Concurrent Programming

Y uh-Jzer Joung
Dept. of Information M anagement
National Taiwan University

May, 2001

CONCURRENT PROGRAMMING

Operationsin the sour cetext are concurrent if they could
be, but need not be, executed in parallel. Operationsthat
occur one after the other, ordered in time, are said to be
sequential.

Thefundamental concept of concurrent programmingis
the notion of a process, which correspondsto a sequential
computation, with its own thread of control.

Thethread of a sequential computation isthe sequence of
program pointsthat arereached as control flows
through the sour ce text of the program.

Spring, 2001 Concurrent Programming 2

THREAD

#i ncl ude <stdi o. h>

/* copy input to output */

mai n() { i
int c; ¢
c = getchar(); 0 R
while (c '=EOF) { o¢:i| o o: @
put char (c); 6| i o
c =getchar(); 6. | 6i oi
put char (‘\n’); i) o
}
A 4
Spring, 2001 Concurrent Programming 3

INTERACTIONS BETWEEN PROCESSES

Communication: involves the exchange of data between
processes, either by an explicit message or through the
values of shared variables.

Synchronization: relatesthe thread of one process with that
of another.

P Q Synchronization can be used to
H congtraint the order in which P
reaches x and Q reachesyy.

\ \

I nter actions between processes can also be visualized in
terms of competition and cooperation between processes.

Spring, 2001 Concurrent Programming 4

HARDWARE ARCHITECTURES

PROCESSOR

PROCESSOR
MEMORY

PROCESSOR) —7__ (PROCESSOR

| MEMORY | | MEMORY |

MEMORY

(a) Single processor (b) Shared memory (c) Distributed machine

Spring, 2001 Concurrent Programming

AN ADA PROGRAM

with text_io; usetext_io;
procedure hellois
begin

put_line(“ hello world");
end hello;

-- import character input/output procedures

Spring, 2001 Concurrent Programming

AN ADA PROGRAM

Spring, 2001 Concurrent Programming 7

THE DINING PHILOSOPHERS

L.\
©1©

The design issues.
» how to avoid deadlock and livelock?
» how to guarantee fairness (avoid starvation)?

Spring, 2001 Concurrent Programming 8

CRITICAL SECTIONS

A critical section in a processisaportion or section of code
that must be treated as an atomic event.

Two critical sections are said to be mutually exclusive
because their execution must not overlap.

In asequential language, the following two statements increment
x by 3, but in a concurrent language, the following two
statements may be executed in parallel by two different
threads, thereby producing three different outcomes.

X: =X+1; X: =X+2

critical
section

Spring, 2001 Concurrent Programming 9

A RENDEZVOUS

A rendezvous combines two events:
1. A call within a client process P.
2. Acceptance of the call by the server process Q.

P
begin 9 begin
Q.synch cal
accept synch do
end synch
return
endP ® endQ

Spring, 2001 Concurrent Programming 10

RENDEZVOUSI nit INITAILIZES
TASKSOFTYPEenm tter

with text io; use text io;
procedure task init is
task type emtter is
entry init(c : character)
end emtter
, g : emtter;
task body emitter is
me : character;

begi n
accept init(c : character) do
nme := c;
end init
put (me); new_line;
end emtter
begi n
p.init(‘p);
q.init('q);
put(‘r’); new._line;
end task init;
Spring, 2001 Concurrent Programming 11

THREADSFO THE TASKS SET UP BY
THE PROGRAM

task p proceduretask init task g
begin begin begin
° °
I e .
accent init ”_cal_; pnit
end init return
accept init
end init
[J
endp end endq

Spring, 2001 Concurrent Programming 12

SELECTIVE ACCEPTANCE

Theselect construct in Ada allows a server to offer a
selection of servicesto itsclients.
select
accept deliver_milk do

end deliver_milk
or
accept deliver_juice do

en.d.deliver_j uice;
end select;

Spring, 2001 Concurrent Programming 13

GUARDED SELECTIVES

Alternativesin a select command can also be guarded.

select
when notfull P accept enter(c: in character) do

end enter;
or
when notempty P accept leave(c : out character) do

en.c.illeave;
end select;

Spring, 2001 Concurrent Programming 14

DYNAMIC CREATION OF TASKS

THROUGH ACCESSTYPES

With text io; use text _io;
procedure pointers is
task type emtter is
entry init(c : character)
end emtter;

type emtter _ptr is access emtter;

p, q : emtter;
task body emtter is
nme : character;

begi n
accept init(c : character) do
me := c;
end init;

put (nme); new_line;
end emtter

Spring, 2001 Concurrent Programming

15

DYNAMIC CREATION OF TASKS
THROUGH ACCESSTYPES (cont.)

begi n
p := new emtter;
g := new emtter;
p.init('p);
q.init('q);

put(‘r’); new._line;
end pointers;

Spring, 2001 Concurrent Programming

16

MONITOR

Program
Process .
N Monitor
SUB1 *
B
Process Insert U
SuUB2 F
F
Process Remove [E
SUB3 «+ R
Process
SuUB4
Spring, 2001 Concurrent Programming 17

A PROGRAM USING A MONITORTO
CONTROL ACCESSTO A SHARED BUFFER

type databuf =
monitor
const bufsize = 100;
var buf : array [1..bufsize] of integer;

next_in;
next_out :1..bufsize
filled :0..bufsize
sender_q;
receiver_(: queue;
procedure entry deposit(item : integer);
begin
if filled = bufsize

then delay(sender_0);
buf[next_in] :=item;
next_in:=(next_in mod bufsize) + 1;

filled :=filled + 1;
continue(receiver_q);
end;

Spring, 2001 Concurrent Programming

18

A PROGRAM USING A MONITORTO
CONTROL ACCESSTO A SHARED BUFFER

procedure entry fetch(var item : integer);
begin
if filled=0
then delay(receive _q);
item := buf[next_out];
next_out := (next_out mod bufsize) + 1,

filled :=filled - 1,
continue(sender_q)
end;
begin
filled := 0;
next_in:=1,
next_out := 1,
end;
Spring, 2001 Concurrent Programming 19

A PROGRAM USING A MONITORTO
CONTROL ACCESSTO A SHARED BUFFER

type producer = process(buffer : databuf);

var newvalue : integer;

begin

cycle
-- produce newvalue --
buffer.deposit(newvalue);

end

end;

typeconsumer = process(buffer : databuf)
var stored value: integer;
begin
cycle
buffer.fetch(stored value);
-- consume stored_value --
end
end;

Spring, 2001 Concurrent Programming

20

1

A PROGRAM USING A MONITORTO
CONTROL ACCESSTO A SHARED BUFFER

-- type declarations --

var new_producer : producer;
New_consumer : consumer;
new_buffer . databuf;
begin
init new_buffer, new_producer(new_buffer),
new_consumer(new_buffer);
end;

Spring, 2001 Concurrent Programming 21

SOLUTIONSTO THE PRODUCER-
CONSUMER PROBLEM

(a) Direct access
L r - TT]
&
(b) Synchronized direct access
L r - TT]

Spring, 2001 Concurrent Programming 22

SOLUTIONSTO THE PRODUCER-
CONSUMER PROBLEM (cont.)

procedur eenter(char X);
procedureleave() : char;

(c) Access through a monitor

(d) The buffer as a separate process

Spring, 2001 Concurrent Programming 23

PSEUDOCODE FOR UNSYNCHRONIZED
ACCESSTO THE BUFFER

with text_io; usetext_io;
procedure direct is

size: constant integer :=5;
buf : array(0..size-1) of character;
front, rear : integer :=0;
function notfull return boolean is... end notfull;
function notempty return boolean is ... end notempty;
task producer;
task body producer is

C: character;
begin

whilenot end of file loop

if notfull then

get(c);
buf(rear) ;= c;

— i :
end if rear ;= (rear +1) mod size;

end |loop;
end producer

Spring, 2001 Concurrent Programming 24

PSEUDOCODE FOR UNSYNCHRONIZED
ACCESSTO THE BUFFER (cont.)

task consumer;
task body consumer is
C: character;
begin
loop
if notempty then
¢ := buf(front);
front ;= (front+1) mod size;

put(c);
end if;

end loop;
end consumer;
begin

null;
end direct;

Spring, 2001 Concurrent Programming 25

SEMAPHORES: MUTUAL EXCLUSION

A semaphoreisaconstruct that hasan integer variable
value and supportstwo operations.

1. If value 3 1, then a process can perform ap operation to
decrement the value by 1. Otherwise, a process attempting ap
operation waits until the value becomes greater than or equal
to 1.

2. A process can perform av operation to increment variable
valueby 1.

A binary semaphoreis a semaphore whose valueis
constrained to be either O or 1. If thevalue of abinary
semaphoreis 1, then a process attempting a v oper ation
on it issuspended until its value becomes 0. In other
words, the p and v operations on a semaphore must be
performed alter nately.

Spring, 2001 Concurrent Programming 26

IMPLEMENTATIONS OF SEMAPHORES

task typebinary_semaphoreis
entryp;
entryv;,

end binary_semaphore;

task body binary_semaphoreis
begin
loop
accept p;
accept v;
end loop;
end binary_semaphore;

Spring, 2001 Concurrent Programming 27

MUTUAL EXCLUSION

Mutual exclusion can be implemented by enclosing each
critical section between the operations s.p and s.v, where
sisabinary semaphore:

process Q process R

s.p; s.p;

critical section for Q; critical section for R;
SV SV

Spring, 2001 Concurrent Programming 28

THE PRODUCER AND CONSUMER ASCYCLIC
PROCESSESWITH CRITICAL SECTIONS

roducer consumer

—

if notfull then if notempty then
get(c); ¢ := buf(front);
buf(rear) :=c; update front;
update rear; put(c);
end if end if
/ K/
Spring, 2001 Concurrent Programming 29

A SEMAPHORE ASA TASK IN ADA

task body semaphoreis
value: integer;
begin
accept init(n : integer) do -- initialization
value:=n;
end init;
loop
select
when value?® 1 b -- p operation
accept pdo
value :=value — 1;
end p;
or accept vdo -- vV operation
value :=value + 1,
end v;
end select;
end loop;

end semaphore;

Spring, 2001 Concurrent Programming 30

USE OF THE SEMAPHORESfilling,
emptying, AND critical

task body producer is task body consumer is
c: character; c: character;
begin begin
whilenot end_of_fileloop loop
get(c); emptying.py
filling.p; critical.p;
critical.p ¢ = buf(front);
buf(rear) := c; front := (front+1) mod size;
rear ;= (rear+1) mod size; critical.v;
critical.v; filling.v;
emptying.v; put(c);
end loop; end loop;
end producer; end consumer;
Spring, 2001 Concurrent Programming 31

A MONITOR FOR A BOUNDED BUFFER

monitor bufferis
buf: ...;

begin
enter ¢ into buffer;

signal (empty);
end enter;

begin

C = next character;

procedureenter(c : in character);

if buffer full then wait(filling); -- block producer

procedureleave(c : out character);

if buffer empty then wait(emptying);

-- unblock consumer

-- block consumer

signal(filling); -- unblock producer
end leave
begin
initialize private data;
end buffer;
Spring, 2001 Concurrent Programming 32

1

THE BUFFER AS A PROCESS

task body buffer is
<data-declarations>
begin
loop
select
when notfull b
accept enter(x: in integer) do
end ente.r. ;.
or when notempty b
accept leave(x : out integer) do
end leave;
end select
end loop
end buffer;
Spring, 2001 Concurrent Programming 33
Two Possible Execution Control Sequences for
Two Coroutines Without loops
A B
resume -
from master : :
resumeB < S resumeA
resume B < .
. \; resume A
resume B .

Spring, 2001 Concurrent Programming

Two Possible Execution Control Sequences for
Two Coroutines Without loops

A B
. resume —
[]
. from master .
¢ 5 resume A
resumeB .

reeumeB T— L resumeA
[]
[]

ring, 2001 Concurrent Programming 35
ng.

Coroutine execution sequence with loops

>
w

resume -——
from master . eg““e o
. g Subseguent .
resume B 1w .
. \1 resume A

ring, 2001 Concurrent Programming 36
ng.

UNIX PROCESSES

A program can be any of several things:
— A file containing instructions and data used to initialize a
process;
— An algorithm represented in the source code of some
programming language, probably stored in afile;
A process, briefly, isarunning program. Processes are
resour ces that are managed by the operating system
(0S).

ring, 2001 Concurrent Programming 37
ng.

THE COMPONENTS OF A PROCESS

* thetext (code) segment

» theuser data segment (on modern Unix systemsdivided
into theinitialized and uninitialized (called bss) data
segments)

* the system data segment

Spring, 2001 Concurrent Programming 38

1

Thef or k and exec System Calls

The exec system call isthe only way a process begins
execution; thefork system call isthe only way to create a
New process.

/* ignhoring errors ... */
if (fork() == 0) {
/* i amthe child */
exec("new progrant');

} else {
/* i amthe parent */
wait();
}
Spring, 2001 Concurrent Programming 39

Theexec System Calls

exec in all itsforms overlays a new processimage on an
old process. The new processimageis constructed from
an ordinary, executablefile. Therecan benoreturn
from a successful exec because the calling processimage
isoverlaid by the new processimage.

If exec returnstothecalling process, an error has
occurred; thereturn valueis-1 and errno isset to
indicatetheerror.

Thesyst en() function forksto createa child process
that in turn execs theshell in order to executestring. If
thefork() or exec() fails, system() returnsavalue
of - 1 and setserr no.

Spring, 2001 Concurrent Programming 40

2

Thef or k System Calls

f or k createsa child processthat differsfrom the parent
processonly in itsPID and PPID, and in the fact that
resour ce utilizationsare set to 0. Filelocksand pending
signalsarenot inherited. On success, the PI D of the
child processisreturned in the parent'sthread of
execution, and a0 is returned in thechild'sthread of
execution. On failure, a- 1 will bereturned in the
parent's context, no child process will be created, and
er rno will be set appropriately.

Because the child processis an exact copy of the parent,
both processes pick up execution from the next statement
after f or k. They shareidentical all resourcesthe
original one had at the time of fork()ing, but not any
allocated later.

Spring, 2001 Concurrent Programming 41

PROCESS CREATION IN UNIX

int pid;

int status = O;

if (pid=fork()) {
[* parent */

pid = wait(&status);
} else {
/[* child */

exit(status);

}

Another example

Spring, 2001 Concurrent Programming 42

