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Concurrent Programming
Read: Bryant & O’Hallaron Chapter 13
Until now: execution involved one flow of 
control through program
Concurrent programming is about programs 
with multiple flows of control
For example: a program that runs as multiple 
processes cooperating to achieve a common 
goal
To cooperate, processes must somehow 
communicate
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Inter Process Communication (IPC)
1. Using files

Parent process creates 2 files before forking 
child process
Child inherits file descriptors from parent, and 
they share the file pointers
Can use one for parent to write and child to read, 
other for child to write and parent to read

2. OS supports something called a pipe
corresponds to 2 file descriptors (int fd[2])
Read from fd[0] accesses data written to fd[1] in 
FIFO order and vice versa
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Other IPC Mechanisms
3. Processes could communicate through 

variables that are shared between them
Shared variables, shared memory; other 
variables are private to a process
Special OS support for program to specify 
objects that are to be in shared regions of 
address space

4. Processes could communicate by sending 
and receiving messages to each other

Special OS support for these messages
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More Ideas on IPC Mechanisms
5. Sometimes processes don’t need to 

communicate explicit values to cooperate
They might just have to synchronize their 
activities
Example: Process 1 reads 2 matrices, Process 2 
multiplies them, Process 3 writes the result 
matrix
Process 2 should not start work until Process 1 
finishes reading, etc.
Called process synchronization
Synchronization primitives

Examples: mutex lock, semaphore, barrier
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Programming With Shared Variables
Consider a 2 process program in which both 
processes increment a shared variable

shared int X = 0;
P1: P2:

X++; X++;

Q: What is the value of X after this?
Complication: Remember that X++ compiles 
into something like

LOAD R1, 0(R2)
ADD R1, R1,  1
STORE 0(R2), R1
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Problem with using shared variables
Final value of X could be 1!
P1 loads X into R1, increments R1
P2 loads X into register before P1 stores new value into X
Net result: P1 stores 1, P2 stores 1

Moral of example: Necessary to synchronize 
processes that are interacting using shared variables
Problem arises when 2 or more processes try to 
update shared variable
Critical Section: part of program where shared 
variable is accessed like this
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Critical Section Problem: Mutual Exclusion

Must synchronize processes so that they 
access shared variable one at a time in 
critical section; called Mutual Exclusion
Mutex Lock: a synchronization primitive

AcquireLock(L)
Done before critical section of code
Returns when safe for process to enter critical section

ReleaseLock(L)
Done after critical section
Allows another process to acquire lock
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Implementing a Lock
int L=0; /* 0: lock available */

AcquireLock(L):
while (L==1); 
L = 1;

ReleaseLock(L):
L = 0;

/* `BUSY WAITING’ */
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Why this implementation fails
while ( L == 1) ;

L = 1;

wait: LW R1, Addr(L)

BNEZ R1, wait

ADDI R1, R0, 1

SW R1, Addr(L)

Process 1 Process 2
LW  R1 with 0

LW   R1 with 0

BNEZ

ADDI

SW

Enter CS

BNEZ

ADDI

SW

Enter CS time

Assume that lock L is currently 
available (L = 0) and that 2 
processes, P1 and P2 try to acquire 
the lock L

Context Switch

Context Switch IMPLEMENTATION ALLOWS 
PROCESSES P1 and P2 TO BE IN 
CRITICAL SECTION TOGETHER!
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Busy Wait Lock Implementation
Hardware support will be useful to implement 
a lock
Example: Test&Set instruction
Test&Set  Lock:

tmp = Lock
Lock = 1
Return tmp

Where these 3 steps happen atomically
or indivisibly.
i.e., all 3 happen as one operation (with 
nothing happening in between)

Atomic Read-Modify-Write (RMW) instruction
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Busy Wait Lock with Test&Set
AcquireLock(L)

while (Test&Set(L)) ;
ReleaseLock(L)

L = 0;
Consider the case where P1 is currently in a 
critical section, P2-P10 are executing 
AcquireLock: all are executing the while loop
When P1 releases the lock, by the definition 
of Test&Set exactly one of P2-P10 will read 
the new lock value of 0 and set L back to 1
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More on Locks
Other names for this kind of lock

Mutex
Spin wait lock
Busy wait lock

Can have locks where instead of busy 
waiting, an unsuccessful process gets 
blocked by the operating system

14

Semaphore
A more general synchronization mechanism
Operations: P (wait) and V (signal)
P(S)

if S is nonzero, decrements S and returns
Else, suspends the process until S becomes 
nonzero, when the process is restarted
After restarting, decrements S and returns

V(S)
Increments S by 1
If there are processes blocked for S, restarts 
exactly one of them
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Critical Section Problem & Semaphore
Semaphore S = 1;
Before critical section: P(S)
After critical section: V(S)
Semaphores can do more than mutex locks

Initialize S to 10 and 10 processes will be allowed 
to proceed
P1:read matrices; P2: multiply; P3: write product
Semaphores S1=S2=0;
End of P1: V(S1), beginning of P1: P(S1) etc
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Deadlock
Consider the following process:

P1: lock (L); lock(L);
P1 is waiting for something (release of lock 
that it is holding) that will never happen
Simple case of a general problem called 
deadlock
Cycle of processes waiting for resources held 
by others while holding resources needed by 
others
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Classical Problems
Producers-Consumers Problem

Bounded buffer problem
Producer process makes things and puts them 
into a fixed size shared buffer
Consumer process takes things out of shared 
buffer and uses them
Must ensure that producer doesn’t put into full 
buffer or consumer take out of empty buffer
While treating buffer accesses as critical section
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Producers-Consumers Problem
shared Buffer[0 .. N-1]
Producer: repeatedly

Produce x
Buffer[i++] = x

Consumer: repeatedly

y = Buffer[- - i]
Consume y

; if (buffer is full) wait for consumption
; signal consumer

If (buffer is empty) wait for production

; signal producer
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Dining Philosophers Problem
N philosophers sitting around a circular table 
with a plate of food in front of each and a fork 
between each 2 philosophers
Philosopher does: repeatedly

Eat (using 2 forks)
Think

Problem: Avoid deadock; be fair
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THREADS
Thread

Thread of control in a process
`Light weight process’

Weight related to
Time for creation
Time for context switch
Size of context

Recall context of process
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Threads and Processes
Thread context

Thread id
Stack
Stack pointer, PC, GPR values

So, thread context switching can be fast
Many threads in same process that share 
parts of process context

Virtual address space (other than stack)
So, threads in the same process share 
variables that are not stack allocated

22

Thread Implementation
Could either be supported in the operating 
system or by a library
Pthreads: POSIX thread library

int pthread_create
pthread_t *thread, const  pthread_attr_t *attr, void 
*(*start_routine), void *arg

pthread_attr
pthread_join
pthread_exit
pthread_detach
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Synchronization Primitives
Mutex locks

int pthread_mutex_lock(pthread_mutex_t *mutex)
If  the  mutex is already locked, the calling thread blocks 

until  the  mutex becomes  available. Returns with the 
mutex object referenced by mutex in the locked state 
with the calling thread as its owner. 

pthread_mutex_unlock
Semaphores

sem_init
sem_wait
sem_post
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PARALLEL ARCHITECTURE
Parallel Machine: a computer system with more 

than one processor
Question: What about a network of machines?

Yes, but time involved in interaction 
(communication) might be high, as the 
system is designed assuming that the 
machines are more or less independent
Special parallel machines might be 
designed to make this interaction overhead 
less
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Classification of Parallel Machines
Flynn’s Classification

In terms of number of Instruction streams and 
Data streams
Instruction stream: path to instruction 
memory (PC)
Data stream: path to data memory
SISD: single instruction stream single data 
stream
SIMD
MIMD

26

Classification 2:
Shared Memory vs Message Passing

Shared memory machine: The n processors 
share physical address space

Communication can be done through this shared 
memory

The alternative is sometimes referred to as a 
message passing machine or a distributed 
memory machine

PP P P PP P

Interconnect

Main Memory

PP P P PP P

Interconnect

M MMMMMM
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Shared Memory Machines
The shared memory could itself be distributed 

among the processor nodes
Each processor might have some portion of the 
shared physical address space that is physically 
close to it and therefore accessible in less time
Terms: Shared vs Private
Terms: Local vs Remote
Terms: Centralized vs Distributed Shared
Terms: NUMA vs UMA architecture

Non-Uniform Memory Access
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Parallel Architecture: Interconnections
Indirect interconnects: nodes are connected 
to interconnection medium, not directly to 
each other

Shared bus, multiple bus, crossbar, MIN
Direct interconnects: nodes are connected 
directly to each other

Topology: linear, ring, star, mesh, torus, 
hypercube
Routing techniques: how the route taken by the 
message from source to destination is decided
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Indirect Interconnects
Shared bus Multiple bus

Crossbar switch
Multistage Interconnection Network

2x2 crossbar
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Direct Interconnect Topologies

Linear Ring
Star

Mesh
2D

Torus

Hypercube(binary n-cube)

n=2 n=3
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X: 0

Shared Memory Architecture: Caches

X: 0

Read X Read X

X: 0

Read X

Cache hit: 
Wrong data!!

P1 P2
Write X=1

X: 1

X: 1

32

Cache Coherence Problem
If each processor in a shared memory 
multiple processor machine has a data cache

Potential data consistency problem: the cache 
coherence problem
Shared variable modification, private cache

Objective: processes shouldn’t read `stale’ 
data
Solutions

Hardware: cache coherence mechanisms
Software: compiler assisted cache coherence
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Example: Write Once Protocol
Assumption: shared bus interconnect where 
all cache controllers monitor all bus activity 

Called snooping
There is only one operation through bus at a 
time; cache controllers can be built to take 
corrective action and enforce coherence in 
caches

Corrective action could involve updating or 
invalidating a cache block
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X: 0

Invalidation Based Cache Coherence

X: 0

Read X Read X

X: 0

Read X

Invalidate

P1 P2
Write X=1

X: 1
X: 1

X: 1
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Snoopy Cache Coherence and Locks
Test&Set(L)

L: 1

Test&Set(L) Test&Set(L) Test&Set(L)

L: 1 L: 1 L: 1

L: 0

Test&Set(L)
Holds lock; in 
critical sectionRelease L;

L: 0

L: 1L: 0

36

Lock Implementation
while ( Test&Set (L) );
• With snoopy invalidate cache coherence protocol, 

spinning on Test&Set leads to lock pingponging
• High bus utilization slows down memory accesses

repeat
while (L);

until ( ! Test&Set (L) );
• Reads of L will be cache hits – no bus traffic
• When lock is available, many spinners may find that 

L=0. First one to get Test&Set on bus wins and 
causes invalidation of other cache copies
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Lock Implementation …
But, many processes finding L=0 will all try and do 
Test&Set(L) causing a burst of bus traffic
Could try and prevent all of these processes from 
attempting Test&Set at about the same time

repeat
while (L);
wait ( different time for each process );

until ( ! Test&Set (L) );


