
Session T4D

0-7803-6669-7/01/$10.00 © 2001 IEEE October 10 - 13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

T4D-6

ROLE PLAYING IN CONCURRENT PROGRAMMING AS A WAY OF
DEVELOPING ACTIVE LEARNING

Osvaldo Clúa1 and María Feldgen2

1 Osvaldo Clúa, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina, oclua@ieee.org
2 María Feldgen, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina, mfeldgen@ieee.org

Abstract Concurrent programming is not only a
programming paradigm, but a powerful structuring tool for
applications that are logically comprised of asynchronous
components. Although it is a conceptually simple
abstraction, concurrent programming is challenging
because processes interact with themselves in several
obscure ways. When students are caught in the
synchronization traps, they tend to blame the compiler; the
Operating System, the synchronization primitives, but they
are not ready to discover their programming errors. We
tried several methods of sequencing the material and
guided problems without result; students failed to attack
the concurrent issues with the necessary ingenuity. During
the last term we tried a more integral "kinesthetic" way,
with promissory results.

Index Terms Active learning, Concurrent programming
Software design, Teamwork.

INTRODUCTION

Concurrent Programming deals with defining programs
whose actions may be performed simultaneously. Though
the concurrent paradigm seems the natural way of modeling
many target domains, it is by no means easy to use. The
different actors, threads, processes or objects, interact with
themselves in different and perhaps obscure ways. Most
software design techniques yield sequential program
structures. But concurrency is a very natural concept, and
when explained seems to pose little difficulty to our students
proficient in sequential programming. But when they put
hands on the work, the unforeseen ways of interactions
appear as program malfunctions. The non deterministic
nature of actors interactions present themselves as random
failures. Our students tend to blame the compiler, the
operating system, the programming environment, everything
but their design. In time we reached the conclusion that the
problem was that students do not design their programs with
concurrence in mind. In fact, they were not able to relate the
process interactions that occur in concurrent programs to
resource management and communication situations
explained in the course. In this paper we present a brief
history of our teaching experiences, how we reached this

conclusion and the way we found to (hopefully) solve this
problem.

TEACHING CONCURRENT PROGRAMMING

In the middle 80's Concurrent programming was introduced
as part of a regular course called Computer Systems III,
whose aim was to offer a suitable follow-on to the Operating
Systems course. The course included items such as Data
Base Machines, Real Time Data Acquisition, RISCS
machines and others. It was developed as a number of non-
formal concepts around the notions of semaphores, Critical
Sections and monitors, in line with the Belfast Seminar at
Queens University [1] and the classic Hansen's book [2]. It
was targeted to Systems and Electronic Engineering major as
an elective course. By 1996, a major revision of Engineering
grades was made in our University, following in part
ACM/IEEE Computing Curricula 91. It introduced some
new policies such as early specialization in certain fields. As
a result, Concurrent Programming began to be offered as a
separate one semester elective course. The first attempts of
implementation were made following the above mentioned
concepts. There were programming assignments to be
resolved in paper but we had no way of making hands on
experience for our students due to the lack of adequate
programming support structures as Computers. Being an
Engineering course, we saw this semi formal approach
frustrating for both, students and faculty.

By 1989 we decided to introduce some programming in
the form of the use of "C" and semaphores. In those days
there was only one UNIX machine in our Department, with 4
terminals and students had to wait in a long queue until they
could get one. "C" details on semaphores are so toilsome,
and technical literature at those times was so superficial that
very few could really complete a programming assignment.
The practical difficulties were so overwhelming that we could
barely determine the result of the experience. The following
years we left the programming assignment as an elective
option and continued with the semi formal approach.

By 1991, Smallada, the work of Prof. Michael B. Feldman
from the Department of Electrical Engineering and Computer
Science of The George Washington University, Washington
DC [3] became a usable option. It is a DOS and MAC based
subset of Ada focused in concurrence. We adopted it and

Session T4D

0-7803-6669-7/01/$10.00 © 2001 IEEE October 10 - 13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

T4D-7

used it as the basis of our programming assignments with
total success. Students were able to build concurrent
programming and to play with different scheduling options
[4]. After two semesters totally based on Ada we began to
reintroduce some of the formal constructs, and we realized
that though students could actually build concurrent
programs, they did not understand the underlying concept.
In 1996 we began to distribute among our students a
GNU/LINUX version, installed on FAT and zipped to give
them access to a working UNIX Systems. We replaced the
formal primitives with C and the outcome did not change.
They were able to build concurrent programs in Ada (GNAT)
but they could not do the same assignment in C.

Our next trial was revisiting our first approach leaving
Ada outside, we based our courses in the formal primitives,
programmed them in "C " and enforced students to use them
in the programming assignment. Then the "bug" showed in
its whole dimension. Students do not design their solution,
they just follow some sort of stepwise refinements from a
working example through a working solution.

HOW STUDENTS WORKED OUT OUR

PROGRAMMING ASSIGNMENT

Constructivists tell us that any new knowledge our students
construct in response to new experiences, will be
incorporated into the framework of knowledge they have
already constructed [5]. This means that the learning we
attempt to provide will be rooted on what students already
know. Our students are proficient in sequential programming,
so they incorporate concurrent programming primitives as
extensions of sequential programming statements. They
believe they understand the concept and they follow on with
the next concurrent concept. When students are asked for a
concurrent programming assignment, they solve it
"sequentially", then they add the "concurrent stuff". And
when things do not work, they rely on the tools the
environment provides to debug their code. They do not
attempt to make a concurrent design and they do not have
the tools (previous experience) to do it. Indeed we do not
know if the next time they will be asked for a concurrent
assignment things will be done in a different way, curricula
times do not allow us for this kind of post course checking.

In the light of this view, we could state by 1997 that
students do not design concurrent programs, they debug
their sequential programs in order to make concurrency work.
A tool such as Ada is designed in order to make this
approach work. Both, Ada 83 [6] and 95 [7] encourage an
object based design using information hiding and abstract
data types. Our students know both techniques since the
time they approved CS2, so they felt self confident in this
environments they follow the language rules, use the
debugging tools to visualize and correct deadlocks and
finally arrive at a solution. The solution often lacks of

elegance of an appropriate design and looks like a pyramid of
fixes. The clean design of Ada and the fact that our students
really know data abstraction kept this fixes only in the
concurrent part. Ada was designed supporting programming
by extension, and this fact was proven by our students.

With the "C and primitives" approach the support of
programming by extension was no more at hand. And
mandatory the primitives prevented students from falling in
the more obscure traps of "C". Actually we attempted to use
raw "C+ IPC" but we found things such as a busy wait
testing the value of a semaphore as it was a (shared) variable.
Inspecting the code the fact that students were not
designing but debugging their code became evident. When
they were asked to tell us about their "developing cycle"
their answers confirmed our observations. Of course, some
preconceived notions such as "programming as a trial and
error activity" [8] have a lot of influence in their attitude.

ADDRESSING THE CONCURRENCY CONCEPTUAL

PROBLEM

As Ben Ari stated clearly in [5], we must ensure that a viable
hierarchy of models is constructed and refined in the learning
process. And we must deal with the sequential programming
model they have. In 1998 and 1999 we tried different
approaches in order to gain understanding of where the
problem resides. In order to let them do some cooperative
learning [9], during one course we asked for a programming
assignment which would be used as the starting point of
their final examination. Though there was some progress in
the way they understood the behavior of their solution; the
"debugging instead of designing" bug was still there.
During the assignment we had to make specific programming
demos in order to show them that compiler and libraries were
working as intended. They were so self confident with their
proficiency in sequential programming that they lacked the
necessary ingenuity to challenge their design.

We also introduced a sequenced way of exposing the
materials we teach. One of the common uses of sequencing
refers to the ordering of curriculum from the more concrete
topics to the more abstract, according to the work of Jean
Piaget. It has been documented as improving student
understanding [8] [10] and the syllabus remains essentially
the same until today's courses. We begin our course with
lectures devoted to a programming way of solving the mutual
exclusion problem, followed by the hardware solutions of the
problem in the same sequence as some Operating Systems
classic books such as Tanenbaum or Silberschatz. After it we
introduce file locking as a mutual exclusion technique. It is
followed by Inter Process Communication primitives and
then, with the adequate framework about concurrent
processes, pipes, messages and semaphores are introduced.
These issues are spiraled by solving some classical problems
again and again using the different approaches. Spiraling

Session T4D

0-7803-6669-7/01/$10.00 © 2001 IEEE October 10 - 13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

T4D-8

allows students to see how new concepts are developed
based on previously mastered ones [11]. Actually, we begin
with the abstract primitives implemented in "C" and work our
way down to the concrete "C" implementation when the
primitive's input, output and effect are well understood. Ada
tasking, threads and Java are left for a second advanced
course.

We saw a real progress in the concurrency
understanding, but there was little progress in the concurrent
programming design. Of course, debugging was also
improved, but it became apparent that analysis is not
synthesis as stated by Bloom's knowledge levels [12].

FREEDOM FOR DESIGNING

In order to improve the primitives understanding, we began
to think in a visualization tool. In [13] there is a survey of
such tools. The authors classify them into algorithm
animation and program behavior visualization. (The work
is later in time than our survey, but its "previous work"
section summarizes their findings in a very useful way). Our
conclusion was that visualization tools will be used (again)
as debugging tools, not too far from the above mentioned
classification.

Stevens [14] in order to help the understanding of some
"C" programming primitives, "converted" the primitives in
command line commands. Cleverly used they allowed to see
the effects of each one. We prepared such a set of command-
lined primitives for our set of abstract semaphores and pipes
primitives, and then an idea appeared. To use the primitives
as designing tools and make use of the fact that the
classroom is a concurrent system. We call this set an
"inspecting and action" tool set.

The setup is straightforward: we make teams of students
in a number according to the problem to solve (for example 5
dinning philosophers), they share a screen but each is in
charge of an X-Window. They have the command line
primitives and other command lines in order to inspect the
values of semaphores and shared areas, and a "personal"
window that can be used for inspecting. They have to
behave as a process cooperating with the other processes.

They are given a few assignments or "games".
Designing a solution for the problem is, of course, the overall
goal, but they must al.so try to make the algorithm fail by
using different time sequences, they are also asked to defeat
their partners algorithm. The algorithm is played by following
some written rules they have to design, and issuing the
primitives on each window. When a process is blocked, its
window has no prompt, so its owner cannot make his/her
following move until he/she has the prompt again. Using
some tools as expect's (x)kibitz [15] the students and
instructors can follow the action from another terminal. The
combination of structured primitives with well defined effects
and the freedom of choosing which action can follow, is the

right amount of tools and freedom to make them design the
solution. The concurrency concept was clearly used from the
beginning because of the number of players.

THE ROLE PLAYING ASSIGNMENT AT WORK

A typical class with a designing assignment works as
follows. In previous meeting students get lectures on the
semaphore and shared memory primitives, and on how to use
the programming and inspecting tools. They have previous
background on shell programming and on the use of expect,
kibitz and xkibitz. One of the classical concurrent problems
is explained. Students make teams with one or two members
more than the expected number of processes. This allows
them to use "guardian" or "scheduler" processes. The
assignment is twofold. In the first part of the Lab time (two
hours) they have to design a solution for the problem. In the
second part, they get some other teams solution and they
have to test it. The solution is a script with primitives they
have to perform and other behaviors they have to simulate
(for example, "eat spaghetti").

Each team chooses the assembly of computers,
interconnected by X-Window with a server. They may
choose to use only one computer with all the windows or
they may choose to have each one a computer with any
number of shared private windows at their will. Each member
has a window that is where they issue the primitives and act
the algorithm. They take notes of the proposed algorithm and
finally they hand it to the assistant. Usually, the assistant
asks for a performance of the algorithm, but making the
students to change the roles they played during
development. This is a hidden auto evaluation activity.

This methodology of work helps each member to use
his/her own learning style [16] and still make contributions to
the overall designing process. Highly kinesthetic oriented
members tend to share a computer and change places
depending on who is going to "move". More reflective or
individual learners prefer to have their own seat (and their
own disposition of papers and notes) and have their
terminals duplicated in the general one. Active learners use
the private windows to test their ideas before exposing them
to the group. It also helps to accommodate intuitive or
sensing learners, and to change the approach every time
they want. As the team approaches a final result we note that
students tend to move from using only one computer to a
more spread assembly and finally back to the single
computer, but this attitude varies a lot.

And for the concurrent part, students are doing the
concurrence from the beginning of the process. They learn to
think concurrently (if such thing is possible) by seeing true
concurrence in action. And it is not a simulated or visualized
concurrence, but a real one, where the "processors-
processes" are themselves.

Session T4D

0-7803-6669-7/01/$10.00 © 2001 IEEE October 10 - 13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

T4D-9

In the second part of the assignment, where they are
asked to test others team's solutions, they can assemble their
computers with the same freedom that in the first part.
Sometimes we make them test a solution for the same
problem and sometimes for another concurrent problem. We
note also a tendency for the centralized-individual-
centralized movement.

CONCLUDING REMARKS

It is early to conclude if this kind of work performs better in
 allowing each student to deal with the design of concurrent
applications. Our institution allows for 18 months after the
course to sit for the final examination and this period has not
yet expired. Students are asked to hand in a complex
programming assignment before they take the final test, but
they can handle it one month after classes and take the test
17 months after. Also, the unending political and economical
struggle in our country does not allow us to compare
adequately among long periods [17]. Anyhow, the longer the
period from the course to the test, the more difficult it is to
evaluate the course methodology's influence.

The overall work students handed in so far have a
superior quality. Concurrency is part of the design and not
a post fix of an otherwise sequential program. Class time
become a lot more fun for both, students and faculty. And
lecture time seems to be more meaningful because of the
kind of discussions we have.

We believe that a blend of visualization tools to make
hidden features apparent with this inspection and action
tools for facilitating the design is the most adequate to allow
students to create their own framework for incorporating new
concepts. But this model or framework has to be explicitly
addressed [5] if we want to preclude the building of
preconceived notions harmful for the student performance.

REFERENCES

[1] Hoare, C.A.R, Perrot, R.H. (editors), Proceedings of the
1971 Seminar at Queens University: Operating Systems
Techniques. Academic Press, London, 1972.

[2] Hansen, Per Brinch, The Architecture of Concurrent
Programs, Prentice Hall, 1978.

[3] Feldman, R. et alt., Smallada, available at Simtel Software
Collection, http://www.bsdi.com

[4] Feldgen, M; Clúa, O.; Bettini, V. et al., "Contenidos y
Métodos para la Enseñanza de la Programación
Concurrente", Proceedings of the ICIE 95, Facultad de
Ingenieria, UBA, Buenos Aires, 1995, p 89.

[5] Ben Ari, Mordechai, "Constructivism in Computer Science
Education", Proceedings of the ACM SIGSCE 98, Atlanta,
GA, USA 1998, p 257.

[6] Rationale for the Design of the Ada Programming
Language, United States Government, 1986, Chap 13,

"Tasking", available at http://sw-eng.falls-
church.va.us/AdaIC/

[7] Ada 95 Rationale:United States Government, 1994, Chap 9
"Tasking" available at http://sw-eng.falls-
church.va.us/AdaIC/

[8] Powers K., Powers, D., "Making Sense of Teaching
Methods in Computing Education", Proceedings of the
IEEE Frontiers in Education FIE 99, San Juan, Puerto Rico,
1999.

[9] Johnson, D. W., Johnson, R.T., Learning Together and
 Alone. Cooperative, Competitive and Individualistic
Learning, Allyn and Bacon, 1994.

[10] Baldwin, D., "Discovery Learning in Computer Science",
Proceeding of ACM SIGCSE 96, Philadelphia, PA, 1996.

[11] Doran, M., Langan, D., "A cognitive Approach to
Introductory Computer Science Courses, Proceedings of
ACM SIGCSE 95, Nashville, TN, 1995, p.218.

[12] Bloom, B. et al., The Taxonomy of Educational Objectives
McKay, 1956.

[13] Bedy, M., Carr, S., et al, "A Visualization System for
Multithread Programming", Proceedings of ACM SIGCSE
2000, Austin, TX, 2000.

[14] Stevens, W., UNIX Network Programming, Vol. 2, Inter
Process Communications, Prentice Hall, 1999.

[15] Libes, D., "Kibitz - Connecting Multiple Interactive
Programs Together", Software - Practice & Experience,
Wiley & Sons, West Sussex, England, V. 23, V 5, May,
1993.

[16] Hein, T. and Budny, D., "Teaching to Student's learning
styles: Approaches that Work", Proceedings of the IEEE
Frontiers in Education FIE 99, San Juan, Puerto Rico,
1999.

[17] Feldgen, M., Clúa, O., "Social Influence in Student Attitude,
Twelve years of computer network teaching in Argentina".
1999 IEEE Frontiers in Education, San Juan, Puerto Rico,
1999.

