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SIMPLIFYING CONCURRENT PROGRAMMING IN

SENSORNETS WITH THREADING

WILLIAM PATRICK MCCARTNEY

ABSTRACT

Wireless sensor networks (sensornets) are deeply embedded, resource con-

strained, distributed systems. Sensornets are generally developed in an interrupt-

(or event-) driven programming model. Writing event-driven programs is hard. Sen-

sornets are generally battery powered, desiring event-driven executions, for power

efficiency.

This thesis presents TinyThread - a safe, lightweight threading model which

enables sensornet development using procedural programming. TinyThread allows

developers to intermix event-driven programming with threaded programming. This

frees developers to use whichever programming paradigm is preferred for a specific

algorithm. TinyThread operates in the context of TinyOS allowing the concurrency

detection mechanism of TinyOS to aid developers. TinyThread includes a stack

analysis tool, stacksize which computes all the necessary resource requirements. This

cross-platform stack analysis tool enables TinyThread to operate safely across several

hardware platforms. TinyThread is completely modular, so only the components

required need be included. TinyThread is validated through several experiments

testing its power consumption, response time and resource usage.
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CHAPTER I

INTRODUCTION

Writing distributed system programs is hard. This subject has been heavily

researched since the 1970’s, and continues to be highly researched today. Even with

all the additions of resources in modern computing systems, these problems are still

highly researched. A majority of this research is in the domain of fault tolerant, secure,

systems. Most of the research in this area concentrates on nodes with hundreds of

megabytes of RAM and billions of operations per second. To simplify distributed

systems programming, many large steps have been accomplished.

The progress made since the 1970’s has openned the doors to some very prac-

tical solutions to distributed systems problems. The Internet Protocol (IP) solves the

multi-hop routing problem in a clear, and well understood fashion [26]. The Transport

Control Protocol (TCP) layers on top of IP and provides reliable transport between

any nodes with full re-ordering of messages [27]. TCP also has bounds on transport

delays, which can be used to learn of node failures. Even time-synchronization has

been trivialized mainly by Network Time Protocol (NTP) and now by IEEE 1588

(which can achieve sub-microsecond accuracy) [9,22]. There has been a considerable

1
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amount of investigation into group communication middlewares providing reliable,

ordered communication between groups of nodes. These contributions solve a vast

number of communication and synchronization problems inside of distributed sys-

tems.

Nearly all of the aforementioned contributions are currently used on multi-

threaded operating systems, most with virtual memory. With a threaded operating

system, a developer can pretend that each program or thread gets its own processor.

This ability to forget the complexity of managing multiple tasks can significantly

reduce the development time. Modern distributed systems can use some type of dy-

namic memory allocation, which can provide developers another abstraction away

from manual resource allocation. Another common component in the nodes of most

distributed systems is the memory management unit (MMU). The MMU allows de-

velopers to over allocate the memory required for a specific task, and only physically

allocate memory as dynamically required. The MMU also can isolate threads or pro-

cesses into protected memory spaces, which simplifies debugging, since one process

cannot corrupt the memory of another process. These additions in operating systems

and computer architecture further simplify developing distributed systems.

Even with all these improvements, distributed system development still isn’t

easy, but the application, security, and reliablity requirements are ever-expanding.

Applications are no longer bound by research into classical distributed systems, with

some minor exceptions. Distributed systems are used in most industries for everyday

tasks. Systems are built with huge metrics that push the mean time between failures

beyond imagination. All of these are advancements which have not only simplified

distributed system development, but require a significant amount of resources.

A new branch of distributed systems research has recently sprung up in the

application of wireless sensor networks (sensornets). Sensornets provide a much more
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resource-constrained type of distributed system. Sensornet nodes generally have a

microcontroller onboard with anywhere from 1k to 10k of RAM and 16k to 48k

of flash. The resource-constrained nature of sensornets breaks (nearly) all of the

aforementioned contributions.

Sensornets are deeply embedded distributed systems. They are first and fore-

most a distributed network of resource constrained nodes. In most installations, sen-

sornets are battery-powered. This puts a large focus on power consumption. Timing

is a also large issue with sensornets, since if one routine blocks the processor for too

long, a message could get lost. In summary, sensornets are distributed, resource-and

timing-constrained, systems which should be optimized for power efficiency. These

challenges drive researchers to developing better tools and programming paradigms.

The challenges provided by sensornets are not as interesting as the new ap-

plications constantly being found for sensornets. From border security, to structural

monitoring, to guiding firefighters through burning buildings, sensornets are finding

applications in a variety of places [2, 16, 20]. All this has been done using extremely

difficult programming paradigms and a lack of mature tools. Imagine the applications

that could be implemented with better tools, and cleaner programming paradigms.

1.1 The Problem

Multithreading simplifies many programmatic problems. Multithreading/mul-

titasking is by far the most common programming paradigm which even transcends

languages. The typical Computer Science undergraduate program teaches procedu-

ral programming, achieving multiple simultaneous tasks mainly through threads or

processes. In the context of programming methodology, the only difference between

a thread and a process is the separation of memory space. Regardless of the language

being taught, multithreaded programming is understood by nearly every undergrad-
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uate student before they graduate. The popularity of multithreading stems from its

distinct ability to separate out simultaneous tasks inside of a single system.

Despite its popularity, preemptive threading actually introduces concurrency

problems [28]. The simplest example of this problem is two threads sharing a data

structure. If one thread is preempted with the data structure in an invalid state,

the system may deadlock. The root cause of this problem isn’t multithreading; it

stems from preemption. These concurrency problems are generally dealt with using

semaphores, mutexes, or a variety of synchronization primitives. Even though these

primitives fix the concurrency problem, developers must be extremely careful when

and where to utilize them, to avoid performance costs and possible deadlocks. These

synchronization primitives are well known, and are commonly used throughout several

different programming languages.

Implementing threading inside of deeply embedded systems can create three

major additional complications. First, memory resources are limited, which is a large

problem as each thread requires its own stack. Second, these stacks must be allocated

with enough memory so that they cannot overflow, even in the face of multiple inter-

rupts. While the ideas of dynamic stack allocation may appear attractive, statically

allocating resources is extremely desirable in an embedded system. The final possi-

ble problem is the cost of context-switching. Preemptive multithreading gives each

thread a time-slice to run, after which it forces a context switch. Forcing a thread to

preempt every finite period of time makes enormous sense on a system which runs at

1GHz in a fully superscalar fashion, but with a microcontroller running at 1MHz the

same practice of preempting the current task can severely reduce performance.

While some complexities exist, a multithreaded programming paradigm would

be very conveinient for developers to utilize in many applications in the context of

sensornets. Developers could learn to program sensor networks in less time, since the
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programming paradigm and the reasoning methodology is the same as higher level

languages. In contrast, experienced developers could explore much more complex

algorithms, without having to worry about a more complex system of programming

and reasoning. The core of the problem is not so much implementing multithreading,

it is making it accessible and safe in sensornets.

1.2 The Thesis

Multithreading simplifies sensornet development and can be implemented in a

safe way. By using static analysis, all required resources can be determined at compile

time and concurrency problems can be detected. The resource costs of threading can

be understood and controlled. As an example, we present TinyThread.

1.3 The Solution Approach

TinyThread provides safe multithreading for sensornets. TinyThread is a mul-

tithreading library for sensornets that safely and efficiently provides multithreading

capabilities. All the required resources are allocated at compile time. TinyThread

operates in the context of TinyOS, allowing the TinyOS concurrency fault detector

to aide developers. TinyThread uses cooperative threading as opposed to preemptive

threading to simplify the concurrency between local threads.

TinyThread allows developers to write code in the same programming style as

languages like C or Java, while still maintaining tolerable costs. The costs, rated by

importance, are power consumption, response time, and memory consumption (both

program and data memory). TinyThread should optimize for those costs based upon

the requirements of sensornets.
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TinyThread includes several other components besides simple multithreading.

TinyThread also provides access to all levels of the hardware through either existing

functions, or expands support by adding Blocking I/O routines which are commonly

used in threaded platforms. TinyThread is completely modular, so only the parts

required need be compiled. This can reduce the memory footprint(RAM and ROM),

as well as improving the performance of the system. Also included are commonly

found synchronization primitives which are well known from other languages.

TinyThread is a multithreading library for TinyOS, the de facto standard sen-

sornets research platform [13]. TinyOS is a fully event based operating system written

in nesC [11]. TinyOS follows some simple design rules which TinyThread also follows:

• All resources allocated at compile time.

• Analyze for as many problems as possible, prior to execution on a node.

• If it is even statistically rare that something (bad, in particular) can happen,

assume it will happen.

TinyThread allows developers to mix event driven programming with threaded pro-

gramming.

TinyThread implements cooperative multithreading as opposed to preemptive

multithreading, making concurrency analysis of TinyOS functional. This also makes

many of the synchronization primitives rarely used. As opposed to having all threads

contend for the processor at all times, cooperative multithreading allows develop-

ers to choose how long their thread should run. This can be difficult if a thread

must run a very computationaly expensive operation which resides in another library.

But in sensornets, long-running calculations are the exception, not the rule. Also,

TinyThread provides an adapted version with preemption support, although it breaks

any concurrency detection, making much of development more difficult. Cooperative
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multithreading allows for the least amount of transitions possible, since every point

of context switching is explicitly specified. This also allows developers to get a clear

view of what state the memory will be in when it transitions from one thread to the

next.

TinyThread includes a stack analysis tool called stacksize, which not only cal-

culates the stack size of the main loop, but also generates a header file with each of

the stack size requirements for thread. The stack analysis tool is, in general, new

to TinyOS. TinyOS was once been supported by another stack analysis tool, but

only for a specific platform. TinyOS’s model is to detect as many faults as possible

at compile time, but it never automatically analyzes stack size. stacksize overcomes

that limitation, and allows TinyOS developers to validate that no stack overflow can

occur. Also, a cross-platform stack analysis tool means that TinyThread can operate

safely across several different hardware platforms that TinyOS supports.

To validate the thesis, several experiments will be explored. These experiments

will compare threaded versus unthreaded implementations of the same algorithm.

Some of these experiments will measure the power consumption, while others will

test response time. Another set of experiments will analyze resource consumption

with equivalent implementations of the same algorithm.

Included is a review of the primitives included in TinyThread. Following each

primitive is an example application, to show how it simplifies or solves a problem. By

reflecting back on other research, much insight into the differences between threaded

and event driven programming methods are exposed. Finally, a discussion of the

amount of code and its readability, involved in implementing the same algorithm in

different design paradigms.
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1.4 Contributions

This thesis makes several contributions:

• A multithreading for TinyOS, without any invasive modifications to the base

OS.

• A cross-platform stack analysis tool providing a stack usage report, and header

generation.

• A library of blocking I/O routines to simplify development of sensornet appli-

cations.

1.5 Organization of the Thesis

The thesis is organized in the following way. Chapter 2 contains in depth look

at the architecture of TinyThread. Chapter 3 explains the methodology of stack

analysis and stack size calculations. Chapter 4 includes the experiments methodology,

results and discussion. Chapter 5 reviews similar research. Finally, Chapter 6 contains

the conclusions of the results of TinyThread.



CHAPTER II

TINYTHREAD

TinyThread is cooperative multithreading library for TinyOS. It brings the ca-

pability of blocking I/O to an event based programming OS. TinyThread internally

is written in an event driven paradigm, but developers can utilize TinyThread and

its capabilities to write fully multithreaded applications. TinyThread also supports

running preemptive threads, but it is disabled by default. Preemptive threads break

the concurrency detection of TinyOS, also any regular TinyOS routine must be ex-

ecuted in an atomic statement, since those routines are always expected to run to

completion. Preemption is useful for an extremely long calculation, such as running

encryption from a C library.

2.1 Background

Since TinyOS and nesC are a base for TinyThread it is important to explain

their architectures. nesC is a programming language that was created specifically to

support sensornet development [11]. It includes a new object model which is signif-

9
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1 configuration Blink{

2 }

3 implementation {

4 components SingleTimer , Main , LedsC , BlinkM;

5 Main.StdControl -> SingleTimer.StdControl;

6 BlinkM.Timer -> SingleTimer.Timer;

7 BlinkM.Leds -> LedsC.Leds;

8 Main.StdControl -> BlinkM.StdControl;

9 }

Figure 1: nesC Wiring file for Blink application.

icantly different than that of Java or C++. The nesC object model is essentially a

way to wire together seperate modules. These modules can be filled with code more

wiring, creating a hierarchical wiring of objects. These modules are not instantiated

multiple times if they are wired to multiple times, instead there are ways to auto-

matically generate dispatch tables instead. The wiring points on these modules are

called interfaces. These interfaces are truly bidirectional. Calls to lower layers are

called commands and call-backs to upper layers are called events. So each module

has a set of interfaces it uses and another set which it provides. An example wiring

file can be found in Figure 1.

nesC is implemented as a preprocessor to C. So all of these wires and interfaces

get actually replaced with the proper calls. The output of the nesC compiler is a large

C file. One key advantage is that events, or callbacks, are replaced with the function

call, as opposed to requiring a function pointer. Since the call is actually made, it

can possibly be inlined. This is important because it allows extremely light-weight

layers to avoid the overhead involved in a function call. nesC also has something

similar to threads called tasks. Tasks are essentially a way of executing something on

the main loop. Tasks always execute to completion, unless an interrupt occurs, after

which it will continue to execute. Tasks are extremely lightweight and are extremely

fast to execute. One new keyword that nesC adds is the atomic statement. atomic

is a keyword which disables interrupts in the enclosed section. Also included in nesC

is a concurrency analyzer which looks for any data concurrency problems between
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interrupts (async events), events and tasks. This occurs if data is operated upon in

both an async event and the rest of the system. It is important that the data is never

inconsistent regardless of when an interrupt can possibly occur. Developers can use

atomic statements to protect against data corruption.

TinyOS is a lightweight operating system written in nesC for sensornets [13].

TinyOS is essentially a set of nesC components which implement many commonly

required functionalities for sensornets and embedded systems in general. TinyOS

includes a network stack for best-effort transport between nodes (AMSTANDARD).

It also includes several general purpose components such as software timers, and

LED controls. It is important to note how these components interact, using a split-

phase operations [11]. This entails one call, usually a command to a lower layer

starting some transaction. Later on, an event(callback) is signalled from a lower

layer returning either the result or notifying of completion. These allow for extremely

efficient code generation, but it forces developers to break apart their algorithms into

many event handlers.

2.2 Architecture

TinyThread allows developers to fully intermix the event-driven programming

paradigm with the threaded paradigm. This allows for maximum programmability

and functionality. This flexibility stems from its architecture.

2.2.1 Software and Hardware Platform Support

TinyThread is implemented as a library to TinyOS, with versions for TinyOS

1.x and the new TinyOS 2.0. At the time of writing TinyOS 2.0 has not been released,

although TinyThread has been tested with the latest beta release of TinyOS 2.0.

The wiring files differ immensely, as each has version has a different object model.
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For instance, generic objects were introduced in TinyOS 2.0 which can actually be

instantiated. The TinyOS 2.0 version takes advantage of this, simplifying wiring files.

The benefit of the similarities of the interfaces of TinyThread is that it is very simple,

almost trivial, to port applications from one version to the other.

TinyThread supports every platform the official branch of TinyOS supports.

TinyThread was designed to support the most popular sensornet platforms, namely

TelosB (T-Mote), Mica2 and MicaZ. These platforms run using TI MSP430 and

ATMEL ATMega processors. Since most other officially supported platforms use the

same families of processors, TinyThread supports them as well. There are a handful

of research projects which have yielded ports for new platforms using new processors.

Some of these ports, namely the platforms using GCC, can be easily ported. At least

one of the unofficial ports was made to a PIC16F877, which cannot support threading

since it does not have an accessible stack pointer. For all official ports, and many

unofficial ports, TinyThread is supported completely.

2.2.2 Interfacing TinyThread

TinyThread supports several different methods of utilizing its interfaces. It

allows users to use only the transmit portion of the network from a thread, and the

receive may still running an event driven interface. This separation and cleanliness

of code allows a variety of algorithms to be implemented in whichever a developer

should choose. The top level diagram for TinyThread is shown in Figure 2. Notice

how the interfaces at every level are actually exposed to the developer. It should also

be known that TinyThread can be completely bypassed, allowing direct access to the

underlying TinyOS objects. This ability to mix and match features opens developers

to picking and choosing which parts of TinyThread are right for a specific application.
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TinyThread Core SocketSend SocketRecieve

TimerC GenericComm

TinyOS Objects

SocketReadADC

Sensor

TinyThreads Interfaces

Figure 2: Top Level Diagram for TinyThread.

2.2.3 Stack Swapping

To implement threads, some part of the source code must be written in assem-

bly, since there is no way to save the state of the processor and swap stacks in ANSI

C. To facilitate multiple platforms, a separate header must be written for each pro-

cessor family. The header must contain six macros defining inline assembly routines

to do the following:

1. PREPARE STACK - initialized a new thread’s stack

2. PUSH GPR - pushes the general purpose registers

3. PUSH STATUS - pushes any status registers

4. SWAP STACK PTR - swap between two stack pointers

5. POP STATUS - restore the status of the processor
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6. POP GPR - restore the general purpose registers

These six macros each play a specific role in swapping from one thread to

another. PREPARE STACK operates on a new stack and pushes dummy values into

positions, allowing the stack to be switched to later. PUSH GPR pushes more than

just the general purpose registers, it actually pushes any registers whose state needs

to be saved. This includes any special purpose registers, floating point registers or

co-processor registers. PUSH STATUS actually pushes any status registers which may

contain: carry out, carry in, overflow, interrupts enabled, etc. It also may push

any additional stack pointer register, such as a frame pointer or an argument stack.

SWAP STACK PTR does exactly what it claims, it swaps the two stack pointers. On

certain platforms, such as the ATMega series, swapping two stack pointers can be

very difficult if the general purpose registers cannot be damaged. This is not a

problem, since the general purpose registers are already pushed onto the old stack,

and the new stack’s copy of its registers will overwrite any modifications. There are

also two matching stack popping routines.

Swapping the stacks involves more than simply calling these macros; the order

of invocation is incredibly important. The only exception is with PREPARE STACK,

which simply modifies some global data without changing the state of the processor.

Every time these macros are used, they are always used in the following was shown in

Figure 3. Developers who need to implement these basic routines for new processors

can safely assume that these routines will always be called in order. If these macros

were ever invoked out of order, the system would most likely freeze. One important

note on Figure 3 is that the function must not be inlined, since calling the function

itself actually places the program counter on the stack, so it does not have to be

manually stored.
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1 void noinline yield (){

2 PUSH_GPR ();

3 PUSH_STATUS ();

4 SWAP_STACK_PTR ();

5 PUSH_STATUS ();

6 PUSH_GPR ();

7 }

Figure 3: Stack swapping routine demonstrating usage of assembly operations.

Implementing a threading system on a modern PC is far simpler than a mi-

crocontroller. Besides existing threading libraries, there are functions which exist on

many platforms to support implementing user-space threading. For UNIX based sys-

tems there are makecontext and swapcontext, which correspond to PREPARE STACK

and the swapping routines. In Microsoft Windows operating systems, there are rou-

tines called GetThreadContext and SetThreadContext. While these routines do not

directly correlate to the TinyThread stack routines, they can be built upon to form

identical routines. Since all of the stack swapping routines exist, implementing a

cooperative user-space threading library is simple.

2.2.4 Scheduler

The TinyThread scheduler operates inside of a TinyOS task. Essentially, it gets

executed as any other task, except that it may swap to another context. As far as

how this changes the way TinyOS executes, it allows TinyOS to continue running in

the system thread. The TinyThread scheduler will allow one thread to execute until

it blocks. After the thread has blocked, the scheduler switches back to the system

context. If there are any active threads, then the scheduler will post itself back into

the TinyOS scheduler, otherwise it will wait until an event has happened to wake up

a thread before posting itself. Each thread operates like a finite state machine (FSM)

clocked by specific routines. Figure 4 visually shows the FSM for a single thread.

Threads can transition through states of LOCKED, IO, and SLEEPING. All calls out
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of the active state involve the thread itself making one of those calls, forcing itself

inactive. These routines are called by the routines directly exposed to the user as

demonstrated in Section 2.3.

ACTIVEIO

LOCKED

SLEEPING

sleep sets a software timer

Software Timer Fires

Blocking I/O

Matching I/O fires

Attempt to
Lock an already
Locked Mutex

Another thread
Unlocks the 

requested Mutex;
Lock is granted

Figure 4: State Diagram for Thread Scheduler.

The finite state machine, shown in Figure 4, is a purely event-driven system

with some of the events coming from threads. The blocking I/O routines operate in

a very simple manner. When a blocking I/O call is made, the thread begins the I/O

transaction and then goes into the IO state. This thread never returns into an active

state until some other event forces the thread out of the IO state. The thread enters

the LOCKED state when it attempts to lock a mutex which is already locked. The

thread will only leave the LOCKED state when another thread that owns the mutex

calls Mutex.unlock. This state machine is duplicated for each thread.
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1 interface BlockingADC {

2 command uint16_t readADC ();

3 }

4

5 interface Socket {

6 command result_t send(uint16_t address , uint8_t length ,

7 TOS_MsgPtr msg);

8 command result_t receive(TOS_MsgPtr m);

9 }

Figure 5: Blocking I/O interfaces provided by TinyThread.

2.3 Programming Primitives

The ability to switch between contexts is not extremely beneficial, but context-

switching is the basis for implementing better programming primitives. The benefits

of programming with threads compared to a purely event-driven environment is the

ability to use Blocking I/O primitives. Embedded systems with only one task can

block the processor waiting for a specific I/O. In sensornets this is dangerous; if a

processor blocks, a event may be missed.

2.3.1 Blocking I/O Primitives

TinyThread provides several blocking I/O routines for commonly used sen-

sornet activities such as radio and sensor access. These routines block the current

context so they must only be called from inside of a thread, not a task nor an event.

The BlockingADC interface provides the readADC() function (Lines 1–3 in Figure 5).

When called, this function simply blocks the thread until the data from the A-D

controller becomes available. In the very next line of code, the program can actually

use the data collected from the sensor.

Oscilloscope

The Oscilloscope application that is distributed as one of the samples with

TinyOS is a simple application that samples sensors on a mote, and sends this sampled
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1 void oscope_thread () {

2 struct OscopeMsg *pack;

3 uint16_t reading;

4

5 while (TRUE) {

6 for(i=0;i<BUFFER_SIZE;i++) {

7 call mSleep (125);

8 // Read sample

9 reading = readADC ();

10 if (data > 0x0300) call Leds.redOn ();

11 else call Leds.redOff ();

12 pack = (struct OscopeMsg *)msg.data;

13 pack ->data[i] = reading;

14 }

15 pack ->channel = 1;

16 pack ->sourceMoteID = TOS_LOCAL_ADDRESS;

17 r = call Socket.send(TOS_UART_ADDR ,

18 sizeof(struct OscopeMsg), &msg);

19 call Leds.yellowToggle ();

20 }

21 }

Figure 6: Implementation of the Oscilloscope application using threads. The
Socket Send() routine is wired to a fully buffered fifo sending queue.

data via the UART to a PC. The PC can then visually render the data that the mote

senses. This program responds to three events: (i) a Timer that fires every 125 ms,

(ii) a notification from the ADC interface that data is ready, and (iii) a notification

from the SendMsg interface that the message has been queued for transmission. Every

time the timer fires, the ADC.getData() command is called to read a sample from

the sensor. Then when the data becomes available, a task is posted that actually

sends the message over UART. The result is that the functional code in the program

is split over three separate functions, making it hard to read.

Contrast this with our implementation of the same application written using

TinyThread’s blocking I/O operations, shown in Figure 6. The logic of the program

is now much easier to see, and there is no need for manually ripping the function into

pieces.

The Socket interface (Lines 5–9 in Figure 5) provides blocking operations for

sending and receiving messages. The send() operation in Socket blocks until the

message has actually been sent (until the sendDone() event is raised in a split-phase
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1 void threadBounce () {

2 while (TRUE) {

3 call mSleep (100);

4 call Socket.send(! TOS_LOCAL_ADDRESS , 2, &mymsg);

5 call Leds.greenOn ();

6 call Leds.redOff ();

7 call Socket.receive (&mymsg); // Block until message

8 call Leds.redOn ();

9 call Leds.greenOff ();

10 }

11 }

Figure 7: Implementation of the Bounce application using threads. This example
illustrates the blocking receive functionality in Socket.

1 interface Mutex {

2 command void lock(mutex * m);

3 command void unlock(mutex * m);

4 }

5

6 interface Barrier {

7 command void block ();

8 command void unBlock ();

9 command void checkIn ();

10 }

Figure 8: Synchronization interfaces provided by TinyThread.

implementation). This means that if a node needs to send a series of messages, they

can actually be sent out in a loop rather than ripped apart in several functions. The

receive() operation simply blocks until there is a message waiting to be processed.

Bounce

This is a very simple application intended to illustrate the use of the blocking

receive operation (Figure 7). The application runs on two motes, and two motes

continually bounce a message back and forth. When a mote receives a message, it

turns on its red LED, and when it sends a message, it turns on its green LED. The

interesting piece in this example is on line 7, where the program simply waits for the

next message. The thread does not proceed until a message actually arrives.
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2.3.2 Synchronization

Mutex

The simplest synchronization primitive that TinyThread provides is a way for

threads to acquire mutually exclusive access to some critical section. The Mutex

interface allows a thread to lock() a mutex and enter its critical section. Once it

is done executing its critical section, the thread calls unlock() to relinquish critical

section access to any other thread that may want to use it.

Barrier Synchronization

A barrier is a primitive for rendez vous synchronization among a set of threads [17].

The Barrier interface in the TinyThread library provides two kinds of barrier syn-

chronization. First, it supports pair-wise synchronization between two threads. The

thread that arrives at the barrier first calls the block() command. This causes this

thread to stay in the blocked state until it is woken up by the other thread. When

the second thread has also arrived at the barrier, it calls unBlock(), which causes

both threads to be active again.

Data diffusion protocols are used frequently in sensornets, in a wide variety

of ways [14, 15, 19]. Consider a simple Gossip data diffusion protocol in a network.

Some node initiates the “gossip”, and each node in the network propagates the gossip

until the message reaches the edge of the network. When a node receives a gossip

message for the first time, it marks the neighbor from where the gossip arrived as

its parent. When a node does not have any neighbors other than its parent, it sends

the message back to its parent. When a node has received acknowledgments from all

of its neighbors, it sends the message back to its own parent. In this manner, the

initiating node eventually receives acknowledgment that the entire network has seen

the message.



21

1 void threadIdle () {

2 int i;

3 GossipMsg *rMessage;

4 call Socket.receive (&msg); // Wait for the first message

5 rMessage = (GossipMsg *) msg.data;

6 parent = rMessage ->source;

7 state = ACTIVE;

8 atomic call Leds.redOn ();

9 call ActiveBarrier.unblock ();

10 for (i=0; i<n_nbrs; i++)

11 if (neighbors[i] != parent)

12 sendGossipMessage(neighbors[i]);

13 call CompleteBarrier.block ();

14 state = COMPLETE;

15 atomic { call Leds.redOff (); call Leds.greenOn (); }

16 sendGossipMessage(parent );

17 }

18

19 void threadActive () {

20 int i;

21 call ActiveBarrier.block ();

22 for (i=0; i<n_nbrs; i++) call Socket.receive (& mymsg);

23 call CompleteBarrier.unblock ();

24 }

Figure 9: Implementation of a Gossip diffusing computation through a network. The
two threads in the program synchronize using a pair of barriers.

Figure 9 shows the multi-threaded implementation of this protocol. The two

threads—threadIdle and threadActive—are started at the same time. But the sec-

ond thread blocks until the node enters the ACTIVE state (the node has received its first

gossip message, and is now active in propagating the message). The former thread,

threadIdle is also blocked until the first message arrives. Once the first message

arrives, and the node transitions into the ACTIVE state, threadIdle has also arrived

at the barrier that threadActive is waiting at, and calls ActiveBarrier.unBlock()

to signal the rendez vous. At this point, both threads are active.

threadIdle now proceeds to send out the gossip message to all neighbors

(except the parent). After this, it blocks on another barrier — CompleteBarrier,

waiting until all neighbors have responded to the gossip message. The threadActive

thread waits until it has received acknowledgments from each one of its neighbors,

and when all acks have been received, it unblocks the CompleteBarrier, and with it

the other thread.
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In addition to pair-wise barrier synchronization, the Barrier interface also

supports synchronization of a number of peer threads. In this case, when each thread

arrives at the barrier, it calls the Barrier.checkIn() command. When the last

thread to arrive at the barrier calls checkIn(), all threads that are blocked at the

barrier are woken up at the same time. Using this primitive, all the threads may take

a step (say, a state reconfiguration) together. Moreover, if these threads were running

on different nodes, the barrier can be used for synchronization at the network level.

Rendez Vous-based Message Passing

The TinyThread API can be extended to implement richer synchronization

actions. The current implementation of Socket is one that is layered on top of

AMStandard. According to the semantics of AMStandard, when a node sends a message

using SendMsg.send(), the corresponding SendMsg.sendDone() event tells the node

that the message has been successfully placed in the active message buffer. The node

does not know if the message actually arrived at its destination; that is too much

information.

However, consider a different implementation of Socket that employs a ac-

knowledgment scheme to confirm that a message actually arrived at the destination.

In such an implementation, the send() operation completes only when the sender

has received the ack message from the destination. In this case, the sender thread is

blocked until the destination is ready to receive the message.
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Figure 10: An illustration of rendez-vous synchronization in the Bounce application.
The dotted lines in each node represents periods where the program is blocked waiting
for a message.



CHAPTER III

STACK ANALYSIS

Currently, thread stack size for MANTIS, and many other threaded RTOS’s,

is done through an educated guess by the developer [3]. TinyOS has no built-in

tools to detect stack size, although developers do not have to allocate the stack

size manually. There are tools which can calculate the stack requirement for some

microcontrollers, but it requires special knowledge of the operating system which is

running on the application. To this end, we present a tool which analyzes the stack

usage of TinyOS applications for all platforms which TinyThread supports. To analyze

stack requirements, it is the worst case scenario stack which must be allocated.

TinyThread uses an augmented call-graph to help analyze the stack usage [29].

Static stack analysis has been explained, and even demonstrated by Regehr, et al [25].

Static stack analysis of TinyOS applications can be done in a very simple way. Simply

calculating the stack usage of the main function, added to the maximum stack usage

by any task, then adding all the stack usages of all the interrupt handlers. This

simple approach to stack estimation, shown in Figure 11, although safe to use, grossly

exaggerates the stack requirements.

24
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Usage from Main

Task1

Interrupt 1

Interrupt 2

Interrupt 3

Task 2

Task 3

Stack Usage from 
Main

Maximum Stack
 Usage from Tasks

Sum of all Stacks from Interrupts

Figure 11: This shows the simple stack usage calculations, adding all the interrupts’
stack usages with the maximum task stack usage.

A better way to calculate stack depth is by using a context-sensitive static

analysis [25]. The essence of this strategy is to exploit the fact that interrupts are

disabled throughout different parts of the application. In TinyOS, this extends far

beyond simply inside of events, but it actually continues throughout the interrupt

handlers themselves. In terms of the software, GCC supports two different kinds of

interrupt handlers: 1. interrupts are interrupt handlers that have interrupts enabled

and 2. signals are interrupt handlers with interrupts disabled. The latter of the two

provides an extreme amount of stack savings, since hardware signals cannot preempt

other hardware signals or interrupts. For reference, in TinyOS 1.1, in the MSP430

based platforms, all interrupt handlers are actually signals, giving excellent stack

savings. An overview of the calculations made can be found in Figure 12.
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Task 2

Task1

Task 3

Usage from Main

Signal 2

Interrupt 1

Stack Usage from Main Maximum Stack from all Tasks

Maximum Interrupt Stack UsageMaximum Task Stack
Interrupts Enabled

Interrupt 2

Signal 1

Figure 12: This shows the context sensitive stack usage calculations, adding all the
interrupts’ stack usages to each other only if and/or where interrupts are enabled.

3.1 stacksize

The stack detection tool provided with TinyThread is called stacksize. stack-

size executes a context sensitive stack analysis for several platforms. It can analyze

binaries for essentially any ATMega based or MSP430 based platform. Instead of act-

ing as a disassembler, stacksize invokes the disassembler (objdump). Objdump is a

standard part of the GNU toolchains. This allows stacksize to be significantly simpler

than Stacktool, but it limits it to the GNU compilers. While this appears extremely

limiting, the GNU Compiler Collection (GCC) supports dozens of platforms and is

well known for its portability. In the scope of TinyOS, this is not a limitation, since

it already uses GCC.

stacksize does not support every platform that GCC supports, but it can be

extended to do so. Each platform supported requires some platform-specific code.



27

This glue code binds the assembly code generated by objdump to help form the

context-sensitive call graph. Another platform-specific part of the analysis is accessing

the interrupt vectors. The pieces of platform specific code are rather small, currently

around 100 lines of code per processor family. To add a new platform simply requires

filling out the required methods and adding the platform to the command line options.

This allows the tool to trivially grow with needs of developers.

stacksize calculates not only the stack required for the main routine, but also

for each individual stack. To accomplish stack calculation, stacksize invokes objdump

and builds a context-sensitive call graph from the disassembly. It then assumes that

every unreferenced function must be a task or a thread. After computing the stack

requirements for each individual thread, stacksize generates a header file (stack.h)

containing macros for the stack size, and displays the requirements for the main

function on the console. A typical workflow for stacksizeis shown in Figure 13.

stacksize creates two main outputs, the header file and the main stack us-

age. The header file is very simple and can be seen in Figure 14. For a developer

to use this header, they only have to include it in their application and use the

proper nomenclature when declaring the stack for a thread. The nomenclature ap-

pends a STACKSIZE to the end of the function name. For instance, to get the stack

size for a function named processing, the stack size from the header file would be

processing STACKSIZE. The output of stacksize displays several pieces of informa-

tion. It displays the context-insensitive and the context-sensitive stack analysis. The

output can be seen in Figure 15.

The output of stacksize is shown in Figure 15. The output is split into two

sections. The first section contains only the context insensitive analysis. The second

section contains the context sensitive analysis, and displays the final worst-case sce-

nario stack size. One important number displayed below is the “Interrupt overhead
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Figure 13: A typical workflow for stacksize.



29

#define thread_blink_STACKSIZE 84
#define checkShortTimers_STACKSIZE 80
#define checkLongTimers_STACKSIZE 78
#define __ctors_end-0x3a_STACKSIZE 48
#define thread_task_STACKSIZE 58
#define thread_wrapper_STACKSIZE 50l

Figure 14: An example stack.h header file.

on all stacks”. This number is the worst case scenario costs of all nested interrupts.

Simple Stack Analysis
Stack due to interrupts = 84
Stack due to tasks = 48
Stack due to Main = 14

Total 146

Context Sensitive Interrupt Masking Analysis
Stack due to Tasks = 48
Stack due to Main = 14
Stack due to Tasks (Interrupts Enabled) = 36
Stack due to Signals(maximum) = 36
Stack due to Interrupts (calculation) = 4
Interrupt overhead on all stacks = 48

Total = 94

Figure 15: An example output from stacksize.

stacksize is written in Python, a cross-platform language, and has been tested

running inside of Microsoft Windows, Mac OS X and various Linux Distributions.

Python is a required component for TinyOS and the runtimes are included in most

TinyOS distributions. stacksize was written to specifically support TinyOS. It cur-

rently supports all the platforms that TinyOS officially supports (AVR and MSP430

based platforms). There is some preliminary support for ARM processors as well.

To demonstrate stacksize, a series of event driven applications, which were

included with the TinyOS distribution, have been analyzed. The stack usages for

each platform are shown in Figure 16.
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Figure 16: Stack sizes of a few applications from the tinyos/apps directory in the
TinyOS distribution. The plot shows the result of our stack analysis tool run for the
mica, mica2, micaz, telos, telosb, and the eyesIFX2 platforms.



31

3.2 Limitations

Even though stacksize supports context sensitive stack analysis and generates

constants for the thread stack sizes, there are several limitations to its methods and

implementation. One problem with stacksize is its inability to monitor each interrupt

mask; it only monitors the global interrupt mask. This ignoring of interrupt masks

may cause stacksize to overshoot the maximum stack requirements for an application

or thread. This limitation is acceptable, since it would require much more specific

knowledge of the processor model. This means that there needs to be additional code

for each processor, not just the processor family. With dozens and possibly hundreds

of models in a specific family, it would be very difficult to write the peripheral specific

analysis routines for every peripheral on every processor.

stacksize cannot account for physical implications of different interrupts. stack-

size assumes that all interrupts(that run with interrupts enabled) can physically fire

simultaneously, and based upon that assumption calculate the stack accordingly. For

example, if one interrupt is fired on the rising edge and another on the falling edge of

a long pulse, then these interrupts might be physically mutually exclusive. stacksize

only calculates without any knowledge of any physical characteristics of an interrupt,

since that would make assumptions about the application, and the processor.

Another limitation of stacksize is the inability to support every possible as-

sembly formation. stacksize was written with TinyOS in mind. This means there

are several possible constructs which are not supported. For instance, pushing onto

the stack in a loop is impossible to do in ANSI C, and therefore is not supported

by stacksize. This limitation does not end there. There are several constructs in C

which are not supported by stacksize. Currently, function pointers are not taken into

account, and will definitely affect stack usage. Recursion is supported, but only if the

developer adds a command line argument with the number of recursions it will make.
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Without an upper bound on a recursive routine, the stack size cannot be calculated.

This includes indirectly recursive routines. If the processor supports reentrant inter-

rupt handlers, the stack size generated by stacksize may be wrong. The analysis only

fails if the interrupt can actually fire fast enough to cause it to re-enter prior to the

handler finishing up. Another unsupported feature of ANSI C is use of the function

alloca. alloca literally pushes the stack pointer a variable amount, in fact, it could

be a parameter of the function.

Generating a header after analyzing a compiled binary has a distinct side effect,

the source code must be recompiled again. Every time an application is changed it

must go through a much longer compilation process. It must be recompiled once,

execute stacksize to generate the header, and then recompiled again using the header.

This process is not limited only to application changes, but also to platform switching.

This at least doubles all compilation times.



CHAPTER IV

EXPERIMENTS

Several experiments were conducted to measure the performance and costs of

TinyThread. These experiments can be broken up into several categories. First type of

experiment will measure the power consumption. The next experiment will measure

response time through the network stack. The final set of experiments measures the

resource consumption: program, memory and stack consumption.

We ran our experiments in our lab on Tmote Sky and micaZ motes. We also

tested TinyThread on mica2 and mica2dot motes, although all the measurements

presented here are from Tmote and micaZ motes. Applications that had Java inter-

faces ran on a Pentium IV PC with a 3.2 GHz processor with 512 MB of RAM. The

power measurements we present here were recorded using a Tektronics oscilloscope.

Our multihop experiments were run on a heterogeneous testbed consisting of 7 Tmote

Sky motes and 8 micaZ motes (Figure 17).

33
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Figure 17: Experimental setup: Our multihop network experiments were run on this
heterogeneous testbed consisting of 7 Tmote Sky motes and 8 micaZ motes placed in
a 3 x 5 grid.

4.1 Power Consumption

Using TinyThread to develop applications appears to fundamentally change

the way applications execute on the mote. The presence of blocking operations for

using sensors and the radio seems to suggest that there may some inefficiency in

the amount of power utilized by the mote. This is not the case. The TinyThread

scheduler is efficient in terms of power utilization, and in almost all cases, the power

draw of a program written using TinyThread is exactly the same as the same program

written using regular TinyOS tasks and events. TinyThread is benchmarked against

equivalent event driven applications. To measure the power consumed, a 1 Ohm

resistor was placed in series with the supply and a digital oscilloscope captured the

voltage. Since the voltage accross a 1 Ohm resistor is equivalent to current, all of the

following plots are in mA although it was actually measured in volts.

We ran power utilization tests on several simple applications. The first one is

the most simple application of all: Blink. Figure 18 is a comparison of the current

draw in a Tmote Sky mote and a micaZ mote both running two versions of Blink.

As Figures 18(a) and 18(b) show, there is no change in the amount of current drawn
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Figure 18: Comparison of power utilization of the Blink application running on a
Tmote Sky and a MicaZ mote. The figure on the left shows the current draw of the
mote running the application without TinyThread, and the plot on the right is with
TinyThread.
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Figure 19: Comparison of power draw on a Tmote Sky and a micaZ running the
unthreaded and threaded versions of the PersistentSend application. This application
keeps sending out a message on the radio every 30 milliseconds.

in the mote as a result of using TinyThread. The same is true for the micaZ mote as

well1.

These results are consistent with our description of the TinyThread scheduler

(Section 2.2.4). Recall that the entire TinyThread scheduler itself is a regular TinyOS

task. It gets posted at startup time, and after that, it only gets posted when there

is at least one active thread waiting to execute. If all the threads in the program are

inactive, the TinyThread scheduler never gets posted, and therefore does not cause

any extra power drain. This is the key insight behind why the power utilization of a

1The current draw in the micaZ is in general worse than the Tmote Sky.
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program is the same, regardless of whether TinyThread is used or not.

The second set of experiments related to power utilization we ran were to test

the effect of using the radio. We wrote a simple application (called PersistentSend)

that sent out a message on the radio every 30 milliseconds. The remaining time, the

mote had its radio on in receive mode. Figure 19 shows the power utilization of this

application running on a Tmote Sky. The radio’s power is at its default level. At

this level, the radio on this mote, the Chipcon CC2420 is supposed to consume 19.4

mA of current in the receive mode, and 17.4 mA of current while transmitting [5,23].

This is consistent with our results. In the plot in Figure 19(a), we measure the power

consumption of the unthreaded version of PersistentSend application. In the left

end of the PersistentSend plot, the mote has the radio turned on in receive mode.

About 400µs into the reading, the mote switches the radio from receive mode to

transmit mode, and then begins to transmit. The transmission lasts for about 800µs,

after which the radio is switched back to the receive mode. The plot matches well

with the values listed in the radio’s data sheet. Figure 19(b), which is the threaded

implementation of PersistentSend, displays a power profile that is identical to that of

the regular TinyOS implementation using tasks and events.

Figures 19(c) and 19(d) show the power profiles of the same PersistentSend

application running on a micaz mote. The power profiles in this case are similar,

although not identical, as with the Tmote Sky. The extra power consumed is the

processor performing the stack swap operations, and getting ready to execute the

TinyThread scheduler. Just before the radio is switched to the Tx mode, the figure

for the threaded application shows roughly an additional 50 µs duration where the

current draw is at .03 mA. The same duration of increased power usage is seen at

the other end (once the radio is done sending, and is being switched back to the Rx

mode).
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4.2 Response Time

The second set of experiments we conducted measured how responsive pro-

grams were when implemented using TinyThread. This set of experiments studies

the effect of the additional overhead caused by the TinyThread scheduler. Analyti-

cally, this overhead is the number of instructions that the processor has to execute in

order to perform the stack swapping operation. Every time the TinyThread scheduler

task is selected to execute, the stack swap is the first step that is performed. Again,

when the scheduler is done, and yields its spot on the processor, it has to swap the

thread stack out, and replace the system stack in its original state.

On the MSP430 processor, the stack swapping operation amounts to 34 in-

structions per swap. This means a total overhead of 68 instructions. On the AVR

ATMega 128 processor, the overhead is higher, and is 66 instructions per swap (total

of 132 instructions per scheduler cycle). In addition to this finite overhead, when the

TinyThread scheduler begins to execute, it has to walk through its list of threads to

see which of those is active. This will involve a few additional instructions.

There is another source of reduced response as well. Suppose that there were

two active threads in a program. When the TinyThread scheduler is posted and

executes, only one of the two threads get a chance to execute. The other thread has

to wait until TinyOS allows the TinyThread scheduler for the next time. This next

chance may come after several other tasks and events in the program. By contrast,

if the two threads were tasks, they would get a chance to execute in every “round”

of the TinyOS task scheduler.

The first experiment we ran was a simple application (SimpleUART) on a

mote that listened for messages coming from a PC over UART. When a message does

arrive, it simply sends the same message back to the PC over UART. On the PC, a

simple Java application sent 100 messages and averaged out the total round-trip time
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(b) Response time of a Tmote Sky running the SimpleUART applica-
tion (threaded).

Figure 20: Comparison of round-trip message times from a PC to a mote and back.
The response time is measured on the PC.
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for each message. The time measurements on the PC were made using the actual

processor clock via the Java Native Interface; this is a more accurate measure than

using Java’s time measurements.

Figure 20(a) and 20(b) show the response times measured over a range of

message sizes (3 bytes – 27 bytes). We show the median response time, along with

the deviation over the 100 samples. The response times for the threaded version

are similar to those of the unthreaded version, but it is possible to see the overhead

caused by the thread library.

In order to study the effect of the second source of overhead, we designed an

experiment in which there would always be two threads active at any time. This

experiment computes a simple reconfigurable digital filter that of the kind normally

seen in signal processing applications. Consider a light sensor that is sitting out in

the open measuring the amount of UV radiation in sunlight. During the course of

a day, there is a lot of noise that this sensor may see, e.g., people may walk across,

causing shadows. Rather than this sensor sending all the data points, including all

the noise, it would be nice if the sensor could restrict the number of data points it

sends to the collecting base station. However, the choice of which data points are safe

to throw away is not trivial; this is where the digital filter helps.

A long-running calculation of this sort, however, does not fit in the traditional

sensornet development model. The recommended way to perform such an operation in

TinyOS is to break the calculation up into small tasks by ripping the stack manually.

Using TinyThread however, the filter can be coded up very simply as a simple loop

that performs some small subset of the calculation in each time slice. This thread

therefore is always active, and never terminates. To study response time in the

presence of multiple active threads, we superpose the SimpleUART application on

top of this filter calculation, and measure the response time of the UART messages
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(a) Response time of a Tmote Sky running the Filter application, while
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Figure 21: Comparison of round-trip message times from a PC to a mote computing
a digital filter. The calculation is a long-running operation that is constantly active.
The response time is measured on the PC.
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just like in the previous experiment.

The results from this experiment are shown in Figure 21. In this case, the

degradation in response time in the threaded version of the program is more percep-

tible. This is again consistent with our analytical prediction.

4.3 Resource Usage

4.3.1 Thread Driven Applications

To compare the stack and memory consumption of TinyThread with another

multithreading OS, stacksize was run on MANTIS. While it would be much more

beneficial to survey several operating systems, commercial OSes generally include a

license which does not permit publishing any benchmarked results. To understand

the results, the limitations of stacksize must be understood from Section 3.2. Since

MANTIS is a fully multithreaded operating system, it can benefit from using stacksize.

To compare the results, the MANTIS application tested is their Blink applica-

tion. In contrast to the TinyOS Blink, MANTIS Blink actually runs all three LEDs,

one in each thread. This application actually has three threads. So each thread must

allocate its own stack, along with enough for the overhead of all possibly nested inter-

rupts. Since most of the interrupts in MANTIS are true interrupts, and not signals,

the theoretical stack consumption is enormous. This problem is exacerbated by fairly

few interrupt handlers which are split level interrupt handlers(top level and bottom

level). TinyOS is a significantly smaller system for a variety of reasons. Instead of

attempting to compare unlike systems, it is better to compare interrupt overhead; the

amount of extra stack space each thread must allocate for the use of interrupts. The

interrupt overhead for MANTIS 0.9.5 on a T-Mote is 224 bytes. This leads to the

minimum stack size of 272 bytes (including overhead from stack swapping). This is
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enormous compared to TinyOS which has a stack overhead of 28/34 bytes for Blink

on the Telos/Mica platforms. The stack overhead for the Mica style motes increases

significantly to 110 bytes when the radio is enabled, but it is still less than half of the

overhead due to MANTIS. The extra memory saved is multiplied by the number of

threads in the system.

4.3.2 TinyThread Resource Usage

To test the resource usage, four applications were compiled and their resource

consumptions were analyzed. The three metrics used are stack consumption, RAM us-

age and ROM (program space) usage. While there are several platforms that TinyOS

and TinyThread support, the three most popular were used during these experiments.

TinyThread also provides a set of compile time options which allows the user

to enable/disable certain features. One option available is the maximum number

of threads in the scheduler. Since threads can be created at run-time, a maximum

number of threads must be enforced on the scheduler. If no thread count is specified,

it is assumed that the maximum is four. Even though most applications will not use

four threads, it is better to provide extra resources which developers can compile out

later on as required.

Another compile time option is thread safe I/O. This essentially makes it safe

for multiple threads to access the same I/O primitive simultaneously. For many I/O

primitives, they are always thread safe, but socket.send for instance is not. The

effect of turning this off is not catastrophic, as it is on a socket in other operating

systems. It simply causes threads to contend, using extra battery. This is only when

multiple threads are trying to send messages at the same time. Thread safety is

enabled by default, but can be turned off at compile time.

There are four applications to be tested against: Blink, Bounce, Filter, and
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StackUsage + DataSpaceUsage = TotalRAMUsage

Figure 22: Total RAM usage calculation.

SimpleComm. All four of these applications use only one thread. Blink turns an LED

on and off. Bounce passes a message back and forth between two nodes. Filter runs a

512 tap FIR filter, and SimpleComm was used to test the response time of messages

accross the serial port, through the network stack.

TinyThread was compiled several times using all of the combinations of the

options, for each of the applications, in order to calculate the cost of each option. Typ-

ically, to calculate the optimal stack size, turning off all options which are not required

will minimize your RAM and ROM usage while improving your performance. The

complete results of compilations organized per platform can be found in Appendix A.

To summarize the resource analysis of TinyThread, Table I compares only

the final optimization of the TinyThread versions and the event driven version. This

table uses only the ROM usage and the total RAM usage. The total RAM usage

is not generated from one succinct source, it is derived from the stack usage of the

application and RAM usage of the application as shown in Figure 22. Data space is

generally allocated at the lowest available memory location, while the stack generally

grows from the highest memory address down. A stack overflow occurs when the

top of data memory is about the lowest used stack position. For TinyThread the

individual thread stacks are allocated in the data space already.

4.4 Discussion

TinyThread can be compared to several different development models, both

threaded and event driven. It has advantages over both types of development models,
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Threaded Version Event Driven Version Difference
Platform Application RAM ROM RAM ROM RAM ROM
Telosb Blink 188 3226 136 2610 52 616
Telosb Bounce 651 12778 511 11780 140 998
Telosb Filter 2815 12874 2549 11840 226 1034
Telosb SimpleComm 737 12716 478 12802 259 -86
Mica2 Blink 210 2534 94 1610 116 924
Mica2 Bounce 876 12430 581 10834 295 1596
Mica2 Filter 3132 12690 2642 11088 490 1602
Mica2 SimpleComm 737 12716 545 11326 192 1390
MicaZ Blink 210 2564 94 1630 116 934
MicaZ Bounce 884 11784 528 10010 356 1774
MicaZ Filter 3173 12016 2589 10258 590 1758
MicaZ SimpleComm 1097 11646 549 11246 548 400

Table I: Overall Resource Consumption: Threaded Versus Event Driven.

since benefits from both exist. TinyThread binds the benefits of both event driven

and threaded development models, with several new benefits.

4.4.1 Threaded Comparison

TinyThread has a distinct advantage over many purely threaded platforms.

The first major benefit is that interrupt handler can be lightweight because of tasks.

Second, developers know exactly how much stack space a thread will require. The final

benefit is the ability to further optimize or pipeline any threaded algorithm with event

driven programming. The final benefit, although not directly caused by TinyThread

is the ability to statically analyze the applications for concurrency problems. This

final benefit is caused by the language used for development, namely nesC.

First, developers need not use threads for split interrupt handlers into top

and bottom levels. This is a common technique used to reduce the stack overhead

by the system. It splits the interrupt handler to a top-half, which executes in the

interrupt handler itself, and a bottom half, which does a majority of the processing

in a task or thread. Many times, the overall latency of an interrupt is important so

the overhead of having to wake up a thread, switch context and execute the bottom
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half of an interrupt handler is very inefficient. This occurs in most multithreaded

operating system. To meet timing requirements, these OSes are not always able to

split their interrupt handler. Without the ability to split the interrupt handler, the

stack overhead on every thread increases (this was talked about briefly in Section 3.1.

Since most interrupts in TinyOS are cleanly implemented in a top level/bottom level

fashion using tasks, TinyOS can create a significantly faster total interrupt latency

while maintaining small stack overheads.

The obvious advantage of TinyThread is the distinct usage of stacksize to

automatically allocate the stack. Not only does this guarantees there will be no

wasted RAM, but it also guarantees there will be no stack overflows. Validating this

gives developers a true view of their resource consumption. In most research papers

on sensornets, the stack usage is never actually measured. This leads to a hidden

benefit: when problems bugs occur during testing, it is assured that they are not

caused by stack overflows. This also ensures to developers that no matter what state

the processor is in, and not matter how much noise there is on interrupt lines, the

stack will not overflow.

Another benefit of TinyThread is that threaded applications can be optimized

using events. Many times, threading allows developers to rapidly create a procedural

application and test it. After rigorous testing, a developer may need to pipeline, or

otherwise further optimize an algorithm. Event driven programming would allow a

developer to squeeze their application to most efficiently use the resources available.

In context of sensornets, if an application was developed using TinyThread to run on

an micaZ (with 128kB of ROM and 4kB or RAM) and completely uses the resources.

It may be possible to optimized the resources for production on a large scale to fit in

a processor with 100KB of ROM and 2kB of RAM; possibly cutting the price in half.
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4.4.2 Event Driven Comparison

TinyThread provides several advantages over event driven development models.

The first benefit is the rapid time of development. The other clear benefit is the

learning curve to develop applications on sensornets. These advantages extend beyond

simply introductions to sensornets, to researching new algorithms.

TinyThread’s rapid time of application development is actually taken to a sig-

nificant degree beyond what can be easily measured. The development time for the

example applications used during the testing of TinyThread took roughly four-times

less time than their event driven equivalents. This is done by a developer experienced

writing event driven applications. This really stems from the straight-forward nature

of expressing most algorithms.

TinyThread also brings other benefits which are easily overlooked. TinyThread

hides the complexities of event driven programming from the developers. For instance,

using purely event driven developments, a routine is called to send a message, if the

sending queue is full (it has a depth of one), then it returns failure. This failure may

be a very real occurence and must be handled by developers to avoid any transient

bugs. To combat this type of failure, TinyThread will yield to the system context

and tries again later.

4.4.3 Limitations

TinyThread is not the solution for every problem. There are many algorithms,

especially in the domain of lower-level networking interfaces, where threading just

isn’t reasonable. The idea is not to try to build an operating system out of threads,

but to build on top of an incredibly efficient system and add the capabilities of threads.

There are limitations specific to stack analysis explained in Section 3.2.

As shown in Section 4.3.1, TinyThread does not come without a cost. While
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this cost is mainly in RAM, the ROM costs aren’t always zero. These costs must be

considered whether they can be acceptable for a specific application prior to utiliz-

ing TinyThreadİn borderline cases, at least developers can see what the costs are,

then optimize later as the resource requirements rise. For instance, a baseline imple-

mentation of an application may use three or four threads, but begins to run out of

resources. The developer could possibly re-write one or more of the threads into event

driven state machines, possibly using less resources, but this still does not negate the

resource consumption.



CHAPTER V

RELATED WORK

Much of the work related to TinyThread is deeply involved with the devel-

opment of embedded Operating Systems (OS). These operating systems run with

little or no resource usage and are generally modular. These operating systems can

be measured on a variety of different metrics, such as resource consumption, stack

consumption, interrupt latency and portability.

5.1 Embedded OS Design

There are two main design philosophies in terms of Embedded Operating Sys-

tems: Event-driven and Multi-Threaded. These philosophies are generally followed

whether an OS is used or not. If no operating system is used, and only a main

loop and interrupts exist, then philosophically, this is an event- (or interrupt-) driven

system.

49
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5.1.1 Event-Driven Systems

Event-driven systems are the simplest form of an embedded OS. Although

they are not always considered an OS, event-driven embedded systems are sometimes

called embedded frameworks because of their simplicity. Event driven programming

essentially means that algorithms have to be written in a fashion different than on

a PC. Instead of writing procedural code, developers must break the algorithm into

several different reactions in a state machine. This is know as stack ripping [1].

Stack ripping can be explained by example. Take for instance, an interrupt

driven serial port transmission. In this case, a developer cannot simply write a loop

to send 12 bytes because the system must remain responsive. The developer must

send the first byte in the main loop, then as the tx complete interrupts occur send

the following 11 bytes one at a time. To accomplish this, developers need to use at

least one global variable for the index of the data to send next, shown in Figure 23.

This example can easily become much more complicated, if the 12 bytes to be sent are

actually generated on the fly, possibly from an binary to BCD (binary coded decimal)

converter. In this case, the user has to generate the message array in global memory

in the main loop prior to starting the cascading transmissions. This example may not

seem too complicated, but expand that view to implementing a MAC layer or even

Directed Diffusion [15].

Part of the problem with stack ripping is the number of global variables and

namespace congestion. If a developer uses the variable name interruptCounter in

one interrupt handler, another interrupt handler might accidentally use the same

variable. If the interrupts can nest, then the application may fault, or in the very

least do the wrong thing. This global view can make it very difficult to write modular

programs. Take for instance the use of index in Figure 23. In the context of the

example it appeared clear, but if another routine accidentally uses it, it could cause
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1 char buffer [] = "Hello World\n";

2 uint8_t index = 0;

3

4 void main (){

5 // Initialize

6 UDR = buffer[index ++];

7

8 // Responsive Main Loop

9 }

10

11 ISR(tx_complete ){

12 if(index < 12)

13 UDR = buffer[index ++];

14 }

Figure 23: Interrupt based Serial Transmission.

1 char buffer [] = "Hello World\n";

2 uint8_t index = 0;

3

4 void main (){

5 // Initialize

6 create_thread(testThread , stack , sizeof(stack ));

7

8 // Responsive Main Loop

9 }

10

11 void testThread (){

12 // Blocking I/O write

13 serialWrite(buffer , 12);

14 }

Figure 24: Blocking I/O based Serial Transmission.

several problems.

5.1.2 Multi-Threaded Systems

Multi-Threaded embedded operating systems provide several facilities which

event driven operating systems lack. First and foremost is true threading. With

threading comes blocking I/O. Blocking I/O is what allows developers to write pro-

cedural code in the face of I/O bound routines. Blocking I/O would allow a developer

to write a loop to send 10 bytes across a serial link, without blocking the processor.

Blocking I/O can allow a system to remain responsive while simplifying the code.

This is shown in Figure 24 implementing a possibly equivalent application to the

event driven Figure 23.
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Blocking I/O and multi-threading does not come without a cost. Each indi-

vidual thread actually runs in its own context in terms of the processor. This means

that each thread must maintain its own stack and its own copy of the processors

registers. Outside of the precious RAM that each threads stack consumes, there is

a cost of switching between threads. This cost is not too extreme, usually on the

order of 100 or so instructions (depending on the processor). After all that cost in

resources, preemptive multi-threads can appear like each one has its own CPU. Tech-

nically, the threads are actually time-sharing the CPU. This automatic time-sharing

causes concurrency problems. Some of these problems occur because a data structure

is not in a safe state when another thread attempts to read it. The second thread

could crash or simple malfunction.

5.1.3 Threaded InterProcess Communications

To solve concurrency problems caused by preemptive multi-threading, multi-

threaded embedded operating systems provide several InterProcess Communication

(IPC) mechanisms. The most common is a Mutex, sometimes called a binary semaphore.

Mutexes provide mutually exclusive access to a single data or section of code. This

could be multiple threads contending for access to a queue, or multiple threads hand-

shaking using mutexes.

Mailboxes or queues exist to simplify threaded IPC. It can help to simplify

thread to interrupt communications and interrupt to thread communications. A

mailbox is essentially a buffer, with the ability to block a thread. A mailbox has

a finite amount of space. If a mailbox is being unloaded inside of a tx complete

interrupt from Figure 23, then a developer’s thread only has to write as much data

as desired to the mailbox. If the mailbox has no more room to buffer, then the

sending thread blocks until some messages are dequeued. Mailboxes are popular as
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they provide blocking I/O and hide many global variables.

5.2 Multi-threading and Procedural Code

Contiki [7] offers a limited form of multi-threading using protothreads. Pro-

tothreads [8] have the lowest memory requirements of any threading model discussed

in this context that can support blocking I/O. While several protothreads can run

concurrently, they have a distinct disadvantage compared to traditional threads; pro-

tothreads do not store the state of the registers. As a result of this, protothreads not

only need to use global variables, the global variables must be volatile. This can cause

some rather poor performance, since the protothread must actually fetch the variable

from memory every time it is accessed. For instance, while iterating through a loop,

the iteration counter must be stored and retrieved from memory during every itera-

tion. These unnecessary memory accesses can cause great performance degradation,

especially on the load/store architectures found on most microcontrollers. Program-

mers can work around this limitation by storing the contents of local variable to a

volatile global before blocking and restoring it after resuming execution.

Fibers for TinyOS [30] technically do not require allocating a second stack;

there can only be one fiber in the program, and it simply grows the system stack.

This stack-less threading model cleanly allows users to use blocking I/O calls without

the need for a second stack; the limitation is that there can only one user fiber.

Similar to protothreads, fibers use setjmp/longjmp for their implementation, but

instead of jumping back to the main loop, a blocking fiber call actually executes the

scheduler (in some limited form) at the point of execution. This allows users to use

local variables and block inside of functions, making it unique in terms of stackless

threading implementation. Many of the blocking I/O routines described earlier in

this thesis (Section 2.3.1) could be ported to support a fiber instead of a thread.
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The MANTIS [3] OS is a fully multi-threaded operating system for embed-

ded systems. In the MANTIS model, everything is a thread. The model of system

design and programming is very close to that of large enterprise systems. The fact

that everything is a thread, and the fact that any thread can be preempted by an-

other, places some limitations on resource usage. The stack overhead for each thread

is considerable. Moreover, the system cannot offer any support to the developer in

detecting problems with concurrency of the nature that TinyOS/nesC can. By con-

trast, TinyThread provides the flexibility of multiple threads, while at the same time,

by operating within the confines of the concurrency rules in TinyOS, preserves the

concurrency model of TinyOS. Moreover, TinyThread does not prevent the developer

from using event handlers in addition to the procedural multi-threaded coded; this is

not feasible in MANTIS.

Maté [18] is a virtual machine environment for TinyOS. Although in general,

the design goals of Maté are quite different from those of TinyThread, there are some

similarities worth noting. Like TinyThread, Maté also provides a way for treating

split-phase operations as though they were straight-line pseudo-blocking operations.

The syntax of writing programs in Maté, however, is quite different from regular nesC,

whereas TinyThread is a fully-integrated library extension to nesC, and preserves its

syntax.

Kairos [12] is a system that supports “network-as-a-whole” programming of

sensornets. Again, while the primary design goals of Kairos are sufficiently differ-

ent from TinyThread, the two do share a common high-level goal: that of making

programming of sensornets a more easy and elegant activity. Kairos also supports

procedural programming, albeit at the network level, while TinyThread enables pro-

cedural programming at the node level.



55

5.3 Stack Analysis

Stack analysis of embedded systems has been studied extensively. Stack ana-

lyzers try to determine the worst-case stack usage to avoid overrunning the allocated

space. Basic stack analysis has been done by simply measuring constant addition to

the stack register [4]. This approach tends to overestimate, unless several constraints

are put on the developer. On some platforms, this constant-only approach, simply is

not possible.

Stacktool [25] provides a method of analysis by actually monitoring the values

passed explicitly to the general purpose registers and then out to special purpose

registers, such as the stack pointer. Stacktool performs this analysis on a compiled

binary file for the ATmel AVR platforms. It internally disassembles the machine

code before it processes it. Stack analyzers are traditionally tied to one platform or

another, although the techniques are usually more general.

HOIST [24] builds a majority of platform specific points required for stack

analysis. Hoist accomplishes this by using a processor (or simulator) as a black box.

It is currently limited to 8-bit processors. TinyThread follows the approach laid out

by Stacktool, by simulating read/writes to registers. Instead of disassembling the

instructions internally, TinyThread relies on objdump to perform the disassembly.

5.4 Programming Abstractions

In the recent past, there has been a considerable amount of work on devel-

oping usable programming abstractions for sensornet development. Hood [31] is an

abstraction that allows a node in a sensornet to easily access and interact with other

nodes in its neighborhood. These abstractions allow developers to rise above the

low-level details of messaging protocols and neighbor lists and design algorithms at a
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more abstract level. The primary idea is to create new programming primitives that

all applications can use without having to deal with the actual implementations. Sim-

ilarly, the abstract regions [30] programming interface provides access to high-level

abstractions such as N-radio hop, k-best neighbor, etc.

The programming API that we present as part of TinyThread is similar in

spirit. The goal is reduce the number of low-level operations that a developer writing

a sensornet program has to think about. Our abstractions have to do with synchro-

nization among concurrent threads in a program.

TinyRPC [21] is a remote procedure call interface for TinyOS. Using TinyRPC,

a component can bind to some interface that is actually implemented in a remote node

in the 1-hop neighborhood. TinyRPC supports both named bindings and discovered

bindings between nodes. Once the binding has been set up, it is easy for nodes to

communicate without having to think about messages, node ids, etc. TinyThread

provides an exciting new use for TinyRPC. Since nodes can issue remote calls, that

means that two threads running on two separate nodes can now use our barrier syn-

chronization abstract to communicate and synchronize directly.

5.5 Types of threading

The term thread is used to describe many different execution models, this

section explains the differences between them. A task in TinyOS (considered by

many to be an extremely lightweight thread) is not a true thread, since it always

executes to completion. TinyOS tasks can be preempted by interrupts, called ’async

events’. A task can also be preempted by callbacks, known as signals, which are

explicitly called by said task. This simple system of tasks running to executing and

a systems of callbacks is a shining example of event based programming. This event

based development has proven to be an excellent model for developing sensor network
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applications. Tasks provide no way for one task to preempt another, which essentially

means it is not a context of execution, and therefor not a thread in the traditional

sense.

Threads on modern operating systems utilize a stack to store the current con-

text of the processor when a thread is paused. It is possible to implement extremely

light-weight thread-like structures. This stackless operation is implemented using the

functions setjmp/longjmp. These routines are the base for user based threads, but as

Engelschall points out, this only solves the easy half of the thread problem [10]. The

harder problem in implementing threads is storing the processor state. In an embed-

ded system without an MMU, this is simply storing the stack and the registers.

If the stack of the thread is not stored, then there are several constraints put

on the developer. First, a developer which uses any local variables, these can be

corrupted or overwritten during a blocking call. Some of this can be overcome using

global variables directly, or at least via the static keyword. The cost of using only

global variables is that it allows, and almost encourages developers to make mistakes.

A called function may use local variable, unless it gets automatically inlined by a

compiler. This limitation on has greater implications which are not obvious. The

second major limitation is that a stackless thread cannot block inside of a routine,

but to block longjmp must be called inside of the top level of the thread. This removes

much of the ability of developers to layer abstractions on top of these primitives. The

programmatic difficulties added by utilizing these stackless threads may be offset by

the ability to use blocking I/O. This may be an acceptable tradeoff for certain appli-

cations, but it competes against writing modular applications. Stackless threads have

been implemented inside of Contiki [8] (called protothreads) and an implementation

for TinyOS exists(called fibers) [30].

Threads with stacks are refered to as threads inside of modern operating sys-
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tems, which is the convention follow throughout this thesis. There are two main forms

of multi-threading: cooperative multi-threading and preemptive multi-threading. Co-

operative Multi-threading is the simpler of the two. Threads still operate with their

own context, but the only way for a thread to stop executing is by explicitly yield-

ing its execution via an explicit call to yield or indirectly through a yielding call via

blocking I/O routines. Protothreads and TinyOS Fibers are examples of Cooperative

Threading. Some cooperative multi-threading implementations only allow yielding to

a specified thread, while others allow developers to simply yield to a scheduler. In an

embedded system, cooperative threads run in real-time. This real-time execution is a

double edge sword. It allows developers a clear view of exactly what variables need to

be protected, but on the other hand, it forces developers to be aware of the amount

of time any calculations might take, to avoid blocking the processor and dropping

packets.

Forcing developers to be fully aware of the length of time a set of library

routines takes is rather cumbersome. Preemptive threading solves this problem by

forcibly preempting a running thread after some finite period of time. This arbitrary

preemption can create concurrency problems, since a thread can then be preempted

effectively at any given time. Preemptive reading has the unique ability to overcome

a deadlock. For instance, if a task or cooperative thread goes into an endless loop(,

the system is deadlocked. Preemptive threads do not deadlock a system when they

themselves go into an endless loop. A breakdown of the different features supported

in all the previously mentioned threading models can be found in Table II.

The cost of storing the stack is usually guessed, causing explicit problems. Even

in commercial embedded operating systems, these stack costs are generally guessed.

There are some commercially available tools for calculating stack usage, function by

function, but never has it been directly linked into a threading operating system.
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Tasks
√ √

ProtoThreads
√ √ √

TinyOS Fiber
√ √ √

Cooperative Multi-threading
√ √ √ √

Preemptive Multi-threading
√ √ √

Table II: Feature lists of different Threading Models.



CHAPTER VI

CONCLUSION

The main goal of TinyThread is to build a new programming paradigm for

sensornets while leveraging the de facto standard programming paradigm. The idea

is to allow developers to reason and write code in the same fashion they would write

on a PC. The goal is to simplify development so much, that programmers with little

embedded experience can jump into developing and maintaining applications for sen-

sornets. Multi-threading provides many well founded methods for reasoning, such as

CSP [6]. Not to mention, all universities teach threading as part of their undergradu-

ate computer science curriculum. Leveraging these developers directly, with little or

no training, can push sensornet applications to new extremes.

TinyThread succeeds in simplifying programming sensornets through multi-

threading in a safe fashion. By statically allocating the stacks of each thread, thread

overflows are completely prevented. Concurrency problems between threads are com-

pletely avoided, since these are cooperative threads (without preemption). Concur-

rency problems between threads and interrupts are avoided through nesC’s concur-

rency detection. These fix all possible concurrency faults and all stack overflow faults,

60
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which are the biggest problems with threaded development.

While there has been no case study on the matter, there is still some anecdotal

evidence that TinyThread radically simplifies development. TinyThread was used to

write over 20 different applications. Developing and debugging the equivalent event

driven applications would take an incredible amount of time. This in conjunction with

the fact that other developers are actively using TinyThread in other research projects

reinforces the idea of simplifying development. In many different cases, medium sized

TinyThread applications are under 50 lines of code, making them very easy read and

understand. Since applications require less code, developers are less likely to make

mistakes, and finding mistakes is much easier. Development time, while hard to

metric, is reduced by a rough factor of four.

6.1 Future Research

TinyThread pushes the future work farther open than can be speculated. Al-

gorithms which had been thought to be out of practical reach on sensornets, can now

be practically researched. The algorithms are only part of the possible future work

capable with TinyThread Applications of sensornets can be pushed to new bounds.

By easing the barrier of entry for new developers, more ideas and more research could

be spurred. This isn’t to say that TinyThread is beyond evolutions.

There are several different approaches which can significantly improve RAM

consumption in threaded systems. One approach is to allow interrupts to execute on

their own stack. This is implemented in the latest Linux kernel, commonly known as

the 4K stack option in the configuration. This has also been implemented in several

other embedded operating systems.

As shown in Section 4.3.2 and Chapter 3, the overhead due to interrupts is

required to be allocated for each of the threads. This forces threads to use significantly
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more memory than their event driven counterparts. Another benefit of a seperate

interrupt stack is the ability to implement this efficiently. Since an interrupt handler

doesn’t damage the current context, it doesn’t actually need to swap the full context.

The only register which must be swapped back and forth is the stack pointer. In an

embedded systems, this must be done with much care if interrupts can possibly nest;

since there must also be some state notifying which stack is currently in use.

Another possible direction for future work along similar lines is to implement a

compiler which automatically generates event driven code from cooperative threads.

This problem of unspinning loops appears trivial, but when considering implement-

ing this for several concurrent threads with several synchronization primitives and

blocking I/O, it is far more complicated. This type of research in comparison with

TinyThread could possibly reveal more insight into the strengths and weaknesses of

both approaches.

6.2 Implications

The implications of TinyThread may go beyond sensornets. There is nothing

besides nesC which bonds TinyThread to sensornets and nesC is not explicitly bound

to sensornets. In many practical situations outside of sensornets, TinyThread could

possibly have wide acceptance, if it were not for the rapid evolution of nesC. nesC

changes every few years, making it wonderful for research, but terrible for production

development. At some point in the near future, nesC may lock in with its current

syntax so that future versions will be backwards compatible. If this occurs, then

TinyThread’s influence could spread beyond sensornets.

TinyThread provides a tangible benefit to developers which no other environ-

ment provides: the ability to implement algorithms in whichever paradigm is natural

to the algorithm. This stems from the ability to mix events and threads. The impli-
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cations of this transcends either programming paradigm, since developers can switch

between the two at their leisure. This essentially means that algorithms that are

naturally reactive will probably be implemented using events, while algorithms that

are procedural will probably be implemented with threads. Since algorithms aren’t

attempted to be forced into a form they don’t naturally fit, development of either

type will be much easier.

.
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APPENDIX A

Resource Consumption per Platform

The following tables include all the compilation information about TinyThread.

This includes the stack usage from the main function (or beginning), the RAM (or

data) usage, and the ROM (or program space) usage. The final row in each table

includes a measurement of an event driven application. These applications which

appear to function the same, are not nearly as flexible as their TinyThread counter-

parts.

The Tmote results can be found in Tables III, IV, V and VI. The mica2

results can be found in Tables VII, VIII, IX and X. The micaz results can be found

in Tables XI, XII, XIII and XIV. At the bottom of each table an event driven

version of the same application was analyzed for comparison with the TinyThread

version.
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Number of Threads ThreadSafe I/O RAM(stack) RAM (data) ROM (program)
4

√
70 166 3482

3
√

70 148 3456
2

√
70 130 3398

1
√

72 116 3272
4 70 166 3436
3 70 148 3410
2 70 130 3352
1 72 116 3226

Event Driven 96 40 2610

Table III: Resource Consumption of Blink for T-Mote.

Number of Threads ThreadSafe I/O RAM(stack) RAM (data) ROM (program)
4

√
136 575 13232

3
√

136 557 13206
2

√
136 539 13162

1
√

136 517 12828
4 136 575 13150
3 136 557 13124
2 136 539 13080
1 136 515 12778

Event Driven 142 369 11780

Table IV: Resource Consumption of Bounce for T-Mote.

Number of Threads ThreadSafe I/O RAM(stack) RAM (data) ROM (program)
4

√
142 2733 13274

3
√

142 2715 13248
2

√
142 2697 13204

1
√

142 2677 12902
4 142 2733 13200
3 142 2715 13174
2 142 2697 13130
1 142 2673 12874

Event Driven 118 2431 11840

Table V: Resource Consumption of Filter for T-Mote.
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Number of Threads ThreadSafe I/O RAM(stack) RAM (data) ROM (program)
4

√
136 641 13186

3
√

136 643 13160
2

√
136 625 13116

1
√

136 605 12790
4 136 661 13104
3 136 643 13078
2 136 625 13034
1 136 601 12716

Event Driven 118 360 12802

Table VI: Resource Consumption of SimpleComm for T-Mote.

Number of Threads ThreadSafe I/O RAM(stack) RAM (data) ROM (program)
4

√
73 180 2966

3
√

73 165 2936
2

√
73 150 2894

1
√

74 136 2592
4 73 180 2908
3 73 165 2878
2 73 150 2838
1 74 136 2534

Event Driven 45 49 1610

Table VII: Resource Consumption of Blink for Mica2.

Number of Threads ThreadSafe I/O RAM(stack) RAM (data) ROM (program)
4

√
195 738 12926

3
√

194 723 12890
2

√
194 708 12858

1
√

192 688 12494
4 195 738 12822
3 194 723 12786
2 194 708 12754
1 190 686 12430

Event Driven 135 446 10834

Table VIII: Resource Consumption of Bounce for Mica2.
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Number of Threads ThreadSafe I/O RAM(stack) RAM (data) ROM (program)
4

√
199 2988 13168

3
√

198 2971 13132
2

√
198 2956 13100

1
√

199 2939 12718
4 199 2986 13064
3 198 2971 13028
2 198 2956 12996
1 197 2935 12690

Event Driven 135 2507 11088

Table IX: Resource Consumption of Filter for Mica2.

Number of Threads ThreadSafe I/O RAM(stack) RAM (data) ROM (program)
4

√
192 914 12758

3
√

191 899 12722
2

√
191 884 12688

1
√

191 865 12330
4 192 914 12662
3 191 899 12626
2 191 884 12592
1 191 865 12254

Event Driven 135 410 11326

Table X: Resource Consumption of SimpleComm for Mica2.

Number of Threads ThreadSafe I/O RAM(stack) RAM (data) ROM (program)
4

√
73 180 2996

3
√

73 165 2966
2

√
73 150 2924

1
√

74 136 2622
4 73 180 2938
3 73 165 2908
2 73 150 2868
1 74 136 2564

Event Driven 45 49 1640

Table XI: Resource Consumption of Blink for MicaZ.
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Number of Threads ThreadSafe I/O RAM(stack) RAM (data) ROM (program)
4

√
230 723 12280

3
√

230 708 12248
2

√
230 693 12218

1
√

221 667 11848
4 230 723 12176
3 230 708 12144
2 230 693 12114
1 219 665 11784

Event Driven 138 390 10010

Table XII: Resource Consumption of Bounce for MicaZ.

Number of Threads ThreadSafe I/O RAM(stack) RAM (data) ROM (program)
4

√
234 3010 12494

3
√

234 2995 12462
2

√
234 2980 12432

1
√

228 2951 12044
4 234 3010 12390
3 234 2995 12358
2 234 2980 12328
1 226 2947 12016

Event Driven 138 2451 10258

Table XIII: Resource Consumption of Filter for MicaZ.

Number of Threads ThreadSafe I/O RAM(stack) RAM (data) ROM (program)
4

√
227 938 12152

3
√

227 923 12120
2

√
227 908 12088

1
√

220 877 11722
4 227 938 12056
3 227 923 12024
2 227 908 11992
1 220 877 11646

Event Driven 163 386 11246

Table XIV: Resource Consumption of SimpleComm for MicaZ.
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