
Concurrent Programming
CS304 / CITS3213

LECTURE NOTES 5

1
George J Milne
February 2006

CONCURRENT PROGRAMMING CONCEPTS

• Concurrent programming is the simultaneous execution of

two or more programs on one or more processors.

• One abstraction assumes interleaved execution of atomic

instructions of multiple processes.

• We will assume that each process is executing in its own

processor even though there may be only one processor in
reality.

• We have to consider possible interactions among such

processes in two cases:

a. Contention – When two processes compete for the
same resource. This may be access to some
computing resource like a shared variable or access
to a common printer etc.

b. Communication – Two processes may need to

communicate to agree upon certain events. This
communication may be through checking of a shared
variable or though explicit message passing.

Concurrent Programming
CS304 / CITS3213

LECTURE NOTES 5

2
George J Milne
February 2006

Atomic Instructions

• We ignore the difference of time for different atomic

instructions. We assume that irrespective of the atomic
instruction and irrespective of the CPU speed, each atomic
instruction takes unit time to complete.

• By atomic instruction, we mean that once a process starts

executing such an instruction, it cannot be interrupted
before the instruction is complete. However, an atomic
instruction should be completed within a reasonable
amount of time.

• In other words, we ignore the absolute time requirements

for a process. Rather, we concentrate on the execution
sequence of atomic instructions.

• All execution sequences of all the processes are

interleaved into a single execution sequence.

Concurrent Programming
CS304 / CITS3213

LECTURE NOTES 5

3
George J Milne
February 2006

Instruction Interleaving

• For example, consider two atomic instructions I1 and I2

getting executed by two processes P1 and P2.

Figure 1: Instruction interleaving.

• In case 1, end (I1) ≤ begin (I1). So, the instructions are

already interleaved in this case.

• In case 2, begin (I2) < end (I1). This is quite possible

since these two instructions are getting executed in two
different processors. However, we do not allow such an
ordering or instructions.

• In our abstraction, the effect of two simultaneous

instructions is the same as either of the two sequences
when the instructions are executed one after another.

Concurrent Programming
CS304 / CITS3213

LECTURE NOTES 5

4
George J Milne
February 2006

Concurrent Programming Abstraction

• This abstraction is not absurd since in most cases,

hardware resolves contention by assigning arbitrary orders
to simultaneous requests.

• Note that, in a distributed system, there are always

instructions which are getting executed simultaneously.
However, we still impose a total order on the instruction
sequence.

• Such an arbitrary ordering of instructions does not have

any effect on the computation unless either there is
contention or two processes are trying to communicate.

• In case of contention (say, over a shared variable), we

assume that the underlying hardware resolves the
contention. In other words, the hardware imposes an
ordering.

• In case of communication, the underlying protocol

imposes an ordering by delivering the messages in some
order.

Concurrent Programming
CS304 / CITS3213

LECTURE NOTES 5

5
George J Milne
February 2006

Concurrent Program Correctness

• Note that, under this model, arbitrary interleaving of

instructions is possible. Depending on processor speeds,
hundreds of instructions from one process may get
executed before an instruction of the other process is
executed.

• A concurrent program is required to be correct under

all interleavings.

• So, the correctness of a concurrent program should not

depend on processor speeds, communication time etc.

• However, one of the important criteria is: fairness should

be preserved. Eventually, instructions from each process
should be present in the interleaved sequence.

• Showing a concurrent program incorrect: Show that

there is at least one instruction interleaving for which the
program is correct.

• Proving a concurrent program correct: Show that for

all possible interleavings, the program is correct.

Concurrent Programming
CS304 / CITS3213

LECTURE NOTES 5

6
George J Milne
February 2006

Atomic Instructions

• The nature of atomic instructions is crucial for correctly

defining and analysing concurrent programs.

• Consider the following example:

• Compile translates to code which uses an INC instruction;

any interleaving gives same value.

Concurrent Programming
CS304 / CITS3213

LECTURE NOTES 5

7
George J Milne
February 2006

• If compiler translates to machine code involving Load,
Add and Store instructions some interleavings give
incorrect answer.

Concurrent Programming
CS304 / CITS3213

LECTURE NOTES 5

8
George J Milne
February 2006

Atomic Instructions

• If the instruction set is simple, it is more difficult to write

correct concurrent programs.

• If the instructions are complex (like INC), it is difficult to

implement such instructions as atomic instructions.

• We will initially concentrate on simple instructions like

Load-Store to common memory.

Complex instructions like INC are implemented by locking
the access and manipulation of common variables.

Concurrent Programming
CS304 / CITS3213

LECTURE NOTES 5

9
George J Milne
February 2006

Correctness of Concurrent Programs

• P(x): a property of the input variables x.

Q(x,y) is a property of the input variables x and output
variables y.

• Then, for any value a of the input variables, the

correctness is defined as follows:

Concurrent Programming
CS304 / CITS3213

LECTURE NOTES 5

10
George J Milne
February 2006

Correctness Properties

There are two kinds of correctness properties:

• Safety properties: The property must always be true.

• Liveness property: The property must eventually be

true.

Example of safety properties:

• Mutual exclusion: Certain instruction sequences should

not be interleaved. For example, when a process is
writing the name of a file in the printer spool, it should
not be interrupted and another process should not
overwrite the name of the file.

• Absence of deadlock: Two or more processes should not

wait forever without doing any useful work. For
example, suppose there are two processes in a system
and both require a magnetic tape and a printer for
completion. There is only one magnetic tape and one
printer.

P1 has taken (sole) access of the magnetic tape and
waiting for the printer.
P2 has taken (sole) access of the printer and waiting for
the magnetic tape.

The system is deadlocked.

Concurrent Programming
CS304 / CITS3213

LECTURE NOTES 5

11
George J Milne
February 2006

Correctness Properties

Examples of Liveness property: An important example is
fairness. If there is contention (i.e. competition) for some
resource, we should resolve the contention fairly. In other
words, no process should be unfairly denied a particular
resource for a long period of time.

• weak fairness: If a process continuously makes a

request for some resource, eventually it will be granted
the resource.

• strong fairness: If a process makes a request infinitely

often, eventually it will be granted the resource.

• linear waiting: If a process makes a request, it will be

granted the resource before any other process is granted
the resource more than once.

• FIFO: The processes making the requests are placed in

a queue and the requests are granted in that order.

Concurrent Programming
CS304 / CITS3213

LECTURE NOTES 5

12
George J Milne
February 2006

Inductive Proofs

The inductive proof technique will be very useful for proving
safety properties in concurrent programs. Since many
concurrent programs are non-terminating (for example
operating system programs), quite often inductive proof is the
only way to prove correctness for all possible interleavings.

• Basis: Prove the property for the initial state of the

program.

• Inductive step: (inductive hypothesis) Assume that the

property holds after the nth step of the execution
sequence.

Prove that it holds after the (n + 1)st step.

We cannot make any assumption on the execution sequence
since we do not know in advance how the scheduler will
schedule the instructions.

So, we have to prove the inductive step for all possible
interleavings.

See textbook for further details if interested.

