Proceedings of IEEE Southeastcon '92, April 12-15, 1992, Birmingham, AL,

pp. 600-603.

CONCURRENT PROGRAMMING MODEL DEVELOPMENT IN C+ +

Viswanathan Vaidyanathan, Barrett R. Bryant

Dept. of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, AL 35294
InterNet: vaidyana@cis.uab.edu, bryant@cis.uab.edu

ABSTRACT

Blending the object-oriented and concurrent pro-
gramming paradigms will provide a strong programming plat-
form of multiple, independent, concurrent, and interacting
objects which can model real world problems in a patural
fashion. To achieve this aim, we are working on the develop-
ment of an Actor-like model in C++. The Actor model is
based on the message passing mechanism and provides a
conceptual foundation for massively concurrent object-ori-
ented programs. The interest in this project is about how an
inheritance-oriented language like C++ aids in the develop-
ment of the actor model and how Unix interprocess commu-
nication facilities are useful in realizing the message passing
mechanism. This model gives an additional set of constructs
in C++ providing active objects.

1. INTRODUCTION

Object-oriented programming is a relatively new
programming paradigm which facilitates the software engi-
neering principle of reusability of code. It provides for capa-
bilities of programmer—-defined objects, classes, inheritance,
data abstraction or information hiding, strong typing, and
polymorphism. Objects are program modules which model
and implement conceptual and physical entities that appear
in problem domains. Derived classes inherit members of their
parent classes and objects are instances of classes. Objects

are self contained entities.

In a concurrent programming environment, partici-
pating entities execute concurrently. There is a necessity for
interaction between the entities and this can be provided by
shared memory, message passing or remote procedure calls
[Andr83]. Message passing can be classified according 1o the
send and receive mechanism, call and reply mechanism and
synchronous and asynchronous mechanisms [Tomi89].

In object-oriented programming a problem is repre-
sented in terms of autonomous objects which function inde-
pendently of each other. In principle, these self contained ob-
jects may carry out computations in parallel [Hewi87]. So

it is a natural extension to include concurrent programming
capabilities in the object-oriented metaphor whose very aim
is the development of multiple, independent and interacting
entities [Yone87].

In this research we are working on the development
of an actor-like model in C++. An actor modelis a conceptu-
al model for concurrent object-oriented programming based
on the message passing paradigm. It is seen that an inheri-
tance~oriented language like C++ aids in the development of
the actor model. We find that the various Unix interprocess
communication facilities are useful in realizing the message

passing mechanism.
2. THE ACTOR MODEL

The Actor model is a concurrent object-oriented
model proposed by {Agha86]. In this model, everything in
the system is taken to be an actor. Actors are computational
agents which carry out their actions in response to incoming
communications. In principle, the concept of actors provides
a coﬁceptua.l foundation for massively concurrent object-ori-

ented programs.

All actors are characterized by an identity and a
current behavior. Once an actor is created, its identity is not
changed but its behavior is changed in response to messages.
The identity of the actor is represented by a mail-address and
a current behavior is composed of a set of acquaintances and
a script that defines the actions that the actor will perform
upon receipt of the next message. Associated with the mail-
address of an actor is a mail-queue that is used to buffer mes-
sages that have been sent to the actor but not yet received by

some behavior.

In response to processing a communication targeted
10 an actor, the behavior of an actor consi: s of three kinds
of actions:
a) An actor may send communications 1o specific ac-
tors whose mail address it knows, i.e., sending communica-
tion to its acquaintances.

b) Anactor may specify a replacement behavior which

0-7803-0494-2/92 $3.00€)1992 IEEE

600

will accept the subsequent communications.

¢) An actor may creale new actors.

3. DESIGN OF ACTORS AND THEIR
ACTIONS USING C++

This section explains how we have developed the
characteristics of the Actor model in C++ by also making use
of the Unix interprocess communication facilities.
Rationale for the Devel 2 Model in C

C++ is an extension of the C language which pro-
vides for object-oriented facilities [Stro86]. It includes fea-
tures such as inheritance, data abstraction, function proto-
types, etc. [Pohl89]. We can use C++’s higher level
constructs with a good runtime efficiency. Development of
the characteristics of an actor is aided by the basic class struc-
ture in C++ which can define member variables and func-
tions. The inheritance mechanism for creating class hierar-
chies found in C++ makes it possible to create abstractions
that support actor concurrency. The constructor facility in
C++ is useful in instancing active objects. The message pass-
ing between the actors are implemented using the Unix inter-
process communication facility, sockets [Sun88].

Basic A T Class Definiti

An actor, essentially has a two-tuple representa-
tion as follows:

Actor_name(identity, behavior)

The basic structure of the actor is defined as a class
ACTOR_Type. This class has various member functions for
defining the behavior, message queue and mail address.

Since the actor is made of some active components
like message queue and behavior, we require active Unix pro-

cesses to define them.

class ACTOR_Type

At this level, the basic ACTOR_Type class is de-
fined with two member functions for the behavior and mes-
sage queue, which are 1o be forked as Unix processes. Other
member functions which are part of this ACTOR_Type class
are the ones which define the primitive actions of an actor

- send, become and create.

class ACTOR_Type {
public :

virtual messages();
virtual script();
virtual behavior(/* script of actions */);
/* Unix process */
virtual mail_addr();
virtual message_queue();
/* Unix process */
virtual acquaintance_list();

ACTOR_Type(); /* Constructor */
protected :

virtual send(destination,message);
virtual become(what,message);
virtual create(who,message);

Behavior
Process

Looping process Message Queue

Process

Looking for messages
in message queue

Waiting for messages
from other actors

Performing actions
corresponding to
each message

Queueing them up
when messages
arrive

/* Definition of other member functions
send, become, create */

class check_acc :

public ~ ACTOR_Type

public
messages() {

withdraw . . .
deposit . . .

}
script() {

action on withdraw . . .
action on deposit . . .

}
mail_addr();
acquaintance_list();
) check_acc(); /* Constructor */

Defining the Basic Actor Structure

601

check_acc checkl;

Hierarchical Structure of the Actor Definition
User Level Definiti
In this subsection, we will examine what are the

definitions needed by the user for using the base AC-
TOR_Type class

e The user derives a subclass of actor, specific to the
problem, from the base ACTOR_Type class.

e The identity of the actor is established by defining

the mail address as a socket to the message queue process.

e Different messages that can be received by that sub-
class actor are declared as member functions.

® The script of actions corresponding to these mes-
sages must be defined bere.

o The different acquaintance actors of this actor class
are listed.
Identity of the actor

The message queue process of each actor creates

a stream socket, binds a name to it, and waits for receiving
communication requests from other processes. This is the
identity of that actor. The behavior process of actors which
intend to send messages to other actors, connects with the
socket created by the message queue process of the target ac-
tor and sends the message.
1 . ¢ Active Obj

To instance an actor of the user derived class, which is
an active object, we make use of the constructor facility in
C++. In the base ACTOR_Type class, we have a constructor
ACTOR_Type. Inside this constructor there are statements
for forking the behavior and message queue processes. Vari-
ous details defined at the user level, such as the messages that
can be received and the script of actions corresponding to
them, are passed back as parameters to this ACTOR_Type
constructor using the modified constructor at the derived class
level. So when an instance of this class is created, the corre-
sponding active processes are forked thereby giving an active
object.
Actions of an Actor

¢ The action of sending messages to different actors
can be effected by the primitive:

send <target_actor> <message>
At the lower level, the behavior process of the send-

er actor connects through the common socket to the message
queue process of the target actor and sends the message which

gets queued up in the target actor’'s message queue.

create

other
actor
new actor

Actions of an Actor

602

® Actors may be created by creating an instance of
a class in C++. This new actor can inherit the acquaintances
of the actor which has created it. When an actor is created,
message queue and script processes are also created. For the
created actor the mail queue is new. The behavior process
of the original actor can proceed after the creation of the new
actor.

® A replacement behavior is specified by identifying
another actor that will control the processing of further mes-
sages. This is visualized as an actor becoming another actor.
The message queue part of this actor is the same as the pre-
vious actor but only the behavior part of the actor is changed.
So this actor starts executing all the messages next to the one
which has initiated this actor. The behavior process of the

original actor exits after specifying the replacement behavior.

4. EXAMPLE USING ACTOR MODEL

Let us consider an example of checking and savings
account implemented using our model. The pseudocode for

the behavior part of a 'checking account’ actor is as follows:

check_acc :: script() {
if (message = withdraw(amount)) {
if (amount > balance)
become(overdrawn_check_acc,
withdraw(amount))
else send(balance, withdraw(amoum));

}

'Check_acc’ is an actor and 'balance’ is its ac-
quaintance. If the amount to be withdrawn is less than the
‘balance, a message is sent by the "check_acc' to 'balance’
to that effect. This illustrates the send action of an actor.
If balance is less than the amount to be withdrawn, then
'check_acc’ cannot service that request. Instead it becomes
an ‘overdrawn_check_acc' actor which responds to that
message. This is a case of replacement of behavior.

Consider the situation where we allow the creation
of an 'overdraft’ actor. When the 'withdraw’ request cannot
be honored by the *check_acc’, it creates an 'overdraft’ actor
which tries to withdraw from the ’savings_acc’, if enough
'balance’ is available there.

if (message == withdraw(amount)) {
if (amount > balance) {
create(overdraft od_actor,
withdraw(amount));
send(self, insensitive);

}

The 'overdraft® actor is created with the message
that some 'amount’ has to be withdrawn. While the 'over-
draft’ actor is working on the withdrawal, the 'check_acc’
actor, which is indicated as self’, should be just buffering
all the subsequent messages except for the reply message from
the ‘'overdraft’ actor. This is achieved by making the
'check_acc’ insensitive. The ’overdraft’ actor will either
succeed or fail in making the withdrawal depending upon the

balance available in the ’savings_acc’.
5. CONCLUSION

In this paper we discussed the connection between
object-oriented programming and concurrent programming.
We discussed the development of the Actor model in C++ to
achieve the advantages of both concepts. We gave a high lev-
el design of how the actor model is implemented in C++ by
making use of the Unix interprocess communication facili-
ties. So as an addition to the passive objects that can be in-
stanced from C++ classes, this model gives an extra set of
constructs which provide for active objects. Currently the
model is being simulated on a um'pl;oc&ssor machine. As fu-
ture work we could extend this model so that it could be ex-
ecuted on different platforms like the shared memory Sequent
Balance and other distributed and fine grained machines
which would provide a more natural, efficient platform for
this model.

603

[Agha86]

{Andr83]

[Hewi87)

[Pohi89]

[Stro86]

{Sunss]

[Tomi89]

[Vaid91]

[Yones87]

6. REFERENCE

Gul A. Agha, Actors: A Model of Concurrent

Computation in Distributed Systems, The MIT
Press, 1986.

G. Andrews, F. Schnejder, 'Concepts and No-
tations for Concurrent Programming', ACM

Computing Surveys, Vol. 15, No. 1, March
1983, pp. 3-43.

Carl Hewitt, Gul A. Agha, 'Actors: A Concep-
tual Foundation for Concurrent Object-Ori-
ented Programming’, in Research Directions in

Object-Oriented Programming, eds. Bruce
Shriver, Peter Wegner, The MIT Press, 1987,
pp. 49-74.

Ira Pohl, C++ for C Programmers, Benjamin-
Cummings, 1989.

B. Stroustrup, The C++ Programming Lan-
guage, Addison-Wesley, 1986.

SUNOS Reference Manual, Sun Microsys-
tems, 1988.

C. Tomlinson, M. Scheeval, 'Concurrent Ob-
ject-Oriented Programming Languages’, in
Object-Ori i C Datat i
Applications eds. W. Kim, F. Lochovsky, Ad-
dison-Wesley, 1989, pp. 79-124.
Viswanathan Vaidyanathan, 'Development of
an Actor~like Modél in C++', Proceedings of
the 29th Annual ACM Southeast Regional
Conference, 1991, pp. 323-328.

A. Yonezawa, M. Tokoro, Object Oriented

Concurrent Programming, The MIT Press,
1987.

