

Managing Projects with GNU Make, Third Edition
by Robert Mecklenburg

Copyright © 2005, 1991, 1986 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram

Production Editor: Matt Hutchinson

Production Services: Octal Publishing, Inc.

Cover Designer: Edie Freedman

Interior Designer: David Futato

Printing History:

1986: First Edition.

October 1991: Second Edition.

November 2004: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Managing Projects with GNU Make, the image of a potto, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation. A copy of this license is included in Appendix C.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 0-596-00610-1

[M]

,COPYRIGHT.14162 Page iv Friday, March 25, 2005 3:27 PM

vii

Table of Contents

Foreword . xi

Preface . xiii

Part I. Basic Concepts

1. How to Write a Simple Makefile . 3
Targets and Prerequisites 4
Dependency Checking 6
Minimizing Rebuilds 7
Invoking make 7
Basic Makefile Syntax 8

2. Rules . 10
Explicit Rules 10
Variables 16
Finding Files with VPATH and vpath 17
Pattern Rules 21
The Implicit Rules Database 25
Special Targets 30
Automatic Dependency Generation 31
Managing Libraries 34

3. Variables and Macros . 41
What Variables Are Used For 42
Variable Types 43
Macros 45

,make3TOC.fm.12345 Page vii Friday, March 25, 2005 3:17 PM

viii | Table of Contents

When Variables Are Expanded 47
Target- and Pattern-Specific Variables 50
Where Variables Come From 51
Conditional and include Processing 54
Standard make Variables 57

4. Functions . 61
User-Defined Functions 61
Built-in Functions 64
Advanced User-Defined Functions 80

5. Commands . 88
Parsing Commands 88
Which Shell to Use 96
Empty Commands 97
Command Environment 98
Evaluating Commands 99
Command-Line Limits 100

Part II. Advanced and Specialized Topics

6. Managing Large Projects . 107
Recursive make 108
Nonrecursive make 117
Components of Large Systems 124
Filesystem Layout 126
Automating Builds and Testing 128

7. Portable Makefiles . 129
Portability Issues 130
Cygwin 131
Managing Programs and Files 134
Working with Nonportable Tools 137
Automake 139

8. C and C++ . 141
Separating Source and Binary 141
Read-Only Source 149
Dependency Generation 149

,make3TOC.fm.12345 Page viii Friday, March 25, 2005 3:17 PM

Table of Contents | ix

Supporting Multiple Binary Trees 154
Partial Source Trees 156
Reference Builds, Libraries, and Installers 157

9. Java . 159
Alternatives to make 160
A Generic Java Makefile 164
Compiling Java 168
Managing Jars 175
Reference Trees and Third-Party Jars 177
Enterprise JavaBeans 178

10. Improving the Performance of make . 182
Benchmarking 182
Identifying and Handling Bottlenecks 186
Parallel make 190
Distributed make 194

11. Example Makefiles . 196
The Book Makefile 196
The Linux Kernel Makefile 218

12. Debugging Makefiles . 229
Debugging Features of make 229
Writing Code for Debugging 236
Common Error Messages 241

Part III. Appendixes

A. Running make . 249

B. The Outer Limits . 252

C. GNU Free Documentation License—GNU Project—Free Software
Foundation (FSF) . 263

Index . 271

,make3TOC.fm.12345 Page ix Friday, March 25, 2005 3:17 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

xi

Foreword

The make utility is an enticing servant, always there and always accommodating. Like
the indispensable sidekicks found in many novels and movies, make starts out as the
underappreciated supplicant to whom you throw a few odd jobs, and then gradually
takes over the entire enterprise.

I had reached the terminal stage of putting make at the center of every project I
touched when Steve Talbott, my supervisor and the author of the original O’Reilly
classic Managing Projects with make, noticed my obsession and asked me to write the
second edition. It proved to be a key growth experience for me (as well as a pretty
wild ride) and my entry into the wonderful world of O’Reilly, but we didn’t really
think about how long the result would stay on the market. Thirteen years for one
edition?

Enthralled in the memories of those days long ago when I was a professional techni-
cal writer, I’ll indulge myself with a bulleted list to summarize the evolution of make
since the second edition of Managing Projects with make hit the stands:

• The GNU version of make, already the choice of most serious coders when the
second edition of the book came out, overran the industry and turned into the
de facto standard.

• The rise of GNU/Linux made the GNU compiler tool chain even more com-
mon, and that includes the GNU version of make. As just one example, the Linux
kernel itself relies heavily on extensions provided by GNU make, as documented
in Chapter 11 of this book.

• The adoption of a variant of BSD (Darwin) as the core of Mac OS X continues
the trend toward the dominance of the GNU tool chain and GNU make.

• More and more tricks are being discovered for using make in a robust, error-free,
portable, and flexible way. Standard solutions to common problems on large
projects have grown up in the programming community. It’s time to move many
of these solutions from the realm of folklore to the realm of documented prac-
tices, as this book does.

,foreword.8893 Page xi Friday, March 25, 2005 2:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

xii | Foreword

• In particular, new practices are required to adapt make to the C++ and Java™
languages, which did not exist when make was invented. To illustrate the shifting
sands of time, the original make contained special features to support two vari-
ants of FORTRAN—of which vestiges remain!—and rather ineffective integra-
tion with SCCS.)

• Against all odds, make has remained a critical tool for nearly all computer devel-
opment projects. None of make’s many (and insightful) critics would have pre-
dicted this 13 years ago. Over these years, replacements sprang up repeatedly, as
if dragon’s teeth had been sown. Each new tool was supposed to bypass the limi-
tations in make’s design, and most were indeed ingenious and admirable. Yet the
simplicity of make has kept it supreme.

As I watched these trends, it had been in the back of my mind for about a decade to
write a new edition of Managing Projects with make. But I sensed that someone with
a broader range of professional experience than mine was required. Finally, Robert
Mecklenburg came along and wowed us all at O’Reilly with his expertise. I was
happy to let him take over the book and to retire to the role of kibitzer, which earns
me a mention on the copyright page of this book. (Incidentally, we put the book
under the GNU Free Documentation License to mirror the GPL status of GNU make.)

Robert is too modest to tout his Ph.D., but the depth and precision of thinking he
must have applied to that endeavor comes through clearly in this book. Perhaps
more important to the book is his focus on practicality. He’s committed to making
make work for you, and this commitment ranges from being alert about efficiency to
being clever about making even typographical errors in makefiles self-documenting.

This is a great moment: the creation of a new edition of one of O’Reilly’s earliest and
most enduring books. Sit back and read about how an unassuming little tool at the
background of almost every project embodies powers you never imagined. Don’t set-
tle for creaky and unsatisfying makefiles—expand your potential today.

—Andy Oram
Editor, O’Reilly Media

August 19, 2004

,foreword.8893 Page xii Friday, March 25, 2005 2:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

1

PART I

I.Basic Concepts

In Part I, we focus on the features of make, what they do, and how to use them prop-
erly. We begin with a brief introduction and overview that should be enough to get
you started on your first makefile. The chapters then cover make rules, variables, func-
tions, and finally command scripts.

When you are finished with Part I, you will have a fairly complete working knowl-
edge of GNU make and have many advanced usages well in hand.

,part1.12494 Page 1 Friday, March 25, 2005 3:18 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

3

Chapter 1 CHAPTER 1

How to Write a Simple Makefile

The mechanics of programming usually follow a fairly simple routine of editing
source files, compiling the source into an executable form, and debugging the result.
Although transforming the source into an executable is considered routine, if done
incorrectly a programmer can waste immense amounts of time tracking down the
problem. Most developers have experienced the frustration of modifying a function
and running the new code only to find that their change did not fix the bug. Later
they discover that they were never executing their modified function because of some
procedural error such as failing to recompile the source, relink the executable, or
rebuild a jar. Moreover, as the program’s complexity grows these mundane tasks can
become increasingly error-prone as different versions of the program are developed,
perhaps for other platforms or other versions of support libraries, etc.

The make program is intended to automate the mundane aspects of transforming
source code into an executable. The advantages of make over scripts is that you can
specify the relationships between the elements of your program to make, and it knows
through these relationships and timestamps exactly what steps need to be redone to
produce the desired program each time. Using this information, make can also opti-
mize the build process avoiding unnecessary steps.

GNU make (and other variants of make) do precisely this. make defines a language for
describing the relationships between source code, intermediate files, and executa-
bles. It also provides features to manage alternate configurations, implement reus-
able libraries of specifications, and parameterize processes with user-defined macros.
In short, make can be considered the center of the development process by providing
a roadmap of an application’s components and how they fit together.

The specification that make uses is generally saved in a file named makefile. Here is a
makefile to build the traditional “Hello, World” program:

hello: hello.c
 gcc hello.c -o hello

To build the program execute make by typing:

$ make

,ch01.940 Page 3 Friday, March 25, 2005 1:49 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: How to Write a Simple Makefile

at the command prompt of your favorite shell. This will cause the make program to
read the makefile and build the first target it finds there:

$ make
gcc hello.c -o hello

If a target is included as a command-line argument, that target is updated. If no com-
mand-line targets are given, then the first target in the file is used, called the default
goal.

Typically the default goal in most makefiles is to build a program. This usually
involves many steps. Often the source code for the program is incomplete and the
source must be generated using utilities such as flex or bison. Next the source is
compiled into binary object files (.o files for C/C++, .class files for Java, etc.). Then,
for C/C++, the object files are bound together by a linker (usually invoked through
the compiler, gcc) to form an executable program.

Modifying any of the source files and reinvoking make will cause some, but usually
not all, of these commands to be repeated so the source code changes are properly
incorporated into the executable. The specification file, or makefile, describes the
relationship between the source, intermediate, and executable program files so that
make can perform the minimum amount of work necessary to update the executable.

So the principle value of make comes from its ability to perform the complex series of
commands necessary to build an application and to optimize these operations when
possible to reduce the time taken by the edit-compile-debug cycle. Furthermore, make
is flexible enough to be used anywhere one kind of file depends on another from tra-
ditional programming in C/C++ to Java, TEX, database management, and more.

Targets and Prerequisites
Essentially a makefile contains a set of rules used to build an application. The first
rule seen by make is used as the default rule. A rule consists of three parts: the target,
its prerequisites, and the command(s) to perform:

target: prereq1 prereq2
commands

The target is the file or thing that must be made. The prerequisites or dependents are
those files that must exist before the target can be successfully created. And the com-
mands are those shell commands that will create the target from the prerequisites.

Here is a rule for compiling a C file, foo.c, into an object file, foo.o:

foo.o: foo.c foo.h
 gcc -c foo.c

The target file foo.o appears before the colon. The prerequisites foo.c and foo.h
appear after the colon. The command script usually appears on the following lines
and is preceded by a tab character.

,ch01.940 Page 4 Friday, March 25, 2005 1:49 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Targets and Prerequisites | 5

When make is asked to evaluate a rule, it begins by finding the files indicated by the
prerequisites and target. If any of the prerequisites has an associated rule, make
attempts to update those first. Next, the target file is considered. If any prerequisite
is newer than the target, the target is remade by executing the commands. Each com-
mand line is passed to the shell and is executed in its own subshell. If any of the
commands generates an error, the building of the target is terminated and make exits.
One file is considered newer than another if it has been modified more recently.

Here is a program to count the number of occurrences of the words “fee,” “fie,”
“foe,” and “fum” in its input. It uses a flex scanner driven by a simple main:

#include <stdio.h>

extern int fee_count, fie_count, foe_count, fum_count;
extern int yylex(void);

int main(int argc, char ** argv)
{
 yylex();
 printf("%d %d %d %d\n", fee_count, fie_count, foe_count, fum_count);
 exit(0);
}

The scanner is very simple:

 int fee_count = 0;
 int fie_count = 0;
 int foe_count = 0;
 int fum_count = 0;
%%
fee fee_count++;
fie fie_count++;
foe foe_count++;
fum fum_count++;

The makefile for this program is also quite simple:

count_words: count_words.o lexer.o -lfl
 gcc count_words.o lexer.o -lfl -ocount_words

count_words.o: count_words.c
 gcc -c count_words.c

lexer.o: lexer.c
 gcc -c lexer.c

lexer.c: lexer.l
 flex -t lexer.l > lexer.c

When this makefile is executed for the first time, we see:

$ make
gcc -c count_words.c
flex -t lexer.l > lexer.c
gcc -c lexer.c
gcc count_words.o lexer.o -lfl -ocount_words

,ch01.940 Page 5 Friday, March 25, 2005 1:49 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: How to Write a Simple Makefile

We now have an executable program. Of course, real programs typically consist of
more modules than this. Also, as you will see later, this makefile does not use most of
the features of make so it’s more verbose than necessary. Nevertheless, this is a func-
tional and useful makefile. For instance, during the writing of this example, I exe-
cuted the makefile several dozen times while experimenting with the program.

As you look at the makefile and sample execution, you may notice that the order in
which commands are executed by make are nearly the opposite to the order they
occur in the makefile. This top-down style is common in makefiles. Usually the most
general form of target is specified first in the makefile and the details are left for later.
The make program supports this style in many ways. Chief among these is make’s two-
phase execution model and recursive variables. We will discuss these in great detail
in later chapters.

Dependency Checking
How did make decide what to do? Let’s go over the previous execution in more detail
to find out.

First make notices that the command line contains no targets so it decides to make the
default goal, count_words. It checks for prerequisites and sees three: count_words.o,
lexer.o, and -lfl. make now considers how to build count_words.o and sees a rule for
it. Again, it checks the prerequisites, notices that count_words.c has no rules but that
the file exists, so make executes the commands to transform count_words.c into
count_words.o by executing the command:

gcc -c count_words.c

This “chaining” of targets to prerequisites to targets to prerequisites is typical of how
make analyzes a makefile to decide the commands to be performed.

The next prerequisite make considers is lexer.o. Again the chain of rules leads to lexer.
c but this time the file does not exist. make finds the rule for generating lexer.c from
lexer.l so it runs the flex program. Now that lexer.c exists it can run the gcc
command.

Finally, make examines -lfl. The -l option to gcc indicates a system library that must
be linked into the application. The actual library name indicated by “fl” is libfl.a.
GNU make includes special support for this syntax. When a prerequisite of the form-
l<NAME> is seen, make searches for a file of the form libNAME.so; if no match is found,
it then searches for libNAME.a. Here make finds /usr/lib/libfl.a and proceeds with the
final action, linking.

,ch01.940 Page 6 Friday, March 25, 2005 1:49 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Invoking make | 7

Minimizing Rebuilds
When we run our program, we discover that aside from printing fees, fies, foes, and
fums, it also prints text from the input file. This is not what we want. The problem is
that we have forgotten some rules in our lexical analyzer and flex is passing this
unrecognized text to its output. To solve this problem we simply add an “any charac-
ter” rule and a newline rule:

 int fee_count = 0;
 int fie_count = 0;
 int foe_count = 0;
 int fum_count = 0;
%%
fee fee_count++;
fie fie_count++;
foe foe_count++;
fum fum_count++;
.
\n

After editing this file we need to rebuild the application to test our fix:

$ make
flex -t lexer.l > lexer.c
gcc -c lexer.c
gcc count_words.o lexer.o -lfl -ocount_words

Notice this time the file count_words.c was not recompiled. When make analyzed the
rule, it discovered that count_words.o existed and was newer than its prerequisite
count_words.c so no action was necessary to bring the file up to date. While analyz-
ing lexer.c, however, make saw that the prerequisite lexer.l was newer than its target
lexer.c so make must update lexer.c. This, in turn, caused the update of lexer.o and
then count_words. Now our word counting program is fixed:

$ count_words < lexer.l
3 3 3 3

Invoking make
The previous examples assume that:

• All the project source code and the make description file are stored in a single
directory.

• The make description file is called makefile, Makefile, or GNUMakefile.

• The makefile resides in the user’s current directory when executing the make
command.

,ch01.940 Page 7 Friday, March 25, 2005 1:49 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: How to Write a Simple Makefile

When make is invoked under these conditions, it automatically creates the first target
it sees. To update a different target (or to update more than one target) include the
target name on the command line:

$ make lexer.c

When make is executed, it will read the description file and identify the target to be
updated. If the target or any of its prerequisite files are out of date (or missing) the
shell commands in the rule’s command script will be executed one at a time. After
the commands are run make assumes the target is up to date and moves on to the
next target or exits.

If the target you specify is already up to date, make will say so and immediately exit,
doing nothing else:

$ make lexer.c
make: `lexer.c' is up to date.

If you specify a target that is not in the makefile and for which there is no implicit
rule (discussed in Chapter 2), make will respond with:

$ make non-existent-target
make: *** No rule to make target `non-existent-target'. Stop.

make has many command-line options. One of the most useful is --just-print (or -n)
which tells make to display the commands it would execute for a particular target
without actually executing them. This is particularly valuable while writing
makefiles. It is also possible to set almost any makefile variable on the command line
to override the default value or the value set in the makefile.

Basic Makefile Syntax
Now that you have a basic understanding of make you can almost write your own
makefiles. Here we’ll cover enough of the syntax and structure of a makefile for you
to start using make.

Makefiles are usually structured top-down so that the most general target, often
called all, is updated by default. More and more detailed targets follow with targets
for program maintenance, such as a clean target to delete unwanted temporary files,
coming last. As you can guess from these target names, targets do not have to be
actual files, any name will do.

In the example above we saw a simplified form of a rule. The more complete (but
still not quite complete) form of a rule is:

target1 target2 target3 : prerequisite1 prerequisite2
command1
command2
command3

,ch01.940 Page 8 Friday, March 25, 2005 1:49 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Basic Makefile Syntax | 9

One or more targets appear to the left of the colon and zero or more prerequisites
can appear to the right of the colon. If no prerequisites are listed to the right, then
only the target(s) that do not exist are updated. The set of commands executed to
update a target are sometimes called the command script, but most often just the
commands.

Each command must begin with a tab character. This (obscure) syntax tells make that
the characters that follow the tab are to be passed to a subshell for execution. If you
accidentally insert a tab as the first character of a noncommand line, make will inter-
pret the following text as a command under most circumstances. If you’re lucky and
your errant tab character is recognized as a syntax error you will receive the message:

$ make
Makefile:6: *** commands commence before first target. Stop.

We’ll discuss the complexities of the tab character in Chapter 2.

The comment character for make is the hash or pound sign, #. All text from the
pound sign to the end of line is ignored. Comments can be indented and leading
whitespace is ignored. The comment character # does not introduce a make comment
in the text of commands. The entire line, including the # and subsequent characters,
is passed to the shell for execution. How it is handled there depends on your shell.

Long lines can be continued using the standard Unix escape character backslash (\). It
is common for commands to be continued in this way. It is also common for lists of
prerequisites to be continued with backslash. Later we’ll cover other ways of handling
long prerequisite lists.

You now have enough background to write simple makefiles. Chapter 2 will cover
rules in detail, followed by make variables in Chapter 3 and commands in Chapter 5.
For now you should avoid the use of variables, macros, and multiline command
sequences.

,ch01.940 Page 9 Friday, March 25, 2005 1:49 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

10

Chapter 2CHAPTER 2

Rules

In the last chapter, we wrote some rules to compile and link our word-counting pro-
gram. Each of those rules defines a target, that is, a file to be updated. Each target file
depends on a set of prerequisites, which are also files. When asked to update a tar-
get, make will execute the command script of the rule if any of the prerequisite files
has been modified more recently than the target. Since the target of one rule can be
referenced as a prerequisite in another rule, the set of targets and prerequisites form a
chain or graph of dependencies (short for “dependency graph”). Building and pro-
cessing this dependency graph to update the requested target is what make is all
about.

Since rules are so important in make, there are a number of different kinds of rules.
Explicit rules, like the ones in the previous chapter, indicate a specific target to be
updated if it is out of date with respect to any of its prerequisites. This is the most
common type of rule you will be writing. Pattern rules use wildcards instead of
explicit filenames. This allows make to apply the rule any time a target file matching
the pattern needs to updated. Implicit rules are either pattern rules or suffix rules
found in the rules database built-in to make. Having a built-in database of rules makes
writing makefiles easier since for many common tasks make already knows the file
types, suffixes, and programs for updating targets. Static pattern rules are like regular
pattern rules except they apply only to a specific list of target files.

GNU make can be used as a “drop in” replacement for many other versions of make
and includes several features specifically for compatibility. Suffix rules were make’s
original means for writing general rules. GNU make includes support for suffix rules,
but they are considered obsolete having been replaced by pattern rules that are
clearer and more general.

Explicit Rules
Most rules you will write are explicit rules that specify particular files as targets and
prerequisites. A rule can have more than one target. This means that each target has

,ch02.1376 Page 10 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Explicit Rules | 11

the same set of prerequisites as the others. If the targets are out of date, the same set
of actions will be performed to update each one. For instance:

vpath.o variable.o: make.h config.h getopt.h gettext.h dep.h

This indicates that both vpath.o and variable.o depend on the same set of C header
files. This line has the same effect as:

vpath.o: make.h config.h getopt.h gettext.h dep.h
variable.o: make.h config.h getopt.h gettext.h dep.h

The two targets are handled independently. If either object file is out of date with
respect to any of its prerequisites (that is, any header file has a newer modification
time than the object file), make will update the object file by executing the com-
mands associated with the rule.

A rule does not have to be defined “all at once.” Each time make sees a target file it
adds the target and prerequisites to the dependency graph. If a target has already
been seen and exists in the graph, any additional prerequisites are appended to the
target file entry in make’s dependency graph. In the simple case, this is useful for
breaking long lines naturally to improve the readability of the makefile:

vpath.o: vpath.c make.h config.h getopt.h gettext.h dep.h
vpath.o: filedef.h hash.h job.h commands.h variable.h vpath.h

In more complex cases, the prerequisite list can be composed of files that are man-
aged very differently:

Make sure lexer.c is created before vpath.c is compiled.
vpath.o: lexer.c
...
Compile vpath.c with special flags.
vpath.o: vpath.c
 $(COMPILE.c) $(RULE_FLAGS) $(OUTPUT_OPTION) $<
...
Include dependencies generated by a program.
include auto-generated-dependencies.d

The first rule says that the vpath.o target must be updated whenever lexer.c is
updated (perhaps because generating lexer.c has other side effects). The rule also
works to ensure that a prerequisite is always updated before the target is updated.
(Notice the bidirectional nature of rules. In the “forward” direction the rule says that
if the lexer.c has been updated, perform the action to update vpath.o. In the “back-
ward” direction, the rule says that if we need to make or use vpath.o ensure that
lexer.c is up to date first.) This rule might be placed near the rules for managing
lexer.c so developers are reminded of this subtle relationship. Later, the compilation
rule for vpath.o is placed among other compilation rules. The command for this rule
uses three make variables. You’ll be seeing a lot of these, but for now you just need to
know that a variable is either a dollar sign followed by a single character or a dollar
sign followed by a word in parentheses. (I will explain more later in this chapter and

,ch02.1376 Page 11 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 2: Rules

a lot more in Chapter 3.) Finally, the .o/.h dependencies are included in the makefile
from a separate file managed by an external program.

Wildcards
A makefile often contains long lists of files. To simplify this process make supports
wildcards (also known as globbing). make’s wildcards are identical to the Bourne
shell’s: ~, *, ?, [...], and [^...]. For instance, *.* expands to all the files containing
a period. A question mark represents any single character, and [...] represents a
character class. To select the “opposite” (negated) character class use [^...].

In addition, the tilde (~) character can be used to represent the current user’s home
directory. A tilde followed by a user name represents that user’s home directory.

Wildcards are automatically expanded by make whenever a wildcard appears in a tar-
get, prerequisite, or command script context. In other contexts, wildcards can be
expanded explicitly by calling a function. Wildcards can be very useful for creating
more adaptable makefiles. For instance, instead of listing all the files in a program
explicitly, you can use wildcards:*

prog: *.c
 $(CC) -o $@ $^

It is important to be careful with wildcards, however. It is easy to misuse them as the
following example shows:

*.o: constants.h

The intent is clear: all object files depend on the header file constants.h, but consider
how this expands on a clean directory without any object files:

: constants.h

This is a legal make expression and will not produce an error by itself, but it will also
not provide the dependency the user wants. The proper way to implement this rule is
to perform a wildcard on the source files (since they are always present) and trans-
form that into a list of object files. We will cover this technique when we discuss make
functions in Chapter 4.

Finally, it is worth noting that wildcard expansion is performed by make when the
pattern appears as a target or prerequisite. However, when the pattern appears in a
command, the expansion is performed by the subshell. This can occasionally be
important because make will expand the wildcards immediately upon reading the
makefile, but the shell will expand the wildcards in commands much later when
the command is executed. When a lot of complex file manipulation is being done,
the two wildcard expansions can be quite different.

* In more controlled environments using wildcards to select the files in a program is considered bad practice
because a rogue source file might be accidentally linked into a program.

,ch02.1376 Page 12 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Explicit Rules | 13

Phony Targets
Until now all targets and prerequisites have been files to be created or updated. This
is typically the case, but it is often useful for a target to be just a label representing a
command script. For instance, earlier we noted that a standard first target in many
makefiles is called all. Targets that do not represent files are known as phony tar-
gets. Another standard phony target is clean:

clean:
 rm -f *.o lexer.c

Normally, phony targets will always be executed because the commands associated
with the rule do not create the target name.

It is important to note that make cannot distinguish between a file target and phony
target. If by chance the name of a phony target exists as a file, make will associate the
file with the phony target name in its dependency graph. If, for example, the file
clean happened to be created running make clean would yield the confusing message:

$ make clean
make: `clean' is up to date.

Since most phony targets do not have prerequisites, the clean target would always be
considered up to date and would never execute.

To avoid this problem, GNU make includes a special target, .PHONY, to tell make that a
target is not a real file. Any target can be declared phony by including it as a prereq-
uisite of .PHONY:

.PHONY: clean
clean:
 rm -f *.o lexer.c

Now make will always execute the commands associated with clean even if a file
named clean exists. In addition to marking a target as always out of date, specifying
that a target is phony tells make that this file does not follow the normal rules for
making a target file from a source file. Therefore, make can optimize its normal rule
search to improve performance.

It rarely makes sense to use a phony target as a prerequisite of a real file since the
phony is always out of date and will always cause the target file to be remade. How-
ever, it is often useful to give phony targets prerequisites. For instance, the all target
is usually given the list of programs to be built:

.PHONY: all
all: bash bashbug

Here the all target creates the bash shell program and the bashbug error reporting
tool.

Phony targets can also be thought of as shell scripts embedded in a makefile. Making
a phony target a prerequisite of another target will invoke the phony target script

,ch02.1376 Page 13 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 2: Rules

before making the actual target. Suppose we are tight on disk space and before exe-
cuting a disk-intensive task we want to display available disk space. We could write:

.PHONY: make-documentation
make-documentation:
 df -k . | awk 'NR = = 2 { printf("%d available\n", $$4) }'
 javadoc ...

The problem here is that we may end up specifying the df and awk commands many
times under different targets, which is a maintenance problem since we’ll have to
change every instance if we encounter a df on another system with a different for-
mat. Instead, we can place the df line in its own phony target:

.PHONY: make-documentation
make-documentation: df
 javadoc ...

.PHONY: df
df:
 df -k . | awk 'NR = = 2 { printf("%d available\n", $$4) }'

We can cause make to invoke our df target before generating the documentation by
making df a prerequisite of make-documentation. This works well because make-
documentation is also a phony target. Now I can easily reuse df in other targets.

There are a number of other good uses for phony targets.

The output of make can be confusing to read and debug. There are several reasons for
this: makefiles are written top-down but the commands are executed by make bot-
tom-up; also, there is no indication which rule is currently being evaluated. The out-
put of make can be made much easier to read if major targets are commented in the
make output. Phony targets are a useful way to accomplish this. Here is an example
taken from the bash makefile:

$(Program): build_msg $(OBJECTS) $(BUILTINS_DEP) $(LIBDEP)
 $(RM) $@
 $(CC) $(LDFLAGS) -o $(Program) $(OBJECTS) $(LIBS)
 ls -l $(Program)
 size $(Program)

.PHONY: build_msg
build_msg:
 @printf "#\n# Building $(Program)\n#\n"

Because the printf is in a phony target, the message is printed immediately before
any prerequisites are updated. If the build message were instead placed as the first
command of the $(Program) command script, then it would be executed after all
compilation and dependency generation. It is important to note that because phony
targets are always out of date, the phony build_msg target causes $(Program) to be
regenerated even when it is not out of date. In this case, it seems a reasonable choice
since most of the computation is performed while compiling the object files so only
the final link will always be performed.

,ch02.1376 Page 14 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Explicit Rules | 15

Phony targets can also be used to improve the “user interface” of a makefile. Often
targets are complex strings containing directory path elements, additional filename
components (such as version numbers) and standard suffixes. This can make specify-
ing a target filename on the command line a challenge. The problem can be avoided
by adding a simple phony target whose prerequisite is the actual target file.

By convention there are a set of more or less standard phony targets that many
makefiles include. Table 2-1 lists these standard targets.

The target TAGS is not really a phony since the output of the ctags and etags pro-
grams is a file named TAGS. It is included here because it is the only standard non-
phony target we know of.

Empty Targets
Empty targets are similar to phony targets in that the target itself is used as a device
to leverage the capabilities of make. Phony targets are always out of date, so they
always execute and they always cause their dependent (the target associated with the
prerequisite) to be remade. But suppose we have some command, with no output
file, that needs to be performed only occasionally and we don’t want our dependents
updated? For this, we can make a rule whose target is an empty file (sometimes
referred to as a cookie):

prog: size prog.o
 $(CC) $(LDFLAGS) -o $@ $^

size: prog.o
 size $^
 touch size

Notice that the size rule uses touch to create an empty file named size after it com-
pletes. This empty file is used for its timestamp so that make will execute the size rule
only when prog.o has been updated. Furthermore, the size prerequisite to prog will
not force an update of prog unless its object file is also newer.

Table 2-1. Standard phony targets

Target Function

all Perform all tasks to build the application

install Create an installation of the application from the compiled binaries

clean Delete the binary files generated from sources

distclean Delete all the generated files that were not in the original source distribution

TAGS Create a tags table for use by editors

info Create GNU info files from their Texinfo sources

check Run any tests associated with this application

,ch02.1376 Page 15 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 2: Rules

Empty files are particularly useful when combined with the automatic variable $?.
We discuss automatic variables in the section “Automatic Variables,” but a preview
of this variable won’t hurt. Within the command script part of a rule, make defines
the variable $? to be the set of prerequisites that are newer than the target. Here is
a rule to print all the files that have changed since the last time make print was
executed:

print: *.[hc]
 lpr $?
 touch $@

Generally, empty files can be used to mark the last time a particular event has taken
place.

Variables
Let’s look at some of the variables we have been using in our examples. The simplest
ones have the syntax:

$(variable-name)

This indicates that we want to expand the variable whose name is variable-name.
Variables can contain almost any text, and variable names can contain most charac-
ters including punctuation. The variable containing the C compile command is
COMPILE.c, for example. In general, a variable name must be surrounded by $() to be
recognized by make. As a special case, a single character variable name does not
require the parentheses.

A makefile will typically define many variables, but there are also many special vari-
ables defined automatically by make. Some can be set by the user to control make’s
behavior while others are set by make to communicate with the user’s makefile.

Automatic Variables
Automatic variables are set by make after a rule is matched. They provide access to
elements from the target and prerequisite lists so you don’t have to explicitly specify
any filenames. They are very useful for avoiding code duplication, but are critical
when defining more general pattern rules (discussed later).

There are six “core” automatic variables:

$@ The filename representing the target.

$% The filename element of an archive member specification.

$< The filename of the first prerequisite.

$? The names of all prerequisites that are newer than the target, separated by
spaces.

,ch02.1376 Page 16 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Finding Files with VPATH and vpath | 17

$^ The filenames of all the prerequisites, separated by spaces. This list has dupli-
cate filenames removed since for most uses, such as compiling, copying, etc.,
duplicates are not wanted.

$+ Similar to $^, this is the names of all the prerequisites separated by spaces,
except that $+ includes duplicates. This variable was created for specific situa-
tions such as arguments to linkers where duplicate values have meaning.

$* The stem of the target filename. A stem is typically a filename without its suffix.
(We’ll discuss how stems are computed later in the section “Pattern Rules.”) Its
use outside of pattern rules is discouraged.

In addition, each of the above variables has two variants for compatibility with other
makes. One variant returns only the directory portion of the value. This is indicated
by appending a “D” to the symbol, $(@D), $(<D), etc. The other variant returns only
the file portion of the value. This is indicated by appending an F to the symbol,
$(@F), $(<F), etc. Note that these variant names are more than one character long
and so must be enclosed in parentheses. GNU make provides a more readable alterna-
tive with the dir and notdir functions. We will discuss functions in Chapter 4.

Automatic variables are set by make after a rule has been matched with its target and
prerequisites so the variables are only available in the command script of a rule.

Here is our makefile with explicit filenames replaced by the appropriate automatic
variable.

count_words: count_words.o counter.o lexer.o -lfl
 gcc $^ -o $@

count_words.o: count_words.c
 gcc -c $<

counter.o: counter.c
 gcc -c $<

lexer.o: lexer.c
 gcc -c $<

lexer.c: lexer.l
 flex -t $< > $@

Finding Files with VPATH and vpath
Our examples so far have been simple enough that the makefile and sources all lived
in a single directory. Real world programs are more complex (when’s the last time
you worked on a single directory project?). Let’s refactor our example and create a
more realistic file layout. We can modify our word counting program by refactoring
main into a function called counter.

#include <lexer.h>
#include <counter.h>

,ch02.1376 Page 17 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 2: Rules

void counter(int counts[4])
{
 while (yylex())
 ;

 counts[0] = fee_count;
 counts[1] = fie_count;
 counts[2] = foe_count;
 counts[3] = fum_count;
}

A reusable library function should have a declaration in a header file, so let’s create
counter.h containing our declaration:

#ifdef COUNTER_H_
#define COUNTER_H_

extern void
counter(int counts[4]);

#endif

We can also place the declarations for our lexer.l symbols in lexer.h:

#ifndef LEXER_H_
#define LEXER_H_

extern int fee_count, fie_count, foe_count, fum_count;
extern int yylex(void);

#endif

In a traditional source tree layout the header files are placed in an include directory
and the source is placed in a src directory. We’ll do this and put our makefile in the
parent directory. Our example program now has the layout shown in Figure 2-1.

Figure 2-1. Example source tree layout

makefile

include

counter.h
lexer.h

src

count_words.c
counter.c
lexer.l

,ch02.1376 Page 18 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Finding Files with VPATH and vpath | 19

Since our source files now include header files, these new dependencies should be
recorded in our makefile so that when a header file is modified, the corresponding
object file will be updated.

count_words: count_words.o counter.o lexer.o -lfl
 gcc $^ -o $@

count_words.o: count_words.c include/counter.h
 gcc -c $<

counter.o: counter.c include/counter.h include/lexer.h
 gcc -c $<

lexer.o: lexer.c include/lexer.h
 gcc -c $<

lexer.c: lexer.l
 flex -t $< > $@

Now when we run our makefile, we get:

$ make
make: *** No rule to make target `count_words.c', needed by `count_words.o'. Stop.

Oops, what happened? The makefile is trying to update count_words.c, but that’s a
source file! Let’s “play make.” Our first prerequisite is count_words.o. We see the file
is missing and look for a rule to create it. The explicit rule for creating count_words.o
references count_words.c. But why can’t make find the source file? Because the source
file is in the src directory not the current directory. Unless you direct it otherwise,
make will look in the current directory for its targets and prerequisites. How do we
get make to look in the src directory for source files? Or, more generally, how do we
tell make where our source code is?

You can tell make to look in different directories for its source files using the VPATH
and vpath features. To fix our immediate problem, we can add a VPATH assignment to
the makefile:

VPATH = src

This indicates that make should look in the directory src if the files it wants are not in
the current directory. Now when we run our makefile, we get:

$ make
gcc -c src/count_words.c -o count_words.o
src/count_words.c:2:21: counter.h: No such file or directory
make: *** [count_words.o] Error 1

Notice that make now successfully tries to compile the first file, filling in correctly the
relative path to the source. This is another reason to use automatic variables: make
cannot use the appropriate path to the source if you hardcode the filename. Unfortu-
nately, the compilation dies because gcc can’t find the include file. We can fix this

,ch02.1376 Page 19 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 2: Rules

latest problem by “customizing” the implicit compilation rule with the appropriate -I
option:

CPPFLAGS = -I include

Now the build succeeds:

$ make
gcc -I include -c src/count_words.c -o count_words.o
gcc -I include -c src/counter.c -o counter.o
flex -t src/lexer.l > lexer.c
gcc -I include -c lexer.c -o lexer.o
gcc count_words.o counter.o lexer.o /lib/libfl.a -o count_words

The VPATH variable consists of a list of directories to search when make needs a file.
The list will be searched for targets as well as prerequisites, but not for files men-
tioned in command scripts. The list of directories can be separated by spaces or
colons on Unix and separated by spaces or semicolons on Windows. I prefer to use
spaces since that works on all systems and we can avoid the whole colon/semicolon
imbroglio. Also, the directories are easier to read when separated by spaces.

The VPATH variable is good because it solved our searching problem above, but it is a
rather large hammer. make will search each directory for any file it needs. If a file of
the same name exists in multiple places in the VPATH list, make grabs the first one.
Sometimes this can be a problem.

The vpath directive is a more precise way to achieve our goals. The syntax of this
directive is:

vpath pattern directory-list

So our previous VPATH use can be rewritten as:

vpath %.c src
vpath %.h include

Now we’ve told make that it should search for .c files in the src directory and we’ve
also added a line to search for .h files in the include directory (so we can remove the
include/ from our header file prerequisites). In more complex applications, this con-
trol can save a lot of headache and debugging time.

Here we used vpath to handle the problem of finding source that is distributed
among several directories. There is a related but different problem of how to build an
application so that the object files are written into a “binary tree” while the source
files live in a separate “source tree.” Proper use of vpath can also help to solve this
new problem, but the task quickly becomes complex and vpath alone is not suffi-
cient. We’ll discuss this problem in detail in later sections.

,ch02.1376 Page 20 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Pattern Rules | 21

Pattern Rules
The makefile examples we’ve been looking at are a bit verbose. For a small program
of a dozen files or less we may not care, but for programs with hundreds or thou-
sands of files, specifying each target, prerequisite, and command script becomes
unworkable. Furthermore, the commands themselves represent duplicate code in our
makefile. If the commands contain a bug or ever change, we would have to update all
these rules. This can be a major maintenance problem and source of bugs.

Many programs that read one file type and output another conform to standard con-
ventions. For instance, all C compilers assume that files that have a .c suffix contain
C source code and that the object filename can be derived by replacing the .c suffix
with .o (or .obj for some Windows compilers). In the previous chapter, we noticed
that flex input files use the .l suffix and that flex generates .c files.

These conventions allow make to simplify rule creation by recognizing common file-
name patterns and providing built-in rules for processing them. For example, by
using these built-in rules our 17-line makefile can be reduced to:

VPATH = src include
CPPFLAGS = -I include

count_words: counter.o lexer.o -lfl
count_words.o: counter.h
counter.o: counter.h lexer.h
lexer.o: lexer.h

The built-in rules are all instances of pattern rules. A pattern rule looks like the nor-
mal rules you have already seen except the stem of the file (the portion before the suf-
fix) is represented by a % character. This makefile works because of three built-in
rules. The first specifies how to compile a .o file from a .c file:

%.o: %.c
 $(COMPILE.c) $(OUTPUT_OPTION) $<

The second specifies how to make a .c file from a .l file:

%.c: %.l
 @$(RM) $@
 $(LEX.l) $< > $@

Finally, there is a special rule to generate a file with no suffix (always an executable)
from a .c file:

%: %.c
 $(LINK.c) $^ $(LOADLIBES) $(LDLIBS) -o $@

We’ll go into the details of this syntax in a bit, but first let’s go over make’s output
carefully and see how make applies these built-in rules.

When we run make on our two-line makefile, the output is:

$ make
gcc -I include -c -o count_words.o src/count_words.c

,ch02.1376 Page 21 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 2: Rules

gcc -I include -c -o counter.o src/counter.c
flex -t src/lexer.l > lexer.c
gcc -I include -c -o lexer.o lexer.c
gcc count_words.o counter.o lexer.o /lib/libfl.a -o count_words
rm lexer.c

First, make reads the makefile and sets the default goal to count_words since there are
no command-line targets specified. Looking at the default goal, make identifies four
prerequisites: count_words.o (this prerequisite is missing from the makefile, but is
provided by the implicit rule), counter.o, lexer.o, and -lfl. It then tries to update
each prerequisite in turn.

When make examines the first prerequisite, count_words.o, make finds no explicit rule
for it but discovers the implicit rule. Looking in the local directory, make cannot find
the source, so it begins searching the VPATH and finds a matching source file in src.
Since src/count_words.c has no prerequisites, make is free to update count_words.o so
it runs the commands for the implicit rule. counter.o is similar. When make considers
lexer.o, it cannot find a corresponding source file (even in src) so it assumes this
(nonexistent source) is an intermediate file and looks for a way to make lexer.c from
some other source file. It discovers a rule to create a .c file from a .l file and notices
that lexer.l exists. There is no action required to update lexer.l, so it moves on to the
command for updating lexer.c, which yields the flex command line. Next make
updates the object file from the C source. Using sequences of rules like this to update
a target is called rule chaining.

Next, make examines the library specification -lfl. It searches the standard library
directories for the system and discovers /lib/libfl.a.

Now make has all the prerequisites for updating count_words, so it executes the final
gcc command. Lastly, make realizes it created an intermediate file that is not neces-
sary to keep so it cleans it up.

As you can see, using rules in makefiles allows you to omit a lot of detail. Rules can
have complex interactions that yield very powerful behaviors. In particular, having a
built-in database of common rules makes many types of makefile specifications very
simple.

The built-in rules can be customized by changing the values of the variables in the
command scripts. A typical rule has a host of variables, beginning with the program
to execute, and including variables to set major groupings of command-line options,
such as the output file, optimization, debugging, etc. You can look at make’s default
set of rules (and variables) by running make --print-data-base.

The Patterns
The percent character in a pattern rule is roughly equivalent to * in a Unix shell. It
represents any number of any characters. The percent character can be placed

,ch02.1376 Page 22 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Pattern Rules | 23

anywhere within the pattern but can occur only once. Here are some valid uses of
percent:

%,v
s%.o
wrapper_%

Characters other than percent match literally within a filename. A pattern can con-
tain a prefix or a suffix or both. When make searches for a pattern rule to apply, it
first looks for a matching pattern rule target. The pattern rule target must start with
the prefix and end with the suffix (if they exist). If a match is found, the characters
between the prefix and suffix are taken as the stem of the name. Next make looks at
the prerequisites of the pattern rule by substituting the stem into the prerequisite
pattern. If the resulting filename exists or can be made by applying another rule,
a match is made and the rule is applied. The stem word must contain at least one
character.

It is also possible to have a pattern containing only a percent character. The most
common use of this pattern is to build a Unix executable program. For instance, here
are several pattern rules GNU make includes for building programs:

%: %.mod
 $(COMPILE.mod) -o $@ -e $@ $^

%: %.cpp
 $(LINK.cpp) $^ $(LOADLIBES) $(LDLIBS) -o $@

%: %.sh
 cat $< >$@
 chmod a+x $@

These patterns will be used to generate an executable from a Modula source file, a
preprocessed C source file, and a Bourne shell script, respectively. We will see many
more implicit rules in the section “The Implicit Rules Database.”

Static Pattern Rules
A static pattern rule is one that applies only to a specific list of targets.

$(OBJECTS): %.o: %c
 $(CC) -c $(CFLAGS) $< -o $@

The only difference between this rule and an ordinary pattern rule is the initial
$(OBJECTS): specification. This limits the rule to the files listed in the $(OBJECTS) vari-
able.

This is very similar to a pattern rule. Each object file in $(OBJECTS) is matched against
the pattern %.o and its stem is extracted. The stem is then substituted into the pat-
tern %.c to yield the target’s prerequisite. If the target pattern does not exist, make
issues a warning.

,ch02.1376 Page 23 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 2: Rules

Use static pattern rules whenever it is easier to list the target files explicitly than to
identify them by a suffix or other pattern.

Suffix Rules
Suffix rules are the original (and obsolete) way of defining implicit rules. Because
other versions of make may not support GNU make’s pattern rule syntax, you will still
see suffix rules in makefiles intended for a wide distribution so it is important to be
able to read and understand the syntax. So, although compiling GNU make for the
target system is the preferred method for makefile portability, you may still need to
write suffix rules in rare circumstances.

Suffix rules consist of one or two suffixes concatenated and used as a target:

.c.o:
 $(COMPILE.c) $(OUTPUT_OPTION) $<

This is a little confusing because the prerequisite suffix comes first and the target suf-
fix second. This rule matches the same set of targets and prerequisites as:

%.o: %.c
 $(COMPILE.c) $(OUTPUT_OPTION) $<

The suffix rule forms the stem of the file by removing the target suffix. It forms the
prerequisite by replacing the target suffix with the prerequisite suffix. The suffix rule
is recognized by make only if the two suffixes are in a list of known suffixes.

The above suffix rule is known as a double-suffix rule since it contains two suffixes.
There are also single-suffix rules. As you might imagine a single-suffix rule contains
only one suffix, the suffix of the source file. These rules are used to create executa-
bles since Unix executables do not have a suffix:

.p:
 $(LINK.p) $^ $(LOADLIBES) $(LDLIBS) -o $@

This rule produces an executable image from a Pascal source file. This is completely
analogous to the pattern rule:

%: %.p
 $(LINK.p) $^ $(LOADLIBES) $(LDLIBS) -o $@

The known suffix list is the strangest part of the syntax. A special target, .SUFFIXES,
is used to set the list of known suffixes. Here is the first part of the default .SUFFIXES
definition:

.SUFFIXES: .out .a .ln .o .c .cc .C .cpp .p .f .F .r .y .l

You can add your own suffixes by simply adding a .SUFFIXES rule to your makefile:

.SUFFIXES: .pdf .fo .html .xml

If you want to delete all the known suffixes (because they are interfering with your
special suffixes) simply specify no prerequisites:

.SUFFIXES:

,ch02.1376 Page 24 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Implicit Rules Database | 25

You can also use the command-line option --no-builtin-rules (or -r).

We will not use this old syntax in the rest of this book because GNU make’s pattern
rules are clearer and more general.

The Implicit Rules Database
GNU make 3.80 has about 90 built-in implicit rules. An implicit rule is either a pat-
tern rule or a suffix rule (which we will discuss briefly later). There are built-in pat-
tern rules for C, C++, Pascal, FORTRAN, ratfor, Modula, Texinfo, TEX (including
Tangle and Weave), Emacs Lisp, RCS, and SCCS. In addition, there are rules for sup-
porting programs for these languages, such as cpp, as, yacc, lex, tangle, weave and
dvi tools.

If you are using any of these tools, you’ll probably find most of what you need in the
built-in rules. If you’re using some unsupported languages such as Java or XML, you
will have to write rules of your own. But don’t worry, you typically need only a few
rules to support a language and they are quite easy to write.

To examine the rules database built into make, use the --print-data-base command-
line option (-p for short). This will generate about a thousand lines of output. After
version and copyright information, make prints its variable definitions each one pre-
ceded by a comment indicating the “origin” of the definition. For instance, variables
can be environment variables, default values, automatic variables, etc. After the vari-
ables, come the rules. The actual format used by GNU make is:

%: %.C
commands to execute (built-in):
 $(LINK.C) $^ $(LOADLIBES) $(LDLIBS) -o $@

For rules defined by the makefile, the comment will include the file and line where
the rule was defined:

%.html: %.xml
commands to execute (from `Makefile', line 168):
 $(XMLTO) $(XMLTO_FLAGS) html-nochunks $<

Working with Implicit Rules
The built-in implicit rules are applied whenever a target is being considered and there
is no explicit rule to update it. So using an implicit rule is easy: simply do not specify
a command script when adding your target to the makefile. This causes make to
search its built-in database to satisfy the target. Usually this does just what you want,
but in rare cases your development environment can cause problems. For instance,
suppose you have a mixed language environment consisting of Lisp and C source
code. If the file editor.l and editor.c both exist in the same directory (say one is a low-
level implementation accessed by the other) make will believe that the Lisp file is
really a flex file (recall flex files use the .l suffix) and that the C source is the output

,ch02.1376 Page 25 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 2: Rules

of the flex command. If editor.o is a target and editor.l is newer than editor.c, make
will attempt to “update” the C file with the output of flex overwriting your source
code. Gack.

To work around this particular problem you can delete the two rules concerning
flex from the built-in rule base like this:

%.o: %.l
%.c: %.l

A pattern with no command script will remove the rule from make’s database. In
practice, situations such as this are very rare. However, it is important to remember
the built-in rules database contains rules that will interact with your own makefiles in
ways you may not have anticipated.

We have seen several examples of how make will “chain” rules together while trying
to update a target. This can lead to some complexity, which we’ll examine here.
When make considers how to update a target, it searches the implicit rules for a tar-
get pattern that matches the target in hand. For each target pattern that matches the
target file, make will look for an existing matching prerequisite. That is, after match-
ing the target pattern, make immediately looks for the prerequisite “source” file. If
the prerequisite is found, the rule is used. For some target patterns, there are many
possible source files. For instance, a .o file can be made from .c, .cc, .cpp, .p, .f, .r, .s,
and .mod files. But what if the source is not found after searching all possible rules?
In this case, make will search the rules again, this time assuming that the matching
source file should be considered as a new target for updating. By performing this
search recursively, make can find a “chain” of rules that allows updating a target. We
saw this in our lexer.o example. make was able to update the lexer.o target from lexer.l
even though the intermediate .c file was missing by invoking the .l to .c rule, then the
.c to .o rule.

One of the more impressive sequences that make can produce automatically from its
database is shown here. First, we setup our experiment by creating an empty yacc
source file and registering with RCS using ci (that is, we want a version-controlled
yacc source file):

$ touch foo.y
$ ci foo.y
foo.y,v <-- foo.y
.
initial revision: 1.1
done

Now, we ask make how it would create the executable foo. The --just-print (or -n)
option tells make to report what actions it would perform without actually running
them. Notice that we have no makefile and no “source” code, only an RCS file:

$ make -n foo
co foo.y,v foo.y
foo.y,v --> foo.y

,ch02.1376 Page 26 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Implicit Rules Database | 27

revision 1.1
done
bison -y foo.y
mv -f y.tab.c foo.c
gcc -c -o foo.o foo.c
gcc foo.o -o foo
rm foo.c foo.o foo.y

Following the chain of implicit rules and prerequisites, make determined it could cre-
ate the executable, foo, if it had the object file foo.o. It could create foo.o if it had the
C source file foo.c. It could create foo.c if it had the yacc source file foo.y. Finally, it
realized it could create foo.y by checking out the file from the RCS file foo.y,v, which
it actually has. Once make has formulated this plan, it executes it by checking out foo.y
with co, transforming it into foo.c with bison, compiling it into foo.o with gcc, and
linking it to form foo again with gcc. All this from the implicit rules database. Pretty
cool.

The files generated by chaining rules are called intermediate files and are treated spe-
cially by make. First, since intermediate files do not occur in targets (otherwise they
would not be intermediate), make will never simply update an intermediate file. Sec-
ond, because make creates intermediate files itself as a side effect of updating a target,
make will delete the intermediates before exiting. You can see this in the last line of
the example.

Rule Structure
The built-in rules have a standard structure intended to make them easily customiz-
able. Let’s go over the structure briefly then talk about customization. Here is the (by
now familiar) rule for updating an object file from its C source:

%.o: %.c
 $(COMPILE.c) $(OUTPUT_OPTION) $<

The customization of this rule is controlled entirely by the set of variables it uses. We
see two variables here, but COMPILE.c in particular is defined in terms of several other
variables:

COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
CC = gcc
OUTPUT_OPTION = -o $@

The C compiler itself can be changed by altering the value of the CC variable. The
other variables are used for setting compilation options (CFLAGS), preprocessor
options (CPPFLAGS), and architecture-specific options (TARGET_ARCH).

The variables in a built-in rule are intended to make customizing the rule as easy as
possible. For that reason, it is important to be very careful when setting these vari-
ables in your makefile. If you set these variables in a naive way, you destroy the end
user’s ability to customize them. For instance, given this assignment in a makefile:

CPPFLAGS = -I project/include

,ch02.1376 Page 27 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 2: Rules

If the user wanted to add a CPP define to the command line, they would normally
invoke make like:

$ make CPPFLAGS=-DDEBUG

But in so doing they would accidentally remove the -I option that is (presumably)
required for compiling. Variables set on the command line override all other assign-
ments to the variable. (See the section “Where Variables Come From” in Chapter 3
for more details on command-line assignments). So, setting CPPFLAGS inappropriately
in the makefile “broke” a customization feature that most users would expect to
work. Instead of using simple assignment, consider redefining the compilation vari-
able to include your own variables:

COMPILE.c = $(CC) $(CFLAGS) $(INCLUDES) $(CPPFLAGS) $(TARGET_ARCH) -c
INCLUDES = -I project/include

Or you can use append-style assignment, which is discussed in the section “Other
Types of Assignment” in Chapter 3.

Implicit Rules for Source Control
make knows about two source code control systems, RCS and SCCS, and supports
their use with built-in implicit rules. Unfortunately, it seems the state of the art in
source code control and modern software engineering have left make behind. I’ve
never found a use for the source control support in make, nor have I seen it used in
other production software. I do not recommend the use of this feature. There are a
number of reasons for this.

First, the source control tools supported by make, RCS and SCCS, although valuable
and venerable tools in their day, have largely been supplanted by CVS, the Concur-
rent Version System, or proprietary tools. In fact, CVS uses RCS to manage individ-
ual files internally. However, using RCS directly proved to be a considerable problem
when a project spanned more than one directory or more than one developer. CVS,
in particular, was implemented to fill the gaps in RCS’s functionality in precisely
these areas. Support for CVS has never been added to make, which is probably a good
thing.*

It is now well recognized that the life cycle of software becomes complex. Applica-
tions rarely move smoothly from one release to the next. More typically, one or more
distinct releases of an application are being used in the field (and require bug fix sup-
port), while one or more versions are in active development. CVS provides powerful
features to help manage these parallel versions of the software. But it also means that
a developer must be very aware of the specific version of the code she is working on.
Having the makefile automatically check out source during a compilation begs the

* CVS is, in turn, becoming supplanted by newer tools. While it is currently the most ubiquitous source con-
trol system, subversion (http://subversion.tigris.org) looks to be the new wave.

,ch02.1376 Page 28 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Implicit Rules Database | 29

question of what source is being checked out and whether the newly checked out
source is compatible with the source already existing in the developer’s working
directories. In many production environments, developers are working on three or
more distinct versions of the same application in a single day. Keeping this complex-
ity in check is hard enough without having software quietly updating your source
tree for you.

Also, one of the more powerful features of CVS is that it allows access to remote
repositories. In most production environments, the CVS repository (the database of
controlled files) is not located on the developer’s own machine, but on a server.
Although network access is now quite fast (particularly on a local area network) it is
not a good idea to have make probing the network server in search of source files. The
performance impact would be disastrous.

So, although it is possible to use the built-in implicit rules to interface more or less
cleanly with RCS and SCCS, there are no rules to access CVS for gathering source
files or makefile. Nor do I think it makes much sense to do so. On the other hand, it
is quite reasonable to use CVS in makefiles. For instance, to ensure that the current
source is properly checked in, that the release number information is managed prop-
erly, or that test results are correct. These are uses of CVS by makefile authors rather
than issues of CVS integration with make.

A Simple Help Command
Large makefiles can have many targets that are difficult for users to remember. One
way to reduce this problem is to make the default target a brief help command.
However, maintaining the help text by hand is always a problem. To avoid this, you
can gather the available commands directly from make’s rules database. The follow-
ing target will present a sorted four column listing of the available make targets:

help - The default goal
.PHONY: help
help:
 $(MAKE) --print-data-base --question | \
 $(AWK) '/^[^.%][-A-Za-z0-9_]*:/ \
 { print substr($$1, 1, length($$1)-1) }' | \
 $(SORT) | \
 $(PR) --omit-pagination --width=80 --columns=4

The command script consists of a single pipeline. The make rule database is dumped
using the --print-data-base command. Using the --question option prevents make
from running any actual commands. The database is then passed through a simple
awk filter that grabs every line representing a target that does not begin with percent
or period (pattern rules and suffix rules, respectively) and discards extra information
on the line. Finally, the target list is sorted and printed in a simple four-column
listing.

,ch02.1376 Page 29 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 2: Rules

Another approach to the same command (my first attempt), used the awk command
on the makefile itself. This required special handling for included makefiles (covered
in the section “The include Directive” in Chapter 3) and could not handle generated
rules at all. The version presented here handles all that automatically by allowing
make to process these elements and report the resulting rule set.

Special Targets
A special target is a built-in phony target used to change make’s default behavior. For
instance, .PHONY, a special target, which we’ve already seen, declares that its prereq-
uisite does not refer to an actual file and should always be considered out of date.
The .PHONY target is the most common special target you will see, but there are oth-
ers as well.

These special targets follow the syntax of normal targets, that is target:
prerequisite, but the target is not a file or even a normal phony. They are really
more like directives for modifying make’s internal algorithms.

There are twelve special targets. They fall into three categories: as we’ve just said
many are used to alter the behavior of make when updating a target, another set act
simply as global flags to make and ignore their targets, finally the .SUFFIXES special
target is used when specifying old-fashioned suffix rules (discussed in the section
“Suffix Rules” earlier in this chapter).

The most useful target modifiers (aside from .PHONY) are:

.INTERMEDIATE
Prerequisites of this special target are treated as intermediate files. If make creates
the file while updating another target, the file will be deleted automatically when
make exits. If the file already exists when make considers updating the file, the file
will not be deleted.

This can be very useful when building custom rule chains. For instance, most
Java tools accept Windows-like file lists. Creating rules to build the file lists and
marking their output files as intermediate allows make to clean up many tempo-
rary files.

.SECONDARY
Prerequisites of this special target are treated as intermediate files but are never
automatically deleted. The most common use of .SECONDARY is to mark object
files stored in libraries. Normally these object files will be deleted as soon as they
are added to an archive. Sometimes it is more convenient during development to
keep these object files, but still use the make support for updating archives.

.PRECIOUS
When make is interrupted during execution, it may delete the target file it is
updating if the file was modified since make started. This is so make doesn’t leave

,ch02.1376 Page 30 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Automatic Dependency Generation | 31

a partially constructed (possibly corrupt) file laying around in the build tree.
There are times when you don’t want this behavior, particularly if the file is large
and computationally expensive to create. If you mark the file as precious, make
will never delete the file if interrupted.

Use of .PRECIOUS is relatively rare, but when it is needed it is often a life saver.
Note that make will not perform an automatic delete if the commands of a rule
generate an error. It does so only when interrupted by a signal.

.DELETE_ON_ERROR
This is sort of the opposite of .PRECIOUS. Marking a target as .DELETE_ON_ERROR
says that make should delete the target if any of the commands associated with
the rule generates an error. make normally only deletes the target if it is inter-
rupted by a signal.

The other special targets will be covered later when their use is more relevant. We’ll
discuss .EXPORT_ALL_VARIABLES in Chapter 3 and the targets relating to parallel execu-
tion in Chapter 10.

Automatic Dependency Generation
When we refactored our word counting program to use header files, a thorny little
problem snuck up on us. We added the dependency between the object files and the
C header files to the makefile by hand. It was easy to do in this case, but in normal
programs (not toy examples) this can be tedious and error-prone. In fact, in most
programs it is virtually impossible because most header files include other header
files forming a complex tree. For instance, on my system, the single header file stdio.h
(the most commonly referenced header file in C) expands to include 15 other header
files. Resolving these relationships by hand is a hopeless task. But failing to recom-
pile files can lead to hours of debugging headaches or worse, bugs in the resulting
program. So what do we do?

Well, computers are pretty good at searching and pattern matching. Let’s use a pro-
gram to identify the relationships between files and maybe even have this program
write out these dependencies in makefile syntax. As you have probably guessed, such
a program already exists—at least for C/C++. There is a option to gcc and many
other C/C++ compilers that will read the source and write makefile dependencies.
For instance, here is how I found the dependencies for stdio.h:

$ echo "#include <stdio.h>" > stdio.c
$ gcc -M stdio.c
stdio.o: stdio.c /usr/include/stdio.h /usr/include/_ansi.h \
 /usr/include/newlib.h /usr/include/sys/config.h \
 /usr/include/machine/ieeefp.h /usr/include/cygwin/config.h \
 /usr/lib/gcc-lib/i686-pc-cygwin/3.2/include/stddef.h \
 /usr/lib/gcc-lib/i686-pc-cygwin/3.2/include/stdarg.h \
 /usr/include/sys/reent.h /usr/include/sys/_types.h \
 /usr/include/sys/types.h /usr/include/machine/types.h \

,ch02.1376 Page 31 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 2: Rules

 /usr/include/sys/features.h /usr/include/cygwin/types.h \
 /usr/include/sys/sysmacros.h /usr/include/stdint.h \
 /usr/include/sys/stdio.h

“Fine.” I hear you cry, “Now I need to run gcc and use an editor to paste the results
of -M into my makefiles. What a pain.” And you’d be right if this was the whole
answer. There are two traditional methods for including automatically generated
dependencies into makefiles. The first and oldest is to add a line such as:

Automatically generated dependencies follow - Do Not Edit

to the end of the makefile and then write a shell script to update these generated
lines. This is certainly better than updating them by hand, but it’s also very ugly. The
second method is to add an include directive to the make program. By now most ver-
sions of make have the include directive and GNU make most certainly does.

So, the trick is to write a makefile target whose action runs gcc over all your source
with the -M option, saves the results in a dependency file, and then re-runs make
including the generated dependency file in the makefile so it can trigger the updates
we need. Before GNU make, this is exactly what was done and the rule looked like:

depend: count_words.c lexer.c counter.c
 $(CC) -M $(CPPFLAGS) $^ > $@

include depend

Before running make to build the program, you would first execute make depend to
generate the dependencies. This was good as far as it went, but often people would
add or remove dependencies from their source without regenerating the depend file.
Then source wouldn’t get recompiled and the whole mess started again.

GNU make solved this last niggling problem with a cool feature and a simple algo-
rithm. First, the algorithm. If we generated each source file’s dependencies into its
own dependency file with, say, a .d suffix and added the .d file itself as a target to this
dependency rule, then make could know that the .d needed to be updated (along with
the object file) when the source file changed:

counter.o counter.d: src/counter.c include/counter.h include/lexer.h

Generating this rule can be accomplished with a pattern rule and a (fairly ugly) com-
mand script (this is taken directly from the GNU make manual):*

* This is an impressive little command script, but I think it requires some explanation. First, we use the C com-
piler with the -M option to create a temporary file containing the dependencies for this target. The temporary
filename is created from the target, $@, with a unique numeric suffix added, $$$$. In the shell, the variable $$
returns the process number of the currently running shell. Since process numbers are unique, this produces
a unique filename. We then use sed to add the .d file as a target to the rule. The sed expression consists of a
search part, \($*\)\.o[:]*, and a replacement part, \1.o $@ :, separated by commas. The search expression
begins with the target stem, $*, enclosed in a regular expression (RE) group, \(\), followed by the file suffix,
\.o. After the target filename, there come zero or more spaces or colons, [:]*. The replacement portion
restores the original target by referencing the first RE group and appending the suffix, \1.o, then adding the
dependency file target, $@.

,ch02.1376 Page 32 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Automatic Dependency Generation | 33

%.d: %.c
 $(CC) -M $(CPPFLAGS) $< > $@.$$$$; \
 sed 's,\($*\)\.o[:]*,\1.o $@ : ,g' < $@.$$$$ > $@; \
 rm -f $@.$$$$

Now, for the cool feature. make will treat any file named in an include directive as a
target to be updated. So, when we mention the .d files we want to include, make will
automatically try to create these files as it reads the makefile. Here is our makefile
with the addition of automatic dependency generation:

VPATH = src include
CPPFLAGS = -I include

SOURCES = count_words.c \
 lexer.c \
 counter.c

count_words: counter.o lexer.o -lfl
count_words.o: counter.h
counter.o: counter.h lexer.h
lexer.o: lexer.h

include $(subst .c,.d,$(SOURCES))

%.d: %.c
 $(CC) -M $(CPPFLAGS) $< > $@.$$$$; \
 sed 's,\($*\)\.o[:]*,\1.o $@ : ,g' < $@.$$$$ > $@; \
 rm -f $@.$$$$

The include directive should always be placed after the hand-written dependencies
so that the default goal is not hijacked by some dependency file. The include direc-
tive takes a list of files (whose names can include wildcards). Here we use a
make function, subst, to transform the list of source files into a list of dependency file-
names. (We’ll discuss subst in detail in the section “String Functions” in Chapter 4.)
For now, just note that this use replaces the string .c with .d in each of the words in
$(SOURCES).

When we run this makefile with the --just-print option, we get:

$ make --just-print
Makefile:13: count_words.d: No such file or directory
Makefile:13: lexer.d: No such file or directory
Makefile:13: counter.d: No such file or directory
gcc -M -I include src/counter.c > counter.d.$$; \
sed 's,\(counter\)\.o[:]*,\1.o counter.d : ,g' < counter.d.$$ >
counter.d; \
rm -f counter.d.$$
flex -t src/lexer.l > lexer.c
gcc -M -I include lexer.c > lexer.d.$$; \
sed 's,\(lexer\)\.o[:]*,\1.o lexer.d : ,g' < lexer.d.$$ > lexer.d;
\
rm -f lexer.d.$$
gcc -M -I include src/count_words.c > count_words.d.$$;

,ch02.1376 Page 33 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 2: Rules

\
sed 's,\(count_words\)\.o[:]*,\1.o count_words.d : ,g' < count_words.d.
$$
count_words.d; \
rm -f count_words.d.$$
rm lexer.c
gcc -I include -c -o count_words.o src/count_words.c
gcc -I include -c -o counter.o src/counter.c
gcc -I include -c -o lexer.o lexer.c
gcc count_words.o counter.o lexer.o /lib/libfl.a -o count_words

At first the response by make is a little alarming—it looks like a make error message.
But not to worry, this is just a warning. make looks for the include files and doesn’t
find them, so it issues the No such file or directory warning before searching for a
rule to create these files. This warning can be suppressed by preceding the include
directive with a hyphen (-). The lines following the warnings show make invoking gcc
with the -M option, then running the sed command. Notice that make must invoke
flex to create lexer.c, then it deletes the temporary lexer.c before beginning to satisfy
the default goal.

This gives you a taste of automatic dependency generation. There’s lots more to say,
such as how do you generate dependencies for other languages or build tree layouts.
We’ll return to this topic in more depth in Part II of this book.

Managing Libraries
An archive library, usually called simply a library or archive, is a special type of file
containing other files called members. Archives are used to group related object files
into more manageable units. For example, the C standard library libc.a contains low-
level C functions. Libraries are very common so make has special support for creat-
ing, maintaining, and referencing them. Archives are created and modified with the
ar program.

Let’s look at an example. We can modify our word counting program by refactoring
the reusable parts into a reusable library. Our library will consist of the two files
counter.o and lexer.o. The ar command to create this library is:

$ ar rv libcounter.a counter.o lexer.o
a - counter.o
a - lexer.o

The options rv indicate that we want to replace members of the archive with the
object files listed and that ar should verbosely echo its actions. We can use the
replace option even though the archive doesn’t exist. The first argument after the
options is the archive name followed by a list of object files. (Some versions of ar also
require the “c” option, for create, if the archive does not exist but GNU ar does not.)

,ch02.1376 Page 34 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Managing Libraries | 35

The two lines following the ar command are its verbose output indicating the object
files were added.

Using the replace option to ar allows us to create or update an archive incrementally:

$ ar rv libcounter.a counter.o
r - counter.o
$ ar rv libcounter.a lexer.o
r - lexer.o

Here ar echoed each action with “r” to indicate the file was replaced in the archive.

A library can be linked into an executable in several ways. The most straightforward
way is to simply list the library file on the command line. The compiler or linker will
use the file suffix to determine the type of a particular file on the command line and
do the Right Thing™:

cc count_words.o libcounter.a /lib/libfl.a -o count_words

Here cc will recognize the two files libcounter.a and /lib/libfl.a as libraries and search
them for undefined symbols. The other way to reference libraries on the command
line is with the -l option:

cc count_words.o -lcounter -lfl -o count_words

As you can see, with this option you omit the prefix and suffix of the library filename.
The -l option makes the command line more compact and easier to read, but it has a
far more useful function. When cc sees the -l option it searches for the library in the
system’s standard library directories. This relieves the programmer from having to
know the precise location of a library and makes the command line more portable.
Also, on systems that support shared libraries (libraries with the extension .so on Unix
systems), the linker will search for a shared library first, before searching for an
archive library. This allows programs to benefit from shared libraries without specifi-
cally requiring them. This is the default behavior of GNU’s linker/compiler. Older
linker/compilers may not perform this optimization.

The search path used by the compiler can be changed by adding -L options indicat-
ing the directories to search and in what order. These directories are added before
the system libraries and are used for all -l options on the command line. In fact, the
last example fails to link because the current directory is not in cc’s library search
path. We can fix this error by adding the current directory like this:

cc count_words.o -L. -lcounter -lfl -o count_words

Libraries add a bit of complication to the process of building a program. How can
make help to simplify the situation? GNU make includes special features to support
both the creation of libraries and their use in linking programs. Let’s see how they
work.

,ch02.1376 Page 35 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: Rules

Creating and Updating Libraries
Within a makefile, a library file is specified with its name just like any other file. A
simple rule to create our library is:

libcounter.a: counter.o lexer.o
 $(AR) $(ARFLAGS) $@ $^

This uses the built-in definition for the ar program in AR and the standard options rv
in ARFLAGS. The archive output file is automatically set in $@ and the prerequisites are
set in $^.

Now, if you make libcounter.a a prerequisite of count_words make will update our
library before linking the executable. Notice one small irritation, however. All mem-
bers of the archive are replaced even if they have not been modified. This is a waste
of time and we can do better:

libcounter.a: counter.o lexer.o
 $(AR) $(ARFLGS) $@ $?

If you use $? instead of $^, make will pass only those objects files that are newer than
the target to ar.

Can we do better still? Maybe, but maybe not. make has support for updating individ-
ual files within an archive, executing one ar command for each object file member,
but before we go delving into those details there are several points worth noting
about this style of building libraries. One of the primary goals of make is to use the
processor efficiently by updating only those files that are out of date. Unfortunately,
the style of invoking ar once for each out-of-date member quickly bogs down. If the
archive contains more than a few dozen files, the expense of invoking ar for each
update begins to outweigh the “elegance” factor of using the syntax we are about to
introduce. By using the simple method above and invoking ar in an explicit rule, we
can execute ar once for all files and save ourselves many fork/exec calls. In addition,
on many systems using the r to ar is very inefficient. On my 1.9 GHz Pentium 4,
building a large archive from scratch (with 14,216 members totaling 55 MB) takes 4
minutes 24 seconds. However, updating a single object file with ar r on the result-
ing archive takes 28 seconds. So building the archive from scratch is faster if I need to
replace more than 10 files (out of 14,216!). In such situations it is probably more
prudent to perform a single update of the archive with all modified object files using
the $? automatic variable. For smaller libraries and faster processors there is no per-
formance reason to prefer the simple approach above to the more elegant one below.
In those situations, using the special library support that follows is a fine approach.

In GNU make, a member of an archive can be referenced using the notation:

libgraphics.a(bitblt.o): bitblt.o
 $(AR) $(ARFLAGS) $@ $<

Here the library name is libgraphics.a and the member name is bitblt.o (for bit block
transfer). The syntax libname.a(module.o) refers to the module contained within the

,ch02.1376 Page 36 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Managing Libraries | 37

library. The prerequisite for this target is simply the object file itself and the com-
mand adds the object file to the archive. The automatic variable $< is used in the
command to get only the first prerequisite. In fact, there is a built-in pattern rule that
does exactly this.

When we put this all together, our makefile looks like this:

VPATH = src include
CPPFLAGS = -I include

count_words: libcounter.a /lib/libfl.a

libcounter.a: libcounter.a(lexer.o) libcounter.a(counter.o)

libcounter.a(lexer.o): lexer.o
 $(AR) $(ARFLAGS) $@ $<

libcounter.a(counter.o): counter.o
 $(AR) $(ARFLAGS) $@ $<

count_words.o: counter.h
counter.o: counter.h lexer.h
lexer.o: lexer.h

When executed, make produces this output:

$ make
gcc -I include -c -o count_words.o src/count_words.c
flex -t src/lexer.l> lexer.c
gcc -I include -c -o lexer.o lexer.c
ar rv libcounter.a lexer.o
ar: creating libcounter.a
a - lexer.o
gcc -I include -c -o counter.o src/counter.c
ar rv libcounter.a counter.o
a - counter.o
gcc count_words.o libcounter.a /lib/libfl.a -o count_words
rm lexer.c

Notice the archive updating rule. The automatic variable $@ is expanded to the
library name even though the target in the makefile is libcounter.a(lexer.o).

Finally, it should be mentioned that an archive library contains an index of the sym-
bols it contains. Newer archive programs such as GNU ar manage this index auto-
matically when a new module is added to the archive. However, many older versions
of ar do not. To create or update the index of an archive another program ranlib is
used. On these systems, the built-in implicit rule for updating archives is insuffi-
cient. For these systems, a rule such as:

libcounter.a: libcounter.a(lexer.o) libcounter.a(counter.o)
 $(RANLIB) $@

,ch02.1376 Page 37 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 2: Rules

must be used. Or if you choose to use the alternate approach for large archives:

libcounter.a: counter.o lexer.o
 $(RM) $@
 $(AR) $(ARFLGS) $@ $^
 $(RANLIB) $@

Of course, this syntax for managing the members of an archive can be used with the
built-in implicit rules as well. GNU make comes with a built-in rule for updating an
archive. When we use this rule, our makefile becomes:

VPATH = src include
CPPFLAGS = -I include

count_words: libcounter.a -lfl
libcounter.a: libcounter.a(lexer.o) libcounter.a(counter.o)
count_words.o: counter.h
counter.o: counter.h lexer.h
lexer.o: lexer.h

Using Libraries as Prerequisites
When libraries appear as prerequisites, they can be referenced using either a stan-
dard filename or with the -l syntax. When filename syntax is used:

xpong: $(OBJECTS) /lib/X11/libX11.a /lib/X11/libXaw.a
 $(LINK) $^ -o $@

the linker will simply read the library files listed on the command line and process
them normally. When the -l syntax is used, the prerequisites aren’t proper files at
all:

xpong: $(OBJECTS) -lX11 -lXaw
 $(LINK) $^ -o $@

When the -l form is used in a prerequisite, make will search for the library (prefer-
ring a shared library) and substitute its value, as an absolute path, into the $^ and $?
variables. One great advantage of the second form is that it allows you to use the
search and shared library preference feature even when the system’s linker cannot
perform these duties. Another advantage is that you can customize make’s search path
so it can find your application’s libraries as well as system libraries. In this case, the
first form would ignore the shared library and use the archive library since that is
what was specified on the link line. In the second form, make knows that shared
libraries are preferred and will search first for a shared version of X11 before settling
for the archive version. The pattern for recognizing libraries from the -l format is
stored in .LIBPATTERNS and can be customized for other library filename formats.

,ch02.1376 Page 38 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Managing Libraries | 39

Unfortunately, there is a small wrinkle. If a makefile specifies a library file target, it
cannot use the -l option for that file in a prerequisite. For instance, the following
makefile:

count_words: count_words.o -lcounter -lfl
 $(CC) $^ -o $@

libcounter.a: libcounter.a(lexer.o) libcounter.a(counter.o)

fails with the error:

No rule to make target `-lcounter', needed by `count_words'

It appears that this error occurs because make does not expand -lcounter to
libcounter.a and search for a target, but instead does a straight library search. So for
libraries built within the makefile, the filename form must be used.

Getting complex programs to link without error can be somewhat of a black art. The
linker will search libraries in the order in which they are listed on the command line.
So if library A includes an undefined symbol, say open, that is defined in library B, the
link command line must list A before B (that is, A requires B). Otherwise, when the
linker reads A and sees the undefined symbol open, it’s too late to go back to B. The
linker doesn’t ever go back. As you can see, the order of libraries on the command
line is of fundamental importance.

When the prerequisites of a target are saved in the $^ and $? variables, their order is
preserved. So using $^ as in the previous example expands to the same files in the
same order as the prerequisites list. This is true even when the prerequisites are split
across multiple rules. In that case, the prerequisites of each rule are appended to the
target prerequisite list in the order they are seen.

A closely related problem is mutual reference between libraries, often referred to as
circular references or circularities. Suppose a change is made and library B now refer-
ences a symbol defined in library A. We know A must come before B, but now B must
come before A. Hmm, a problem. The solution is to reference A both before and after
B: -lA -lB -lA. In large, complex programs, libraries often need to be repeated in this
way, sometimes more than twice.

This situation poses a minor problem for make because the automatic variables nor-
mally discard duplicates. For example, suppose we need to repeat a library prerequi-
site to satisfy a library circularity:

xpong: xpong.o libui.a libdynamics.a libui.a -lX11
 $(CC) $^ -o $@

This prerequisite list will be processed into the following link command:

gcc xpong.o libui.a libdynamics.a /usr/lib/X11R6/libX11.a -o xpong

,ch02.1376 Page 39 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: Rules

Oops. To overcome this behavior of $^ an additional variable is available in make, $+.
This variable is identical to $^ with the exception that duplicate prerequisites are pre-
served. Using $+:

xpong: xpong.o libui.a libdynamics.a libui.a -lX11
 $(CC) $+ -o $@

This prerequisite list will be processed into the following link command:

gcc xpong.o libui.a libdynamics.a libui.a /usr/lib/X11R6/libX11.a -o xpong

Double-Colon Rules
Double-colon rules are an obscure feature that allows the same target to be updated
with different commands depending on which set of prerequisites are newer than the
target. Normally, when a target appears more than once all the prerequisites are
appended in a long list with only one command script to perform the update. With
double-colon rules, however, each occurrence of the target is considered a com-
pletely separate entity and is handled individually. This means that for a particular
target, all the rules must be of the same type, either they are all double-colon rules or
all single-colon rules.

Realistic, useful examples of this feature are difficult to come by (which is why it is
an obscure feature), but here is an artificial example:

file-list:: generate-list-script
 chmod +x $<
 generate-list-script $(files) > file-list

file-list:: $(files)
 generate-list-script $(files) > file-list

We can regenerate the file-list target two ways. If the generating script has been
updated, we make the script executable, then run it. If the source files have changed,
we simply run the script. Although a bit far-fetched, this gives you a feel for how the
feature might be used.

We’ve covered most of the features of make rules and, along with variables and com-
mands, this is the essence of make. We’ve focused largely on the specific syntax and
behavior of the features without going much into how to apply them in more com-
plex situations. That is the subject of Part II. For now, we will continue our discus-
sion with variables and then commands.

,ch02.1376 Page 40 Friday, March 25, 2005 1:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

41

Chapter 3 CHAPTER 3

Variables and Macros

We’ve been looking at makefile variables for a while now and we’ve seen many
examples of how they’re used in both the built-in and user-defined rules. But the
examples we’ve seen have only scratched the surface. Variables and macros get much
more complicated and give GNU make much of its incredible power.

Before we go any further, it is important to understand that make is sort of two lan-
guages in one. The first language describes dependency graphs consisting of targets
and prerequisites. (This language was covered in Chapter 2.) The second language is
a macro language for performing textual substitution. Other macro languages you
may be familiar with are the C preprocessor, m4, TEX, and macro assemblers. Like
these other macro languages, make allows you to define a shorthand term for a longer
sequence of characters and use the shorthand in your program. The macro processor
will recognize your shorthand terms and replace them with their expanded form.
Although it is easy to think of makefile variables as traditional programming lan-
guage variables, there is a distinction between a macro “variable” and a “traditional”
variable. A macro variable is expanded “in place” to yield a text string that may then
be expanded further. This distinction will become more clear as we proceed.

A variable name can contain almost any characters including most punctuation.
Even spaces are allowed, but if you value your sanity you should avoid them. The
only characters actually disallowed in a variable name are :, #, and =.

Variables are case-sensitive, so cc and CC refer to different variables. To get the value
of a variable, enclose the variable name in $(). As a special case, single-letter vari-
able names can omit the parentheses and simply use $letter. This is why the auto-
matic variables can be written without the parentheses. As a general rule you should
use the parenthetical form and avoid single letter variable names.

Variables can also be expanded using curly braces as in ${CC} and you will often see
this form, particularly in older makefiles. There is seldom an advantage to using one
over the other, so just pick one and stick with it. Some people use curly braces for
variable reference and parentheses for function call, similar to the way the shell uses

,ch03.1616 Page 41 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 3: Variables and Macros

them. Most modern makefiles use parentheses and that’s what we’ll use throughout
this book.

Variables representing constants a user might want to customize on the command
line or in the environment are written in all uppercase, by convention. Words are
separated by underscores. Variables that appear only in the makefile are all lower-
case with words separated by underscores. Finally, in this book, user-defined func-
tions in variables and macros use lowercase words separated by dashes. Other
naming conventions will be explained where they occur. (The following example
uses features we haven’t discussed yet. I’m using them to illustrate the variable nam-
ing conventions, don’t be too concerned about the righthand side for now.)

Some simple constants.
CC := gcc
MKDIR := mkdir -p

Internal variables.
sources = *.c
objects = $(subst .c,.o,$(sources))

A function or two.
maybe-make-dir = $(if $(wildcard $1),,$(MKDIR) $1)
assert-not-null = $(if $1,,$(error Illegal null value.))

The value of a variable consists of all the words to the right of the assignment sym-
bol with leading space trimmed. Trailing spaces are not trimmed. This can occasion-
ally cause trouble, for instance, if the trailing whitespace is included in the variable
and subsequently used in a command script:

LIBRARY = libio.a # LIBRARY has a trailing space.
missing_file:
 touch $(LIBRARY)
 ls -l | grep '$(LIBRARY)'

The variable assignment contains a trailing space that is made more apparent by the
comment (but a trailing space can also be present without a trailing comment).
When this makefile is run, we get:

$ make
touch libio.a
ls -l | grep 'libio.a '
make: *** [missing_file] Error 1

Oops, the grep search string also included the trailing space and failed to find the file
in ls’s output. We’ll discuss whitespace issues in more detail later. For now, let’s
look more closely at variables.

What Variables Are Used For
In general it is a good idea to use variables to represent external programs. This allows
users of the makefile to more easily adapt the makefile to their specific environment.

,ch03.1616 Page 42 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Variable Types | 43

For instance, there are often several versions of awk on a system: awk, nawk, gawk. By
creating a variable, AWK, to hold the name of the awk program you make it easier for
other users of your makefile. Also, if security is an issue in your environment, a good
practice is to access external programs with absolute paths to avoid problems with
user’s paths. Absolute paths also reduce the likelihood of issues if trojan horse ver-
sions of system programs have been installed somewhere in a user’s path. Of course,
absolute paths also make makefiles less portable to other systems. Your own require-
ments should guide your choice.

Though your first use of variables should be to hold simple constants, they can also
store user-defined command sequences such as:*

DF = df
AWK = awk
free-space := $(DF) . | $(AWK) 'NR = = 2 { print $$4 }'

for reporting on free disk space. Variables are used for both these purposes and
more, as we will see.

Variable Types
There are two types of variables in make: simply expanded variables and recursively
expanded variables. A simply expanded variable (or a simple variable) is defined using
the := assignment operator:

MAKE_DEPEND := $(CC) -M

It is called “simply expanded” because its righthand side is expanded immediately
upon reading the line from the makefile. Any make variable references in the right-
hand side are expanded and the resulting text saved as the value of the variable. This
behavior is identical to most programming and scripting languages. For instance, the
normal expansion of this variable would yield:

gcc -M

However, if CC above had not yet been set, then the value of the above assignment
would be:

<space>-M

$(CC) is expanded to its value (which contains no characters), and collapses to noth-
ing. It is not an error for a variable to have no definition. In fact, this is extremely
useful. Most of the implicit commands include undefined variables that serve as
place holders for user customizations. If the user does not customize a variable it

* The df command returns a list of each mounted filesystem and statistics on the filesystem’s capacity and
usage. With an argument, it prints statistics for the specified filesystem. The first line of the output is a list
of column titles. This output is read by awk which examines the second line and ignores all others. Column
four of df’s output is the remaining free space in blocks.

,ch03.1616 Page 43 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 3: Variables and Macros

collapses to nothing. Now notice the leading space. The righthand side is first parsed
by make to yield the string $(CC) -M. When the variable reference is collapsed to noth-
ing, make does not rescan the value and trim blanks. The blanks are left intact.

The second type of variable is called a recursively expanded variable. A recursively
expanded variable (or a recursive variable) is defined using the = assignment operator:

MAKE_DEPEND = $(CC) -M

It is called “recursively expanded” because its righthand side is simply slurped up by
make and stored as the value of the variable without evaluating or expanding it in any
way. Instead, the expansion is performed when the variable is used. A better term for
this variable might be lazily expanded variable, since the evaluation is deferred until it
is actually used. One surprising effect of this style of expansion is that assignments
can be performed “out of order”:

MAKE_DEPEND = $(CC) -M
...
Some time later
CC = gcc

Here the value of MAKE_DEPEND within a command script is gcc -M even though CC was
undefined when MAKE_DEPEND was assigned.

In fact, recursive variables aren’t really just a lazy assignment (at least not a normal
lazy assignment). Each time the recursive variable is used, its righthand side is re-
evaluated. For variables that are defined in terms of simple constants such as MAKE_
DEPEND above, this distinction is pointless since all the variables on the righthand side
are also simple constants. But imagine if a variable in the righthand side represented
the execution of a program, say date. Each time the recursive variable was expanded
the date program would be executed and each variable expansion would have a dif-
ferent value (assuming they were executed at least one second apart). At times this is
very useful. At other times it is very annoying!

Other Types of Assignment
From previous examples we’ve seen two types of assignment: = for creating recursive
variables and := for creating simple variables. There are two other assignment opera-
tors provided by make.

The ?= operator is called the conditional variable assignment operator. That’s quite a
mouth-full so we’ll just call it conditional assignment. This operator will perform the
requested variable assignment only if the variable does not yet have a value.

Put all generated files in the directory $(PROJECT_DIR)/out.
OUTPUT_DIR ?= $(PROJECT_DIR)/out

Here we set the output directory variable, OUTPUT_DIR, only if it hasn’t been set ear-
lier. This feature interacts nicely with environment variables. We’ll discuss this in the
section “Where Variables Come From” later in this chapter.

,ch03.1616 Page 44 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Macros | 45

The other assignment operator, +=, is usually referred to as append. As its name sug-
gests, this operator appends text to a variable. This may seem unremarkable, but it is
an important feature when recursive variables are used. Specifically, values on the
righthand side of the assignment are appended to the variable without changing the
original values in the variable. “Big deal, isn’t that what append always does?” I hear
you say. Yes, but hold on, this is a little tricky.

Appending to a simple variable is pretty obvious. The += operator might be imple-
mented like this:

simple := $(simple) new stuff

Since the value in the simple variable has already undergone expansion, make can
expand $(simple), append the text, and finish the assignment. But recursive vari-
ables pose a problem. An implementation like the following isn’t allowed.

recursive = $(recursive) new stuff

This is an error because there’s no good way for make to handle it. If make stores the
current definition of recursive plus new stuff, make can’t expand it again at runtime.
Furthermore, attempting to expand a recursive variable containing a reference to
itself yields an infinite loop.

$ make
makefile:2: *** Recursive variable `recursive' references itself (eventually). Stop.

So, += was implemented specifically to allow adding text to a recursive variable and
does the Right Thing™. This operator is particularly useful for collecting values into
a variable incrementally.

Macros
Variables are fine for storing values as a single line of text, but what if we have a
multiline value such as a command script we would like to execute in several places?
For instance, the following sequence of commands might be used to create a Java
archive (or jar) from Java class files:

echo Creating $@...
$(RM) $(TMP_JAR_DIR)
$(MKDIR) $(TMP_JAR_DIR)
$(CP) -r $^ $(TMP_JAR_DIR)
cd $(TMP_JAR_DIR) && $(JAR) $(JARFLAGS) $@ .
$(JAR) -ufm $@ $(MANIFEST)
$(RM) $(TMP_JAR_DIR)

At the beginning of long sequences such as this, I like to print a brief message. It can
make reading make’s output much easier. After the message, we collect our class files
into a clean temporary directory. So we delete the temporary jar directory in case an

,ch03.1616 Page 45 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 3: Variables and Macros

old one is left lying about,* then we create a fresh temporary directory. Next we copy
our prerequisite files (and all their subdirectories) into the temporary directory. Then
we switch to our temporary directory and create the jar with the target filename. We
add the manifest file to the jar and finally clean up. Clearly, we do not want to dupli-
cate this sequence of commands in our makefile since that would be a maintenance
problem in the future. We might consider packing all these commands into a recur-
sive variable, but that is ugly to maintain and difficult to read when make echoes the
command line (the whole sequence is echoed as one enormous line of text).

Instead, we can use a GNU make “canned sequence” as created by the define direc-
tive. The term “canned sequence” is a bit awkward, so we’ll call this a macro. A
macro is just another way of defining a variable in make, and one that can contain
embedded newlines! The GNU make manual seems to use the words variable and
macro interchangeably. In this book, we’ll use the word macro specifically to mean
variables defined using the define directive and variable only when assignment is
used.

define create-jar
 @echo Creating $@...
 $(RM) $(TMP_JAR_DIR)
 $(MKDIR) $(TMP_JAR_DIR)
 $(CP) -r $^ $(TMP_JAR_DIR)
 cd $(TMP_JAR_DIR) && $(JAR) $(JARFLAGS) $@ .
 $(JAR) -ufm $@ $(MANIFEST)
 $(RM) $(TMP_JAR_DIR)
endef

The define directive is followed by the variable name and a newline. The body of the
variable includes all the text up to the endef keyword, which must appear on a line
by itself. A variable created with define is expanded pretty much like any other vari-
able, except that when it is used in the context of a command script, each line of the
macro has a tab prepended to the line. An example use is:

$(UI_JAR): $(UI_CLASSES)
 $(create-jar)

Notice we’ve added an @ character in front of our echo command. Command lines
prefixed with an @ character are not echoed by make when the command is executed.
When we run make, therefore, it doesn’t print the echo command, just the output of
that command. If the @ prefix is used within a macro, the prefix character applies to
the individual lines on which it is used. However, if the prefix character is used on
the macro reference, the entire macro body is hidden:

$(UI_JAR): $(UI_CLASSES)
 @$(create-jar)

* For best effect here, the RM variable should be defined to hold rm -rf. In fact, its default value is rm -f, safer
but not quite as useful. Further, MKDIR should be defined as mkdir -p, and so on.

,ch03.1616 Page 46 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

When Variables Are Expanded | 47

This displays only:

$ make
Creating ui.jar...

The use of @ is covered in more detail in the section “Command Modifiers” in
Chapter 5.

When Variables Are Expanded
In the previous sections, we began to get a taste of some of the subtleties of variable
expansion. Results depend a lot on what was previously defined, and where. You
could easily get results you don’t want, even if make fails to find any error. So what
are the rules for expanding variables? How does this really work?

When make runs, it performs its job in two phases. In the first phase, make reads the
makefile and any included makefiles. At this time, variables and rules are loaded into
make’s internal database and the dependency graph is created. In the second phase,
make analyzes the dependency graph and determines the targets that need to be
updated, then executes command scripts to perform the required updates.

When a recursive variable or define directive is processed by make, the lines in the
variable or body of the macro are stored, including the newlines without being
expanded. The very last newline of a macro definition is not stored as part of the
macro. Otherwise, when the macro was expanded an extra newline would be read by
make.

When a macro is expanded, the expanded text is then immediately scanned for fur-
ther macro or variable references and those are expanded and so on, recursively. If
the macro is expanded in the context of an action, each line of the macro is inserted
with a leading tab character.

To summarize, here are the rules for when elements of a makefile are expanded:

• For variable assignments, the lefthand side of the assignment is always expanded
immediately when make reads the line during its first phase.

• The righthand side of = and ?= are deferred until they are used in the second
phase.

• The righthand side of := is expanded immediately.

• The righthand side of += is expanded immediately if the lefthand side was origi-
nally defined as a simple variable. Otherwise, its evaluation is deferred.

• For macro definitions (those using define), the macro variable name is immedi-
ately expanded and the body of the macro is deferred until used.

• For rules, the targets and prerequisites are always immediately expanded while
the commands are always deferred.

Table 3-1 summarizes what occurs when variables are expanded.

,ch03.1616 Page 47 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 3: Variables and Macros

As a general rule, always define variables and macros before they are used. In partic-
ular, it is required that a variable used in a target or prerequisite be defined before its
use.

An example will make all this clearer. Suppose we reimplement our free-space
macro. We’ll go over the example a piece at a time, then put them all together at the
end.

BIN := /usr/bin
PRINTF := $(BIN)/printf
DF := $(BIN)/df
AWK := $(BIN)/awk

We define three variables to hold the names of the programs we use in our macro.
To avoid code duplication we factor out the bin directory into a fourth variable. The
four variable definitions are read and their righthand sides are immediately expanded
because they are simple variables. Because BIN is defined before the others, its value
can be plugged into their values.

Next, we define the free-space macro.

define free-space
 $(PRINTF) "Free disk space "
 $(DF) . | $(AWK) 'NR = = 2 { print $$4 }'
endef

The define directive is followed by a variable name that is immediately expanded. In
this case, no expansion is necessary. The body of the macro is read and stored unex-
panded.

Finally, we use our macro in a rule.

OUTPUT_DIR := /tmp

$(OUTPUT_DIR)/very_big_file:
 $(free-space)

When $(OUTPUT_DIR)/very_big_file is read, any variables used in the targets and
prerequisites are immediately expanded. Here, $(OUTPUT_DIR) is expanded to /tmp to

Table 3-1. Rules for immediate and deferred expansion

Definition Expansion of a Expansion of b

a = b Immediate Deferred

a ?= b Immediate Deferred

a := b Immediate Immediate

a += b Immediate Deferred or immediate

define a
b...
b...
b...
endef

Immediate Deferred

,ch03.1616 Page 48 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

When Variables Are Expanded | 49

form the /tmp/very_big_file target. Next, the command script for this target is read.
Command lines are recognized by the leading tab character and are read and stored,
but not expanded.

Here is the entire example makefile. The order of elements in the file has been scram-
bled intentionally to illustrate make’s evaluation algorithm.

OUTPUT_DIR := /tmp

$(OUTPUT_DIR)/very_big_file:
 $(free-space)

define free-space
 $(PRINTF) "Free disk space "
 $(DF) . | $(AWK) 'NR = = 2 { print $$4 }'
endef

BIN := /usr/bin
PRINTF := $(BIN)/printf
DF := $(BIN)/df
AWK := $(BIN)/awk

Notice that although the order of lines in the makefile seems backward, it executes
just fine. This is one of the surprising effects of recursive variables. It can be
immensely useful and confusing at the same time. The reason this makefile works is
that expansion of the command script and the body of the macro are deferred until
they are actually used. Therefore, the relative order in which they occur is immate-
rial to the execution of the makefile.

In the second phase of processing, after the makefile is read, make identifies the tar-
gets, performs dependency analysis, and executes the actions for each rule. Here the
only target, $(OUTPUT_DIR)/very_big_file, has no prerequisites, so make will simply
execute the actions (assuming the file doesn’t exist). The command is $(free-space).
So make expands this as if the programmer had written:

/tmp/very_big_file:
 /usr/bin/printf "Free disk space "
 /usr/bin/df . | /usr/bin/awk 'NR = = 2 { print $$4 }'

Once all variables are expanded, it begins executing commands one at a time.

Let’s look at the two parts of the makefile where the order is important. As explained
earlier, the target $(OUTPUT_DIR)/very_big_file is expanded immediately. If the
definition of the variable OUTPUT_DIR had followed the rule, the expansion of the tar-
get would have yielded /very_big_file. Probably not what the user wanted. Similarly,
if the definition of BIN had been moved after AWK, those three variables would have
expanded to /printf, /df, and /awk because the use of := causes immediate evaluation
of the righthand side of the assignment. However, in this case, we could avoid the
problem for PRINTF, DF, and AWK by changing := to =, making them recursive variables.

,ch03.1616 Page 49 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 3: Variables and Macros

One last detail. Notice that changing the definitions of OUTPUT_DIR and BIN to recur-
sive variables would not change the effect of the previous ordering problems. The
important issue is that when $(OUTPUT_DIR)/very_big_file and the righthand sides
of PRINTF, DF, and AWK are expanded, their expansion happens immediately, so the
variables they refer to must be already defined.

Target- and Pattern-Specific Variables
Variables usually have only one value during the execution of a makefile. This is
ensured by the two-phase nature of makefile processing. In phase one, the makefile is
read, variables are assigned and expanded, and the dependency graph is built. In
phase two, the dependency graph is analyzed and traversed. So when command
scripts are being executed, all variable processing has already completed. But sup-
pose we wanted to redefine a variable for just a single rule or pattern.

In this example, the particular file we are compiling needs an extra command-line
option, -DUSE_NEW_MALLOC=1, that should not be provided to other compiles:

gui.o: gui.h
 $(COMPILE.c) -DUSE_NEW_MALLOC=1 $(OUTPUT_OPTION) $<

Here, we’ve solved the problem by duplicating the compilation command script and
adding the new required option. This approach is unsatisfactory in several respects.
First, we are duplicating code. If the rule ever changes or if we choose to replace the
built-in rule with a custom pattern rule, this code would need to be updated and we
might forget. Second, if many files require special treatment, the task of pasting in
this code will quickly become very tedious and error-prone (imagine a hundred files
like this).

To address this issue and others, make provides target-specific variables. These are
variable definitions attached to a target that are valid only during the processing of
that target and any of its prerequisites. We can rewrite our previous example using
this feature like this:

gui.o: CPPFLAGS += -DUSE_NEW_MALLOC=1
gui.o: gui.h
 $(COMPILE.c) $(OUTPUT_OPTION) $<

The variable CPPFLAGS is built in to the default C compilation rule and is meant to
contain options for the C preprocessor. By using the += form of assignment, we
append our new option to any existing value already present. Now the compile com-
mand script can be removed entirely:

gui.o: CPPFLAGS += -DUSE_NEW_MALLOC=1
gui.o: gui.h

While the gui.o target is being processed, the value of CPPFLAGS will contain -DUSE_
NEW_MALLOC=1 in addition to its original contents. When the gui.o target is finished,
CPPFLAGS will revert to its original value.

,ch03.1616 Page 50 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Where Variables Come From | 51

The general syntax for target-specific variables is:

target...: variable = value
target...: variable := value
target...: variable += value
target...: variable ?= value

As you can see, all the various forms of assignment are valid for a target-specific vari-
able. The variable does not need to exist before the assignment.

Furthermore, the variable assignment is not actually performed until the processing
of the target begins. So the righthand side of the assignment can itself be a value set
in another target-specific variable. The variable is valid during the processing of all
prerequisites as well.

Where Variables Come From
So far, most variables have been defined explicitly in our own makefiles, but vari-
ables can have a more complex ancestry. For instance, we have seen that variables
can be defined on the make command line. In fact, make variables can come from these
sources:

File
Of course, variables can be defined in the makefile or a file included by the
makefile (we’ll cover the include directive shortly).

Command line
Variables can be defined or redefined directly from the make command line:

$ make CFLAGS=-g CPPFLAGS='-DBSD -DDEBUG'

A command-line argument containing an = is a variable assignment. Each vari-
able assignment on the command line must be a single-shell argument. If the
value of the variable (or heaven forbid, the variable itself) contains spaces, the
argument must be surrounded by quotes or the spaces must be escaped.

An assignment of a variable on the command line overrides any value from the
environment and any assignment in the makefile. Command-line assignments
can set either simple or recursive variables by using := or =, respectively. It is
possible using the override directive to allow a makefile assignment to be used
instead of a command-line assignment.

Use big-endian objects or the program crashes!
override LDFLAGS = -EB

Of course, you should ignore a user’s explicit assignment request only under the
most urgent circumstances (unless you just want to irritate your users).

Environment
All the variables from your environment are automatically defined as make vari-
ables when make starts. These variables have very low precedence, so assign-
ments within the makefile or command-line arguments will override the value of

,ch03.1616 Page 51 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 3: Variables and Macros

an environment variable. You can cause environment variables to override
makefile variables using the --environment-overrides (or -e) command-line
option.

When make is invoked recursively, some variables from the parent make are
passed through the environment to the child make. By default, only those vari-
ables that originally came from the environment are exported to the child’s envi-
ronment, but any variable can be exported to the environment by using the
export directive:

export CLASSPATH := $(HOME)/classes:$(PROJECT)/classes
SHELLOPTS = -x
export SHELLOPTS

You can cause all variables to be exported with:
export

Note that make will export even those variables whose names contain invalid
shell variable characters. For example:

export valid-variable-in-make = Neat!
show-vars:
 env | grep '^valid-'
 valid_variable_in_shell=Great
 invalid-variable-in-shell=Sorry

$ make
env | grep '^valid-'
valid-variable-in-make=Neat!
valid_variable_in_shell=Great
invalid-variable-in-shell=Sorry
/bin/sh: line 1: invalid-variable-in-shell=Sorry: command not found
make: *** [show-vars] Error 127

An “invalid” shell variable was created by exporting valid-variable-in-make.
This variable is not accessible through normal shell syntax, only through trick-
ery such as running grep over the environment. Nevertheless, this variable is
inherited by any sub-make where it is valid and accessible. We will cover use of
“recursive” make in Part II.

You can also prevent an environment variable from being exported to the sub-
process:

unexport DISPLAY

The export and unexport directives work the same way their counterparts in sh
work.

The conditional assignment operator interacts very nicely with environment vari-
ables. Suppose you have a default output directory set in your makefile, but you

,ch03.1616 Page 52 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Where Variables Come From | 53

want users to be able to override the default easily. Conditional assignment is
perfect for this situation:

Assume the output directory $(PROJECT_DIR)/out.
OUTPUT_DIR ?= $(PROJECT_DIR)/out

Here the assignment is performed only if OUTPUT_DIR has never been set. We can
get nearly the same effect more verbosely with:

ifndef OUTPUT_DIR
 # Assume the output directory $(PROJECT_DIR)/out.
 OUTPUT_DIR = $(PROJECT_DIR)/out
endif

The difference is that the conditional assignment operator will skip the assign-
ment if the variable has been set in any way, even to the empty value, while the
ifdef and ifndef operators test for a nonempty value. Thus, OUTPUT_DIR= is con-
sidered set by the conditional operator but not defined by ifdef.

It is important to note that excessive use of environment variables makes your
makefiles much less portable, since other users are not likely to have the same set
of environment variables. In fact, I rarely use this feature for precisely that rea-
son.

Automatic
Finally, make creates automatic variables immediately before executing the com-
mand script of a rule.

Traditionally, environment variables are used to help manage the differences
between developer machines. For instance, it is common to create a development
environment (source code, compiled output tree, and tools) based on environment
variables referenced in the makefile. The makefile would refer to one environment
variable for the root of each tree. If the source file tree is referenced from a variable
PROJECT_SRC, binary output files from PROJECT_BIN, and libraries from PROJECT_LIB,
then developers are free to place these trees wherever is appropriate.

A potential problem with this approach (and with the use of environment variables
in general) occurs when these “root” variables are not set. One solution is to provide
default values in the makefile using the $? form of assignment:

PROJECT_SRC ?= /dev/$(USER)/src
PROJECT_BIN ?= $(patsubst %/src,%/bin,$(PROJECT_SRC))
PROJECT_LIB ?= /net/server/project/lib

By using these variables to access project components, you can create a development
environment that is adaptable to varying machine layouts. (We will see more com-
prehensive examples of this in Part II.) Beware of overreliance on environment vari-
ables, however. Generally, a makefile should be able to run with a minimum of
support from the developer’s environment so be sure to provide reasonable defaults
and check for the existence of critical components.

,ch03.1616 Page 53 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 3: Variables and Macros

Conditional and include Processing
Parts of a makefile can be omitted or selected while the makefile is being read using
conditional processing directives. The condition that controls the selection can have
several forms such as “is defined” or “is equal to.” For example:

COMSPEC is defined only on Windows.
ifdef COMSPEC
 PATH_SEP := ;
 EXE_EXT := .exe
else
 PATH_SEP := :
 EXE_EXT :=
endif

This selects the first branch of the conditional if the variable COMSPEC is defined.

The basic syntax of the conditional directive is:

if-condition
text if the condition is true

endif

or:

if-condition
text if the condition is true

else
text if the condition is false

endif

The if-condition can be one of:

ifdef variable-name
ifndef variable-name
ifeq test
ifneq test

The variable-name should not be surrounded by $() for the ifdef/ifndef test.
Finally, the test can be expressed as either of:

"a" "b"
(a,b)

in which single or double quotes can be used interchangeably (but the quotes you
use must match).

The conditional processing directives can be used within macro definitions and com-
mand scripts as well as at the top level of makefiles:

libGui.a: $(gui_objects)
 $(AR) $(ARFLAGS) $@ $<
 ifdef RANLIB
 $(RANLIB) $@
 endif

,ch03.1616 Page 54 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Conditional and include Processing | 55

I like to indent my conditionals, but careless indentation can lead to errors. In the
preceding lines, the conditional directives are indented four spaces while the
enclosed commands have a leading tab. If the enclosed commands didn’t begin with
a tab, they would not be recognized as commands by make. If the conditional direc-
tives had a leading tab, they would be misidentified as commands and passed to the
subshell.

The ifeq and ifneq conditionals test if their arguments are equal or not equal.
Whitespace in conditional processing can be tricky to handle. For instance, when
using the parenthesis form of the test, whitespace after the comma is ignored, but all
other whitespace is significant:

ifeq (a, a)
 # These are equal
endif

ifeq (b, b)
 # These are not equal - ' b' != 'b '
endif

Personally, I stick with the quoted forms of equality:

ifeq "a" "a"
 # These are equal
endif

ifeq 'b' 'b'
 # So are these
endif

Even so, it often occurs that a variable expansion contains unexpected whitespace.
This can cause problems since the comparison includes all characters. To create
more robust makefiles, use the strip function:

ifeq "$(strip $(OPTIONS)) "-d"
 COMPILATION_FLAGS += -DDEBUG
endif

The include Directive
We first saw the include directive in Chapter 2, in the section “Automatic Depen-
dency Generation.” Now let’s go over it in more detail.

A makefile can include other files. This is most commonly done to place common
make definitions in a make header file or to include automatically generated depen-
dency information. The include directive is used like this:

include definitions.mk

The directive can be given any number of files and shell wildcards and make variables
are also allowed.

,ch03.1616 Page 55 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 3: Variables and Macros

include and Dependencies
When make encounters an include directive, it expands the wildcards and variable
references, then tries to read the include file. If the file exists, we continue normally.
If the file does not exist, however, make reports the problem and continues reading
the rest of the makefile. When all reading is complete, make looks in the rules data-
base for any rule to update the include files. If a match is found, make follows the nor-
mal process for updating a target. If any of the include files is updated by a rule, make
then clears its internal database and rereads the entire makefile. If, after completing
the process of reading, updating, and rereading, there are still include directives that
have failed due to missing files, make terminates with an error status.

We can see this process in action with the following two-file example. We use the
warning built-in function to print a simple message from make. (This and other func-
tions are covered in detail in Chapter 4.) Here is the makefile:

Simple makefile including a generated file.
include foo.mk
$(warning Finished include)

foo.mk: bar.mk
 m4 --define=FILENAME=$@ bar.mk > $@

and here is bar.mk, the source for the included file:

bar.mk - Report when I am being read.
$(warning Reading FILENAME)

When run, we see:

$ make
Makefile:2: foo.mk: No such file or directory
Makefile:3: Finished include
m4 --define=FILENAME=foo.mk bar.mk > foo.mk
foo.mk:2: Reading foo.mk
Makefile:3: Finished include
make: `foo.mk' is up to date.

The first line shows that make cannot find the include file, but the second line shows
that make keeps reading and executing the makefile. After completing the read, make
discovers a rule to create the include file, foo.mk, and it does so. Then make starts the
whole process again, this time without encountering any difficulty reading the
include file.

Now is a good time to mention that make will also treat the makefile itself as a possi-
ble target. After the entire makefile has been read, make will look for a rule to remake
the currently executing makefile. If it finds one, make will process the rule, then check
if the makefile has been updated. If so, make will clear its internal state and reread the

,ch03.1616 Page 56 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Standard make Variables | 57

makefile, performing the whole analysis over again. Here is a silly example of an infi-
nite loop based on this behavior:

.PHONY: dummy
makefile: dummy
 touch $@

When make executes this makefile, it sees that the makefile is out of date (because the
.PHONY target, dummy, is out of date) so it executes the touch command, which
updates the timestamp of the makefile. Then make rereads the file and discovers that
the makefile is out of date....Well, you get the idea.

Where does make look for included files? Clearly, if the argument to include is an
absolute file reference, make reads that file. If the file reference is relative, make first
looks in its current working directory. If make cannot find the file, it then proceeds
to search through any directories you have specified on the command line using the
--include-dir (or -I) option. After that, make searches a compiled search path simi-
lar to: /usr/local/include, /usr/gnu/include, /usr/include. There may be slight variations
of this path due to the way make was compiled.

If make cannot find the include file and it cannot create it using a rule, make exits with
an error. If you want make to ignore include files it cannot load, add a leading dash to
the include directive:

-include i-may-not-exist.mk

For compatibility with other makes, the word sinclude is an alias for -include.

Standard make Variables
In addition to automatic variables, make maintains variables revealing bits and pieces
of its own state as well as variables for customizing built-in rules:

MAKE_VERSION
This is the version number of GNU make. At the time of this writing, its value is
3.80, and the value in the CVS repository is 3.81rc1.

The previous version of make, 3.79.1, did not support the eval and value func-
tions (among other changes) and it is still very common. So when I write
makefiles that require these features, I use this variable to test the version of make
I’m running. We’ll see an example of that in the section “Flow Control” in
Chapter 4.

CURDIR
This variable contains the current working directory (cwd) of the executing make
process. This will be the same directory the make program was executed from
(and it will be the same as the shell variable PWD), unless the --directory (-C)
option is used. The --directory option instructs make to change to a different
directory before searching for any makefile. The complete form of the option is

,ch03.1616 Page 57 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 3: Variables and Macros

--directory=directory-name or -C directory-name. If --directory is used, CURDIR
will contain the directory argument to --include-dir.

I typically invoke make from emacs while coding. For instance, my current project
is in Java and uses a single makefile in a top-level directory (not necessarily the
directory containing the code). In this case, using the --directory option allows
me to invoke make from any directory in the source tree and still access the
makefile. Within the makefile, all paths are relative to the makefile directory.
Absolute paths are occasionally required and these are accessed using CURDIR.

MAKEFILE_LIST
This variable contains a list of each file make has read including the default
makefile and makefiles specified on the command line or through include direc-
tives. Just before each file is read, the name is appended to the MAKEFILE_LIST
variable. So a makefile can always determine its own name by examining the last
word of the list.

MAKECMDGOALS
The MAKECMDGOALS variable contains a list of all the targets specified on the com-
mand line for the current execution of make. It does not include command-line
options or variable assignments. For instance:

$ make -f- FOO=bar -k goal <<< 'goal:;# $(MAKECMDGOALS)'
goal

The example uses the “trick” of telling make to read the makefile from the stdin
with the -f- (or --file) option. The stdin is redirected from a command-line
string using bash’s here string, “<<<”, syntax.* The makefile itself consists of the
default goal goal, while the command script is given on the same line by separat-
ing the target from the command with a semicolon. The command script con-
tains the single line:

$(MAKECMDGOALS)

MAKECMDGOALS is typically used when a target requires special handling. The pri-
mary example is the “clean” target. When invoking “clean,” make should not per-
form the usual dependency file generation triggered by include (discussed in the
section “Automatic Dependency Generation” in Chapter 2). To prevent this use
ifneq and MAKECMDGOALS:

ifneq "$(MAKECMDGOALS)" "clean"
 -include $(subst .xml,.d,$(xml_src))
endif

* For those of you who want to run this type of example in another shell, use:
$ echo 'goal:;# $(MAKECMDGOALS)' | make -f- FOO=bar -k goal

,ch03.1616 Page 58 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Standard make Variables | 59

.VARIABLES
This contains a list of the names of all the variables defined in makefiles read so
far, with the exception of target-specific variables. The variable is read-only and
any assignment to it is ignored.

list:
 @echo "$(.VARIABLES)" | tr ' ' '\015' | grep MAKEF
$ make
MAKEFLAGS
MAKEFILE_LIST
MAKEFILES

As you’ve seen, variables are also used to customize the implicit rules built in to make.
The rules for C/C++ are typical of the form these variables take for all programming
languages. Figure 3-1 shows the variables controlling translation from one file type to
another.

The variables have the basic form: ACTION.suffix. The ACTION is COMPILE for creating
an object file, LINK for creating an executable, or the “special” operations PREPROCESS,
YACC, LEX for running the C preprocessor, yacc, or lex, respectively. The suffix indi-
cates the source file type.

The standard “path” through these variables for, say, C++, uses two rules. First,
compile C++ source files to object files. Then link the object files into an executable.

%.o: %.C
 $(COMPILE.C) $(OUTPUT_OPTION) $<

%: %.o
 $(LINK.o) $^ $(LOADLIBES) $(LDLIBS) -o $@

Figure 3-1. Variables for C/C++ compilation

.c .y .l.cpp.S.s.S

PREPROCESS.S COMPILE.s COMPILE.cpp COMPILE.C

.C

COMPILE.S COMPILE.c YACC.y LEX.l

.s .S .o .cpp .C .c

LINK.S LINK.o LINK.cpp LINK.C

Executable

LINK.s LINK.c

.y .l

YACC.y LEX.l

,ch03.1616 Page 59 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 3: Variables and Macros

The first rule uses these variable definitions:

COMPILE.C = $(COMPILE.cc)
COMPILE.cc = $(CXX) $(CXXFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
CXX = g++
OUTPUT_OPTION = -o $@

GNU make supports either of the suffixes .C or .cc for denoting C++ source files. The
CXX variable indicates the C++ compiler to use and defaults to g++. The variables
CXXFLAGS, CPPFLAGS, and TARGET_ARCH have no default value. They are intended for use
by end-users to customize the build process. The three variables hold the C++ com-
piler flags, C preprocessor flags, and architecture-specific compilation options,
respectively. The OUTPUT_OPTION contains the output file option.

The linking rule is a bit simpler:

LINK.o = $(CC) $(LDFLAGS) $(TARGET_ARCH)
CC = gcc

This rule uses the C compiler to combine object files into an executable. The default
for the C compiler is gcc. LDFLAGS and TARGET_ARCH have no default value. The
LDFLAGS variable holds options for linking such as -L flags. The LOADLIBES and LDLIBS
variables contain lists of libraries to link against. Two variables are included mostly
for portability.

This was a quick tour through the make variables. There are more, but this gives you
the flavor of how variables are integrated with rules. Another group of variables deals
with TEX and has its own set of rules. Recursive make is another feature supported by
variables. We’ll discuss this topic in Chapter 6.

,ch03.1616 Page 60 Friday, March 25, 2005 2:03 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

61

Chapter 4 CHAPTER 4

Functions

GNU make supports both built-in and user-defined functions. A function invocation
looks much like a variable reference, but includes one or more parameters separated
by commas. Most built-in functions expand to some value that is then assigned to a
variable or passed to a subshell. A user-defined function is stored in a variable or
macro and expects one or more parameters to be passed by the caller.

User-Defined Functions
Storing command sequences in variables opens the door to a wide range of applica-
tions. For instance, here’s a nice little macro to kill a process:*

AWK := awk
KILL := kill

$(kill-acroread)
define kill-acroread
 @ ps -W | \
 $(AWK) 'BEGIN { FIELDWIDTHS = "9 47 100" } \
 /AcroRd32/ { \
 print "Killing " $$3; \
 system("$(KILL) -f " $$1) \
 }'
endef

* “Why would you want to do this in a makefile?” you ask. Well, on Windows, opening a file locks it against
writing by other processes. While I was writing this book, the PDF file would often be locked by the Acrobat
Reader and prevent my makefile from updating the PDF. So I added this command to several targets to ter-
minate Acrobat Reader before attempting to update the locked file.

,ch04.2104 Page 61 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 4: Functions

(This macro was written explicitly to use the Cygwin tools,* so the program name we
search for and the options to ps and kill are not standard Unix.) To kill a process we
pipe the output of ps to awk. The awk script looks for the Acrobat Reader by its Win-
dows program name and kills the process if it is running. We use the FIELDWIDTHS
feature to treat the program name and all its arguments as a single field. This cor-
rectly prints the complete program name and arguments even when it contains
embedded blanks. Field references in awk are written as $1, $2, etc. These would be
treated as make variables if we did not quote them in some way. We can tell make to
pass the $n reference to awk instead of expanding it itself by escaping the dollar sign
in $n with an additional dollar sign, $$n. make will see the double dollar sign, collapse
it to a single dollar sign and pass it to the subshell.

Nice macro. And the define directive saves us from duplicating the code if we want
to use it often. But it isn’t perfect. What if we want to kill processes other than the
Acrobat Reader? Do we have to define another macro and duplicate the script? No!

Variables and macros can be passed arguments so that each expansion can be differ-
ent. The parameters of the macro are referenced within the body of the macro defini-
tion with $1, $2, etc. To parameterize our kill-acroread function, we only need to
add a search parameter:

AWK := awk
KILL := kill
KILL_FLAGS := -f
PS := ps
PS_FLAGS := -W
PS_FIELDS := "9 47 100"

$(call kill-program,awk-pattern)
define kill-program
 @ $(PS) $(PS_FLAGS) | \
 $(AWK) 'BEGIN { FIELDWIDTHS = $(PS_FIELDS) } \
 /$1/ { \
 print "Killing " $$3; \
 system("$(KILL) $(KILL_FLAGS) " $$1) \
 }'
endef

We’ve replaced the awk search pattern, /AcroRd32/, with a parameter reference, $1.
Note the subtle distinction between the macro parameter, $1, and the awk field refer-
ence, $$1. It is very important to remember which program is the intended recipient
for a variable reference. As long as we’re improving the function, we have also

* The Cygwin tools are a port of many of the standard GNU and Linux programs to Windows. It includes the
compiler suite, X11R6, ssh, and even inetd. The port relies on a compatibility library that implements Unix
system calls in terms of Win32 API functions. It is an incredible feat of engineering and I highly recommend
it. Download it from http://www.cygwin.com.

,ch04.2104 Page 62 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

User-Defined Functions | 63

renamed it appropriately and replaced the Cygwin-specific, hardcoded values with
variables. Now we have a reasonably portable macro for terminating processes.

So let’s see it in action:

FOP := org.apache.fop.apps.Fop
FOP_FLAGS := -q
FOP_OUTPUT := > /dev/null
%.pdf: %.fo
 $(call kill-program,AcroRd32)
 $(JAVA) $(FOP) $(FOP_FLAGS) $< $@ $(FOP_OUTPUT)

This pattern rule kills the Acrobat process, if one is running, and then converts an fo
(Formatting Objects) file into a pdf file by invoking the Fop processor (http://xml.
apache.org/fop). The syntax for expanding a variable or macro is:

$(call macro-name[, param1...])

call is a built-in make function that expands its first argument and replaces occur-
rences of $1, $2, etc., with the remaining arguments it is given. (In fact, it doesn’t
really “call” its macro argument at all in the sense of transfer of control, rather it per-
forms a special kind of macro expansion.) The macro-name is the name of any macro
or variable (remember that macros are just variables where embedded newlines are
allowed). The macro or variable value doesn’t even have to contain a $n reference,
but then there isn’t much point in using call at all. Arguments to the macro follow-
ing macro-name are separated by commas.

Notice that the first argument to call is an unexpanded variable name (that is, it
does not begin with a dollar sign). That is fairly unusual. Only one other built-in
function, origin, accepts unexpanded variables. If you enclose the first argument to
call in a dollar sign and parentheses, that argument is expanded as a variable and its
value is passed to call.

There is very little in the way of argument checking with call. Any number of argu-
ments can be given to call. If a macro references a parameter $n and there is no cor-
responding argument in the call instance, the variable collapses to nothing. If there
are more arguments in the call instance than there are $n references, the extra argu-
ments are never expanded in the macro.

If you invoke one macro from another, you should be aware of a somewhat strange
behavior in make 3.80. The call function defines the arguments as normal make vari-
ables for the duration of the expansion. So if one macro invokes another, it is possi-
ble that the parent’s arguments will be visible in the child macro’s expansion:

define parent
 echo "parent has two parameters: $1, $2"
 $(call child,$1)
endef

define child
 echo "child has one parameter: $1"

,ch04.2104 Page 63 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 4: Functions

 echo "but child can also see parent's second parameter: $2!"
endef

scoping_issue:
 @$(call parent,one,two)

When run, we see that the macro implementation has a scoping issue.

$ make
parent has two parameters: one, two
child has one parameter: one
but child can also see parent's second parameter: two!

This has been resolved in 3.81 so that $2 in child collapses to nothing.

We’ll spend a lot more time with user-defined functions throughout the rest of the
book, but we need more background before we can get into the really fun stuff!

Built-in Functions
Once you start down the road of using make variables for more than just simple con-
stants you’ll find that you want to manipulate the variables and their contents in
more and more complex ways. Well, you can. GNU make has a couple dozen built-in
functions for working with variables and their contents. The functions fall into sev-
eral broad categories: string manipulation, filename manipulation, flow control,
user-defined functions, and some (important) miscellaneous functions.

But first, a little more about function syntax. All functions have the form:

$(function-name arg1[, argn])

The $(is followed by built-in function name and then followed by the arguments to
the function. Leading whitespace is trimmed from the first argument, but all subse-
quent arguments include any leading (and, of course, embedded and following)
whitespace.

Function arguments are separated by commas, so a function with one argument uses
no commas, a function with two arguments uses one comma, etc. Many functions
accept a single argument, treating it as a list of space-separated words. For these
functions, the whitespace between words is treated as a single-word separator and is
otherwise ignored.

I like whitespace. It makes the code more readable and easier to maintain. So I’ll be
using whitespace wherever I can “get away” with it. Sometimes, however, the
whitespace in an argument list or variable definition can interfere with the proper
functioning of the code. When this happens, you have little choice but to remove the
problematic whitespace. We already saw one example earlier in the chapter where
trailing whitespace was accidentally inserted into the search pattern of a grep com-
mand. As we proceed with more examples, we’ll point out where whitespace issues
arise.

,ch04.2104 Page 64 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Built-in Functions | 65

Many make functions accept a pattern as an argument. This pattern uses the same
syntax as the patterns used in pattern rules (see the section “Pattern Rules” in
Chapter 2). A pattern contains a single % with leading or trailing characters (or both).
The % character represents zero or more characters of any kind. To match a target
string, the pattern must match the entire string, not just a subset of characters within
the string. We’ll illustrate this with an example shortly. The % character is optional in
a pattern and is commonly omitted when appropriate.

String Functions
Most of make’s built-in functions manipulate text in one form or another, but certain
functions are particularly strong at string manipulation, and these will be discussed
here.

A common string operation in make is to select a set of files from a list. This is what
grep is typically used for in shell scripts. In make we have the filter, filter-out, and
findstring functions.

$(filter pattern...,text)
The filter function treats text as a sequence of space separated words and
returns a list of those words matching pattern. For instance, to build an archive
of user-interface code, we might want to select only the object files in the ui sub-
directory. In the following example, we extract the filenames starting with ui/
and ending in .o from a list of filenames. The % character matches any number of
characters in between:

$(ui_library): $(filter ui/%.o,$(objects))
 $(AR) $(ARFLAGS) $@ $^

It is also possible for filter to accept multiple patterns, separated by spaces. As
noted above, the pattern must match an entire word for the word to be included
in the output list. So, for instance:

words := he the hen other the%
get-the:
 @echo he matches: $(filter he, $(words))
 @echo %he matches: $(filter %he, $(words))
 @echo he% matches: $(filter he%, $(words))
 @echo %he% matches: $(filter %he%, $(words))

When executed the makefile generates the output:
$ make
he matches: he
%he matches: he the
he% matches: he hen
%he% matches: the%

As you can see, the first pattern matches only the word he, because the pattern
must match the entire word, not just a part of it. The other patterns match he
plus words that contain he in the right position.

,ch04.2104 Page 65 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 4: Functions

A pattern can contain only one %. If additional % characters are included in the
pattern, all but the first are treated as literal characters.

It may seem odd that filter cannot match substrings within words or accept
more than one wildcard character. You will find times when this functionality is
sorely missed. However, you can implement something similar using looping
and conditional testing. We’ll show you how later.

$(filter-out pattern...,text)
The filter-out function does the opposite of filter, selecting every word that
does not match the pattern. Here we select all files that are not C headers.

all_source := count_words.c counter.c lexer.l counter.h lexer.h
to_compile := $(filter-out %.h, $(all_source))

$(findstring string,text)
This function looks for string in text. If the string is found, the function returns
string; otherwise, it returns nothing.

At first, this function might seem like the substring searching grep function we
thought filter might be, but not so. First, and most important, this function
returns just the search string, not the word it finds that contains the search
string. Second, the search string cannot contain wildcard characters (putting it
another way, % characters in the search string are matched literally).

This function is mostly useful in conjunction with the if function discussed
later. There is, however, one situation where I’ve found findstring to be useful
in its own right.

Suppose you have several trees with parallel structure such as reference source,
sandbox source, debugging binary, and optimized binary. You’d like to be able
to find out which tree you are in from your current directory (without the cur-
rent relative path from the root). Here is some skeleton code to determine this:

find-tree:
 # PWD = $(PWD)
 # $(findstring /test/book/admin,$(PWD))
 # $(findstring /test/book/bin,$(PWD))
 # $(findstring /test/book/dblite_0.5,$(PWD))
 # $(findstring /test/book/examples,$(PWD))
 # $(findstring /test/book/out,$(PWD))
 # $(findstring /test/book/text,$(PWD))

(Each line begins with a tab and a shell comment character so each is “exe-
cuted” in its own subshell just like other commands. The Bourne Again Shell,
bash, and many other Bourne-like shells simply ignore these lines. This is a more
convenient way to print out the expansion of simple make constructs than typing
@echo. You can achieve almost the same effect using the more portable : shell
operator, but the : operator performs redirections. Thus, a command line con-
taining > word creates the file word as a side effect.) When run, it produces:

$ make
PWD = /test/book/out/ch03-findstring-1

,ch04.2104 Page 66 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Built-in Functions | 67

#
#
#
#
/test/book/out
#

As you can see, each test against $(PWD) returns null until we test our parent
directory. Then the parent directory itself is returned. As shown, the code is
merely as a demonstration of findstring. This can be used to write a function
returning the current tree’s root directory.

There are two search and replace functions:

$(subst search-string,replace-string,text)
This is a simple, nonwildcard, search and replace. One of its most common uses
is to replace one suffix with another in a list of filenames:

sources := count_words.c counter.c lexer.c
objects := $(subst .c,.o,$(sources))

This replaces all occurrences of “.c” with “.o” anywhere in $(sources), or, more
generally, all occurrences of the search string with the replacement string.

This example is a commonly found illustration of where spaces are significant in
function call arguments. Note that there are no spaces after the commas. If we
had instead written:

sources := count_words.c counter.c lexer.c
objects := $(subst .c, .o, $(sources))

(notice the space after each comma), the value of $(objects) would have been:
count_words .o counter .o lexer .o

Not at all what we want. The problem is that the space before the .o argument is
part of the replacement text and was inserted into the output string. The space
before the .c is fine because all whitespace before the first argument is stripped
off by make. In fact, the space before $(sources) is probably benign as well since
$(objects) will most likely be used as a simple command-line argument where
leading spaces aren’t a problem. However, I would never mix different spacing
after commas in a function call even if it yields the correct results:

Yech, the spacing in this call is too subtle.
objects := $(subst .c,.o, $(source))

Note that subst doesn’t understand filenames or file suffixes, just strings of char-
acters. If one of my source files contains a .c internally, that too will be substi-
tuted. For instance, the filename car.cdr.c would be transformed into car.odr.o.
Probably not what we want.

In the section “Automatic Dependency Generation” in Chapter 2, we talked
about dependency generation. The last example makefile of that section used
subst like this:

VPATH = src include
CPPFLAGS = -I include

,ch04.2104 Page 67 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 4: Functions

SOURCES = count_words.c \
 lexer.c \
 counter.c
count_words: counter.o lexer.o -lfl
count_words.o: counter.h
counter.o: counter.h lexer.h
lexer.o: lexer.h
include $(subst .c,.d,$(SOURCES))
%.d: %.c
 $(CC) -M $(CPPFLAGS) $< > $@.$$$$; \
 sed 's,\($*\)\.o[:]*,\1.o $@ : ,g' < $@.$$$$ > $@; \
 rm -f $@.$$$$

The subst function is used to transform the source file list into a dependency file
list. Since the dependency files appear as an argument to include, they are con-
sidered prerequisites and are updated using the %.d rule.

$(patsubst search-pattern,replace-pattern,text)
This is the wildcard version of search and replace. As usual, the pattern can con-
tain a single %. A percent in the replace-pattern is expanded with the matching
text. It is important to remember that the search-pattern must match the entire
value of text. For instance, the following will delete a trailing slash in text, not
every slash in text:

strip-trailing-slash = $(patsubst %/,%,$(directory-path))

Substitution references are a portable way of performing the same substitution.
The syntax of a substitution reference is:

$(variable:search=replace)

The search text can be a simple string; in which case, the string is replaced with
replace whenever it occurs at the end of a word. That is, whenever it is followed
by whitespace or the end of the variable value. In addition, search can contain a
% representing a wildcard character; in which case, the search and replace follow
the rules of patsubst. I find this syntax to be obscure and difficult to read in
comparison to patsubst.

As we’ve seen, variables often contain lists of words. Here are functions to select
words from a list, count the length of a list, etc. As with all make functions, words are
separated by whitespace.

$(words text)
This returns the number of words in text.

CURRENT_PATH := $(subst /, ,$(HOME))
words:
 @echo My HOME path has $(words $(CURRENT_PATH)) directories.

This function has many uses, as we’ll see shortly, but we need to cover a few
more functions to use it effectively.

,ch04.2104 Page 68 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Built-in Functions | 69

$(word n,text)
This returns the nth word in text. The first word is numbered 1. If n is larger than
the number of words in text, the value of the function is empty.

version_list := $(subst ., ,$(MAKE_VERSION))
minor_version := $(word 2, $(version_list))

The variable MAKE_VERSION is a built-in variable. (See the section “Standard make
Variables” in Chapter 3.)

You can always get the last word in a list with:
current := $(word $(words $(MAKEFILE_LIST)), $(MAKEFILE_LIST))

This returns the name of the most recently read makefile.

$(firstword text)
This returns the first word in text. This is equivalent to $(word 1,text).

version_list := $(subst ., ,$(MAKE_VERSION))
major_version := $(firstword $(version_list))

$(wordlist start,end,text)
This returns the words in text from start to end, inclusive. As with the word
function, the first word is numbered 1. If start is greater than the number of
words, the value is empty. If start is greater than end, the value is empty. If end
is greater than the number of words, all words from start on are returned.

$(call uid_gid, user-name)
uid_gid = $(wordlist 3, 4, \
 $(subst :, , \
 $(shell grep "^$1:" /etc/passwd)))

Important Miscellaneous Functions
Before we push on to functions for managing filenames, let’s introduce two very use-
ful functions: sort and shell.

$(sort list)
The sort function sorts its list argument and removes duplicates. The resulting
list contains all the unique words in lexicographic order, each separated by a sin-
gle space. In addition, sort strips leading and trailing blanks.

$ make -f- <<< 'x:;@echo =$(sort d b s d t)='
=b d s t=

The sort function is, of course, implemented directly by make, so it does not sup-
port any of the options of the sort program. The function operates on its argu-
ment, typically a variable or the return value of another make function.

$(shell command)
The shell function accepts a single argument that is expanded (like all argu-
ments) and passed to a subshell for execution. The standard output of the com-
mand is then read and returned as the value of the function. Sequences of

,ch04.2104 Page 69 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 4: Functions

newlines in the output are collapsed to a single space. Any trailing newline is
deleted. The standard error is not returned, nor is any program exit status.

stdout := $(shell echo normal message)
stderr := $(shell echo error message 1>&2)
shell-value:
 # $(stdout)
 # $(stderr)

As you can see, messages to stderr are sent to the terminal as usual and so are
not included in the output of the shell function:

$ make
error message
normal message
#

Here is a loop to create a set of directories:
REQUIRED_DIRS = ...
_MKDIRS := $(shell for d in $(REQUIRED_DIRS); \
 do \
 [[-d $$d]] || mkdir -p $$d; \
 done)

Often, a makefile is easier to implement if essential output directories can be
guaranteed to exist before any command scripts are executed. This variable cre-
ates the necessary directories by using a bash shell “for” loop to ensure that a set
of directories exists. The double square brackets are bash test syntax similar to
the test program except that word splitting and pathname expansion are not
performed. Therefore if the variable contains a filename with embedded spaces,
the test still works correctly (and without quoting). By placing this make variable
assignment early in the makefile, we ensure it is executed before command
scripts or other variables use the output directories. The actual value of _MKDIRS
is irrelevant and _MKDIRS itself would never be used.

Since the shell function can be used to invoke any external program, you should be
careful how you use it. In particular, you should consider the distinction between
simple variables and recursive variables.

START_TIME := $(shell date)
CURRENT_TIME = $(shell date)

The START_TIME variable causes the date command to execute once when the vari-
able is defined. The CURRENT_TIME variable will reexecute date each time the variable
is used in the makefile.

Our toolbox is now full enough to write some fairly interesting functions. Here is a
function for testing whether a value contains duplicates:

$(call has-duplicates, word-list)
has-duplicates = $(filter \
 $(words $1) \
 $(words $(sort $1))))

,ch04.2104 Page 70 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Built-in Functions | 71

We count the words in the list and the unique list, then “compare” the two num-
bers. There are no make functions that understand numbers, only strings. To com-
pare two numbers, we must compare them as strings. The easiest way to do that is
with filter. We search for one number in the other number. The has-duplicates
function will be non-null if there are duplicates.

Here is a simple way to generate a filename with a timestamp:

RELEASE_TAR := mpwm-$(shell date +%F).tar.gz

This produces:

mpwm-2003-11-11.tar.gz

We could produce the same filename and have date do more of the work with:

RELEASE_TAR := $(shell date +mpwm-%F.tar.gz)

The next function can be used to convert relative paths (possibly from a com direc-
tory) into a fully qualified Java class name:

$(call file-to-class-name, file-name)
file-to-class-name := $(subst /,.,$(patsubst %.java,%,$1))

This particular pattern can be accomplished with two substs as well:

$(call file-to-class-name, file-name)
file-to-class-name := $(subst /,.,$(subst .java,,$1))

We can then use this function to invoke the Java class like this:

CALIBRATE_ELEVATOR := com/wonka/CalibrateElevator.java
calibrate:
 $(JAVA) $(call file-to-class-name,$(CALIBRATE_ELEVATOR))

If there are more parent directory components in $(sources) above com, they can be
removed with the following function by passing the root of the directory tree as the
first argument:*

$(call file-to-class-name, root-dir, file-name)
file-to-class-name := $(subst /,., \
 $(subst .java,, \
 $(subst $1/,,$2)))

When reading functions such as this, it is typically easiest to try to understand them
inside out. Beginning at the inner-most subst, the function removes the string $1/,
then removes the string .java, and finally converts all slashes to periods.

* In Java, it is suggested that all classes be declared within a package containing the developer’s complete Inter-
net domain name, reversed. Also, the directory structure typically mirrors the package structure. Therefore,
many source trees look like root-dir/com/company-name/dir.

,ch04.2104 Page 71 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 4: Functions

Filename Functions
Makefile writers spend a lot of time handling files. So it isn’t surprising there are a lot
of make functions to help with this task.

$wildcard pattern...)
Wildcards were covered in Chapter 2, in the context of targets, prerequisites,
and command scripts. But what if we want this functionality in another context,
say a variable definition? With the shell function, we could simply use the sub-
shell to expand the pattern, but that would be terribly slow if we needed to do
this very often. Instead, we can use the wildcard function:

sources := $(wildcard *.c *.h)

The wildcard function accepts a list of patterns and performs expansion on each
one.* If a pattern does not match any files, the empty string is returned. As with
wildcard expansion in targets and prerequisites, the normal shell globbing char-
acters are supported: ~, *, ?, [...], and [^...].

Another use of wildcard is to test for the existence of a file in conditionals. When
used in conjunction with the if function (described shortly) you often see
wildcard function calls whose argument contains no wildcard characters at all.
For instance,

dot-emacs-exists := $(wildcard ~/.emacs)

will return the empty string if the user’s home directory does not contain a
.emacs file.

$(dir list...)
The dir function returns the directory portion of each word in list. Here is an
expression to return every subdirectory that contains C files:

source-dirs := $(sort \
 $(dir \
 $(shell find . -name '*.c')))

The find returns all the source files, then the dir function strips off the file por-
tion leaving the directory, and the sort removes duplicate directories. Notice that
this variable definition uses a simple variable to avoid reexecuting the find each
time the variable is used (since we assume source files will not spontaneously
appear and disappear during the execution of the makefile). Here’s a function
implementation that requires a recursive variable:

$(call source-dirs, dir-list)
source-dirs = $(sort \
 $(dir \
 $(shell find $1 -name '*.c'))))

* The make 3.80 manual fails to mention that more than one pattern is allowed.

,ch04.2104 Page 72 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Built-in Functions | 73

This version accepts a space-separated directory list to search as its first parame-
ter. The first arguments to find are one or more directories to search. The end of
the directory list is recognized by the first dash argument. (A find feature I didn’t
know about for several decades!)

$(notdir name...)
The notdir function returns the filename portion of a file path. Here is an
expression to return the Java class name from a Java source file:

$(call get-java-class-name, file-name)
get-java-class-name = $(notdir $(subst .java,,$1))

There are many instances where dir and notdir can be used together to produce
the desired output. For instance, suppose a custom shell script must be exe-
cuted in the same directory as the output file it generates.

$(OUT)/myfile.out: $(SRC)/source1.in $(SRC)/source2.in
 cd $(dir $@); \
 generate-myfile $^ > $(notdir $@)

The automatic variable, $@, representing the target, can be decomposed to yield
the target directory and file as separate values. In fact, if OUT is an absolute path,
it isn’t necessary to use the notdir function here, but doing so will make the out-
put more readable.

In command scripts, another way to decompose a filename is through the use of
$(@D) and $(@F) as mentioned in the section “Automatic Variables” in Chapter 2.

Here are functions for adding and removing file suffixes, etc.

$(suffix name...)
The suffix function returns the suffix of each word in its argument. Here is a
function to test whether all the words in a list have the same suffix:

$(call same-suffix, file-list)
same-suffix = $(filter 1 $(words $(sort $(suffix $1))))

A more common use of the suffix function is within conditionals in conjunc-
tion with findstring.

$(basename name...)
The basename function is the complement of suffix. It returns the filename with-
out its suffix. Any leading path components remain intact after the basename call.
Here are the earlier file-to-class-name and get-java-class-name functions re-
written with basename:

$(call file-to-class-name, root-directory, file-name)
file-to-class-name := $(subst /,., \
 $(basename \
 $(subst $1/,,$2)))
$(call get-java-class-name, file-name)
get-java-class-name = $(notdir $(basename $1))

,ch04.2104 Page 73 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 4: Functions

$(addsuffix suffix,name...)
The addsuffix function appends the given suffix text to each word in name. The
suffix text can be anything. Here is a function to find all the files in the PATH that
match an expression:

$(call find-program, filter-pattern)
find-program = $(filter $1, \
 $(wildcard \
 $(addsuffix /*, \
 $(sort \
 $(subst :, , \
 $(subst ::,:.:, \
 $(patsubst :%,.:%, \
 $(patsubst %:,%:.,$(PATH)))))))))
find:
 @echo $(words $(call find-program, %))

The inner-most three substitutions account for a special case in shell syntax. An
empty path component is taken to mean the current directory. To normalize this
special syntax we search for an empty trailing path component, an empty lead-
ing path component, and an empty interior path component, in that order. Any
matching components are replaced with “.”. Next, the path separator is replaced
with a space to create separate words. The sort function is used to remove
repeated path components. Then the globbing suffix /* is appended to each word
and wildcard is invoked to expand the globbing expressions. Finally, the desired
patterns are extracted by filter.

Although this may seem like an extremely slow function to run (and it may well
be on many systems), on my 1.9 GHz P4 with 512 MB this function executes in
0.20 seconds and finds 4,335 programs. This performance can be improved by
moving the $1 argument inside the call to wildcard. The following version elimi-
nates the call to filter and changes addsuffix to use the caller’s argument.

$(call find-program,wildcard-pattern)
find-program = $(wildcard \
 $(addsuffix /$1, \
 $(sort \
 $(subst :, , \
 $(subst ::,:.:, \
 $(patsubst :%,.:%, \
 $(patsubst %:,%:.,$(PATH))))))))
find:
 @echo $(words $(call find-program,*))

This version runs in 0.17 seconds. It runs faster because wildcard no longer
returns every file only to make the function discard them later with filter. A
similar example occurs in the GNU make manual. Notice also that the first ver-
sion uses filter-style globbing patterns (using % only) while the second version
uses wildcard-style globbing patterns (~, *, ?, [...], and [^...]).

,ch04.2104 Page 74 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Built-in Functions | 75

$(addprefix prefix,name...)
The addprefix function is the complement of addsuffix. Here is an expression to
test whether a set of files exists and is nonempty:

$(call valid-files, file-list)
valid-files = test -s . $(addprefix -a -s ,$1)

This function is different from most of the previous examples in that it is
intended to be executed in a command script. It uses the shell’s test program
with the -s option (“true if the file exists and is not empty”) to perform the test.
Since the test command requires a -a (and) option between multiple filenames,
addprefix prepends the -a before each filename. The first file used to start the
“and” chain is dot, which always yields true.

$(join prefix-list,suffix-list)
The join function is the complement of dir and notdir. It accepts two lists and
concatenates the first element from prefix-list with the first element from
suffix-list, then the second element from prefix-list with the second ele-
ment from suffix-list and so on. It can be used to reconstruct lists decom-
posed with dir and notdir.

Flow Control
Because many of the functions we have seen so far are implemented to perform their
operations on lists, they work well even without a looping construct. But without a
true looping operator and conditional processing of some kind the make macro lan-
guage would be very limited, indeed. Fortunately, make provides both of these
language features. I have also thrown into this section the fatal error function, clearly
a very extreme form of flow control!

$(if condition,then-part,else-part)
The if function (not to be confused with the conditional directives ifeq, ifneq,
ifdef, and ifndef discussed in Chapter 3) selects one of two macro expansions
depending on the “value” of the conditional expression. The condition is true if
its expansion contains any characters (even space). In this case, the then-part is
expanded. Otherwise, if the expansion of condition is empty, it is false and the
else-part is expanded.*

Here is an easy way to test whether the makefile is running on Windows. Look
for the COMSPEC environment variable defined only on Windows:

PATH_SEP := $(if $(COMSPEC),;,:)

* In Chapter 3, I made a distinction between macro languages and other programming languages. Macro lan-
guages work by transforming source text into output text through defining and expanding macros. This dis-
tinction becomes clearer as we see how the if function works.

,ch04.2104 Page 75 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 4: Functions

make evaluates the condition by first removing leading and trailing whitespace,
then expanding the expression. If the expansion yields any characters (including
whitespace), the expression is true. Now PATH_SEP contains the proper character
to use in paths, whether the makefile is running on Windows or Unix.

In the last chapter, we mentioned checking the version of make if you use some of
the newest features (like eval). The if and filter functions are often used
together to test the value of a string:

$(if $(filter $(MAKE_VERSION),3.80),,\
 $(error This makefile requires GNU make version 3.80.))

Now, as subsequent versions of make are released, the expression can be
extended with more acceptable versions:

$(if $(filter $(MAKE_VERSION),3.80 3.81 3.90 3.92),,\
 $(error This makefile requires one of GNU make version ….))

This technique has the disadvantage that the code must be updated when a new
version of make is installed. But that doesn’t happen very often. (For instance, 3.80
has been the release version since October 2002.) The above test can be added to
a makefile as a top-level expression since the if collapses to nothing if true and
error terminates the make otherwise.

$(error text)
The error function is used for printing fatal error messages. After the function
prints its message, make terminates with an exit status of 2. The output is pre-
fixed with the name of the current makefile, the current line number, and the
message text. Here is an implementation of the common assert programming
construct for make:

$(call assert,condition,message)
define assert
 $(if $1,,$(error Assertion failed: $2))
endef
$(call assert-file-exists,wildcard-pattern)
define assert-file-exists
 $(call assert,$(wildcard $1),$1 does not exist)
endef
$(call assert-not-null,make-variable)
define assert-not-null
 $(call assert,$($1),The variable "$1" is null)
endef
error-exit:
 $(call assert-not-null,NON_EXISTENT)

The first function, assert, just tests its first argument and prints the user’s error
message if it is empty. The second function builds on the first and tests that a
wildcard pattern yields an existing file. Note that the argument can include any
number of globbing patterns.

The third function is a very useful assert that relies on computed variables. A make
variable can contain anything, including the name of another make variable. But

,ch04.2104 Page 76 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Built-in Functions | 77

if a variable contains the name of another variable how can you access the value
of that other variable? Well, very simply by expanding the variable twice:

NO_SPACE_MSG := No space left on device.
NO_FILE_MSG := File not found.
…;
STATUS_MSG := NO_SPACE_MSG
$(error $($(STATUS_MSG)))

This example is slightly contrived to keep it simple, but here STATUS_MSG is set to
one of several error messages by storing the error message variable name. When
it comes time to print the message, STATUS_MSG is first expanded to access the
error message variable name, $(STATUS_MSG), then expanded again to access the
message text, $($(STATUS_MSG)). In our assert-not-null function we assume
the argument to the function is the name of a make variable. We first expand the
argument, $1, to access the variable name, then expand again, $($1), to deter-
mine if it has a value. If it is null, then we have the variable name right in $1 to
use in the error message.

$ make
Makefile:14: *** Assertion failed: The variable "NON_EXISTENT" is null. Stop.

There is also a warning function (see the section “Less Important Miscellaneous
Functions” later in this chapter) that prints a message in the same format as
error, but does not terminate make.

$(foreach variable,list,body)
The foreach function provides a way to expand text repeatedly while substitut-
ing different values into each expansion. Notice that this is different from exe-
cuting a function repeatedly with different arguments (although it can do that,
too). For example:

letters := $(foreach letter,a b c d,$(letter))
show-words:
 # letters has $(words $(letters)) words: '$(letters)'
$ make
letters has 4 words: 'a b c d'

When this foreach is executed, it sets the loop control variable, letter, to each
value in a b c d and expands the body of the loop, $(letter), once for each
value. The expanded text is accumulated with a space separating each expansion.

Here is a function to test if a set of variables is set:
VARIABLE_LIST := SOURCES OBJECTS HOME
$(foreach i,$(VARIABLE_LIST), \
 $(if $($i),, \
 $(shell echo $i has no value > /dev/stderr)))

(The pseudo file /dev/stderr in the shell function requires setting SHELL to bash.)
This loop sets i to each word of VARIABLE_LIST. The test expression inside the if
first evaluates $i to get the variable name, then evaluates this again in a com-
puted expression $($i) to see if it is non-null. If the expression has a value, the
then part does nothing; otherwise, the else part prints a warning. Note that if we

,ch04.2104 Page 77 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 4: Functions

omit the redirection from the echo, the output of the shell command will be
substituted into the makefile, yielding a syntax error. As shown, the entire
foreach loop expands to nothing.

As promised earlier, here is a function that gathers all the words that contain a
substring from a list:

$(call grep-string, search-string, word-list)
define grep-string
$(strip \
 $(foreach w, $2, \
 $(if $(findstring $1, $w), \
 $w)))
endef
words := count_words.c counter.c lexer.l lexer.h counter.h
find-words:
 @echo $(call grep-string,un,$(words))

Unfortunately, this function does not accept patterns, but it does find simple
substrings:

$ make
count_words.c counter.c counter.h

Style note concerning variables and parentheses

As noted earlier, parentheses are not required for make variables of one character. For
instance, all of the basic automatic variables are one character. Automatic variables
are universally written without parentheses even in the GNU make manual. How-
ever, the make manual uses parentheses for virtually all other variables, even single
character variables, and strongly urges users to follow suit. This highlights the spe-
cial nature of make variables since almost all other programs that have “dollar vari-
ables” (such as shells, perl, awk, yacc, etc.) don’t require parentheses. One of the
more common make programming errors is forgetting parentheses. Here is a com-
mon use of foreach containing the error:

INCLUDE_DIRS := …
INCLUDES := $(foreach i,$INCLUDE_DIRS,-I $i)
INCLUDES now has the value "-I NCLUDE_DIRS"

However, I find that reading macros can be much easier through the judicious use of
single-character variables and omitting unnecessary parentheses. For instance, I
think the has-duplicates function is easier to read without full parentheses:

$(call has-duplicates, word-list)
has-duplicates = $(filter \
 $(words $1) \
 $(words $(sort $1))))

versus:

$(call has-duplicates, word-list)
has-duplicates = $(filter \
 $(words $(1)) \
 $(words $(sort $(1)))))

,ch04.2104 Page 78 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Built-in Functions | 79

However, the kill-program function might be more readable with full parentheses
since it would help distinguish make variables from shell variables or variables used in
other programs:

define kill-program
 @ $(PS) $(PS_FLAGS) | \
 $(AWK) 'BEGIN { FIELDWIDTHS = $(PS_FIELDS) } \
 /$(1)/{ \
 print "Killing " $$3; \
 system("$(KILL) $(KILLFLAGS) " $$1) \
 }'
endef

The search string contains the first parameter to the macro, $(1). $$3 and $$1 refer to
awk variables.

I use single-character variables and omit the parentheses only when it seems to make
the code more readable. I typically do this for the parameters to macros and the con-
trol variable in foreach loops. You should follow a style that suits your situation. If
you have any doubts about the maintainability of your makefiles, follow the make
manual’s suggestion and use full parentheses. Remember, the make program is all
about easing the problems associated with maintaining software. If you keep that in
mind as you write your makefiles, you will most likely stay clear of trouble.

Less Important Miscellaneous Functions
Finally, we have some miscellaneous (but important) string functions. Although
minor in comparison with foreach or call, you’ll find yourself using these very often.

$(strip text)
The strip function removes all leading and trailing whitespace from text and
replaces all internal whitespace with a single space. A common use for this func-
tion is to clean up variables used in conditional expressions.

I most often use this function to remove unwanted whitespace from variable and
macro definitions I’ve formatted across multiple lines. But it can also be a good
idea to wrap the function parameters $1, $2, etc., with strip if the function is
sensitive to leading blanks. Often programmers unaware of the subtleties of make
will add a space after commas in a call argument list.

$(origin variable)
The origin function returns a string describing the origin of a variable. This can
be very useful in deciding how to use the value of a variable. For instance, you
might want to ignore the value of a variable if it came from the environment, but
not if it was set from the command line. For a more concrete example, here is a
new assert function that tests if a variable is defined:

$(call assert-defined,variable-name)
define assert-defined
 $(call assert, \

,ch04.2104 Page 79 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 4: Functions

 $(filter-out undefined,$(origin $1)), \
 '$1' is undefined)
endef

The possible return values of origin are:

undefined
The variable has never been defined.

default
The variable’s definition came from make’s built-in database. If you alter the
value of a built-in variable, origin returns the origin of the most recent
definition.

environment
The variable’s definition came from the environment (and the --environment-
overrides option is not turned on).

environment override
The variable’s definition came from the environment (and the --environment-
overrides option is turned on).

file
The variable’s definition came from the makefile.

command line
The variable’s definition came from the command line.

override
The variable’s definition came from an override directive.

automatic
The variable is an automatic variable defined by make.

$(warning text)
The warning function is similar to the error function except that it does not
cause make to exit. Like the error function, the output is prefixed with the name
of the current makefile and the current line number followed by the message
text. The warning function expands to the empty string so it can be used almost
anywhere.

$(if $(wildcard $(JAVAC)),, \
 $(warning The java compiler variable, JAVAC ($(JAVAC)), \
 is not properly set.))

Advanced User-Defined Functions
We’ll spend a lot of time writing macro functions. Unfortunately, there aren’t many
features in make for helping to debug them. Let’s begin by trying to write a simple
debugging trace function to help us out.

As we’ve mentioned, call will bind each of its parameters to the numbered variables
$1, $2, etc. Any number of arguments can be given to call. As a special case, the

,ch04.2104 Page 80 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Advanced User-Defined Functions | 81

name of the currently executing function (i.e., the variable name) is accessible
through $0. Using this information, we can write a pair of debugging functions for
tracing through macro expansion:

$(debug-enter)
debug-enter = $(if $(debug_trace),\
 $(warning Entering $0($(echo-args))))

$(debug-leave)
debug-leave = $(if $(debug_trace),$(warning Leaving $0))

comma := ,
echo-args = $(subst ' ','$(comma) ',\
 $(foreach a,1 2 3 4 5 6 7 8 9,'$($a)'))

If we want to watch how functions a and b are invoked, we can use these trace func-
tions like this:

debug_trace = 1

define a
 $(debug-enter)
 @echo $1 $2 $3
 $(debug-leave)
endef

define b
 $(debug-enter)
 $(call a,$1,$2,hi)
 $(debug-leave)
endef

trace-macro:
 $(call b,5,$(MAKE))

By placing debug-enter and debug-leave variables at the start and end of your func-
tions, you can trace the expansions of your own functions. These functions are far
from perfect. The echo-args function will echo only the first nine arguments and,
worse, it cannot determine the number of actual arguments in the call (of course,
neither can make!). Nevertheless, I’ve used these macros “as is” in my own debug-
ging. When executed, the makefile generates this trace output:

$ make
makefile:14: Entering b('5', 'make', '', '', '', '', '', '', '')
makefile:14: Entering a('5', 'make', 'hi', '', '', '', '', '', '')
makefile:14: Leaving a
makefile:14: Leaving b
5 make hi

As a friend said to me recently, “I never thought of make as a programming language
before.” GNU make isn’t your grandmother’s make!

,ch04.2104 Page 81 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 4: Functions

eval and value
The eval function is completely different from the rest of the built-in functions. Its
purpose is to feed text directly to the make parser. For instance,

$(eval sources := foo.c bar.c)

The argument to eval is first scanned for variables and expanded (as all arguments to
all functions are), then the text is parsed and evaluated as if it had come from an
input file. This example is so simple you might be wondering why you would bother
with this function. Let’s try a more interesting example. Suppose you have a makefile
to compile a dozen programs and you want to define several variables for each pro-
gram, say sources, headers, and objects. Instead of repeating these variable assign-
ments over and over with each set of variables:

ls_sources := ls.c glob.c
ls_headers := ls.h glob.h
ls_objects := ls.o glob.o
…

We might try to define a macro to do the job:

$(call program-variables, variable-prefix, file-list)
define program-variables
 $1_sources = $(filter %.c,$2)
 $1_headers = $(filter %.h,$2)
 $1_objects = $(subst .c,.o,$(filter %.c,$2))
endef

$(call program-variables, ls, ls.c ls.h glob.c glob.h)

show-variables:
 # $(ls_sources)
 # $(ls_headers)
 # $(ls_objects)

The program-variables macro accepts two arguments: a prefix for the three variables
and a file list from which the macro selects files to set in each variable. But, when we
try to use this macro, we get the error:

$ make
Makefile:7: *** missing separator. Stop.

This doesn’t work as expected because of the way the make parser works. A macro (at
the top parsing level) that expands to multiple lines is illegal and results in syntax
errors. In this case, the parser believes this line is a rule or part of a command script
but is missing a separator token. Quite a confusing error message. The eval function
was introduced to handle this issue. If we change our call line to:

$(eval $(call program-variables, ls, ls.c ls.h glob.c glob.h))

we get what we expect:

$ make
ls.c glob.c

,ch04.2104 Page 82 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Advanced User-Defined Functions | 83

ls.h glob.h
ls.o glob.o

Using eval resolves the parsing issue because eval handles the multiline macro
expansion and itself expands to zero lines.

Now we have a macro that defines three variables very concisely. Notice how the
assignments in the macro compose variable names from a prefix passed in to the
function and a fixed suffix, $1_sources. These aren’t precisely computed variables as
described previously, but they have much the same flavor.

Continuing this example, we realize we can also include our rules in the macro:

$(call program-variables,variable-prefix,file-list)
define program-variables
 $1_sources = $(filter %.c,$2)
 $1_headers = $(filter %.h,$2)
 $1_objects = $(subst .c,.o,$(filter %.c,$2))

 $($1_objects): $($1_headers)
endef

ls: $(ls_objects)

$(eval $(call program-variables,ls,ls.c ls.h glob.c glob.h))

Notice how these two versions of program-variables illustrate a problem with spaces
in function arguments. In the previous version, the simple uses of the two function
parameters were immune to leading spaces on the arguments. That is, the code
behaved the same regardless of any leading spaces in $1 or $2. The new version, how-
ever, introduced the computed variables $($1_objects) and $($1_headers). Now
adding a leading space to the first argument to our function (ls) causes the com-
puted variable to begin with a leading space, which expands to nothing because no
variable we’ve defined begins with a leading space. This can be quite an insidious
problem to diagnose.

When we run this makefile, we discover that somehow the .h prerequisites are being
ignored by make. To diagnose this problem, we examine make’s internal database by
running make with its --print-data-base option and we see something strange:

$ make --print-database | grep ^ls
ls_headers = ls.h glob.h
ls_sources = ls.c glob.c
ls_objects = ls.o glob.o
ls.c:
ls.o: ls.c
ls: ls.o

The .h prerequisites for ls.o are missing! There is something wrong with the rule
using computed variables.

,ch04.2104 Page 83 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 4: Functions

When make parses the eval function call, it first expands the user-defined function,
program-variables. The first line of the macro expands to:

ls_sources = ls.c glob.c

Notice that each line of the macro is expanded immediately as expected. The other
variable assignments are handled similarly. Then we get to the rule:

$($1_objects): $($1_headers)

The computed variables first have their variable name expanded:

$(ls_objects): $(ls_headers)

Then the outer variable expansion is performed, yielding:

:

Wait! Where did our variables go? The answer is that the previous three assignment
statements were expanded but not evaluated by make. Let’s keep going to see how this
works. Once the call to program-variables has been expanded, make sees something
like:

$(eval ls_sources = ls.c glob.c
ls_headers = ls.h glob.h
ls_objects = ls.o glob.o

:)

The eval function then executes and defines the three variables. So, the answer is
that the variables in the rule are being expanded before they have actually been
defined.

We can resolve this problem by explicitly deferring the expansion of the computed
variables until the three variables are defined. We can do this by quoting the dollar
signs in front of the computed variables:

$$($1_objects): $$($1_headers)

This time the make database shows the prerequisites we expect:

$ make -p | grep ^ls
ls_headers = ls.h glob.h
ls_sources = ls.c glob.c
ls_objects = ls.o glob.o
ls.c:
ls.o: ls.c ls.h glob.h
ls: ls.o

To summarize, the argument to eval is expanded twice: once when when make pre-
pares the argument list for eval, and once again by eval.

We resolved the last problem by deferring evaluation of the computed variables.
Another way of handling the problem is to force early evaluation of the variable
assignments by wrapping each one with eval:

$(call program-variables,variable-prefix,file-list)
define program-variables

,ch04.2104 Page 84 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Advanced User-Defined Functions | 85

 $(eval $1_sources = $(filter %.c,$2))
 $(eval $1_headers = $(filter %.h,$2))
 $(eval $1_objects = $(subst .c,.o,$(filter %.c,$2)))

 $($1_objects): $($1_headers)
endef

ls: $(ls_objects)

$(eval $(call program-variables,ls,ls.c ls.h glob.c glob.h))

By wrapping the variable assignments in their own eval calls, we cause them to be
internalized by make while the program-variables macro is being expanded. They are
then available for use within the macro immediately.

As we enhance our makefile, we realize we have another rule we can add to our
macro. The program itself depends on its objects. So, to finish our parameterized
makefile, we add a top-level all target and need a variable to hold all the programs
our makefile can manage:

#$(call program-variables,variable-prefix,file-list)
define program-variables
 $(eval $1_sources = $(filter %.c,$2))
 $(eval $1_headers = $(filter %.h,$2))
 $(eval $1_objects = $(subst .c,.o,$(filter %.c,$2)))

 programs += $1

 $1: $($1_objects)

 $($1_objects): $($1_headers)
endef

Place all target here, so it is the default goal.
all:

$(eval $(call program-variables,ls,ls.c ls.h glob.c glob.h))
$(eval $(call program-variables,cp,...))
$(eval $(call program-variables,mv,...))
$(eval $(call program-variables,ln,...))
$(eval $(call program-variables,rm,...))

Place the programs prerequisite here where it is defined.
all: $(programs)

Notice the placement of the all target and its prerequisite. The programs variable is
not properly defined until after the five eval calls, but we would like to place the all
target first in the makefile so all is the default goal. We can satisfy all our constrains
by putting all first and adding the prerequisites later.

The program-variables function had problems because some variables were evaluated
too early. make actually offers a value function to help address this situation. The value
function returns the value of its variable argument unexpanded. This unexpanded value

,ch04.2104 Page 85 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 4: Functions

can then be passed to eval for processing. By returning an unexpanded value, we can
avoid the problem of having to quote some of the variable references in our macros.

Unfortunately, this function cannot be used with the program-variables macro.
That’s because value is an all-or-nothing function. If used, value will not expand any
of the variables in the macro. Furthermore, value doesn’t accept parameters (and
wouldn’t do anything with them if it did) so our program name and file list parame-
ters wouldn’t be expanded.

Because of these limitations, you won’t see value used very often in this book.

Hooking Functions
User-defined functions are just variables holding text. The call function will expand
$1, $2, etc. references in the variable text if they exist. If the function doesn’t contain
any of these variable references, call doesn’t care. In fact, if the variable doesn’t con-
tain any text, call doesn’t care. No error or warning occurs. This can be very frus-
trating if you happen to misspell a function name. But it can also be very useful.

Functions are all about reusable code. The more often you reuse a function, the more
worthwhile it is to write it well. Functions can be made more reusable by adding
hooks to them. A hook is a function reference that can be redefined by a user to per-
form their own custom tasks during a standard operation.

Suppose you are building many libraries in your makefile. On some systems, you’d
like to run ranlib and on others you might want to run chmod. Rather than writing
explicit commands for these operations, you might choose to write a function and
add a hook:

$(call build-library, object-files)
define build-library
 $(AR) $(ARFLAGS) $@ $1
 $(call build-library-hook,$@)
endef

To use the hook, define the function build-library-hook:

$(foo_lib): build-library-hook = $(RANLIB) $1
$(foo_lib): $(foo_objects)
 $(call build-library,$^)

$(bar_lib): build-library-hook = $(CHMOD) 444 $1
$(bar_lib): $(bar_objects)
 $(call build-library,$^)

Passing Parameters
A function can get its data from four “sources”: parameters passed in using call, glo-
bal variables, automatic variables, and target-specific variables. Of these, relying on

,ch04.2104 Page 86 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Advanced User-Defined Functions | 87

parameters is the most modular choice, since their use insulates the function from
any changes to global data, but sometimes that isn’t the most important criteria.

Suppose we have several projects using a common set of make functions. Each project
might be identified by a variable prefix, say PROJECT1_, and critical variables for the
project all use the prefix with cross-project suffixes. The earlier example, PROJECT_SRC,
might look like PROJECT1_SRC, PROJECT1_BIN, and PROJECT1_LIB. Rather than write a
function that requires these three variables we could instead use computed variables
and pass a single argument, the prefix:

$(call process-xml,project-prefix,file-name)
define process-xml
 $($1_LIB)/xmlto -o $($1_BIN)/xml/$2 $($1_SRC)/xml/$2
endef

Another approach to passing arguments uses target-specific variables. This is particu-
larly useful when most invocations use a standard value but a few require special
processing. Target-specific variables also provide flexibility when the rule is defined
in an include file, but invoked from a makefile where the variable is defined.

release: MAKING_RELEASE = 1
release: libraries executables
…
$(foo_lib):
 $(call build-library,$^)
…
$(call build-library, file-list)
define build-library
 $(AR) $(ARFLAGS) $@ \
 $(if $(MAKING_RELEASE), \
 $(filter-out debug/%,$1), \
 $1)
endef

This code sets a target-specific variable to indicate when a release build is being exe-
cuted. In that case, the library-building function will filter out any debugging mod-
ules from the libraries.

,ch04.2104 Page 87 Friday, March 25, 2005 2:10 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

88

Chapter 5CHAPTER 5

Commands

We’ve already covered many of the basic elements of make commands, but just to
make sure we’re all on the same page, let’s review a little.

Commands are essentially one-line shell scripts. In effect, make grabs each line and
passes it to a subshell for execution. In fact, make can optimize this (relatively) expen-
sive fork/exec algorithm if it can guarantee that omitting the shell will not change the
behavior of the program. It checks this by scanning each command line for shell spe-
cial characters, such as wildcard characters and i/o redirection. If none are found,
make directly executes the command without passing it to a subshell.

By default, /bin/sh is used for the shell. This shell is controlled by the make variable
SHELL but it is not inherited from the environment. When make starts, it imports all
the variables from the user’s environment as make variables, except SHELL. This is
because the user’s choice of shell should not cause a makefile (possibly included in
some downloaded software package) to fail. If a user really wants to change the
default shell used by make, he can set the SHELL variable explicitly in the makefile. We
will discuss this issue in the section “Which Shell to Use” later in this chapter.

Parsing Commands
Following a make target, lines whose first character is a tab are assumed to be com-
mands (unless the previous line was continued with a backslash). GNU make tries to
be as smart as possible when handling tabs in other contexts. For instance, when
there is no possible ambiguity, comments, variable assignments, and include direc-
tives may all use a tab as their first character. If make reads a command line that does
not immediately follow a target, an error message is displayed:

makefile:20: *** commands commence before first target. Stop.

The wording of this message is a bit odd because it often occurs in the middle of a
makefile long after the “first” target was specified, but we can now understand it

,ch05.2691 Page 88 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Parsing Commands | 89

without too much trouble. A better wording for this message might be, “encoun-
tered a command outside the context of a target.”

When the parser sees a command in a legal context, it switches to “command pars-
ing” mode, building the script one line at a time. It stops appending to the script
when it encounters a line that cannot possibly be part of the command script. There
the script ends. The following may appear in a command script:

• Lines beginning with a tab character are commands that will be executed by a
subshell. Even lines that would normally be interpreted as make constructs (e.g.,
ifdef, comments, include directives) are treated as commands while in “com-
mand parsing” mode.

• Blank lines are ignored. They are not “executed” by a subshell.

• Lines beginning with a #, possibly with leading spaces (not tabs!), are makefile
comments and are ignored.

• Conditional processing directives, such as ifdef and ifeq, are recognized and
processed normally within command scripts.

Built-in make functions terminate command parsing mode unless preceded by a tab
character. This means they must expand to valid shell commands or to nothing. The
functions warning and eval expand to no characters.

The fact that blank lines and make comments are allowed in command scripts can be
surprising at first. The following lines show how it is carried out:

long-command:
 @echo Line 2: A blank line follows

 @echo Line 4: A shell comment follows
 # A shell comment (leading tab)
 @echo Line 6: A make comment follows
A make comment, at the beginning of a line
 @echo Line 8: Indented make comments follow
 # A make comment, indented with leading spaces
 # Another make comment, indented with leading spaces
 @echo Line 11: A conditional follows
 ifdef COMSPEC
 @echo Running Windows
 endif
 @echo Line 15: A warning "command" follows
 $(warning A warning)
 @echo Line 17: An eval "command" follows
 $(eval $(shell echo Shell echo 1>&2))

Notice that lines 5 and 10 appear identical, but are quite different. Line 5 is a shell
comment, indicated by a leading tab, while line 10 is a make comment indented eight
spaces. Obviously, we do not recommend formatting make comments this way
(unless you intend entering an obfuscated makefile contest). As you can see in the

,ch05.2691 Page 89 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 5: Commands

following output, make comments are not executed and are not echoed to the output
even though they occur within the context of a command script:

$ make
makefile:2: A warning
Shell echo
Line 2: A blank line follows
Line 4: A shell comment follows
A shell comment (leading tab)
Line 6: A make comment follows
Line 8: Indented make comments follow
Line 11: A conditional follows
Running Windows
Line 15: A warning command follows
Line 17: An eval command follows

The output of the warning and eval functions appears to be out of order, but don’t
worry, it isn’t. (We’ll discuss the order of evaluation later this chapter in the section
“Evaluating Commands.”) The fact that command scripts can contain any number of
blank lines and comments can be a frustrating source of errors. Suppose you acciden-
tally introduce a line with a leading tab. If a previous target (with or without com-
mands) exists and you have only comments or blank lines intervening, make will treat
your accidental tabbed line as a command associated with the preceding target. As
you’ve seen, this is perfectly legal and will not generate a warning or error unless the
same target has a rule somewhere else in the makefile (or one of its include files).

If you’re lucky, your makefile will include a nonblank, noncomment between your
accidental tabbed line and the previous command script. In that case, you’ll get the
“commands commence before first target” message.

Now is a good time to briefly mention software tools. I think everyone agrees, now,
that using a leading tab to indicate a command line was an unfortunate decision, but
it’s a little late to change. Using a modern, syntax-aware editor can help head off
potential problems by visibly marking dubious constructs. GNU emacs has a very
nice mode for editing makefiles. This mode performs syntax highlighting and looks
for simple syntactic errors, such as spaces after continuation lines and mixing lead-
ing spaces and tabs. I’ll talk more about using emacs and make later on.

Continuing Long Commands
Since each command is executed in its own shell (or at least appears to be),
sequences of shell commands that need to be run together must be handled spe-
cially. For instance, suppose I need to generate a file containing a list of files. The
Java compiler accepts such a file for compiling many source files. I might write a
command script like this:

.INTERMEDIATE: file_list
file_list:
 for d in logic ui

,ch05.2691 Page 90 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Parsing Commands | 91

 do
 echo $d/*.java
 done > $@

By now it should be clear that this won’t work. It generates the error:

$ make
for d in logic ui
/bin/sh: -c: line 2: syntax error: unexpected end of file
make: *** [file_list] Error 2

Our first fix is to add continuation characters to each line:

.INTERMEDIATE: file_list
file_list:
 for d in logic ui \
 do \
 echo $d/*.java \
 done > $@

which generates the error:

$ make
for d in logic ui \
do \
 echo /*.java \
done > file_list
/bin/sh: -c: line 1: syntax error near unexpected token `>'
/bin/sh: -c: line 1: `for d in logic ui do echo /*.java
make: *** [file_list] Error 2

What happened? Two problems. First, the reference to the loop control variable, d,
needs to be escaped. Second, since the for loop is passed to the subshell as a single
line, we must add semicolon separators after the file list and for-loop statement:

.INTERMEDIATE: file_list
file_list:
 for d in logic ui; \
 do \
 echo $$d/*.java; \
 done > $@

Now we get the file we expect. The target is declared .INTERMEDIATE so that make will
delete this temporary target after the compile is complete.

In a more realistic example, the list of directories would be stored in a make variable.
If we are sure that the number of files is relatively small, we can perform this same
operation without a for loop by using make functions:

.INTERMEDIATE: file_list
file_list:
 echo $(addsuffix /*.java,$(COMPILATION_DIRS)) > $@

But the for-loop version is less likely to run up against command-line length issues if
we expect the list of directories to grow with time.

,ch05.2691 Page 91 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 5: Commands

Another common problem in make command scripts is how to switch directories.
Again, it should be clear that a simple command script like:

TAGS:
 cd src
 ctags --recurse

will not execute the ctags program in the src subdirectory. To get the effect we want,
we must either place both commands on a single line or escape the newline with a
backslash (and separate the commands with a semicolon):

TAGS:
 cd src; \
 ctags --recurse

An even better version would check the status of the cd before executing the ctags
program:

TAGS:
 cd src && \
 ctags --recurse

Notice that in some circumstances omitting the semicolon might not produce a make
or shell error:

disk-free = echo "Checking free disk space..." \
 df . | awk '{ print $$4 }'

This example prints a simple message followed by the number of free blocks on the
current device. Or does it? We have accidentally omitted the semicolon after the echo
command, so we never actually run the df program. Instead, we echo:

Checking free disk space... df .

into awk which dutifully prints the fourth field, space....

It might have occurred to you to use the define directive, which is intended for creat-
ing multiline command sequences, rather than continuation lines. Unfortunately,
this isn’t quite the same problem. When a multiline macro is expanded, each line is
inserted into the command script with a leading tab and make treats each line inde-
pendently. The lines of the macro are not executed in a single subshell. So you will
need to pay attention to command-line continuation in macros as well.

Command Modifiers
A command can be modified by several prefixes. We’ve already seen the “silent” pre-
fix, @, used many times before. The complete list of prefixes, along with some gory
details, are:

@ Do not echo the command. For historical compatibility, you can make your tar-
get a prerequisite of the special target .SILENT if you want all of its commands to
be hidden. Using @ is preferred, however, because it can be applied to individual
commands within a command script. If you want to apply this modifier to all

,ch05.2691 Page 92 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Parsing Commands | 93

targets (although it is hard to imagine why), you can use the --silent (or -s)
option.

Hiding commands can make the output of make easier on the eyes, but it can also
make debugging the commands more difficult. If you find yourself removing the
@ modifiers and restoring them frequently, you might create a variable, say QUIET,
containing the @ modifier and use that on commands:

QUIET = @
hairy_script:
 $(QUIET) complex script …

Then, if you need to see the complex script as make runs it, just reset the QUIET
variable from the command line:

$ make QUIET= hairy_script
complex script …

- The dash prefix indicates that errors in the command should be ignored by make.
By default, when make executes a command, it examines the exit status of the
program or pipeline, and if a nonzero (failure) exit status is returned, make termi-
nates execution of the remainder of the command script and exits. This modi-
fier directs make to ignore the exit status of the modified line and continue as if
no error occurred. We’ll discuss this topic in more depth in the next section.

For historical compatibility, you can ignore errors in any part of a command
script by making the target a prerequisite of the .IGNORE special target. If you
want to ignore all errors in the entire makefile, you can use the --ignore-errors
(or -i) option. Again, this doesn’t seem too useful.

+ The plus modifier tells make to execute the command even if the --just-print (or
-n) command-line option is given to make. It is used when writing recursive
makefiles. We’ll discuss this topic in more detail in the section “Recursive make”
in Chapter 6.

Any or all of these modifiers are allowed on a single line. Obviously, the modifiers
are stripped before the commands are executed.

Errors and Interrupts
Every command that make executes returns a status code. A status of zero indicates
that the command succeeded. A status of nonzero indicates some kind of failure.
Some programs use the return status code to indicate something more meaningful
than simply “error.” For instance, grep returns 0 (success) if a match is found, 1 if no
match is found, and 2 if some kind of error occurred.

Normally, when a program fails (i.e., returns a nonzero exit status), make stops exe-
cuting commands and exits with an error status. Sometimes you want make to con-
tinue, trying to complete as many targets as possible. For instance, you might want
to compile as many files as possible to see all the compilation errors in a single run.
You can do this with the --keep-going (or -k) option.

,ch05.2691 Page 93 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 5: Commands

Although the - modifier causes make to ignore errors in individual commands, I try to
avoid its use whenever possible. This is because it complicates automated error pro-
cessing and is visually jarring.

When make ignores an error it prints a warning along with the name of the target in
square brackets. For example, here is the output when rm tries to delete a nonexist-
ent file:

rm non-existent-file
rm: cannot remove `non-existent-file': No such file or directory
make: [clean] Error 1 (ignored)

Some commands, like rm, have options that suppress their error exit status. The -f
option will force rm to return success while also suppressing error messages. Using
such options is better than depending on a preceding dash.

Occasionally, you want a command to fail and would like to get an error if the pro-
gram succeeds. For these situations, you should be able to simply negate the exit sta-
tus of the program:

Verify there are no debug statements left in the code.
.PHONY: no_debug_printf
no_debug_printf: $(sources)
 ! grep --line-number '"debug:' $^

Unfortunately, there is a bug in make 3.80 that prevents this straightforward use. make
does not recognize the ! character as requiring shell processing and executes the
command line itself, resulting in an error. In this case, a simple work around is to
add a shell special character as a clue to make:

Verify there are no debug statement left in the code
.PHONY: no_debug_printf
no_debug_printf: $(sources)
 ! grep --line-number '"debug:' $^ < /dev/null

Another common source of unexpected command errors is using the shell’s if con-
struct without an else.

$(config): $(config_template)
 if [! -d $(dir $@)]; \
 then \
 $(MKDIR) $(dir $@); \
 fi
 $(M4) $^ > $@

The first command tests if the output directory exists and calls mkdir to create it if it
does not. Unfortunately, if the directory does exist, the if command returns a failure
exit status (the exit status of the test), which terminates the script. One solution is to
add an else clause:

$(config): $(config_template)
 if [! -d $(dir $@)]; \
 then \
 $(MKDIR) $(dir $@); \

,ch05.2691 Page 94 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Parsing Commands | 95

 else \
 true; \
 fi
 $(M4) $^ > $@

In the shell, the colon (:) is a no-op command that always returns true, and can be
used instead of true. An alternative implementation that works well here is:

$(config): $(config_template)
 [[-d $(dir $@)]] || $(MKDIR) $(dir $@)
 $(M4) $^ > $@

Now the first statement is true when the directory exists or when the mkdir suc-
ceeds. Another alternative is to use mkdir -p. This allows mkdir to succeed even when
the directory already exists. All these implementations execute something in a sub-
shell even when the directory exists. By using wildcard, we can omit the execution
entirely if the directory is present.

$(call make-dir, directory)
make-dir = $(if $(wildcard $1),,$(MKDIR) -p $1)

$(config): $(config_template)
 $(call make-dir, $(dir $@))
 $(M4) $^ > $@

Because each command is executed in its own shell, it is common to have multiline
commands with each component separated by semicolons. Be aware that errors
within these scripts may not terminate the script:

target:
 rm rm-fails; echo But the next command executes anyway

It is best to minimize the length of command scripts and give make a chance to man-
age exit status and termination for you. For instance:

path-fixup = -e "s;[a-zA-Z:/]*/src/;$(SOURCE_DIR)/;g" \
 -e "s;[a-zA-Z:/]*/bin/;$(OUTPUT_DIR)/;g"

A good version.
define fix-project-paths
 sed $(path-fixup) $1 > $2.fixed && \
 mv $2.fixed $2
endef

A better version.
define fix-project-paths
 sed $(path-fixup) $1 > $2.fixed
 mv $2.fixed $2
endef

This macro transforms DOS-style paths (with forward slashes) into destination paths
for a particular source and output tree. The macro accepts two filenames, the input
and output files. It is careful to overwrite the output file only if the sed command
completes correctly. The “good” version does this by connecting the sed and mv with

,ch05.2691 Page 95 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 5: Commands

&& so they execute in a single shell. The “better” version executes them as two sepa-
rate commands, letting make terminate the script if the sed fails. The “better” version
is no more expensive (the mv doesn’t need a shell and is executed directly), is easier to
read, and provides more information when errors occur (because make will indicate
which command failed).

Note that this is a different issue than the common problem with cd:

TAGS:
 cd src && \
 ctags --recurse

In this case, the two statements must be executed within the same subshell. There-
fore, the commands must be separated by some kind of statement connector, such as
; or &&.

Deleting and preserving target files

If an error occurs, make assumes that the target cannot be remade. Any other targets
that have the current target as a prerequisite also cannot be remade, so make will not
attempt them nor execute any part of their command scripts. If the --keep-going (or
-k) option is used, the next goal will be attempted; otherwise, make exits. If the cur-
rent target is a file, it may be corrupt if the command exits before finishing its work.
Unfortunately, for reasons of historical compatibility, make will leave this potentially
corrupt file on disk. Because the file’s timestamp has been updated, subsequent exe-
cutions of make may not update the file with correct data. You can avoid this prob-
lem and cause make to delete these questionable files when an error occurs by making
the target file a prerequisite of .DELETE_ON_ERROR. If .DELETE_ON_ERROR is used with no
prerequisites, errors in any target file build will cause make to delete the target.

A complementary problem occurs when make is interrupted by a signal, such as a
Ctrl-C. In this case, make deletes the current target file if the file has been modified.
Sometimes deleting the file is the wrong thing to do. Perhaps the file is very expen-
sive to create and partial contents are better than none, or perhaps the file must exist
for other parts of the build to proceed. In these cases, you can protect the file by
making it a prerequisite of the special target .PRECIOUS.

Which Shell to Use
When make needs to pass a command line to a subshell, it uses /bin/sh. You can
change the shell by setting the make variable SHELL. Think carefully before doing this.
Usually, the purpose of using make is to provide a tool for a community of developers

,ch05.2691 Page 96 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Empty Commands | 97

to build a system from its source components. It is quite easy to create a makefile
that fails in this goal by using tools that are not available or assumptions that are not
true for other developers in the community. It is considered very bad form to use any
shell other than /bin/sh in any widely distributed application (one distributed via
anonymous ftp or open cvs). We’ll discuss portability in more detail in Chapter 7.

There is another context for using make, however. Often, in closed development envi-
ronments, the developers are working on a limited set of machines and operating sys-
tems with an approved group of developers. In fact, this is the environment I’ve most
often found myself in. In this situation, it can make perfect sense to customize the
environment make is expected to run under. Developers are instructed in how to set
up their environment to work properly with the build and life goes on.

In environments such as this, I prefer to make some portability sacrifices “up front.”
I believe this can make the entire development process go much more smoothly. One
such sacrifice is to explicitly set the SHELL variable to /usr/bin/bash. The bash shell is a
portable, POSIX-compliant shell (and, therefore, a superset of sh) and is the stan-
dard shell on GNU/Linux. Many portability problems in makefiles are due to using
nonportable constructs in command scripts. This can be solved by explicitly using
one standard shell rather than writing to the portable subset of sh. Paul Smith, the
maintainer of GNU make, has a web page “Paul’s Rules of Makefiles” (http://make.
paulandlesley.org/rules.html) on which he states, “Don’t hassle with writing portable
makefiles, use a portable make instead!” I would also say, “Where possible, don’t
hassle with writing portable command scripts, use a portable shell (bash) instead.”
The bash shell runs on most operating systems including virtually all variants of
Unix, Windows, BeOS, Amiga, and OS/2.

For the remainder of this book, I will note when a command script uses bash-specific
features.

Empty Commands
An empty command is one that does nothing.

header.h: ;

Recall that the prerequisites list for a target can be followed by a semicolon and the
command. Here a semicolon with nothing after it indicates that there are no com-
mands. You could instead follow the target with a line containing only a tab, but that
would be impossible to read. Empty commands are most often used to prevent a pat-
tern rule from matching the target and executing commands you don’t want.

Note that in other versions of make, empty targets are sometimes used as phony tar-
gets. In GNU make, use the .PHONY special target instead; it’s safer and clearer.

,ch05.2691 Page 97 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 5: Commands

Command Environment
Commands executed by make inherit their processing environment from make itself.
This environment includes the current working directory, file descriptors, and the
environment variables passed by make.

When a subshell is created, make adds a few variables to the environment:

MAKEFLAGS
MFLAGS
MAKELEVEL

The MAKEFLAGS variable includes the command-line options passed to make. The
MFLAGS variable mirrors MAKEFLAGS and exists for historical reasons. The MAKELEVEL
variable indicates the number of nested make invocations. That is, when make recur-
sively invokes make, the MAKELEVEL variable increases by one. Subprocesses of a single
parent make will have a MAKELEVEL of one. These variables are typically used for man-
aging recursive make. We’ll discuss them in the section “Recursive make” in
Chapter 6.

Of course, the user can add whatever variables they like to the subprocess environ-
ment with the use of the export directive.

The current working directory for an executed command is the working directory of
the parent make. This is typically the same as the directory the make program was exe-
cuted from, but can be changed with the the --directory=<replaceable>directory</
replaceable> (or -C) command-line option. Note that simply specifying a different
makefile using --file does not change the current directory, only the makefile read.

Each subprocess make spawns inherits the three standard file descriptors: stdin,
stdout, and stderr. This is not particularly noteworthy except to observe that it is pos-
sible for a command script to read its stdin. This is “reasonable” and works. Once
the script completes its read, the remaining commands are executed as expected. But
makefiles are generally expected to run without this kind of interaction. Users often
expect to be able to start a make and “walk away” from the process, returning later to
examine the results. Of course, reading the stdin will also tend to interact poorly with
cron-based automated builds.

A common error in makefiles is to read the stdin accidentally:

$(DATA_FILE): $(RAW_DATA)
 grep pattern $(RAW_DATA_FILES) > $@

Here the input file to grep is specified with a variable (misspelled in this example). If
the variable expands to nothing, the grep is left to read the stdin with no prompt or
indication of why the make is “hanging.” A simple way around this issue is to always
include /dev/null on the command line as an additional “file”:

$(DATA_FILE): $(RAW_DATA)
 grep pattern $(RAW_DATA_FILES) /dev/null > $@

,ch05.2691 Page 98 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Evaluating Commands | 99

This grep command will never attempt to read stdin. Of course, debugging the
makefile is also appropriate!

Evaluating Commands
Command script processing occurs in four steps: read the code, expand variables,
evaluate make expressions, and execute commands. Let’s see how these steps apply to
a complex command script. Consider this (somewhat contrived) makefile. An appli-
cation is linked, then optionally stripped of symbols and compressed using the upx
executable packer:

$(call strip-program, file)
define strip-program
 strip $1
endef

complex_script:
 $(CC) $^ -o $@
 ifdef STRIP
 $(call strip-program, $@)
 endif
 $(if $(PACK), upx --best $@)
 $(warning Final size: $(shell ls -s $@))

The evaluation of command scripts is deferred until they are executed, but ifdef
directives are processed immediately wherever they occur. Therefore, make reads the
command script, ignoring the content and storing each line until it gets to the line
ifdef STRIP. It evaluates the test and, if STRIP is not defined, make reads and discards
all the text up to and including the closing endif. make then continues reading and
storing the rest of the script.

When a command script is to be executed, make first scans the script for make con-
structs that need to be expanded or evaluated. When macros are expanded, a lead-
ing tab is prepended to each line. Expanding and evaluating before any commands
are executed can lead to an unexpected execution order if you aren’t prepared for it.
In our example, the last line of the script is wrong. The shell and warning com-
mands are executed before linking the application. Therefore, the ls command will
be executed before the file it is examining has been updated. This explains the “out
of order” output seen earlier in the section “Parsing Commands.”

Also, notice that the ifdef STRIP line is evaluated while reading the file, but the $(if...)
line is evaluated immediately before the commands for complex_script are executed.
Using the if function is more flexible since there are more opportunities to control
when the variable is defined, but it is not very well suited for managing large blocks of
text.

As this example shows, it is important to always attend to what program is evaluat-
ing an expression (e.g., make or the shell) and when the evaluation is performed:

$(LINK.c) $(shell find $(if $(ALL),$(wildcard core ext*),core) -name '*.o')

,ch05.2691 Page 99 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 5: Commands

This convoluted command script attempts to link a set of object files. The sequence
of evaluation and the program performing the operation (in parentheses) is:

1. Expand $ALL (make).

2. Evaluate if (make).

3. Evaluate the wildcard, assuming ALL is not empty (make).

4. Evaluate the shell (make).

5. Execute the find (sh).

6. After completing the expansion and evaluation of the make constructs, execute
the link command (sh).

Command-Line Limits
When working with large projects, you occasionally bump up against limitations in
the length of commands make tries to execute. Command-line limits vary widely with
the operating system. Red Hat 9 GNU/Linux appears to have a limit of about 128K
characters, while Windows XP has a limit of 32K. The error message generated also
varies. On Windows using the Cygwin port, the message is:

C:\usr\cygwin\bin\bash: /usr/bin/ls: Invalid argument

when ls is given too long an argument list. On Red Hat 9 the message is:

/bin/ls: argument list too long

Even 32K sounds like a lot of data for a command line, but when your project con-
tains 3,000 files in 100 subdirectories and you want to manipulate them all, this limit
can be constraining.

There are two basic ways to get yourself into this mess: expand some basic value
using shell tools, or use make itself to set a variable to a very long value. For example,
suppose we want to compile all our source files in a single command line:

compile_all:
 $(JAVAC) $(wildcard $(addsuffix /*.java,$(source_dirs)))

The make variable source_dirs may contain only a couple hundred words, but after
appending the wildcard for Java files and expanding it using wildcard, this list can
easily exceed the command-line limit of the system. By the way, make has no built-in
limits to constrain us. So long as there is virtual memory available, make will allow
any amount of data you care to create.

When you find yourself in this situation, it can feel like the old Adventure game,
“You are in a twisty maze of passages all alike.” For instance, you might try to solve
the above using xargs, since xargs will manage long command lines by parceling out
arguments up to the system-specific length:

compile_all:
 echo $(wildcard $(addsuffix /*.java,$(source_dirs))) | \
 xargs $(JAVAC)

,ch05.2691 Page 100 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Command-Line Limits | 101

Unfortunately, we’ve just moved the command-line limit problem from the javac
command line to the echo command line. Similarly, we cannot use echo or printf to
write the data to a file (assuming the compiler can read the file list from a file).

No, the way to handle this situation is to avoid creating the file list all at once in the
first place. Instead, use the shell to glob one directory at a time:

compile_all:
 for d in $(source_dirs); \
 do \
 $(JAVAC) $$d/*.java; \
 done

We could also pipe the file list to xargs to perform the task with fewer executions:

compile_all:
 for d in $(source_dirs); \
 do \
 echo $$d/*.java; \
 done | \
 xargs $(JAVAC)

Sadly, neither of these command scripts handle errors during compilation properly. A
better approach would be to save the full file list and feed it to the compiler, if the com-
piler supports reading its arguments from a file. Java compilers support this feature:

compile_all: $(FILE_LIST)
 $(JAVA) @$<

.INTERMEDIATE: $(FILE_LIST)
$(FILE_LIST):
 for d in $(source_dirs); \
 do \
 echo $$d/*.java; \
 done > $@

Notice the subtle error in the for loop. If any of the directories does not contain a
Java file, the string *.java will be included in the file list and the Java compiler will
generate a “File not found” error. We can make bash collapse empty globbing pat-
terns by setting the nullglob option.

compile_all: $(FILE_LIST)
 $(JAVA) @$<

.INTERMEDIATE: $(FILE_LIST)
$(FILE_LIST):
 shopt -s nullglob; \
 for d in $(source_dirs); \
 do \
 echo $$d/*.java; \
 done > $@

Many projects have to make lists of files. Here is a macro containing a bash script
producing file lists. The first argument is the root directory to change to. All the files

,ch05.2691 Page 101 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 5: Commands

in the list will be relative to this root directory. The second argument is a list of direc-
tories to search for matching files. The third and fourth arguments are optional and
represent file suffixes.

$(call collect-names, root-dir, dir-list, suffix1-opt, suffix2-opt)
define collect-names
 echo Making $@ from directory list...
 cd $1; \
 shopt -s nullglob; \
 for f in $(foreach file,$2,'$(file)'); do \
 files=($$f$(if $3,/*.{$3$(if $4,$(comma)$4)})); \
 if (($${#files[@]} > 0)); \
 then \
 printf '"%s"\n' $${files[@]}; \
 else :; fi; \
 done
endef

Here is a pattern rule for creating a list of image files:

%.images:
 @$(call collect-names,$(SOURCE_DIR),$^,gif,jpeg) > $@

The macro execution is hidden because the script is long and there is seldom a rea-
son to cut and paste this code. The directory list is provided in the prerequisites.
After changing to the root directory, the script enables null globbing. The rest is a for
loop to process each directory we want to search. The file search expression is a list
of words passed in parameter $2. The script protects words in the file list with single
quotes because they may contain shell-special characters. In particular, filenames in
languages like Java can contain dollar signs:

for f in $(foreach file,$2,'$(file)'); do

We search a directory by filling the files array with the result of globbing. If the
files array contains any elements, we use printf to write each word followed by a
newline. Using the array allows the macro to properly handle paths with embedded
spaces. This is also the reason printf surrounds the filename with double quotes.

The file list is produced with the line:

files=($$f$(if $3,/*.{$3$(if $4,$(comma)$4)}));

The $$f is the directory or file argument to the macro. The following expression is a
make if testing whether the third argument is nonempty. This is how you can imple-
ment optional arguments. If the third argument is empty, it is assumed the fourth is
as well. In this case, the file passed by the user should be included in the file list as is.
This allows the macro to build lists of arbitrary files for which wildcard patterns are
inappropriate. If the third argument is provided, the if appends /*.{$3} to the root
file. If the fourth argument is provided, it appends ,$4 after the $3. Notice the subter-
fuge we must use to insert a comma into the wildcard pattern. By placing a comma
in a make variable we can sneak it past the parser, otherwise, the comma would be

,ch05.2691 Page 102 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Command-Line Limits | 103

interpreted as separating the then part from the else part of the if. The definition of
comma is straightforward:

comma := ,

All the preceding for loops also suffer from the command-line length limit, since
they use wildcard expansion. The difference is that the wildcard is expanded with
the contents of a single directory, which is far less likely to exceed the limits.

What do we do if a make variable contains our long file list? Well, then we are in real
trouble. There are only two ways I’ve found to pass a very long make variable to a
subshell. The first approach is to pass only a subset of the variable contents to any
one subshell invocation by filtering the contents.

compile_all:
 $(JAVAC) $(wordlist 1, 499, $(all-source-files))
 $(JAVAC) $(wordlist 500, 999, $(all-source-files))
 $(JAVAC) $(wordlist 1000, 1499, $(all-source-files))

The filter function can be used as well, but that can be more uncertain since the
number of files selected will depend on the distribution within the pattern space cho-
sen. Here we choose a pattern based on the alphabet:

compile_all:
 $(JAVAC) $(filter a%, $(all-source-files))
 $(JAVAC) $(filter b%, $(all-source-files))

Other patterns might use special characteristics of the filenames themselves.

Notice that it is difficult to automate this further. We could try to wrap the alphabet
approach in a foreach loop:

compile_all:
 $(foreach l,a b c d e ..., \
 $(if $(filter $l%, $(all-source-files)), \
 $(JAVAC) $(filter $l%, $(all-source-files));))

but this doesn’t work. make expands this into a single line of text, thus compounding
the line-length problem. We can instead use eval:

compile_all:
 $(foreach l,a b c d e ..., \
 $(if $(filter $l%, $(all-source-files)), \
 $(eval \
 $(shell \
 $(JAVAC) $(filter $l%, $(all-source-files));))))

This works because eval will execute the shell command immediately, expanding to
nothing. So the foreach loop expands to nothing. The problem is that error report-
ing is meaningless in this context, so compilation errors will not be transmitted to
make correctly.

The wordlist approach is worse. Due to make’s limited numerical capabilities, there is
no way to enclose the wordlist technique in a loop. In general, there are very few sat-
isfying ways to deal with immense file lists.

,ch05.2691 Page 103 Friday, March 25, 2005 2:19 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

105

PART II

II.Advanced and Specialized
Topics

In Part II, we take a problem-oriented view of make. It is often not obvious how to
apply make to real-world problems such as multidirectory builds, new programming
languages, portability and performance issues, or debugging. Each of these problems
is discussed, along with a chapter covering several complex examples.

,part2.12677 Page 105 Friday, March 25, 2005 3:18 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

107

Chapter 6 CHAPTER 6

Managing Large Projects

What do you call a large project? For our purposes, it is one that requires a team of
developers, may run on multiple architectures, and may have several field releases
that require maintenance. Of course, not all of these are required to call a project
large. A million lines of prerelease C++ on a single platform is still large. But soft-
ware rarely stays prerelease forever. And if it is successful, someone will eventually
ask for it on another platform. So most large software systems wind up looking very
similar after awhile.

Large software projects are usually simplified by dividing them into major compo-
nents, often collected into distinct programs, libraries, or both. These components
are often stored under their own directories and managed by their own makefiles.
One way to build an entire system of components employs a top-level makefile that
invokes the makefile for each component in the proper order. This approach is called
recursive make because the top-level makefile invokes make recursively on each com-
ponent’s makefile. Recursive make is a common technique for handling component-
wise builds. An alternative suggested by Peter Miller in 1998 avoids many issues with
recursive make by using a single makefile that includes information from each compo-
nent directory.*

Once a project gets beyond building its components, it eventually finds that there are
larger organizational issues in managing builds. These include handling develop-
ment on multiple versions of a project, supporting several platforms, providing effi-
cient access to source and binaries, and performing automated builds. We will
discuss these problems in the second half of this chapter.

* Miller, P.A., Recursive Make Considered Harmful, AUUGN Journal of AUUG Inc., 19(1), pp. 14–25 (1998).
Also available from http://aegis.sourceforge.net/auug97.pdf.

,ch06.3710 Page 107 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 6: Managing Large Projects

Recursive make
The motivation behind recursive make is simple: make works very well within a sin-
gle directory (or small set of directories) but becomes more complex when the num-
ber of directories grows. So, we can use make to build a large project by writing a
simple, self-contained makefile for each directory, then executing them all individu-
ally. We could use a scripting tool to perform this execution, but it is more effective
to use make itself since there are also dependencies involved at the higher level.

For example, suppose I have an mp3 player application. It can logically be divided
into several components: the user interface, codecs, and database management.
These might be represented by three libraries: libui.a, libcodec.a, and libdb.a. The
application itself consists of glue holding these pieces together. A straightforward
mapping of these components onto a file structure might look like Figure 6-1.

A more traditional layout would place the application’s main function and glue in
the top directory rather than in the subdirectory app/player. I prefer to put applica-
tion code in its own directory to create a cleaner layout at the top level and allow for

Figure 6-1. File layout for an MP3 player

makefile

include

db

codec

ui

lib

db

codec

ui

app

player

doc

,ch06.3710 Page 108 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Recursive make | 109

growth of the system with additional modules. For instance, if we choose to add a
separate cataloging application later it can neatly fit under app/catalog.

If each of the directories lib/db, lib/codec, lib/ui, and app/player contains a makefile,
then it is the job of the top-level makefile to invoke them.

lib_codec := lib/codec
lib_db := lib/db
lib_ui := lib/ui
libraries := $(lib_ui) $(lib_db) $(lib_codec)
player := app/player

.PHONY: all $(player) $(libraries)
all: $(player)

$(player) $(libraries):
 $(MAKE) --directory=$@

$(player): $(libraries)
$(lib_ui): $(lib_db) $(lib_codec)

The top-level makefile invokes make on each subdirectory through a rule that lists the
subdirectories as targets and whose action is to invoke make:

$(player) $(libraries):
 $(MAKE) --directory=$@

The variable MAKE should always be used to invoke make within a makefile. The
MAKE variable is recognized by make and is set to the actual path of make so recursive
invocations all use the same executable. Also, lines containing the variable MAKE are
handled specially when the command-line options --touch (-t), --just-print (-n),
and --question (-q) are used. We’ll discuss this in detail in the section “Command-
Line Options” later in this chapter.

The target directories are marked with .PHONY so the rule fires even though the target
may be up to date. The --directory (-C) option is used to cause make to change to the
target directory before reading a makefile.

This rule, although a bit subtle, overcomes several problems associated with a more
straightforward command script:

all:
 for d in $(player) $(libraries); \
 do \
 $(MAKE) --directory=$$d; \
 done

This command script fails to properly transmit errors to the parent make. It also does
not allow make to execute any subdirectory builds in parallel. We’ll discuss this fea-
ture of make in Chapter 10.

As make is planning the execution of the dependency graph, the prerequisites of a tar-
get are independent of one another. In addition, separate targets with no dependency

,ch06.3710 Page 109 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 6: Managing Large Projects

relationships to one another are also independent. For example, the libraries have no
inherent relationship to the app/player target or to each other. This means make is free
to execute the app/player makefile before building any of the libraries. Clearly, this
would cause the build to fail since linking the application requires the libraries. To
solve this problem, we provide additional dependency information.

$(player): $(libraries)
$(lib_ui): $(lib_db) $(lib_codec)

Here we state that the makefiles in the library subdirectories must be executed before
the makefile in the player directory. Similarly, the lib/ui code requires the lib/db and
lib/codec libraries to be compiled. This ensures that any generated code (such as
yacc/lex files) have been generated before the ui code is compiled.

There is a further subtle ordering issue when updating prerequisites. As with all
dependencies, the order of updating is determined by the analysis of the dependency
graph, but when the prerequisites of a target are listed on a single line, GNU make
happens to update them from left to right. For example:

all: a b c
all: d e f

If there are no other dependency relationships to be considered, the six prerequisites
can be updated in any order (e.g., “d b a c e f”), but GNU make uses left to right
within a single target line, yielding the update order: “a b c d e f” or “d e f a b c.”
Although this ordering is an accident of the implementation, the order of execution
appears correct. It is easy to forget that the correct order is a happy accident and fail
to provide full dependency information. Eventually, the dependency analysis will
yield a different order and cause problems. So, if a set of targets must be updated in a
specific order, enforce the proper order with appropriate prerequisites.

When the top-level makefile is run, we see:

$ make
make --directory=lib/db
make[1]: Entering directory `/test/book/out/ch06-simple/lib/db'
Update db library...
make[1]: Leaving directory `/test/book/out/ch06-simple/lib/db'
make --directory=lib/codec
make[1]: Entering directory `/test/book/out/ch06-simple/lib/codec'
Update codec library...
make[1]: Leaving directory `/test/book/out/ch06-simple/lib/codec'
make --directory=lib/ui
make[1]: Entering directory `/test/book/out/ch06-simple/lib/ui'
Update ui library...
make[1]: Leaving directory `/test/book/out/ch06-simple/lib/ui'
make --directory=app/player
make[1]: Entering directory `/test/book/out/ch06-simple/app/player'
Update player application...
make[1]: Leaving directory `/test/book/out/ch06-simple/app/player'

,ch06.3710 Page 110 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Recursive make | 111

When make detects that it is invoking another make recursively, it enables the --print-
directory (-w) option, which causes make to print the Entering directory and Leaving
directory messages. This option is also enabled when the --directory (-C) option is
used. The value of the make variable MAKELEVEL is printed in square brackets in each
line as well. In this simple example, each component makefile prints a simple mes-
sage about updating the component.

Command-Line Options
Recursive make is a simple idea that quickly becomes complicated. The perfect recur-
sive make implementation would behave as if the many makefiles in the system are a
single makefile. Achieving this level of coordination is virtually impossible, so com-
promises must be made. The subtle issues become more clear when we look at how
command-line options must be handled.

Suppose we have added comments to a header file in our mp3 player. Rather than
recompiling all the source that depends on the modified header, we realize we can
instead perform a make --touch to bring the timestamps of the files up to date. By
executing the make --touch with the top-level makefile, we would like make to touch
all the appropriate files managed by sub-makes. Let’s see how this works.

Usually, when --touch is provided on the command line, the normal processing of
rules is suspended. Instead, the dependency graph is traversed and the selected tar-
gets and those prerequisites that are not marked .PHONY are brought up to date by
executing touch on the target. Since our subdirectories are marked .PHONY, they
would normally be ignored (touching them like normal files would be pointless). But
we don’t want those targets ignored, we want their command script executed. To do
the right thing, make automatically labels any line containing MAKE with the + modi-
fier, meaning make runs the sub-make regardless of the --touch option.

When make runs the sub-make it must also arrange for the --touch flag to be passed to
the sub-process. It does this through the MAKEFLAGS variable. When make starts, it
automatically appends most command-line options to MAKEFLAGS. The only
exceptions are the options --directory (-C), --file (-f), --old-file (-o), and --new-
file (-W). The MAKEFLAGS variable is then exported to the environment and read by
the sub-make as it starts.

With this special support, sub-makes behave mostly the way you want. The recursive
execution of $(MAKE) and the special handling of MAKEFLAGS that is applied to --touch
(-t) is also applied to the options --just-print (-n) and --question (-q).

Passing Variables
As we have already mentioned, variables are passed to sub-makes through the envi-
ronment and controlled using the export and unexport directives. Variables passed
through the environment are taken as default values, but are overridden by any

,ch06.3710 Page 111 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 6: Managing Large Projects

assignment to the variable. Use the --environment-overrides (-e) option to allow
environment variables to override the local assignment. You can explicitly override
the environment for a specific assignment (even when the --environment-overrides
option is used) with the override directive:

override TMPDIR = ~/tmp

Variables defined on the command line are automatically exported to the environ-
ment if they use legal shell syntax. A variable is considered legal if it uses only let-
ters, numbers, and underscores. Variable assignments from the command line are
stored in the MAKEFLAGS variable along with command-line options.

Error Handling
What happens when a recursive make gets an error? Nothing very unusual, actually.
The make receiving the error status terminates its processing with an exit status of 2.
The parent make then exits, propagating the error status up the recursive make process
tree. If the --keep-going (-k) option is used on the top-level make, it is passed to sub-
makes as usual. The sub-make does what it normally does, skips the current target and
proceeds to the next goal that does not use the erroneous target as a prerequisite.

For example, if our mp3 player program encountered a compilation error in the lib/db
component, the lib/db make would exit, returning a status of 2 to the top-level
makefile. If we used the --keep-going (-k) option, the top-level makefile would pro-
ceed to the next unrelated target, lib/codec. When it had completed that target,
regardless of its exit status, the make would exit with a status of 2 since there are no fur-
ther targets that can be processed due to the failure of lib/db.

The --question (-q) option behaves very similarly. This option causes make to return
an exit status of 1 if some target is not up to date, 0 otherwise. When applied to a
tree of makefiles, make begins recursively executing makefiles until it can determine if
the project is up to date. As soon as an out-of-date file is found, make terminates the
currently active make and unwinds the recursion.

Building Other Targets
The basic build target is essential for any build system, but we also need the other
support targets we’ve come to depend upon, such as clean, install, print, etc.
Because these are .PHONY targets, the technique described earlier doesn’t work very
well.

For instance, there are several broken approaches, such as:

clean: $(player) $(libraries)
 $(MAKE) --directory=$@ clean

or:

$(player) $(libraries):
 $(MAKE) --directory=$@ clean

,ch06.3710 Page 112 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Recursive make | 113

The first is broken because the prerequisites would trigger a build of the default tar-
get in the $(player) and $(libraries) makefiles, not a build of the clean target. The
second is illegal because these targets already exist with a different command script.

One approach that works relies on a shell for loop:

clean:
 for d in $(player) $(libraries); \
 do \
 $(MAKE) --directory=$$f clean; \
 done

A for loop is not very satisfying for all the reasons described earlier, but it (and the
preceding illegal example) points us to this solution:

$(player) $(libraries):
 $(MAKE) --directory=$@ $(TARGET)

By adding the variable $(TARGET) to the recursive make line and setting the TARGET
variable on the make command line, we can add arbitrary goals to the sub-make:

$ make TARGET=clean

Unfortunately, this does not invoke the $(TARGET) on the top-level makefile. Often
this is not necessary because the top-level makefile has nothing to do, but, if neces-
sary, we can add another invocation of make protected by an if:

$(player) $(libraries):
 $(MAKE) --directory=$@ $(TARGET)
 $(if $(TARGET), $(MAKE) $(TARGET))

Now we can invoke the clean target (or any other target) by simply setting TARGET on
the command line.

Cross-Makefile Dependencies
The special support in make for command-line options and communication through
environment variables suggests that recursive make has been tuned to work well. So
what are the serious complications alluded to earlier?

Separate makefiles linked by recursive $(MAKE) commands record only the most
superficial top-level links. Unfortunately, there are often subtle dependencies buried
in some directories.

For example, suppose a db module includes a yacc-based parser for importing and
exporting music data. If the ui module, ui.c, includes the generated yacc header, we
have a dependency between these two modules. If the dependencies are properly
modeled, make should know to recompile our ui module whenever the grammar
header is updated. This is not difficult to arrange using the automatic dependency
generation technique described earlier. But what if the yacc file itself is modified? In
this case, when the ui makefile is run, a correct makefile would recognize that yacc
must first be run to generate the parser and header before compiling ui.c. In our

,ch06.3710 Page 113 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 6: Managing Large Projects

recursive make decomposition, this does not occur, because the rule and dependen-
cies for running yacc are in the db makefile, not the ui makefile.

In this case, the best we can do is to ensure that the db makefile is always executed
before executing the ui makefile. This higher-level dependency must be encoded by
hand. We were astute enough in the first version of our makefile to recognize this, but,
in general, this is a very difficult maintenance problem. As code is written and modi-
fied, the top-level makefile will fail to properly record the intermodule dependencies.

To continue the example, if the yacc grammar in db is updated and the ui makefile is
run before the db makefile (by executing it directly instead of through the top-level
makefile), the ui makefile does not know there is an unsatisfied dependency in the db
makefile and that yacc must be run to update the header file. Instead, the ui makefile
compiles its program with the old yacc header. If new symbols have been defined
and are now being referenced, then a compilation error is reported. Thus, the recur-
sive make approach is inherently more fragile than a single makefile.

The problem worsens when code generators are used more extensively. Suppose that
the use of an RPC stub generator is added to ui and the headers are referenced in db.
Now we have mutual reference to contend with. To resolve this, it may be required
to visit db to generate the yacc header, then visit ui to generate the RPC stubs, then
visit db to compile the files, and finally visit ui to complete the compilation process.
The number of passes required to create and compile the source for a project is
dependent on the structure of the code and the tools used to create it. This kind of
mutual reference is common in complex systems.

The standard solution in real-world makefiles is usually a hack. To ensure that all
files are up to date, every makefile is executed when a command is given to the top-
level makefile. Notice that this is precisely what our mp3 player makefile does. When
the top-level makefile is run, each of the four sub-makefiles is unconditionally run. In
complex cases, makefiles are run repeatedly to ensure that all code is first generated
then compiled. Often this iterative execution is a complete waste of time, but occa-
sionally it is required.

Avoiding Duplicate Code
The directory layout of our application includes three libraries. The makefiles for
these libraries are very similar. This makes sense because the three libraries serve dif-
ferent purposes in the final application but are all built with similar commands. This
kind of decomposition is typical of large projects and leads to many similar makefiles
and lots of (makefile) code duplication.

Code duplication is bad, even makefile code duplication. It increases the mainte-
nance costs of the software and leads to more bugs. It also makes it more difficult to
understand algorithms and identify minor variations in them. So we would like to
avoid code duplication in our makefiles as much as possible. This is most easily

,ch06.3710 Page 114 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Recursive make | 115

accomplished by moving the common pieces of a makefile into a common include
file.

For example, the codec makefile contains:

lib_codec := libcodec.a
sources := codec.c
objects := $(subst .c,.o,$(sources))
dependencies := $(subst .c,.d,$(sources))

include_dirs :=/../include
CPPFLAGS += $(addprefix -I ,$(include_dirs))
vpath %.h $(include_dirs)

all: $(lib_codec)

$(lib_codec): $(objects)
 $(AR) $(ARFLAGS) $@ $^

.PHONY: clean
clean:
 $(RM) $(lib_codec) $(objects) $(dependencies)

ifneq "$(MAKECMDGOALS)" "clean"
 include $(dependencies)
endif

%.d: %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $< | \
 sed 's,\($*\.o\) *:,\1 $@: ,' > $@.tmp
 mv $@.tmp $@

Almost all of this code is duplicated in the db and ui makefiles. The only lines that
change for each library are the name of the library itself and the source files the
library contains. When duplicate code is moved into common.mk, we can pare this
makefile down to:

library := libcodec.a
sources := codec.c

include ../../common.mk

See what we have moved into the single, shared include file:

MV := mv -f
RM := rm -f
SED := sed

objects := $(subst .c,.o,$(sources))
dependencies := $(subst .c,.d,$(sources))
include_dirs :=/../include
CPPFLAGS += $(addprefix -I ,$(include_dirs))

vpath %.h $(include_dirs)

,ch06.3710 Page 115 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 6: Managing Large Projects

.PHONY: library
library: $(library)

$(library): $(objects)
 $(AR) $(ARFLAGS) $@ $^

.PHONY: clean
clean:
 $(RM) $(objects) $(program) $(library) $(dependencies) $(extra_clean)

ifneq "$(MAKECMDGOALS)" "clean"
 -include $(dependencies)
endif

%.c %.h: %.y
 $(YACC.y) --defines $<
 $(MV) y.tab.c $*.c
 $(MV) y.tab.h $*.h

%.d: %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $< | \
 $(SED) 's,\($*\.o\) *:,\1 $@: ,' > $@.tmp
 $(MV) $@.tmp $@

The variable include_dirs, which was different for each makefile, is now identical in
all makefiles because we reworked the path source files use for included headers to
make all libraries use the same include path.

The common.mk file even includes the default goal for the library include files. The
original makefiles used the default target all. That would cause problems with nonli-
brary makefiles that need to specify a different set of prerequisites for their default
goal. So the shared code version uses a default target of library.

Notice that because this common file contains targets it must be included after the
default target for nonlibrary makefiles. Also notice that the clean command script
references the variables program, library, and extra_clean. For library makefiles, the
program variable is empty; for program makefiles, the library variable is empty. The
extra_clean variable was added specifically for the db makefile. This makefile uses
the variable to denote code generated by yacc. The makefile is:

library := libdb.a
sources := scanner.c playlist.c
extra_clean := $(sources) playlist.h

.SECONDARY: playlist.c playlist.h scanner.c

include ../../common.mk

Using these techniques, code duplication can be kept to a minimum. As more
makefile code is moved into the common makefile, it evolves into a generic makefile
for the entire project. make variables and user-defined functions are used as customi-
zation points, allowing the generic makefile to be modified for each directory.

,ch06.3710 Page 116 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Nonrecursive make | 117

Nonrecursive make
Multidirectory projects can also be managed without recursive makes. The difference
here is that the source manipulated by the makefile lives in more than one directory.
To accommodate this, references to files in subdirectories must include the path to
the file—either absolute or relative.

Often, the makefile managing a large project has many targets, one for each module
in the project. For our mp3 player example, we would need targets for each of the
libraries and each of the applications. It can also be useful to add phony targets for
collections of modules such as the collection of all libraries. The default goal would
typically build all of these targets. Often the default goal builds documentation and
runs a testing procedure as well.

The most straightforward use of nonrecursive make includes targets, object file refer-
ences, and dependencies in a single makefile. This is often unsatisfying to developers
familiar with recursive make because information about the files in a directory is cen-
tralized in a single file while the source files themselves are distributed in the filesys-
tem. To address this issue, the Miller paper on nonrecursive make suggests using one
make include file for each directory containing file lists and module-specific rules. The
top-level makefile includes these sub-makefiles.

Example 6-1 shows a makefile for our mp3 player that includes a module-level
makefile from each subdirectory. Example 6-2 shows one of the module-level include
files.

Example 6-1. A nonrecursive makefile

Collect information from each module in these four variables.
Initialize them here as simple variables.
programs :=
sources :=
libraries :=
extra_clean :=

objects = $(subst .c,.o,$(sources))
dependencies = $(subst .c,.d,$(sources))

include_dirs := lib include
CPPFLAGS += $(addprefix -I ,$(include_dirs))
vpath %.h $(include_dirs)

MV := mv -f
RM := rm -f
SED := sed

all:

include lib/codec/module.mk
include lib/db/module.mk

,ch06.3710 Page 117 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 6: Managing Large Projects

Thus, all the information specific to a module is contained in an include file in the
module directory itself. The top-level makefile contains only a list of modules and
include directives. Let’s examine the makefile and module.mk in detail.

Each module.mk include file appends the local library name to the variable libraries
and the local sources to sources. The local_ variables are used to hold constant val-
ues or to avoid duplicating a computed value. Note that each include file reuses
these same local_ variable names. Therefore, it uses simple variables (those assigned
with :=) rather than recursive ones so that builds combining multiple makefiles hold
no risk of infecting the variables in each makefile. The library name and source file

include lib/ui/module.mk
include app/player/module.mk

.PHONY: all
all: $(programs)

.PHONY: libraries
libraries: $(libraries)

.PHONY: clean
clean:
 $(RM) $(objects) $(programs) $(libraries) \
 $(dependencies) $(extra_clean)

ifneq "$(MAKECMDGOALS)" "clean"
 include $(dependencies)
endif

%.c %.h: %.y
 $(YACC.y) --defines $<
 $(MV) y.tab.c $*.c
 $(MV) y.tab.h $*.h

%.d: %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $< | \
 $(SED) 's,\($(notdir $*)\.o\) *:,$(dir $@)\1 $@: ,' > $@.tmp
 $(MV) $@.tmp $@

Example 6-2. The lib/codec include file for a nonrecursive makefile

local_dir := lib/codec
local_lib := $(local_dir)/libcodec.a
local_src := $(addprefix $(local_dir)/,codec.c)
local_objs := $(subst .c,.o,$(local_src))

libraries += $(local_lib)
sources += $(local_src)

$(local_lib): $(local_objs)
 $(AR) $(ARFLAGS) $@ $^

Example 6-1. A nonrecursive makefile (continued)

,ch06.3710 Page 118 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Nonrecursive make | 119

lists use a relative path as discussed earlier. Finally, the include file defines a rule for
updating the local library. There is no problem with using the local_ variables in this
rule because the target and prerequisite parts of a rule are immediately evaluated.

In the top-level makefile, the first four lines define the variables that accumulate each
module’s specific file information. These variables must be simple variables because
each module will append to them using the same local variable name:

local_src := $(addprefix $(local_dir)/,codec.c)
…
sources += $(local_src)

If a recursive variable were used for sources, for instance, the final value would sim-
ply be the last value of local_src repeated over and over. An explicit assignment is
required to initialize these simple variables, even though they are assigned null val-
ues, since variables are recursive by default.

The next section computes the object file list, objects, and dependency file list from
the sources variable. These variables are recursive because at this point in the
makefile the sources variable is empty. It will not be populated until later when the
include files are read. In this makefile, it is perfectly reasonable to move the defini-
tion of these variables after the includes and change their type to simple variables,
but keeping the basic file lists (e.g., sources, libraries, objects) together simplifies
understanding the makefile and is generally good practice. Also, in other makefile sit-
uations, mutual references between variables require the use of recursive variables.

Next, we handle C language include files by setting CPPFLAGS. This allows the com-
piler to find the headers. We append to the CPPFLAGS variable because we don’t know
if the variable is really empty; command-line options, environment variables, or
other make constructs may have set it. The vpath directive allows make to find the
headers stored in other directories. The include_dirs variable is used to avoid dupli-
cating the include directory list.

Variables for mv, rm, and sed are defined to avoid hard coding programs into the
makefile. Notice the case of variables. We are following the conventions suggested in
the make manual. Variables that are internal to the makefile are lowercased; variables
that might be set from the command line are uppercased.

In the next section of the makefile, things get more interesting. We would like to
begin the explicit rules with the default target, all. Unfortunately, the prerequisite
for all is the variable programs. This variable is evaluated immediately, but is set by
reading the module include files. So, we must read the include files before the all
target is defined. Unfortunately again, the include modules contain targets, the first
of which will be considered the default goal. To work through this dilemma, we can
specify the all target with no prerequisites, source the include files, then add the pre-
requisites to all later.

,ch06.3710 Page 119 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 6: Managing Large Projects

The remainder of the makefile is already familiar from previous examples, but how
make applies implicit rules is worth noting. Our source files now reside in subdirecto-
ries. When make tries to apply the standard %.o: %.c rule, the prerequisite will be a
file with a relative path, say lib/ui/ui.c. make will automatically propagate that relative
path to the target file and attempt to update lib/ui/ui.o. Thus, make automagically
does the Right Thing.

There is one final glitch. Although make is handling paths correctly, not all the tools
used by the makefile are. In particular, when using gcc, the generated dependency
file does not include the relative path to the target object file. That is, the output of
gcc -M is:

ui.o: lib/ui/ui.c include/ui/ui.h lib/db/playlist.h

rather than what we expect:

lib/ui/ui.o: lib/ui/ui.c include/ui/ui.h lib/db/playlist.h

This disrupts the handling of header file prerequisites. To fix this problem we can
alter the sed command to add relative path information:

$(SED) 's,\($(notdir $*)\.o\) *:,$(dir $@)\1 $@: ,'

Tweaking the makefile to handle the quirks of various tools is a normal part of using
make. Portable makefiles are often very complex due to vagarities of the diverse set of
tools they are forced to rely upon.

We now have a decent nonrecursive makefile, but there are maintenance problems.
The module.mk include files are largely similar. A change to one will likely involve a
change to all of them. For small projects like our mp3 player it is annoying. For large
projects with several hundred include files it can be fatal. By using consistent vari-
able names and regularizing the contents of the include files, we position ourselves
nicely to cure these ills. Here is the lib/codec include file after refactoring:

local_src := $(wildcard $(subdirectory)/*.c)

$(eval $(call make-library, $(subdirectory)/libcodec.a, $(local_src)))

Instead of specifying source files by name, we assume we want to rebuild all .c files in
the directory. The make-library function now performs the bulk of the tasks for an
include file. This function is defined at the top of our project makefile as:

$(call make-library, library-name, source-file-list)
define make-library
 libraries += $1
 sources += $2

 $1: $(call source-to-object,$2)
 $(AR) $(ARFLAGS) $$@ $$^
endef

The function appends the library and sources to their respective variables, then
defines the explicit rule to build the library. Notice how the automatic variables use

,ch06.3710 Page 120 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Nonrecursive make | 121

two dollar signs to defer actual evaluation of the $@ and $^ until the rule is fired. The
source-to-object function translates a list of source files to their corresponding
object files:

source-to-object = $(subst .c,.o,$(filter %.c,$1)) \
 $(subst .y,.o,$(filter %.y,$1)) \
 $(subst .l,.o,$(filter %.l,$1))

In our previous version of the makefile, we glossed over the fact that the actual parser
and scanner source files are playlist.y and scanner.l. Instead, we listed the source files
as the generated .c versions. This forced us to list them explicitly and to include an
extra variable, extra_clean. We’ve fixed that issue here by allowing the sources vari-
able to include .y and .l files directly and letting the source-to-object function do the
work of translating them.

In addition to modifying source-to-object, we need another function to compute the
yacc and lex output files so the clean target can perform proper clean up. The
generated-source function simply accepts a list of sources and produces a list of
intermediate files as output:

$(call generated-source, source-file-list)
generated-source = $(subst .y,.c,$(filter %.y,$1)) \
 $(subst .y,.h,$(filter %.y,$1)) \
 $(subst .l,.c,$(filter %.l,$1))

Our other helper function, subdirectory, allows us to omit the variable local_dir.

subdirectory = $(patsubst %/makefile,%, \
 $(word \
 $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)))

As noted in the section “String Functions” in Chapter 4, we can retrieve the name of
the current makefile from MAKEFILE_LIST. Using a simple patsubst, we can extract the
relative path from the top-level makefile. This eliminates another variable and
reduces the differences between include files.

Our final optimization (at least for this example), uses wildcard to acquire the source
file list. This works well in most environments where the source tree is kept clean.
However, I have worked on projects where this is not the case. Old code was kept in
the source tree “just in case.” This entailed real costs in terms of programmer time
and anguish since old, dead code was maintained when it was found by global search
and replace and new programmers (or old ones not familiar with a module)
attempted to compile or debug code that was never used. If you are using a modern
source code control system, such as CVS, keeping dead code in the source tree is
unnecessary (since it resides in the repository) and using wildcard becomes feasible.

The include directives can also be optimzed:

modules := lib/codec lib/db lib/ui app/player
...
include $(addsuffix /module.mk,$(modules))

,ch06.3710 Page 121 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 6: Managing Large Projects

For larger projects, even this can be a maintenance problem as the list of modules
grows to the hundreds or thousands. Under these circumstances, it might be prefera-
ble to define modules as a find command:

modules := $(subst /module.mk,,$(shell find . -name module.mk))
...
include $(addsuffix /module.mk,$(modules))

We strip the filename from the find output so the modules variable is more generally
useful as the list of modules. If that isn’t necessary, then, of course, we would omit
the subst and addsuffix and simply save the output of find in modules. Example 6-3
shows the final makefile.

Example 6-3. A nonrecursive makefile, version 2

$(call source-to-object, source-file-list)
source-to-object = $(subst .c,.o,$(filter %.c,$1)) \
 $(subst .y,.o,$(filter %.y,$1)) \
 $(subst .l,.o,$(filter %.l,$1))

$(subdirectory)
subdirectory = $(patsubst %/module.mk,%, \
 $(word \
 $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)))

$(call make-library, library-name, source-file-list)
define make-library
 libraries += $1
 sources += $2

 $1: $(call source-to-object,$2)
 $(AR) $(ARFLAGS) $$@ $$^
endef

$(call generated-source, source-file-list)
generated-source = $(subst .y,.c,$(filter %.y,$1)) \
 $(subst .y,.h,$(filter %.y,$1)) \
 $(subst .l,.c,$(filter %.l,$1))

Collect information from each module in these four variables.
Initialize them here as simple variables.
modules := lib/codec lib/db lib/ui app/player
programs :=
libraries :=
sources :=

objects = $(call source-to-object,$(sources))
dependencies = $(subst .o,.d,$(objects))

include_dirs := lib include
CPPFLAGS += $(addprefix -I ,$(include_dirs))
vpath %.h $(include_dirs)

,ch06.3710 Page 122 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Nonrecursive make | 123

Using one include file per module is quite workable and has some advantages, but
I’m not convinced it is worth doing. My own experience with a large Java project
indicates that a single top-level makefile, effectively inserting all the module.mk files
directly into the makefile, provides a reasonable solution. This project included 997
separate modules, about two dozen libraries, and half a dozen applications. There
were several makefiles for disjoint sets of code. These makefiles were roughly 2,500
lines long. A common include file containing global variables, user-defined func-
tions, and pattern rules was another 2,500 lines.

Whether you choose a single makefile or break out module information into include
files, the nonrecursive make solution is a viable approach to building large projects. It
also solves many traditional problems found in the recursive make approach. The
only drawback I’m aware of is the paradigm shift required for developers used to
recursive make.

MV := mv -f
RM := rm -f
SED := sed

all:

include $(addsuffix /module.mk,$(modules))

.PHONY: all
all: $(programs)

.PHONY: libraries
libraries: $(libraries)

.PHONY: clean
clean:
 $(RM) $(objects) $(programs) $(libraries) $(dependencies) \
 $(call generated-source, $(sources))

ifneq "$(MAKECMDGOALS)" "clean"
 include $(dependencies)
endif

%.c %.h: %.y
 $(YACC.y) --defines $<
 $(MV) y.tab.c $*.c
 $(MV) y.tab.h $*.h

%.d: %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $< | \
 $(SED) 's,\($(notdir $*)\.o\) *:,$(dir $@)\1 $@: ,' > $@.tmp
 $(MV) $@.tmp $@

Example 6-3. A nonrecursive makefile, version 2 (continued)

,ch06.3710 Page 123 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 6: Managing Large Projects

Components of Large Systems
For the purposes of this discussion, there are two styles of development popular
today: the free software model and the commercial development model.

In the free software model, each developer is largely on his own. A project has a
makefile and a README and developers are expected to figure it out with only a
small amount of help. The principals of the project want things to work well and
want to receive contributions from a large community, but they are mostly inter-
ested in contributions from the skilled and well-motivated. This is not a criticism. In
this point of view, software should be written well, and not necessarily to a schedule.

In the commercial development model, developers come in a wide variety of skill lev-
els and all of them must be able to develop software to contribute to the bottom line.
Any developer who can’t figure out how to do their job is wasting money. If the sys-
tem doesn’t compile or run properly, the development team as a whole may be idle,
the most expensive possible scenario. To handle these issues, the development pro-
cess is managed by an engineering support team that coordinates the build process,
configuration of software tools, coordination of new development and maintenance
work, and the management of releases. In this environment, efficiency concerns
dominate the process.

It is the commercial development model that tends to create elaborate build sys-
tems. The primary reason for this is pressure to reduce the cost of software develop-
ment by increasing programmer efficiency. This, in turn, should lead to increased
profit. It is this model that requires the most support from make. Nevertheless, the
techniques we discuss here apply to the free software model as well when their
requirements demand it.

This section contains a lot of high-level information with very few specifics and no
examples. That’s because so much depends on the language and operating environ-
ment used. In Chapters 8 and 9, I will provide specific examples of how to imple-
ment many of these features.

Requirements
Of course requirements vary with every project and every work environment. Here
we cover a wide range that are often considered important in many commercial
development environments.

The most common feature desired by development teams is the separation of source
code from binary code. That is, the object files generated from a compile should be

,ch06.3710 Page 124 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Components of Large Systems | 125

placed in a separate binary tree. This, in turn, allows many other features to be
added. Separate binary trees offer many advantages:

• It is easier to manage disk resources when the location of large binary trees can
be specified.

• Many versions of a binary tree can be managed in parallel. For instance, a single
source tree may have optimized, debug, and profiling binary versions available.

• Multiple platforms can be supported simultaneously. A properly implemented
source tree can be used to compile binaries for many platforms in parallel.

• Developers can check out partial source trees and have the build system auto-
matically “fill in” the missing files from a reference source and binary trees. This
doesn’t strictly require separating source and binary, but without the separation
it is more likely that developer build systems would get confused about where
binaries should be found.

• Source trees can be protected with read-only access. This provides added assur-
ance that the builds reflect the source code in the repository.

• Some targets, such as clean, can be implemented trivially (and will execute dra-
matically faster) if a tree can be treated as a single unit rather than searching the
tree for files to operate on.

Most of the above points are themselves important build features and may be project
requirements.

Being able to maintain reference builds of a project is often an important system fea-
ture. The idea is that a clean check-out and build of the source is performed nightly,
typically by a cron job. Since the resulting source and binary trees are unmodified
with respect to the CVS source, I refer to these as reference source and binary trees.
The resulting trees have many uses.

First, a reference source tree can be used by programmers and managers who need to
look at the source. This may seem trivial, but when the number of files and releases
grows it can be unwieldy or unreasonable to expect someone to check-out the source
just to examine a single file. Also, while CVS repository browsing tools are common,
they do not typically provide for easy searching of the entire source tree. For this,
tags tables or even find/grep (or grep -R) are more appropriate.

Second, and most importantly, a reference binary tree indicates that the source
builds cleanly. When developers begin each morning, they know if the system is bro-
ken or whole. If a batch-oriented testing framework is in place, the clean build can be
used to run automated tests. Each day developers can examine the test report to
determine the health of the system without wasting time running the tests them-
selves. The cost savings is compounded if a developer has only a modified version of
the source because he avoids spending additional time performing a clean check-out
and build. Finally, the reference build can be run by developers to test and compare
the functionality of specific components.

,ch06.3710 Page 125 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 6: Managing Large Projects

The reference build can be used in other ways as well. For projects that consist of
many libraries, the precompiled libraries from the nightly build can be used by pro-
grammers to link their own application with those libraries they are not modifying.
This allows them to shorten their develoment cycle by omiting large portions of the
source tree from their local compiles. Of course, easy access to the project source on
a local file server is convenient if developers need to examine the code and do not
have a complete checked out source tree.

With so many different uses, it becomes more important to verify the integrity of the
reference source and binary trees. One simple and effective way to improve reliabil-
ity is to make the source tree read-only. Thus, it is guaranteed that the reference
source files accurately reflect the state of the repository at the time of check out.
Doing this can require special care, because many different aspects of the build may
attempt to causally write to the source tree. Especially when generating source code
or writing temporary files. Making the source tree read-only also prevents casual
users from accidentally corrupting the source tree, a most common occurrence.

Another common requirement of the project build system is the ability to easily
handle different compilation, linking, and deployment configurations. The build
system typically must be able to manage different versions of the project (which
may be branches of the source repository).

Most large projects rely on significant third-party software, either in the form of link-
able libraries or tools. If there are no other tools to manage configurations of the soft-
ware (and often there are not), using the makefile and build system to manage this is
often a reasonable choice.

Finally, when software is released to a customer, it is often repackaged from its devel-
opment form. This can be as complex as constructing a setup.exe file for Windows or
as simple as formatting an HTML file and bundling it with a jar. Sometimes this
installer build operation is combined with the normal build process. I prefer to keep
the build and the install generation as two separate stages because they seem to use
radically different processes. In any case, it is likely that both of these operations will
have an impact on the build system.

Filesystem Layout
Once you choose to support fmultiple binary trees, the question of filesystem layout
arises. In environments that require multiple binary trees, there are often a lot of
binary trees. To keep all these trees straight requires some thought.

A common way to organize this data is to designate a large disk for a binary tree
“farm.” At (or near) the top level of this disk is one directory for each binary tree.

,ch06.3710 Page 126 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Filesystem Layout | 127

One reasonable layout for these trees is to include in each directory name the ven-
dor, hardware platform, operating system, and build parameters of the binary tree:

$ ls
hp-386-windows-optimized
hp-386-windows-debug
sgi-irix-optimzed
sgi-irix-debug
sun-solaris8-profiled
sun-solaris8-debug

When builds from many different times must be kept, it is usually best to include a
date stamp (and even a timestamp) in the directory name. The format yymmdd or
yymmddhhmm sorts well:

$ ls
hp-386-windows-optimized-040123
hp-386-windows-debug-040123
sgi-irix-optimzed-040127
sgi-irix-debug-040127
sun-solaris8-profiled-040127
sun-solaris8-debug-040127

Of course, the order of these filename components is up your site. The top-level
directory of these trees is a good place to hold the makefile and testing logs.

This layout is appropriate for storing many parallel developer builds. If a develop-
ment team makes “releases,” possibly for internal customers, you can consider add-
ing an additional release farm, structured as a set of products, each of which may
have a version number and timestamp as shown in Figure 6-2.

Here products might be libraries that are the output of a development team for use
by other developers. Of course, they may also be products in the traditional sense.

Figure 6-2. Example of a release tree layout

product1

1.0

product2

1.4

release

040101

0404124

1.0

040121

031212

,ch06.3710 Page 127 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 6: Managing Large Projects

Whatever your file layout or environment, many of the same criteria govern the
implementation. It must be easy to identify each tree. Cleanup should be fast and
obvious. It is useful to make it easy to move trees around and archive trees. In addi-
tion, the filesystem layout should closely match the process structure of the organiza-
tion. This makes it easy for nonprogrammers such as managers, quality assurance,
and technical publications to navigate the tree farm.

Automating Builds and Testing
It is typically important to be able to automate the build process as much as possi-
ble. This allows reference tree builds to be performed at night, saving developer time
during the day. It also allows developers themselves to run builds on their own
machines unattended.

For software that is “in production,” there are often many outstanding requests for
builds of different versions of different products. For the person in charge of satisfy-
ing these requests, the ability to fire off several builds and “walk away” is often criti-
cal to maintaining sanity and satisfying requests.

Automated testing presents its own issues. Many nongraphical applications can use
simple scripting to manage the testing process. The GNU tool dejaGnu can also be
used to test nongraphical utilities that require interaction. Of course, testing frame-
works like JUnit (http://www.junit.org) also provide support for nongraphical unit
testing.

Testing of graphical applications presents special problems. For X11-based systems, I
have successfully performed unattended, cron-based testing using the virtual frame
buffer, Xvfb. On Windows, I have not found a satisfactory solution to unattended
testing. All approaches rely on leaving the testing account logged in and the screen
unlocked.

,ch06.3710 Page 128 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

129

Chapter 7 CHAPTER 7

Portable Makefiles

What do we mean by a portable makefile? As an extreme example, we want a
makefile that runs without change on any system that GNU make runs on. But this is
virtually impossible due to the enormous variety in operating systems. A more rea-
sonable interpretation is a makefile that is easy to change for each new platform it is
run on. An important added constraint is that the port to the new system does not
break support for the previous platforms.

We can achieve this level of portability for makefiles using the same techniques as
traditional programming: encapsulation and abstraction. By using variables and user-
defined functions we can encapsulate applications and algorithms. By defining vari-
ables for command-line arguments and parameters, we can abstract out elements
that vary from platform to platform from elements that are constant.

You then have to determine what tools each platform offers to get your job done,
and what to use from each platform. The extreme in portability is to use only those
tools and features that exist on all platforms of interest. This is typically called the
“least common denominator” approach and obviously can leave you with very primi-
tive functionality to work with.

Another version of the least common denominator approach is to choose a powerful
set of tools and make sure to bring it with you to every platform, thus guaranteeing
that the commands you invoke in the makefile work exactly the same everywhere.
This can be hard to pull off, both administratively and in terms of getting your orga-
nization to cooperate with your fiddling with their systems. But it can be successful,
and I’ll show one example of that later with the Cygwin package for Windows. As
you’ll see, standardizing on tools does not solve every problem; there are always
operating system differences to deal with.

Finally, you can accept differences between systems and work around them by care-
ful choices of macros and functions. I’ll show this approach in this chapter, too.

So, by judicious use of variables and user-defined functions, and by minimizing the
use of exotic features and relying on standard tools, we can increase the portability of

,ch07.5616 Page 129 Friday, March 25, 2005 2:41 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 7: Portable Makefiles

our makefiles. As noted previously, there is no such thing as perfect portability, so it
is our job to balance effort versus portability. But before we explore specific tech-
niques, let’s review some of the issues of portable makefiles.

Portability Issues
Portability problems can be difficult to characterize since they span the entire spec-
trum from a total paradigm shift (such as traditional Mac OS versus System V Unix)
to almost trivial bug fixes (such as a fix to a bug in the error exit status of a pro-
gram). Nevertheless, here are some common portability problems that every makefile
must deal with sooner or later:

Program names
It is quite common for various platforms to use different names for the same or
similar programs. The most common is the name of the C or C++ compiler (e.g.,
cc, xlc). It is also common for GNU versions of programs to be installed on a
non-GNU system with the g prefix (e.g., gmake, gawk).

Paths
The location of programs and files often varies between platforms. For instance,
on Solaris systems the X directories are stored under /usr/X while on many other
systems the path is /usr/X11R6. In addition, the distinction between /bin, /usr/bin,
/sbin, and /usr/sbin is often rather fuzzy as you move from one system to another.

Options
The command-line options to programs vary, particularly when an alternate
implementation is used. Furthermore, if a platform is missing a utility or comes
with a broken version, you may need to replace the utility with another that uses
different command-line options.

Shell features
By default, make executes command scripts with /bin/sh, but sh implementations
vary widely in their features. In particular, pre-POSIX shells are missing many
features and will not accept the same syntax as a modern shell.

The Open Group has a very useful white paper on the differences between the Sys-
tem V shell and the POSIX shell. It can be found at http://www.unix-systems.org/
whitepapers/shdiffs.html. For those who want more details, the specification of the
POSIX shell’s command language can be found at http://www.opengroup.org/
onlinepubs/007904975/utilities/xcu_chap02.html.

Program behavior
Portable makefiles must contend with programs that simply behave differently.
This is very common as different vendors fix or insert bugs and add features.
There are also upgrades to utilities that may or may not have made it into a ven-
dor’s release. For instance, in 1987 the awk program underwent a major revision.

,ch07.5616 Page 130 Friday, March 25, 2005 2:41 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Cygwin | 131

Nearly 20 years later, some systems still do not install this upgraded version as
the standard awk.

Operating system
Finally, there are the portability problems associated with a completely different
operating system such as Windows versus Unix or Linux versus VMS.

Cygwin
Although there is a native Win32 port of make, this is a small part of the Windows port-
ability problem, because the shell this native port uses is cmd.exe (or command.exe).
This, along with the absence of most of the Unix tools, makes cross-platform portabil-
ity a daunting task. Fortunately, the Cygwin project (http://www.cygwin.com) has built
a Linux-compatible library for Windows to which many programs* have been ported.
For Windows developers who want Linux compatibility or access to GNU tools, I
don’t believe there is a better tool to be found.

I have used Cygwin for over 10 years on a variety of projects from a combined C++/Lisp
CAD application to a pure Java workflow management system. The Cygwin tool set
includes compilers and interpreters for many programming languages. However, Cyg-
win can be used profitably even when the applications themselves are implemented
using non-Cygwin compilers and interpreters. The Cygwin tool set can be used solely as
an aid to coordinating the development and build process. In other words, it is not nec-
essary to write a “Cygwin” application or use Cygwin language tools to reap the bene-
fits of the Cygwin environment.

Nevertheless, Linux is not Windows (thank goodness!) and there are issues involved
when applying Cygwin tools to native Windows applications. Almost all of these
issues revolve around the line endings used in files and the form of paths passed
between Cygwin and Windows.

Line Termination
Windows filesystems use a two-character sequence carriage return followed by line
feed (or CRLF) to terminate each line of a text file. POSIX systems use a single char-
acter, a line feed (LF or newline). Occasionally this difference can cause the unwary
some confusion as programs report syntax errors or seek to the wrong location in a
data file. However, the Cygwin library does a very good job of working through these
issues. When Cygwin is installed (or alternatively when the mount command is used),
you can choose whether Cygwin should translate files with CRLF endings. If a DOS
file format is selected, Cygwin will translate CRLF to LF when reading and the
reverse when writing text files so that Unix-based programs can properly handle

* My Cygwin /bin directory currently contains 1343 executables.

,ch07.5616 Page 131 Friday, March 25, 2005 2:41 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 7: Portable Makefiles

DOS text files. If you plan to use native language tools such as Visual C++ or Sun’s
Java SDK, choose the DOS file format. If you are going to use Cygwin compilers,
choose Unix. (Your choice can be changed at any time.)

In addition, Cygwin comes with tools to translate files explicitly. The utilities
dos2unix and unix2dos transform the line endings of a file, if necessary.

Filesystem
Cygwin provides a POSIX view of the Windows filesystem. The root directory of a
POSIX filesystem is /, which maps to the directory in which Cygwin is installed. Win-
dows drives are accessible through the pseudo-directory /cygdrive/letter. So, if Cyg-
win is installed in C:\usr\cygwin (my preferred location), the directory mappings
shown in Table 7-1 would hold.

This can be a little confusing at first, but doesn’t pose any problems to tools. Cyg-
win also includes a mount command that allows users to access files and directories
more conveniently. One option to mount, --change-cygdrive-prefix, allows you to
change the prefix. I find that changing the prefix to simply / is particularly useful
because drive letters can be accessed more naturally:

$ mount --change-cygdrive-prefix /
$ ls /c
AUTOEXEC.BAT Home Program Files hp
BOOT.INI I386 RECYCLER ntldr
CD IO.SYS System Volume Information pagefile.sys
CONFIG.SYS MSDOS.SYS Temp tmp
C_DILLA NTDETECT.COM WINDOWS usr
Documents and Settings PERSIST WUTemp work

Once this change is made, our previous directory mapping would change to those
shown in Table 7-2.

Table 7-1. Default Cygwin directory mapping

Native Windows path Cygwin path Alternate Cygwin path

c:\usr\cygwin / /cygdrive/c/usr/cygwin

c:\Program Files /cygdrive/c/Program Files

c:\usr\cygwin\bin /bin /cygdrive/c/usr/cygwin/bin

Table 7-2. Modified Cygwin directory mapping

Native Windows path Cygwin path Alternate Cygwin path

c:\usr\cygwin / /c/usr/cygwin

c:\Program Files /c/Program Files

c:\usr\cygwin\bin /bin /c/usr/cygwin/bin

,ch07.5616 Page 132 Friday, March 25, 2005 2:41 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Cygwin | 133

If you need to pass a filename to a Windows program, such as the Visual C++ com-
piler, you can usually just pass the relative path to the file using POSIX-style forward
slashes. The Win32 API does not distinguish between forward and backward slashes.
Unfortunately, some utilities that perform their own command-line argument pars-
ing treat all forward slashes as command options. One such utility is the DOS print
command; another is the net command.

If absolute paths are used, the drive letter syntax is always a problem. Although Win-
dows programs are usually happy with forward slashes, they are completely unable
to fathom the /c syntax. The drive letter must always be tranformed back into c:. To
accomplish this and the forward/backslash conversion, Cygwin provides the cygpath
utility to translate between POSIX paths and Windows paths.

$ cygpath --windows /c/work/src/lib/foo.c
c:\work\src\lib\foo.c
$ cygpath --mixed /c/work/src/lib/foo.c
c:/work/src/lib/foo.c
$ cygpath --mixed --path "/c/work/src:/c/work/include"
c:/work/src;c:/work/include

The --windows option translates the POSIX path given on the command line into a
Windows path (or vice versa with the proper argument). I prefer to use the --mixed
option that produces a Windows path, but with forward slashes instead of back-
slashes (when the Windows utility accepts it). This plays much better with the Cyg-
win shell because the backslash is the escape character. The cygpath utility has many
options, some of which provide portable access to important Windows paths:

$ cygpath --desktop
/c/Documents and Settings/Owner/Desktop
$ cygpath --homeroot
/c/Documents and Settings
$ cygpath --smprograms
/c/Documents and Settings/Owner/Start Menu/Programs
$ cygpath --sysdir
/c/WINDOWS/SYSTEM32
$ cygpath --windir
/c/WINDOWS

If you’re using cygpath in a mixed Windows/Unix environment, you’ll want to wrap
these calls in a portable function:

ifdef COMSPEC
 cygpath-mixed = $(shell cygpath -m "$1")
 cygpath-unix = $(shell cygpath -u "$1")
 drive-letter-to-slash = /$(subst :,,$1)
else
 cygpath-mixed = $1
 cygpath-unix = $1
 drive-letter-to-slash = $1
endif

,ch07.5616 Page 133 Friday, March 25, 2005 2:41 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 7: Portable Makefiles

If all you need to do is map the c: drive letter syntax to the POSIX form, the drive-
letter-to-slash function is faster than running the cygpath program.

Finally, Cygwin cannot hide all the quirks of Windows. Filenames that are invalid in
Windows are also invalid in Cygwin. Thus, names such as aux.h, com1, and prn can-
not be used in a POSIX path, even with an extension.

Program Conflicts
Several Windows programs have the same names as Unix programs. Of course, the
Windows programs do not accept the same command-line arguments or behave in
compatible ways with the Unix programs. If you accidentally invoke the Windows
versions, the usual result is serious confusion. The most troublesome ones seem to be
find, sort, ftp, and telnet. For maximum portability, you should be sure to provide
full paths to these programs when porting between Unix, Windows, and Cygwin.

If your commitment to Cygwin is strong and you do not need to build using native Win-
dows support tools, you can safely place the Cygwin /bin directory at the front of your
Windows path. This will guarantee access to Cygwin tools over Windows versions.

If your makefile is working with Java tools, be aware that Cygwin includes the GNU
jar program that is incompatible with the standard Sun jar file format. Therefore,
the Java jdk bin directory should be placed before the Cygwin /bin directory in your
Path variable to avoid using Cygwin’s jar program.

Managing Programs and Files
The most common way to manage programs is to use a variable for program names
or paths that are likely to change. The variables can be defined in a simple block, as
we have seen:

MV ?= mv -f
RM ?= rm -f

or in a conditional block:

ifdef COMSPEC
 MV ?= move
 RM ?= del
else
 MV ?= mv -f
 RM ?= rm -f
endif

If a simple block is used, the values can be changed by resetting them on the com-
mand line, by editing the makefile, or (in this case because we used conditional
assignment, ?=) by setting an environment variable. As mentioned previously, one

,ch07.5616 Page 134 Friday, March 25, 2005 2:41 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Managing Programs and Files | 135

way to test for a Windows platform is to check for the COMSPEC variable, which is
used by all Windows operating systems. Sometimes only a path needs to change:

ifdef COMSPEC
 OUTPUT_ROOT := d:
 GCC_HOME := c:/gnu/usr/bin
else
 OUTPUT_ROOT := $(HOME)
 GCC_HOME := /usr/bin
endif

OUTPUT_DIR := $(OUTPUT_ROOT)/work/binaries
CC := $(GCC_HOME)/gcc

This style results in a makefile in which most programs are invoked via make vari-
ables. Until you get used to it, this can make the makefile a little harder to read.
However, variables are often more convenient to use in the makefile anyway, because
they can be considerably shorter than the literal program name, particularly when
full paths are used.

The same technique can be used to manage different command options. For
instance, the built-in compilation rules include a variable, TARGET_ARCH, that can be
used to set platform-specific flags:

ifeq "$(MACHINE)" "hpux-hppa"
 TARGET_ARCH := -mdisable-fpregs
endif

When defining your own program variables, you may need to use a similar
approach:

MV := mv $(MV_FLAGS)

ifeq "$(MACHINE)" "solaris-sparc"
 MV_FLAGS := -f
endif

If you are porting to many platforms, chaining the ifdef sections can become ugly
and difficult to maintain. Instead of using ifdef, place each set of platform-specific
variables in its own file whose name contains a platform indicator. For instance, if
you designate a platform by its uname parameters, you can select the appropriate make
include file like this:

MACHINE := $(shell uname -smo | sed 's/ /-/g')
include $(MACHINE)-defines.mk

Filenames with spaces present a particularly irritating problem for make. The assump-
tion that whitespace separates tokens during parsing is fundamental to make. Many
built-in functions such as word, filter, wildcard, and others assume their arguments
are space-separated words. Nevertheless, here are some tricks that may help in small

,ch07.5616 Page 135 Friday, March 25, 2005 2:41 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 7: Portable Makefiles

ways. The first trick, noted in the section “Supporting Multiple Binary Trees” in
Chapter 8, is how to replace spaces with another character using subst:

space = $(empty) $(empty)

$(call space-to-question,file-name)
space-to-question = $(subst $(space),?,$1)

The space-to-question function replaces all spaces with the globbing wildcard ques-
tion mark. Now, we can implement wildcard and file-exists functions that can
handle spaces:

$(call wildcard-spaces,file-name)
wildcard-spaces = $(wildcard $(call space-to-question,$1))

$(call file-exists
file-exists = $(strip \
 $(if $1,,$(warning $1 has no value)) \
 $(call wildcard-spaces,$1))

The wildcard-spaces function uses space-to-question to allow the makefile to per-
form a wildcard operation on a pattern including spaces. We can use our wildcard-
spaces function to implement file-exists. Of course, the use of the question mark
may also cause wildcard-spaces to return files that do not correctly match the origi-
nal wildcard pattern (e.g., “my document.doc” and “my-document.doc”), but this is
the best we can do.

The space-to-question function can also be used to transform filenames with spaces
in targets and prerequisites, since those allow globbing patterns to be used.

space := $(empty) $(empty)

$(call space-to-question,file-name)
space-to-question = $(subst $(space),?,$1)

$(call question-to-space,file-name)
question-to-space = $(subst ?,$(space),$1)

$(call space-to-question,foo bar): $(call space-to-question,bar baz)
 touch "$(call question-to-space,$@)"

Assuming the file “bar baz” exists, the first time this makefile is executed the prereq-
uisite is found because the globbing pattern is evaluated. But the target globbing pat-
tern fails because the target does not yet exist, so $@ has the value foo?bar. The
command script then uses question-to-space to transform $@ back to the file with
spaces that we really want. The next time the makefile is run, the target is found
because the globbing pattern finds the target with spaces. A bit ugly, but I have
found these tricks useful in real makefiles.

,ch07.5616 Page 136 Friday, March 25, 2005 2:41 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Working with Nonportable Tools | 137

Source Tree Layout
Another aspect of portability is the ability to allow developers freedom to manage
their development environment as they deem necessary. There will be problems if
the build system requires the developers to always place their source, binaries, librar-
ies, and support tools under the same directory or on the same Windows disk drive,
for instance. Eventually, some developer low on disk space will be faced with the
problem of having to partition these various files.

Instead, it makes sense to implement the makefile using variables to reference these
collections of files and set reasonable defaults. In addition, each support library and
tool can be referenced through a variable to allow developers to customize file loca-
tions as they find necessary. For the most likely customization variables, use the con-
ditional assignment operator to allow developers a simple way of overriding the
makefile with environment variables.

In addition, the ability to easily support multiple copies of the source and binary tree
is a boon to developers. Even if they don’t have to support different platforms or
compilation options, developers often find themselves working with several copies of
the source, either for debugging purposes or because they work on several projects in
parallel. Two ways to support this have already been discussed: use a “top-level”
environment variable to identify the root of the source and binary trees, or use the
directory of the makefile and a fixed relative path to find the binary tree. Either of
these allows developers the flexibility of supporting more than one tree.

Working with Nonportable Tools
As noted previously, one alternative to writing makefiles to the least common
denominator is to adopt some standard tools. Of course, the goal is to make sure the
standard tools are at least as portable as the application you are building. The obvi-
ous choice for portable tools are programs from the GNU project, but portable tools
come from a wide variety of sources. Perl and Python are two other tools that come
to mind.

In the absence of portable tools, encapsulating nonportable tools in make functions
can sometimes do just as well. For instance, to support a variety of compilers for
Enterprise JavaBeans (each of which has a slightly different invocation syntax), we
can write a basic function to compile an EJB jar and parameterize it to allow one to
plug in different compilers.

EJB_TMP_JAR = $(TMPDIR)/temp.jar

$(call compile-generic-bean, bean-type, jar-name,
bean-files-wildcard, manifest-name-opt)
define compile-generic-bean
 $(RM) $(dir $(META_INF))
 $(MKDIR) $(META_INF)

,ch07.5616 Page 137 Friday, March 25, 2005 2:41 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 7: Portable Makefiles

 $(if $(filter %.xml %.xmi, $3), \
 cp $(filter %.xml %.xmi, $3) $(META_INF))
 $(call compile-$1-bean-hook,$2)
 cd $(OUTPUT_DIR) && \
 $(JAR) -cf0 $(EJB_TMP_JAR) \
 $(call jar-file-arg,$(META_INF)) \
 $(call bean-classes,$3)
 $(call $1-compile-command,$2)
 $(call create-manifest,$(if $4,$4,$2),,)
endef

The first argument to this general EJB compilation function is the type of bean com-
piler we are using, such as Weblogic, Websphere, etc. The remaining arguments are
the jar name, the files forming the content of the jar (including configuration files),
and an optional manifest file. The template function first creates a clean temporary
area by deleting any old temporary directory and recreating it. Next, the function
copies in the xml or xmi files present in the prerequisites into the $(META_INF) direc-
tory. At this point, we may need to perform custom operations to clean up the
META-INF files or prepare the .class files. To support these operations, we include a
hook function, compile-$1-bean-hook, that the user can define, if necessary. For
instance, if the Websphere compiler required an extra control file, say an xsl file, we
would write this hook:

$(call compile-websphere-bean-hook, file-list)
define compile-websphere-bean-hook
 cp $(filter %.xsl, $1) $(META_INF)
endef

By simply defining this function, we make sure the call in compile-generic-bean will
be expanded appropriately. If we do not choose to write a hook function, the call in
compile-generic-bean expands to nothing.

Next, our generic function creates the jar. The helper function jar-file-arg decom-
poses a normal file path into a -C option and a relative path:

$(call jar-file-arg, file-name)
define jar-file-arg
 -C "$(patsubst %/,%,$(dir $1))" $(notdir $1)
endef

The helper function bean-classes extracts the appropriate class files from a source
file list (the jar file only needs the interface and home classes):

$(call bean-classes, bean-files-list)
define bean-classes
 $(subst $(SOURCE_DIR)/,, \
 $(filter %Interface.class %Home.class, \
 $(subst .java,.class,$1)))
endef

,ch07.5616 Page 138 Friday, March 25, 2005 2:41 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Automake | 139

Then the generic function invokes the compiler of choice with $(call $1-compile-
command,$2):

define weblogic-compile-command
 cd $(TMPDIR) && \
 $(JVM) weblogic.ejbc -compiler $(EJB_JAVAC) $(EJB_TMP_JAR) $1
endef

Finally, our generic function adds the manifest.

Having defined compile-generic-bean, we wrap it in a compiler-specific function for
each environment we want to support.

$(call compile-weblogic-bean, jar-name,
bean-files-wildcard, manifest-name-opt)
define compile-weblogic-bean
 $(call compile-generic-bean,weblogic,$1,$2,$3)
endef

A Standard Shell
It is worth reiterating here that one of the irksome incompatibilities one finds in
moving from system to system is the capabilities of /bin/sh, the default shell used by
make. If you find yourself tweaking the command scripts in your makefile, you should
consider standardizing your shell. Of course, this is not reasonable for the typical
open source project where the makefile is executed in uncontrolled environments.
However, in a controlled setting, with a fixed set of specially configured machines,
this is quite reasonable.

In addition to avoiding shell incompatibilities, many shells provide features that can
avoid the use of numerous small utilities. For example, the bash shell includes
enhanced shell variable expansion, such as %% and ##, that can help avoid the use of
shell utilities, such as sed and expr.

Automake
The focus of this chapter has been on using GNU make and supporting tools effec-
tively to achieve a portable build system. There are times, however, when even these
modest requirements are beyond reach. If you cannot use the enhanced features of
GNU make and are forced to rely on a least-common-denominator set of features, you
should consider using the automake tool, http://www.gnu.org/software/automake/
automake.html.

The automake tool accepts a stylized makefile as input and generates a portable old-
style makefile as output. automake is built around a set of m4 macros that allow a very
terse notation in the input file (called makefile.am). Typically, automake is used in
conjunction with autoconf, a portability support package for C/C++ programs, but
autoconf is not required.

,ch07.5616 Page 139 Friday, March 25, 2005 2:41 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 7: Portable Makefiles

While automake is a good solution for build systems that require maxium portability,
the makefiles it generates cannot use any of the advanced features of GNU make with
the exception of appending assignment, +=, for which it has special support. Further-
more, the input to automake bears little resemblance to normal makefile input. Thus,
using automake (without autoconf) isn’t terribly different from using the least-com-
mon-denominator approach.

,ch07.5616 Page 140 Friday, March 25, 2005 2:41 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

141

Chapter 8 CHAPTER 8

C and C++

The issues and techniques shown in Chapter 6 are enhanced and applied in this
chapter to C and C++ projects. We’ll continue with the mp3 player example build-
ing on our nonrecursive makefile.

Separating Source and Binary
If we want to support a single source tree with multiple platforms and multiple
builds per platform, separating the source and binary trees is necessary, so how do
we do it? The make program was originally written to work well for files in a single
directory. Although it has changed dramatically since then, it hasn’t forgotten its
roots. make works with multiple directories best when the files it is updating live in
the current directory (or its subdirectories).

The Easy Way
The easiest way to get make to place binaries in a separate directory from sources is to
start the make program from the binary directory. The output files are accessed using
relative paths, as shown in the previous chapter, while the input files must be found
either through explicit paths or through searching through vpath. In either case, we’ll
need to refer to the source directory in several places, so we start with a variable to
hold it:

SOURCE_DIR := ../mp3_player

Building on our previous makefile, the source-to-object function is unchanged, but
the subdirectory function now needs to take into account the relative path to the
source.

$(call source-to-object, source-file-list)
source-to-object = $(subst .c,.o,$(filter %.c,$1)) \
 $(subst .y,.o,$(filter %.y,$1)) \
 $(subst .l,.o,$(filter %.l,$1))

,ch08.6184 Page 141 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 8: C and C++

$(subdirectory)
subdirectory = $(patsubst $(SOURCE_DIR)/%/module.mk,%, \
 $(word \
 $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)))

In our new makefile, the files listed in the MAKEFILE_LIST will include the relative path
to the source. So to extract the relative path to the module’s directory, we must strip
off the prefix as well as the module.mk suffix.

Next, to help make find the sources, we use the vpath feature:

vpath %.y $(SOURCE_DIR)
vpath %.l $(SOURCE_DIR)
vpath %.c $(SOURCE_DIR)

This allows us to use simple relative paths for our source files as well as our output
files. When make needs a source file, it will search SOURCE_DIR if it cannot find the file
in the current directory of the output tree. Next, we must update the include_dirs
variable:

include_dirs := lib $(SOURCE_DIR)/lib $(SOURCE_DIR)/include

In addition to the source directories, this variable now includes the lib directory from
the binary tree because the generated yacc and lex header files will be placed there.

The make include directive must be updated to access the module.mk files from their
source directories since make does not use the vpath to find include files:

include $(patsubst %,$(SOURCE_DIR)/%/module.mk,$(modules))

Finally, we create the output directories themselves:

create-output-directories := \
 $(shell for f in $(modules); \
 do \
 $(TEST) -d $$f || $(MKDIR) $$f; \
 done)

This assignment creates a dummy variable whose value is never used, but because of
the simple variable assignment we are guaranteed that the directories will be created
before make performs any other work. We must create the directories “by hand”
because yacc, lex, and the dependency file generation will not create the output
directories themselves.

Another way to ensure these directories are created is to add the directories as pre-
requisites to the dependency files (the .d files). This is a bad idea because the direc-
tory is not really a prerequisite. The yacc, lex, or dependency files do not depend on
the contents of the directory, nor should they be regenerated just because the direc-
tory timestamp is updated. In fact, this would be a source of great inefficiency if the
project were remade when a file was added or removed from an output directory.

,ch08.6184 Page 142 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Separating Source and Binary | 143

The modifications to the module.mk file are even simpler:

local_src := $(addprefix $(subdirectory)/,playlist.y scanner.l)

$(eval $(call make-library, $(subdirectory)/libdb.a, $(local_src)))

.SECONDARY: $(call generated-source, $(local_src))

$(subdirectory)/scanner.d: $(subdirectory)/playlist.d

This version omits the wildcard to find the source. It is a straightforward matter to
restore this feature and is left as an exercise for the reader. There is one glitch that
appears to be a bug in the original makefile. When this example was run, I discov-
ered that the scanner.d dependency file was being generated before playlist.h, which
it depends upon. This dependency was missing from the original makefile, but it
worked anyway purely by accident. Getting all the dependencies right is a difficult
task, even in small projects.

Assuming the source is in the subdirectory mp3_player, here is how we build our
project with the new makefile:

$ mkdir mp3_player_out
$ cd mp3_player_out
$ make --file=../mp3_player/makefile

The makefile is correct and works well, but it is rather annoying to be forced to
change directories to the output directory and then be forced to add the --file (-f)
option. This can be cured with a simple shell script:

#! /bin/bash
if [[! -d $OUTPUT_DIR]]
then
 if ! mkdir -p $OUTPUT_DIR
 then
 echo "Cannot create output directory" > /dev/stderr
 exit 1
 fi
fi

cd $OUTPUT_DIR
make --file=$SOURCE_DIR/makefile "$@"

This script assumes the source and output directories are stored in the environment
variables SOURCE_DIR and OUTPUT_DIR, respectively. This is a standard practice that
allows developers to switch trees easily but still avoid typing paths too frequently.

One last caution. There is nothing in make or our makefile to prevent a developer
from executing the makefile from the source tree, even though it should be executed
from the binary tree. This is a common mistake and some command scripts might
behave badly. For instance, the clean target:

.PHONY: clean
clean:
 $(RM) -r *

,ch08.6184 Page 143 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 8: C and C++

would delete the user’s entire source tree! Oops. It seems prudent to add a check for
this eventuality in the makefile at the highest level. Here is a reasonable check:

$(if $(filter $(notdir $(SOURCE_DIR)),$(notdir $(CURDIR))),\
 $(error Please run the makefile from the binary tree.))

This code tests if the name of the current working directory ($(notdir $(CURDIR))) is
the same as the source directory ($(notdir $(SOURCE_DIR))). If so, print the error and
exit. Since the if and error functions expand to nothing, we can place these two
lines immediately after the definition of SOURCE_DIR.

The Hard Way
Some developers find having to cd into the binary tree so annoying that they will go
to great lengths to avoid it, or maybe the makefile maintainer is working in an envi-
ronment where shell script wrappers or aliases are unsuitable. In any case, the
makefile can be modified to allow running make from the source tree and placing
binary files in a separate output tree by prefixing all the output filenames with a
path. At this point I usually go with absolute paths since this provides more flexibil-
ity, although it does exacerbate problems with command-line length limits. The
input files continue to use simple relative paths from the makefile directory.

Example 8-1 shows the makefile modified to allow executing make from the source
tree and writing binary files to a binary tree.

Example 8-1. A makefile separating source and binary that can be executed from the source
tree

SOURCE_DIR := /test/book/examples/ch07-separate-binaries-1
BINARY_DIR := /test/book/out/mp3_player_out

$(call source-dir-to-binary-dir, directory-list)
source-dir-to-binary-dir = $(addprefix $(BINARY_DIR)/, $1)

$(call source-to-object, source-file-list)
source-to-object = $(call source-dir-to-binary-dir, \
 $(subst .c,.o,$(filter %.c,$1)) \
 $(subst .y,.o,$(filter %.y,$1)) \
 $(subst .l,.o,$(filter %.l,$1)))

$(subdirectory)
subdirectory = $(patsubst %/module.mk,%, \
 $(word \
 $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)))

$(call make-library, library-name, source-file-list)
define make-library
 libraries += $(BINARY_DIR)/$1
 sources += $2

 $(BINARY_DIR)/$1: $(call source-dir-to-binary-dir, \
 $(subst .c,.o,$(filter %.c,$2)) \

,ch08.6184 Page 144 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Separating Source and Binary | 145

 $(subst .y,.o,$(filter %.y,$2)) \
 $(subst .l,.o,$(filter %.l,$2)))
 $(AR) $(ARFLAGS) $$@ $$^
endef

$(call generated-source, source-file-list)
generated-source = $(call source-dir-to-binary-dir, \
 $(subst .y,.c,$(filter %.y,$1)) \
 $(subst .y,.h,$(filter %.y,$1)) \
 $(subst .l,.c,$(filter %.l,$1))) \
 $(filter %.c,$1)

$(compile-rules)
define compile-rules
 $(foreach f, $(local_src),\
 $(call one-compile-rule,$(call source-to-object,$f),$f))
endef

$(call one-compile-rule, binary-file, source-files)
define one-compile-rule
 $1: $(call generated-source,$2)
 $(COMPILE.c) -o $$@ $$<

 $(subst .o,.d,$1): $(call generated-source,$2)
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $$< | \
 $(SED) 's,\($$(notdir $$*)\.o\) *:,$$(dir $$@)\1 $$@: ,' > $$@.tmp
 $(MV) $$@.tmp $$@

endef

modules := lib/codec lib/db lib/ui app/player
programs :=
libraries :=
sources :=

objects = $(call source-to-object,$(sources))
dependencies = $(subst .o,.d,$(objects))

include_dirs := $(BINARY_DIR)/lib lib include
CPPFLAGS += $(addprefix -I ,$(include_dirs))
vpath %.h $(include_dirs)

MKDIR := mkdir -p
MV := mv -f
RM := rm -f
SED := sed
TEST := test

create-output-directories := \
 $(shell for f in $(call source-dir-to-binary-dir,$(modules)); \
 do \

Example 8-1. A makefile separating source and binary that can be executed from the source
tree (continued)

,ch08.6184 Page 145 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 8: C and C++

In this version the source-to-object function is modified to prepend the path to the
binary tree. This prefixing operation is performed several times, so write it as a function:

SOURCE_DIR := /test/book/examples/ch07-separate-binaries-1
BINARY_DIR := /test/book/out/mp3_player_out

$(call source-dir-to-binary-dir, directory-list)
source-dir-to-binary-dir = $(addprefix $(BINARY_DIR)/, $1)

$(call source-to-object, source-file-list)
source-to-object = $(call source-dir-to-binary-dir, \
 $(subst .c,.o,$(filter %.c,$1)) \
 $(subst .y,.o,$(filter %.y,$1)) \
 $(subst .l,.o,$(filter %.l,$1)))

The make-library function is similarly altered to prefix the output file with BINARY_DIR.
The subdirectory function is restored to its previous version since the include path is
again a simple relative path. One small snag; a bug in make 3.80 prevents calling source-
to-object within the new version of make-library. This bug has been fixed in 3.81. We
can work around the bug by hand expanding the source-to-object function.

Now we get to the truly ugly part. When the output file is not directly accessible
from a path relative to the makefile, the implicit rules no longer fire. For instance, the
basic compile rule %.o: %.c works well when the two files live in the same directory,
or even if the C file is in a subdirectory, say lib/codec/codec.c. When the source file
lives in a remote directory, we can instruct make to search for the source with the
vpath feature. But when the object file lives in a remote directory, make has no way of
determining where the object file resides and the target/prerequisite chain is broken.

 $(TEST) -d $$f || $(MKDIR) $$f; \
 done)

all:

include $(addsuffix /module.mk,$(modules))

.PHONY: all
all: $(programs)

.PHONY: libraries
libraries: $(libraries)

.PHONY: clean
clean:
 $(RM) -r $(BINARY_DIR)

ifneq "$(MAKECMDGOALS)" "clean"
 include $(dependencies)
endif

Example 8-1. A makefile separating source and binary that can be executed from the source
tree (continued)

,ch08.6184 Page 146 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Separating Source and Binary | 147

The only way to inform make of the location of the output file is to provide an explicit
rule linking the source and object files:

$(BINARY_DIR)/lib/codec/codec.o: lib/codec/codec.c

This must be done for every single object file.

Worse, this target/prerequisite pair is not matched against the implicit rule, %.o: %.c.
That means we must also provide the command script, duplicating whatever is in the
implicit database and possibly repeating this script many times. The problem also
applies to the automatic dependency generation rule we’ve been using. Adding two
explicit rules for every object file in a makefile is a maintenance nightmare, if done by
hand. However, we can minimize the code duplication and maintenance by writing a
function to generate these rules:

$(call one-compile-rule, binary-file, source-files)
define one-compile-rule
 $1: $(call generated-source,$2)
 $(COMPILE.c) $$@ $$<

 $(subst .o,.d,$1): $(call generated-source,$2)
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $$< | \
 $(SED) 's,\($$(notdir $$*)\.o\) *:,$$(dir $$@)\1 $$@: ,' > $$@.tmp
 $(MV) $$@.tmp $$@

endef

The first two lines of the function are the explicit rule for the object-to-source depen-
dency. The prerequisites for the rule must be computed using the generated-source
function we wrote in Chapter 6 because some of the source files are yacc and lex files
that will cause compilation failures when they appear in the command script
(expanded with $^, for instance). The automatic variables are quoted so they are
expanded later when the command script is executed rather than when the user-
defined function is evaluated by eval. The generated-source function has been modi-
fied to return C files unaltered as well as the generated source for yacc and lex:

$(call generated-source, source-file-list)
generated-source = $(call source-dir-to-binary-dir, \
 $(subst .y,.c,$(filter %.y,$1)) \
 $(subst .y,.h,$(filter %.y,$1)) \
 $(subst .l,.c,$(filter %.l,$1))) \
 $(filter %.c,$1)

With this change, the function now produces this output:

Argument Result
lib/db/playlist.y /c/mp3_player_out/lib/db/playlist.c
 /c/mp3_player_out/lib/db/playlist.h
lib/db/scanner.l /c/mp3_player_out/lib/db/scanner.c
app/player/play_mp3.c app/player/play_mp3.c

The explicit rule for dependency generation is similar. Again, note the extra quoting
(double dollar signs) required by the dependency script.

,ch08.6184 Page 147 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 8: C and C++

Our new function must now be expanded for each source file in a module:

$(compile-rules)
define compile-rules
 $(foreach f, $(local_src),\
 $(call one-compile-rule,$(call source-to-object,$f),$f))
endef

This function relies on the global variable local_src used by the module.mk files. A
more general approach would pass this file list as an argument, but in this project it
seems unnecessary. These functions are easily added to our module.mk files:

local_src := $(subdirectory)/codec.c

$(eval $(call make-library,$(subdirectory)/libcodec.a,$(local_src)))

$(eval $(compile-rules))

We must use eval because the compile-rules function expands to more than one line
of make code.

There is one last complication. If the standard C compilation pattern rule fails to
match with binary output paths, the implicit rule for lex and our pattern rule for
yacc will also fail. We can update these by hand easily. Since they are no longer
applicable to other lex or yacc files, we can move them into lib/db/module.mk:

local_dir := $(BINARY_DIR)/$(subdirectory)
local_src := $(addprefix $(subdirectory)/,playlist.y scanner.l)

$(eval $(call make-library,$(subdirectory)/libdb.a,$(local_src)))

$(eval $(compile-rules))

.SECONDARY: $(call generated-source, $(local_src))

$(local_dir)/scanner.d: $(local_dir)/playlist.d

$(local_dir)/%.c $(local_dir)/%.h: $(subdirectory)/%.y
 $(YACC.y) --defines $<
 $(MV) y.tab.c $(dir $@)$*.c
 $(MV) y.tab.h $(dir $@)$*.h

$(local_dir)/scanner.c: $(subdirectory)/scanner.l
 @$(RM) $@
 $(LEX.l) $< > $@

The lex rule has been implemented as a normal explicit rule, but the yacc rule is a
pattern rule. Why? Because the yacc rule is used to build two targets, a C file and a
header file. If we used a normal explicit rule, make would execute the command script
twice, once for the C file to be created and once for the header. But make assumes
that a pattern rule with multiple targets updates both targets with a single execution.

,ch08.6184 Page 148 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Dependency Generation | 149

If possible, instead of the makefiles shown in this section, I would use the simpler
approach of compiling from the binary tree. As you can see, complications arise
immediately (and seem to get worse and worse) when trying to compile from the
source tree.

Read-Only Source
Once the source and binary trees are separate, the ability to make a reference source
tree read-only often comes for free if the only files generated by the build are the
binary files placed in the output tree. However, if source files are generated, then we
must take care that they are placed in the binary tree.

In the simpler “compile from binary tree” approach, the generated files are written
into the binary tree automatically because the yacc and lex programs are executed
from the binary tree. In the “compile from source tree” approach, we are forced to
provide explicit paths for our source and target files, so specifying the path to a
binary tree file is no extra work, except that we must remember to do it.

The other obstacles to making the reference source tree read only are usually self-
imposed. Often a legacy build system will include actions that create files in the
source tree because the original author had not considered the advantages to a read-
only source tree. Examples include generated documentation, log files, and tempo-
rary files. Moving these files to the output tree can sometimes be arduous, but if
building multiple binary trees from a single source is necessary, the alternative is to
maintain multiple, identical source trees and keep them in sync.

Dependency Generation
We gave a brief introduction to dependency generation in the section “Automatic
Dependency Generation” in Chapter 2, but it left several problems unaddressed.
Therefore, this section offers some alternatives to the simple solution already
described.* In particular, the simple approach described earlier and in the GNU make
manual suffer from these failings:

• It is inefficient. When make discovers that a dependency file is missing or out of
date, it updates the .d file and restarts itself. Rereading the makefile can be ineffi-
cient if it performs many tasks during the reading of the makefile and the analy-
sis of the dependency graph.

• make generates a warning when you build a target for the first time and each time
you add new source files. At these times the dependency file associated with a

* Much of the material in this section was invented by Tom Tromey (tromey@cygnus.com) for the GNU
automake utility and is taken from the excellent summary article by Paul Smith (the maintainer of GNU make)
from his web site http://make.paulandlesley.org.

,ch08.6184 Page 149 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 8: C and C++

new source file does not yet exist, so when make attempts to read the depen-
dency file it will produce a warning message before generating the dependency
file. This is not fatal, merely irritating.

• If you remove a source file, make stops with a fatal error during subsequent
builds. In this situation, there exists a dependency file containing the removed
file as a prerequisite. Since make cannot find the removed file and doesn’t know
how to make it, make prints the message:

make: *** No rule to make target foo.h, needed by foo.d. Stop.

Furthermore, make cannot rebuild the dependency file because of this error. The
only recourse is to remove the dependency file by hand, but since these files are
often hard to find, users typically delete all the dependency files and perform a
clean build. This error also occurs when files are renamed.

Note that this problem is most noticeable with removed or renamed header files
rather than .c files. This is because .c files will be removed from the list of depen-
dency files automatically and will not trouble the build.

Tromey’s Way
Let’s address these problems individually.

How can we avoid restarting make?

On careful consideration, we can see that restarting make is unnecessary. If a depen-
dency file is updated, it means that at least one of its prerequisites has changed,
which means we must update the target. Knowing more than that isn’t necessary in
this execution of make because more dependency information won’t change make’s
behavior. But we want the dependency file updated so that the next run of make will
have complete dependency information.

Since we don’t need the dependency file in this execution of make, we could generate
the file at the same time as we update the target. We can do this by rewriting the
compilation rule to also update the dependency file.

$(call make-depend,source-file,object-file,depend-file)
define make-depend
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $1 | \
 $(SED) 's,\($$(notdir $2)\) *:,$$(dir $2) $3: ,' > $3.tmp
 $(MV) $3.tmp $3
endef

%.o: %.c
 $(call make-depend,$<,$@,$(subst .o,.d,$@))
 $(COMPILE.c) -o $@ $<

We implement the dependency generation feature with the function make-depend that
accepts the source, object, and dependency filenames. This provides maximum flexi-
bility if we need to reuse the function later in a different context. When we modify

,ch08.6184 Page 150 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Dependency Generation | 151

our compilation rule this way, we must delete the %.d: %.c pattern rule we wrote to
avoid generating the dependency files twice.

Now, the object file and dependency file are logically linked: if one exists the other
must exist. Therefore, we don’t really care if a dependency file is missing. If it is, the
object file is also missing and both will be updated by the next build. So we can now
ignore any warnings that result from missing .d files.

In the section “Include and Dependencies” in Chapter 3, I introduced an alternate
form of include directive, -include (or sinclude), that ignores errors and does not
generate warnings:

ifneq "$(MAKECMDGOALS)" "clean"
 -include $(dependencies)
endif

This solves the second problem, that of an annoying message when a dependency file
does not yet exist.

Finally, we can avoid the warning when missing prerequisites are discovered with a
little trickery. The trick is to create a target for the missing file that has no prerequi-
sites and no commands. For example, suppose our dependency file generator has
created this dependency:

target.o target.d: header.h

Now suppose that, due to code refactoring, header.h no longer exists. The next time
we run the makefile we’ll get the error:

make: *** No rule to make target header.h, needed by target.d. Stop.

But if we add a target with no command for header.h to the dependency file, the
error does not occur:

target.o target.d: header.h
header.h:

This is because, if header.h does not exist, it will simply be considered out of date
and any targets that use it as a prerequisite will be updated. So the dependency file
will be regenerated without header.h because it is no longer referenced. If header.h
does exist, make considers it up to date and continues. So, all we need to do is ensure
that every prerequisite has an associated empty rule. You may recall that we first
encountered this kind of rule in the section “Phony Targets” in Chapter 2. Here is a
version of make-depend that adds the new targets:

$(call make-depend,source-file,object-file,depend-file)
define make-depend
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $1 | \
 $(SED) 's,\($$(notdir $2)\) *:,$$(dir $2) $3: ,' > $3.tmp
 $(SED) -e 's/#.*//' \
 -e 's/^[^:]*: *//' \
 -e 's/ *\\$$$$//' \
 -e '/^$$$$/ d' \

,ch08.6184 Page 151 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 8: C and C++

 -e 's/$$$$/ :/' $3.tmp >> $3.tmp
 $(MV) $3.tmp $3
endef

We execute a new sed command on the dependency file to generate the additional
rules. This chunk of sed code performs five transformations:

1. Deletes comments

2. Deletes the target file(s) and subsequent spaces

3. Deletes trailing spaces

4. Deletes blank lines

5. Adds a colon to the end of every line

(GNU sed is able to read from a file and append to it in a single command line, sav-
ing us from having to use a second temporary file. This feature may not work on
other systems.) The new sed command will take input that looks like:

any comments
target.o target.d: prereq1 prereq2 prereq3 \
 prereq4

and transform it into:

prereq1 prereq2 prereq3:
prereq4:

So make-depend appends this new output to the original dependency file. This solves
the “No rule to make target” error.

makedepend Programs
Up to now we have been content to use the -M option provided by most compilers,
but what if this option doesn’t exist? Alternatively, are there better options than our
simple -M?

These days most C compilers have some support for generating make dependencies
from the source, but not long ago this wasn’t true. In the early days of the X Win-
dow System project, they implemented a tool, makedepend, that computes the depen-
dencies from a set of C or C++ sources. This tool is freely available over the Internet.
Using makedepend is a little awkward because it is written to append its output to the
makefile, which we do not want to do. The output of makedepend assumes the object
files reside in the same directory as the source. This means that, again, our sed
expression must change:

$(call make-depend,source-file,object-file,depend-file)
define make-depend
 $(MAKEDEPEND) -f- $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) $1 | \
 $(SED) 's,^.*/\([^/]*\.o\) *:,$(dir $2)\1 $3: ,' > $3.tmp
 $(SED) -e 's/#.*//' \
 -e 's/^[^:]*: *//' \

,ch08.6184 Page 152 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Dependency Generation | 153

 -e 's/ *\\$$$$//' \
 -e '/^$$$$/ d' \
 -e 's/$$$$/ :/' $3.tmp >> $3.tmp
 $(MV) $3.tmp $3
endef

The -f- option tells makedepend to write its dependency information to the standard
output.

An alternative to using makedepend or your native compiler is to use gcc. It sports a
bewildering set of options for generating dependency information. The ones that
seem most apropos for our current requirements are:

ifneq "$(MAKECMDGOALS)" "clean"
 -include $(dependencies)
endif

$(call make-depend,source-file,object-file,depend-file)
define make-depend
 $(GCC) -MM \
 -MF $3 \
 -MP \
 -MT $2 \
 $(CFLAGS) \
 $(CPPFLAGS) \
 $(TARGET_ARCH) \
 $1
endef

%.o: %.c
 $(call make-depend,$<,$@,$(subst .o,.d,$@))
 $(COMPILE.c) $(OUTPUT_OPTION) $<

The -MM option causes gcc to omit “system” headers from the prerequisites list. This is
useful because these files rarely, if ever, change and, as the build system gets more com-
plex, reducing the clutter helps. Originally, this may have been done for performance
reasons. With today’s processors, the performance difference is barely measurable.

The -MF option specifies the dependency filename. This will be the object filename
with the .d suffix substituted for .o. There is another gcc option, -MD or -MMD, that
automatically generates the output filename using a similar substitution. Ideally we
would prefer to use this option, but the substitution fails to include the proper rela-
tive path to the object file directory and instead places the .d file in the current direc-
tory. So, we are forced to do the job ourselves using -MF.

The -MP option instructs gcc to include phony targets for each prerequisite. This
completely eliminates the messy five-part sed expression in our make-depend func-
tion. It seems that the automake developers who invented the phony target technique
caused this option to be added to gcc.

,ch08.6184 Page 153 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 8: C and C++

Finally, the -MT option specifies the string to use for the target in the dependency file.
Again, without this option, gcc fails to include the relative path to the object file out-
put directory.

By using gcc, we can reduce the four commands previously required for dependency
generation to a single command. Even when proprietary compilers are used it may be
possible to use gcc for dependency management.

Supporting Multiple Binary Trees
Once the makefile is modified to write binary files into a separate tree, supporting
many trees becomes quite simple. For interactive or developer-invoked builds, where
a developer initiates a build from the keyboard, there is little or no preparation
required. The developer creates the output directory, cd’s to it and invokes make on
the makefile.

$ mkdir -p ~/work/mp3_player_out
$ cd ~/work/mp3_player_out
$ make -f ~/work/mp3_player/makefile

If the process is more involved than this, then a shell script wrapper is usually the
best solution. This wrapper can also parse the current directory and set an environ-
ment variable like BINARY_DIR for use by the makefile.

#! /bin/bash

Assume we are in the source directory.
curr=$PWD
export SOURCE_DIR=$curr
while [[$SOURCE_DIR]]
do
 if [[-e $SOURCE_DIR/[Mm]akefile]]
 then
 break;
 fi
 SOURCE_DIR=${SOURCE_DIR%/*}
done

Print an error if we haven't found a makefile.
if [[! $SOURCE_DIR]]
then
 printf "run-make: Cannot find a makefile" > /dev/stderr
 exit 1
fi

Set the output directory to a default, if not set.
if [[! $BINARY_DIR]]
then
 BINARY_DIR=${SOURCE_DIR}_out
fi

,ch08.6184 Page 154 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Supporting Multiple Binary Trees | 155

Create the output directory
mkdir --parents $BINARY_DIR

Run the make.
make --directory="$BINARY_DIR" "$@"

This particular script is a bit fancier. It searches for the makefile first in the current
directory and then in the parent directory on up the tree until a makefile is found.
It then checks that the variable for the binary tree is set. If not, it is set by appending
“_out” to the source directory. The script then creates the output directory and exe-
cutes make.

If the build is being performed on different platforms, some method for differentiat-
ing between platforms is required. The simplest approach is to require the developer
to set an environment variable for each type of platform and add conditionals to the
makefile and source based on this variable. A better approach is to set the platform
type automatically based on the output of uname.

space := $(empty) $(empty)
export MACHINE := $(subst $(space),-,$(shell uname -smo))

If the builds are being invoked automatically from cron, I’ve found that a helper shell
script is a better approach than having cron invoke make itself. A wrapper script pro-
vides better support for setup, error recovery, and finalization of an automated build.
The script is also an appropriate place to set variables and command-line parameters.

Finally, if a project supports a fixed set of trees and platforms, you can use directory
names to automatically identify the current build. For example:

ALL_TREES := /builds/hp-386-windows-optimized \
 /builds/hp-386-windows-debug \
 /builds/sgi-irix-optimzed \
 /builds/sgi-irix-debug \
 /builds/sun-solaris8-profiled \
 /builds/sun-solaris8-debug

BINARY_DIR := $(foreach t,$(ALL_TREES),\
 $(filter $(ALL_TREES)/%,$(CURDIR)))

BUILD_TYPE := $(notdir $(subst -,/,$(BINARY_DIR)))

MACHINE_TYPE := $(strip \
 $(subst /,-, \
 $(patsubst %/,%, \
 $(dir \
 $(subst -,/, \
 $(notdir $(BINARY_DIR)))))))

The ALL_TREES variable holds a list of all valid binary trees. The foreach loop
matches the current directory against each of the valid binary trees. Only one can
match. Once the binary tree has been identified, we can extract the build type (e.g.,
optimized, debug, or profiled) from the build directory name. We retrieve the last

,ch08.6184 Page 155 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 8: C and C++

component of the directory name by transforming the dash-separated words into
slash-separated words and grabbing the last word with notdir. Similarly, we retrieve
the machine type by grabbing the last word and using the same technique to remove
the last dash component.

Partial Source Trees
On really large projects, just checking out and maintaining the source can be a bur-
den on developers. If a system consists of many modules and a particular developer
is modifying only a localized part of it, checking out and compiling the entire project
can be a large time sink. Instead, a centrally managed build, performed nightly, can
be used to fill in the holes in a developer’s source and binary trees.

Doing so requires two types of search. First, when a missing header file is required by
the compiler, it must be instructed to search in the reference source tree. Second,
when the makefile requires a missing library, it must be told to search in the refer-
ence binary tree. To help the compiler find source, we can simply add additional -I
options after the -I options specifying local directories. To help make find libraries,
we can add additional directories to the vpath.

SOURCE_DIR := ../mp3_player
REF_SOURCE_DIR := /reftree/src/mp3_player
REF_BINARY_DIR := /binaries/mp3_player
…
include_dirs := lib $(SOURCE_DIR)/lib $(SOURCE_DIR)/include
CPPFLAGS += $(addprefix -I ,$(include_dirs)) \
 $(addprefix -I $(REF_SOURCE_DIR)/,$(include_dirs))
vpath %.h $(include_dirs) \
 $(addprefix $(REF_SOURCE_DIR)/,$(include_dirs))

vpath %.a $(addprefix $(REF_BINARY_DIR)/lib/, codec db ui)

This approach assumes that the “granularity” of a CVS check out is a library or pro-
gram module. In this case, the make can be contrived to skip missing library and pro-
gram directories if a developer has chosen not to check them out. When it comes
time to use these libraries, the search path will automatically fill in the missing files.

In the makefile, the modules variable lists the set of subdirectories to be searched for
module.mk files. If a subdirectory is not checked out, this list must be edited to
remove the subdirectory. Alternatively, the modules variable can be set by wildcard:

modules := $(dir $(wildcard lib/*/module.mk))

This expression will find all the subdirectories containing a module.mk file and
return the directory list. Note that because of how the dir function works, each
directory will contain a trailing slash.

It is also possible for make to manage partial source trees at the individual file level,
building libraries by gathering some object files from a local developer tree and missing

,ch08.6184 Page 156 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Reference Builds, Libraries, and Installers | 157

files from a reference tree. However, this is quite messy and developers are not happy
with it, in my experience.

Reference Builds, Libraries, and Installers
At this point we’ve pretty much covered everything needed to implement reference
builds. Customizing the single top-level makefile to support the feature is straightfor-
ward. Simply replace the simple assignments to SOURCE_DIR and BINARY_DIR with ?=
assignments. The scripts you run from cron can use this basic approach:

1. Redirect output and set the names of log files

2. Clean up old builds and clean the reference source tree

3. Check out fresh source

4. Set the source and binary directory variables

5. Invoke make

6. Scan the logs for errors

7. Compute tags files, and possibly update the locate database*

8. Post information on the success or failure of the build

It is convenient, in the reference build model, to maintain a set of old builds in case a
rogue check-in corrupts the tree. I usually keep 7 or 14 nightly builds. Of course, the
nightly build script logs its output to files stored near the builds themselves and the
script purges old builds and logs. Scanning the logs for errors is usually done with an
awk script. Finally, I usually have the script maintain a latest symbolic link. To deter-
mine if the build is valid, I include a validate target in each makefile. This target per-
forms simple validation that the targets were built.

.PHONY: validate_build
validate_build:
 test $(foreach f,$(RELEASE_FILES),-s $f -a) -e .

This command script simply tests if a set of expected files exists and is not empty. Of
course, this doesn’t take the place of testing, but is a convenient sanity check for a
build. If the test returns failure, the make returns failure and the nightly build script
can leave the latest symbolic link pointing to the old build.

Third-party libraries are always a bit of a hassle to manage. I subscribe to the com-
monly held belief that it is bad to store large binary files in CVS. This is because CVS
cannot store deltas as diffs and the underlying RCS files can grow to enormous size.

* The locate database is a compilation of all the filenames present on a filesystem. It is a fast way of performing
a find by name. I have found this database invaluable for managing large source trees and like to have it
updated nightly after the build has completed.

,ch08.6184 Page 157 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 8: C and C++

Very large files in the CVS repository can slow down many common CVS opera-
tions, thus affecting all development.

If third-party libraries are not stored in CVS, they must be managed some other way.
My current preference is to create a library directory in the reference tree and record
the library version number in the directory name, as shown in Figure 8-1.

These directory names are referenced by the makefile:

ORACLE_9011_DIR ?= /reftree/third_party/oracle-9.0.1.1/Ora90
ORACLE_9011_JAR ?= $(ORACLE_9011_DIR)/jdbc/lib/classes12.jar

When the vendor updates its libraries, create a new directory in the reference tree
and declare new variables in the makefile. This way the makefile, which is properly
maintained with tags and branches, always explicitly reflects the versions being used.

Installers are also a difficult issue. I believe that separating the basic build process
from creating the installer image is a good thing. Current installer tools are complex
and fragile. Folding them into the (also often complex and fragile) build system
yields difficult-to-maintain systems. Instead, the basic build can write its results into
a “release” directory that contains all (or most of) the data required by the installer
build tool. This tool may be driven from its own makefile that ultimately yields an
executable setup image.

Figure 8-1. Directory layout for third-party libraries

third_party

oracle-8.0.7sp2

reftree

oracle-9.0.1.1

,ch08.6184 Page 158 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

159

Chapter 9 CHAPTER 9

Java

Many Java developers like Integrated Development Environments (IDEs) such as
Eclipse. Given such well-known alternatives as Java IDEs and Ant, readers could well
ask why they should even think of using make on Java projects. This chapter explores
the value of make in these situations; in particular, it presents a generalized makefile
that can be dropped into just about any Java project with minimal modification and
carry out all the standard rebuilding tasks.

Using make with Java raises several issues and introduces some opportunities. This is
primarily due to three factors: the Java compiler, javac, is extremely fast; the stan-
dard Java compiler supports the @filename syntax for reading “command-line param-
eters” from a file; and if a Java package is specified, the Java language specifies a path
to the .class file.

Standard Java compilers are very fast. This is primarily due to the way the import
directive works. Similar to a #include in C, this directive is used to allow access to
externally defined symbols. However, rather than rereading source code, which then
needs to be reparsed and analyzed, Java reads the class files directly. Because the
symbols in a class file cannot change during the compilation process, the class files
are cached by the compiler. In even medium-sized projects, this means the Java com-
piler can avoid rereading, parsing, and analyzing literally millions of lines of code
compared with C. A more modest performance improvement is due to the bare mini-
mum of optimization performed by most Java compilers. Instead, Java relies on
sophisticated just-in-time (JIT) optimizations performed by the Java virtual machine
(JVM) itself.

Most large Java projects make extensive use of Java’s package feature. A class is declared
to be encapsulated in a package that forms a scope around the symbols defined by the
file. Package names are hierarchical and implicitly define a file structure. For instance,
the package a.b.c would implicitly define a directory structure a/b/c. Code declared to
be within the a.b.c package would be compiled to class files in the a/b/c directory. This
means that make’s normal algorithm for associating a binary file with its source fails. But
it also means that there is no need to specify a -o option to indicate where output files

,ch09.6595 Page 159 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 9: Java

should be placed. Indicating the root of the output tree, which is the same for all files, is
sufficient. This, in turn, means that source files from different directories can be com-
piled with the same command-line invocation.

The standard Java compilers all support the @filename syntax that allows command-
line parameters to be read from a file. This is significant in conjunction with the
package feature because it means that the entire Java source for a project can be
compiled with a single execution of the Java compiler. This is a major performance
improvement because the time it takes to load and execute the compiler is a major
contributor to build times.

In summary, by composing the proper command line, compiling 400,000 lines of
Java takes about three minutes on a 2.5-GHz Pentium 4 processor. Compiling an
equivalent C++ application would require hours.

Alternatives to make
As previously mentioned, the Java developer community enthusiastically adopts new
technologies. Let’s see how two of these, Ant and IDEs, relate to make.

Ant
The Java community is very active, producing new tools and APIs at an impressive
rate. One of these new tools is Ant, a build tool intended to replace make in the Java
development process. Like make, Ant uses a description file to indicate the targets and
prerequisites of a project. Unlike make, Ant is written in Java and Ant build files are
written in XML.

To give you a feel for the XML build file, here is an excerpt from the Ant build file:

<target name="build"
 depends="prepare, check_for_optional_packages"
 description="--> compiles the source code">
 <mkdir dir="${build.dir}"/>
 <mkdir dir="${build.classes}"/>
 <mkdir dir="${build.lib}"/>

 <javac srcdir="${java.dir}"
 destdir="${build.classes}"
 debug="${debug}"
 deprecation="${deprecation}"
 target="${javac.target}"
 optimize="${optimize}" >
 <classpath refid="classpath"/>
 </javac>

 …

 <copy todir="${build.classes}">
 <fileset dir="${java.dir}">

,ch09.6595 Page 160 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Alternatives to make | 161

 <include name="**/*.properties"/>
 <include name="**/*.dtd"/>
 </fileset>
 </copy>
 </target>

As you can see, a target is introduced with an XML <target> tag. Each target has a
name and dependency list specified with <name> and <depends> attributes, respec-
tively. Actions are performed by Ant tasks. A task is written in Java and bound to an
XML tag. For instance, the task of creating a directory is specified with the <mkdir>
tag and triggers the execution of the Java method Mkdir.execute, which eventually
calls File.mkdir. As far as possible, all tasks are implemented using the Java API.

An equivalent build file using make syntax would be:

compiles the source code
build: $(all_javas) prepare check_for_optional_packages
 $(MKDIR) -p $(build.dir) $(build.classes) $(build.lib)
 $(JAVAC) -sourcepath $(java.dir) \
 -d $(build.classes) \
 $(debug) \
 $(deprecation) \
 -target $(javac.target) \
 $(optimize) \
 -classpath $(classpath) \
 @$<
 …
 $(FIND) . \(-name '*.properties' -o -name '*.dtd' \) | \
 $(TAR) -c -f - -T - | $(TAR) -C $(build.classes) -x -f -

This snippet of make uses techniques that this book hasn’t discussed yet. Suffice to
say that the prerequisite all.javas contains a list of all java files to be compiled. The
Ant tasks <mkdir>, <javac>, and <copy> also perform dependency checking. That is, if
the directory already exists, mkdir is not executed. Likewise, if the Java class files are
newer than the source files, the source files are not compiled. Nevertheless, the make
command script performs essentially the same functions. Ant includes a generic task,
called <exec>, to run a local program.

Ant is a clever and fresh approach to build tools; however, it presents some issues
worth considering:

• Although Ant has found wide acceptance in the Java community, it is still rela-
tively unknown elsewhere. Also, it seems doubtful that its popularity will spread
much beyond Java (for the reasons listed here). make, on the other hand, has con-
sistently been applied to a broad range of fields including software develop-
ment, document processing and typesetting, and web site and workstation
maintenance, to name a few. Understanding make is important for anyone who
needs to work on a variety of software systems.

• The choice of XML as the description language is appropriate for a Java-based
tool. But XML is not particularly pleasant to write or to read (for many). Good

,ch09.6595 Page 161 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 9: Java

XML editors can be difficult to find and often do not integrate well with existing
tools (either my integrated development environment includes a good XML edi-
tor or I must leave my IDE and find a separate tool). As you can see from the
previous example, XML and the Ant dialect, in particular, are verbose compared
with make and shell syntax. And the XML is filled with its own idiosyncrasies.

• When writing Ant build files you must contend with another layer of indirec-
tion. The Ant <mkdir> task does not invoke the underlying mkdir program for
your system. Instead, it executes the Java mkdir() method of the java.io.File
class. This may or may not do what you expect. Essentially, any knowledge a
programmer brings to Ant about the behavior of common tools is suspect and
must be checked against the Ant documentation, Java documentation, or the Ant
source. In addition, to invoke the Java compiler, for instance, I may be forced to
navigate through a dozen or more unfamiliar XML attributes, such as <srcdir>,
<debug>, etc., that are not documented in the compiler manual. In contrast, the
make script is completely transparent, that is, I can typically type the commands
directly into a shell to see how they behave.

• Although Ant is certainly portable, so is make. As shown in Chapter 7, writing
portable makefiles, like writing portable Ant files, requires experience and knowl-
edge. Programmers have been writing portable makefiles for two decades. Fur-
thermore, the Ant documentation notes that there are portability issues with
symbolic links on Unix and long filenames on Windows, that MacOS X is the
only supported Apple operating system, and that support for other platforms is
not guaranteed. Also, basic operations like setting the execution bit on a file can-
not be performed from the Java API. An external program must be used. Porta-
bility is never easy or complete.

• The Ant tool does not explain precisely what it is doing. Since Ant tasks are not
generally implemented by executing shell commands, the Ant tool has a difficult
time displaying its actions. Typically, the display consists of natural language
prose from print statements added by the task author. These print statements
cannot be executed by a user from a shell. In contrast, the lines echoed by make
are usually command lines that a user can copy and paste into a shell for reexe-
cution. This means the Ant build is less useful to developers trying to under-
stand the build process and tools. Also, it is not possible for a developer to reuse
parts of a task, impromptu, at the keyboard.

• Last and most importantly, Ant shifts the build paradigm from a scripted to a
nonscripted programming language. Ant tasks are written in Java. If a task does
not exist or does not do what you want, you must either write your own task in
Java or use the <exec> task. (Of course, if you use the <exec> task often, you
would do far better to simply use make with its macros, functions, and more
compact syntax.)

,ch09.6595 Page 162 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Alternatives to make | 163

Scripting languages, on the other hand, were invented and flourish precisely to
address this type of issue. make has existed for nearly 30 years and can be used in
the most complex situations without extending its implementation. Of course,
there have been a handful of extensions in those 30 years. Many of them con-
ceived and implemented in GNU make.

Ant is a marvelous tool that is widely accepted in the Java community. However,
before embarking on a new project, consider carefully if Ant is appropriate for your
development environment. This chapter will hopefully prove to you that make can
powerfully meet your Java build needs.

IDEs
Many Java developers use Integrated Development Environments (IDEs) that bun-
dle an editor, compiler, debugger, and code browser in a single (typically) graphical
environment. Examples include the open source Eclipse (http://www.eclipse.org) and
Emacs JDEE (http://jdee.sunsite.dk), and, from commercial vendors, Sun Java Studio
(http://wwws.sun.com/software/sundev/jde) and JBuilder (http://www.borland.com/
jbuilder). These environments typically have the notion of a project-build process
that compiles the necessary files and enables the application execution.

If the IDEs support all this, why should we consider using make? The most obvious
reason is portability. If there is ever a need to build the project on another platform,
the build may fail when ported to the new target. Although Java itself is portable
across platforms, the support tools are often not. For instance, if the configuration
files for your project include Unix- or Windows-style paths, these may generate
errors when the build is run on the other operating system. A second reason to use
make is to support unattended builds. Some IDEs support batch building and some
do not. The quality of support for this feature also varies. Finally, the build support
included is often limited. If you hope to implement customized release directory
structures, integrate help files from external applications, support automated test-
ing, and handle branching and parallel lines of development, you may find the inte-
grated build support inadequate.

In my own experience, I have found the IDEs to be fine for small scale or localized
development, but production builds require the more comprehensive support that
make can provide. I typically use an IDE to write and debug code, and write a
makefile for production builds and releases. During development I use the IDE to
compile the project to a state suitable for debugging. But if I change many files or
modify files that are input to code generators, then I run the makefile. The IDEs I’ve
used do not have good support for external source code generation tools. Usually the
result of an IDE build is not suitable for release to internal or external customers. For
that task I use make.

,ch09.6595 Page 163 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 9: Java

A Generic Java Makefile
Example 9-1 shows a generic makefile for Java; I’ll explain each of its parts later in
the chapter.

Example 9-1. Generic makefile for Java

A generic makefile for a Java project.

VERSION_NUMBER := 1.0

Location of trees.
SOURCE_DIR := src
OUTPUT_DIR := classes

Unix tools
AWK := awk
FIND := /bin/find
MKDIR := mkdir -p
RM := rm -rf
SHELL := /bin/bash

Path to support tools
JAVA_HOME := /opt/j2sdk1.4.2_03
AXIS_HOME := /opt/axis-1_1
TOMCAT_HOME := /opt/jakarta-tomcat-5.0.18
XERCES_HOME := /opt/xerces-1_4_4
JUNIT_HOME := /opt/junit3.8.1

Java tools
JAVA := $(JAVA_HOME)/bin/java
JAVAC := $(JAVA_HOME)/bin/javac

JFLAGS := -sourcepath $(SOURCE_DIR) \
 -d $(OUTPUT_DIR) \
 -source 1.4

JVMFLAGS := -ea \
 -esa \
 -Xfuture

JVM := $(JAVA) $(JVMFLAGS)

JAR := $(JAVA_HOME)/bin/jar
JARFLAGS := cf

JAVADOC := $(JAVA_HOME)/bin/javadoc
JDFLAGS := -sourcepath $(SOURCE_DIR) \
 -d $(OUTPUT_DIR) \
 -link http://java.sun.com/products/jdk/1.4/docs/api

Jars
COMMONS_LOGGING_JAR := $(AXIS_HOME)/lib/commons-logging.jar

,ch09.6595 Page 164 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

A Generic Java Makefile | 165

LOG4J_JAR := $(AXIS_HOME)/lib/log4j-1.2.8.jar
XERCES_JAR := $(XERCES_HOME)/xerces.jar
JUNIT_JAR := $(JUNIT_HOME)/junit.jar

Set the Java classpath
class_path := OUTPUT_DIR \
 XERCES_JAR \
 COMMONS_LOGGING_JAR \
 LOG4J_JAR \
 JUNIT_JAR

space - A blank space
space := $(empty) $(empty)

$(call build-classpath, variable-list)
define build-classpath
$(strip \
 $(patsubst :%,%, \
 $(subst : ,:, \
 $(strip \
 $(foreach j,$1,$(call get-file,$j):)))))
endef

$(call get-file, variable-name)
define get-file
 $(strip \
 $($1) \
 $(if $(call file-exists-eval,$1),, \
 $(warning The file referenced by variable \
 '$1' ($($1)) cannot be found)))
endef

$(call file-exists-eval, variable-name)
define file-exists-eval
 $(strip \
 $(if $($1),,$(warning '$1' has no value)) \
 $(wildcard $($1)))

$(call brief-help, makefile)
define brief-help
 $(AWK) '$$1 ~ /^[^.][-A-Za-z0-9]*:/ \
 { print substr($$1, 1, length($$1)-1) }' $1 | \
 sort | \
 pr -T -w 80 -4
endef

$(call file-exists, wildcard-pattern)
file-exists = $(wildcard $1)

$(call check-file, file-list)
define check-file
 $(foreach f, $1, \

Example 9-1. Generic makefile for Java (continued)

,ch09.6595 Page 165 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 9: Java

 $(if $(call file-exists, $($f)),, \
 $(warning $f ($($f)) is missing)))
endef

#(call make-temp-dir, root-opt)
define make-temp-dir
 mktemp -t $(if $1,$1,make).XXXXXXXXXX
endef

MANIFEST_TEMPLATE - Manifest input to m4 macro processor
MANIFEST_TEMPLATE := src/manifest/manifest.mf
TMP_JAR_DIR := $(call make-temp-dir)
TMP_MANIFEST := $(TMP_JAR_DIR)/manifest.mf

$(call add-manifest, jar, jar-name, manifest-file-opt)
define add-manifest
 $(RM) $(dir $(TMP_MANIFEST))
 $(MKDIR) $(dir $(TMP_MANIFEST))
 m4 --define=NAME="$(notdir $2)" \
 --define=IMPL_VERSION=$(VERSION_NUMBER) \
 --define=SPEC_VERSION=$(VERSION_NUMBER) \
 $(if $3,$3,$(MANIFEST_TEMPLATE)) \
 > $(TMP_MANIFEST)
 $(JAR) -ufm $1 $(TMP_MANIFEST)
 $(RM) $(dir $(TMP_MANIFEST))
endef

$(call make-jar,jar-variable-prefix)
define make-jar
 .PHONY: $1 $$($1_name)
 $1: $($1_name)
 $$($1_name):
 cd $(OUTPUT_DIR); \
 $(JAR) $(JARFLAGS) $$(notdir $$@) $$($1_packages)
 $$(call add-manifest, $$@, $$($1_name), $$($1_manifest))
endef

Set the CLASSPATH
export CLASSPATH := $(call build-classpath, $(class_path))

make-directories - Ensure output directory exists.
make-directories := $(shell $(MKDIR) $(OUTPUT_DIR))

help - The default goal
.PHONY: help
help:
 @$(call brief-help, $(CURDIR)/Makefile)

all - Perform all tasks for a complete build
.PHONY: all
all: compile jars javadoc

Example 9-1. Generic makefile for Java (continued)

,ch09.6595 Page 166 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

A Generic Java Makefile | 167

all_javas - Temp file for holding source file list
all_javas := $(OUTPUT_DIR)/all.javas

compile - Compile the source
.PHONY: compile
compile: $(all_javas)
 $(JAVAC) $(JFLAGS) @$<

all_javas - Gather source file list
.INTERMEDIATE: $(all_javas)
$(all_javas):
 $(FIND) $(SOURCE_DIR) -name '*.java' > $@

jar_list - List of all jars to create
jar_list := server_jar ui_jar

jars - Create all jars
.PHONY: jars
jars: $(jar_list)

server_jar - Create the $(server_jar)
server_jar_name := $(OUTPUT_DIR)/lib/a.jar
server_jar_manifest := src/com/company/manifest/foo.mf
server_jar_packages := com/company/m com/company/n

ui_jar - create the $(ui_jar)
ui_jar_name := $(OUTPUT_DIR)/lib/b.jar
ui_jar_manifest := src/com/company/manifest/bar.mf
ui_jar_packages := com/company/o com/company/p

Create an explicit rule for each jar
$(foreach j, $(jar_list), $(eval $(call make-jar,$j)))
$(eval $(call make-jar,server_jar))
$(eval $(call make-jar,ui_jar))

javadoc - Generate the Java doc from sources
.PHONY: javadoc
javadoc: $(all_javas)
 $(JAVADOC) $(JDFLAGS) @$<

.PHONY: clean
clean:
 $(RM) $(OUTPUT_DIR)

.PHONY: classpath
classpath:
 @echo CLASSPATH='$(CLASSPATH)'

.PHONY: check-config
check-config:
 @echo Checking configuration...
 $(call check-file, $(class_path) JAVA_HOME)

Example 9-1. Generic makefile for Java (continued)

,ch09.6595 Page 167 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 9: Java

Compiling Java
Java can be compiled with make in two ways: the traditional approach, one javac exe-
cution per source file; or the fast approach outlined previously using the @filename
syntax.

The Fast Approach: All-in-One Compile
Let’s start with the fast approach. As you can see in the generic makefile:

all_javas - Temp file for holding source file list
all_javas := $(OUTPUT_DIR)/all.javas

compile - Compile the source
.PHONY: compile
compile: $(all_javas)
 $(JAVAC) $(JFLAGS) @$<

all_javas - Gather source file list
.INTERMEDIATE: $(all_javas)
$(all_javas):
 $(FIND) $(SOURCE_DIR) -name '*.java' > $@

The phony target compile invokes javac once to compile all the source of the project.

The $(all_javas) prerequisite is a file, all.javas, containing a list of Java files, one
filename per line. It is not necessary for each file to be on its own line, but this way it
is much easier to filter files with grep -v if the need ever arises. The rule to create all.
javas is marked .INTERMEDIATE so that make will remove the file after each run and
thus create a new one before each compile. The command script to create the file is
straightforward. For maximum maintainability we use the find command to retrieve
all the java files in the source tree. This command can be a bit slow, but is guaran-
teed to work correctly with virtually no modification as the source tree changes.

If you have a list of source directories readily available in the makefile, you can use
faster command scripts to build all.javas. If the list of source directories is of medium
length so that the length of the command line does not exceed the operating sys-
tem’s limits, this simple script will do:

$(all_javas):
 shopt -s nullglob; \
 printf "%s\n" $(addsuffix /*.java,$(PACKAGE_DIRS)) > $@

.PHONY: print
print:
 $(foreach v, $(V), \
 $(warning $v = $($v)))

Example 9-1. Generic makefile for Java (continued)

,ch09.6595 Page 168 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Java | 169

This script uses shell wildcards to determine the list of Java files in each directory. If,
however, a directory contains no Java files, we want the wildcard to yield the empty
string, not the original globbing pattern (the default behavior of many shells). To
achieve this effect, we use the bash option shopt -s nullglob. Most other shells have
similar options. Finally, we use globbing and printf rather than ls -1 because these
are built-in to bash, so our command script executes only a single program regard-
less of the number of package directories.

Alternately, we can avoid shell globbing by using wildcard:

$(all_javas):
 print "%s\n" $(wildcard \
 $(addsuffix /*.java,$(PACKAGE_DIRS))) > $@

If you have very many source directories (or very long paths), the above script may
exceed the command-line length limit of the operating system. In that case, the fol-
lowing script may be preferable:

.INTERMEDIATE: $(all_javas)
$(all_javas):
 shopt -s nullglob; \
 for f in $(PACKAGE_DIRS); \
 do \
 printf "%s\n" $$f/*.java; \
 done > $@

Notice that the compile target and the supporting rule follow the nonrecursive make
approach. No matter how many subdirectories there are, we still have one makefile
and one execution of the compiler. If you want to compile all of the source, this is as
fast as it gets.

Also, we completely discarded all dependency information. With these rules, make
neither knows nor cares about which file is newer than which. It simply compiles
everything on every invocation. As an added benefit, we can execute the makefile
from the source tree, instead of the binary tree. This may seem like a silly way to
organize the makefile considering make’s abilities to manage dependencies, but con-
sider this:

• The alternative (which we will explore shortly) uses the standard dependency
approach. This invokes a new javac process for each file, adding a lot of over-
head. But, if the project is small, compiling all the source files will not take sig-
nificantly longer than compiling a few files because the javac compiler is so fast
and process creation is typically slow. Any build that takes less than 15 seconds
is basically equivalent regardless of how much work it does. For instance, com-
piling approximately 500 source files (from the Ant distribution) takes 14 sec-
onds on my 1.8-GHz Pentium 4 with 512 MB of RAM. Compiling one file takes
five seconds.

• Most developers will be using some kind of development environment that pro-
vides fast compilation for individual files. The makefile will most likely be used

,ch09.6595 Page 169 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 9: Java

when changes are more extensive, complete rebuilds are required, or unat-
tended builds are necessary.

• As we shall see, the effort involved in implementing and maintaining dependen-
cies is equal to the separate source and binary tree builds for C/C++ (described
in Chapter 8). Not a task to be underestimated.

As we will see in later examples, the PACKAGE_DIRS variable has uses other than sim-
ply building the all.javas file. But maintaining this variables can be a labor-intensive,
and potentially difficult, step. For smaller projects, the list of directories can be main-
tained by hand in the makefile, but when the number grows beyond a hundred direc-
tories, hand editing becomes error-prone and irksome. At this point, it might be
prudent to use find to scan for these directories:

$(call find-compilation-dirs, root-directory)
find-compilation-dirs = \
 $(patsubst %/,%, \
 $(sort \
 $(dir \
 $(shell $(FIND) $1 -name '*.java'))))

PACKAGE_DIRS := $(call find-compilation-dirs, $(SOURCE_DIR))

The find command returns a list of files, dir discards the file leaving only the direc-
tory, sort removes duplicates from the list, and patsubst strips the trailing slash.
Notice that find-compilation-dirs finds the list of files to compile, only to discard
the filenames, then the all.javas rule uses wildcards to restore the filenames. This
seems wasteful, but I have often found that a list of the packages containing source
code is very useful in other parts of the build, for instance to scan for EJB configura-
tion files. If your situation does not require a list of packages, then by all means use
one of the simpler methods previously mentioned to build all.javas.

Compiling with Dependencies
To compile with full dependency checking, you first need a tool to extract
dependency information from the Java source files, something similar to cc -M. Jikes
(http://www.ibm.com/developerworks/opensource/jikes) is an open source Java com-
piler that supports this feature with the -makefile or +M option. Jikes is not ideal for
separate source and binary compilation because it always writes the dependency file
in the same directory as the source file, but it is freely available and it works. On the
plus side, it generates the dependency file while compiling, avoiding a separate pass.

Here is a dependency processing function and a rule to use it:

%.class: %.java
 $(JAVAC) $(JFLAGS) +M $<
 $(call java-process-depend,$<,$@)

$(call java-process-depend, source-file, object-file)
define java-process-depend

,ch09.6595 Page 170 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Java | 171

 $(SED) -e 's/^.*\.class *:/$2 $(subst .class,.d,$2):/' \
 $(subst .java,.u,$1) > $(subst .class,.tmp,$2)
 $(SED) -e 's/#.*//' \
 -e 's/^[^:]*: *//' \
 -e 's/ *\\$$$$//' \
 -e '/^$$$$/ d' \
 -e 's/$$$$/ :/' $(subst .class,.tmp,$2) \
 >> $(subst .class,.tmp,$2)
 $(MV) $(subst .class,.tmp,$2).tmp $(subst .class,.d,$2)
endef

This requires that the makefile be executed from the binary tree and that the vpath be
set to find the source. If you want to use the Jikes compiler only for dependency gen-
eration, resorting to a different compiler for actual code generation, you can use the
+B option to prevent Jikes from generating bytecodes.

In a simple timing test compiling 223 Java files, the single line compile described pre-
viously as the fast approach required 9.9 seconds on my machine. The same 223 files
compiled with individual compilation lines required 411.6 seconds or 41.5 times
longer. Furthermore, with separate compilation, any build that required compiling
more than four files was slower than compiling all the source files with a single com-
pile line. If the dependency generation and compilation were performed by separate
programs, the discrepancy would increase.

Of course, development environments vary, but it is important to carefully consider
your goals. Minimizing the number of files compiled will not always minimize the
time it takes to build a system. For Java in particular, full dependency checking and
minimizing the number of files compiled does not appear to be necessary for normal
program development.

Setting CLASSPATH
One of the most important issues when developing software with Java is setting the
CLASSPATH variable correctly. This variable determines which code is loaded when a
class reference is resolved. To compile a Java application correctly, the makefile must
include the proper CLASSPATH. The CLASSPATH can quickly become long and complex
as Java packages, APIs, and support tools are added to a system. If the CLASSPATH can
be difficult to set properly, it makes sense to set it in one place.

A technique I’ve found useful is to use the makefile to set the CLASSPATH for itself and
other programs. For instance, a target classpath can return the CLASSPATH to the shell
invoking the makefile:

.PHONY: classpath
classpath:
 @echo "export CLASSPATH='$(CLASSPATH)'"

Developers can set their CLASSPATH with this (if they use bash):

$ eval $(make classpath)

,ch09.6595 Page 171 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 9: Java

The CLASSPATH in the Windows environment can be set with this invocation:

.PHONY: windows_classpath
windows_classpath:
 regtool set /user/Environment/CLASSPATH "$(subst /,\\,$(CLASSPATH))"
 control sysdm.cpl,@1,3 &
 @echo "Now click Environment Variables, then OK, then OK again."

The program regtool is a utility in the Cygwin development system that manipu-
lates the Windows Registry. Simply setting the Registry doesn’t cause the new values
to be read by Windows, however. One way to do this is to visit the Environment
Variable dialog box and simply exit by clicking OK.

The second line of the command script causes Windows to display the System Prop-
erties dialog box with the Advanced tab active. Unfortunately, the command cannot
display the Environment Variables dialog box or activate the OK button, so the last
line prompts the user to complete the task.

Exporting the CLASSPATH to other programs, such as Emacs JDEE or JBuilder project
files, is not difficult.

Setting the CLASSPATH itself can also be managed by make. It is certainly reasonable to
set the CLASSPATH variable in the obvious way with:

CLASSPATH = /third_party/toplink-2.5/TopLink.jar:/third_party/…

For maintainability, using variables is preferred:

CLASSPATH = $(TOPLINK_25_JAR):$(TOPLINKX_25_JAR):…

But we can do better than this. As you can see in the generic makefile, we can build
the CLASSPATH in two stages: first list the elements in the path as make variables, then
transform those variables into the string value of the environment variable:

Set the Java classpath
class_path := OUTPUT_DIR \
 XERCES_JAR \
 COMMONS_LOGGING_JAR \
 LOG4J_JAR \
 JUNIT_JAR
…
Set the CLASSPATH
export CLASSPATH := $(call build-classpath, $(class_path))

(The CLASSPATH in Example 9-1 is meant to be more illustrative than useful.) A well-
written build-classpath function solves several irritating problems:

• It is very easy to compose a CLASSPATH in pieces. For instance, if different applica-
tions servers are used, the CLASSPATH might need to change. The different ver-
sions of the CLASSPATH could then be enclosed in ifdef sections and selected by
setting a make variable.

• Casual maintainers of the makefile do not have to worry about embedded
blanks, newlines, or line continuation, because the build-classpath function
handles them.

,ch09.6595 Page 172 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Java | 173

• The path separator can be selected automatically by the build-classpath func-
tion. Thus, it is correct whether run on Unix or Windows.

• The validity of path elements can be verified by the build-classpath function. In
particular, one irritating problem with make is that undefined variables collapse
to the empty string without an error. In most cases this is very useful, but occa-
sionally it gets in the way. In this case, it quietly yields a bogus value for the
CLASSPATH variable.* We can solve this problem by having the build-classpath
function check for the empty valued elements and warn us. The function can
also check that each file or directory exists.

• Finally, having a hook to process the CLASSPATH can be useful for more advanced
features, such as help accommodating embedded spaces in path names and
search paths.

Here is an implementation of build-classpath that handles the first three issues:

$(call build-classpath, variable-list)
define build-classpath
$(strip \
 $(patsubst %:,%, \
 $(subst : ,:, \
 $(strip \
 $(foreach c,$1,$(call get-file,$c):)))))
endef

$(call get-file, variable-name)
define get-file
 $(strip \
 $($1) \
 $(if $(call file-exists-eval,$1),, \
 $(warning The file referenced by variable \
 '$1' ($($1)) cannot be found)))
endef

$(call file-exists-eval, variable-name)
define file-exists-eval
 $(strip \
 $(if $($1),,$(warning '$1' has no value)) \
 $(wildcard $($1)))
endef

The build-classpath function iterates through the words in its argument, verifying
each element and concatenating them with the path separator (: in this case). Select-
ing the path separator automatically is easy now. The function then strips spaces
added by the get-file function and foreach loop. Next, it strips the final separator

* We could try using the --warn-undefined-variables option to identify this situation, but this also flags many
other empty variables that are desirable.

,ch09.6595 Page 173 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 9: Java

added by the foreach loop. Finally, the whole thing is wrapped in a strip so errant
spaces introduced by line continuation are removed.

The get-file function returns its filename argument, then tests whether the variable
refers to an existing file. If it does not, it generates a warning. It returns the value of
the variable regardless of the existence of the file because the value may be useful to
the caller. On occasion, get-file may be used with a file that will be generated, but
does not yet exist.

The last function, file-exists-eval, accepts a variable name containing a file refer-
ence. If the variable is empty, a warning is issued; otherwise, the wildcard function is
used to resolve the value into a file (or a list of files for that matter).

When the build-classpath function is used with some suitable bogus values, we see
these errors:

Makefile:37: The file referenced by variable 'TOPLINKX_25_JAR'
 (/usr/java/toplink-2.5/TopLinkX.jar) cannot be found
...
Makefile:37: 'XERCES_142_JAR' has no value
Makefile:37: The file referenced by variable
 'XERCES_142_JAR' () cannot be found

This represents a great improvement over the silence we would get from the simple
approach.

The existence of the get-file function suggests that we could generalize the search
for input files.

$(call get-jar, variable-name)
define get-jar
 $(strip \
 $(if $($1),,$(warning '$1' is empty)) \
 $(if $(JAR_PATH),,$(warning JAR_PATH is empty)) \
 $(foreach d, $(dir $($1)) $(JAR_PATH), \
 $(if $(wildcard $d/$(notdir $($1))), \
 $(if $(get-jar-return),, \
 $(eval get-jar-return := $d/$(notdir $($1)))))) \
 $(if $(get-jar-return), \
 $(get-jar-return) \
 $(eval get-jar-return :=), \
 $($1) \
 $(warning get-jar: File not found '$1' in $(JAR_PATH))))
endef

Here we define the variable JAR_PATH to contain a search path for files. The first file
found is returned. The parameter to the function is a variable name containing the
path to a jar. We want to look for the jar file first in the path given by the variable,
then in the JAR_PATH. To accomplish this, the directory list in the foreach loop is
composed of the directory from the variable, followed by the JAR_PATH. The two
other uses of the parameter are enclosed in notdir calls so the jar name can be com-
posed from a path from this list. Notice that we cannot exit from a foreach loop.

,ch09.6595 Page 174 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Managing Jars | 175

Instead, therefore, we use eval to set a variable, get-jar-return, to remember the
first file we found. After the loop, we return the value of our temporary variable or
issue a warning if nothing was found. We must remember to reset our return value
variable before terminating the macro.

This is essentially reimplementing the vpath feature in the context of setting the
CLASSPATH. To understand this, recall that the vpath is a search path used implicitly
by make to find prerequisites that cannot be found from the current directory by a rel-
ative path. In these cases, make searches the vpath for the prerequisite file and inserts
the completed path into the $^, $?, and $+ automatic variables. To set the CLASSPATH,
we want make to search a path for each jar file and insert the completed path into the
CLASSPATH variable. Since make has no built-in support for this, we’ve added our own.
You could, of course, simply expand the jar path variable with the appropriate jar
filenames and let Java do the searching, but CLASSPATHs already get long quickly. On
some operating systems, environment variable space is limited and long CLASSPATHs
are in danger of being truncated. On Windows XP, there is a limit of 1023 charac-
ters for a single environment variable. In addition, even if the CLASSPATH is not trun-
cated, the Java virtual machine must search the CLASSPATH when loading classes, thus
slowing down the application.

Managing Jars
Building and managing jars in Java presents different issues from C/C++ libraries.
There are three reasons for this. First, the members of a jar include a relative path, so
the precise filenames passed to the jar program must be carefully controlled. Sec-
ond, in Java there is a tendency to merge jars so that a single jar can be released to
represent a program. Finally, jars include other files than classes, such as manifests,
property files, and XML.

The basic command to create a jar in GNU make is:

JAR := jar
JARFLAGS := -cf

$(FOO_JAR): prerequisites…
 $(JAR) $(JARFLAGS) $@ $^

The jar program can accept directories instead of filenames, in which case, all the
files in the directory trees are included in the jar. This can be very convenient, espe-
cially when used with the -C option for changing directories:

JAR := jar
JARFLAGS := -cf

.PHONY: $(FOO_JAR)
$(FOO_JAR):
 $(JAR) $(JARFLAGS) $@ -C $(OUTPUT_DIR) com

,ch09.6595 Page 175 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 9: Java

Here the jar itself is declared .PHONY. Otherwise subsequent runs of the makefile
would not recreate the file, because it has no prerequisites. As with the ar command
described in an earlier chapter, there seems little point in using the update flag, -u,
since it takes the same amount of time or longer as recreating the jar from scratch, at
least for most updates.

A jar often includes a manifest that identifies the vendor, API and version number
the jar implements. A simple manifest might look like:

Name: JAR_NAME
Specification-Title: SPEC_NAME
Implementation-Version: IMPL_VERSION
Specification-Vendor: Generic Innovative Company, Inc.

This manifest includes three placeholders, JAR_NAME, SPEC_NAME, and IMPL_VERSION,
that can be replaced at jar creation time by make using sed, m4, or your favorite stream
editor. Here is a function to process a manifest:

MANIFEST_TEMPLATE := src/manifests/default.mf
TMP_JAR_DIR := $(call make-temp-dir)
TMP_MANIFEST := $(TMP_JAR_DIR)/manifest.mf

$(call add-manifest, jar, jar-name, manifest-file-opt)
define add-manifest
 $(RM) $(dir $(TMP_MANIFEST))
 $(MKDIR) $(dir $(TMP_MANIFEST))
 m4 --define=NAME="$(notdir $2)" \
 --define=IMPL_VERSION=$(VERSION_NUMBER) \
 --define=SPEC_VERSION=$(VERSION_NUMBER) \
 $(if $3,$3,$(MANIFEST_TEMPLATE)) \
 > $(TMP_MANIFEST)
 $(JAR) -ufm $1 $(TMP_MANIFEST)
 $(RM) $(dir $(TMP_MANIFEST))
endef

The add-manifest function operates on a manifest file similar to the one shown previ-
ously. The function first creates a temporary directory, then expands the sample
manifest. Next, it updates the jar, and finally deletes the temporary directory. Notice
that the last parameter to the function is optional. If the manifest file path is empty,
the function uses the value from MANIFEST_TEMPLATE.

The generic makefile bundles these operations into a generic function to write an
explicit rule for creating a jar:

$(call make-jar,jar-variable-prefix)
define make-jar
 .PHONY: $1 $$($1_name)
 $1: $($1_name)
 $$($1_name):
 cd $(OUTPUT_DIR); \
 $(JAR) $(JARFLAGS) $$(notdir $$@) $$($1_packages)
 $$(call add-manifest, $$@, $$($1_name), $$($1_manifest))
endef

,ch09.6595 Page 176 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Reference Trees and Third-Party Jars | 177

It accepts a single argument, the prefix of a make variable, that identifies a set of vari-
ables describing four jar parameters: the target name, the jar name, the packages in
the jar, and the jar’s manifest file. For example, for a jar named ui.jar, we would
write:

ui_jar_name := $(OUTPUT_DIR)/lib/ui.jar
ui_jar_manifest := src/com/company/ui/manifest.mf
ui_jar_packages := src/com/company/ui \
 src/com/company/lib

$(eval $(call make-jar,ui_jar))

By using variable name composition, we can shorten the calling sequence of our
function and allow for a very flexible implementation of the function.

If we have many jar files to create, we can automate this further by placing the jar
names in a variable:

jar_list := server_jar ui_jar

.PHONY: jars $(jar_list)
jars: $(jar_list)

$(foreach j, $(jar_list),\
 $(eval $(call make-jar,$j)))

Occasionally, we need to expand a jar file into a temporary directory. Here is a sim-
ple function to do that:

$(call burst-jar, jar-file, target-directory)
define burst-jar
 $(call make-dir,$2)
 cd $2; $(JAR) -xf $1
endef

Reference Trees and Third-Party Jars
To use a single, shared reference tree to support partial source trees for developers,
simply have the nightly build create jars for the project and include those jars in the
CLASSPATH of the Java compiler. The developer can check out the parts of the source
tree he needs and run the compile (assuming the source file list is dynamically cre-
ated by something like find). When the Java compiler requires symbols from a miss-
ing source file, it will search the CLASSPATH and discover the .class file in the jar.

Selecting third-party jars from a reference tree is also simple. Just place the path to
the jar in the CLASSPATH. The makefile can be a valuable tool for managing this pro-
cess as previously noted. Of course, the get-file function can be used to automati-
cally select beta or stable, local or remote jars by simply setting the JAR_PATH variable.

,ch09.6595 Page 177 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 9: Java

Enterprise JavaBeans
Enterprise JavaBeans™ is a powerful technique to encapsulate and reuse business
logic in the framework of remote method invocation. EJB sets up Java classes used to
implement server APIs that are ultimately used by remote clients. These objects and
services are configured using XML-based control files. Once the Java classes and
XML control files are written, they must be bundled together in a jar. Then a special
EJB compiler builds stubs and ties to implement the RPC support code.

The following code can be plugged into Example 9-1 to provide generic EJB support:

EJB_TMP_JAR = $(EJB_TMP_DIR)/temp.jar
META_INF = $(EJB_TMP_DIR)/META-INF

$(call compile-bean, jar-name,
bean-files-wildcard, manifest-name-opt)
define compile-bean
 $(eval EJB_TMP_DIR := $(shell mktemp -d $(TMPDIR)/compile-bean.XXXXXXXX))
 $(MKDIR) $(META_INF)
 $(if $(filter %.xml, $2),cp $(filter %.xml, $2) $(META_INF))
 cd $(OUTPUT_DIR) && \
 $(JAR) -cf0 $(EJB_TMP_JAR) \
 $(call jar-file-arg,$(META_INF)) \
 $(filter-out %.xml, $2)
 $(JVM) weblogic.ejbc $(EJB_TMP_JAR) $1
 $(call add-manifest,$(if $3,$3,$1),,)
 $(RM) $(EJB_TMP_DIR)
endef

$(call jar-file-arg, jar-file)
jar-file-arg = -C "$(patsubst %/,%,$(dir $1))" $(notdir $1)

The compile-bean function comaccepts three parameters: the name of the jar to cre-
ate, the list of files in the jar, and an optional manifest file. The function first creates
a clean temporary directory using the mktemp program and saves the directory name
in the variable EJB_TMP_DIR. By embedding the assignment in an eval, we ensure that
EJB_TMP_DIR is reset to a new temporary directory once for each expansion of
compile-bean. Since compile-bean is used in the command script part of a rule, the
function is expanded only when the command script is executed. Next, it copies any
XML files in the bean file list into the META-INF directory. This is where EJB config-
uration files live. Then, the function builds a temporary jar that is used as input to
the EJB compiler. The jar-file-arg function converts filenames of the form dir1/
dir2/dir3 into -C dir1/dir2 dir3 so the relative path to the file in the jar is correct.
This is the appropriate format for indicating the META-INF directory to the jar com-
mand. The bean file list contains .xml files that have already been placed in the
META-INF directory, so we filter these files out. After building the temporary jar, the
WebLogic EJB compiler is invoked, generating the output jar. A manifest is then
added to the compiled jar. Finally, our temporary directory is removed.

,ch09.6595 Page 178 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Enterprise JavaBeans | 179

Using the new function is straightforward:

bean_files = com/company/bean/FooInterface.class \
 com/company/bean/FooHome.class \
 src/com/company/bean/ejb-jar.xml \
 src/com/company/bean/weblogic-ejb-jar.xml

.PHONY: ejb_jar $(EJB_JAR)
ejb_jar: $(EJB_JAR)
$(EJB_JAR):
 $(call compile-bean, $@, $(bean_files), weblogic.mf)

The bean_files list is a little confusing. The .class files it references will be accessed
relative to the classes directory, while the .xml files will be accessed relative to the
directory of the makefile.

This is fine, but what if you have lots of bean files in your bean jar. Can we build the
file list automatically? Certainly:

src_dirs := $(SOURCE_DIR)/com/company/...

bean_files = \
 $(patsubst $(SOURCE_DIR)/%,%, \
 $(addsuffix /*.class, \
 $(sort \
 $(dir \
 $(wildcard \
 $(addsuffix /*Home.java,$(src_dirs)))))))

.PHONY: ejb_jar $(EJB_JAR)
ejb_jar: $(EJB_JAR)
$(EJB_JAR):
 $(call compile-bean, $@, $(bean_files), weblogic.mf)

This assumes that all the directories with EJB source are contained in the src_dirs
variable (there can also be directories that do not contain EJB source) and that any
file ending in Home.java identifies a package containing EJB code. The expression
for setting the bean_files variable first adds the wildcard suffix to the directories,
then invokes wildcard to gather the list of Home.java files. The filenames are dis-
carded to leave the directories, which are sorted to remove duplicates. The wildcard
/*.class suffix is added so that the shell will expand the list to the actual class files.
Finally, the source directory prefix (which is not valid in the classes tree) is removed.
Shell wildcard expansion is used instead of make’s wildcard because we can’t rely on
make to perform its expansion after the class files have been compiled. If make evalu-
ated the wildcard function too early it would find no files and directory caching
would prevent it from ever looking again. The wildcard in the source tree is perfectly
safe because (we assume) no source files will be added while make is running.

The above code works when we have a small number of bean jars. Another style of
development places each EJB in its own jar. Large projects may have dozens of jars.
To handle this case automatically, we need to generate an explicit rule for each EJB

,ch09.6595 Page 179 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 9: Java

jar. In this example, EJB source code is self-contained: each EJB is located in a single
directory with its associated XML files. EJB directories can be identified by files that
end with Session.java.

The basic approach is to search the source tree for EJBs, then build an explicit rule to
create each EJB and write these rules into a file. The EJB rules file is then included in
our makefile. The creation of the EJB rules file is triggered by make’s own depen-
dency handling of include files.

session_jars - The EJB jars with their relative source path.
session_jars =
 $(subst .java,.jar, \
 $(wildcard \
 $(addsuffix /*Session.java, $(COMPILATION_DIRS))))

EJBS - A list of all EJB jars we need to build.
EJBS = $(addprefix $(TMP_DIR)/,$(notdir $(session_jars)))

ejbs - Create all EJB jar files.
.PHONY: ejbs
ejbs: $(EJBS)
$(EJBS):
 $(call compile-bean,$@,$^,)

We find the Session.java files by calling a wildcard on all the compilation directories.
In this example, the jar file is the name of the Session file with the .jar suffix. The jars
themselves will be placed in a temporary binary directory. The EJBS variable con-
tains the list of jars with their binary directory path. These EJB jars are the targets we
want to update. The actual command script is our compile-bean function. The tricky
part is that the file list is recorded in the prerequisites for each jar file. Let’s see how
they are created.

-include $(OUTPUT_DIR)/ejb.d

$(call ejb-rule, ejb-name)
ejb-rule = $(TMP_DIR)/$(notdir $1): \
 $(addprefix $(OUTPUT_DIR)/, \
 $(subst .java,.class, \
 $(wildcard $(dir $1)*.java))) \
 $(wildcard $(dir $1)*.xml)

ejb.d - EJB dependencies file.
$(OUTPUT_DIR)/ejb.d: Makefile
 @echo Computing ejb dependencies...
 @for f in $(session_jars); \
 do \
 echo "\$$(call ejb-rule,$$f)"; \
 done > $@

The dependencies for each EJB jar are recorded in a separate file, ejb.d, that is
included by the makefile. The first time make looks for this include file it does not

,ch09.6595 Page 180 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Enterprise JavaBeans | 181

exist. So make invokes the rule for updating the include file. This rule writes one line
for each EJB, something like:

$(call ejb-rule,src/com/company/foo/FooSession.jar)

The function ejb-rule will expand to the target jar and its list of prerequisites, some-
thing like:

classes/lib/FooSession.jar: classes/com/company/foo/FooHome.jar \
 classes/com/company/foo/FooInterface.jar \
 classes/com/company/foo/FooSession.jar \
 src/com/company/foo/ejb-jar.xml \
 src/com/company/foo/ejb-weblogic-jar.xml

In this way, a large number of jars can be managed in make without incurring the
overhead of maintaining a set of explicit rules by hand.

,ch09.6595 Page 181 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

182

Chapter 10CHAPTER 10

Improving the Performance of make

make plays a critical role in the development process. It combines the elements of a
project to create an application while allowing the developer to avoid the subtle
errors caused by accidentally omitting steps of the build. However, if developers
avoid using make, because they feel the makefile is too slow, all the benefits of make
are lost. It is important, therefore, to ensure that the makefile be crafted to be as effi-
cient as possible.

Performance issues are always tricky, but become even more so when the perception
of users and different paths through the code are considered. Not every target of a
makefile is worth optimizing. Even radical optimizations might not be worth the
effort depending on your environment. For instance, reducing the time of an opera-
tion from 90 minutes to 45 minutes may be immaterial since even the faster time is a
“go get lunch” operation. On the other hand, reducing a task from 2 minutes to 1
might be received with cheers if developers are twiddling their thumbs during that
time.

When writing a makefile for efficient execution, it is important to know the costs of
various operations and to know what operations are being performed. In the follow-
ing sections, we will perform some simple benchmarking to quantify these general
comments and present techniques to help identify bottlenecks.

A complementary approach to improving performance is to take advantage of paral-
lelism and local network topology. By running more than one command script at a
time (even on a uniprocessor), build times can be reduced.

Benchmarking
Here we measure the performance of some basic operations in make. Table 10-1
shows the results of these measurements. We’ll explain each test and suggest how
they might affect makefiles you write.

,ch10.6732 Page 182 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Benchmarking | 183

The Windows tests were run on a 1.9-GHz Pentium 4 (approximately 3578 Bogo-
Mips)* with 512 MB RAM running Windows XP. The Cygwin version of make 3.80
was used, started from an rxvt window. The Linux tests were run on a 450-MHz
Pentium 2 (891 BogoMips) with 256 MB of RAM running Linux RedHat 9.

The subshell used by make can have a significant effect on the overall performance of
the makefile. The bash shell is a complex, fully featured shell, and therefore large.
The ash shell is a much smaller, with fewer features but adequate for most tasks. To
complicate matters, if bash is invoked from the filename /bin/sh, it alters its behavior
significantly to conform more closely to the standard shell. On most Linux systems
the file /bin/sh is a symbolic link to bash, while in Cygwin /bin/sh is really ash. To
account for these differences, some of the tests were run three times, each time using
a different shell. The shell used is indicated in parentheses. When “(sh)” appears, it
means that bash was linked to the file named /bin/sh.

The first three tests, labeled make, give an indication of how expensive it is to run
make if there is nothing to do. The makefile contains:

SHELL := /bin/bash
.PHONY: x
x:
 $(MAKE) --no-print-directory --silent --question make-bash.mk; \
 …this command repeated 99 more times…

The word “bash” is replaced with the appropriate shell name as required.

Table 10-1. Cost of operations

Operation Executions

Seconds per
execution
(Windows)

Executions per second
(Windows)

Seconds per
execution (Linux)

Executions per
second (Linux)

make (bash) 1000 0.0436 22 0.0162 61

make (ash) 1000 0.0413 24 0.0151 66

make (sh) 1000 0.0452 22 0.0159 62

assignment 10,000 0.0001 8130 0.0001 10,989

subst (short) 10,000 0.0003 3891 0.0003 3846

subst (long) 10,000 0.0018 547 0.0014 704

sed (bash) , 1000 0.0910 10 0.0342 29

sed (ash) 1000 0.0699 14 0.0069 144

sed (sh) 1000 0.0911 10 0.0139 71

shell (bash) 1000 0.0398 25 0.0261 38

shell (ash) 1000 0.0253 39 0.0018 555

shell (sh) 1000 0.0399 25 0.0050 198

* See http://www.clifton.nl/bogomips.html for an explanation of BogoMips.

,ch10.6732 Page 183 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 10: Improving the Performance of make

We use the --no-print-directory and --silent commands to eliminate unnecessary
computation that might skew the timing test and to avoid cluttering the timing out-
put values with irrelevant text. The --question option tells make to simply check the
dependencies without executing any commands and return an exit status of zero if
the files are up to date. This allows make to do as little work as possible. No com-
mands will be executed by this makefile and dependencies exist for only one .PHONY
target. The command script executes make 100 times. This makefile, called make-
bash.mk, is executed 10 times by a parent makefile with this code:

define ten-times
 TESTS += $1
 .PHONY: $1
 $1:
 @echo $(MAKE) --no-print-directory --silent $2; \
 time $(MAKE) --no-print-directory --silent $2; \
 time $(MAKE) --no-print-directory --silent $2; \
 time $(MAKE) --no-print-directory --silent $2; \
 time $(MAKE) --no-print-directory --silent $2; \
 time $(MAKE) --no-print-directory --silent $2; \
 time $(MAKE) --no-print-directory --silent $2; \
 time $(MAKE) --no-print-directory --silent $2; \
 time $(MAKE) --no-print-directory --silent $2; \
 time $(MAKE) --no-print-directory --silent $2; \
 time $(MAKE) --no-print-directory --silent $2
endef

.PHONY: all
all:

$(eval $(call ten-times, make-bash, -f make-bash.mk))

all: $(TESTS)

The time for these 1,000 executions is then averaged.

As you can see from the table, the Cygwin make ran at roughly 22 executions per sec-
ond or 0.044 seconds per run, while the Linux version (even on a drastically slower
CPU) performed roughly 61 executions per second or 0.016 seconds per run. To ver-
ify these results, the native Windows version of make was also tested and did not yield
any dramatic speed up. Conclusion: while process creation in Cygwin make is slightly
slower than a native Windows make, both are dramatically slower than Linux. It also
suggests that use of recursive make on a Windows platform may perform significantly
slower than the same build run on Linux.

As you would expect, the shell used in this test had no effect on execution time.
Because the command script contained no shell special characters, the shell was not
invoked at all. Rather, make executed the commands directly. This can be verified by
setting the SHELL variable to a completely bogus value and noting that the test still
runs correctly. The difference in performance between the three shells must be attrib-
uted to normal system variance.

,ch10.6732 Page 184 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Benchmarking | 185

The next benchmark measures the speed of variable assignment. This calibrates the
most elementary make operation. The makefile, called assign.mk, contains:

10000 assignments
z := 10
…repeated 10000 times…
.PHONY: x
x: ;

This makefile is then run using our ten-times function in the parent makefile.

The assignment is obviously very fast. Cygwin make will execute 8130 assignments
per second while the Linux system can do 10,989. I believe the performance of Win-
dows for most of these operations is actually better than the benchmark indicates
because the cost of creating the make process 10 times cannot be reliably factored out
of the time. Conclusion: because it is unlikely that the average makefile would per-
form 10,000 assignments, the cost of variable assignment in an average makefile is
negligible.

The next two benchmarks measure the cost of a subst function call. The first uses a
short 10-character string with three substitutions:

10000 subst on a 10 char string
dir := ab/cd/ef/g
x := $(subst /, ,$(dir))
…repeated 10000 times…
.PHONY: x
x: ;

This operation takes roughly twice as long as a simple assignment, or 3891 opera-
tions per second on Windows. Again, the Linux system appears to outperform the
Windows system by a wide margin. (Remember, the Linux system is running at less
than one quarter the clock speed of the Windows system.)

The longer substitution operates on a 1000-character string with roughly 100 substi-
tutions:

Ten character file
dir := ab/cd/ef/g
1000 character path
p100 := $(dir);$(dir);$(dir);$(dir);$(dir);…
p1000 := $(p100)$(p100)$(p100)$(p100)$(p100)…

10000 subst on a 1000 char string
x := $(subst ;, ,$(p1000))
…repeated 10000 times…
.PHONY: x
x: ;

The next three benchmarks measure the speed of the same substitution using sed.
The benchmark contains:

100 sed using bash
SHELL := /bin/bash

,ch10.6732 Page 185 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 10: Improving the Performance of make

.PHONY: sed-bash
sed-bash:
 echo '$(p1000)' | sed 's/;/ /g' > /dev/null

 …repeated 100 times…

As usual, this makefile is executed using the ten-times function. On Windows, sed
execution takes about 50 times longer than the subst function. On our Linux sys-
tem, sed is only 24 times slower.

When we factor in the cost of the shell, we see that ash on Windows does provide a
useful speed-up. With ash, the sed is only 39 times slower than subst! (wink) On
Linux, the shell used has a much more profound effect. Using ash, the sed is only five
times slower than subst. Here we also notice the curious effect of renaming bash to
sh. On Cygwin, there is no difference between a bash named /bin/bash and one
named /bin/sh, but on Linux, a bash linked to /bin/sh performs significantly better.

The final benchmark simply invokes the make shell command to evaluate the cost of
running a subshell. The makefile contains:

100 $(shell) using bash
SHELL := /bin/bash
x := $(shell :)
…repeated 100 times…
.PHONY: x
x: ;

There are no surprises here. The Windows system is slower than Linux, with ash
having an edge over bash. The performance gain of ash is more pronounced—about
50% faster. The Linux system performs best with ash and slowest with bash (when
named “bash”).

Benchmarking is a never-ending task, however, the measurements we’ve made can
provide some useful insight. Create as many variables as you like if they help clarify
the structure of the makefile because they are essentially free. Built-in make functions
are preferred over running commands even if you are required by the structure of
your code to reexecute the make function repeatedly. Avoid recursive make or unnec-
essary process creation on Windows. While on Linux, use ash if you are creating
many processes.

Finally, remember that in most makefiles, the time a makefile takes to run is due
almost entirely to the cost of the programs run, not make or the structure of the
makefile. Usually, reducing the number of programs run will be most helpful in
reducing the execution time of a makefile.

Identifying and Handling Bottlenecks
Unnecessary delays in makefiles come from several sources: poor structuring of the
makefile, poor dependency analysis, and poor use of make functions and variables.

,ch10.6732 Page 186 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Identifying and Handling Bottlenecks | 187

These problems can be masked by make functions such as shell that invoke com-
mands without echoing them, making it difficult to find the source of the delay.

Dependency analysis is a two-edged sword. On the one hand, if complete depen-
dency analysis is performed, the analysis itself may incur significant delays. Without
special compiler support, such as supplied by gcc or jikes, creating a dependency file
requires running another program, nearly doubling compilation time.* The advan-
tage of complete dependency analysis is that it allows make to perform fewer com-
piles. Unfortunately, developers may not believe this benefit is realized and write
makefiles with less complete dependency information. This compromise almost
always leads to an increase in development problems, leading other developers to
overcompensate by compiling more code than would be required with the original,
complete dependency information.

To formulate a dependency analysis strategy, begin by understanding the dependen-
cies inherent in the project. Once complete dependency information is understood,
you can choose how much to represent in the makefile (computed or hardcoded) and
what shortcuts can be taken during the build. Although none of this is exactly sim-
ple, it is straightforward.

Once you’ve determined your makefile structure and necessary dependencies, imple-
menting an efficient makefile is usually a matter of avoiding some simple pitfalls.

Simple Variables Versus Recursive
One of the most common performance-related problems is using recursive variables
instead of simple variables. For example, because the following code uses the = oper-
ator instead of :=, it will execute the date command every time the DATE variable is
used:

DATE = $(shell date +%F)

The +%F option instructs date to return the date in “yyyy-mm-dd” format, so for most
users the repeated execution of date would never be noticed. Of course, developers
working around midnight might get a surprise!

Because make doesn’t echo commands executed from the shell function, it can
be difficult to determine what is actually being run. By resetting the SHELL variable to
/bin/sh -x, you can trick make into revealing all the commands it executes.

* In practice, compilation time grows linearly with the size of the input text and this time is almost always
dominated by disk I/O. Similarly, the time to compute dependencies using the simple -M option is linear and
bound by disk I/O.

,ch10.6732 Page 187 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 10: Improving the Performance of make

This makefile creates its output directory before performing any actions. The name of
the output directory is composed of the word “out” and the date:

DATE = $(shell date +%F)
OUTPUT_DIR = out-$(DATE)

make-directories := $(shell [-d $(OUTPUT_DIR)] || mkdir -p $(OUTPUT_DIR))

all: ;

When run with a debugging shell, we can see:

$ make SHELL='/bin/sh -x'
+ date +%F
+ date +%F
+ '[' -d out-2004-03-30 ']'
+ mkdir -p out-2004-03-30
make: all is up to date.

This clearly shows us that the date command was executed twice. If you need to per-
form this kind of shell trace often, you can make it easier to access with:

ifdef DEBUG_SHELL
 SHELL = /bin/sh -x
endif

Disabling @
Another way commands are hidden is through the use of the silent command modifier,
@. It can be useful at times to be able to disable this feature. You can make this easy by
defining a variable, QUIET, to hold the @ sign and use the variable in commands:

ifndef VERBOSE
 QUIET := @
endif
…
target:
 $(QUIET) echo Building target...

When it becomes necessary to see commands hidden by the silent modifier, simply
define VERBOSE on the command line:

$ make VERBOSE=1
echo Building target...
Building target...

Lazy Initialization
When simple variables are used in conjunction with the shell function, make evalu-
ates all the shell function calls as it reads the makefile. If there are many of these, or
if they perform expensive computations, make can feel sluggish. The responsiveness
of make can be measured by timing make when invoked with a nonexistent target:

$ time make no-such-target
make: *** No rule to make target no-such-target. Stop.

,ch10.6732 Page 188 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Identifying and Handling Bottlenecks | 189

real 0m0.058s
user 0m0.062s
sys 0m0.015s

This code times the overhead that make will add to any command executed, even triv-
ial or erroneous commands.

Because recursive variables reevaluate their righthand side every time they are
expanded, there is a tendency to express complex calculations as simple variables.
However, this decreases the responsiveness of make for all targets. It seems that there
is a need for another kind of variable, one whose righthand side is evaluated only
once the first time the variable is evaluated, but not before.

An example illustrating the need for this type of initialization is the find-
compilation-dirs function introduced in the section “The Fast Approach: All-in-One
Compile” in Chapter 9:

$(call find-compilation-dirs, root-directory)
find-compilation-dirs = \
 $(patsubst %/,%, \
 $(sort \
 $(dir \
 $(shell $(FIND) $1 -name '*.java'))))

PACKAGE_DIRS := $(call find-compilation-dirs, $(SOURCE_DIR))

Ideally, we would like to perform this find operation only once per execution, but
only when the PACKAGE_DIRS variable is actually used. This might be called lazy ini-
tialization. We can build such a variable using eval like this:

PACKAGE_DIRS = $(redefine-package-dirs) $(PACKAGE_DIRS)

redefine-package-dirs = \
 $(eval PACKAGE_DIRS := $(call find-compilation-dirs, $(SOURCE_DIR)))

The basic approach is to define PACKAGE_DIRS first as a recursive variable. When
expanded, the variable evaluates the expensive function, here find-compilation-
dirs, and redefines itself as a simple variable. Finally, the (now simple) variable value
is returned from the original recursive variable definition.

Let’s go over this in detail:

1. When make reads these variables, it simply records their righthand side because
the variables are recursive.

2. The first time the PACKAGE_DIRS variable is used, make retrieves the righthand side
and expands the first variable, redefine-package-dirs.

3. The value of redefine-package-dirs is a single function call, eval.

4. The body of the eval redefines the recursive variable, PACKAGE_DIRS, as a simple
variable whose value is the set of directories returned by find-compilation-dirs.
Now PACKAGE_DIRS has been initialized with the directory list.

,ch10.6732 Page 189 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 10: Improving the Performance of make

5. The redefine-package-dirs variable is expanded to the empty string (because
eval expands to the empty string).

6. Now make continues to expand the original righthand side of PACKAGE_DIRS. The
only thing left to do is expand the variable PACKAGE_DIRS. make looks up the value
of the variable, sees a simple variable, and returns its value.

The only really tricky part of this code is relying on make to evaluate the righthand
side of a recursive variable from left to right. If, for instance, make decided to evalu-
ate $(PACKAGE_DIRS) before $(redefine-package-dirs), the code would fail.

The procedure I just described can be refactored into a function, lazy-init:

$(call lazy-init,variable-name,value)
define lazy-init
 $1 = $$(redefine-$1) $$($1)
 redefine-$1 = $$(eval $1 := $2)
endef

PACKAGE_DIRS - a lazy list of directories
$(eval \
 $(call lazy-init,PACKAGE_DIRS, \
 $$(call find-compilation-dirs,$(SOURCE_DIRS))))

Parallel make
Another way to improve the performance of a build is to take advantage of the
parallelism inherent in the problem the makefile is solving. Most makefiles perform
many tasks that are easily carried out in parallel, such as compiling C source to
object files or creating libraries out of object files. Furthermore, the very structure of
a well-written makefile provides all the information necessary to automatically con-
trol the concurrent processes.

Example 10-1 shows our mp3_player program executed with the jobs option, --
jobs=2 (or -j 2). Figure 10-1 shows the same make run in a pseudo UML sequence
diagram. Using --jobs=2 tells make to update two targets in parallel when that is pos-
sible. When make updates targets in parallel, it echos commands in the order in
which they are executed, interleaving them in the output. This can make reading the
output from parallel make more difficult. Let’s look at this output more carefully.

Example 10-1. Output of make when --jobs = 2

 $ make -f ../ch07-separate-binaries/makefile --jobs=2

1 bison -y --defines ../ch07-separate-binaries/lib/db/playlist.y

2 flex -t ../ch07-separate-binaries/lib/db/scanner.l > lib/db/scanner.c

3 gcc -I lib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -M
../ch07-separate-binaries/app/player/play_mp3.c | \

,ch10.6732 Page 190 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Parallel make | 191

 sed 's,\(play_mp3\.o\) *:,app/player/\1 app/player/play_mp3.d: ,' > app/player/play_
mp3.d.tmp

4 mv -f y.tab.c lib/db/playlist.c

5 mv -f y.tab.h lib/db/playlist.h

6 gcc -I lib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -M
../ch07-separate-binaries/lib/codec/codec.c | \

 sed 's,\(codec\.o\) *:,lib/codec/\1 lib/codec/codec.d: ,' > lib/codec/codec.d.tmp

7 mv -f app/player/play_mp3.d.tmp app/player/play_mp3.d

8 gcc -I lib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -M
lib/db/playlist.c | \

 sed 's,\(playlist\.o\) *:,lib/db/\1 lib/db/playlist.d: ,' > lib/db/playlist.d.tmp

9 mv -f lib/codec/codec.d.tmp lib/codec/codec.d

10 gcc -I lib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -M
../ch07-separate-binaries/lib/ui/ui.c | \

 sed 's,\(ui\.o\) *:,lib/ui/\1 lib/ui/ui.d: ,' > lib/ui/ui.d.tmp

11 mv -f lib/db/playlist.d.tmp lib/db/playlist.d

12 gcc -I lib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -M
lib/db/scanner.c | \

 sed 's,\(scanner\.o\) *:,lib/db/\1 lib/db/scanner.d: ,' > lib/db/scanner.d.tmp

13 mv -f lib/ui/ui.d.tmp lib/ui/ui.d

14 mv -f lib/db/scanner.d.tmp lib/db/scanner.d

15 gcc -I lib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -c
-o app/player/play_mp3.o ../ch07-separate-binaries/app/player/play_mp3.c

16 gcc -I lib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -c
-o lib/codec/codec.o ../ch07-separate-binaries/lib/codec/codec.c

17 gcc -I lib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -c
-o lib/db/playlist.o lib/db/playlist.c

18 gcc -I lib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -c
-o lib/db/scanner.o lib/db/scanner.c

 ../ch07-separate-binaries/lib/db/scanner.l: In function yylex:
 ../ch07-separate-binaries/lib/db/scanner.l:9: warning: return makes integer from
pointer without a cast

19 gcc -I lib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -c
-o lib/ui/ui.o ../ch07-separate-binaries/lib/ui/ui.c

20 ar rv lib/codec/libcodec.a lib/codec/codec.o

Example 10-1. Output of make when --jobs = 2 (continued)

,ch10.6732 Page 191 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 10: Improving the Performance of make

First, make must build the generated source and dependency files. The two generated
source files are the output of yacc and lex. This accounts for commands 1 and 2. The
third command generates the dependency file for play_mp3.c and is clearly begun
before the dependency files for either playlist.c or scanner.c are completed (by com-
mands 4, 5, 8, 9, 12, and 14). Therefore, this make is running three jobs in parallel,
even though the command-line option requests two jobs.

 ar: creating lib/codec/libcodec.a
 a - lib/codec/codec.o

21 ar rv lib/db/libdb.a lib/db/playlist.o lib/db/scanner.o
 ar: creating lib/db/libdb.a
 a - lib/db/playlist.o
 a - lib/db/scanner.o

22 ar rv lib/ui/libui.a lib/ui/ui.o
 ar: creating lib/ui/libui.a
 a - lib/ui/ui.o

23 gcc app/player/play_mp3.o lib/codec/libcodec.a lib/db/libdb.a lib/ui/libui.a -o
app/player/play_mp3

Figure 10-1. Diagram of make when --jobs = 2

Example 10-1. Output of make when --jobs = 2 (continued)

Job 1

1

4

5

8

11

15

18

21

23

Job 2

2

6

9

12

14

16

19

22

Job 3

3

7

10

13

17

20

T1

T3

T4

T5

T6

T2

Time

,ch10.6732 Page 192 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Parallel make | 193

The mv commands, 4 and 5, complete the playlist.c source code generation started
with command 1. Command 6 begins another dependency file. Each command
script is always executed by a single make, but each target and prerequisite forms a
separate job. Therefore, command 7, which is the second command of the depen-
dency generation script, is being executed by the same make process as command 3.
While command 6 is probably being executed by a make spawned immediately fol-
lowing the completion of the make that executed commands 1-4-5 (processing the
yacc grammar), but before the generation of the dependency file in command 8.

The dependency generation continues in this fashion until command 14. All depen-
dency files must be complete before make can move on to the next phase of process-
ing, re-reading the makefile. This forms a natural synchronization point that make
automatically obeys.

Once the makefile is reread with the dependency information, make can continue the
build process in parallel again. This time make chooses to compile all the object files
before building each of the archive libraries. This order is nondeterministic. That is,
if the makefile is run again, it may be that the libcodec.a library might be built before
the playlist.c is compiled, since that library doesn’t require any objects other than
codec.o. Thus, the example represents one possible execution order amongst many.

Finally, the program is linked. For this makefile, the link phase is also a natural syn-
chronization point and will always occur last. If, however, the goal was not a single
program but many programs or libraries, the last command executed might also
vary.

Running multiple jobs on a multiprocessor obviously makes sense, but running more
than one job on a uniprocessor can also be very useful. This is because of the latency
of disk I/O and the large amount of cache on most systems. For instance, if a pro-
cess, such as gcc, is idle waiting for disk I/O it may be that data for another task such
as mv, yacc, or ar is currently in memory. In this case, it would be good to allow the
task with available data to proceed. In general, running make with two jobs on a uni-
processor is almost always faster than running one job, and it is not uncommon for
three or even four tasks to be faster than two.

The --jobs option can be used without a number. If so, make will spawn as many
jobs as there are targets to be updated. This is usually a bad idea, because a large
number of jobs will usually swamp a processor and can run much slower than even a
single job.

Another way to manage multiple jobs is to use the system load average as a guide.
The load average is the number of runnable processes averaged over some period of
time, typically 1 minute, 5 minutes, and 15 minutes. The load average is expressed as
a floating point number. The --load-average (or -l) option gives make a threshold
above which new jobs cannot be spawned. For example, the command:

$ make --load-average=3.5

,ch10.6732 Page 193 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 10: Improving the Performance of make

tells make to spawn new jobs only when the load average is less than or equal to 3.5.
If the load average is greater, make waits until the average drops below this number,
or until all the other jobs finish.

When writing a makefile for parallel execution, attention to proper prerequisites is
even more important. As mentioned previously, when --jobs is 1, a list of prerequi-
sites will usually be evaluated from left to right. When --jobs is greater than 1, these
prerequisites may be evaluated in parallel. Therefore, any dependency relationship
that was implicitly handled by the default left to right evaluation order must be made
explicit when run in parallel.

Another hazard of parallel make is the problem of shared intermediate files. For exam-
ple, if a directory contains both foo.y and bar.y, running yacc twice in parallel could
result in one of them getting the other’s instance of y.tab.c or y.tab.h or both moved
into its own .c or .h file. You face a similar hazard with any procedure that stores
temporary information in a scratch file that has a fixed name.

Another common idiom that hinders parallel execution is invoking a recursive make
from a shell for loop:

dir:
 for d in $(SUBDIRS); \
 do \
 $(MAKE) --directory=$$d; \
 done

As mentioned in the section “Recursive make” in Chapter 6, make cannot execute
these recursive invocations in parallel. To achieve parallel execution, declare the
directories .PHONY and make them targets:

.PHONY: $(SUBDIRS)
$(SUBDIRS):
 $(MAKE) --directory=$@

Distributed make
GNU make supports a little known (and only slightly tested) build option for manag-
ing builds that uses multiple systems over a network. The feature relies upon the
Customs library distributed with Pmake. Pmake is an alternate version of make written
in about 1989 by Adam de Boor (and maintained ever since by Andreas Stolcke) for
the Sprite operating system. The Customs library helps to distribute a make execu-
tion across many machines in parallel. As of version 3.77, GNU make has included
support for the Customs library for distributing make.

To enable Customs library support, you must rebuild make from sources. The
instructions for this process are in the README.customs file in the make distribution.
First, you must download and build the pmake distribution (the URL is in the
README), then build make with the --with-customs option.

,ch10.6732 Page 194 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Distributed make | 195

The heart of the Customs library is the customs daemon that runs on each host par-
ticipating in the distributed make network. These hosts must all share a common view
of the filesystem, such as NFS provides. One instance of the customs daemon is des-
ignated the master. The master monitors hosts in the participating hosts list and allo-
cates jobs to each member. When make is run with the --jobs flag greater than 1, make
contacts the master and together they spawn jobs on available hosts in the network.

The Customs library supports a wide range of features. Hosts can be grouped by
architecture and rated for performance. Arbitrary attributes can be assigned to hosts
and jobs can be allocated to hosts based on combinations of attributes and boolean
operators. Additionally, host status such as idle time, free disk space, free swap
space, and current load average can also be accounted for when processing jobs.

If your project is implemented in C, C++, or Objective-C you should also consider
distcc (http://distcc.samba.org) for distributing compiles across several hosts. distcc
was written by Martin Pool and others to speedup Samba builds. It is a robust and
complete solution for projects written in C, C++, or Objective-C. The tool is used by
simply replacing the C compiler with the distcc program:

$ make --jobs=8 CC=distcc

For each compilation, distcc uses the local compiler to preprocess the output, then
ships the expanded source to an available remote machine for compilation. Finally,
the remote host returns the resulting object file to the master. This approach removes
the necessity for having a shared filesystem, greatly simplifying installation and con-
figuration.

The set of worker or volunteer hosts can be specified in several ways. The simplest is
to list the volunteer hosts in an environment variable before starting distcc:

$ export DISTCC_HOSTS='localhost wasatch oops'

distcc is very configurable with options for handling host lists, integrating with the
native compiler, managing compression, search paths, and handling failure and
recovery.

ccache is another tool for improving compilation performance, written by Samba
project leader Andrew Tridgell. The idea is simple, cache the results of previous com-
piles. Before performing a compile, check if the cache already contains the resulting
object files. This does not require multiple hosts, or even a network. The author
reports a 5 to 10 times speed up in common compilations. The easiest way to use
ccache is to prefix your compiler command with ccache:

$ make CC='ccache gcc'

ccache can be used together with distcc for even greater performance improve-
ments. In addition, both tools are available in the Cygwin tool set.

,ch10.6732 Page 195 Friday, March 25, 2005 2:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

196

Chapter 11CHAPTER 11

Example Makefiles

The makefiles shown throughout this book are industrial strength and quite suitable
for adapting to your most advanced needs. But it’s still worthwhile looking at some
makefiles from real-life projects to see what people have done with make under the
stress of providing deliverables. Here, we discuss several example makefiles in detail.
The first example is the makefile to build this book. The second is the makefile used
to build the 2.6.7 Linux kernel.

The Book Makefile
Writing a book on programming is in itself an interesting exercise in building sys-
tems. The text of the book consists of many files, each of which needs various pre-
processing steps. The examples are real programs that should be run and their
output collected, post-processed, and included in the main text (so that they don’t
have to be cut and pasted, with the risk of introducing errors). During composition,
it is useful to be able to view the text in different formats. Finally, delivering the
material requires packaging. Of course, all of this must be repeatable and relatively
easy to maintain.

Sounds like a job for make! This is one of the great beauties of make. It can be applied
to an amazing variety of problems. This book was written in DocBook format (i.e.,
XML). Applying make to TEX, LATEX, or troff is standard procedure when using
those tools.

Example 11-1 shows the entire makefile for the book. It is about 440 lines long. The
makefile is divided into these basic tasks:

• Managing the examples

• Preprocessing the XML

• Generating various output formats

• Validating the source

• Basic maintenance

,ch11.7363 Page 196 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Book Makefile | 197

Example 11-1. The makefile to build the book

Build the book!
#
The primary targets in this file are:
#
show_pdf Generate the pdf and start a viewer
pdf Generate the pdf
print Print the pdf
show_html Generate the html and start a viewer
html Generate the html
xml Generate the xml
release Make a release tarball
clean Clean up generated files
#

BOOK_DIR := /test/book
SOURCE_DIR := text
OUTPUT_DIR := out
EXAMPLES_DIR := examples

QUIET = @

SHELL = bash
AWK := awk
CP := cp
EGREP := egrep
HTML_VIEWER := cygstart
KILL := /bin/kill
M4 := m4
MV := mv
PDF_VIEWER := cygstart
RM := rm -f
MKDIR := mkdir -p
LNDIR := lndir
SED := sed
SORT := sort
TOUCH := touch
XMLTO := xmlto
XMLTO_FLAGS = -o $(OUTPUT_DIR) $(XML_VERBOSE)
process-pgm := bin/process-includes
make-depend := bin/make-depend

m4-macros := text/macros.m4

$(call process-includes, input-file, output-file)
Remove tabs, expand macros, and process include directives.
define process-includes
 expand $1 | \
 $(M4) --prefix-builtins --include=text $(m4-macros) - | \
 $(process-pgm) > $2
endef

$(call file-exists, file-name)
Return non-null if a file exists.

,ch11.7363 Page 197 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 11: Example Makefiles

file-exists = $(wildcard $1)

$(call maybe-mkdir, directory-name-opt)
Create a directory if it doesn't exist.
If directory-name-opt is omitted use $@ for the directory-name.
maybe-mkdir = $(if $(call file-exists, \
 $(if $1,$1,$(dir $@))),, \
 $(MKDIR) $(if $1,$1,$(dir $@)))

$(kill-acroread)
Terminate the acrobat reader.
define kill-acroread
 $(QUIET) ps -W | \
 $(AWK) 'BEGIN { FIELDWIDTHS = "9 47 100" } \
 /AcroRd32/ { \
 print "Killing " $$3; \
 system("$(KILL) -f " $$1) \
 }'
endef

$(call source-to-output, file-name)
Transform a source tree reference to an output tree reference.
define source-to-output
$(subst $(SOURCE_DIR),$(OUTPUT_DIR),$1)
endef

$(call run-script-example, script-name, output-file)
Run an example makefile.
define run-script-example
 (cd $(dir $1); \
 $(notdir $1) 2>&1 | \
 if $(EGREP) --silent '\$$\(MAKE\)' [mM]akefile; \
 then \
 $(SED) -e 's/^++*/$$/'; \
 else \
 $(SED) -e 's/^++*/$$/' \
 -e '/ing directory /d' \
 -e 's/\[[0-9]\]//'; \
 fi) \
 > $(TMP)/out.$$$$ & \
 $(MV) $(TMP)/out.$$$$ $2
endef

$(call generic-program-example,example-directory)
Create the rules to build a generic example.
define generic-program-example
 $(eval $1_dir := $(OUTPUT_DIR)/$1)
 $(eval $1_make_out := $($1_dir)/make.out)
 $(eval $1_run_out := $($1_dir)/run.out)
 $(eval $1_clean := $($1_dir)/clean)
 $(eval $1_run_make := $($1_dir)/run-make)
 $(eval $1_run_run := $($1_dir)/run-run)
 $(eval $1_sources := $(filter-out %/CVS, $(wildcard $(EXAMPLES_DIR)/$1/*)))

Example 11-1. The makefile to build the book (continued)

,ch11.7363 Page 198 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Book Makefile | 199

 $($1_run_out): $($1_make_out) $($1_run_run)
 $$(call run-script-example, $($1_run_run), $$@)

 $($1_make_out): $($1_clean) $($1_run_make)
 $$(call run-script-example, $($1_run_make), $$@)

 $($1_clean): $($1_sources) Makefile
 $(RM) -r $($1_dir)
 $(MKDIR) $($1_dir)
 $(LNDIR) -silent ../../$(EXAMPLES_DIR)/$1 $($1_dir)
 $(TOUCH) $$@

 $($1_run_make):
 printf "#! /bin/bash -x\nmake\n" > $$@
endef

Book output formats.
BOOK_XML_OUT := $(OUTPUT_DIR)/book.xml
BOOK_HTML_OUT := $(subst xml,html,$(BOOK_XML_OUT))
BOOK_FO_OUT := $(subst xml,fo,$(BOOK_XML_OUT))
BOOK_PDF_OUT := $(subst xml,pdf,$(BOOK_XML_OUT))
ALL_XML_SRC := $(wildcard $(SOURCE_DIR)/*.xml)
ALL_XML_OUT := $(call source-to-output,$(ALL_XML_SRC))
DEPENDENCY_FILES := $(call source-to-output,$(subst .xml,.d,$(ALL_XML_SRC)))

xml/html/pdf - Produce the desired output format for the book.
.PHONY: xml html pdf
xml: $(OUTPUT_DIR)/validate
html: $(BOOK_HTML_OUT)
pdf: $(BOOK_PDF_OUT)

show_pdf - Generate a pdf file and display it.
.PHONY: show_pdf show_html print
show_pdf: $(BOOK_PDF_OUT)
 $(kill-acroread)
 $(PDF_VIEWER) $(BOOK_PDF_OUT)

show_html - Generate an html file and display it.
show_html: $(BOOK_HTML_OUT)
 $(HTML_VIEWER) $(BOOK_HTML_OUT)

print - Print specified pages from the book.
print: $(BOOK_FO_OUT)
 $(kill-acroread)
 java -Dstart=15 -Dend=15 $(FOP) $< -print > /dev/null

$(BOOK_PDF_OUT) - Generate the pdf file.
$(BOOK_PDF_OUT): $(BOOK_FO_OUT) Makefile

$(BOOK_HTML_OUT) - Generate the html file.
$(BOOK_HTML_OUT): $(ALL_XML_OUT) $(OUTPUT_DIR)/validate Makefile

Example 11-1. The makefile to build the book (continued)

,ch11.7363 Page 199 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 11: Example Makefiles

$(BOOK_FO_OUT) - Generate the fo intermediate output file.
.INTERMEDIATE: $(BOOK_FO_OUT)
$(BOOK_FO_OUT): $(ALL_XML_OUT) $(OUTPUT_DIR)/validate Makefile

$(BOOK_XML_OUT) - Process all the xml input files.
$(BOOK_XML_OUT): Makefile

###
FOP Support
#
FOP := org.apache.fop.apps.Fop

DEBUG_FOP - Define this to see fop processor output.
ifndef DEBUG_FOP
 FOP_FLAGS := -q
 FOP_OUTPUT := | $(SED) -e '/not implemented/d' \
 -e '/relative-align/d' \
 -e '/xsl-footnote-separator/d'
endif

CLASSPATH - Compute the appropriate CLASSPATH for fop.
export CLASSPATH
CLASSPATH = $(patsubst %;,%, \
 $(subst ; ,;, \
 $(addprefix c:/usr/xslt-process-2.2/java/, \
 $(addsuffix .jar;, \
 xalan \
 xercesImpl \
 batik \
 fop \
 jimi-1.0 \
 avalon-framework-cvs-20020315))))

%.pdf - Pattern rule to produce pdf output from fo input.
%.pdf: %.fo
 $(kill-acroread)
 java -Xmx128M $(FOP) $(FOP_FLAGS) $< $@ $(FOP_OUTPUT)

%.fo - Pattern rule to produce fo output from xml input.
PAPER_SIZE := letter
%.fo: %.xml
 XSLT_FLAGS="--stringparam paper.type $(PAPER_SIZE)" \
 $(XMLTO) $(XMLTO_FLAGS) fo $<

%.html - Pattern rule to produce html output from xml input.
%.html: %.xml
 $(XMLTO) $(XMLTO_FLAGS) html-nochunks $<

fop_help - Display fop processor help text.
.PHONY: fop_help
fop_help:
 -java org.apache.fop.apps.Fop -help
 -java org.apache.fop.apps.Fop -print help

Example 11-1. The makefile to build the book (continued)

,ch11.7363 Page 200 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Book Makefile | 201

###
release - Produce a release of the book.
#
RELEASE_TAR := mpwm-$(shell date +%F).tar.gz
RELEASE_FILES := README Makefile *.pdf bin examples out text

.PHONY: release
release: $(BOOK_PDF_OUT)
 ln -sf $(BOOK_PDF_OUT) .
 tar --create \
 --gzip \
 --file=$(RELEASE_TAR) \
 --exclude=CVS \
 --exclude=semantic.cache \
 --exclude=*~ \
 $(RELEASE_FILES)
 ls -l $(RELEASE_TAR)

###
Rules for Chapter 1 examples.
#

Here are all the example directories.
EXAMPLES := \
 ch01-bogus-tab \
 ch01-cw1 \
 ch01-hello \
 ch01-cw2 \
 ch01-cw2a \
 ch02-cw3 \
 ch02-cw4 \
 ch02-cw4a \
 ch02-cw5 \
 ch02-cw5a \
 ch02-cw5b \
 ch02-cw6 \
 ch02-make-clean \
 ch03-assert-not-null \
 ch03-debug-trace \
 ch03-debug-trace-1 \
 ch03-debug-trace-2 \
 ch03-filter-failure \
 ch03-find-program-1 \
 ch03-find-program-2 \
 ch03-findstring-1 \
 ch03-grep \
 ch03-include \
 ch03-invalid-variable \
 ch03-kill-acroread \
 ch03-kill-program \
 ch03-letters \
 ch03-program-variables-1 \

Example 11-1. The makefile to build the book (continued)

,ch11.7363 Page 201 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 11: Example Makefiles

 ch03-program-variables-2 \
 ch03-program-variables-3 \
 ch03-program-variables-5 \
 ch03-scoping-issue \
 ch03-shell \
 ch03-trailing-space \
 ch04-extent \
 ch04-for-loop-1 \
 ch04-for-loop-2 \
 ch04-for-loop-3 \
 ch06-simple \
 appb-defstruct \
 appb-arithmetic

I would really like to use this foreach loop, but a bug in 3.80
generates a fatal error.
#$(foreach e,$(EXAMPLES),$(eval $(call generic-program-example,$e)))

Instead I expand the foreach by hand here.
$(eval $(call generic-program-example,ch01-bogus-tab))
$(eval $(call generic-program-example,ch01-cw1))
$(eval $(call generic-program-example,ch01-hello))
$(eval $(call generic-program-example,ch01-cw2))
$(eval $(call generic-program-example,ch01-cw2a))
$(eval $(call generic-program-example,ch02-cw3))
$(eval $(call generic-program-example,ch02-cw4))
$(eval $(call generic-program-example,ch02-cw4a))
$(eval $(call generic-program-example,ch02-cw5))
$(eval $(call generic-program-example,ch02-cw5a))
$(eval $(call generic-program-example,ch02-cw5b))
$(eval $(call generic-program-example,ch02-cw6))
$(eval $(call generic-program-example,ch02-make-clean))
$(eval $(call generic-program-example,ch03-assert-not-null))
$(eval $(call generic-program-example,ch03-debug-trace))
$(eval $(call generic-program-example,ch03-debug-trace-1))
$(eval $(call generic-program-example,ch03-debug-trace-2))
$(eval $(call generic-program-example,ch03-filter-failure))
$(eval $(call generic-program-example,ch03-find-program-1))
$(eval $(call generic-program-example,ch03-find-program-2))
$(eval $(call generic-program-example,ch03-findstring-1))
$(eval $(call generic-program-example,ch03-grep))
$(eval $(call generic-program-example,ch03-include))
$(eval $(call generic-program-example,ch03-invalid-variable))
$(eval $(call generic-program-example,ch03-kill-acroread))
$(eval $(call generic-program-example,ch03-kill-program))
$(eval $(call generic-program-example,ch03-letters))
$(eval $(call generic-program-example,ch03-program-variables-1))
$(eval $(call generic-program-example,ch03-program-variables-2))
$(eval $(call generic-program-example,ch03-program-variables-3))
$(eval $(call generic-program-example,ch03-program-variables-5))
$(eval $(call generic-program-example,ch03-scoping-issue))
$(eval $(call generic-program-example,ch03-shell))

Example 11-1. The makefile to build the book (continued)

,ch11.7363 Page 202 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Book Makefile | 203

$(eval $(call generic-program-example,ch03-trailing-space))
$(eval $(call generic-program-example,ch04-extent))
$(eval $(call generic-program-example,ch04-for-loop-1))
$(eval $(call generic-program-example,ch04-for-loop-2))
$(eval $(call generic-program-example,ch04-for-loop-3))
$(eval $(call generic-program-example,ch06-simple))
$(eval $(call generic-program-example,ch10-echo-bash))
$(eval $(call generic-program-example,appb-defstruct))
$(eval $(call generic-program-example,appb-arithmetic))

###
validate
#
Check for 1) unexpanded m4 macros; b) tabs; c) FIXME comments; d)
RM: responses to Andy; e) duplicate m4 macros
#
validation_checks := $(OUTPUT_DIR)/chk_macros_tabs \
 $(OUTPUT_DIR)/chk_fixme \
 $(OUTPUT_DIR)/chk_duplicate_macros \
 $(OUTPUT_DIR)/chk_orphaned_examples

.PHONY: validate-only
validate-only: $(OUTPUT_DIR)/validate
$(OUTPUT_DIR)/validate: $(validation_checks)
 $(TOUCH) $@

$(OUTPUT_DIR)/chk_macros_tabs: $(ALL_XML_OUT)
 # Looking for macros and tabs...
 $(QUIET)! $(EGREP) --ignore-case \
 --line-number \
 --regexp='\b(m4_|mp_)' \
 --regexp='\011' \
 $^
 $(TOUCH) $@

$(OUTPUT_DIR)/chk_fixme: $(ALL_XML_OUT)
 # Looking for RM: and FIXME...
 $(QUIET)$(AWK) \
 '/FIXME/ { printf "%s:%s: %s\n", FILENAME, NR, $$0 } \
 /^ *RM:/ { \
 if ($$0 !~ /RM: Done/) \
 printf "%s:%s: %s\n", FILENAME, NR, $$0 \
 }' $(subst $(OUTPUT_DIR)/,$(SOURCE_DIR)/,$^)
 $(TOUCH) $@

$(OUTPUT_DIR)/chk_duplicate_macros: $(SOURCE_DIR)/macros.m4
 # Looking for duplicate macros...
 $(QUIET)! $(EGREP) --only-matching \
 "\`[^']+'," $< | \
 $(SORT) | \
 uniq -c | \

Example 11-1. The makefile to build the book (continued)

,ch11.7363 Page 203 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 11: Example Makefiles

 $(AWK) '$$1 > 1 { printf "$<:0: %s\n", $$0 }' | \
 $(EGREP) "^"
 $(TOUCH) $@

ALL_EXAMPLES := $(TMP)/all_examples

$(OUTPUT_DIR)/chk_orphaned_examples: $(ALL_EXAMPLES) $(DEPENDENCY_FILES)
 $(QUIET)$(AWK) -F/ '/(EXAMPLES|OUTPUT)_DIR/ { print $$3 }' \
 $(filter %.d,$^) | \
 $(SORT) -u | \
 comm -13 - $(filter-out %.d,$^)
 $(TOUCH) $@

.INTERMEDIATE: $(ALL_EXAMPLES)
$(ALL_EXAMPLES):
 # Looking for unused examples...
 $(QUIET) ls -p $(EXAMPLES_DIR) | \
 $(AWK) '/CVS/ { next } \
 /\// { print substr($$0, 1, length - 1) }' > $@

###
clean
#
clean:
 $(kill-acroread)
 $(RM) -r $(OUTPUT_DIR)
 $(RM) $(SOURCE_DIR)/*~ $(SOURCE_DIR)/*.log semantic.cache
 $(RM) book.pdf

###
Dependency Management
#
Don't read or remake includes if we are doing a clean.
#
ifneq "$(MAKECMDGOALS)" "clean"
 -include $(DEPENDENCY_FILES)
endif

vpath %.xml $(SOURCE_DIR)
vpath %.tif $(SOURCE_DIR)
vpath %.eps $(SOURCE_DIR)

$(OUTPUT_DIR)/%.xml: %.xml $(process-pgm) $(m4-macros)
 $(call process-includes, $<, $@)

$(OUTPUT_DIR)/%.tif: %.tif
 $(CP) $< $@

$(OUTPUT_DIR)/%.eps: %.eps
 $(CP) $< $@

$(OUTPUT_DIR)/%.d: %.xml $(make-depend)
 $(make-depend) $< > $@

Example 11-1. The makefile to build the book (continued)

,ch11.7363 Page 204 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Book Makefile | 205

The makefile is written to run under Cygwin with no serious attempt at portability to
Unix. Nevertheless, I believe there are few, if any, incompatibilities with Unix that
cannot be resolved by redefining a variable or possibly introducing an additional
variable.

The global variables section first defines the location of the root directory and the rel-
ative locations of the text, examples, and output directories. Each nontrivial pro-
gram used by the makefile is defined as a variable.

Managing Examples
The first task, managing the examples, is the most complex. Each example is stored
in its own directory under book/examples/chn-<title>. Examples consist of a makefile
along with any supporting files and directories. To process an example we first create
a directory of symbolic links to the output tree and work there so that no artifacts of
running the makefile are left in the source tree. Furthermore, most of the examples
require setting the current working directory to that of the makefile, in order to gen-
erate the expected output. After symlinking the source, we execute a shell script,
run-make, to invoke the makefile with the appropriate arguments. If no shell script is
present in the source tree, we can generate a default version. The output of the run-
make script is saved in make.out. Some examples produce an executable, which must
also be run. This is accomplished by running the script run-run and saving its output
in the file run.out.

###
Create Output Directory
#
Create the output directory if necessary.
#
DOCBOOK_IMAGES := $(OUTPUT_DIR)/release/images
DRAFT_PNG := /usr/share/docbook-xsl/images/draft.png

ifneq "$(MAKECMDGOALS)" "clean"
 _CREATE_OUTPUT_DIR := \
 $(shell \
 $(MKDIR) $(DOCBOOK_IMAGES) & \
 $(CP) $(DRAFT_PNG) $(DOCBOOK_IMAGES); \
 if ! [[$(foreach d, \
 $(notdir \
 $(wildcard $(EXAMPLES_DIR)/ch*)), \
 -e $(OUTPUT_DIR)/$d &) -e .]]; \
 then \
 echo Linking examples... > /dev/stderr; \
 $(LNDIR) $(BOOK_DIR)/$(EXAMPLES_DIR) $(BOOK_DIR)/$(OUTPUT_DIR); \
 fi)
endif

Example 11-1. The makefile to build the book (continued)

,ch11.7363 Page 205 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 11: Example Makefiles

Creating the tree of symbolic links is performed by this code at the end of the
makefile:

ifneq "$(MAKECMDGOALS)" "clean"
 _CREATE_OUTPUT_DIR := \
 $(shell \
 …
 if ! [[$(foreach d, \
 $(notdir \
 $(wildcard $(EXAMPLES_DIR)/ch*)), \
 -e $(OUTPUT_DIR)/$d &&) -e .]]; \
 then \
 echo Linking examples... > /dev/stderr; \
 $(LNDIR) $(BOOK_DIR)/$(EXAMPLES_DIR) $(BOOK_DIR)/$(OUTPUT_DIR); \
 fi)
endif

The code consists of a single, simple variable assignment wrapped in an ifneq condi-
tional. The conditional is there to prevent make from creating the output directory
structure during a make clean. The actual variable is a dummy whose value is never
used. However, the shell function on the right-hand side is executed immediately
when make reads the makefile. The shell function checks if each example directory
exists in the output tree. If any is missing, the lndir command is invoked to update
the tree of symbolic links.

The test used by the if is worth examining more closely. The test itself consists of
one -e test (i.e., does the file exist?) for each example directory. The actual code goes
something like this: use wildcard to determine all the examples and strip their direc-
tory part with notdir, then for each example directory produce the text -e $(OUTPUT_
DIR)/dir &&. Now, concatenate all these pieces, and embed them in a bash [[...]]
test. Finally, negate the result. One extra test, -e ., is included to allow the foreach
loop to simply add && to every clause.

This is sufficient to ensure that new directories are always added to the build when
they are discovered.

The next step is to create rules that will update the two output files, make.out and
run.out. This is done for each example .out file with a user-defined function:

$(call generic-program-example,example-directory)
Create the rules to build a generic example.
define generic-program-example
 $(eval $1_dir := $(OUTPUT_DIR)/$1)
 $(eval $1_make_out := $($1_dir)/make.out)
 $(eval $1_run_out := $($1_dir)/run.out)
 $(eval $1_clean := $($1_dir)/clean)
 $(eval $1_run_make := $($1_dir)/run-make)
 $(eval $1_run_run := $($1_dir)/run-run)
 $(eval $1_sources := $(filter-out %/CVS, $(wildcard $(EXAMPLES_DIR)/$1/*)))

 $($1_run_out): $($1_make_out) $($1_run_run)
 $$(call run-script-example, $($1_run_run), $$@)

,ch11.7363 Page 206 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Book Makefile | 207

 $($1_make_out): $($1_clean) $($1_run_make)
 $$(call run-script-example, $($1_run_make), $$@)

 $($1_clean): $($1_sources) Makefile
 $(RM) -r $($1_dir)
 $(MKDIR) $($1_dir)
 $(LNDIR) -silent ../../$(EXAMPLES_DIR)/$1 $($1_dir)
 $(TOUCH) $$@

 $($1_run_make):
 printf "#! /bin/bash -x\nmake\n" > $$@
endef

This function is intended to be invoked once for each example directory:

$(eval $(call generic-program-example,ch01-bogus-tab))
$(eval $(call generic-program-example,ch01-cw1))
$(eval $(call generic-program-example,ch01-hello))
$(eval $(call generic-program-example,ch01-cw2))

The variable definitions at the beginning of the function are mostly for convenience
and to improve readability. Further improvement comes from performing the assign-
ments inside eval so their value can be used immediately by the macro without extra
quoting.

The heart of the function is the first two targets: $($1_run_out) and $($1_make_out).
These update the run.out and make.out targets for each example, respectively. The
variable names are composed from the example directory name and the indicated
suffix, _run_out or _make_out.

The first rule says that run.out depends upon make.out and the run-run script. That
is, rerun the example program if make has been run or the run-run control script has
been updated. The target is updated with the run-script-example function:

$(call run-script-example, script-name, output-file)
Run an example makefile.
define run-script-example
 (cd $(dir $1); \
 $(notdir $1) 2>&1 | \
 if $(EGREP) --silent '\$$\(MAKE\)' [mM]akefile; \
 then \
 $(SED) -e 's/^++*/$$/'; \
 else \
 $(SED) -e 's/^++*/$$/' \
 -e '/ing directory /d' \
 -e 's/\[[0-9]\]//'; \
 fi) \
 > $(TMP)/out.$$$$ && \
 $(MV) $(TMP)/out.$$$$ $2
endef

,ch11.7363 Page 207 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 11: Example Makefiles

This function requires the path to the script and the output filename. It changes to
the script’s directory and runs the script, piping both the standard output and error
output through a filter to clean them up.*

The make.out target is similar but has an added complication. If new files are
added to an example, we would like to detect the situation and rebuild the example.
The _CREATE_OUTPUT_DIR code rebuilds symlinks only if a new directory is discovered,
not when new files are added. To detect this situation, we drop a timestamp file in
each example directory indicating when the last lndir was performed. The $($1_
clean) target updates this timestamp file and depends upon the actual source files in
the examples directory (not the symlinks in the output directory). If make’s depen-
dency analysis discovers a newer file in the examples directory than the clean times-
tamp file, the command script will delete the symlinked output directory, recreate it,
and drop a new clean timestamp file. This action is also performed when the makefile
itself is modified.

Finally, the run-make shell script invoked to run the makefile is typically a two-line
script.

#! /bin/bash -x
make

It quickly became tedious to produce these boilerplate scripts, so the $($1_run_make)
target was added as a prerequisite to $($1_make_out) to create it. If the prerequisite is
missing, the makefile generates it in the output tree.

The generic-program-example function, when executed for each example directory,
creates all the rules for running examples and preparing the output for inclusion in
the XML files. These rules are triggered by computed dependencies included in the
makefile. For example, the dependency file for Chapter 1 is:

out/ch01.xml: $(EXAMPLES_DIR)/ch01-hello/Makefile
out/ch01.xml: $(OUTPUT_DIR)/ch01-hello/make.out
out/ch01.xml: $(EXAMPLES_DIR)/ch01-cw1/count_words.c
out/ch01.xml: $(EXAMPLES_DIR)/ch01-cw1/lexer.l
out/ch01.xml: $(EXAMPLES_DIR)/ch01-cw1/Makefile
out/ch01.xml: $(OUTPUT_DIR)/ch01-cw1/make.out
out/ch01.xml: $(EXAMPLES_DIR)/ch01-cw2/lexer.l
out/ch01.xml: $(OUTPUT_DIR)/ch01-cw2/make.out
out/ch01.xml: $(OUTPUT_DIR)/ch01-cw2/run.out
out/ch01.xml: $(OUTPUT_DIR)/ch01-bogus-tab/make.out

* The cleaning process gets complex. The run-run and run-make scripts often use bash -x to allow the actual
make command line to be echoed. The -x option puts ++ before each command in the output, which the clean-
ing script transforms into a simple $ representing the shell prompt. However, commands are not the only
information to appear in the output. Because make is running the example and eventually starts another make,
simple makefiles include extra, unwanted output such as the messages Entering directory ... and Leaving
directory . .. as well as displaying a make level number in messages. For simple makefiles that do not recur-
sively invoke make, we strip this inappropriate output to present the output of make as if it were run from a
top-level shell.

,ch11.7363 Page 208 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Book Makefile | 209

These dependencies are generated by a simple awk script, imaginatively named make-
depend:

#! /bin/awk -f

function generate_dependency(prereq)
{
 filename = FILENAME
 sub(/text/, "out", filename)
 print filename ": " prereq
}

/^ *include-program/ {
 generate_dependency("$(EXAMPLES_DIR)/" $2)
}

/^ *mp_program\(/ {
 match($0, /\((.*)\)/, names)
 generate_dependency("$(EXAMPLES_DIR)/" names[1])
}

/^ *include-output/ {
 generate_dependency("$(OUTPUT_DIR)/" $2)
}

/^ *mp_output\(/ {
 match($0, /\((.*)\)/, names)
 generate_dependency("$(OUTPUT_DIR)/" names[1])
}

/graphic fileref/ {
 match($0, /"(.*)"/, out_file)
 generate_dependency(out_file[1]);
}

The script searches for patterns like:

mp_program(ch01-hello/Makefile)
mp_output(ch01-hello/make.out)

(The mp_program macro uses the program listing format, while the mp_output macro
uses the program output format.) The script generates the dependency from the
source filename and the filename parameter.

Finally, the generation of dependency files is triggered by a make include statement, in
the usual fashion:

$(call source-to-output, file-name)
Transform a source tree reference to an output tree reference.
define source-to-output
$(subst $(SOURCE_DIR),$(OUTPUT_DIR),$1)
endef
...
ALL_XML_SRC := $(wildcard $(SOURCE_DIR)/*.xml)
DEPENDENCY_FILES := $(call source-to-output,$(subst .xml,.d,$(ALL_XML_SRC)))

,ch11.7363 Page 209 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 11: Example Makefiles

...
ifneq "$(MAKECMDGOALS)" "clean"
 -include $(DEPENDENCY_FILES)
endif

vpath %.xml $(SOURCE_DIR)
...
$(OUTPUT_DIR)/%.d: %.xml $(make-depend)
 $(make-depend) $< > $@

This completes the code for handling examples. Most of the complexity stems from
the desire to include the actual source of the makefiles as well as the actual output
from make and the example programs. I suspect there is also a little bit of the “put up
or shut up” syndrome here. If I believe make is so great, it should be able to handle
this complex task and, by golly, it can.

XML Preprocessing
At the risk of branding myself as a philistine for all posterity, I must admit I don’t
like XML very much. I find it awkward and verbose. So, when I discovered that the
manuscript must be written in DocBook, I looked for more traditional tools that
would help ease the pain. The m4 macro processor and awk were two tools that
helped immensely.

There were two problems with DocBook and XML that m4 was perfect for: avoiding
the verbose syntax of XML and managing the XML identifiers used in cross-referenc-
ing. For instance, to emphasize a word in DocBook, you must write:

<emphasis>not</emphasis>

Using m4, I wrote a simple macro that allowed me to instead write:

mp_em(not)

Ahh, that feels better. In addition, I introduced many symbolic formatting styles
appropriate for the material, such as mp_variable and mp_target. This allowed me to
select a trivial format, such as literal, and change it later to whatever the production
department preferred without having to perform a global search and replace.

I’m sure the XML aficionados will probably send me boat loads of email telling me
how to do this with entities or some such, but remember Unix is about getting the
job done now with the tools at hand, and as Larry Wall loves to say, “there’s more
than one way to do it.” Besides, I’m afraid learning too much XML will rot my brain.

The second task for m4 was handling the XML identifiers used for cross-referencing.
Each chapter, section, example, and table is labeled with an identifier:

<sect1 id="MPWM-CH-7-SECT-1">

References to a chapter must use this identifier. This is clearly an issue from a pro-
gramming standpoint. The identifiers are complex constants sprinkled throughout

,ch11.7363 Page 210 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Book Makefile | 211

the “code.” Furthermore, the symbols themselves have no meaning. I have no idea
what section 1 of Chapter 7 might have been about. By using m4, I could avoid dupli-
cating complex literals, and provide a more meaningful name:

<sect1 id="mp_se_makedepend">

Most importantly, if chapters or sections shift, as they did many times, the text could
be updated by changing a few constants in a single file. The advantage was most
noticeable when sections were renumbered in a chapter. Such an operation might
require a half dozen global search and replace operations across all files if I hadn’t
used symbolic references.

Here is an example of several m4 macros*:

m4_define(`mp_tag', `<$1>`$2'</$1>')
m4_define(`mp_lit', `mp_tag(literal, `$1')')

m4_define(`mp_cmd', `mp_tag(command,`$1')')
m4_define(`mp_target', `mp_lit($1)')

m4_define(`mp_all', `mp_target(all)')
m4_define(`mp_bash', `mp_cmd(bash)')

m4_define(`mp_ch_examples', `MPWM-CH-11')
m4_define(`mp_se_book', `MPWM-CH-11.1')
m4_define(`mp_ex_book_makefile',`MPWM-CH-11-EX-1')

The other preprocessing task was to implement an include feature for slurping in the
example text previously discussed. This text needed to have its tabs converted to
spaces (since O’Reilly’s DocBook converter cannot handle tabs and makefiles have
lots of tabs!), must be wrapped in a [CDATA[...]] to protect special characters, and
finally, has to trim the extra newlines at the beginning and end of examples. I accom-
plished this with another little awk program called process-includes:

#! /usr/bin/awk -f
function expand_cdata(dir)
{
 start_place = match($1, "include-")
 if (start_place > 0)
 {
 prefix = substr($1, 1, start_place - 1)
 }
 else
 {
 print "Bogus include '" $0 "'" > "/dev/stderr"
 }

 end_place = match($2, "(</(programlisting|screen)>.*)$", tag)

* The mp prefix stands for Managing Projects (the book’s title), macro processor, or make pretty. Take your
pick.

,ch11.7363 Page 211 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 11: Example Makefiles

 if (end_place > 0)
 {
 file = dir substr($2, 1, end_place - 1)
 }
 else
 {
 print "Bogus include '" $0 "'" > "/dev/stderr"
 }

 command = "expand " file

 printf "%s>&33;&91;CDATA[", prefix
 tail = 0
 previous_line = ""
 while ((command | getline line) > 0)
 {
 if (tail)
 print previous_line;

 tail = 1
 previous_line = line
 }

 printf "%s&93;&93;&62;%s\n", previous_line, tag[1]
 close(command)
}

/include-program/ {
 expand_cdata("examples/")
 next;
}

/include-output/ {
 expand_cdata("out/")
 next;
}

/<(programlisting|screen)> *$/ {
 # Find the current indentation.
 offset = match($0, "<(programlisting|screen)>")

 # Strip newline from tag.
 printf $0

 # Read the program...
 tail = 0
 previous_line = ""
 while ((getline line) > 0)
 {
 if (line ~ "</(programlisting|screen)>")
 {
 gsub(/^ */, "", line)
 break
 }

,ch11.7363 Page 212 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Book Makefile | 213

 if (tail)
 print previous_line

 tail = 1
 previous_line = substr(line, offset + 1)
 }

 printf "%s%s\n", previous_line, line

 next
}

{
 print
}

In the makefile, we copy the XML files from the source tree to the output tree, trans-
forming tabs, macros, and include files in the process:

process-pgm := bin/process-includes
m4-macros := text/macros.m4

$(call process-includes, input-file, output-file)
Remove tabs, expand macros, and process include directives.
define process-includes
 expand $1 | \
 $(M4) --prefix-builtins --include=text $(m4-macros) - | \
 $(process-pgm) > $2
endef

vpath %.xml $(SOURCE_DIR)

$(OUTPUT_DIR)/%.xml: %.xml $(process-pgm) $(m4-macros)
 $(call process-includes, $<, $@)

The pattern rule indicates how to get an XML file from the source tree into the out-
put tree. It also says that all the output XML files should be regenerated if the mac-
ros or the include processor change.

Generating Output
So far, nothing we’ve covered has actually formatted any text or created anything
that can be printed or displayed. Obviously, a very important feature if the makefile
is to format a book. There were two formats that I was interested in: HTML and
PDF.

I figured out how to format to HTML first. There’s a great little program, xsltproc,
and its helper script, xmlto, that I used to do the job. Using these tools, the process
was fairly simple:

Book output formats.
BOOK_XML_OUT := $(OUTPUT_DIR)/book.xml
BOOK_HTML_OUT := $(subst xml,html,$(BOOK_XML_OUT))

,ch11.7363 Page 213 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 11: Example Makefiles

ALL_XML_SRC := $(wildcard $(SOURCE_DIR)/*.xml)
ALL_XML_OUT := $(call source-to-output,$(ALL_XML_SRC))

html - Produce the desired output format for the book.
.PHONY: html
html: $(BOOK_HTML_OUT)

show_html - Generate an html file and display it.
.PHONY: show_html
show_html: $(BOOK_HTML_OUT)
 $(HTML_VIEWER) $(BOOK_HTML_OUT)

$(BOOK_HTML_OUT) - Generate the html file.
$(BOOK_HTML_OUT): $(ALL_XML_OUT) $(OUTPUT_DIR)/validate Makefile

%.html - Pattern rule to produce html output from xml input.
%.html: %.xml
 $(XMLTO) $(XMLTO_FLAGS) html-nochunks $<

The pattern rule does most of the work of converting an XML file into an HTML file.
The book is organized as a single top-level file, book.xml, that includes each chapter.
The top-level file is represented by BOOK_XML_OUT. The HTML counterpart is BOOK_
HTML_OUT, which is a target. The BOOK_HTML_OUT file has its included XML files a pre-
requisites. For convenience, there are two phony targets, html and show_html, that
create the HTML file and display it in the local browser, respectively.

Although easy in principle, generating PDF was considerably more complex. The
xsltproc program is able to produce PDF directly, but I was unable to get it to work.
All this work was done on Windows with Cygwin and the Cygwin version of
xsltproc wanted POSIX paths. The custom version of DocBook I was using and the
manuscript itself contained Windows-specific paths. This difference, I believe, gave
xsltproc fits that I could not quell. Instead, I chose to use xsltproc to generate XML
formatting objects and the Java program FOP (http://xml.apache.org/fop) for generat-
ing the PDF.

Thus, the code to generate PDF is somewhat longer:

Book output formats.
BOOK_XML_OUT := $(OUTPUT_DIR)/book.xml
BOOK_FO_OUT := $(subst xml,fo,$(BOOK_XML_OUT))
BOOK_PDF_OUT := $(subst xml,pdf,$(BOOK_XML_OUT))
ALL_XML_SRC := $(wildcard $(SOURCE_DIR)/*.xml)
ALL_XML_OUT := $(call source-to-output,$(ALL_XML_SRC))

pdf - Produce the desired output format for the book.
.PHONY: pdf
pdf: $(BOOK_PDF_OUT)

show_pdf - Generate a pdf file and display it.
.PHONY: show_pdf
show_pdf: $(BOOK_PDF_OUT)
 $(kill-acroread)
 $(PDF_VIEWER) $(BOOK_PDF_OUT)

,ch11.7363 Page 214 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Book Makefile | 215

$(BOOK_PDF_OUT) - Generate the pdf file.
$(BOOK_PDF_OUT): $(BOOK_FO_OUT) Makefile

$(BOOK_FO_OUT) - Generate the fo intermediate output file.
.INTERMEDIATE: $(BOOK_FO_OUT)
$(BOOK_FO_OUT): $(ALL_XML_OUT) $(OUTPUT_DIR)/validate Makefile

FOP Support
FOP := org.apache.fop.apps.Fop

DEBUG_FOP - Define this to see fop processor output.
ifndef DEBUG_FOP
 FOP_FLAGS := -q
 FOP_OUTPUT := | $(SED) -e '/not implemented/d' \
 -e '/relative-align/d' \
 -e '/xsl-footnote-separator/d'
endif

CLASSPATH - Compute the appropriate CLASSPATH for fop.
export CLASSPATH
CLASSPATH = $(patsubst %;,%, \
 $(subst ; ,;, \
 $(addprefix c:/usr/xslt-process-2.2/java/, \
 $(addsuffix .jar;, \
 xalan \
 xercesImpl \
 batik \
 fop \
 jimi-1.0 \
 avalon-framework-cvs-20020315))))

%.pdf - Pattern rule to produce pdf output from fo input.
%.pdf: %.fo
 $(kill-acroread)
 java -Xmx128M $(FOP) $(FOP_FLAGS) $< $@ $(FOP_OUTPUT)

%.fo - Pattern rule to produce fo output from xml input.
PAPER_SIZE := letter
%.fo: %.xml
 XSLT_FLAGS="--stringparam paper.type $(PAPER_SIZE)" \
 $(XMLTO) $(XMLTO_FLAGS) fo $<

fop_help - Display fop processor help text.
.PHONY: fop_help
fop_help:
 -java org.apache.fop.apps.Fop -help
 -java org.apache.fop.apps.Fop -print help

As you can see, there are now two pattern rules reflecting the two-stage process I
used. The .xml to .fo rule invokes xmlto. The .fo to .pdf rule first kills any running
Acrobat reader (because the program locks the PDF file, preventing FOP from writ-
ing the file), then runs FOP. FOP is a very chatty program, and scrolling through
hundreds of lines of pointless warnings got old fast, so I added a simple sed filter,

,ch11.7363 Page 215 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 11: Example Makefiles

FOP_OUTPUT, to remove the irritating warnings. Occasionally, however, those warn-
ings had some real data in them, so I added a debugging feature, DEBUG_FOP, to dis-
able my filter. Finally, like the HTML version, I added two convenience targets, pdf
and show_pdf, to kick the whole thing off.

Validating the Source
What with DocBook’s allergy to tabs, macro processors, include files and comments
from editors, making sure the source text is correct and complete is not easy. To help,
I implemented four validation targets that check for various forms of correctness.

validation_checks := $(OUTPUT_DIR)/chk_macros_tabs \
 $(OUTPUT_DIR)/chk_fixme \
 $(OUTPUT_DIR)/chk_duplicate_macros \
 $(OUTPUT_DIR)/chk_orphaned_examples

.PHONY: validate-only
validate-only: $(OUTPUT_DIR)/validate
$(OUTPUT_DIR)/validate: $(validation_checks)
 $(TOUCH) $@

Each target generates a timestamp file, and they are all prerequisites of a top-level
timestamp file, validate.

$(OUTPUT_DIR)/chk_macros_tabs: $(ALL_XML_OUT)
 # Looking for macros and tabs...
 $(QUIET)! $(EGREP) --ignore-case \
 --line-number \
 --regexp='\b(m4_|mp_)' \
 --regexp='\011' \
 $^
 $(TOUCH) $@

This first check looks for m4 macros that were not expanded during preprocessing.
This indicates either a misspelled macro or a macro that has never been defined. The
check also scans for tab characters. Of course, neither of these situations should ever
happen, but they did! One interesting bit in the command script is the exclamation
point after $(QUIET). The purpose is to negate the exit status of egrep. That is, make
should consider the command a failure if egrep does find one of the patterns.

$(OUTPUT_DIR)/chk_fixme: $(ALL_XML_OUT)
 # Looking for RM: and FIXME...
 $(QUIET)$(AWK) \
 '/FIXME/ { printf "%s:%s: %s\n", FILENAME, NR, $$0 } \
 /^ *RM:/ { \
 if ($$0 !~ /RM: Done/) \
 printf "%s:%s: %s\n", FILENAME, NR, $$0 \
 }' $(subst $(OUTPUT_DIR)/,$(SOURCE_DIR)/,$^)
 $(TOUCH) $@

This check is for unresolved notes to myself. Obviously, any text labeled FIXME
should be fixed and the label removed. In addition, any occurrence of RM: that is not

,ch11.7363 Page 216 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Book Makefile | 217

followed immediately by Done should be flagged. Notice how the format of the
printf function follows the standard format for compiler errors. This way, standard
tools that recognize compiler errors will properly process these warnings.

$(OUTPUT_DIR)/chk_duplicate_macros: $(SOURCE_DIR)/macros.m4
 # Looking for duplicate macros...
 $(QUIET)! $(EGREP) --only-matching \
 "\[^]+'," $< | \
 $(SORT) | \
 uniq -c | \
 $(AWK) '$$1 > 1 { printf "$>:0: %s\n", $$0 }' | \
 $(EGREP) "^"
 $(TOUCH) $@

This checks for duplicate macro definitions in the m4 macro file. The m4 processor
does not consider redefinition to be an error, so I added a special check. The pipe-
line goes like this: grab the defined symbol in each macro, sort, count duplicates, fil-
ter out all lines with a count of one, then use egrep one last time purely for its exit
status. Again, note the negation of the exit status to produce a make error only when
something is found.

ALL_EXAMPLES := $(TMP)/all_examples

$(OUTPUT_DIR)/chk_orphaned_examples: $(ALL_EXAMPLES) $(DEPENDENCY_FILES)
 $(QUIET)$(AWK) -F/ '/(EXAMPLES|OUTPUT)_DIR/ { print $$3 }' \
 $(filter %.d,$^) | \
 $(SORT) -u | \
 comm -13 - $(filter-out %.d,$^)
 $(TOUCH) $@

.INTERMEDIATE: $(ALL_EXAMPLES)
$(ALL_EXAMPLES):
 # Looking for unused examples...
 $(QUIET) ls -p $(EXAMPLES_DIR) | \
 $(AWK) '/CVS/ { next } \
 /\// { print substr($$0, 1, length - 1) }' > $@

The final check looks for examples that are not referenced in the text. This target
uses a funny trick. It requires two sets of input files: all the example directories, and
all the XML dependency files. The prerequisites list is separated into these two sets
using filter and filter-out. The list of example directories is generated by using ls
-p (this appends a slash to each directory) and scanning for slashes. The pipeline first
grabs the XML dependency files from the prerequisite list, outputs the example
directories it finds in them, and removes any duplicates. These are the examples
actually referenced in the text. This list is fed to comm’s standard input, while the list
of all known example directories is fed as the second file. The -13 option indicates
that comm should print only lines found in column two (that is, directories that are
not referenced from a dependency file).

,ch11.7363 Page 217 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 11: Example Makefiles

The Linux Kernel Makefile
The Linux kernel makefile is an excellent example of using make in a complex build
environment. While it is beyond the scope of this book to explain how the Linux ker-
nel is structured and built, we can examine several interesting uses of make employed
by the kernel build system. See http://macarchive.linuxsymposium.org/ols2003/
Proceedings/All-Reprints/Reprint-Germaschewski-OLS2003.pdf for a more complete
discussion of the 2.5/2.6 kernel build process and its evolution from the 2.4 approach.

Since the makefile has so many facets, we will discuss just a few features that are
applicable to a variety of applications. First, we’ll look at how single-letter make vari-
ables are used to simulate single-letter command-line options. We’ll see how the
source and binary trees are separated in a way that allows users to invoke make from
the source tree. Next, we’ll examine the way the makefile controls the verboseness of
the output. Then we’ll review the most interesting user-defined functions and see
how they reduce code duplication, improve readability, and provide encapsulation.
Finally, we’ll look at the way the makefile implements a simple help facility.

The Linux kernel build follows the familiar configure, build, install pattern used by
my most free software. While many free and open software packages use a separate
configure script (typically built by autoconf), the Linux kernel makefile implements
configuration with make, invoking scripts and helper programs indirectly.

When the configuration phase is complete, a simple make or make all will build the
bare kernel, all the modules, and produce a compressed kernel image (these are the
vmlinux, modules, and bzImage targets, respectively). Each kernel build is given a
unique version number in the file version.o linked into the kernel. This number (and
the version.o file) are updated by the makefile itself.

Some makefile features you might want to adapt to your own makefile are: the han-
dling of command line options, analyzing command-line goals, saving build status
between builds, and managing the output of make.

Command-Line Options
The first part of the makefile contains code for setting common build options from
the command line. Here is an excerpt that controls the verbose flag:

To put more focus on warnings, be less verbose as default
Use 'make V=1' to see the full commands
ifdef V
 ifeq ("$(origin V)", "command line")
 KBUILD_VERBOSE = $(V)
 endif
endif
ifndef KBUILD_VERBOSE
 KBUILD_VERBOSE = 0
endif

,ch11.7363 Page 218 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Linux Kernel Makefile | 219

The nested ifdef/ifeq pair ensures that the KBUILD_VERBOSE variable is set only if V is
set on the command line. Setting V in the environment or makefile has no effect. The
following ifndef conditional will then turn off the verbose option if KBUILD_VERBOSE
has not yet been set. To set the verbose option from either the environment or
makefile, you must set KBUILD_VERBOSE and not V.

Notice, however, that setting KBUILD_VERBOSE directly on the command line is
allowed and works as expected. This can be useful when writing shell scripts (or
aliases) to invoke the makefile. These scripts would then be more self-documenting,
similar to using GNU long options.

The other command-line options, sparse checking (C) and external modules (M), both
use the same careful checking to avoid accidentally setting them from within the
makefile.

The next section of the makefile handles the output directory option (O). This is a
fairly involved piece of code. To highlight its structure, we’ve replaced some parts of
this excerpt with ellipses:

kbuild supports saving output files in a separate directory.
To locate output files in a separate directory two syntax'es are supported.
In both cases the working directory must be the root of the kernel src.
1) O=
Use "make O=dir/to/store/output/files/"
#
2) Set KBUILD_OUTPUT
Set the environment variable KBUILD_OUTPUT to point to the directory
where the output files shall be placed.
export KBUILD_OUTPUT=dir/to/store/output/files/
make
#
The O= assigment takes precedence over the KBUILD_OUTPUT environment variable.
KBUILD_SRC is set on invocation of make in OBJ directory
KBUILD_SRC is not intended to be used by the regular user (for now)
ifeq ($(KBUILD_SRC),)

 # OK, Make called in directory where kernel src resides
 # Do we want to locate output files in a separate directory?
 ifdef O
 ifeq ("$(origin O)", "command line")
 KBUILD_OUTPUT := $(O)
 endif
 endif
 …
 ifneq ($(KBUILD_OUTPUT),)
 …
 .PHONY: $(MAKECMDGOALS)

 $(filter-out _all,$(MAKECMDGOALS)) _all:
 $(if $(KBUILD_VERBOSE:1=),@)$(MAKE) -C $(KBUILD_OUTPUT) \
 KBUILD_SRC=$(CURDIR) KBUILD_VERBOSE=$(KBUILD_VERBOSE) \
 KBUILD_CHECK=$(KBUILD_CHECK) KBUILD_EXTMOD="$(KBUILD_EXTMOD)" \

,ch11.7363 Page 219 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 11: Example Makefiles

 -f $(CURDIR)/Makefile $@
 # Leave processing to above invocation of make
 skip-makefile := 1
 endif # ifneq ($(KBUILD_OUTPUT),)
endif # ifeq ($(KBUILD_SRC),)

We process the rest of the Makefile if this is the final invocation of make
ifeq ($(skip-makefile),)
 …the rest of the makefile here…
endif # skip-makefile

Essentially, this says that if KBUILD_OUTPUT is set, invoke make recursively in the out-
put directory defined by KBUILD_OUTPUT. Set KBUILD_SRC to the directory where make
was originally executed, and grab the makefile from there as well. The rest of the
makefile will not be seen by make, since skip-makefile will be set. The recursive make
will reread this same makefile again, only this time KBUILD_SRC will be set, so skip-
makefile will be undefined, and the rest of the makefile will be read and processed.

This concludes the processing of command-line options. The bulk of the makefile
follows in the ifeq ($(skip-makefile),) section.

Configuration Versus Building
The makefile contains configuration targets and build targets. The configuration tar-
gets have the form menuconfig, defconfig, etc. Maintenance targets like clean are
treated as configuration targets as well. Other targets such as all, vmlinux, and
modules are build targets. The primary result of invoking a configuration target is two
files: .config and .config.cmd. These two files are included by the makefile for build
targets but are not included for configuration targets (since the configuration target
creates them). It is also possible to mix both configuration targets and build targets
on a single make invocation, such as:

$ make oldconfig all

In this case, the makefile invokes itself recursively handling each target individually,
thus handling configuration targets separately from build targets.

The code controlling configuration, build, and mixed targets begins with:

To make sure we do not include .config for any of the *config targets
catch them early, and hand them over to scripts/kconfig/Makefile
It is allowed to specify more targets when calling make, including
mixing *config targets and build targets.
For example 'make oldconfig all'.
Detect when mixed targets is specified, and make a second invocation
of make so .config is not included in this case either (for *config).
no-dot-config-targets := clean mrproper distclean \
 cscope TAGS tags help %docs check%

config-targets := 0
mixed-targets := 0
dot-config := 1

,ch11.7363 Page 220 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Linux Kernel Makefile | 221

The variable no-dot-config-targets lists additional targets that do not require a
.config file. The code then initializes the config-targets, mixed-targets, and dot-
config variables. The config-targets variable is 1 if there are any configuration tar-
gets on the command line. The dot-config variable is 1 if there are build targets on
the command line. Finally, mixed-targets is 1 if there are both configuration and
build targets.

The code to set dot-config is:

ifneq ($(filter $(no-dot-config-targets), $(MAKECMDGOALS)),)
 ifeq ($(filter-out $(no-dot-config-targets), $(MAKECMDGOALS)),)
 dot-config := 0
 endif
endif

The filter expression is non-empty if there are configuration targets in
MAKECMDGOALS. The ifneq part is true if the filter expression is not empty. The code
is hard to follow partly because it contains a double negative. The ifeq expression is
true if MAKECMDGOALS contains only configuration targets. So, dot-config will be set to
0 if there are configuration targets and only configuration targets in MAKECMDGOALS. A
more verbose implementation might make the meaning of these two conditionals
more clear:

config-target-list := clean mrproper distclean \
 cscope TAGS tags help %docs check%

config-target-goal := $(filter $(config-target-list), $(MAKECMDGOALS))
build-target-goal := $(filter-out $(config-target-list), $(MAKECMDGOALS))

ifdef config-target-goal
 ifndef build-target-goal
 dot-config := 0
 endif
endif

The ifdef form can be used instead of ifneq, because empty variables are treated as
undefined, but care must be taken to ensure a variable does not contain merely a
string of blanks (which would cause it to be defined).

The config-targets and mixed-targets variables are set in the next code block:

ifeq ($(KBUILD_EXTMOD),)
 ifneq ($(filter config %config,$(MAKECMDGOALS)),)
 config-targets := 1
 ifneq ($(filter-out config %config,$(MAKECMDGOALS)),)
 mixed-targets := 1
 endif
 endif
endif

KBUILD_EXTMOD will be non-empty when external modules are being built, but not
during normal builds. The first ifneq will be true when MAKECMDGOALS contains a goal

,ch11.7363 Page 221 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 11: Example Makefiles

with the config suffix. The second ifneq will be true when MAKECMDGOALS contains
nonconfig targets, too.

Once the variables are set, they are used in an if-else chain with four branches. The
code has been condensed and indented to highlight its structure:

ifeq ($(mixed-targets),1)
 # We're called with mixed targets (*config and build targets).
 # Handle them one by one.
 %:: FORCE
 (Q)(MAKE) -C $(srctree) KBUILD_SRC= $@
else
 ifeq ($(config-targets),1)
 # *config targets only - make sure prerequisites are updated, and descend
 # in scripts/kconfig to make the *config target
 %config: scripts_basic FORCE
 (Q)(MAKE) $(build)=scripts/kconfig $@
 else
 # Build targets only - this includes vmlinux, arch specific targets, clean
 # targets and others. In general all targets except *config targets.
 …
 ifeq ($(dot-config),1)
 # In this section, we need .config
 # Read in dependencies to all Kconfig* files, make sure to run
 # oldconfig if changes are detected.
 -include .config.cmd
 include .config

 # If .config needs to be updated, it will be done via the dependency
 # that autoconf has on .config.
 # To avoid any implicit rule to kick in, define an empty command
 .config: ;

 # If .config is newer than include/linux/autoconf.h, someone tinkered
 # with it and forgot to run make oldconfig
 include/linux/autoconf.h: .config
 (Q)(MAKE) -f $(srctree)/Makefile silentoldconfig
 else
 # Dummy target needed, because used as prerequisite
 include/linux/autoconf.h: ;
 endif

 include $(srctree)/arch/$(ARCH)/Makefile
… lots more make code …

 endif #ifeq ($(config-targets),1)
endif #ifeq ($(mixed-targets),1)

The first branch, ifeq ($(mixed-targets),1), handles mixed command-line argu-
ments. The only target in this branch is a completely generic pattern rule. Since there
are no specific rules to handle targets (those rules are in another conditional branch),
each target invokes the pattern rule once. This is how a command line with both
configuration targets and build targets is separated into a simpler command line. The
command script for the generic pattern rule invokes make recursively for each target,

,ch11.7363 Page 222 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Linux Kernel Makefile | 223

causing this same logic to be applied, only this time with no mixed command-line
targets. The FORCE prerequisite is used instead of .PHONY, because pattern rules like:

%:: FORCE

cannot be declared .PHONY. So it seems reasonable to use FORCE consistently every-
where.

The second branch of the if-else chain, ifeq ($(config-targets),1), is invoked
when there are only configuration targets on the command line. Here the primary
target in the branch is the pattern rule %config (other targets have been omitted). The
command script invokes make recursively in the scripts/kconfig subdirectory and
passes along the target. The curious $(build) construct is defined at the end of the
makefile:

Shorthand for (Q)(MAKE) -f scripts/Makefile.build obj=dir
Usage:
(Q)(MAKE) $(build)=dir
build := -f $(if $(KBUILD_SRC),$(srctree)/)scripts/Makefile.build obj

If KBUILD_SRC is set, the -f option is given a full path to the scripts makefile, other-
wise a simple relative path is used. Next, the obj variable is set to the righthand side
of the equals sign.

The third branch, ifeq ($(dot-config),1), handles build targets that require includ-
ing the two generated configuration files, .config and .config.cmd. The final branch
merely includes a dummy target for autoconf.h to allow it to be used as a prerequi-
site, even if it doesn’t exist.

Most of the remainder of the makefile follows the third and fourth branches. It con-
tains the code for building the kernel and modules.

Managing Command Echo
The kernel makefiles use a novel technique for managing the level of detail echoed by
commands. Each significant task is represented in both a verbose and a quiet ver-
sion. The verbose version is simply the command to be executed in its natural form
and is stored in a variable named cmd_action. The brief version is a short message
describing the action and is stored in a variable named quiet_cmd_action. For exam-
ple, the command to produce emacs tags is:

quiet_cmd_TAGS = MAKE $@
 cmd_TAGS = $(all-sources) | etags -

A command is executed by calling the cmd function:

If quiet is set, only print short version of command
cmd = @$(if $($(quiet)cmd_$(1)),\
 echo ' $($(quiet)cmd_$(1))' &&) $(cmd_$(1))

,ch11.7363 Page 223 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 11: Example Makefiles

To invoke the code for building emacs tags, the makefile would contain:

TAGS:
 $(call cmd,TAGS)

Notice the cmd function begins with an @, so the only text echoed by the function is
text from the echo command. In normal mode, the variable quiet is empty, and the
test in the if, $($(quiet)cmd_$(1)), expands to $(cmd_TAGS). Since this variable is not
empty, the entire function expands to:

echo ' $(all-sources) | etags -' && $(all-sources) | etags -

If the quiet version is desired, the variable quiet contains the value quiet_ and the
function expands to:

echo ' MAKE $@' && $(all-sources) | etags -

The variable can also be set to silent_. Since there is no command silent_cmd_TAGS,
this value causes the cmd function to echo nothing at all.

Echoing the command sometimes becomes more complex, particularly if commands
contain single quotes. In these cases, the makefile contains this code:

$(if $($(quiet)cmd_$(1)),echo ' $(subst ','\'',$($(quiet)cmd_$(1)))';)

Here the echo command contains a substitution that replaces single quotes with
escaped single quotes to allow them to be properly echoed.

Minor commands that do not warrant the trouble of writing cmd_ and quiet_cmd_
variables are prefixed with $(Q), which contains either nothing or @:

ifeq ($(KBUILD_VERBOSE),1)
 quiet =
 Q =
else
 quiet=quiet_
 Q = @
endif

If the user is running make -s (silent mode), suppress echoing of
commands

ifneq ($(findstring s,$(MAKEFLAGS)),)
 quiet=silent_
endif

User-Defined Functions
The kernel makefile defines a number of functions. Here we cover the most interest-
ing ones. The code has been reformatted to improve readability.

The check_gcc function is used to select a gcc command-line option.

$(call check_gcc,preferred-option,alternate-option)
check_gcc = \

,ch11.7363 Page 224 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Linux Kernel Makefile | 225

 $(shell if $(CC) $(CFLAGS) $(1) -S -o /dev/null \
 -xc /dev/null > /dev/null 2>&1; \
 then \
 echo "$(1)"; \
 else \
 echo "$(2)"; \
 fi ;)

The function works by invoking gcc on a null input file with the preferred command-
line option. The output file, standard output, and standard error files are discarded.
If the gcc command succeeds, it means the preferred command-line option is valid
for this architecture and is returned by the function. Otherwise, the option is invalid
and the alternate option is returned. An example use can be found in arch/i386/
Makefile:

prevent gcc from keeping the stack 16 byte aligned
CFLAGS += $(call check_gcc,-mpreferred-stack-boundary=2,)

The if_changed_dep function generates dependency information using a remarkable
technique.

execute the command and also postprocess generated
.d dependencies file
if_changed_dep = \
 $(if \
 $(strip $? \
 $(filter-out FORCE $(wildcard $^),$^) \
 $(filter-out $(cmd_$(1)),$(cmd_$@)) \
 $(filter-out $(cmd_$@),$(cmd_$(1)))), \
 @set -e; \
 $(if $($(quiet)cmd_$(1)), \
 echo ' $(subst ','\'',$($(quiet)cmd_$(1)))';) \
 $(cmd_$(1)); \
 scripts/basic/fixdep \
 $(depfile) \
 $@ \
 '$(subst $$,$$$$,$(subst ','\'',$(cmd_$(1))))' \
 > $(@D)/.$(@F).tmp; \
 rm -f $(depfile); \
 mv -f $(@D)/.$(@F).tmp $(@D)/.$(@F).cmd)

The function consists of a single if clause. The details of the test are pretty obscure,
but it is clear the intent is to be non-empty if the dependency file should be regener-
ated. Normal dependency information is concerned with the modification
timestamps on files. The kernel build system adds another wrinkle to this task. The
kernel build uses a wide variety of compiler options to control the construction and
behavior of components. To ensure that command-line options are properly
accounted for during a build, the makefile is implemented so that if command-line
options used for a particular target change, the file is recompiled. Let’s see how this
is accomplished.

,ch11.7363 Page 225 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 11: Example Makefiles

In essence, the command used to compile each file in the kernel is saved in a .cmd
file. When a subsequent build is executed, make reads the .cmd files and compares the
current compile command with the last command. If they are different, the .cmd
dependency file is regenerated causing the object file to be rebuilt. The .cmd file usu-
ally contains two items: the dependencies that represent actual files for the target file
and a single variable recording the command-line options. For example, the file arch/
i386/kernel/cpu/mtrr/if.c yields this (abbreviated) file:

cmd_arch/i386/kernel/cpu/mtrr/if.o := gcc -Wp,-MD …; if.c

deps_arch/i386/kernel/cpu/mtrr/if.o := \
 arch/i386/kernel/cpu/mtrr/if.c \
 …

arch/i386/kernel/cpu/mtrr/if.o: $(deps_arch/i386/kernel/cpu/mtrr/if.o)
$(deps_arch/i386/kernel/cpu/mtrr/if.o):

Getting back to the if_changed_dep function, the first argument to the strip is sim-
ply the prerequisites that are newer than the target, if any. The second argument to
strip is all the prerequisites other than files and the empty target FORCE. The really
obscure bit is the last two filter-out calls:

$(filter-out $(cmd_$(1)),$(cmd_$@))
$(filter-out $(cmd_$@),$(cmd_$(1)))

One or both of these calls will expand to a non-empty string if the command-line
options have changed. The macro $(cmd_$(1)) is the current command and $(cmd_
$@) will be the previous command, for instance the variable cmd_arch/i386/kernel/
cpu/mtrr/if.o just shown. If the new command contains additional options, the first
filter-out will be empty, and the second will expand to the new options. If the new
command contains fewer options, the first command will contain the deleted options
and the second will be empty. Interestingly, since filter-out accepts a list of words
(each treated as an independent pattern), the order of options can change and the
filter-out will still accurately identify added or removed options. Pretty nifty.

The first statement in the command script sets a shell option to exit immediately on
error. This prevents the multiline script from corrupting files in the event of prob-
lems. For simple scripts another way to achieve this effect is to connect statements
with && rather than semicolons.

The next statement is an echo command written using the techniques described in
the section “Managing Command Echo” earlier in this chapter, followed by the
dependency generating command itself. The command writes $(depfile), which is
then transformed by scripts/basic/fixdep. The nested subst function in the fixdep
command line first escapes single quotes, then escapes occurrences of $$ (the cur-
rent process number in shell syntax).

Finally, if no errors have occurred, the intermediate file $(depfile) is removed and
the generated dependency file (with its .cmd suffix) is moved into place.

,ch11.7363 Page 226 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Linux Kernel Makefile | 227

The next function, if_changed_rule, uses the same comparison technique as if_
changed_dep to control the execution of a command:

Usage: $(call if_changed_rule,foo)
will check if $(cmd_foo) changed, or any of the prequisites changed,
and if so will execute $(rule_foo)

if_changed_rule = \
 $(if $(strip $? \
 $(filter-out $(cmd_$(1)),$(cmd_$(@F))) \
 $(filter-out $(cmd_$(@F)),$(cmd_$(1)))), \
 @$(rule_$(1)))

In the topmost makefile, this function is used to link the kernel with these macros:

This is a bit tricky: If we need to relink vmlinux, we want
the version number incremented, which means recompile init/version.o
and relink init/init.o. However, we cannot do this during the
normal descending-into-subdirs phase, since at that time
we cannot yet know if we will need to relink vmlinux.
So we descend into init/ inside the rule for vmlinux again.
…

quiet_cmd_vmlinux__ = LD $@
define cmd_vmlinux__
 $(LD) $(LDFLAGS) $(LDFLAGS_vmlinux) \
 …
endef

set -e makes the rule exit immediately on error

define rule_vmlinux__
 +set -e; \
 $(if $(filter .tmp_kallsyms%,$^),, \
 echo ' GEN .version'; \
 . $(srctree)/scripts/mkversion > .tmp_version; \
 mv -f .tmp_version .version; \
 $(MAKE) $(build)=init;) \
 $(if $($(quiet)cmd_vmlinux__), \
 echo ' $($(quiet)cmd_vmlinux__)' &&) \
 $(cmd_vmlinux__); \
 echo 'cmd_$@ := $(cmd_vmlinux__)' > $(@D)/.$(@F).cmd
endef

define rule_vmlinux
 $(rule_vmlinux__); \
 $(NM) $@ | \
 grep -v '\(compiled\)\|…' | \
 sort > System.map
endef

The if_changed_rule function is used to invoke rule_vmlinux, which performs the
link and builds the final System.map. As the comment in the makefile notes, the
rule_vmlinux__ function must regenerate the kernel version file and relink init.o

,ch11.7363 Page 227 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 11: Example Makefiles

before relinking vmlinux. This is controlled by the first if in rule_vmlinux__. The
second if controls the echoing of the link command, $(cmd_vmlinux__). After the
link command, the actual command executed is recorded in a .cmd file for compari-
son in the next build.

,ch11.7363 Page 228 Friday, March 25, 2005 2:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

229

Chapter 12 CHAPTER 12

Debugging Makefiles

Debugging makefiles is somewhat of a black art. Unfortunately, there is no such
thing as a makefile debugger to examine how a particular rule is being evaluated or a
variable expanded. Instead, most debugging is performed with simple print state-
ments and by inspection of the makefile. GNU make provides some help with various
built-in functions and command-line options.

One of the best ways to debug a makefile is to add debugging hooks and use defen-
sive programming techniques that you can fall back on when things go awry. I’ll
present a few basic debugging techniques and defensive coding practices I’ve found
most helpful.

Debugging Features of make
The warning function is very useful for debugging wayward makefiles. Because the
warning function expands to the empty string, it can be placed anywhere in a
makefile: at the top-level, in target or prerequisite lists, and in command scripts. This
allows you to print the value of variables wherever it is most convenient to inspect
them. For example:

$(warning A top-level warning)

FOO := $(warning Right-hand side of a simple variable)bar
BAZ = $(warning Right-hand side of a recursive variable)boo

$(warning A target)target: $(warning In a prerequisite list)makefile $(BAZ)
 $(warning In a command script)
 ls
$(BAZ):

yields the output:

$ make
makefile:1: A top-level warning
makefile:2: Right-hand side of a simple variable
makefile:5: A target

,ch12.8053 Page 229 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 12: Debugging Makefiles

makefile:5: In a prerequisite list
makefile:5: Right-hand side of a recursive variable
makefile:8: Right-hand side of a recursive variable
makefile:6: In a command script
ls
makefile

Notice that the evaluation of the warning function follows the normal make algorithm
for immediate and deferred evaluation. Although the assignment to BAZ contains a
warning, the message does not print until BAZ is evaluated in the prerequisites list.

The ability to inject a warning call anywhere makes it an essential debugging tool.

Command-Line Options
There are three command-line options I find most useful for debugging: --just-
print (-n), --print-data-base (-p), and --warn-undefined-variables.

--just-print

The first test I perform on a new makefile target is to invoke make with the --just-
print (-n) option. This causes make to read the makefile and print every command it
would normally execute to update the target but without executing them. As a con-
venience, GNU make will also echo commands marked with the silent modifier (@).

The option is supposed to suppress all command execution. While this may be true
in one sense, practically speaking, you must take care. While make will not execute
command scripts, it will evaluate shell function calls that occur within an immedi-
ate context. For instance:

REQUIRED_DIRS = ...
_MKDIRS := $(shell for d in $(REQUIRED_DIRS); \
 do \
 [[-d $$d]] || mkdir -p $$d; \
 done)

$(objects) : $(sources)

As we’ve seen before, the purpose of the _MKDIRS simple variable is to trigger the cre-
ation of essential directories. When this is executed with --just-print, the shell
command will be executed as usual when the makefile is read. Then make will echo
(without executing) each compilation command required to update the $(objects)
file list.

--print-data-base

The --print-data-base (-p) option is another one you’ll use often. It executes the
makefile, displaying the GNU copyright followed by the commands as they are run
by make, then it will dump its internal database. The data is collected into groups of

,ch12.8053 Page 230 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Debugging Features of make | 231

values: variables, directories, implicit rules, pattern-specific variables, files (explicit
rules), and the vpath search path:

GNU Make 3.80
Copyright (C) 2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.
normal command execution occurs here

Make data base, printed on Thu Apr 29 20:58:13 2004

Variables
…
Directories
…
Implicit Rules
…
Pattern-specific variable values
…
Files
…
VPATH Search Paths

Let’s examine these sections in more detail.

The variables section lists each variable along with a descriptive comment:

automatic
<D = $(patsubst %/,%,$(dir $<))
environment
EMACS_DIR = C:/usr/emacs-21.3.50.7
default
CWEAVE = cweave
makefile (from `../mp3_player/makefile', line 35)
CPPFLAGS = $(addprefix -I ,$(include_dirs))
makefile (from `../ch07-separate-binaries/makefile', line 44)
RM := rm -f
makefile (from `../mp3_player/makefile', line 14)
define make-library
 libraries += $1
 sources += $2

 $1: $(call source-to-object,$2)
 $(AR) $(ARFLAGS) $$@ $$^
endef

Automatic variables are not printed, but convenience variables derived from them
like $(<D) are. The comment indicates the type of the variable as returned by the
origin function (see the section “Less Important Miscellaneous Functions” in
Chapter 4). If the variable is defined in a file, the filename and line number of the
definition is given. Simple and recursive variables are distinguished by the

,ch12.8053 Page 231 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 12: Debugging Makefiles

assignment operator. The value of a simple variable will be displayed as the evalu-
ated form of the righthand side.

The next section, labeled Directories, is more useful to make developers than to make
users. It lists the directories being examined by make, including SCCS and RCS subdi-
rectories that might exist, but usually do not. For each directory, make displays imple-
mentation details, such as the device number, inode, and statistics on file pattern
matches.

The Implicit Rules section follows. This contains all the built-in and user-defined
pattern rules in make’s database. Again, for those rules defined in a file, a comment
indicates the file and line number:

%.c %.h: %.y
commands to execute (from `../mp3_player/makefile', line 73):
 $(YACC.y) --defines $<
 $(MV) y.tab.c $*.c
 $(MV) y.tab.h $*.h

%: %.c
commands to execute (built-in):
 $(LINK.c) $^ $(LOADLIBES) $(LDLIBS) -o $@

%.o: %.c
commands to execute (built-in):
 $(COMPILE.c) $(OUTPUT_OPTION) $<

Examining this section is a great way to become familiar with the variety and struc-
ture of make’s built-in rules. Of course, not all built-in rules are implemented as pat-
tern rules. If you don’t find the rule you’re looking for, check in the Files section
where the old-style suffix rules are listed.

The next section catalogs the pattern-specific variables defined in the makefile. Recall
that pattern-specific variables are variable definitions whose scope is precisely the
execution time of their associated pattern rule. For example, the pattern variable
YYLEXFLAG, defined as:

%.c %.h: YYLEXFLAG := -d
%.c %.h: %.y
 $(YACC.y) --defines $<
 $(MV) y.tab.c $*.c
 $(MV) y.tab.h $*.h

would be displayed as:

Pattern-specific variable values

%.c :
makefile (from `Makefile', line 1)
YYLEXFLAG := -d
variable set hash-table stats:
Load=1/16=6%, Rehash=0, Collisions=0/1=0%

,ch12.8053 Page 232 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Debugging Features of make | 233

%.h :
makefile (from `Makefile', line 1)
YYLEXFLAG := -d
variable set hash-table stats:
Load=1/16=6%, Rehash=0, Collisions=0/1=0%

2 pattern-specific variable values

The Files section follows and lists all the explicit and suffix rules that relate to
specific files:

Not a target:
.p.o:
Implicit rule search has not been done.
Modification time never checked.
File has not been updated.
commands to execute (built-in):
 $(COMPILE.p) $(OUTPUT_OPTION) $<

lib/ui/libui.a: lib/ui/ui.o
Implicit rule search has not been done.
Last modified 2004-04-01 22:04:09.515625
File has been updated.
Successfully updated.
commands to execute (from `../mp3_player/lib/ui/module.mk', line 3):
 ar rv $@ $^

lib/codec/codec.o: ../mp3_player/lib/codec/codec.c ../mp3_player/lib/codec/codec.c ..
/mp3_player/include/codec/codec.h
Implicit rule search has been done.
Implicit/static pattern stem: `lib/codec/codec'
Last modified 2004-04-01 22:04:08.40625
File has been updated.
Successfully updated.
commands to execute (built-in):
 $(COMPILE.c) $(OUTPUT_OPTION) $<

Intermediate files and suffix rules are labeled “Not a target”; the remainder are tar-
gets. Each file includes comments indicating how make has processed the rule. Files
that are found through the normal vpath search have their resolved path displayed.

The last section is labeled VPATH Search Paths and lists the value of VPATH and all
the vpath patterns.

For makefiles that make extensive use of user-defined functions and eval to create
complex variables and rules, examining this output is often the only way to verify
that macro expansion has generated the expected values.

--warn-undefined-variables

This option causes make to display a warning whenever an undefined variable is
expanded. Since undefined variables expand to the empty string, it is common for
typographical errors in variable names to go undetected for long periods. The problem

,ch12.8053 Page 233 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 12: Debugging Makefiles

with this option, and why I use it only rarely, is that many built-in rules include unde-
fined variables as hooks for user-defined values. So running make with this option will
inevitably produce many warnings that are not errors and have no useful relationship
to the user’s makefile. For example:

$ make --warn-undefined-variables -n
makefile:35: warning: undefined variable MAKECMDGOALS
makefile:45: warning: undefined variable CFLAGS
makefile:45: warning: undefined variable TARGET_ARCH
...
makefile:35: warning: undefined variable MAKECMDGOALS
make: warning: undefined variable CFLAGS
make: warning: undefined variable TARGET_ARCH
make: warning: undefined variable CFLAGS
make: warning: undefined variable TARGET_ARCH
...
make: warning: undefined variable LDFLAGS
make: warning: undefined variable TARGET_ARCH
make: warning: undefined variable LOADLIBES
make: warning: undefined variable LDLIBS

Nevertheless, this command can be extremely valuable on occasion in catching these
kinds of errors.

The --debug Option
When you need to know how make analyzes your dependency graph, use the --debug
option. This provides the most detailed information available other than by running
a debugger. There are five debugging options and one modifier: basic, verbose,
implicit, jobs, all, and makefile, respectively.

If the debugging option is specified as --debug, basic debugging is used. If the debug-
ging option is given as -d, all is used. To select other combinations of options, use a
comma separated list --debug=option1,option2 where the option can be one of the
following words (actually, make looks only at the first letter):

basic
Basic debugging is the least detailed. When enabled, make prints each target that
is found to be out-of-date and the status of the update action. Sample output
looks like:

File all does not exist.
 File app/player/play_mp3 does not exist.
 File app/player/play_mp3.o does not exist.
 Must remake target app/player/play_mp3.o.
gcc/mp3_player/app/player/play_mp3.c
 Successfully remade target file app/player/play_mp3.o.

verbose
This option sets the basic option and includes additional information about
which files where parsed, prerequisites that did not need to be rebuilt, etc.:

,ch12.8053 Page 234 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Debugging Features of make | 235

File all does not exist.
 Considering target file app/player/play_mp3.
 File app/player/play_mp3 does not exist.
 Considering target file app/player/play_mp3.o.
 File app/player/play_mp3.o does not exist.
 Pruning file ../mp3_player/app/player/play_mp3.c.
 Pruning file ../mp3_player/app/player/play_mp3.c.
 Pruning file ../mp3_player/include/player/play_mp3.h.
 Finished prerequisites of target file app/player/play_mp3.o.
 Must remake target app/player/play_mp3.o.
gcc/mp3_player/app/player/play_mp3.c
 Successfully remade target file app/player/play_mp3.o.
 Pruning file app/player/play_mp3.o.

implicit
This option sets the basic option and includes additional information about
implicit rule searches for each target:

File all does not exist.
 File app/player/play_mp3 does not exist.
 Looking for an implicit rule for app/player/play_mp3.
 Trying pattern rule with stem play_mp3.
 Trying implicit prerequisite app/player/play_mp3.o.
 Found an implicit rule for app/player/play_mp3.
 File app/player/play_mp3.o does not exist.
 Looking for an implicit rule for app/player/play_mp3.o.
 Trying pattern rule with stem play_mp3.
 Trying implicit prerequisite app/player/play_mp3.c.
 Found prerequisite app/player/play_mp3.c as VPATH ../mp3_player/app/player/
play_mp3.c
 Found an implicit rule for app/player/play_mp3.o.
 Must remake target app/player/play_mp3.o.
gcc/mp3_player/app/player/play_mp3.c
 Successfully remade target file app/player/play_mp3.o.

jobs
This options prints the details of subprocesses invoked by make. It does not
enable the basic option.

Got a SIGCHLD; 1 unreaped children.
gcc/mp3_player/app/player/play_mp3.c
Putting child 0x10033800 (app/player/play_mp3.o) PID 576 on the chain.
Live child 0x10033800 (app/player/play_mp3.o) PID 576
Got a SIGCHLD; 1 unreaped children.
Reaping winning child 0x10033800 PID 576
Removing child 0x10033800 PID 576 from chain.

all
This enables all the previous options and is the default when using the -d option.

makefile
Normally, debugging information is not enabled until after the makefiles have
been updated. This includes updating any included files, such as lists of depen-
dencies. When you use this modifier, make will print the selected information

,ch12.8053 Page 235 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 12: Debugging Makefiles

while rebuilding makefiles and include files. This option enables the basic
option and is also enabled by the all option.

Writing Code for Debugging
As you can see, there aren’t too many tools for debugging makefiles, just a few ways
to dump make’s internal data structures and a couple of print statements. When it
comes right down to it, it is up to you to write your makefiles in ways that either
minimize the chance of errors or provide your own scaffolding to help debug them.

The suggestions in this section are laid out somewhat arbitrarily as coding practices,
defensive coding, and debugging techniques. While specific items, such as checking
the exit status of commands, could be placed in either the good coding practice sec-
tion or the defensive coding section, the three categories reflect the proper bias.
Focus on coding your makefiles well without cutting too many corners. Include
plenty of defensive coding to protect the makefile against unexpected events and
environmental conditions. Finally, when bugs do arise, use every trick you can find
to squash them.

The “Keep It Simple” Principle (http://www.catb.org/~esr/jargon/html/K/KISS-
Principle.html) is at the heart of all good design. As you’ve seen in previous chapters,
makefiles can quickly become complex, even for mundane tasks, such as depen-
dency generation. Fight the tendency to include more and more features in your
build system. You’ll fail, but not as badly as you would if you simply include every
feature that occurs to you.

Good Coding Practices
In my experience, most programmers do not see writing makefiles as programming
and, therefore, do not take the same care as they do when writing in C++ or Java.
But the make language is a complete nonprocedural language. If the reliability and
maintainability of your build system is important, write it with care and use the best
coding practices you can.

One of the most important aspects of programming robust makefiles is to check the
return status of commands. Of course, make will check simple commands automati-
cally, but makefiles often include compound commands that can fail quietly:

do:
 cd i-dont-exist; \
 echo *.c

When run, this makefile does not terminate with an error status, although an error
most definitely occurs:

$ make
cd i-dont-exist; \
echo *.c

,ch12.8053 Page 236 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Writing Code for Debugging | 237

/bin/sh: line 1: cd: i-dont-exist: No such file or directory
*.c

Furthermore, the globbing expression fails to find any .c files, so it quietly returns the
globbing expression. Oops. A better way to code this command script is to use the
shell’s features for checking and preventing errors:

SHELL = /bin/bash
do:
 cd i-dont-exist && \
 shopt -s nullglob &&
 echo *.c

Now the cd error is properly transmitted to make, the echo command never executes,
and make terminates with an error status. In addition, setting the nullglob option of
bash causes the globbing pattern to return the empty string if no files are found. (Of
course, your particular application may prefer the globbing pattern.)

$ make
cd i-dont-exist && \
echo *.c
/bin/sh: line 1: cd: i-dont-exist: No such file or directory
make: *** [do] Error 1

Another good coding practice is formatting your code for maximum readability.
Most makefiles I see are poorly formatted and, consequently, difficult to read. Which
do you find easier to read?

_MKDIRS := $(shell for d in $(REQUIRED_DIRS); do [[-d $$d \
]] || mkdir -p $$d; done)

or:

_MKDIRS := $(shell \
 for d in $(REQUIRED_DIRS); \
 do \
 [[-d $$d]] || mkdir -p $$d; \
 done)

If you’re like most people, you’ll find the first more difficult to parse, the semicolons
harder to find, and the number of statements more difficult to count. These are not
trivial concerns. A significant percentage of the syntax errors you will encounter in
command scripts will be due to missing semicolons, backslashes, or other separa-
tors, such as pipe and logical operators.

Also, note that not all missing separators will generate an error. For instance, neither
of the following errors will produce a shell syntax error:

TAGS:
 cd src \
 ctags --recurse

disk_free:
 echo "Checking free disk space..." \
 df . | awk '{ print $$4 }'

,ch12.8053 Page 237 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 12: Debugging Makefiles

Formatting commands for readability will make these kinds of errors easier to catch.
When formatting user-defined functions, indent the code. Occasionally, the extra
spaces in the resulting macro expansion cause problems. If so, wrap the formatting
in a strip function call. When formatting long lists of values, separate each value on
its own line. Add a comment before each target, give a brief explanation, and docu-
ment the parameter list.

The next good coding practice is the liberal use of variables to hold common values.
As in any program, the unrestrained use of literal values creates code duplication and
leads to maintenance problems and bugs. Another great advantage of variables is
that you can get make to display them for debugging purposes during execution. I
show a nice command line interface in the section “Debugging Techniques,” later in
this chapter.

Defensive Coding
Defensive code is code that can execute only if one of your assumptions or expecta-
tions is wrong — an if test that is never true, an assert function that never fails, or
tracing code. Of course, the value of this code that never executes is that occasion-
ally (usually when you least expect it), it does run and produce a warning or error, or
you choose to enable tracing code to allow you to view the inner workings of make.

You’ve already seen most of this code in other contexts, but for convenience it is
repeated here.

Validation checking is a great example of defensive code. This code sample verifies
that the currently executing version of make is 3.80:

NEED_VERSION := 3.80
$(if $(filter $(NEED_VERSION),$(MAKE_VERSION)),, \
 $(error You must be running make version $(NEED_VERSION).))

For Java applications, it is useful to include a check for files in the CLASSPATH.

Validation code can also simply ensure that something is true. The directory cre-
ation code from the previous section is of this nature.

Another great defensive coding technique is to use the assert functions defined in
the section “Flow Control” in Chapter 4. Here are several versions:

$(call assert,condition,message)
define assert
 $(if $1,,$(error Assertion failed: $2))
endef

$(call assert-file-exists,wildcard-pattern)
define assert-file-exists
 $(call assert,$(wildcard $1),$1 does not exist)
endef

$(call assert-not-null,make-variable)
define assert-not-null

,ch12.8053 Page 238 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Writing Code for Debugging | 239

 $(call assert,$($1),The variable "$1" is null)
endef

I find sprinkling assert calls around the makefile to be a cheap and effective way of
detecting missing and misspelled parameters as well as violations of other assump-
tions.

In Chapter 4, we wrote a pair of functions to trace the expansion of user-defined
functions:

$(debug-enter)
debug-enter = $(if $(debug_trace),\
 $(warning Entering $0($(echo-args))))

$(debug-leave)
debug-leave = $(if $(debug_trace),$(warning Leaving $0))

comma := ,
echo-args = $(subst ' ','$(comma) ',\
 $(foreach a,1 2 3 4 5 6 7 8 9,'$($a)'))

You can add these macro calls to your own functions and leave them disabled until
they are required for debugging. To enable them, set debug_trace to any nonempty
value:

$ make debug_trace=1

As noted in Chapter 4, these trace macros have a number of problems of their own
but can still be useful in tracking down bugs.

The final defensive programming technique is simply to make disabling the @ com-
mand modifier easy by using it through a make variable, rather than literally:

QUIET := @
…
target:
 $(QUIET) some command

Using this technique, you can see the execution of the silent command by redefining
QUIET on the command line:

$ make QUIET=

Debugging Techniques
This section discusses general debugging techniques and issues. Ultimately, debug-
ging is a grab-bag of whatever works for your situation. These techniques have
worked for me, and I’ve come to rely on them to debug even the simplest makefile
problems. Maybe they’ll help you, too.

One of the very annoying bugs in 3.80 is that when make reports problems in
makefiles and includes a line number, I usually find that the line number is wrong. I
haven’t investigated whether the problem is due to include files, multiline variable

,ch12.8053 Page 239 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 12: Debugging Makefiles

assignments, or user-defined macros, but there it is. Usually the line number make
reports is larger than the actual line number. In complex makefiles, I’ve had the line
number be off by as much as 20 lines.

Often the easiest way to see the value of a make variable is to print it during the exe-
cution of a target. Although adding print statements using warning is simple, the
extra effort of adding a generic debug target for printing variables can save lots of
time in the long run. Here is a sample debug target:

debug:
 $(for v,$(V), \
 $(warning $v = $($v)))

To use it, just set the list of variables to print on the command line, and include the
debug target:

$ make V="USERNAME SHELL" debug
makefile:2: USERNAME = Owner
makefile:2: SHELL = /bin/sh.exe
make: debug is up to date.

If you want to get really tricky, you can use the MAKECMDGOALS variable to avoid the
assignment to the variable V:

debug:
 $(for v,$(V) $(MAKECMDGOALS), \
 $(if $(filter debug,$v),,$(warning $v = $($v))))

Now you can print variables by simply listing them on the command line. I don’t rec-
ommend this technique, though, because you’ll also get confusing make warnings
indicating it doesn’t know how to update the variables (since they are listed as tar-
gets):

$ make debug PATH SHELL
makefile:2: USERNAME = Owner
makefile:2: SHELL = /bin/sh.exe
make: debug is up to date.
make: *** No rule to make target USERNAME. Stop.

In Chapter 10, I briefly mentioned using a debugging shell to help understand some
of the activities make performs behind the scenes. While make echos commands in
command scripts before they are executed, it does not echo the commands executed
in shell functions. Often these commands are subtle and complex, particularly since
they may be executed immediately or in a deferred fashion, if they occur in a recur-
sive variable assignment. One way to see these commands execute is to request that
the subshell enable debug printing:

DATE := $(shell date +%F)
OUTPUT_DIR = out-$(DATE)

make-directories := $(shell [-d $(OUTPUT_DIR)] || mkdir -p $(OUTPUT_DIR))

all: ;

,ch12.8053 Page 240 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Common Error Messages | 241

When run with sh’s debugging option, we see:

$ make SHELL="sh -x"
+ date +%F
+ '[' -d out-2004-05-11 ']'
+ mkdir -p out-2004-05-11

This even provides additional debugging information beyond make warning state-
ments, since with this option the shell also displays the value of variables and expres-
sions.

Many of the examples in this book are written as deeply nested expressions, such as
this one that checks the PATH variable on a Windows/Cygwin system:

$(if $(findstring /bin/, \
 $(firstword \
 $(wildcard \
 $(addsuffix /sort$(if $(COMSPEC),.exe), \
 $(subst :, ,$(PATH)))))),, \
 $(error Your PATH is wrong, c:/usr/cygwin/bin should \
 precede c:/WINDOWS/system32))

There is no good way to debug these expressions. One reasonable approach is to
unroll them, and print each subexpression:

$(warning $(subst :, ,$(PATH)))
$(warning /sort$(if $(COMSPEC),.exe))
$(warning $(addsuffix /sort$(if $(COMSPEC),.exe), \
 $(subst :, ,$(PATH))))
$(warning $(wildcard \
 $(addsuffix /sort$(if $(COMSPEC),.exe), \
 $(subst :, ,$(PATH)))))

Although a bit tedious, without a real debugger, this is the best way (and sometimes
the only way) to determine the value of various subexpressions.

Common Error Messages
The 3.81 GNU make manual includes an excellent section listing make error messages
and their causes. We review a few of the most common ones here. Some of the issues
described are not strictly make errors, such as syntax errors in command scripts, but
are nonetheless common problems for developers. For a complete list of make errors,
see the make manual.

Error messages printed by make have a standard format:

makefile:n: *** message. Stop.

or:

make:n: *** message. Stop.

,ch12.8053 Page 241 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 12: Debugging Makefiles

The makefile part is the name of the makefile or include file in which the error
occurred. The next part is the line number where the error occurred, followed by
three asterisks and, finally, the error message.

Note that it is make’s job to run other programs and that, if errors occur, it is very
likely that problems in your makefile will manifest themselves as errors in these other
programs. For instance, shell errors may result from badly formed command scripts,
or compiler errors from incorrect command-line arguments. Figuring out what pro-
gram produced the error message is your first task in solving the problem. Fortu-
nately, make’s error messages are fairly self-evident.

Syntax Errors
These are usually typographical errors: missing parentheses, using spaces instead of
tabs, etc.

One of the most common errors for new make users is omitting parentheses around
variable names:

foo:
 for f in $SOURCES; \
 do \
 … \
 done

This will likely result in make expanding $S to nothing, and the shell executing the
loop only once with f having a value of OURCES. Depending on what you do with f,
you may get a nice shell error message like:

OURCES: No such file or directory

but you might just as easily get no message at all. Remember to surround your make
variables with parentheses.

missing separator

The message:

makefile:2:missing separator. Stop.

or:

makefile:2:missing separator (did you mean TAB instead of 8 spaces?). Stop.

usually means you have a command script that is using spaces instead of tabs.

The more literal interpretation is that make was looking for a make separator such as :,
=, or a tab, and didn’t find one. Instead, it found something it didn’t understand.

commands commence before first target

The tab character strikes again!

,ch12.8053 Page 242 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Common Error Messages | 243

This error message was first covered in the section “Parsing Commands” in
Chapter 5. This error seems to appear most often in the middle of makefiles when a
line outside of a command script begins with a tab character. make does its best to
disambiguate this situation, but if the line cannot be identified as a variable assign-
ment, conditional expression, or multiline macro definition, make considers it a mis-
placed command.

unterminated variable reference

This is a simple but common error. It means you failed to close a variable reference
or function call with the proper number of parentheses. With deeply nested function
calls and variable references, make files can begin to look like Lisp! A good editor that
does parenthesis matching, such as Emacs, is the surest way to avoid these types of
errors.

Errors in Command Scripts
There are three common types of errors in command scripts: a missing semicolon in
multiline commands, an incomplete or incorrect path variable, or a command that
simply encounters a problem when run.

We discussed missing semicolons in the section “Good Coding Practices,” so we
won’t elaborate further here.

The classic error message:

bash: foo: command not found

is displayed when the shell cannot find the command foo. That is, the shell has
searched each directory in the PATH variable for the executable and found no match.
To correct this error, you must update your PATH variable, usually in your .profile
(Bourne shell), .bashrc (bash), or .cshrc (C shell). Of course, it is also possible to set
the PATH variable in the makefile itself, and export the PATH variable from make.

Finally, when a shell command fails, it terminates with a nonzero exit status. In this
case, make reports the failure with the message:

$ make
touch /foo/bar
touch: creating /foo/bar: No such file or directory
make: *** [all] Error 1

Here the failing command is touch, which prints its own error message explaining the
failure. The next line is make’s summary of the error. The failing makefile target is
shown in square brackets followed by the exit value of the failing program. Some-
times make will print a more verbose message if the program exits due to a signal,
rather than simply a nonzero exit status.

,ch12.8053 Page 243 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 12: Debugging Makefiles

Note also that commands executed silently with the @ modifier can also fail. In these
cases, the error message presented may appear as if from nowhere.

In either of these cases, the error originates with the program make is running, rather
than make itself.

No Rule to Make Target
This message has two forms:

make: *** No rule to make target XXX. Stop.

and:

make: *** No rule to make target XXX, needed by YYY. Stop.

It means that make decided the file XXX needed to be updated, but make could not
find any rule to perform the job. make will search all the implicit and explicit rules in
its database before giving up and printing the message.

There are three possible reasons for this error:

• Your makefile is missing a rule required to update the file. In this case, you will
have to add the rule describing how to build the target.

• There is a typo in the makefile. Either make is looking for the wrong file or the
rule to update the file specifies the wrong file. Typos can be hard to find in
makefiles due to the use of make variables. Sometimes the only way to really be
sure of the value of a complex filename is to print it out either by printing the
variable directly or examining make’s internal database.

• The file should exist but make cannot find it either, because it is missing or
because make doesn’t know where to look. Of course, sometimes make is abso-
lutely correct. The file is missing—perhaps you forgot to check it out of CVS.
More often, make simply can’t find the file, because the source is placed some-
where else. Sometimes the source is in a separate source tree, or maybe the file is
generated by another program and the generated file is in the binary tree.

Overriding Commands for Target
make allows only one command script for a target (except for double-colon rules,
which are rarely used). If a target is given more than one command script, make prints
the warning:

makefile:5: warning: overriding commands for target foo

It may also display the warning:

makefile:2: warning: ignoring old commands for target foo

,ch12.8053 Page 244 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Common Error Messages | 245

The first warning indicates the line at which the second command script is found,
while the second warning indicates the location of the original command script that
is being overridden.

In complex makefiles, targets are often specified many times, each adding its own
prerequisites. One of these targets usually includes a command script, but during
development or debugging it is easy to add another command script without realiz-
ing you are actually overriding an existing set of commands.

For example, we might define a generic target in an include file:

Create a jar file.
$(jar_file):
 $(JAR) $(JARFLAGS) -f $@ $^

and allow several separate makefiles to add their own prerequisites. Then in a
makefile we could write:

Set the target for creating the jar and add prerequisites
jar_file = parser.jar
$(jar_file): $(class_files)

If we were to inadvertently add a command script to this makefile text, make would
produce the overriding warning.

,ch12.8053 Page 245 Friday, March 25, 2005 2:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

247

PART III

III.Appendixes

The final section of this book contains information that is not central to the goals
ofthe book, but you might find it useful for unusual situations. Appendix A lists the
options that the GNU make command accepts on the command line. Appendix B,
which you will find amusing and possibly useful, stretches make to act as a general-
purpose programming language with data structures and arithmetic operations.
Appendix C contains the free license for the book.

,part3.12995 Page 247 Friday, March 25, 2005 3:18 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

249

Appendix A APPENDIX A

Running make

GNU make has an impressive set of command-line options. Most command-line
options include a short form and a long form. Short commands are indicated with a
single dash followed by a single character, while long options begin with a double
dash usually followed by whole words separated by dashes. The syntax of these com-
mands is:

-o argument
--option-word=argument

The following are the most commonly used options to make. For a complete listing,
see the GNU make manual or type make --help.

--always-make
-B

Assume every target is out of date and update them all.

--directory=directory
-C directory

Change to the given directory before searching for a makefile or performing any
work. This also sets the variable CURDIR to directory.

--environment-overrides
-e

Prefer environment variables to makefile variables when there is a choice. This
command-line option can be overridden in the makefile for particular variables
with the override directive.

--file=makefile
-f makefile

Read the given file as the makefile rather than any of the default names (i.e.,
makefile, Makefile, or GNUMakefile).

,appa.347 Page 249 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

250 | Appendix A: Running make

--help
-h

Print a brief summary of the command-line options.

--include-dir=directory
-I directory

If an include file does not exist in the current directory, look in the indicated
directories for include files before searching the compiled-in search path. Any
number of --include-dir options can be given on the command line.

--keep-going
-k

Do not terminate the make process if a command returns an error status. Instead,
skip the remainder of the current target, and continue on with other targets.

--just-print
-n

Display the set of commands that would be executed by make, but do not exe-
cute any commands from command scripts. This is very useful when you want
to know what make will do before actually doing it. Be aware that this option
does not prevent code in shell functions from executing, just commands in
command scripts.

--old-file=file
-o file

Treat file as if it were infinitely old, and perform the appropriate actions to
update the goals. This can be very useful if a file has been accidentally touched
or to determine the effect of one prerequisite on the dependency graph. This is
the complement of --new-file (-W).

--print-data-base
-p

Print make’s internal database.

--touch
-t

Execute the touch program on each out-of-date target to update its timestamp.
This can be useful in bringing the files in a dependency graph up to date. For
instance, editing a comment in a central header file may cause make to unneces-
sarily recompile an immense amount of code. Instead of performing the compile
and wasting machine cycles, you can use the --touch option to force all files to
be up to date.

--new-file=file
-W file

Assume file is newer than any target. This can be useful in forcing an update on
targets without having to edit or touch a file. This is the complement of --old-
file.

,appa.347 Page 250 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Running make | 251

--warn-undefined-variables
Print a warning message if an undefined variable is expanded. This is a useful
diagnostic tool since undefined variables quietly collapse into nothing. How-
ever, it is also common to include empty variables in makefiles for customiza-
tion purposes. Any unset customization variables will be reported by this option
as well.

,appa.347 Page 251 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

252

Appendix BAPPENDIX B

The Outer Limits

As you’ve seen, GNU make can do some pretty incredible things, but I haven’t seen
very much that really pushes the limits of make 3.80 with its eval construct. In this
exercise, we’ll see if we can stretch it further than usual.

Data Structures
One of the limitations of make that occasionally chaffs when writing complex
makefiles is make’s lack of data structures. In a very limited way, you can simulate a
data structure by defining variables with embedded periods (or even -> if you can
stand it):

file.path = /foo/bar
file.type = unix
file.host = oscar

If pressed, you can even “pass” this file structure to a function by using computed
variables:

define remote-file
 $(if $(filter unix,$($1.type)), \
 /net/$($1.host)/$($1.path), \
 //$($1.host)/$($1.path))
endef

Nevertheless, this seems an unsatisfying solution for several reasons:

• You cannot easily allocate a instance of this “structure.” Creating a new instance
involves selecting a new variable name and assigning each element. This also
means these pseudo-instances are not guaranteed to have the same fields (called
slots).

• The structure exists only in the user’s mind, and as a set of different make vari-
ables, rather than as a unified entity with its own name. And because the struc-
ture has no name, it is difficult to create a reference (or pointer) to a structure, so
passing them as arguments or storing one in a variable is clumsy.

,appb.573 Page 252 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Data Structures | 253

• There is no safe way to access a slot of the structure. Any typographical error in
either part of the variable name yields the wrong value (or no value) with no
warning from make.

But the remote-file function hints at a more comprehensive solution. Suppose we
implement structure instances using computed variables. Early Lisp object systems
(and even some today) used similar techniques. A structure, say file-info, can have
instances represented by a symbolic name, such as file_info_1.

Another instance might be called file_info_2. The slots of this structure can be rep-
resented by computed variables:

file_info_1_path
file_info_1_type
file_info_1_host

Since the instance has a symbolic name, it can be saved in one or more variables (as
usual, using recursive or simple variables is the choice of the programmer):

before_foo = file_info_1
another_foo = $(before_foo)

Elements of a file-info can be accessed using Lisp-like getters and setters:

path := $(call get-value,before_foo,path)
$(call set-value,before_foo,path,/usr/tmp/bar)

We can go further than this by creating a template for the file-info structure to
allow the convenient allocation of new instances:

orig_foo := $(call new,file-info)
$(call set-value,orig_foo,path,/foo/bar)

tmp_foo := $(call new,file-info)
$(call set-value,tmp_foo,path,/tmp/bar)

Now, two distinct instances of <literal>file-info</literal> exist. As a final conve-
nience, we can add the concept of default values for slots. To declare the file-info
structure, we might use:

$(call defstruct,file-info, \
 $(call defslot,path,), \
 $(call defslot,type,unix), \
 $(call defslot,host,oscar))

Here, the first argument to the defstruct function is the structure name, followed by
a list of defslot calls. Each defslot contains a single (name, default value) pair.
Example B-1 shows the implementation of defstruct and its supporting code.

Example B-1. Structure definition in make

$(next-id) - return a unique number
next_id_counter :=
define next-id
$(words $(next_id_counter))$(eval next_id_counter += 1)
endef

,appb.573 Page 253 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

254 | Appendix B: The Outer Limits

all_structs - a list of the defined structure names
all_structs :=

value_sep := XxSepxX

$(call defstruct, struct_name, $(call defslot, slot_name, value), ...)
define defstruct
 $(eval all_structs += $1) \
 $(eval $1_def_slotnames :=) \
 $(foreach v, $2 $3 $4 $5 $6 $7 $8 $9 $(10) $(11), \
 $(if $($v_name), \
 $(eval $1_def_slotnames += $($v_name)) \
 $(eval $1_def_$($v_name)_default := $($v_value))))
endef

$(call defslot,slot_name,slot_value)
define defslot
 $(eval tmp_id := $(next_id))
 $(eval $1_$(tmp_id)_name := $1)
 $(eval $1_$(tmp_id)_value := $2)
 $1_$(tmp_id)
endef

all_instances - a list of all the instances of any structure
all_instances :=

$(call new, struct_name)
define new
$(strip \
 $(if $(filter $1,$(all_structs)),, \
 $(error new on unknown struct '$(strip $1)')) \
 $(eval instance := $1@$(next-id)) \
 $(eval all_instances += $(instance)) \
 $(foreach v, $($(strip $1)_def_slotnames), \
 $(eval $(instance)_$v := $($(strip $1)_def_$v_default))) \
 $(instance))
endef

$(call delete, variable)
define delete
$(strip \
 $(if $(filter $($(strip $1)),$(all_instances)),, \
 $(error Invalid instance '$($(strip $1))')) \
 $(eval all_instances := $(filter-out $($(strip $1)),$(all_instances))) \
 $(foreach v, $($(strip $1)_def_slotnames), \
 $(eval $(instance)_$v :=)))
endef

$(call struct-name, instance_id)
define struct-name
$(firstword $(subst @, ,$($(strip $1))))
endef

Example B-1. Structure definition in make (continued)

,appb.573 Page 254 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Data Structures | 255

$(call check-params, instance_id, slot_name)
define check-params
 $(if $(filter $($(strip $1)),$(all_instances)),, \
 $(error Invalid instance '$(strip $1)')) \
 $(if $(filter $2,$($(call struct-name,$1)_def_slotnames)),, \
 $(error Instance '$($(strip $1))' does not have slot '$(strip $2)'))
endef

$(call get-value, instance_id, slot_name)
define get-value
$(strip \
 $(call check-params,$1,$2) \
 $($($(strip $1))_$(strip $2)))
endef

$(call set-value, instance_id, slot_name, value)
define set-value
 $(call check-params,$1,$2) \
 $(eval $($(strip $1))_$(strip $2) := $3)
endef

$(call dump-struct, struct_name)
define dump-struct
{ $(strip $1)_def_slotnames "$($(strip $1)_def_slotnames)" \
 $(foreach s, \
 $($(strip $1)_def_slotnames),$(strip \
 $(strip $1)_def_$s_default "$($(strip $1)_def_$s_default)")) }
endef

$(call print-struct, struct_name)
define print-struct
{ $(foreach s, \
 $($(strip $1)_def_slotnames),$(strip \
 { "$s" "$($(strip $1)_def_$s_default)" })) }
endef

$(call dump-instance, instance_id)
define dump-instance
{ $(eval tmp_name := $(call struct-name,$1)) \
 $(foreach s, \
 $($(tmp_name)_def_slotnames),$(strip \
 { $($(strip $1))_$s "$($($(strip $1))_$s)" })) }
endef

$(call print-instance, instance_id)
define print-instance
{ $(foreach s, \
 $($(call struct-name,$1)_def_slotnames),"$(strip \
 $(call get-value,$1,$s))") }
endef

Example B-1. Structure definition in make (continued)

,appb.573 Page 255 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

256 | Appendix B: The Outer Limits

Examining this code one clause at a time, you can see that it starts by defining the
function next-id. This is a simple counter:

$(next-id) - return a unique number
next_id_counter :=
define next-id
$(words $(next_id_counter))$(eval next_id_counter += 1)
endef

It is often said that you cannot perform arithmetic in make, because the language is
too limited. In general, this is true, but for limited cases like this you can often com-
pute what you need. This function uses eval to redefine the value of a simple vari-
able. The function contains two expressions: the first expression returns the number
of words in next_id_counter; the second expression appends another word to the
variable. It isn’t very efficient, but for numbers in the small thousands it is fine.

The next section defines the defstruct function itself and creates the supporting data
structures.

all_structs - a list of the defined structure names
all_structs :=

value_sep := XxSepxX

$(call defstruct, struct_name, $(call defslot, slot_name, value), ...)
define defstruct
 $(eval all_structs += $1) \
 $(eval $1_def_slotnames :=) \
 $(foreach v, $2 $3 $4 $5 $6 $7 $8 $9 $(10) $(11), \
 $(if $($v_name), \
 $(eval $1_def_slotnames += $($v_name)) \
 $(eval $1_def_$($v_name)_default := $($v_value))))
endef

$(call defslot,slot_name,slot_value)
define defslot
 $(eval tmp_id := $(next_id))
 $(eval $1_$(tmp_id)_name := $1)
 $(eval $1_$(tmp_id)_value := $2)
 $1_$(tmp_id)
endef

The variable all_structs is a list of all known structures defined with defstruct.
This list allows the new function to perform type checking on the structures it allo-
cates. For each structure, S, the defstruct function defines a set of variables:

S_def_slotnames
S_def_slotn_default

The first variable defines the set of slots for a structure. The other variables define the
default value for each slot. The first two lines of the defstruct function append to
all_structs and initialize the slot names list, respectively. The remainder of the func-
tion iterates through the slots, building the slot list and saving the default value.

,appb.573 Page 256 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Data Structures | 257

Each slot definition is handled by defslot. The function allocates an id, saves the slot
name and value in two variables, and returns the prefix. Returning the prefix allows
the argument list of defstruct to be a simple list of symbols, each of which provides
access to a slot definition. If more attributes are added to slots later, incorporating
them into defslot is straightforward. This technique also allows default values to
have a wider range of values (including spaces) than simpler, alternative implementa-
tions.

The foreach loop in defstruct determines the maximum number of allowable slots.
This version allows for 10 slots. The body of the foreach processes each argument by
appending the slot name to S_def_slotnames and assigning the default value to a vari-
able. For example, our file-info structure would define:

file-info_def_slotnames := path type host
file-info_def_path_default :=
file-info_def_type_default := unix
file-info_def_host_default := oscar

This completes the definition of a structure.

Now that we can define structures, we need to be able to instantiate one. The new
function performs this operation:

$(call new, struct_name)
define new
$(strip \
 $(if $(filter $1,$(all_structs)),, \
 $(error new on unknown struct '$(strip $1)')) \
 $(eval instance := $1@$(next-id)) \
 $(eval all_instances += $(instance)) \
 $(foreach v, $($(strip $1)_def_slotnames), \
 $(eval $(instance)_$v := $($(strip $1)_def_$v_default))) \
 $(instance))
endef

The first if in the function checks that the name refers to a known structure. If the
structure isn’t found in all_structs, an error is signaled. Next, we construct a
unique id for the new instance by concatenating the structure name with a unique
integer suffix. We use an at sign to separate the structure name from the suffix so we
can easily separate the two later. The new function then records the new instance
name for type checking by accessors later. Then the slots of the structure are initial-
ized with their default values. The initialization code is interesting:

$(foreach v, $($(strip $1)_def_slotnames), \
 $(eval $(instance)_$v := $($(strip $1)_def_$v_default)))

The foreach loop iterates over the slot names of the structure. Using strip around on
the structure name allows the user to add spaces after commas in the call to new. Recall
that each slot is represented by concatenating the instance name and the slot name (for
instance, file_info@1_path). The righthand side is the default value computed from the
structure name and slot name. Finally, the instance name is returned by the function.

,appb.573 Page 257 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

258 | Appendix B: The Outer Limits

Note that I call these constructs functions, but they are actually macros. That is, the
symbol new is recursively expanded to yield a new piece of text that is inserted into
the makefile for reparsing. The reason the defstruct macro does what we want is
because all the work is eventually embedded within eval calls, which collapse to
nothing. Similarly, the new macro performs its significant work within eval calls. It
can reasonably be termed a function, because the expansion of the macro conceptu-
ally yields a single value, the symbol representing the new instance.

Next, we need to be able to get and set values within our structures. To do this, we
define two new functions:

$(call get-value, instance_id, slot_name)
define get-value
$(strip \
 $(call check-params,$1,$2) \
 $($($(strip $1))_$(strip $2)))
endef

$(call set-value, instance_id, slot_name, value)
define set-value
 $(call check-params,$1,$2) \
 $(eval $($(strip $1))_$(strip $2) := $3)
endef

To get the value of a slot, we simply need to compute the slot variable name from the
instance id and the slot name. We can improve safety by first checking that the
instance and slot name are valid strings with the check-params function. To allow
more aesthetic formating and to ensure that extraneous spaces do not corrupt the
slot value, we wrap most of these parameters in strip calls.

The set function also checks parameters before setting the value. Again, we strip the
two function arguments to allow users the freedom to add spaces in the argument
list. Note that we do not strip the slot value, because the user might actually need the
spaces.

$(call check-params, instance_id, slot_name)
define check-params
 $(if $(filter $($(strip $1)),$(all_instances)),, \
 $(error Invalid instance '$(strip $1)')) \
 $(if $(filter $2,$($(call struct-name,$1)_def_slotnames)),, \
 $(error Instance '$($(strip $1))' does not have slot '$(strip $2)'))
endef

$(call struct-name, instance_id)
define struct-name
$(firstword $(subst @, ,$($(strip $1))))
endef

The check-params function simply checks that the instance id passed to the setter and
getter functions is contained within the known instances list. Likewise, it checks that
the slot name is contained within the list of slots belonging to this structure. The

,appb.573 Page 258 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Data Structures | 259

structure name is computed from the instance name by splitting the symbol on the @
and taking the first word. This means that structure names cannot contain an at sign.

To round out the implementation, we can add a couple of print and debugging func-
tions. The following print function displays a simple user-readable representation of a
structure definition and a structure instance, while the dump function displays the
implementation details of the two constructs. See Example B-1 for the implementations.

Here’s an example defining and using our file-info structure:

include defstruct.mk

$(call defstruct, file-info, \
 $(call defslot, path,), \
 $(call defslot, type,unix), \
 $(call defslot, host,oscar))

before := $(call new, file-info)
$(call set-value, before, path,/etc/password)
$(call set-value, before, host,wasatch)

after := $(call new,file-info)
$(call set-value, after, path,/etc/shadow)
$(call set-value, after, host,wasatch)

demo:
 # before = $(before)
 # before.path = $(call get-value, before, path)
 # before.type = $(call get-value, before, type)
 # before.host = $(call get-value, before, host)
 # print before = $(call print-instance, before)
 # dump before = $(call dump-instance, before)
 #
 # all_instances = $(all_instances)
 # all_structs = $(all_structs)
 # print file-info = $(call print-struct, file-info)
 # dump file-info = $(call dump-struct, file-info)

and the output:

$ make
before = file-info@0
before.path = /etc/password
before.type = unix
before.host = wasatch
print before = { "/etc/password" "unix" "wasatch" }
dump before = { { file-info@0_path "/etc/password" } { file-info@0_type "unix" }
{ file-info@0_host "wasatch" } }
#
all_instances = file-info@0 file-info@1
all_structs = file-info
print file-info = { { "path" "" } { "type" "unix" } { "host" "oscar" } }
dump file-info = { file-info_def_slotnames " path type host" file-info_def_path_
default "" file-info_def_type_default "unix" file-info_def_host_default "oscar" }

,appb.573 Page 259 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

260 | Appendix B: The Outer Limits

Also note how illegal structure uses are trapped:

$ cat badstruct.mk
include defstruct.mk
$(call new, no-such-structure)
$ make -f badstruct.mk
badstruct.mk:2: *** new on unknown struct 'no-such-structure'. Stop.

$ cat badslot.mk
include defstruct.mk
$(call defstruct, foo, defslot(size, 0))
bar := $(call new, foo)
$(call set-value, bar, siz, 10)
$ make -f badslot.mk
badslot.mk:4: *** Instance 'foo@0' does not have slot 'siz'. Stop.

Of course, there are lots of improvements that can be made to the code, but the basic
ideas are sound. Here is a list of possible enhancements:

• Add a validation check to the slot assignment. This could be done with a hook
function that must yield empty after the assignment has been performed. The
hook could be used like this:

$(call set-value, instance_id, slot_name, value)
define set-value
 $(call check-params,$1,$2) \
 $(if $(call $(strip $1)_$(strip $2)_hook, value), \
 $(error set-value hook, $(strip $1)_$(strip $2)_hook, failed)) \
 $(eval $($(strip $1))_$(strip $2) := $3)
endef

• Support for inheritance. A defstruct could accept another defstruct name as a
superclass, duplicating all the superclass’s members in the subclass.

• Better support for structure references. With the current implementation, a slot
can hold the ID of another structure, but accessing is awkward. A new version of
the get-value function could be written to check for references (by looking for
defstruct@number), and perform automatic dereferencing.

Arithmetic
In the previous section, I noted that it is not possible to perform arithmetic in make
using only its native features. I then showed how you could implement a simple
counter by appending words to a list and returning the length of the list. Soon after I
discovered the increment trick, Michael Mounteney posted a cool trick for perform-
ing a limited form of addition on integers in make.

His trick manipulates the number line to compute the sum of two integers of size one
or greater. To see how this works, imagine the number line:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

,appb.573 Page 260 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Arithmetic | 261

Now, notice that (if we could get the subscripts right), we could add, say 4 plus 5, by
first taking a subset of the line from the fourth element to the end then selecting the
fifth element of the subset. We can do this with native make functions:

number_line = 2 3 4 5 6 7 8 9 10 11 12 13 14 15
plus = $(word $2, $(wordlist $1, 15, $(number_line)))
four+five = $(call plus, 4, 5)

Very clever, Michael! Notice that the number line starts with 2 rather than 0 or 1.
You can see that this is necessary if you run the plus function with 1 and 1. Both sub-
scripts will yield the first element and the answer must be 2, therefore, the first ele-
ment of the list must be 2. The reason for this is that, for the word and wordlist
functions, the first element of the list has subscript 1 rather than 0 (but I haven’t
bothered to prove it).

Now, given a number line, we can perform addition, but how do we create a num-
ber line in make without typing it in by hand or using a shell program? We can create
all numbers between 00 and 99 by combining all possible values in the tens place
with all possible values in the ones place. For example:

make -f - <<< '$(warning $(foreach i, 0 1 2, $(addprefix $i, 0 1 2)))'
/c/TEMP/Gm002568:1: 00 01 02 10 11 12 20 21 22

By including all digits 0 through 9, we would produce all numbers from 00 to 99. By
combining the foreach again with a hundreds column, we would get the numbers
from 000 to 999, etc. All that is left is to strip the leading zeros where necessary.

Here is a modified form of Mr. Mounteney’s code to generate a number line and
define the plus and gt operations:

combine - concatentate one sequence of numbers with another
combine = $(foreach i, $1, $(addprefix $i, $2))

stripzero - Remove one leading zero from each word
stripzero = $(patsubst 0%,%,$1)

generate - Produce all permutations of three elements from the word list
generate = $(call stripzero, \
 $(call stripzero, \
 $(call combine, $1, \
 $(call combine, $1, $1))))

number_line - Create a number line from 0 to 999
number_line := $(call generate,0 1 2 3 4 5 6 7 8 9)
length := $(word $(words $(number_line)), $(number_line))

plus - Use the number line to add two integers
plus = $(word $2, \
 $(wordlist $1, $(length), \
 $(wordlist 3, $(length), $(number_line))))

gt - Use the number line to determine if $1 is greater than $2
gt = $(filter $1, \

,appb.573 Page 261 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

262 | Appendix B: The Outer Limits

 $(wordlist 3, $(length), \
 $(wordlist $2, $(length), $(number_line))))

all:
 @echo $(call plus,4,7)
 @echo $(if $(call gt,4,7),is,is not)
 @echo $(if $(call gt,7,4),is,is not)
 @echo $(if $(call gt,7,7),is,is not)

When run, the makefile yields:

$ make
11
is not
is
is not

We can extend this code to include subtraction by noting that subscripting a
reversed list is just like counting backwards. For example, to compute 7 minus 4,
first create the number line subset 0 to 6, reverse it, then select the fourth element:

number_line := 0 1 2 3 4 5 6 7 8 9...
1through6 := 0 1 2 3 4 5 6
reverse_it := 6 5 4 3 2 1 0
fourth_item := 3

Here is the algorithm in make syntax:

backwards - a reverse number line
backwards := $(call generate, 9 8 7 6 5 4 3 2 1 0)

reverse - reverse a list of words
reverse = $(strip \
 $(foreach f, \
 $(wordlist 1, $(length), $(backwards)), \
 $(word $f, $1)))

minus - compute $1 minus $2
minus = $(word $2, \
 $(call reverse, \
 $(wordlist 1, $1, $(number_line))))

minus:
 # $(call minus, 7, 4)

Multiplication and division are left as an exercise for the reader.

,appb.573 Page 262 Friday, March 25, 2005 1:47 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

263

Appendix C APPENDIX C

GNU Free Documentation License—
GNU Project—Free Software

Foundation (FSF)

Version 1.2, November 2002

 Copyright © 2000,2001,2002 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license docu-
ment, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document “free” in the sense of freedom: to assure everyone the effective free-
dom to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifica-
tions made by others.

This License is a kind of “copyleft”, which means that derivative works of the docu-
ment must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is not
limited to software manuals; it can be used for any textual work, regardless of sub-
ject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of

,appc.696 Page 263 Friday, March 25, 2005 1:48 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

264 | Appendix C: GNU Free Documentation License—GNU Project—Free Software Foundation (FSF)

this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as “you”. You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated
into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Docu-
ment that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (Thus, if the Document is
in part a textbook of mathematics, a Secondary Section may not explain any mathe-
matics.) The relationship could be a matter of historical connection with the subject
or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of Second-
ary then it is not allowed to be designated as Invariant. The Document may contain
zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released
under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is suit-
able for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for auto-
matic translation to a variety of formats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose markup, or absence of markup,
has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount
of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

,appc.696 Page 264 Friday, March 25, 2005 1:48 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

3. COPYING IN QUANTITY | 265

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, Post-
Script or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in
the title page. For works in formats which do not have any title page as such, “Title
Page” means the text near the most prominent appearance of the work’s title, pre-
ceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below,
such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states
that this License applies to the Document. These Warranty Disclaimers are consid-
ered to be included by reference in this License, but only as regards disclaiming war-
ranties: any other implication that these Warranty Disclaimers may have is void and
has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed cov-
ers) of the Document, numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as the

,appc.696 Page 265 Friday, March 25, 2005 1:48 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

266 | Appendix C: GNU Free Documentation License—GNU Project—Free Software Foundation (FSF)

publisher of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copy-
ing in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of
added material. If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that this Trans-
parent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the condi-
tions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the Docu-
ment, thus licensing distribution and modification of the Modified Version to who-
ever possesses a copy of it. In addition, you must do these things in the Modified
Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were
any, be listed in the History section of the Document). You may use the same
title as a previous version if the original publisher of that version gives permis-
sion.

2. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

3. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

,appc.696 Page 266 Friday, March 25, 2005 1:48 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

4. MODIFICATIONS | 267

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

6. Include, immediately after the copyright notices, a license notice giving the pub-
lic permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

8. Include an unaltered copy of this License.

9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Ver-
sion as given on the Title Page. If there is no section Entitled “History” in the
Document, create one stating the title, year, authors, and publisher of the Docu-
ment as given on its Title Page, then add an item describing the Modified Ver-
sion as stated in the previous sentence.

10. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed in
the “History” section. You may omit a network location for a work that was
published at least four years before the Document itself, or if the original pub-
lisher of the version it refers to gives permission.

11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

13. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

14. Do not retitle any existing section to be Entitled “Endorsements” or to conflict
in title with any Invariant Section.

15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qual-
ify as Secondary Sections and contain no material copied from the Document, you
may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version’s license
notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements

,appc.696 Page 267 Friday, March 25, 2005 1:48 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

268 | Appendix C: GNU Free Documentation License—GNU Project—Free Software Foundation (FSF)

of peer review or that the text has been approved by an organization as the authorita-
tive definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the Doc-
ument already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previ-
ous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permis-
sion to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original docu-
ments, unmodified, and list them all as Invariant Sections of your combined work in
its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identi-
cal Invariant Sections may be replaced with a single copy. If there are multiple Invari-
ant Sections with the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine
any sections Entitled “Acknowledgements”, and any sections Entitled “Dedica-
tions”. You must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documents in
all other respects.

,appc.696 Page 268 Friday, March 25, 2005 1:48 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

8. TRANSLATION | 269

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT
WORKS
A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium, is
called an “aggregate” if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Docu-
ment’s Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggre-
gate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original ver-
sions of these Invariant Sections. You may include a translation of this License, and
all the license notices in the Document, and any Warranty Disclaimers, provided that
you also include the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

,appc.696 Page 269 Friday, March 25, 2005 1:48 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

270 | Appendix C: GNU Free Documentation License—GNU Project—Free Software Foundation (FSF)

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify, subli-
cense or distribute the Document is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License “or any later ver-
sion” applies to it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a
draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft)
by the Free Software Foundation.

,appc.696 Page 270 Friday, March 25, 2005 1:48 PM

About the Author
Robert Mecklenburg began using Unix as a student in 1977 and has been program-
ming professionally for 23 years. His make experience started in 1982 at NASA with
Unix Version 7. Robert received his PhD in computer science from the University of
Utah in 1991. Since then, he has worked in many fields ranging from mechanical
CAD to bioinformatics, and brings his extensive experience in C++, Java, and Lisp
to bear on the problems of project management with make.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Managing Projects with GNU Make, Third Edition is a
potto, a member of the loris family. A small primate native to the tropical forests of
West Africa, the potto is 17 inches long and covered with dense, wooly, reddish-
brown fur. Its opposable thumbs give it an excellent grasp, leaving it well adapted to
its life in the trees. The potto spends its days sleeping in crevices or holes in trees,
emerging at night to hunt for food (insects, snails, and bats). Unlike many primates,
the potto generally lives alone.

Matt Hutchinson was the production editor for Managing Projects with GNU Make,
Third Edition. Octal Publishing, Inc. provided production services. Johnna Dinse
wrote the index. Adam Witwer, Jamie Peppard, and Darren Kelly provided quality
control.

Edie Freedman designed the cover of this book. The cover image is a 19th-century
engraving from the Dover Pictorial Archive. Clay Fernald produced the cover layout
with QuarkXPress 4.1 using Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIn-
tosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font
is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont’s TheSans Mono Condensed. The illustrations that appear in the book
were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand
MX and Adobe Photoshop CS.

,AUTHOR.COLO.14024 Page 281 Friday, March 25, 2005 3:26 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

271

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

[] (brackets) wildcard, 12
{ } (curly braces) in variables, 41
() (parentheses) in variables, 41
+= (append) operator, 45
* (asterisk) wildcard, 12
$% automatic variable, 16
$+ automatic variable, 17
$< automatic variable, 16
$? automatic variable, 16
$@ automatic variable, 16
$^ automatic variable, 17
$* automatic variables, 17
- (dash) command prefix, 93
^ in patterns, 12
:= operator, 43
?= operator

conditional variable assignment
operator, 44

environment variables, 52
% (percent) character, pattern rules, 22
+ (plus) command modifier, 93
? (question mark) wildcard, 12
@ sign

command prefix, echo and, 92
performance and, 188

~ (tilde) wildcard, 12

A
add-manifest function, jars, 176
addprefix function, 75
addsuffix function, 74
all target, 15
ALL_TREES variable, 155

--always-make option, 249
Ant (Java), 160

build files, 160
mkdir program, 162

portability, 162
tasks, 161

append operator (+=), 45
ar command, archive libraries, 34
archive libraries, 34
archive members, automatic variables

and, 16
arguments, patterns as built-in functions, 65
arithmetic, performing with make, 260
arrays, files array and command-line

limits, 102
assert function, 76
automake tool, 139
automatic variables, 16, 53

archive members, 16
empty targets and, 16
prerequisites, 16
targets and, 16
VPATH and, 19
vpath and, 19

B
basename function, 73
bash shell, benchmarking and, 183
benchmarking, 182

bash shell, 183
Cygwin and, 184
subst function calls and, 185
variable assignment speed, 185

,make3IX.fm.12208 Page 271 Friday, March 25, 2005 3:16 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

272 | Index

binary trees
ALL_TREES variables, 155
filesystem layout and, 126
multiple, 154
searches, 156
separate, 125
source tree separation, 141–149

book makefile, 196–205
m4 macros and, 210
output generation, 213
source validation, 216
XML preprocessing, 210

bottlenecks, 186
dependencies and, 187

build files, XML, 160
build targets, recursive make and, 112
build-classpath function, 173
builds

automation, 128
Linux kernel makefile, 220
testing, 128

built-in functions, 64–80
filenames and, 72
flow control and, 75
patterns as arguments, 65
string functions, 65
syntax, 64

built-in rules, 22
implicit rules, 25
variables, 27
(see also rules)

C
-C directory option, 249
call function, 63
calling functions, wildcards and, 12
canned sequences (see macros)
case-sensitivity in variables, 41
chaining rules, 22

intermediate files and, 27
character classes, wildcards and, 12
characters in variables, 41
check target, 15
circular references, libraries, 39
circularities, libraries, 39
CLASSPATH variable, Java makefile, 171
clean target, 15

code
debugging

defensive coding, 238
writing for, 236

duplicating, recursive make and, 114
command scripts, 9

error messages, 243
evaluation, 99
parsing and, 89
(see also scripts), 9

command-line
debugging options, 230
limits, 100

echo command line, 101
Linux kernel makefile options, 218
recursive make and, 111
subshells, 96
targets as arguments, 4
variable definition and, 51

commands
ar (archive library), 34
awk, phony targets and, 14
df, phony targets and, 14
empty, 97
environments, 98

file descriptors, 98
MAKEFLAGS variable, 98
MAKELEVEL variable, 98

errors in, ignoring, 93
help, 29
long, 90
make, execution order, 6
makefile, execution order, 6
multiline, 95
no-op, 95
options, errors and, 94
parsing, 88

command scripts and, 89
editors and, 90

prefixes
@, 92
- (dash), 93
+ (plus), 93

shell, sequences, 90
status code, 93
targets, overriding, 244
variable expansion, 49

comments, 9

,make3IX.fm.12208 Page 272 Friday, March 25, 2005 3:16 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Index | 273

commercial development model, 124
compile-bean function (Java), 178
computed variables, assert function and, 76
Concurrent Version Systems (see CVS)
conditional directives

ifdef, 55
ifeq, 55
ifndef, 55
ifneq, 55
syntax, 54

conditional processing directives, 54
conditional variable assignment operator

(?=), 44
configuring Linux kernel makefile, 220
constants, user-customized variables, 42
cookies, 15

(see also empty targets)
counter function, 17
CPPFLAGS variable, 50
CURDIR variable, 57
curly braces ({ }) in variables, 41
CVS (Concurrent Version Systems)

binary files, large, 157
implicit rules and, 28

cwd (current working directory), CURDIR
variable and, 57

Cygwin, 62
benchmarking and, 184
conflicts, 134
line termination, 131
portability and, 131
regtool, 172
Windows filesystem and, 132

D
data structures, 252

illegal, 260
trapping, 260

--debug option, 234
debug-enter variable, 81
debugging

code writing and, 236
command script error messages, 243
command-line options, 230
defensive coding and, 238
error messages, 241
introduction, 229
macros and, 81
make output, phony targets and, 14
overriding commands, targets, 244
syntax errors, 242

techniuqes for, 239
warning function and, 229

debug-leave variable, 81
declarations, reusable, library functions, 18
deferred expansion, 48
define directive, macros, 46
.DELETE_ON_ERROR target modifier, 31
dependencies, 113

bottlenecks and, 187
generating, 149

automatically, 31
include directive and, 56
Java makefile, 170
make-depend, 152
recursion and, 110
rules, 4

dependency checking, 6
development environments, variables, 53
development requirements, 124
development styles, 124
dir function, 72
directives

conditional processing, 54
conditional, syntax, 54
define, 46
include, 54, 55

dependencies and, 56
optimization, 121

vpath, 20
directories

~ (tilde) and, 12
multidirectory projects, nonrecursive

make and, 117
distclean target, 15
distributed make, 194
distribution, performance and, 194
double-colon rules, 40

E
echo command line, limits, 101
Eclipse, 163
EJB (Enterprise Java Beans), 178
ejb-rule function, 181
EJBS variable, 180
else keyword, 54
Emacs JDEE, 163
embedded periods, variable definition

and, 252
empty commands, 97
empty targets, 15

automatic variables and, 16

,make3IX.fm.12208 Page 273 Friday, March 25, 2005 3:16 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

274 | Index

encapsulation, Java packages, 159
endef keyword, 46
endif keyword, 54
Enterprise JavaBeans (EJB), 178
environment variables, ?= operator, 52
--environment-overrides option, 249
environments

commands, 98
file descriptors, 98
MAKEFLAGS variable, 98
MAKELEVEL variable, 98

variable definition and, 51
error function, 76
error handling, recursive make and, 112
error messages

command scripts, 243
debugging and, 241
fatal, printing, 76

errors, commands
ignoring, 93
options, 94

eval function, 82
parsing and, 83

expanding macros
deferred versus immediate, 48
macros invoked from another, 63

expanding text, foreach function and, 77
expanding variables, 47

curly braces and, 41
deferred, 48
immediate, 48

explicit rules, 10, 10–16
empty targets and, 15
phony targets, 13
wildcards, 12

exporting variables, 52

F
fatal error messages, 76
file descriptors, 98
file management, 134

source tree layout, 137
--file option, 249
filenames

built-in functions and, 72
functions

addprefix, 75
addsuffix, 74
basename, 73
dir, 72
join, 75

notdir, 73
suffix, 73
wildcard function, 72

patterns (see pattern rules)
suffixes, functions, 73
timestamps and, 71

files
variable definition and, 51
wildcards, 12

files array, command-line limits and, 102
filesystems layout, binary trees and, 126
filter function, 65
filter-out function, 66
find command, module definition, 122
findstring function, 66
firstword function, 69
flow control functions, 75

assert, 76
error, 76
foreach, 77
if, 75

foreach function, 77
free software model development, 124
functions

add-manifest, 176
addprefix, 75
addsuffix, 74
assert, 76
basename, 73
build-classpath, 173
built-in, 64–80

call, 63
filename, 72
flow control, 75
patterns as arguments, 65
string functions, 65
syntax, 64

calling, wildcards and, 12
compile-bean, 178
counter, 17
defslot, 257
dir, 72
ejb-rule, 181
error, 76
eval, 82
filter, 65
filter-out, 66
findstring, 66
firstword, 69
flow control, 75
foreach, 77
generated-source, 121

,make3IX.fm.12208 Page 274 Friday, March 25, 2005 3:16 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Index | 275

hooks, 86
if, 75
join, 75
library, declarations, 18
make-library, 120
miscellaneous, 79, 80
notdir, 73
origin, 79
parameters, passing to, 86
patsubst, 68
remote-file, 253
search and replace, strings, 67
shell, 69
sort, 69
source-to-object, 121
space-to-question, 136
string functions, 65
strip, 79

whitespace removal, 55
subst, 67
suffix, 73
user-defined, 61–64

advanced, 80–87
Linux kernel makefile, 224
parameters and, 62
value, 85
variables, 42

warning, 80
whitespace manipulation, 68
wildcard, 72
wildcard-spaces, 136
word, 69
wordlist, 69
words, 68

G
generated-source function, 121
generating dependencies, 149
globbing, 12
GNU Free Documentation License, 263–270
grep command, variables and, 98

H
header files, include directory, 18
Hello World makefile file, 3
help commands, 29
--help option, 250
home directory, ~ (tilde) and, 12

hooks, functions, 86

I
IDEs (Integrated Development

Environments), 159, 163
if function, 75
ifdef conditional directive, 55
ifeq conditional directive, 55
ifndef conditional directive, 55
ifneq conditional directive, 55
immediate expansion, 48
implicit rules, 10, 25

built-in, 25
source control and, 28

CVS, 28
include directive, 54, 55

dependencies and, 56
header files, 18
optimization, 121

include processing, 54
--include-dir option, 250
incrementing, 260
info target, 15
initialization, performance and, 188
input files, text printing, 7
install target, 15
installers, reference builds and, 157
Integrated Development Environments (see

IDEs)
interfaces, phony targets and, 15
intermediate files, chaining rules and, 27
.INTERMEDIATE target modifier, 30
invoking make, 7

J
jar program, 175

reference trees, 177
third-party, 177

jars (Java), 175
Java

Ant, 160
build file, 160
mkdir program, 162
portability, 162
tasks, 161

Eclipse, 159
EJB, 178
IDEs, 163

,make3IX.fm.12208 Page 275 Friday, March 25, 2005 3:16 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

276 | Index

jars and, 175
make and, 159
makefile (generic), 164

CLASSPATH variable, 171
dependecies and, 170

packages, 159
Java virtual machine (JVM), 159
JBuilder, 163
JIT (just-in-time) optimization, 159
--jobs option, 190
join function, 75
just-in-time (JIT) optimization, 159
--just-print option, 250
--just-print option, debugging, 230
JVM (Java virtual machine), 159

K
--keep-going option, 250
keywords

else, 54
endif, 54

killing processes, user-defined functions
and, 62

L
large projects, 107–128
libraries

archive libraries, 34
circular references, 39
creating, 36
double-colon rules, 40
make-library function, 120
as prerequisites, 38
recursion and, 110
reference builds and, 157
.SECONDARY target modifier, 30
updating, 36

library functions, reusable, 18
line termination, Cygwin, 131
Linux kernel makefile, 218

command echo, 223
command-line options, 218
configuration versus building, 220
user-defined functions, 224

long commands, 90

M
m4 macros, book makefile and, 210
macros

debugging and, 81
define directive, 46

defining, 48
expanding, 47
implementing, scoping and, 64
introduction, 45
invoking from another macro, 63
program-variables, 82
rules in, 83

make
automation and, 3
command execution, 6
comments, 9
dependency checking, 6
escape character, 9
invoking, 7
scripts and, 3

make shell command, benchmarking
and, 186

$(MAKE) variable, 109
MAKECMDGOALS variable, 58
makedepend, 152
MAKEFILE_LIST variable, 58
makefiles

book makefile, 196–205
m4 macros, 210
output generation, 213
source validation, 216
XML preprocessing, 210

command execution, 6
Hello World, 3
Java, generic for, 164
Linux kernel, 218

command echo and, 223
command-line options, 218
configuration versus building, 220
user-defined functions, 224

syntax, 8
targets as command-line arguments, 4
top-down style, 6

MAKEFLAGS variable, command
environment and, 98

MAKELEVEL variable, command
environments, 98

make-library function, 120
MAKE_VERSION variable, 57
matched rules, automatic variables, 16
members of archive libraries, 34
miscellaneous functions, 79

warning, 80
module definition, find command, 122
module.mk include files, 118
multiline commands, 95

,make3IX.fm.12208 Page 276 Friday, March 25, 2005 3:16 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Index | 277

N
--new-file option, 250
newline rule, 7
nonrecursive make, 117
no-op commands, 95
notdir function, 73

O
object files, updates, 27
$(OBJECTS) variable, 23
--old-file option, 250
options

commands, errors and, 94
portability and, 130

origin function, 79
output, book makefile example, 213

P
packages, Java, 159
parallelism

--jobs option, 190
performance and, 190
pmake, 194

parameters
passing to functions, 86
user-defined functions, 62

parentheses, variables and, 41, 78
parsing

commands, 88
command scripts and, 89
editors and, 90

eval function and, 83
partial source trees, 156
passing parameters to functions, 86
passing variables, recursive make and, 111
paths, portability and, 130
patsubst function, 68
pattern rules, 10, 21

% (percent) character, 22
implicit rules and, 10
patterns, 22
static pattern rules, 23
suffix rules, 24

deleting, 24
patterns, 22

as arguments in built-in functions, 65
filter function, 65

pattern-specific variables, 50
performance

@ sign and, 188
benchmarking and, 182

bottlenecks, 186
distribution and, 194
initialization and, 188
introduction, 182
parallelism and, 190
recursive variables, 187
simple variables, 187

.PHONY target modifier, 13
phony targets, 13

interfaces and, 15
nonrecursive make and, 117
output

debugging, 14
reading, 14

prerequisites, 13
special targets, 30
standard, 15

pmake, 194
portability, 129

Ant (Java), 162
Cygwin, 131
nonportable tools, 137
options and, 130
paths and, 130
program behavior and, 130
program names and, 130
shell and, 130, 139

.PRECIOUS target modifier, 30
prefixes

on commands
@, 92
- (dash), 93
+ (plus), 93

pattern rules, 23
prerequisites

automatic variables and, 16
libraries as, 38
phony targets, 13
rules and, 4
saving, 39
targets

chaining, 6
.INTERMEDIATE modifier and, 30
.SECONDARY modifier, 30

updates, ordering and, 110
--print-data-base option, 250

debugging and, 230
program behavior, portability and, 130
program management, 134
program names, portability and, 130
program-variables macro, 82

,make3IX.fm.12208 Page 277 Friday, March 25, 2005 3:16 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

278 | Index

R
RCS source control, implicit rules and, 28
read-only source, 149
rebuilds, minimizing, 7
recursion, 107
recursive make, 108

build targets and, 112
code duplication, 114
command-line and, 111
dependencies and, 110
error handling, 112
$(MAKE) variable, 109
variables, passing, 111
(see also nonrecursive make)

recursive variables
performance and, 187
shell function and, 70

recursively expanded variables, 43
reference builds

installers and, 157
libraries and, 157

reference trees, jar program, 177
regtool, 172
relative paths, converting to Java class

name, 71
release tree layout, 127
remote-file function, 253
reusable library functions, declarations, 18
rule chaining, 22
rules

any character, 7
chaining, intermediate files, 27
customization, variables and, 27
default rule, 4
dependents, 4
double-colon, 40
explicit, 10, 10–16

empty targets, 15
phony targets, 13

implicit, 10, 25
built-in, 25
source control and, 28

macros, 83
matching, automatic variables and, 16
newline, 7
pattern, 10, 21

suffix rules, 24
prerequisites and, 4
static pattern, 10, 23
structure, 27
suffix, 10
targets, 4

multiple, 10
variables, customization and, 27

run-make shell script, running book
makefile, 208

S
SCCS source control, implicit rules and, 28
scoping, macro implementation and, 64
scripts

command scripts, parsing and, 89
make and, 3

search and replace functions, strings, 67
substitution references, 68

searches
binary trees, 156
source treese, 156
VPATH and, 17
vpath and, 17

.SECONDARY target modifier, 30
separators, missing (error messages), 242
shell

command lines, subshells, 96
portability and, 130, 139

shell commands, sequences, 90
shell function, 69

variables, 70
simple variables

performance and, 187
shell function and, 70

simply expanded variables, 43
sort function, 69
source

binary tree separation, 141–149
src directory, 18
validation, book makefile, 216

source trees
layout, file management and, 137
partial, 156
read-only, 149
searches, 156

sources of variables, 51
source-to-object function, 121
space-to-question function, 136
special targets, 30
src directory, source files, 18
static pattern rules, 10, 23
status code, commands, 93
stderr file descriptor, 98
stdin file descriptor, 98
stdout file descriptor, 98
string functions, 65

filter, 65

,make3IX.fm.12208 Page 278 Friday, March 25, 2005 3:16 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Index | 279

filter-out, 66
findstring, 66
firstword, 69
patsubst, 68
search and replace functions, 67
subst, 67
wordlist, 69
words, 68

strip function, 79
whitespace removal, 55

structure of rules, 27
subshells, command lines and, 96
subst function, 67
substitution references, string functions, 68
suffix function, 73
suffix rules, 24

implicit rules and, 10
suffixes

filenames, functions, 73
pattern rules, 23

deleting, 24
targets, 24

syntax
built-in functions, 64
conditional directives, 54
editors, 90
errors, debugging and, 242
makefile, 8
target-specific variables, 51

T
tab character, error message, 242
TAGS target, 15
targets

automatic variables and, 16
build targets, recursive make and, 112
as command-line arguments, 4
commands, overriding, 244
deleting, 96
empty, 15
modifiers, 30

.DELETE_ON_ERROR, 31

.INTERMEDIATE, 30

.PHONY, 13

.PRECIOUS, 30

.SECONDARY, 30
phony targets, 13

special targets, 30
prerequisites

chaining, 6
saving, 39

rules, 4
explicit rules, 10
multiple, 10

special targets, 30
static pattern rules, 23
suffixes, 24
updating, rule chaining and, 22

target-specific variables, 50
syntax, 51

tasks (Ant), 161
text expansion, foreach function and, 77
timestamps

empty files and, 15
filenames and, 71

top-down style, makefiles, 6
--touch option, 250

U
updates

libraries, 36
object files, rules, 27
prerequisites, ordering and, 110
targets, rule chaining, 22

user-defined functions, 61–64
advanced, 80–87
killing processes and, 62
Linux kernel makefile, 224
parameters and, 62
variables and, 42

V
validating source, book makefile, 216
value function, 85
.VARIABLES variable, 59
variables, 16–17

ALL_TREES, 155
assigning, speed, 185
automatic, 16, 53

empty targets and, 16
built-in rules, 27
case-sensitivity, 41
characters allowed, 41
CLASSPATH, Java makefile, 171
computed, assert function and, 76
constants, user-customized, 42
CPPFLAGS, 50
CURDIR, 57
debug-enter, 81
debug-leave, 81
development environment, 53
EJBS, 180

,make3IX.fm.12208 Page 279 Friday, March 25, 2005 3:16 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

280 | Index

error messagess, 243
expanding, 47

curly braces and, 41
exporting, 52
functions, user-defined, 42
grep command, 98
introduction, 41
macros and, 46
MAKE, 109
MAKECMDGOALS, 58
MAKEFILE_LIST, 58
MAKEFLAGS, command environment

and, 98
MAKELEVEL, 98
MAKE_VERSION, 57
OBJECTS, 23
operators

:=, 43
=, 42
+= (append), 45
?= (conditional variable assignment

operator), 44
origins, origin function, 79
parentheses and, 41, 78
passing, recursive make and, 111
pattern-specific, 50
periods, embedded, 252
recursive, performance and, 187
recursively expanded, 43
shell function, 70
simple, performance and, 187
simply expanded, 43
sources, 51
target-specific, 50
trailing spaces and, 42
uses, 42

.VARIABLE, 59
VARIABLES, 59
VPATH (see VPATH)

VARIABLES variable, 59
VPATH, 17
vpath, 17
vpath directive, 20

W
warning function, 80

debugging and, 229
--warn-undefined-variables option, 251

debugging and, 233
whitespace

functions for manipulating, 68
removing, 64

strip function, 79
wildcard function, 72
wildcards, 12

? (question mark), 12
~ (tilde), 12
calling functions and, 12
character classes, 12
expanding, 12
misuse, 12
pattern rules and, 10
(see also globbing)

wildcard-spaces function, 136
Windows filesystem, Cygwin and, 132
Windows, using Cygwin and make on, 131
word function, 69
wordlist function, 69
words function, 68

,make3IX.fm.12208 Page 280 Friday, March 25, 2005 3:16 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Index | 281

X
XML

build files, 160
preprocessing book makefile, 210

,make3IX.fm.12208 Page 281 Friday, March 25, 2005 3:16 PM

