
1

Concurrent Programming

Yuh-Jzer Joung
Dept. of Information Management

National Taiwan University

May, 2001

Spring, 2001 Concurrent Programming 2

CONCURRENT PROGRAMMING

Operations in the source text are concurrent if they could
be, but need not be, executed in parallel. Operations that
occur one after the other, ordered in time, are said to be
sequential.

The fundamental concept of concurrent programming is
the notion of a process, which corresponds to a sequential
computation, with its own thread of control.

The thread of a sequential computation is the sequence of
program points that are reached as control flows
through the source text of the program.

2

Spring, 2001 Concurrent Programming 3

THREAD

#include <stdio.h>

/* copy input to output */
main() {
 int c;

 c = getchar();
 while (c != EOF) {
 putchar(c);
 c =getchar();
 }
 putchar(‘\n’);
}

Spring, 2001 Concurrent Programming 4

INTERACTIONS BETWEEN PROCESSES

Communication: involves the exchange of data between
processes, either by an explicit message or through the
values of shared variables.

Synchronization: relates the thread of one process with that
of another.

Interactions between processes can also be visualized in
terms of competition and cooperation between processes.

P

x

Q

y

Synchronization can be used to
constraint the order in which P
reaches x and Q reaches y.

3

Spring, 2001 Concurrent Programming 5

HARDWARE ARCHITECTURES

PROCESSOR

MEMORY

PROCESSOR

MEMORY

PROCESSOR PROCESSOR

MEMORY

PROCESSOR

MEMORY

(a) Single processor (b) Shared memory (c) Distributed machine

Spring, 2001 Concurrent Programming 6

AN ADA PROGRAM

with text_io; use text_io; -- import character input/output procedures
procedure hello is
begin
 put_line(“hello world”);
end hello;

4

Spring, 2001 Concurrent Programming 7

AN ADA PROGRAM

with text_io; use text_io;
procedure identify is
 task p; -- task specification for p
 task body p is
 begin

put_line(“p”);
 end p;
 task q; -- task specification for q
 task body q is
 begin

put_line(“q”);
 end q;
begin -- procedure body sets up parent of p and q
 put_line(“r”);
end identify;

Spring, 2001 Concurrent Programming 8

THE DINING PHILOSOPHERS

The design issues:
• how to avoid deadlock and livelock?
• how to guarantee fairness (avoid starvation)?

5

Spring, 2001 Concurrent Programming 9

CRITICAL SECTIONS

A critical section in a process is a portion or section of code
that must be treated as an atomic event.

Two critical sections are said to be mutually exclusive
because their execution must not overlap.

In a sequential language, the following two statements increment
x by 3, but in a concurrent language, the following two
statements may be executed in parallel by two different
threads, thereby producing three different outcomes.

x:=x+1; x:=x+2 …

…

…

…

critical
section

…

…

…

…

P Q

Spring, 2001 Concurrent Programming 10

A RENDEZVOUS

P Q
begin begin

Q.synch
accept synch do

end synch

end P end Q

call

return

A rendezvous combines two events:
1. A call within a client process P.
2. Acceptance of the call by the server process Q.

6

Spring, 2001 Concurrent Programming 11

RENDEZVOUS init INITAILIZES
TASKS OF TYPE emitter

 with text_io; use text_io;
 procedure task_init is

task type emitter is
entry init(c : character)

end emitter;
p, q : emitter;
task body emitter is

me : character;
begin

accept init(c : character) do
me := c;

end init
put(me); new_line;

end emitter
 begin

p.init(‘p’);
q.init(‘q’);
put(‘r’); new_line;

 end task_init;

Spring, 2001 Concurrent Programming 12

THREADS FO THE TASKS SET UP BY
THE PROGRAM

task p
begin

procedure task_init
begin

accept init

accept init

end init

end p

call

return

task q
begin

end end q

return

callq.init
end init

p.init

7

Spring, 2001 Concurrent Programming 13

SELECTIVE ACCEPTANCE

The select construct in Ada allows a server to offer a
selection of services to its clients.

select
accept deliver_milk do

…
end deliver_milk;

or
accept deliver_juice do

…
end deliver_juice;

end select;

Spring, 2001 Concurrent Programming 14

GUARDED SELECTIVES

Alternatives in a select command can also be guarded.

select
when notfull ⇒ accept enter(c : in character) do

…
end enter;

or
when notempty ⇒ accept leave(c : out character) do

…
end leave;

end select;

8

Spring, 2001 Concurrent Programming 15

DYNAMIC CREATION OF TASKS
THROUGH ACCESS TYPES

 with text_io; use text_io;
 procedure pointers is

task type emitter is
entry init(c : character)

end emitter;
type emitter_ptr is access emitter;
p, q : emitter;
task body emitter is

me : character;
begin

accept init(c : character) do
me := c;

end init;
put(me); new_line;

end emitter

Spring, 2001 Concurrent Programming 16

DYNAMIC CREATION OF TASKS
THROUGH ACCESS TYPES (cont.)

 begin
p := new emitter;
q := new emitter;
p.init(‘p’);
q.init(‘q’);
put(‘r’); new_line;

 end pointers;

9

Spring, 2001 Concurrent Programming 17

MONITOR

Process
SUB1

Process
SUB2

Process
SUB3

Process
SUB4

Insert

Remove

B
U
F
F
E
R

Monitor

Program

Spring, 2001 Concurrent Programming 18

type databuf =
monitor

const bufsize = 100;
var buf : array [1..bufsize] of integer;

next_in;
next_out : 1..bufsize;
filled : 0..bufsize;
sender_q;
receiver_q : queue;

procedure entry deposit(item : integer);
begin
if filled = bufsize

then delay(sender_q);
buf[next_in] := item;
next_in := (next_in mod bufsize) + 1;
filled := filled + 1;
continue(receiver_q);
end;

A PROGRAM USING A MONITOR TO
CONTROL ACCESS TO A SHARED BUFFER

10

Spring, 2001 Concurrent Programming 19

procedure entry fetch(var item : integer);
begin
 if filled = 0

then delay(receive_q);
 item := buf[next_out];
 next_out := (next_out mod bufsize) + 1;
 filled := filled − 1;
 continue(sender_q)
end;

begin
 filled := 0;
 next_in := 1;
 next_out := 1;
end;

A PROGRAM USING A MONITOR TO
CONTROL ACCESS TO A SHARED BUFFER

Spring, 2001 Concurrent Programming 20

type producer = process(buffer : databuf);
var newvalue : integer;
begin
cycle

-- produce newvalue --
buffer.deposit(newvalue);

end
end;

type consumer = process(buffer : databuf)
var stored_value : integer;
begin
cycle

buffer.fetch(stored_value);
-- consume stored_value --

end
end;

A PROGRAM USING A MONITOR TO
CONTROL ACCESS TO A SHARED BUFFER

11

Spring, 2001 Concurrent Programming 21

-- type declarations --

var new_producer : producer;
new_consumer : consumer;
new_buffer : databuf;

begin
init new_buffer, new_producer(new_buffer),

new_consumer(new_buffer);
end;

A PROGRAM USING A MONITOR TO
CONTROL ACCESS TO A SHARED BUFFER

Spring, 2001 Concurrent Programming 22

SOLUTIONS TO THE PRODUCER-
CONSUMER PROBLEM

Producer Consumer

···

(a) Direct access

Producer Consumer

···

(b) Synchronized direct access

12

Spring, 2001 Concurrent Programming 23

SOLUTIONS TO THE PRODUCER-
CONSUMER PROBLEM (cont.)

(c) Access through a monitor

(d) The buffer as a separate process

Producer Consumer

···

procedure enter(char x);
procedure leave() : char;

Producer Consumer

Buffer

Spring, 2001 Concurrent Programming 24

PSEUDOCODE FOR UNSYNCHRONIZED
ACCESS TO THE BUFFER

 with text_io; use text_io;
 procedure direct is

size : constant integer := 5;
buf : array(0..size-1) of character;
front, rear : integer := 0;
function notfull return boolean is … end notfull;
function notempty return boolean is … end notempty;
task producer;
task body producer is

c : character;
begin

while not end_of_file loop
if notfull then

get(c);

end if
end loop;

end producer

buf(rear) := c;
rear := (rear +1) mod size;

13

Spring, 2001 Concurrent Programming 25

PSEUDOCODE FOR UNSYNCHRONIZED
ACCESS TO THE BUFFER (cont.)

task consumer;
task body consumer is

c : character;
begin

loop
if notempty then

put(c);
end if;

end loop;
end consumer;

begin
null;

end direct;

c := buf(front);
front := (front+1) mod size;

Spring, 2001 Concurrent Programming 26

SEMAPHORES: MUTUAL EXCLUSION

A semaphore is a construct that has an integer variable
value and supports two operations:

1. If value ≥ 1, then a process can perform a p operation to
decrement the value by 1. Otherwise, a process attempting a p
operation waits until the value becomes greater than or equal
to 1.

2. A process can perform a v operation to increment variable
value by 1.

A binary semaphore is a semaphore whose value is
constrained to be either 0 or 1. If the value of a binary
semaphore is 1, then a process attempting a v operation
on it is suspended until its value becomes 0. In other
words, the p and v operations on a semaphore must be
performed alternately.

14

Spring, 2001 Concurrent Programming 27

IMPLEMENTATIONS OF SEMAPHORES

task type binary_semaphore is
entry p;
entry v;

end binary_semaphore;

task body binary_semaphore is
begin

loop
accept p;
accept v;

end loop;
end binary_semaphore;

Spring, 2001 Concurrent Programming 28

MUTUAL EXCLUSION

Mutual exclusion can be implemented by enclosing each
critical section between the operations s.p and s.v, where
s is a binary semaphore:

process Q process R
… …
s.p; s.p;
critical section for Q; critical section for R;
s.v s.v
… ...

15

Spring, 2001 Concurrent Programming 29

THE PRODUCER AND CONSUMER AS CYCLIC
PROCESSES WITH CRITICAL SECTIONS

…
if notfull then
 get(c);
 buf(rear) := c;
 update rear;
end if
…

producer consumer

if notempty then
 c := buf(front);
 update front;
 put(c);
end if
...

Spring, 2001 Concurrent Programming 30

A SEMAPHORE AS A TASK IN ADA

task body semaphore is
value : integer;

begin
accept init(n : integer) do -- initialization

value := n;
end init;
loop

select
when value ≥ 1 ⇒ -- p operation

accept p do
value := value – 1;

end p;
or accept v do -- v operation

value := value + 1;
end v;

end select;
end loop;

end semaphore;

16

Spring, 2001 Concurrent Programming 31

USE OF THE SEMAPHORES filling,
emptying, AND critical

task body producer is
 c : character;
begin
 while not end_of_file loop
 get(c);
 filling.p;
 critical.p;
 buf(rear) := c;
 rear := (rear+1) mod size;

 critical.v;
 emptying.v;
 end loop;
end producer;

task body consumer is
 c : character;
begin
 loop
 emptying.p;
 critical.p;
 c = buf(front);
 front := (front+1) mod size;

 critical.v;
 filling.v;

 put(c);
 end loop;
end consumer;

Spring, 2001 Concurrent Programming 32

A MONITOR FOR A BOUNDED BUFFER

monitor buffer is
buf : … ;
procedure enter(c : in character);
begin

if buffer full then wait(filling); -- block producer
enter c into buffer;

…
signal(empty); -- unblock consumer

end enter;
procedure leave(c : out character);
begin

if buffer empty then wait(emptying); -- block consumer
c := next character;

…
signal(filling); -- unblock producer

end leave;
begin

initialize private data;
end buffer;

17

Spring, 2001 Concurrent Programming 33

THE BUFFER AS A PROCESS

task body buffer is
<data-declarations>

begin
loop

select
when notfull ⇒

accept enter(x : in integer) do
…

end enter;
or when notempty ⇒

accept leave(x : out integer) do
…

end leave;
end select

end loop
 end buffer;

Spring, 2001 Concurrent Programming 34

Two Possible Execution Control Sequences for
Two Coroutines Without loops

•
•

resume B
•
•
•

resume B
•
•
•
•

resume B

A
•
•

resume A
•
•
•
•

resume A
•
•
•
•

B
resume

from master

18

Spring, 2001 Concurrent Programming 35

Two Possible Execution Control Sequences for
Two Coroutines Without loops

•
•
•

resume B
•
•
•

resume B

A

•
•

resume A
•
•
•
•

resume A
•
•
•

B
resume

from master

Spring, 2001 Concurrent Programming 36

Coroutine execution sequence with loops

•
•
•
•
•

resume B
•
•
•
•
•

A

•
•
•
•
•
•
•

resume A
•
•
•

Bresume
from master

First resume

Subsequent
resume

19

Spring, 2001 Concurrent Programming 37

UNIX PROCESSES

A program can be any of several things:
– A file containing instructions and data used to initialize a

process;
– An algorithm represented in the source code of some

programming language, probably stored in a file;
A process, briefly, is a running program. Processes are

resources that are managed by the operating system
(OS).

Spring, 2001 Concurrent Programming 38

THE COMPONENTS OF A PROCESS

• the text (code) segment
• the user data segment (on modern Unix systems divided

into the initialized and uninitialized (called bss) data
segments)

• the system data segment

20

Spring, 2001 Concurrent Programming 39

The fork and exec System Calls

The exec system call is the only way a process begins
execution; the fork system call is the only way to create a
new process.

/* ignoring errors ... */
if (fork() == 0) {
 /* i am the child */
 exec("new program");
} else {
 /* i am the parent */
 wait();
}

Spring, 2001 Concurrent Programming 40

The exec System Calls

exec in all its forms overlays a new process image on an
old process. The new process image is constructed from
an ordinary, executable file. There can be no return
from a successful exec because the calling process image
is overlaid by the new process image.

If exec returns to the calling process, an error has
occurred; the return value is -1 and errno is set to
indicate the error.

The system() function forks to create a child process
that in turn execs the shell in order to execute string. If
the fork() or exec() fails, system() returns a value
of -1 and sets errno.

21

Spring, 2001 Concurrent Programming 41

The fork System Calls

 fork creates a child process that differs from the parent
process only in its PID and PPID, and in the fact that
resource utilizations are set to 0. File locks and pending
signals are not inherited. On success, the PID of the
child process is returned in the parent's thread of
execution, and a 0 is returned in the child's thread of
execution. On failure, a -1 will be returned in the
parent's context, no child process will be created, and
errno will be set appropriately.

Because the child process is an exact copy of the parent,
both processes pick up execution from the next statement
after fork. They share identical all resources the
original one had at the time of fork()ing, but not any
allocated later.

Spring, 2001 Concurrent Programming 42

PROCESS CREATION IN UNIX

int pid;
int status = 0;
if (pid = fork()) {
/* parent */
…..
pid = wait(&status);
} else {
/* child */
…..
exit(status);
}

Another example

