the software crisis? Communications of the
ACM, 49(8):15–16, Aug. 2006.

[15] R. Güntensperger and J. Gutknecht. Active C]. In 2nd
International Workshop .NET Technologies’2004, May
2004.

[16] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, Aug.
1978.

[17] C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

[18] C. A. R. Hoare. Letter to Per Brinch Hansen, 1991.
Reprinted in [?].

[19] D. H. Hoffman and D. M. Weiss, editors. Software
Fundamentals: Collected Papers by David L. Parnas.
Addison-Wesley, 2001.

[20] M. Jackson. Principles of Program Design. Academic
Press, 1975.

[21] M. Jackson. Information systems: Modelling,
sequencing and transformation. In R. McKeag and
A. MacNaughten, editors, On the Construction of
Programs. Cambridge University Press, 1980.

[22] A. Kay. The early history of Smalltalk. In
T. Bergin Jr. and R. Gibson Jr., editors, History of
Programming Languages–II. ACM Press, 1996.

[23] B. Kernighan and R. Pike. The UNIX Programming
Environment. Prentice Hall, 1984.

[24] W. Khorfage and A. P. Goldberg. Hermes language
experiences. Software—Practice and Experience,
25(4):389–402, Apr. 1995.

[25] E. A. Lee. The problem with threads. IEEE
Computer, 39(5):33–42, May 2006.

[26] B. H. Liskov and J. M. Wing. A behavioral notion of
subtyping. ACM Transactions on Programming
Languages and Systems, 16(6):1811–1841, 1994.

[27] J. Magee and J. Kramer. Concurency; State Models
and Java Programs. Wiley, 1999.

[28] M. D. McIlroy. Mass produced software components.
In NATO Conference on Software Engineering, NATO
Science Committee, Garmisch, Germany, pages 88–98.
Petrocelli-Charter, 1968.

[29] B. Meyer. Object-Oriented Software Construction.
Prentice Hall, second edition, 1997.

[30] R. Milner. Communicating and Mobile Systems: The
π Calculus. Cambridge University Press, 1999.

[31] K. Nygaard and O.-J. Dahl. The development of the
SIMULA language. In R. Wexelblat, editor, History of
Programming Languages, pages 439–493. Academic
Press, 1981.

[32] D. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM,
15(12):1053–1058, Dec. 1972. Reprinted in [?,
pp. 145-155].

[33] B. Selic. What’s new in UML 2.0? IBM White Paper,
Apr. 2005. Available at www-306.ibm.com/software/-
rational/uml/resources/uml2/contributions.html.

[34] R. Strom. HERMES: A Language for Distributed
Computing. Prentice Hall, 1991.

[35] H. Sutter and J. Larus. Software and the concurrency
revolution. ACM Queue, 3(7):54–62, Sept. 2005.

[36] P. van Roy and S. Haridi. Concepts, Techniques, and
Models of Computer Programming. MIT Press, 2001.

