
CS2 Advanced Programming in Java note 9 CS2Bh 1.3.2002

CS2 Advanced Programming in Java note 9

Concurrent Programming in Java

This note and the next introduce concurrent programming in Java. After working
through this one you should be able to say why concurrent programming is
useful, and make simple use of Java threads.

Introduction

You probably already know how a multitasking operating system shares re-
sources between several processes running on a single machine. Clearly this
is vital for a multiuser system, but it offers other benefits too.

� Efficient use of mixed resources. While one program is waiting for a disk to
spin, another can get on with some computation.

� Responsiveness. A program can begin processing a user request without
having to wait for everything else to finish first. Similarly, the system can
swiftly respond to a hardware interrupt.

� Flexibility. In a windowed GUI, for example, several applications can all be
ready to receive input, with the user free to choose between them.

These aren’t just for several applications sharing one processor; they also make
sense within a single program too — think about an impatient user interact-
ing with a web browser. Writing an application that uses several simultaneous
strands of control is concurrent programming. Some programming languages
provide explicit support for concurrency; many more do not, which can make life
difficult.

Within a single application we usually refer to the strands of control as threads
rather than processes. There are various differences in how threads and pro-
cesses operate. Typically, processes are explicitly supported by the operat-
ing system, which controls switching between them; while threads might just
be simulated by a programming language environment. Moreover, different
processes use separate memory segments and communicate with one another
through pipes, files, or other mechanisms provided by the operating system;
while threads often share memory and can communicate directly by reading and
writing this memory.

The degree to which threads are actually concurrent varies between plat-
forms, depending on how aggressively control is transferred from one to another.

1

CS2 Advanced Programming in Java note 9 CS2Bh 1.3.2002

� Non-preemptive scheduling (coroutines): threads only lose control when
they explicitly give it up.

� Preemptive scheduling: control may switch between threads at any time.

� Simultaneous execution: on a multiprocessor system there may truly be
more than one thread running at the same time.

The code that oversees this is a scheduler; as well as deciding when to switch
control, it will have some policy about which thread to run next.

Concurrent programming takes advantage of the ability to several things at
once, even if that means sharing time slices. This is rather different from par-
allel programming, where the main goal is to speed up large computations by
spreading them over several real processors. However, concurrent and parallel
programmers do of course have some common concerns.

Java threads

Java supports concurrent programming as an integral part of the language. This
means that threading is always available, though how concurrent this is can vary
from one implementation to another: all the way from non-preemptive schedul-
ing (“after you”; “no, after you”) right up to simultaneous execution on multi-
processors. This “slackness” in the definition of Java is intended to allow imple-
menters maximum freedom to take advantage of whatever features their platform
offers. However, the downside of this is that a program which works in one way
on one platform might work quite differently on another platform, unless the
programmer takes great care to avoid this. (Bugs in concurrent programs are
frequently very subtle and can be very hard to detect!!)

A running thread is an instance of class Thread, and code can always find out
what thread it is in with the class method Thread.currentThread(). A fresh thread
is created with new like any other object; it then needs to be started off running.

Thread t = new Thread(); // Get a fresh thread
t.start (); // Set it going
... // Do my own thing
t.join (); // Wait for thread t to finish

In the middle here there are two threads running concurrently: the original
one, and an additional thread t. Sadly, t won’t actually do any computation
unless we assign it some code.

Calling the start method on any thread will in turn invoke its run() method.
By default, this does nothing, but a subclass of Thread can override it to do
something useful (another good example of dynamic binding in use).

class MessageThread extends Thread {
private String message;
public MessageThread (String m) { message = m; }

2

CS2 Advanced Programming in Java note 9 CS2Bh 1.3.2002

public void run () { System.out.println(message); }
}

The following code prints two messages in an indeterminate order.
Thread mt = new MessageThread("That thread");
mt.start ();
System.out.println ("This thread");

A subclass of Thread can also override other methods to add behaviour — for
example, by putting initialization code into start ().

The life-cycle of a thread

A Java thread has five states: born, running, runnable, dormant, and dead.
(There are actually a few others, which we won’t worry about here.)

� Once a thread is born, starting it makes the thread runnable.

� The scheduler switches the thread between runnable and actually running.

� Occasionally the thread may go from running to dormant, waiting for some
external stimulus; when that arrives, it becomes runnable again.

� When completed, a running thread becomes dead. Data that it holds may
persist for other threads to collect.

Some Thread Methods

getPriority and setPriority Every thread has an integer priority. In general the
scheduler will run a high priority thread in preference to a low priority one.

yield Class method that lets a non-preemptive scheduler switch threads.

sleep Class method that pauses the current thread for a given length of time.

join Waits for a thread to finish, possibly within some time limit.

interrupt Wakes up a dormant thread, raising an InterruptedException in it. If the
target thread was running anyway, merely sets a flag that can be checked
with Thread.isInterrupted ().

Sharing data and synchronization

When threads share data, they must tread carefully. Suppose two threads shar-
ing an integer a execute a=a+1 and a=a � 2 at the same time. Depending on the
scheduler, a may end up with any one of four values, different from one run to
the next. The problem is that although Java guarantees that certain atomic oper-
ations are indivisible, these are quite small. So a=a+1 breaks up as read a; add 1;
write a; and between any two the second thread might come in and modify a.

3

CS2 Advanced Programming in Java note 9 CS2Bh 1.3.2002

The situation can be even worse in the case of genuinely multiprocessor imple-
mentations of Java, since implementations are permitted to make a distinction
between main memory (where the “official” copy of all the variables is stored) and
a separate working memory local to each thread. This can lead to a big increase
in efficiency, but it also means that changes to a thread’s working memory are
not instantly reflected in changes to the main memory. There can therefore be a
delay (or latency) between when a thread makes a change to its working memory
and when that change is visible to other threads. In fact, the definition of Java is
rather loose with regard to exactly when and how often the main memory needs
to be updated to reflect changes to the working memory, and vice versa. As you
can imagine, this can lead to a whole host of subtle problems arising from the
fact that read/write operations to the memories can happen in different orders.

Fortunately, Java provides mechanisms for ensuring that while a certain bit
of code is running, other threads cannot interfere with it. For instance, when we
need to be sure that a method on an object is only used by one thread at a time,
we declare it to be synchronized. Java guarantees that for any given object at
most one synchronized method will run at a time. If a second thread tries to call
a synchronized method on the same object, then it will block (become dormant)
until the first thread has finished.

A common example of this is when an object has some private data that must
be kept in a consistent state; then all methods that modify the state, or expect
to read it consistently, should be marked as synchronized. The Complex class
shown below demonstrates this. It encodes a complex number in both rectan-
gular and polar forms, and to make sure that all four instance variables change
together both set methods are synchronized. The get methods are unsynchro-
nized as each fetches only a single float value.

class Complex {

private float x,y, r , theta;

float getx () { return x ; }
float gety () { return y ; }

float getr () { return r ; }
float gettheta () { return theta ; }

synchronized void setRect (float x, float y) {
this.x = x ; this.y = y;
r = (float)Math.sqrt(x � x+y � y);
theta = (float)Math.atan2(y,x);

}

synchronized void setPolar (float r, float theta) {
x = r � (float)Math.cos(theta);
y = r � (float)Math.sin(theta);
this.r = r ; this.theta = theta;

4

CS2 Advanced Programming in Java note 9 CS2Bh 1.3.2002

}
}

Synchronization gives a method only limited exclusivity: while a synchronized
method for an object is running, other non-synchronized methods of the same
object can still run concurrently, as can methods synchronized on any other
object.

To implement synchronization, every Java object has a lock or mutex (for “mu-
tual exclusion”) which can be held by only one thread at a time. Threads waiting
to collect the lock are kept in a queue until it becomes free. How the lock itself
is implemented is platform-dependent: Java may use locks provided by the op-
erating system, or take advantage of special test-and-set processor instructions.

If synchronized methods from different objects call each other in a nested
fashion, a single thread will acquire several locks. A synchronized method may
also call other synchronized methods from the same object, as its thread already
holds the lock (Java locks are reentrant).

Sometimes we don’t need the whole of a method to be run under a lock, just
some critical section of code. This is done by writing

synchronized (object) { statements }

which executes the given statements having first obtained the lock attached to
the given object. Thus, declaring a whole method to be synchronized amounts to
the same thing as protecting the whole of its body by writing synchronized (this) { ... }.

Ian Stark 2002, John Longley 2004

5

