
Chapter 13

Concurrent Programming

As we learned in Chapter 8, logical control flows are concurrent if they overlap in time. This general
phenomenon, known as concurrency, shows up at many different levels of a computer system. Hardware
exception handlers, processes, and Unix signal handlers are all familiar examples.

To this point, we have treated concurrency mainly as a mechanism that the kernel uses to run multiple
application programs. But concurrency is not just limited to the kernel. It can play an important role in
application programs as well. For example, we have seen how Unix signal handlers allow applications to
respond to asynchronous events such as the user typing ctrl-c, or the program accessing an undefined
area of virtual memory. Application-level concurrency is useful in other ways as well:

� Computing in parallel on multiprocessors. In a uniprocessor with a single CPU, concurrent flows
are interleaved, with only one flow actually executing on the CPU at any point in time. However,
there are machines with multiple CPUs, called multiprocessors, that can truly execute multiple flows
simultaneously. Parallel applications that are partitioned into concurrent flows can sometimes run
much faster on such machines. This is especially important for large-scale database and scientific
applications.

� Accessing slow I/O devices. When an application is waiting for data to arrive from a slow I/O device
such as a disk, the kernel keeps the CPU busy by running other processes. Individual applications can
exploit concurrency in a similar way by overlapping useful work with I/O requests.

� Interacting with humans. People who interact with computers demand the ability to perform multiple
tasks at the same time. For example, they might want to resize a window while they are printing a
document. Modern windowing systems use concurrency to provide this capability. Each time the
user requests some action (say by clicking the mouse), a separate concurrent logical flow is created to
perform the action.

� Reducing latency by deferring work. Sometimes, applications can use concurrency to reduce the
latency of certain operations by deferring other operations and performing them concurrently. For
example, a dynamic storage allocator might reduce the latency of individual free operations by
deferring coalescing to a concurrent “coalescing” flow that runs at a lower priority, soaking up spare
CPU cycles as they become available.
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� Servicing multiple network clients. The iterative network servers that we studied in Chapter 12 are
unrealistic because they can only service one client at a time. Thus, a single slow client can deny
service to every other client. For a real server that might be expected to service hundreds or thousands
of clients per second, it is not acceptable to allow one slow client to deny service to the others. A better
approach is to build a concurrent server that creates a separate logical flow for each client. This allows
the server to service multiple clients concurrently, and precludes slow clients from monopolizing the
server.

Applications that use application-level concurrency are known as concurrent programs. Modern operating
systems provide three basic approaches for building concurrent programs:

� Processes. With this approach, each logical control flow is a process that is scheduled and maintained
by the kernel. Since processes have separate virtual address spaces, flows that want to communicate
with each other must use some kind of explicit interprocess communication (IPC) mechanism.

� I/O multiplexing. This is a form of concurrent programming where applications explicitly schedule
their own logical flows in the context of a single process. Logical flows are modeled as state machines
that the main program explicitly transitions from state to state as a result of data arriving on file
descriptors. Since the program is a single process, all flows share the same address space.

� Threads. Threads are logical flows that run in the context of a single process and are scheduled by the
kernel. You can think of threads as a hybrid of the other two approaches, scheduled by the kernel like
process flows, and sharing the same virtual address space like I/O multiplexing flows.

This chapter investigates these different concurrent programming techniques. To keep our discussion con-
crete, we will work with the same motivating application throughout – a concurrent version of the iterative
echo server from Section 12.4.9.

13.1 Concurrent Programming With Processes

The simplest way to build a concurrent program is with processes, using familiar functions such as fork,
exec, and waitpid. For example, a natural approach for building a concurrent server is to accept client
connection requests in the parent, and then create a new child process to service each new client.

To see how this might work, suppose we have two clients and a server that is listening for connection
requests on a listening descriptor (say 3). Now suppose that the server accepts a connection request from
client 1 and returns a connected descriptor (say 4), as shown in Figure 13.1.

After accepting the connection request, the server forks a child, which gets a complete copy of the server’s
descriptor table. The child closes its copy of listening descriptor 3, and the parent closes its copy of con-
nected descriptor 4, since they are no longer needed. This gives us the situation in Figure 13.2, where the
child process is busy servicing the client. Since the connected descriptors in the parent and child each point
to the same file table entry, it is crucial for the parent to close its copy of the connected descriptor. Other-
wise, the file table entry for connected descriptor 4 will never be released, and the resulting memory leak
will eventually consume the available memory and crash the system.
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Figure 13.1: Step 1: Server accepts connection request from client.
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Figure 13.2: Step 2: Server forks a child process to service the client.

Now suppose that after the parent creates the child for client 1, it accepts a new connection request from
client 2 and returns a new connected descriptor (say 5), as shown in Figure 13.3.
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Figure 13.3: Step 3: Server accepts another connection request.

The parent then forks another child, which begins servicing its client using connected descriptor 5, as shown
in Figure 13.4. At this point, the parent is waiting for the next connection request and the two children are
servicing their respective clients concurrently.

13.1.1 A Concurrent Server Based on Processes

Figure 13.5 shows the code for a concurrent echo server based on processes. The echo function called in
line 28 comes from Figure 12.21. There are several points of interest to make about this server:

� First, servers typically run for long periods of time, so we must include a SIGCHLD handler that
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Figure 13.4: Step 4: Server forks another child to service the new client.

reaps zombie children (lines 4–9). Since SIGCHLD signals are blocked while the SIGCHLD handler
is executing, and since Unix signals are not queued, the SIGCHLD handler must be prepared to reap
multiple zombie children.

� Second, the parent and the child must close their respective copies of connfd (lines 32 and 29
respectively). As we have mentioned, this is especially important for the parent, which must close its
copy of the connected descriptor to avoid a memory leak.

� Finally, because of the reference count in the socket’s file table entry, the connection to the client will
not be terminated until both the parent’s and child’s copies of connfd are closed.

13.1.2 Pros and Cons of Processes

Processes have a clean model for sharing state information between parents and children: File tables are
shared and user address spaces are not. Having separate address spaces for processes is both an advantage
and a disadvantage. It is impossible for one process to accidently overwrite the virtual memory of another
process, which eliminates a lot of confusing failures – an obvious advantage.

On the other hand, separate address spaces make it more difficult for processes to share state information.
To share information, they must use explicit IPC (interprocess communications) mechanisms. (See Aside.)
Another disadvantage of process-based designs is that they tend to be slower because the overhead for
process control and IPC is high.

Aside: Unix IPC
You have already encountered several examples of IPC in this text. The waitpid function and Unix signals from
Chapter 8 are primitive IPC mechanisms that allow processes to send tiny messages to processes running on the
same host. The sockets interface from Chapter 12 is an important form of IPC that allows processes on different
hosts to exchange arbitrary byte streams. However, the term Unix IPC is typically reserved for a hodge-podge of
techniques that allow processes to communicate with other processes that are running on the same host. Examples
include pipes, FIFOs, System V shared memory, and System V semaphores. These mechanisms are beyond our
scope. The book by Stevens [80] is a good reference. End Aside.

Practice Problem 13.1:
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code/conc/echoserverp.c

1 #include "csapp.h"
2 void echo(int connfd);
3

4 void sigchld_handler(int sig)
5 {
6 while (waitpid(-1, 0, WNOHANG) > 0)
7 ;
8 return;
9 }

10

11 int main(int argc, char **argv)
12 {
13 int listenfd, connfd, port, clientlen=sizeof(struct sockaddr_in);
14 struct sockaddr_in clientaddr;
15

16 if (argc != 2) {
17 fprintf(stderr, "usage: %s <port>\n", argv[0]);
18 exit(0);
19 }
20 port = atoi(argv[1]);
21

22 Signal(SIGCHLD, sigchld_handler);
23 listenfd = Open_listenfd(port);
24 while (1) {
25 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
26 if (Fork() == 0) {
27 Close(listenfd); /* Child closes its listening socket */
28 echo(connfd); /* Child services client */
29 Close(connfd); /* Child closes connection with client */
30 exit(0); /* Child exits */
31 }
32 Close(connfd); /* Parent closes connected socket (important!) */
33 }
34 }

code/conc/echoserverp.c

Figure 13.5: Concurrent echo server based on processes. The parent forks a child to handle each new
connection request.



830 CHAPTER 13. CONCURRENT PROGRAMMING

After the parent closes the connected descriptor in line 32 of the concurrent server in Figure 13.5, the
child is still able to communicate with the client using its copy of the descriptor. Why?

Practice Problem 13.2:

If we were to delete line 29 of Figure 13.5 that closes the connected descriptor, the code would still be
correct, in the sense that there would be no memory leak. Why?

13.2 Concurrent Programming With I/O Multiplexing

Suppose you are asked to write an echo server that can also respond to interactive commands that the user
types to standard input. In this case, the server must respond to two independent I/O events: (1) a network
client making a connection request, and (2) a user typing a command line at the keyboard. Which event do
we wait for first? Neither option is ideal. If we are waiting for a connection request in accept, then we
cannot respond to input commands. Similarly, if we are waiting for an input command in read, then we
cannot respond to any connection requests.

One solution to this dilemma is a technique called I/O multiplexing. The basic idea is to use the select
function to ask the kernel to suspend the process, returning control to the application only after one or more
I/O events have occurred, as in the following examples:

� Return when any descriptor in the set
���������

is ready for reading.

� Return when any descriptor in the set
�	�
������	�

is ready for writing.

� Timeout if
����������

seconds have elapsed waiting for an I/O event to occur.

Select is a complicated function with many different usage scenarios. We will only discuss the first
scenario: waiting for a set of descriptors to be ready for reading. See [76, 81] for a complete discussion.

#include <unistd.h>
#include <sys/types.h>

int select(int n, fd set *fdset, NULL, NULL, NULL);
Returns nonzero count of ready descriptors, -1 on error

FD ZERO(fd set *fdset); /* Clear all bits in fdset */

FD CLR(int fd, fd set *fdset); /* Clear bit fd in fdset */

FD SET(int fd, fd set *fdset); /* Turn on bit fd in fdset */

FD ISSET(int fd, fd set *fdset); /* Is bit fd in fdset turned on? */

Macros for manipulating descriptor sets

The select function manipulates sets of type fd set, which are known as descriptor sets. Logically, we
think of a descriptor set as a bit mask of size � :

������� ��������� ��� � ��� �
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Each bit
���

corresponds to descriptor
�

. Descriptor
�

is a member of the descriptor set if an only if
����� �

.
You are only allowed to do three things with descriptor sets: (1) allocate them, (2) assign one variable of this
type to another, and (3) modify and inspect them using the FD ZERO, FD SET, FD CLR, and FD ISSET
macros.

For our purposes, the select function takes two inputs: a descriptor set (fdset) called the read set, and
the cardinality (n) of the read set. The select function blocks until at least one descriptor in the read set
is ready for reading. A descriptor

�
is ready for reading if and only if a request to read one byte from that

descriptor would not block. As a side effect, selectmodifies the fd set pointed to by argument fdset
to indicate a subset of the read set called the ready set, consisting of the descriptors in the read set that are
ready for reading. The value returned by the function indicates the cardinality of the ready set. Note that
because of the side effect, we must update the read set every time select is called.

The best way to understand select is to study a concrete example. Figure 13.6 shows how we might use
select to implement an iterative echo server that also accepts user commands on the standard input. We
begin by using the open listenfd function from Figure 12.17 to open a listening descriptor (line 16),
and then using FD ZERO to create an empty read set:

listenfd stdin
3 2 1 0

read set ( � ) : 0 0 0 0

Next, in lines 19–20, we define the read set to consist of descriptor 0 (standard input) and descriptor 3 (the
listening descriptor):

listenfd stdin
3 2 1 0

read set ( �	��
��� ) : 1 0 0 1

At this point, we begin the typical server loop. But instead of waiting for a connection request by calling
the accept function, we call the select function, which blocks until either the listening descriptor or
standard input is ready for reading (line 24). For example, here is the value of ready set that select
would return if the user hit the enter key, thus causing the standard input descriptor to become ready for
reading:

listenfd stdin
3 2 1 0

ready set ( ����� ) : 0 0 0 1

Once select returns, we use the FD ISSET macro to determine which descriptors are ready for reading.
If standard input is ready (line 25), we call the command function, which reads, parses, and responds to the
command before returning to the main routine. If the listening descriptor is ready (line 27), we call accept
to get a connected descriptor, and then call the echo function from Figure 12.21, which echoes each line
from the client until the client closes its end of the connection.

While this program is a good example of using select, it still leaves something to be desired. The
problem is that once it connects to a client, it continues echoing input lines until the client closes its end of
the connection. Thus, if you type a command to standard input, you will not get a response until the server
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code/conc/select.c

1 #include "csapp.h"
2 void echo(int connfd);
3 void command(void);
4

5 int main(int argc, char **argv)
6 {
7 int listenfd, connfd, port, clientlen = sizeof(struct sockaddr_in);
8 struct sockaddr_in clientaddr;
9 fd_set read_set, ready_set;

10

11 if (argc != 2) {
12 fprintf(stderr, "usage: %s <port>\n", argv[0]);
13 exit(0);
14 }
15 port = atoi(argv[1]);
16 listenfd = Open_listenfd(port);
17

18 FD_ZERO(&read_set);
19 FD_SET(STDIN_FILENO, &read_set);
20 FD_SET(listenfd, &read_set);
21

22 while (1) {
23 ready_set = read_set;
24 Select(listenfd+1, &ready_set, NULL, NULL, NULL);
25 if (FD_ISSET(STDIN_FILENO, &ready_set))
26 command(); /* read command line from stdin */
27 if (FD_ISSET(listenfd, &ready_set)) {
28 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
29 echo(connfd); /* echo client input until EOF */
30 }
31 }
32 }
33

34 void command(void) {
35 char buf[MAXLINE];
36 if (!Fgets(buf, MAXLINE, stdin))
37 exit(0); /* EOF */
38 printf("%s", buf); /* Process the input command */
39 }

code/conc/select.c

Figure 13.6: An echo server that uses I/O multiplexing. The server uses select to wait for connection
requests on a listening descriptor and commands on standard input.
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is finished with the client. A better approach would be to multiplex at a finer granularity, echoing (at most)
one text line each time through the server loop. (See Problem 13.3.)

13.2.1 A Concurrent Event-Driven Server Based on I/O Multiplexing

I/O multiplexing can be used as the basis for concurrent event-driven programs, where flows make progress
as a result of certain events. The general idea is to model logical flows as state machines. Informally, a state
machine is a collection of states, input events, and transitions that map states and input events to states. Each
transition maps an (input state, input event) pair to an output state. A self-loop is a transition between the
same input and output state. State machines are typically drawn as directed graphs, where nodes represent
states, directed arcs represent transitions, and arc labels represent input events. A state machine begins
execution in some initial state. Each input event triggers a transition from the current state to the next state.

For each new client
�

, a concurrent server based on I/O multiplexing creates a new state machine �
�

and
associates it with connected descriptor

� �
. As shown in Figure 13.7, each state machine �

�
has one state

(“Waiting for descriptor
� �

to be ready for reading”), one input event (“Descriptor
� �

is ready for reading”),
and one transition (“Read a text line from descriptor

� �
”).

Transition: 
”read a text line from 

descriptor dk "

State: 
”waiting for  descriptor dk to

 be ready for reading”

State: 
”waiting for  descriptor dk to

 be ready for reading”

Input event: 
”descriptor dk 

is ready for reading"

Figure 13.7: State machine for a logical flow in a concurrent event-driven echo server.

The server uses the I/O multiplexing, courtesy of the select function, to detect the occurrence of input
events. As each connected descriptor becomes ready for reading, the server executes the transition for the
corresponding state machine, in this case reading and echoing a text line from the descriptor.

Figure 13.8 shows the complete example code for a concurrent event-driven server based on I/O multiplex-
ing. The set of active clients is maintained in a pool structure (lines 3–11). After initializing the pool by
calling init pool (line 28), the server enters an infinite loop. During each iteration of this loop, the server
calls the select function to detect two different kinds of input events: (a) a connection request arriving
from a new client, and (b) a connected descriptor for an existing client being ready for reading. When a
connection request arrives (line 35), the server opens the connection (line 36) and calls the add client
function to add the client to the pool (line 37). Finally, the server calls the check client function to
echo a single text line from each ready connected descriptor (line 41).

The init pool function (Figure 13.9) initializes the client pool. The clientfd array represents a set
of connected descriptors, with �

�
denoting an available slot. Initially, the set of connected descriptors is

empty (lines 5–7), and the listening descriptor is the only descriptor in the select read set (lines 10–12).

The add client function (Figure 13.10) adds a new client to the pool of active clients. After finding
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code/conc/echoservers.c

1 #include "csapp.h"
2

3 typedef struct { /* represents a pool of connected descriptors */
4 int maxfd; /* largest descriptor in read_set */
5 fd_set read_set; /* set of all active descriptors */
6 fd_set ready_set; /* subset of descriptors ready for reading */
7 int nready; /* number of ready descriptors from select */
8 int maxi; /* highwater index into client array */
9 int clientfd[FD_SETSIZE]; /* set of active descriptors */

10 rio_t clientrio[FD_SETSIZE]; /* set of active read buffers */
11 } pool;
12

13 int byte_cnt = 0; /* counts total bytes received by server */
14

15 int main(int argc, char **argv)
16 {
17 int listenfd, connfd, port, clientlen = sizeof(struct sockaddr_in);
18 struct sockaddr_in clientaddr;
19 static pool pool;
20

21 if (argc != 2) {
22 fprintf(stderr, "usage: %s <port>\n", argv[0]);
23 exit(0);
24 }
25 port = atoi(argv[1]);
26

27 listenfd = Open_listenfd(port);
28 init_pool(listenfd, &pool);
29 while (1) {
30 /* Wait for listening/connected descriptor(s) to become ready */
31 pool.ready_set = pool.read_set;
32 pool.nready = Select(pool.maxfd+1, &pool.ready_set, NULL, NULL, NULL);
33

34 /* If listening descriptor ready, add new client to pool */
35 if (FD_ISSET(listenfd, &pool.ready_set)) {
36 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
37 add_client(connfd, &pool);
38 }
39

40 /* Echo a text line from each ready connected descriptor */
41 check_clients(&pool);
42 }
43 }

code/conc/echoservers.c

Figure 13.8: Concurrent echo server based on I/O multiplexing. Each server iteration echoes a text line
from each ready descriptor.
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code/conc/echoservers.c

1 void init_pool(int listenfd, pool *p)
2 {
3 /* Initially, there are no connected descriptors */
4 int i;
5 p->maxi = -1;
6 for (i=0; i< FD_SETSIZE; i++)
7 p->clientfd[i] = -1;
8

9 /* Initially, listenfd is only member of select read set */
10 p->maxfd = listenfd;
11 FD_ZERO(&p->read_set);
12 FD_SET(listenfd, &p->read_set);
13 }

code/conc/echoservers.c

Figure 13.9: init pool: Initializes the pool of active clients.

code/conc/echoservers.c

1 void add_client(int connfd, pool *p)
2 {
3 int i;
4 p->nready--;
5 for (i = 0; i < FD_SETSIZE; i++) /* Find an available slot */
6 if (p->clientfd[i] < 0) {
7 /* Add connected descriptor to the pool */
8 p->clientfd[i] = connfd;
9 Rio_readinitb(&p->clientrio[i], connfd);

10

11 /* Add the descriptor to descriptor set */
12 FD_SET(connfd, &p->read_set);
13

14 /* Update max descriptor and pool highwater mark */
15 if (connfd > p->maxfd)
16 p->maxfd = connfd;
17 if (i > p->maxi)
18 p->maxi = i;
19 break;
20 }
21 if (i == FD_SETSIZE) /* Couldn’t find an empty slot */
22 app_error("add_client error: Too many clients");
23 }

code/conc/echoservers.c

Figure 13.10: add client: Adds a new client connection to the pool.
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an empty slot in the clientfd array, the server adds the connected descriptor to the array and initializes
a corresponding RIO read buffer so that we can call rio readlineb on the descriptor (lines 8–9). We
then add the connected descriptor to the select read set (line 12), and we update some global properties
of the pool. The maxfd variable (lines 15–16) keeps track of the largest file descriptor for select.
The maxi variable (lines 17–18) keeps track of the largest index into the clientfd array so that the
check clients functions does not have to search the entire array.

The check clients function echoes a text line from each ready connected descriptor. If we are success-

code/conc/echoservers.c

1 void check_clients(pool *p)
2 {
3 int i, connfd, n;
4 char buf[MAXLINE];
5 rio_t rio;
6

7 for (i = 0; (i <= p->maxi) && (p->nready > 0); i++) {
8 connfd = p->clientfd[i];
9 rio = p->clientrio[i];

10

11 /* If the descriptor is ready, echo a text line from it */
12 if ((connfd > 0) && (FD_ISSET(connfd, &p->ready_set))) {
13 p->nready--;
14 if ((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
15 byte_cnt += n;
16 printf("Server received %d (%d total) bytes on fd %d\n",
17 n, byte_cnt, connfd);
18 Rio_writen(connfd, buf, n);
19 }
20

21 /* EOF detected, remove descriptor from pool */
22 else {
23 Close(connfd);
24 FD_CLR(connfd, &p->read_set);
25 p->clientfd[i] = -1;
26 }
27 }
28 }
29 }

code/conc/echoservers.c

Figure 13.11: check clients: Services ready client connections.

ful in reading a text line from the descriptor, then we echo that line back to the client (lines 15–18). Notice
that in line 15 we are maintaining a cumulative count of total bytes received from all clients. If we detect
EOF because the client has closed its end of the connection, then we close our end of the connection (line
23) and remove the descriptor from the pool (lines 24–25).
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In terms of the finite state model in Figure 13.7, the select function detects input events, and the
add client function creates a new logical flow (state machine). The check clients function per-
forms state transitions by echoing input lines, and it also deletes the state machine when the client has
finished sending text lines.

13.2.2 Pros and Cons of I/O Multiplexing

The server in Figure 13.8 provides a nice example of the advantages and disadvantages of event-driven
programming based on I/O multiplexing. One advantage is that event-driven designs give programmers
more control over the behavior of their programs than process-based designs. For example, we can imagine
writing an event-driven concurrent server that gives preferred service to some clients, which would be
difficult for a concurrent server based on processes.

Another advantage is that an event-driven server based on I/O multiplexing runs in the context of a single
process, and thus every logical flow has access to the entire address space of the process. This makes it
easy to share data between flows. A related advantage of running as a single process is that you can debug
your concurrent server as you would any sequential program, using a familiar debugging tool such as GDB.
Finally, event-driven designs are often significantly more efficient than process-based designs because they
do not require a process context switch to schedule a new flow.

A significant disadvantage of event-driven designs is coding complexity. Our event-driven concurrent echo
server requires three times more code than the process-based server. Unfortunately the complexity increases
as the granularity of the concurrency decreases. By granularity, we mean the number of instructions that
each logical flow executes per time slice. For instance, in our example concurrent server, the granularity
of concurrency is the number of instructions required to read an entire text line. As long as some logical
flow is busy reading a text line, no other logical flow can make progress. This is fine for our example, but
it makes our event-driver server vulnerable to a malicious client that sends only a partial text line and then
halts. Modifying an event-driven server to handle partial text lines is a nontrivial task, but it is handled
cleanly and automatically by a process-based design.

Practice Problem 13.3:

In most Unix systems, typing ctrl-d indicates EOF on standard input. What happens if you type
ctrl-d to the program in Figure 13.6 while it is blocked in the call to select?

Practice Problem 13.4:

In the server in Figure 13.8, we are careful to reinitialize the pool.ready set variable immediately
before every call to select. Why?

13.3 Concurrent Programming With Threads

To this point, we have looked at two approaches for creating concurrent logical flows. With the first ap-
proach, we use a separate process for each flow. The kernel schedules each process automatically. Each
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process has its own private address space, which makes it difficult for flows to share data. With the sec-
ond approach, we create our own logical flows and use I/O multiplexing to explicitly schedule the flows.
Because there is only one process, flows share the entire address space. This section introduces a third
approach – based on threads – that is a hybrid of these two.

A thread is a logical flow that runs in the context of a process. Thus far in this book, our programs have
consisted of a single thread per process. But modern systems also allow us to write programs that have
multiple threads running concurrently in a single process. The threads are scheduled automatically by the
kernel. Each thread has its own thread context, including a unique integer thread ID (TID), stack, stack
pointer, program counter, general-purpose registers, and condition codes. All threads running in a process
share the entire virtual address space of that process.

Logical flows based on threads combine qualities of flows based on processes and I/O multiplexing. Like
processes, threads are scheduled automatically by the kernel and are known to the kernel by an integer ID.
Like flows based on I/O multiplexing, multiple threads run in the context of a single process, and thus share
the entire contents of the process virtual address space, including its code, data, heap, shared libraries, and
open files.

13.3.1 Thread Execution Model

The execution model for multiple threads is similar in some ways to the execution model for multiple
processes. Consider the example in Figure 13.12. Each process begins life as a single thread called the main
thread. At some point, the main thread creates a peer thread, and from this point in time the two threads
run concurrently. Eventually, control passes to the peer thread via a context switch, because the main thread
executes a slow system call such as read or sleep, or because it is interrupted by the system’s interval
timer. The peer thread executes for a while before control passes back to the main thread, and so on.

Time

Thread 1
(main thread)

Thread 2
(peer thread)

Thread context switch 

Thread context switch 

Thread context switch 

Figure 13.12: Concurrent thread execution.

Thread execution differs from processes in some important ways. Because a thread context is much smaller
than a process context, a thread context switch is faster than a process context switch. Another difference
is that threads, unlike processes, are not organized in a rigid parent-child hierarchy. The threads associated
with a process form a pool of peers, independent of which threads were created by which other threads. The
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main thread is distinguished from other threads only in the sense that it is always the first thread to run in
the process. The main impact of this notion of a pool of peers is that a thread can kill any of its peers, or
wait for any of its peers to terminate. Further, each peer can read and write the same shared data.

13.3.2 Posix Threads

Posix threads (Pthreads) is a standard interface for manipulating threads from C programs. It was adopted
in 1995 and is available on most Unix systems. Pthreads defines about 60 functions that allow programs to
create, kill, and reap threads, to share data safely with peer threads, and to notify peers about changes in the
system state.

Figure 13.13 shows a simple Pthreads program. The main thread creates a peer thread and then waits for it
to terminate. The peer thread prints “Hello, world!\n” and terminates. When the main thread detects
that the peer thread has terminated, it terminates the process by calling exit.

code/conc/hello.c

1 #include "csapp.h"
2 void *thread(void *vargp);
3

4 int main()
5 {
6 pthread_t tid;
7 Pthread_create(&tid, NULL, thread, NULL);
8 Pthread_join(tid, NULL);
9 exit(0);

10 }
11

12 void *thread(void *vargp) /* thread routine */
13 {
14 printf("Hello, world!\n");
15 return NULL;
16 }

code/conc/hello.c

Figure 13.13: hello.c: The Pthreads “Hello, world!” program.

This is the first threaded program we have seen, so let us dissect it carefully. The code and local data for a
thread is encapsulated in a thread routine. As shown by the prototype in line 2, each thread routine takes
as input a single generic pointer and returns a generic pointer. If you want to pass multiple arguments
to a thread routine, then you should put the arguments into a structure and pass a pointer to the structure.
Similarly, if you want the thread routine to return multiple arguments, you can return a pointer to a structure.

Line 4 marks the beginning of the code for the main thread. The main thread declares a single local variable
tid, which will be used to store the thread ID of the peer thread (line 6). The main thread creates a new peer
thread by calling the pthread create function (line 7). When the call to pthread create returns,
the main thread and the newly created peer thread are running concurrently, and tid contains the ID of
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the new thread. The main thread waits for the peer thread to terminate with the call to pthread join in
line 8. Finally, the main thread calls exit (line 9), which terminates all threads (in this case just the main
thread) currently running in the process.

Lines 12–16 define the thread routine for the peer thread. It simply prints a string, and then terminates the
peer thread by executing the return statement in line 15.

13.3.3 Creating Threads

Threads create other threads by calling the pthread create function.

#include <pthread.h>
typedef void *(func)(void *);

int pthread create(pthread t *tid, pthread attr t *attr, func *f, void *arg);
Returns 0 if OK, nonzero on error

The pthread create function creates a new thread and runs the thread routine f in the context of the
new thread and with an input argument of arg. The attr argument can be used to change the default
attributes of the newly created thread. Changing these attributes is beyond our scope, and in our examples,
we will always call pthread create with a NULL attr argument.

When pthread create returns, argument tid contains the ID of the newly created thread. The new
thread can determine its own thread ID by calling the pthread self function.

#include <pthread.h>

pthread t pthread self(void);
Returns thread ID of caller

13.3.4 Terminating Threads

A thread terminates in one of the following ways:

� The thread terminates implicitly when its top-level thread routine returns.

� The thread terminates explicitly by calling the pthread exit function, which returns a pointer to
the return value thread return. If the main thread calls pthread exit, it waits for all other
peer threads to terminate, and then terminates the main thread and the entire process with a return
value of thread return.
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#include <pthread.h>

int pthread exit(void *thread return);
Returns 0 if OK, nonzero on error

� Some peer thread calls the Unix exit function, which terminates the process and all threads associ-
ated with the process.

� Another peer thread terminates the current thread by calling the pthread cancel function with
the ID of the current thread.

#include <pthread.h>

int pthread cancel(pthread t tid);
Returns 0 if OK, nonzero on error

13.3.5 Reaping Terminated Threads

Threads wait for other threads to terminate by calling the pthread join function.

#include <pthread.h>

int pthread join(pthread t tid, void **thread return);
Returns 0 if OK, nonzero on error

The pthread join function blocks until thread tid terminates, assigns the (void *) pointer returned
by the thread routine to the location pointed to by thread return, and then reaps any memory resources
held by the terminated thread.

Notice that, unlike the Unix wait function, the pthread join function can only wait for a specific thread
to terminate. There is no way to instruct pthread wait to wait for an arbitrary thread to terminate. This
can complicate our code by forcing us to use other, less intuitive mechanisms to detect process termination.
Indeed, Stevens argues convincingly that this is a bug in the specification [81].

13.3.6 Detaching Threads

At any point in time, a thread is joinable or detached. A joinable thread can be reaped and killed by other
threads. Its memory resources (such as the stack) are not freed until it is reaped by another thread. In
contrast, a detached thread cannot be reaped or killed by other threads. Its memory resources are freed
automatically by the system when it terminates.
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By default, threads are created joinable. In order to avoid memory leaks, each joinable thread should either
be explicitly reaped by another thread, or detached by a call to the pthread detach function.

#include <pthread.h>

int pthread detach(pthread t tid);
Returns 0 if OK, nonzero on error

The pthread detach function detaches the joinable thread tid. Threads can detach themselves by
calling pthread detach with an argument of pthread self().

Although some of our examples will use joinable threads, there are good reasons to use detached threads
in real programs. For example, a high-performance Web server might create a new peer thread each time
it receives a connection request from a Web browser. Since each connection is handled independently by a
separate thread, it is unnecessary – and indeed undesirable – for the server to explicitly wait for each peer
thread to terminate. In this case, each peer thread should detach itself before it begins processing the request
so that its memory resources can be reclaimed after it terminates.

13.3.7 Initializing Threads

The pthread once function allows you to initialize the state associated with a thread routine.

#include <pthread.h>

pthread once t once control = PTHREAD ONCE INIT;

int pthread once(pthread once t *once control, void (*init routine)(void));
Always returns 0

The once control variable is a global or static variable that is always initialized to PTHREAD ONCE INIT.
The first time you call pthread oncewith an argument of once control, it invokes init routine,
which is a function with no input arguments that returns nothing. Subsequent calls to pthread oncewith
an argument of pthread once do nothing. The pthread once function is useful whenever you need
to dynamically initialize global variables that are shared by multiple threads. We will look at an example in
Section 13.6.

13.3.8 A Concurrent Server Based on Threads

Figure 13.14 shows the code for a concurrent echo server based on threads. The overall structure is similar
to the process-based design. The main thread repeatedly waits for a connection request and then creates a
peer thread to handle the request. While the code looks simple, there are a couple of general and somewhat
subtle issues we need to look at more closely. The first issue is how to pass the connected descriptor to the
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code/conc/echoservert.c

1 #include "csapp.h"
2

3 void echo(int connfd);
4 void *thread(void *vargp);
5

6 int main(int argc, char **argv)
7 {
8 int listenfd, *connfdp, port, clientlen=sizeof(struct sockaddr_in);
9 struct sockaddr_in clientaddr;

10 pthread_t tid;
11

12 if (argc != 2) {
13 fprintf(stderr, "usage: %s <port>\n", argv[0]);
14 exit(0);
15 }
16 port = atoi(argv[1]);
17

18 listenfd = Open_listenfd(port);
19 while (1) {
20 connfdp = Malloc(sizeof(int));
21 *connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
22 Pthread_create(&tid, NULL, thread, connfdp);
23 }
24 }
25

26 /* thread routine */
27 void *thread(void *vargp)
28 {
29 int connfd = *((int *)vargp);
30 Pthread_detach(pthread_self());
31 Free(vargp);
32 echo(connfd);
33 Close(connfd);
34 return NULL;
35 }

code/conc/echoservert.c

Figure 13.14: Concurrent echo server based on threads.
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peer thread when we call pthread create. The obvious approach is to pass a pointer to the descriptor,
such as the following

connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread_create(&tid, NULL, thread, &connfd);

Then we have the peer thread dereference the pointer and assign it to a local variable, as follows

void *thread(void *vargp) �
int connfd = *((int *)vargp);
...

�
This would be wrong, however, because it introduces a race between the assignment statement in the peer
thread and the accept statement in the main thread. If the assignment statement completes before the next
accept, then the local connfd variable in the peer thread gets the correct descriptor value. However,
if the assignment completes after the accept, then the local connfd variable in the peer thread gets
the descriptor number of the next connection. The unhappy result is that two threads are now performing
input and output on the same descriptor. In order to avoid the potentially deadly race, we must assign each
connected descriptor returned by accept to its own dynamically allocated memory block, as shown in
lines 20–21. We will return to the issue of races in Section 13.7.4.

Another issue is avoiding memory leaks in the thread routine. Since we are not explicitly reaping threads,
we must detach each thread so that its memory resources will be reclaimed when it terminates (line 30).
Further, we must be careful to free the memory block that was allocated by the main thread (line 31).

Practice Problem 13.5:

In the process-based server in Figure 13.5, we were careful to close the connected descriptor in two
places: the parent and child processes. However, in the threads-based server in Figure 13.14, we only
closed the connected descriptor in one place: the peer thread. Why?

13.4 Shared Variables in Threaded Programs

From a programmer’s perspective, one of the attractive aspects of threads is the ease with which multiple
threads can share the same program variables. However, this sharing can be tricky. In order to write correctly
threaded programs, we must have a clear understanding of what we mean by sharing and how it works.

There are some basic questions to work through in order to understand whether a variable in a C program
is shared or not: (1) What is the underlying memory model for threads? (2) Given this model, how are in-
stances of the variable mapped to memory? (3) Finally, how many threads reference each of these instances?
The variable is shared if and only if multiple threads reference some instance of the variable.

To keep our discussion of sharing concrete, we will use the program in Figure 13.15 as a running example.
Although somewhat contrived, it is nonetheless useful to study because it illustrates a number of subtle
points about sharing. The example program consists of a main thread that creates two peer threads. The
main thread passes a unique ID to each peer thread, which uses the ID to print a personalized message,
along with a count of the total number of times that the thread routine has been invoked.


