Real-time Systems
Specification, Verification and
Analysis

Edited by Mathai Joseph

Tata Research Development & Design Centre

Revised version with corrections
June 2001

Original edition published in 1996 by Prentice Hall International, London,
under
ISBN 0-13-455297-0

This version incorporates corrections to and changes from the original
edition.

This version is made
available for research,
teaching and personal use
only.

Copies may be made for non-
commercial use only.

Enquiries for other uses to
the Editor
(mathai@pune.tcs.co.in).

Contents

Preface

Contributors

1 Timeand Real-time
Mathai Joseph

I ntroduction

11
12
1.3
14
15
1.6

Real-time computing

Requirements, specification and implementation
The mine pump

How to read the book

Historical background

Exercises

2 Fixed Priority Scheduling— A Simple Model
Mathai Joseph

I ntroduction

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

Computational model
Static scheduling
Scheduling with priorities
Simple methods of analysis
Exact analysis

Extending the analysis
Historical background
Exercises

Vii

Xii

g w N B

11
12
14

15

15
16
18
19
20
24
29
30
31

iv

3 Advanced Fixed Priority Scheduling
Alan Burns and Andy W&llings
Introduction

5

31
3.2
3.3
34
35
3.6
3.7

Computational model
Advanced scheduling analysis
Introduction to Ada 95

The mine pump

Historical background

Further work

Exercises

Dynamic Priority Scheduling
Krithi Ramamritham
Introduction

41
4.2
4.3
4.4
45
4.6
4.7
4.8
4.9

Programming dynamic real-time systems
Issues in dynamic scheduling

Dynamic priority assignment

Dynamic best-effort approaches

Dynamic planning-based approaches

Practical considerationsin dynamic scheduling
Historical background

Further work

Exercises

Assertional Specification and Verification
Jozef Hooman
I ntroduction

51
52
5.3
5.4
5.5
5.6
5.7
5.8
59

Basic framework

The mine pump

Communication between parallel components
Parallel decomposition of the sump control
Programming language

The mine pump example: final implementation
Further work

Historical background

Exercises

CONTENTS

32

32
32
38
50

53
64
64
65

66

66
69
75
76
80
83
0
93
94
95

97

97

98
105
109
114
122
131
136
138
141

CONTENTS

6 Specification and Verification in Timed CSP
Seve Schneider

Introduction

6.1 Thelanguage of real-time CSP
6.2 Observations and processes
6.3 Specification

6.4 Verification

6.5 Case study: the mine pump

6.6 Historical background

6.7 Exercises

7 Specification and Verification in DC
Zhiming Liu
Introduction
7.1 Modelling real-time systems
7.2 Requirements
7.3 Assumptions
7.4 Design
7.5 Thebasic duration calculus (DC)
7.6 The mine pump
7.7 Specification of scheduling policies
7.8 Probabilistic duration calculus (PDC)
7.9 Higtorical background
7.10 Further work
7.11 Exercises

8 Real-time Systems and Fault-tolerance
Henk Schepers

Introduction

8.1 Assertions and correctness formulae

8.2 Formalizing afailure hypothesis

8.3 A proof rulefor failure prone processes

8.4 Rdiability of the mine pump

8.5 Soundness and completeness of the new proof rule
8.6 Historical background

8.7 Exercises

References

Index

147

147
147
156
162
164
169
178
180

182

182
182
184
188
189
191
198
202
205
224
225
227

229

229
230
232
234
236
250
254
256

259

272

Preface

Thefield of real-time systems has not traditional ly been hospitable to newcomers: onthe
one hand there are experts who seem to rely on experience and a few specialized docu-
ments and, on the other, thereisavast and growing catalogue of technical papers. There
are very few textbooks and the most successful publications are probably collections of
past papers carefully selected to cover different viewsof thefield. Asinterest hasgrown,
so has the community, and the more recent papers are spread over alarge range of pub-
lications. This makesit particularly difficult to keep in touch with all the new develop-
ments.

If thisis distressing to the newcomer, it is of no less concern to anyone who has to
teach acourse on real-time systems. one hasonly to movealittle beyond purely technical
concerns to notice how quickly the teachable material seems to disappear in a cloud of
opinions and arange of possibilities. Itis not that the field lacks intellectual challenges
or that thereis not enough for astudent to learn. On the contrary, the problem seemsto be
aquestion of whereto start, how to relate practical techniques with methods of analysis,
analytical results with theories and, more crucially, how to decide on the objectives of a
course.

This book provides a detailed account of three major aspects of real-time systems:
program structures for real-time, timing analysis using scheduling theory and specifica-
tion and verification in different frameworks. Each chapter focuses on a particular tech-
nigue: taken together, they give afairly comprehensive account of the formal study of
real-time systems and demonstrate the effectiveness and applicability of mathematically
based methods for real-time system design. The book should be of interest to computer
scientists, engineersand practical system designersasit demonstratesal so how these new
methods can be used to solve real problems.

Chapters have different authorsand each focuses on a particular topic, but the material
has been written and edited so that the reader should notice no abrupt changes when mov-
ing from one chapter to another. Chapters are linked with cross-references and through
their description and analysis of a common example: the mine pump (Burns & Lister,
1991; Mahony & Hayes, 1992). This allows the reader to compare the advantages and

vii

viii PREFACE

limitations of different techniques. There are a number of small examplesin the text to
illustrate the theory and each chapter ends with a set of exercises.

The idea for the book came originally from material used for the M.Sc. module on
real-time systems at the University of Warwick. This module has now been taught by
several of the authors over the last three years and has been attended by both students
and visiting participants. However, it was planned that the book would contain a more
comprehensive treatment of the material than might be used in asingle course. This al-
lows teachers to draw selectively on the material, leaving some parts out and others as
further reading for students. Some possible course selections are outlined in Chapter 1
but many more are possible and the choice will be governed by the nature of the course
and the interests and preparation of the students. Part of the material has been taught by
the authorsin advanced undergraduate coursesin computer science, computer engineer-
ing and related disciplines; selections have also been used in severa different postgrad-
uate courses and in short courses for industrial groups. So the material has been used
successfully for many different audiences.

The book draws heavily on recent research and can also serve as a source book for
those doing research and for professionalsin industry who wish to use these techniques
in their work. The authors have many years of research experience in the areas of their
chapters and the book contains material with amaturity and depth that would be difficult
for asingle author to achieve, certainly on a short time-scale.

Acknowledgements

Each chapter has been reviewed by another author and then checked and re-drafted by the
editor to makethe style of presentation uniform. Thisprocedure hasrequired agreat deal
of cooperation and understanding from the authors, for which the editor ismost grateful.
Despite careful scrutiny, therewill certainly beinexcusable errorslurking in cornersand
we would be very glad to be informed of any that are discovered.

We are very grateful to the reviewers for comments on the draft and for providing us
with the initial responses to the book. Anders Ravn read critically through the whole
manuscript and sent many useful and acute observations and corrections. Matthew Wa-
hab pointed out a number of inconsistencies and suggested severa improvements. We
are also glad to acknowledge the cooperation of earlier ‘mine pump’ authors, Andrew
Lister, Brendan Mahony and lan Hayes.

In addition, particular thanks are due to many other people for their comments on dif-
ferent chapters.

Chapters 1, 2: Tomasz Janowski made several useful comments, as did students of
the M.Sc. module on real-time systems and the Warwick undergraduate course, \erifica-
tion and Validation. Steve Schneider’s specificationin Z of the mine pump was a useful
template during the development of the specification in Chapter 1.

Chapter 4: Gerhard Fohler, Swamy Kutti and Arcot Sowmyacommented on an earlier
draft. Thanks are also due to the present and past members of the real-time group at the
University of Massachusetts.

Chapter 5: Jan Vitt read through the chapter carefully and made several suggestions

PREFACE ix

for improvement.

Chapter 6: Jim Davies, Bruno Dutertre, Gavin Lowe, Paul Mukherjee, Justin Pearson,
Ken Wood and members of the ESPRIT Basic Research Action CONCUR2 provided
comments at various stages of the work.

Chapter 7: Zhou Chaochen was a source of encouragement and advice during thewrit-
ing of this chapter.

The book was produced using IATEX 2e, aided by the considerable ingenuity, skill and
perseverance of Steven Haeck, with critical tipsfrom Jm Davies and with help at many
stages from Jeff Smith.

Finally, the book owesagreat deal to Jackie Harbor of PrenticeHall International, who
piloted the project through from its start, and to Alison Stanford, who was Senior Pro-
duction Editor. Their combined efforts made it possible for the writing, editing and re-
viewing of the book to be interleaved with its production so that the whole process could
be completed in 10 months.

The Series editor, Tony Hoare, encouraged us to start the book and persuaded us not
to be daunted by the task of editing it into a cohesive text. All of us, editor and authors,
owe agreat deal for this support.

Department of Computer Science Mathai Joseph
University of Warwick

Preface to Revised Edition

In the five years that have passed since the original edition of the book was published, the field of
real-time systems has grown at a breathtaking rate. Most notably, embedded systems have
become a separate field of study from other real-time control systems and applications of
embedded systems have spread from the original domain of machinery and transportation to hand-
held devices, like organizers, personal digital assistants and mobile telephones. Along with this, the
nature of the problems to be faced has also changed. Reliability, usability and adaptability are now
added to the factors that must be studied and analyzed when designing a real-time embedded
system. And with widespread personal use taking place, it is not just usability but also reliability
under unspecified use (e.g. incorrect operation, environmental change, component and subsystem
failure) that must be demonstrated.

Nevertheless, the basic principles for the analysis, specification and verification of real-time
systems remain unchanged. Whether using a design method such as real-time UML, or more
traditional software engineering methods, timing properties must still be determined in conjunction
with functional properties. New methods may further systematize the ways in which real-time
systems are designed but timing analysis will still need to be done using methods such as those
illustrated in this book.

This book has been in use for teaching several courses on real-time systems. With requests for
copies still coming from different parts of the world, for both teaching and personal use, the
contributors quickly decided that there would be a continued readership for some time to come.
The only choice was between producing a revised and corrected edition and collaborating once
again to produce a wholly new book. While the second choice would be closer to ideal, the other
commitments of the authors have led us to choose the first alternative as being both practical and
capable of early completion. Many of the contributors have changed their earlier affiliations and
locations and some even their roles, making collaboration at the same level difficult to contemplate.
We therefore leave the task of producing a new text on the specification, verification and analysis
of real-time systems to other authors, wishing them well and assuring them of our support and of
our belief that such as task is well worth doing.

The original edition of this book was published by Prentice-Hall International, London, in 1996. A
revised edition with corrections and some changes was planned but, as the title was discontinued
by the publishers in 1998, never saw light of day. This revised edition incorporating the corrections
and changes is now being made available free of cost for research, teaching and personal use.

Tata Research Development & Design Centre Mathai Joseph
54B Hadapsar Industrial Estate June 2001
Pune 411 013, India

Contributors

Professor Alan Burns burns@cs.york.ac.uk
Department of Computer Science

University of York,

Heslington

York YO10 5DD, UK

Dr. Jozef Hooman hooman@cs.kun.nl
Computing Science Institute

University of Nijmegen

P.O. Box 9010

6500 GL Nijmegen, The Netherlands

Professor Mathai Joseph mathai@pune.tcs.co.in
Tata Research Development & Design Centre

54B Hadapsar Industrial Estate

Pune 411 013, India

Dr. Zhiming Liu zI2@mcs.le.ac.uk
Department of Mathematics and Computer Science
University of Leicester

Leicester LE1 7RH, UK

Professor Krithi Ramamritham krithi@cse.iitb.ernet.in
Department of Computer Science and Engineering
Indian Institute of Technology

Powali

Mumbai 400 076, India

Dr. Ir. Henk Schepers henk.schepers@philips.com
Philips Research Laboratories

Information & Software Technology

Prof. Holstlaan 4

5656 AA Eindhoven, The Netherlands

Dr. Steve Schneider S.Schneider@cs.rhul.ac.uk
Department of Computer Science

Royal Holloway, University of London

Egham, Surrey TW20 OEX, UK

Professor A.J. Wellings andy@cs.york.ac.uk
Department of Computer Science

University of York

Heslington

York YO10 5DD, UK
Xii

Chapter 1

Time and Real-time

Mathai Joseph

I ntroduction

There are many ways in which we alter the disposition of the physical world. There are
obvious ways, such as when a car moves people from one place to another. There are
less obvious ways, such as a pipeline carrying oil from awell to arefinery. In each case,
the purpose of the ‘system’ isto have a physical effect within a chosen time-frame. But
we do not talk about a car as being areal-time system because a moving car is a closed
system consisting of the car, the driver and the other passengers, and it is controlled from
within by the driver (and, of course, by the laws of physics).

Now consider how an external observer would record the movement of a car using a
pair of binoculars and a stopwatch. With afast moving car, the observer must move the
binoculars at sufficient speed to keep the car within sight. If the binoculars are moved
too fast, the observer will view an area before the car has reached there; too slow, and
the car will be out of sight because it is ahead of the viewed area. If the car changes
speed or direction, the observer must adjust the movement of the binoculars to keep the
car in view; if the car disappears behind a hill, the observer must use the car’s recorded
time and speed to predict when and where it will re-emerge.

Suppose the observer replaces the binoculars by an electronic camera which requires
n seconds to process each frame and determinethe position of the car. Aswhenthecaris
behind ahill, the observer must predict the position of the car and point the cameraso that
it keepsthe car in theframe even though itis‘seen’ only at intervals of n seconds. To do
this, the observer must model the movement of the car and, based on its past behaviour,
predict its future movement. The observer may not have an explicit ‘model’ of the car
and may not even be conscious of doing the modelling; nevertheless, the accuracy of the
prediction will depend on how faithfully the observer modelsthe actual movement of the
car.

Finally, assumethat the car hasno driver and iscontrolled by commandsradioed by the
observer. Being aphysical system, the car will have someinertiaand areactiontime, and
the observer must use an even more precise model if the car isto be controlled success-

1

2 CHAPTER 1. TIMEAND REAL-TIME

fully. Using information obtained every n seconds, the observer must send commands
to adjust throttle settings and brake positions, and initiate changes of gear when needed.
Thedifference between adriver inthe car and the external observer, or remote controller,
isthat the driver hasacontinuousview of theterraininfront of the car and can adjust the
controls continuously during its movement. The remote controller gets snapshots of the
car every n seconds and must use these to plan changes of control.

1.1 Real-timecomputing

A real-time computer controlling aphysical device or process has functionsvery similar
to those of the observer controlling the car. Typically, sensors will provide readings at
periodic intervals and the computer must respond by sending signalsto actuators. There
may be unexpected or irregular events and these must also receive a response. In al
cases, there will be a time-bound within which the response should be delivered. The
ability of the computer to meet these demands depends on its capacity to perform the
necessary computations in the given time. If a number of events occur close together,
the computer will need to schedule the computations so that each response is provided
within the required time-bounds. It may be that, even so, the system isunable to meet all
the possible unexpected demands and in this case we say that the system lacks sufficient
resources (since a system with unlimited resources and capable of processing at infinite
speed could satisfy any such timing constraint). Failureto meet the timing constraint for
aresponse can have different consequences: in some cases, there may be no effect at all;
in other cases, the effects may be minor and correctable; in yet other cases, the results
may be catastrophic.

Looking at the behaviour required of the observer allowsusto define some of the prop-
erties needed for successful real-time control. A real-time program must

. interact with an environment which has time-varying properties,
. exhibit predictable time-dependent behaviour, and
. execute on a system with limited resources.

L et us comparethisdescription with that of the observer and the car. The movement of
the car through theterrain certainly hastime-varying properties(as must any movement).
The observer must control this movement using information gathered by the electronic
camerg; if the car is to be steered safely through the terrain, responses must be sent to
the car in time to alter the setting of its controls correctly. During normal operation, the
observer can compute the position of the car and send control signals to the car at regu-
lar intervals. If the terrain contains hazardous conditions, such as a flooded road or icy
patches, the car may behave unexpectedly, e.g. skidding across the road in an arbitrary
direction. If the observer isrequired to control the car under all conditions, it must be
possible to react in time to such unexpected occurrences. When thisis not possible, we
can conclude that the real-time demands placed on the observer may, under some condi-
tions, makeitimpossibleto react in timeto control the car safely. In order for areal-time

1.2. REQUIREMENTS, SPECIFICATION AND IMPLEMENTATION 3

system to manifest predictabl e time-dependent behaviour it is thus necessary for the en-
vironment to make predictable demands.

With a human observer, the ability to react in time can be the result of skill, training,
experience or just luck. How do we assess the real-time demands placed on a computer
system and determine whether they will be met? If thereis just one task and a single
processor computer, calculating the real-time processing load may not be very difficult.
Asthe number of tasks increases, it becomes more difficult to make precise predictions,
if there is more than one processor, it is once again more difficult to obtain a definite
prediction.

There may be a number of factors that make it difficult to predict the timing of re-
SPONSEs.

. Atask may takedifferent timesunder different conditions. For example, predicting
the speed of a vehicle when it is moving on level ground can be expected to take
less time than if the terrain has a rough and irregular surface. If the system has
many such tasks, the total load on the system at any time can be very difficult to
calculate accurately.

. Tasks may have dependencies. Task A may need information from Task B before
it can completeits calculation, and thetime for completion of Task B may itself be
variable. Under these conditions, it isonly possibleto set minimum and maximum
bounds within which Task A will finish.

. With large and variable processing loads, it may be necessary to have more than
one processor in the system. If tasks have dependencies, calculating task comple-
tion times on amulti-processor system isinherently moredifficult than onasingle-
processor system.

. The nature of the application may require distributed computing, with nodes con-
nected by communication lines. The problem of finding completion timesis then
even more difficult, as communication between tasks can now take varying times.

1.2 Requirements, specification and implementation

The demands placed on a real-time system arise from the needs of the application and
are often called the requirements. Deciding on the precise requirementsis a skilled task
and can be carried out only with very good knowledge and experience of the application.
Failuresof large systemsareoften dueto errorsin defining therequirements. For asafety-
related real-time system, the operational requirementsmust then go through ahazard and
risk analysis to determine the safety requirements.

Requirements are often divided into two classes: functional requirements, which de-
fine the operations of the system and their effects, and non-functional requirements, such
astiming properties. A system which producesacorrectly cal culated response but failsto
meet itstiming-boundscan have as dangerous an effect as onewhich producesa spurious
result ontime. So, for areal-time system, the functional and non-functional requirements
must be precisely defined and together used to construct the specification of the system.

4 CHAPTER 1. TIMEAND REAL-TIME

Real-time
Application

) lication
Requirements ﬁ‘ggen ent
|

’

9
Mathematical
Program definition
Specificati on} ‘

N

i
Program } FO“}H'%

Design s
|
9
Program Programming
Implementation language
Hardware System

Figure 1.1 Requirements, specification and implementation

A specification is amathematical statement of the propertiesto be exhibited by a sys-
tem. A specification should be abstract so that

. it can be checked for conformity against the requirement, and
. itsproperties can be examined independently of theway inwhich it will beimple-
mented, i.e. as aprogram executing on a particular system.

This meansthat a specification should not enforce any decisions about the structure of the
software, the programming language to be used or the kind of system on which the pro-
gram is to be executed: these are properly implementation decisions. A specificationis
transformed into an application by taking design decisions, using formal or semi-formal
rules, and converted into a program in some language (see Figure 1.1).

In the next section, and in later chapters of this book, we shall study asimple but real-
istic problem and consider how a real-time system can be specified and implemented to
meet the requirements. Different notations will be used for the specification and it will
be shown how the properties of theimplementation can be checked. This servestwo pur-
poses. first, using acommon example allows usto compare different specification meth-
ods and see where they are most effective; second, it will be noticed as the specifications
unfold that there are many hidden complexitiesin even apparently simplereal-time prob-
lems. Thisiswhy mathematical description and analysis have an important role to play,
asthey help to deal with this complexity.

1.3. THE MINE PUMP 5

Operator*
} A CarbonMonoxidesensor

Log f | B Methanesensor

L C Airflowsensor

L D Highwater sensor

L E Lowwater sensor

| |

| |

Sump

Figure 1.2 Mine pump and control system (adapted from Burnsand Lister, 1991)

1.3 Theminepump

Water percolating into amineis collected in a sump to be pumped out of the mine (see
Figure 1.2). The water level sensors D and E detect when water is above a high and a
low level respectively. A pump controller switches the pump on when the water reaches
the high water level and off when it goes below thelow water level. If, dueto afailureof
the pump, the water cannot be pumped out, the mine must be evacuated within one hour.

The mine has other sensors (A, B, C) to monitor the carbon monoxide, methane and
airflow levels. An aarm must be raised and the operator informed within one second of
any of these levels becoming critical so that the mine can be evacuated within one hour.
To avoid therisk of explosion, the pump must be operated only when the methane level
isbelow acritical level.

Human operators can aso control the operation of the pump, but within limits. An
operator can switch the pump on or off if the water is between the low and high water
levels. A specia operator, the supervisor, can switch the pump on or off without this
restriction. In al cases, the methane level must be below its critical level if the pumpis
to be operated.

Readings from al sensors, and arecord of the operation of the pump, must be logged
for later analysis.

6 CHAPTER 1. TIMEAND REAL-TIME

Safety requirements
From the informal description of the mine pump and its operationswe obtain the follow-
ing safety requirements:

1. The pump must not be operated if the methane level iscritical.

2. The mine must be evacuated within one hour of the pump failing.

3. Alarmsmust beraised if the methane level, the carbon monoxide level or the air-
flow level iscritical.

Operational requirement
Themineisnormally operated for three shiftsaday, and the objectiveisfor no morethan
one shift in 1000 to be lost due to high water levels.

Problem
Writeand verify aspecification for the mine pump controller under which it can be shown
that the mine is operated whenever possible without violating the safety requirements.

Comments

The specification isto be the conjunction of two conditions. the mine must be operated
when possible, and the safety requirements must not be violated. If the specification read
‘The mine must not be operated when the safety requirementsare violated', then it could
betrivialy satisfied by not operating the mine at all! The specification must obviate this
easy solution by requiring the mine to be operated when it is safely possible.

Note that the situation may not always be clearly defined and there may be timeswhen
it is difficult to determine whether operating the mine would violate the safety require-
ments. For example, the pump may fail when the water is a any level; does the time
of one hour for the evacuation of the mine apply to all possible water levels? More cru-
cially, how ispump failure detected? |s pump failure always compl ete or can apump fail
partially and be able to displace only part of its normal output?

Itisalso important to consider under what conditions such aspecification will bevalid.
If the methane or carbon monoxidelevelscanriseat an arbitrarily fast rate, theremay not
be time to evacuate the mine, or to switch off the pump. Unless there are bounds on the
rate of change of different conditions, it will not be possible for the mine to be operated
and meet the safety requirements. Sensors operate by sampling at periodic intervals and
the pump will take some time to start and to stop. So the rate of change of alevel must
be small enough for conditions not to become dangerous during the reaction time of the
equipment.

The control system obtains information about the level of water from the Highwater
and Lowwater sensors and of methane from the Methane sensor. Detailed datais needed
about the rate at which water can enter the mine, and the frequency and duration of met-
hane leaks; the correctness of the control software is predicated on the accuracy of this
information. Can it also be assumed that the sensors always work correctly?

The description explains conditions under which the mine must be evacuated but does
not indicate how often this may occur or how normal operationisresumed after an evac-

1.3. THE MINE PUMP 7

uation. For example, can a mine be evacuated more than once in a shift or, following an
evacuation, isthe shift considered to belost? If the mineisevacuated, it would be normal
for asafety procedure to come into effect and for automatic and manual clearance to be
needed before operation of the mine can resume. Thisinformationwill make it possible
to decide on how and when an alarm is reset once it has been raised.

1.3.1 Developing a specification

Thefirst task in devel oping a specification is to make the informal description more pre-
cise. Some requirements may be very well defined but it is quite common for many re-
guirementsto be stated incompletely or with incons stencies between requirements. For
example, we have seen that there may be conditionsunder whichitisnot possible to meet
both the saf ety requirements and the operational requirement; unfortunately, the descrip-
tion gives us no guidance about what should be done in this case. In practice, it is then
necessary to go back to the user or the application engineer to ask for amore precise def-
inition of the needs and to resolve inconsistencies. The process of converting informally
stated requirementsinto a more precise form helps to uncover inconsistencies and inad-
equacies in the description, and devel oping a specification often needs many iterations.

We shall start by trying to describe the requirementsin terms of some properties, using
asmple mathematical notation. Thisisafirst step towards making aformal specification
and we shall see various different, more compl ete, specifications of the problem in later
chapters.

Propertieswill be defined with ssmple predicate cal culus expressions using the logical
operators A (and), v (or), = (implies) and < (iff), and the universal quantifier vV (for
all). The usual mathematical relational operators will be used and functions, constants
and variables will be typed. We use

F:T,—T,

for a function F from type T, (the domain of the function) to type T, (the range of the
function) and a variable V of type T will be defined asV : T. An interva from C; to
Co will berepresented as [Cq, Cy] if the interval is closed and includes both C; and Cy,
as (Cy, Gy if theinterval is half-open and includes C, and not C; and as [Cq, C,) if the
interval is half-open and includes C; and not C.

Assume that time is measured in seconds and recorded as a value in the set Time and
the depth of the water is measured in metres and is a value in the set Depth; Time and
Depth are the set of real numbers.

S1: Water level

The depth of the water in the sump depends on the rate at which water enters and leaves
the sump and thiswill change over time. Let us definethe water level Water at any time
to be afunction from Time to Depth:

Water : Time — Depth

8 CHAPTER 1. TIMEAND REAL-TIME

Let Flow be therate of change of the depth of water measured in metres per second and
be represented by the real numbers; Waterln and WaterOut are the rates at which water
enters and leaves the sump and, since these rates can change, they are functions from
Timeto Flow:

WaterIn, WaterOut : Time — Flow

The depth of water in the sump at time t, is the sum of the depth of water at an earlier
timet; and the difference between the amount of water that flowsin and out in thetime
interval [t1,to]. ThusVty,to: Time-
t
Water(tp) — Water(t) + | (WaterIn(t) <WaterOut(t)) dt

ty
HighWater and LowMater are constants representing the positions of the high and low
water level sensors. For safe operation, the pump should be switched on when the water
reachesthelevel HighWater and thelevel of water should always be kept below the level
Danger\Water:

DangerWater > HighWater > Low\W\ater

If HighWater = Low\Water, the high and low water sensorswould effectively be reduced
to one sensor.

S2: Methanelevel
The presence of methane is measured in units of pascals and recorded as avalue of type
Pressure (areal number). There is a critical level, DangerMethane, above which the
presence of methane is dangerous.

The methane level is related to the flow of methane in and out of the mine. As for
the water level, we define a function Methane for the methane level at any time and the
functions Methaneln and MethaneOut for the flow of methane in and out of the mine;

Methane : Time — Pressure
Methaneln, MethaneOut : Time — Pressure

andVty, to: Time-
t
Methane(ty) = Methane(t;) + / 2(Methanel n(t) <MethaneOuit(t))dt
ty

S3: Assumptions
1. Thereisamaximum rate MaxWaterIn : Flow at which the water level in the sump
can increase and at any timet, WaterIn(t) < Max\Waterin.
2. The pump can remove water with arate of at least PumpRating : Flow, and this
must be greater than the maximum rate at which water can build up: Max\Waterin
< PumpRating.

1.3. THE MINE PUMP 9

3. The operation of the pump is represented by a predicate on Time which indicates
when the pump is operating:

Pumping : Time — Bool

and at any timet if the pump is operating it will produce an outflow of water of at
least PumpRating:

(Pumping(t) A Water(t) > 0) = WaterOut(t) > PumpRating

4. The maximum rate at which methane can enter the mine is MaxMethaneRate. |f
the methane sensor measuresthe methanelevel periodically every ty, unitsof time,
and if thetime for the pump to switch on or off istp, then thereactiontime ty; + tp
must be such that normally, at any timet,

(Methane(t)+MaxMethaneRate- (ty + tp) + MethaneMargin)
< DangerMethane

where MethaneMargin is a safety limit.

5. The methane level does not reach Danger Methane more than once in 1000 shifts;
without thislimit, it is not possible to meet the operational requirement. Methane
is generated naturally during mining and is removed by ensuring a sufficient flow
of fresh air, so thislimit has some implicationsfor the air circulation system.

S4: Pump controller

The pump controller must ensure that, under the assumptions, the operation of the pump
will keep the water level within limits. At all timeswhen the water level is high and the
methanelevel is not critical, the pump is switched on, and if the methane level iscritical
the pump is switched off. Ignoring the reaction times, this can be specified as follows:

vt € Time- (Water(t) > HighWater A Methane(t) < DangerMethane) = Pumping(t)
A (Methane(t) > DangerMethane) = —~Pumping(t)

Now let us see how reaction times can be taken into account. Sincetp isthe time taken
to switch the pump on, a properly operating controller must ensure that

vt € Time- Methane(t) < DangerMethane A —Pumping(t) A Water(t) > HighWater
= Pumping(t+tp)

So if the operator has not already switched the pump on, the pump controller must do so
when the water level reaches HighWater.

Similarly, the methane sensor may take ty, units of timeto detect a methane level and
the pump controller must ensure that

Yt € Time- Pumping(t) A (Methane(t) + MethaneMargin) = DangerMethane
= —~Pumping(t+ ty + tp)

10 CHAPTER 1. TIMEAND REAL-TIME

S5: Sensors
The high water sensor provides information about the height of the water at timet in
the form of predicates HW(t) and LW(t) which are true when the water level is above
HighWater and LowWater respectively. We assume that at all times a correctly working
sensor gives some reading (i.e. HW(t) v -HW(t)) and, since HighWater > Low\Water,
HW(t) = LW(t).

The readings provided by the sensors are related to the actual water level in the sump:

Vte Time- Water(t) > HighWater < HW(t)
A Water(t) > LowWater < LW(t)

Similarly, the methane level sensor reads either DML(t) or -DML(t):

Vte Time- Methane(t) > DangerMethane < DML(t)
A Methane(t) < DangerMethane < -DML(t)

S6: Actuators
The pump is switched on and off by an actuator which receives signals from the pump
controller. Once these signals are sent, the pump controller assumes that the pump acts
accordingly. To validate this assumption, another condition is set by the operation of the
pump. The outflow of water from the pump sets the condition PumpOn; similarly, when
there is no outflow, the condition is PumpOff.

The assumption that the pump really ispumping whenitisonandisnot pumping when
it is off is specified below:

Vte Time- PumpOn(t) = Pumping(t)
A PumpOff (t) = —Pumping(t)

The condition PumpOn is set by the actual outflow and there may be a delay before the
outflow changes when the pump is switched on or off. If there were no delay, the impli-
cation = could be replaced by the two-way implication iff, represented by <, and the
two conditions PumpOn and PumpOff could be replaced by a single condition.

1.3.2 Constructing the specification

The simplemathematical notation used so far providesamoreabstract and amoreprecise
description of the requirements than does the textual description. Having come so far,
the next step should be to combine the definitions given in S1-S6 and use thisto prove
the safety properties of the system. The combined definition should also be suitable for
transformation into a program specification which can be used to develop a program.
Unfortunately, this is where the simplicity of the notation is a limitation. The defini-
tions S1-S6 can of course be made more detailed and perhaps taken a little further to-
wards what could be a program specification. But the mathematical set theory used for
the specification is both too rich and too complex to be useful in supporting program de-
velopment. To develop a program, we need to consider several levels of specification

14. HOW TO READ THE BOOK 11

(and so far we have just outlined the beginnings of one level) and each level must be
shown to preserve the properties of the previous levels. The later levels must lead di-
rectly to a program and an implementation and there is nothing so far in the notation to
suggest how this can be done.

What we need is a specification notation that has an underlying computational model
which holds for al levels of specification. The notation must have a calculus or a proof
system for reasoning about specifications and amethod for transforming specificationsto
programs. That iswhat we shall seek to accomplishin therest of the book. Chapters 5-7
containdifferent formal notationsfor specifying and reasoning about real-timeprograms,
in Chapter 8 thisis extended to consider the requirements of fault-tolerancein the mine
pump system. Each notation has a precisely defined computational model, or semantics,
and rules for transforming specifications into programs.

1.3.3 Analysisand implementation

The development of areal-time program takes us part of the way towards an implemen-
tation. The next step is to analyze the timing properties of the program and, given the
timing characteristics of the hardware system, to show that the implementation of the
program will meet the timing constraints. It isnot difficult to understand that for most
time-critical systems, the speed of the processor is of great importance. But how exactly
is processing speed related to the statements of the program and to timing deadlines?

A real-time system will usually have to meet many demandswithin limited time. The
importance of the demands may vary with their nature (e.g. asafety-related demand may
be more important than a simple data-logging demand) or with the time available for a
response. So the allocation of the resources of the system needs to be planned so that
all demands are met by the time of their deadlines. Thisis usually done using a sched-
uler which implements a scheduling policy that determines how the resources of the sys-
tem are alocated to the program. Scheduling policies can be analyzed mathematically
so the precision of the formal specification and program devel opment stages can be com-
plemented by a mathematical timing analysis of the program properties. Taken together,
specification, verification and timing analysis can provide accurate timing predictionsfor
areal-time system.

Scheduling analysisis described in Chapters 2—4; in Chapter 3 it isused to analyze an
Ada 95 program for the mine pump controller.

1.4 How toread the book

The remaining chapters of this book are broadly divided into two areas: (&) scheduling
theory and (b) the specification and verification of real-time and fault-tolerant properties
of systems. The book is organized so that an interested reader can read chaptersin the
order inwhichthey appear and obtain agood understanding of the different methods. The

12 CHAPTER 1. TIMEAND REAL-TIME

fact that each chapter has a different author should not cause any difficulties as chapters
have avery similar structure, follow a common style and have cross-references.

Readers with more specialized interests may wish to focus attention on just some of
the chapters and there are different ways in which this may be done:

. Scheduling theory: Chapters 2, 3 and 4 describe different aspects of the applica-
tion of scheduling theory to real-time systems. Chapter 2 has introductory ma-
terial which should be readily accessible to al readers and Chapter 3 follows on
with more advanced material and shows how a mine pump controller can be pro-
grammed in Ada 95; these chapters are concerned with methods of analysis for
fixed priority scheduling. Chapter 4 introduces dynamic priority scheduling and
shows how this method can be used effectively when the future load of the system
cannot be calculated in advance.

. Scheduling and specification: Chapters 2, 3 and 4 provide a compact overview of
fixed and dynamic priority scheduling. Chapters 5, 6 and 7 are devoted to specifi-
cation and verification using assertional methods, a real -time process cal culus and
the duration calculus respectively; one or more of these chapters can therefore be
studied to understand the role of specification in dealing with complex real-time
problems.

. Specification and verification: any or all of Chapters 5, 6 and 7 can be used; if a
choice must be made, then using either Chapters 5 and 6, or Chapters 5 and 7, will
give agood indication of the range of methods available.

. Timing and fault-tolerance: Chapter 8 shows how reasoning about fault-tolerance
can be done at the specification level; it assumes that the reader has understood
Chapter 5 asit uses very similar methods.

. The mine pump: Different treatments of the mine pump problem can be found in
Chapters 1, 3, 5, 6, 7 and 8; though they are based on the description in this chap-
ter, subtle differences may arise from the nature of the method used, and these are
pointed out.

Each chapter has a section describing the historical background to the work and an
extensive bibliography is provided at the end of the book to allow the interested reader
to refer to the original sources and obtain more detail.

Examples areincluded in most chapters, aswell asa set of exercises at the end of each
chapter. The exercisesareall drawn from the material contained in the chapter and range
from easy to relatively hard.

1.5 Historical background

Operationsresearch has been concerned with problems of job sequencing, timing, sched-
uling and optimization for many decades. Techniquesfrom operationsresearch provided

1.5. HISTORICAL BACKGROUND 13

the basis for the scheduling analysis of real-time systems and the paper by Liu and Lay-
land (1973) remained influential for well over adecade. Thiswas also thetime of the de-
velopment of axiomatic proof techniques for programming languages, starting with the
classic paper by Hoare (1969). But the early methodsfor proving the correctness of pro-
grams were concerned only with their ‘functional’ properties and Wirth (1977) pointed
out the need to distinguish between this kind of program correctness and the satisfac-
tion of timing requirements; axiomatic proof methodswereforerunnersof the assertional
method described and used in Chapters5 and 8. Mok (1983) pointed out the difficultiesin
relating work in scheduling theory with assertional methods and with the needs of prac-
tical, multi-process programming; it is only recently that some progress has been made
inthisdirection: e.g. see Section5.7.1 and Liu et al. (1995).

There are many ways in which the timing properties of programs can be specified and
verified. The methods can be broadly divided into three classes.

1. Real-time without time: Observable time in a program’s execution can differ to an
arbitrary extent from universal or absolute time and Turski (1988) has argued that time
isanissueto be considered at the implementation stage but not in aspecification; Hehner
(1989) shows how values of time can be used in assertions and for reasoning about simple
programming constructs, but also recommendsthat where there are timing constraints it
isbetter to construct aprogram with the required timing propertiesthan to try to compute
thetiming propertiesof anarbitrary program. For programsthat can beimplemented with
fixed schedules on a single processor, or those with very restricted timing requirements,
these restrictions make it possible to reason about real-time programs without reasoning
about time.

2. Synchronous real-time languages. The synchrony hypothesis assumes that external
events are ordered in time and the program responds as if instantaneously to each event.
The synchrony hypothesishasbeen used inthe ESTEREL (Berry & Gonthier, 1992), LUS-
TRE and SIGNAL family of languages, and in Statecharts (Harel, 1987). Treating are-
sponse as ‘instantaneous’ is an idealization that applies when the time of response is
smaller than the minimum time between external events. External timeisgivenadiscrete
representation (e.g. the natural numbers) and internal actions are deterministic and or-
dered. Synchronous systems are most easily implemented on a single processor. Strong
synchrony is amore general form of synchrony applicable to distributed systems where
nondeterminism is permitted but events can be ordered by a global clock.

3. Asynchronous real-time: In an asynchronous system, external events occur at times
that are usually represented by a dense domain (such asthereal numbers), and the system
is expected to provide responses within time-bounds. Thisisthe most general model of
real-time systems and is applicable to single-processor, multi-processor and distributed
systems. With some variations, thisisthe model we shall use for much of this book. As
we shall see, restrictions must be imposed (or further assumptions made) to enable the
timing properties of an asynchronous model to be fully determined: e.g. using discrete
rather than dense time, imposing determinism, and approximating cyclic behaviour and
aperiodicity by periodic behaviours. Few of these restrictionsare really compatible with

14 CHAPTER 1. TIMEAND REAL-TIME

the asynchrony model but they can be justified because without them analysis of thetim-
ing behaviour may not be possible.

Themine pump problem wasfirst presented by Kramer et al. (1983) and used by Burns
and Lister (1991) as part of the description of aframework for devel oping saf ety-critical
systems. A more formal account of the mine pump problem was given by Mahony and
Hayes (1992) using an extension of the Z notation. The description of the mine pumpin
thischapter has made extensive use of thelast two papers, though the alert reader will no-
tice some changes. Thefirst descriptions of the mine pump problem, and the description
given here, assume that the requirements are correct and that the only safety considera-
tionsarethose that follow from the stated requirements. The requirementsfor a practical
mine pump system would need far more rigorous analysisto identify hazards and check
on safety conditions under all possible operating conditions (see e.g. Leveson, 1995).
Use of the methods described in this book would then complement this analysis by pro-
viding ways of checking the specification, the program and the timing of the system.

1.6 Exercises

Exercise 1.1 Definethe condition Alarmwhich must be set when the water, methane or
airflow levels are critical. Recall that, according to the requirements, Alarm must be set
within one second of alevel becoming critical. Choose an appropriate condition under
which Alarm can be reset to permit safe operation of the mine to be resumed.

Exercise 1.2 Definethe condition Operator under which the human operator can switch
the pump on or off. Defineasimilar condition Supervisor for the supervisor and describe
where the two conditions differ.

Exercise 1.3 In $4, separate definitions are given for the operation of the pump con-
troller and for the delays, tp to switch the pump on and ty, for the methane detector. Con-
struct a single definition for the operation of the pump taking both these delays into ac-
count.

Exercise 1.4 Suppose thereisjust one water level sensor SW. What changes will need
to be made in the definitionsin S1 and S5? (N.B.: in Chapter 7 it is assumed that there
is one water level sensor.)

Exercise 1.5 Suppose a methane sensor can fail and that following a failure, a sensor
does not resume normal operation. Assume that it is possible to detect thisfailure. To
continue to detect methane levelsreliably, let three sensors DML, DML, and DML3 be
used and assume that at most one sensor can fail. If the predicate MOK; istrue when the
ith methane sensor is correct, i.e. operating according to the definition in S6, and false
if the sensor has failed, define a condition which guarantees that the methane level sen-
sor reading DML is always correct. (Hint: Since at most one sensor can fail, the correct
reading is the same as the reading of any two equal sensor readings. N.B.: Chapter 8
examines the reliability of the mine pump controller in greater detail.)

Chapter 2

Fixed Priority Scheduling— A Simple
M odel

Mathai Joseph

I ntroduction

Consider a ssimple, real-time program which periodically receives inputs from a device
every T unitsof time, computesaresult and sendsit to another device. Assumethat there
isadeadline of D time units between the arrival of an input and the despatch of the cor-
responding output.

For the program to meet this deadline, the computation of the result must take always
placeinlessthan D timeunits: in other words, for every possible execution path through
the program, the time taken for the execution of the section of code between the input
and output statements must be less than D time units.

If that section of the program consists solely of assignment statements, it would be
possible to obtain avery accurate estimate of its execution time as there will be just one
path between the statements. 1n general, however, aprogramwill haveacontrol structure
with several possible execution paths.

For example, consider the following structured if statement:

Sensor _I nput . Read(Readi ng) ;
if Reading = 5 then Sensor_CQut put. Wite(20)
elseif Readi ng < 10 then Sensor_Qutput. Wite(25)
dse ...
Sensor_Qutput. Wite(...)

U WNPE

end if;

There are a number of possible execution paths through this statement: e.g. thereis
one path through lines 1, 2 and 6 and another through lines 1, 2, 3 and 6. Paths will
generaly differ in the number of boolean tests and assignment statements executed and
so, on most computers, will take different execution times.

In some cases, asin the previousexample, the execution time of each path can be com-
puted statically, possibly even by a compiler. But there are statements where thisis not

15

16 CHAPTER 2. FIXED PRIORITY SCHEDULING —A SIMPLE MODEL

possible:

Sensor _I nput . Read(Readi ng) ;
while X > Readi ng + Y loop

end

Finding all the possible paths through this statement may not be easy: even if it is
known that there are m different paths for any one iteration of this while loop, the ac-
tual number of iterations will depend on the input value in Readi ng. But if the range of
possible input values is known, it may then be possible to find the total number of paths
through the loop. Since we are concerned with real-time programs, let us assume that the
program has been constructed so that all such loops will terminate and therefore that the
number of pathsisfinite.

So, after asmple examination of aternative and iterative statements, we can conclude
that:

. itisnot possible to know in advance exactly how long a program execution will
take, but
. it may be possible to find the range of possible values of the execution time.

Rather than deal with all possible executiontimes, onesolutionisto usejust thelongest
possible, or worst-case, execution time for the program. If the program will meet its
deadline for this worst-case execution, it will meet the deadline for any execution.

Wor st-case
Assume that the worst-case upper bound to the execution time can be computed for any
real-time program.

2.1 Computational model

We can now redefine the ssmple real-time program as follows. program P receives an
event from asensor every T unitsof time (i.e. theinter-arrival timeisT) and in the worst
case an event requires C units of computation time (Figure 2.1).

Assume that the processing of each event must always be completed beforethe arrival
of the next event (i.e. thereis no buffering). Let the deadline for completing the compu-
tation be D (Figure 2.2).

computer Sensor

Figure 2.1 Computer and one sensor

2.1. COMPUTATIONAL MODEL 17

- > time

Figure 2.2 Timing diagram 1

If D < C, the deadline cannot be met. If T < D, the program must still process each
eventinatime < T if no events are to be lost. Thus the deadline is effectively bounded
by T and we need to handle only those cases where

C<D<T

Now consider a program which receives events from two sensors (Figure 2.3). Inputs
from Sensor 1 come every T, time units and each needs C; time units for computation;
events from Sensor 2 come every T, time units and each needs C, time units. Assume
the deadlines arethe same asthe periods, i.e. T, timeunitsfor Sensor 1 and T, time units
for Sensor 2. Under what conditions will these deadlines be met?

More generally, if a program receives events from n such devices, how can it be de-
termined if the deadline for each device will be satisfied?

Before we begin to analyze this problem, we first define a program model and a sys-
tem model. This allows us to study the problem of timing analysisin alimited context.
We consider smple models in this chapter; more elaborate modelswill be considered in
Chapters 3 and 4.

Program model

Assume that areal-time program consists of a number of independent tasks that do not
share data or communicate with each other. A task is periodically invoked by the occur-
rence of a particular event.

sensor 1 T m fT ﬁ

A A
T 2T, 3T 4Ty

sensor 2 ‘ ‘ ‘

T, 2T,

Figure 2.3 Timing diagram 2

18 CHAPTER 2. FIXED PRIORITY SCHEDULING —A SIMPLE MODEL

System model

Assume that the system has one processor; the system periodically receives events from
the external environment and these are not buffered. Each event is an invocation for a
particular task. Note that events may be periodically produced by the environment or
the system may have atimer that periodically creates the events.

Let the tasks of program P be 14, To, ..., Tn. Let theinter-arrival time, or period, for
invocationsto task Tj be T; and let the computation time for each such invocation be C;.

We shall use the following terminology:

. Atask isreleased when it has a waiting invocation.

. Ataskisready aslong asthe processing associated with an invocation has not been
compl eted.

. A processor isidle when it is not executing a task.

2.2 Static scheduling

One way to schedule the program is to analyze its tasks statically and determine their
timing properties. These times can be used to create a fixed scheduling table according
to which tasks will be despatched for execution at run-time. Thus, the order of execution
of tasksisfixed and it is assumed that their execution times are also fixed.

Typicaly, if tasks 11, Ty, ..., Tn have periods of Ty, Ty, ..., Ty, the table must cover
scheduling for a length of time equal to the least common multiple of the periods, i.e.
LCM({Ty, Ty, ..., Tn}), asthat isthetimein which each task will have an integral num-
ber of invocations. If any of the T; are co-primes, this length of time can be extremely
large so where possibleit is advisable to choose values of T; that are small multiples of
acommon value.

Static scheduling has the significant advantage that the order of execution of tasksis
determined ‘ off-line’, before the execution of the program, so the run-time scheduling
overheads can be very small. But it has some major disadvantages:

. Thereisnoflexibility at run-timeasall choices must be made in advance and must
therefore be made conservatively to cater for every possible demand for computa-
tion.

. Itisdifficult to cater for sporadic tasks which may occur occasionaly, if ever, but
which have high urgency when they do occur.

For example, an alarm condition which requires a system to be shut down within a short
interval of time may not occur very often but its task must still be accommodated in the
scheduling table so that its deadline will be met if the alarm condition does occur.

2.3. SCHEDULING WITH PRIORITIES 19

overrun

L‘ ere
T1 I f
2 7 14
T2
6 16
T3
0 13
time —

Figure 2.4 Prioritieswithout pre-emption

2.3 Scheduling with priorities

In scheduling terms, a priority is usually a positive integer representing the urgency or
importance assigned to an activity. By convention, the urgency is in inverse order to
the numeric value of the priority and priority 1 is the highest level of priority. We shall
assume here that atask has a single, fixed priority. Consider the following two smple
scheduling disciplines:

Priority-based execution
When the processor isidle, the ready task with the highest priority is chosen for execu-
tion; once chosen, atask isrun to completion.

Pre-emptive priority-based execution

When the processor isidle, the ready task with the highest priority is chosen for execu-
tion; at any timeexecution of atask can be pre-empted if atask of higher priority becomes
ready. Thus, at al times the processor is either idle or executing the ready task with the
highest priority.

Example2.1 Consider a program with 3 tasks, 11, T and 13, that have the priorities,
repetition periods and computation times defined in Figure 2.4. Let the deadline D; for
each task T1; be T;. Assume that the tasks are scheduled according to priorities, with no
pre-emption.

Priority Period Comp.time

T1 1 7 2
T2 2 16 4
T3 3 31 7

If all threetasks have invocations and are ready at time=0, task 11 will be chosen for
execution as it has the highest priority. When it has completed its execution, task T, will
be executed until its completion at time=6.

20 CHAPTER 2. FIXED PRIORITY SCHEDULING —A SIMPLE MODEL

o]]
T2
% [] []

Figure 2.5 Prioritieswith pre-emption

At that time, only task T3 is ready for execution and it will execute from time=6 to
time=13, even though an invocation comes for task 1, at time=7. So thereisjust one
unit of timefor task T, to complete its computation requirement of two unitsand its next
invocation will arrive before processing of the previous invocation is compl ete.

In some cases, the priorities allotted to tasks can be used to solve such problems; in
this case, there is no alocation of priorities to tasks under which task t; will meet its
deadlines. But asimple examination of the timing diagram shows that between time=15
and time=31 (at which the next invocation for task 13 will arrive) the processor is not
always busy and task 13 does not need to complete its execution until time=31. If there
were some way of making the processor available to tasks 1, and 1, when needed and
then returning it to task 13, they could all meet their deadlines.

This can be done using priorities with pre-emption: execution of task 13 will then be
pre-empted at time=7, allowing task 11 to complete its execution at time=9 (Figure 2.5).
Process 13 is pre-empted once more by task 14 at time=14 and this is followed by the
next execution of task T, from time=16 to time=20 before task 13 completes the rest of
its execution at time=21.

2.4 Simplemethods of analysis

Timing diagrams provide agood way to visualize and even to cal cul ate the timing prop-
ertiesof smple programs. But they have obvious limits, not least of which isthat avery
long sheet of paper might be needed to draw some timing diagrams! A better method of
analysis would be to derive conditions to be satisfied by the timing properties of a pro-
gram for it to meet its deadlines.

Let an implementation consist of a hardware platform and the scheduler under which
the program is executed. An implementation is called feasible if every execution of the
program will meet all its deadlines.

24. SIMPLE METHODS OF ANALY SIS 21

Using the notation of the previous section, in the following sections we shall consider
anumber of conditions that might be applied. We shall first examine conditions that are
necessary to ensure that an implementation isfeasible. Theamisto find necessary con-
ditionsthat are al so sufficient, so that if they are satisfied an implementationisguaranteed
to be feasible.

24.1 Necessary conditions

Condition C1
Vi-CG<T,

It is obvioudly necessary that the computation time for atask is smaller than its period,
as, without this condition, itsimplementation can betrivially shown to be infeasible.
However, this condition is not sufficient, as can be seen from the following example.

Example 2.2

Priority Period Comp.time
T1 1 10 8
T2 2 5 3

At time=0, execution of task 1, begins (since it has the higher priority) and this will
continue for eight time units before the processor is relinquished; task 1, will therefore
missitsfirst deadline at time=>5.

Thus, under Condition C1, it is possible that the total time needed for computation in
an interval of timeislarger than the length of the interval. The next condition seeks to
remove this weakness.

Condition C2
|

2, (G/M) =1

j:

Ci /T, isthe utilization of the processor in unit time at level i. Condition C2 improves on
Condition C1 in an important way: not only is the utilization C;/T; required to be less
than 1 but the sum of thisratio over al tasksisalso required not to exceed 1. Thus, taken
over a sufficiently long interval, the total time needed for computation must lie within
that interval.

This condition is necessary but it is not sufficient. The following example shows an
implementation which satisfies Condition C2 but isinfeasible.

22 CHAPTER 2. FIXED PRIORITY SCHEDULING —A SIMPLE MODEL

Example 2.3
Priority Period Comp.time
T1 1 6 3
Ty 1 9 2
13 2 11 2

Exercise 2.4.1 Draw atiming diagram for Example 2.3 and show that the deadline for
T3 isnot met.

Condition C2 checksthat over aninterval of timethe arithmetic sum of the utilizations
Ci/T;is< 1. But that is not sufficient to ensure that the total computation time needed
for each task, and for all those of higher priority, is aso smaller than the period of each
task.

Condition C3

i—1
. T;
Vi - (—' ><C->§T-<:>C-

]Z\ T]) | (|

Here, Condition C2 has been strengthened so that, for each task, account is taken of
the computation needs of al higher priority tasks. Assume that T;/T; represents integer
division:

. Processing of al invocationsat priority levelsl...i <1 must be completed in the
timeT; C;, asthisisthe ‘free’ time available at that level.

. Ateachlevel j, 1< <i«<l, therewill beT;/T; invocationsin thetime T; and each
invocation will need a computation time of C;.

Hence, at level j the total computation time needed is

T.
ﬁ X Cj
and summing thisover all valuesof | < i will give the total computation needed at level
i. Condition C3 says that thismust be true for all values of i.

This is another necessary condition. But, once again, it is not sufficient: if Ty > T;,
Condition C3 reducesto Condition C1 which has already been shown to be not sufficient.

There is another problem with Condition C3. It assumes that there are T; /T; invoca-
tionsat level j inthetimeT;. If T; isnot exactly divisible by T;, then either [T;/T;] isan
overestimate of the number of invocationsor | T;/T; | isan underestimate. In both cases,
an exact condition will be hard to define.

To avoid the approximation resulting from integer division, consider an interval M;
which isthe least common multiple of all periods up to T;:

Mi =LCM({T1,To, ..., Ti})

SinceM; isexactly divisibleby al Tj, j < i, the number of invocationsat any level j within
M; is exactly M; /M;.
This leads to the next condition.

24. SIMPLE METHODS OF ANALY SIS 23
Condition C4

j:i\ (Cj X M'iV/IiTj) <1

Condition C4 isthe Load Relation and must be satisfied by any feasible implementa-
tion. However, this condition averages the computational requirements over each LCM
period and can easily be shown to be not sufficient.

Example 2.4
Priority Period Comp.time
T1 1 12 5
T2 2 4 2

Sincethe computation timeof task T, exceedsthe period of task 15, theimplementation
isinfeasible, though it does satisfy Condition C4.

Condition C4 can, moreover, be simplified to
|

> (G/Tj) <1
=1
which is Condition 2 and thus is necessary but not sufficient.

Condition C2 failsto take account of an important requirement of any feasible imple-
mentation. Not only must the average load be smaller than 1 over theinterval M;, but the
load must at al times be sufficiently small for the deadlines to be met. More precisely,
if at any time T there aret time unitsleft for the next deadline at priority level i, thetotal
computation requirement at time T for level i and all higher levels must be smaller than
t. Since it averages over the whole of the interval M;, Condition C2 is unable to take
account of peaks in the computational requirements.

But while on the one hand it is necessary that at every instant there is sufficient com-
putation timeremaining for all deadlinesto be met, it isimportant to remember that once
adeadline at level i has been met there is no further need to make provision for compu-
tation at that level up to the end of the current period. Conditionswhich average over a
long interval may take account of computations over the whole of that interval, includ-
ing the time after a deadline has been met. For example, in Figure 2.5, task 1, hasmet its
first deadline at time=6 and the computations at level 1 from time=7 to time=9 and from
time=14 to time=16 cannot affect T,'s response time, even though they occur before the
end of 1,’s period at time=16.

2.4.2 A sufficient condition

So far, we have assumed that priorities are assigned to tasks in some way that character-
izestheir urgency, but not necessarily in relationto their repetition periods (or deadlines).

24 CHAPTER 2. FIXED PRIORITY SCHEDULING —A SIMPLE MODEL

4 | | |

Y [1] L] []

time —>

Figure 2.6 Timing diagram for Example 2.5

Consider, instead, assigning prioritiesto tasksin rate-monotonic order, i.e. intheinverse
order to their repetition periods. Assume that task deadlines are the same as their peri-
ods. It can then be shown that if under arate-monotonic allocation an implementationis
infeasible then it will be infeasible under all other ssimilar alocations.

Let time=0 be a critical instant, when invocations to all tasks arrive smultaneoudly.
For an implementation to be feasible, the following condition must hold.

Condition C5
. Thefirst deadline for every task must be met.
. Thiswill occur if the following relation is satisfied:

n <21/n<:>1> > iilCi/Ti

For n = 2, the upper bound to the utilization S, C;/T; is 82.84%; for large values of n
the limit is 69.31%.

This bound is conservative: it is sufficient but not necessary. Consider the following
example.

Example 2.5
Priority Period Comp.time
151 1 6 4
T2 2 12 4

In this case (Figure 2.6), the utilisation is 100% and thus fails the test. On the other
hand, it is quite clear from the graphical analysis that the implementation is feasible as
all deadlines are met.

2.5 Exact analysis

Let the worst-case response time be the maximum time between the arrival of an invo-
cation and the completion of computation for that invocation. Then an implementation

2.5. EXACT ANALYSIS 25

| time

Figure 2.7 Inputs([t,t'),j) = 5

isfeasibleif at each priority level i, the worst-case response timer; isless than or equal
to the deadline D;. As before, we assume that the critical instant is at time=0.
If every task 1j, j < i, has higher priority than T;, the worst-case response time R, is

RiZCiJrZ[?jWXCi
&

In thisform, the equation is hard to solve (since R, appears on both sides).

251 Necessary and sufficient conditions

In this section, we show how response times can be calculated in a constructive way
which illustrates how they are related to the number of invocations in an interval and
the computation time needed for each invocation.

For the calculation, we shall make use of half-open intervals of the form [t,t'), t < t',
which contain all valuesfrom t up to, but not including, t'.

We first define afunction Inputs([t,t'),j), whose value is the number of events at pri-
ority level j arriving in the half-open interval of time [t,t') (see Figure 2.7):

Inputs([t,). j) = [t'/Tj] < t/Tj]
The computation time needed for these invocationsis
Inputs([t,t),}) x G

So, at level i the computation time needed for al invocations at levels higher than i
can be defined by the function Comp([t,t'),i):

Comp([t,t'),i) = iflnputs([t,t’),j) x Ci
j=1

26 CHAPTER 2. FIXED PRIORITY SCHEDULING —A SIMPLE MODEL

Lettheresponsetimeat level i intheinterval [t,t') bethevalueof thefunction R(t, t', i).
L et the computation time needed at level i intheinterval [t,t') bet’ <t. Thetotal compu-
tation time needed in thisinterval for al higher levels0...i <1 isComp([t,t'),i); if this
iszero, the processor will not be pre-empted in the interval and the whole of thetimewill
beavailablefor useat level i. Now suppose that the total computation time needed in the
interval for the higher levelsis not zero, i.e. Comp([t,t'),i) > 0. Then the response time
at level i cannot belessthan t' + Comp([t,t'),i). Thiscan be generalized to the following
recursive definition of the function R(t, t',i):

R(t,t',i) = if Comp([t,t'),i)=0thent
el se R(t',t' + Comp([t,t'),i),i)

Another way to explain thisisto notethat in theinterval [t,t'), the computation still to
be completed at timet’ (which isjust outside the interval) is

(' <t) <((t et) <Comp([t,t'),i)) = Comp([t,t'),i)

The value of the function R at level i isthe time when there is no computation pending
at level i or any higher level, i.e. Comp([t,t'),i) = 0, and the whole of the interval [t,t')
has been used for computation.

The worst-case response time at level i can then be defined as

Ri = R(O,C|,|)

If no computation is needed at levels O...i <1, then the response time at level i is
the computation time Cj; otherwise, add to C; the amount of time needed at the higher
levels. The object isto ‘push’ the estimated response time forward in decreasing jumps
until eventually Comp([t,t'),i) = 0. Computation of R; will terminate, i.e. thejumpsare
guaranteed to be diminishing, if the average load relation (Condition C4) is satisfied, i.e.

i (ij M'iV/IiTj > <1

=1
2.5.2 Proof of correctness

We now show that the solution to the equation
i-1 o
R=Cit 371G
]:
given in terms of the function Ris correct.

First observe that since the function Comp has been defined over intervals, there is
some t, such that

Comp([tl,tg), I) = Comp([tl,tz), I) + Comp([tz,tg), i), L <tb<t3

2.5. EXACT ANALYSIS 27

Proof: Let the sum of the computation time needed in the interval [O,t) at the levels
0...i &1 plusthe time needed at level i bet'. Then aninvariant INV for the recursive
equation Ris

INV : Comp([O,t),i)+Cj =t

Step 1: theinitial condition R(0, G, i) satisfies the invariant.
Sep 2: by the induction hypothesis, R(t',t' + Comp([0,t),i),i) satisfies the invariant.
Further,

Comp([0,t'),i) + Cj = t' + Comp([t,t'),i)
Sincefor 0 <t <t/, using interval arithmetic,
Comp([0,t'),i) = Comp([O,t),i) + Comp([t,t'),i)
we can substitute and ssmplify thisto
Comp([0,t),i)+ Cj =t

This proves the induction step.
Sep 3: ontermination, R =t and

INV A Comp([t,t'),i) =0
Substituting for INV gives

Comp([0,t),i) +Ci=t AR =t
and substituting for Comp gives

i—1 R|
(Z[?WXCJ)—I—QZ'[I/\R:'[I
=
O

A necessary and sufficient condition for feasibility for a system with n priority levels
can now be defined.

Condition 6
Vi-1<i<nR<T;

Note that unlike the sufficient Condition C5, this condition does not only apply to arate-
monotonic order of task priorities; it can be used to check all deadlines D; where C; <
D; <T;.
The last two formulae can be shown to give Condition C4 by substituting M; for t':
i-1
Z(Mi/Tj) X Cj —I—(Mi/Ti) X Ci < M;
=
or

> (G/Tj) <1

J

M-

28 CHAPTER 2. FIXED PRIORITY SCHEDULING —A SIMPLE MODEL
25.3 Calculating response times

The function R can also be evaluated by rewriting it as arecurrence relation:
i—1 Rln
R =G+ 1xG
jg\ Tj

where R is the response time in the nth iteration and the required response time is the
smallest value of R-”“ to solve this equation. In Chapter 3, the tasks T; of higher priority
than i will be collectively described by defining them as members of the set hp(i) and the
equation becomes

R -G+ Y [11xG
LT
jehp(i)

To use the recurrence relation to find response times, it is necessary to compute R-”“
iteratively until the first value mis found such that R™* = R™; then the responsetimeis
R™
Programs can be written to use either the recursive or iterative way to find response

times. In the following examples we show how response times can be found by hand
calculation using the recursive definition.

Example 2.6 For the following task set, find the response time for task 14.

Priority Period Comp.time

T1 1 10 1
T2 2 12 2
T3 3 30 8
T4 4 600 20

Substitution shows that the task set satisfies Condition C4:

i T
3 (G "’) <1

=)

The responsetime R, istherefore

R(0,20,4) =if Comp([0, 20),4) = Othen20
elseR(20,20+ Comp([0, 20),4))
Comp([0,20),4) =Inputs([0,20),1) x 1
+Inputs([0, 20),2) x 2
+Inputs([0,20),3) x 8
=2x14+2x24+1x8
=14

Repeat this calculation for R(20, 34,4) by first computing

2.6. EXTENDING THE ANALYSIS 29

Comp([20,34),4) =Inputs([20,34),1) x 1
+Inputs([20,34),2) x 2
+Inputs([20,34),3) x 8

=2x14+1x2+1x8
=12

Calculation of the function Comp must be therefore be repeated to obtain R(34,46,4):

Comp([34,46),4) = Inputs([34,46),1) x 1
+Inputs([34,46),2) x 2
+Inputs([34,46),3) x 8

=1x1+1x2
=3

Comp([46,49),4)

Comp([49,51),4)

Comp([51,52),4)=

2
1
0

Thus the response time R(0, 20,4) = R(0, 52, 4) for task 14 i 52.

Y

2.6 Extendingtheanalysis

The rate-monotonic order provides one way of assigning priorities to tasks. It is easy
to think of other ways. e.g. in deadline-monotonic order (if deadlines are smaller than
periods). Prioritiescan also be assigned to tasksinincreasing order of dack time, where
the dack timefor task T; isthe difference T; < C; between its period and its computation
time. All these methods of assignment are static asthe priority of atask is never changed
during execution. The method of analysis described in this chapter can be used for any
static assignment of priorities, but it does not provide away of choosing between them.

So far, we have considered avery ssmple program model with independent tasks that
do not inter-communicate. This has made it possible to schedule tasks without regard to
any dependencies between them: any task with some incomplete computation is ready
and it can be scheduled whenever it isready and the processor isfree. Thistype of model
can be used for smple data-1ogging programs but most real-time programs have a more
complex structure. If tasks can communicatewith each other, using shared memory or by
message passing, scheduling becomes far more complicated asit isnot only time-driven.
A task can receive a message only after the message has been sent, so a receiving task
T, will not be ready to be scheduled until the corresponding sending task 1, has been
scheduled, even if 11 isof lower priority than T».

When analysis shows that no allocation of prioritiesto tasksisfeasible, it may mean
that the single available processor is not sufficient to meet the processing load. Solutions
arethen either to obtain afaster processor (thereby effectively reducing the computation
time for each task) or to add one or more processors. With multiple processors, thereis
the question of exactly how the processing load is divided between the processors. When
tasks are statically assigned to processors, the analysis described here can be used for

30 CHAPTER 2. FIXED PRIORITY SCHEDULING —A SIMPLE MODEL

each processor. But two difficult problemsareintroduced: first, tofind agood assignment
of tasksto processors so that response time requirements are met, noting that finding the
‘best’ assignment of tasks to processorsisin general an NP-complete problem; second,
to account for communi cation between tasks over multiple processors, and without some
constraints this can make the analysis very difficult.

In Chapter 3, we shall consider amore el aborate program model which takestask com-
munication into account. And in Chapter 4, dynamictask prioritiesareintroduced and it
is seen that their use permits more flexibility and better utilization of resources.

2.7 Historical background

The problem of assigning resources to tasks is old and has been studied using the tech-
nigues of operationsresearch (e.g. linear programming, dynamic programming). Inthis
context, its best-known form is job-shop scheduling, where components are processed
through afactory floor consisting of a number of machines. Effective job-shop schedul -
ing requires generating schedules to meet hard deadlines using some form of priorities.

The first important results in the scheduling of hard-real-time systems are usually at-
tributed to the classic paper by Liu and Layland (1973), which considered the question
of determining feasibility for afixed set of independent, periodic tasks and identified the
critical instant at which all tasksareready to start computation. Their method of analysis
and their proof of the optimality of the rate-monotonic order resulted in much subsequent
work being focussed on rate-monotonic scheduling (though, as we have seen here, other
fixed priority scheduling methods are also of importance).

Necessary tests (e.g. Joseph, 1985) for feasibility were replaced by necessary and suf-
ficient tests, together with a proof of correctness, in Joseph and Pandya (1986) where
response time analysis was used to determine the feasibility of any fixed priority order
with task deadlines C; < D; < T;. Harter (1987), working with a ssimple temporal logic
proof system, studied responsetime anaysisfor aprogram model that allowed procedure
calls between tasks at different priority levels. Lehoczky et al. (1989) studied systems
where D; = T; (i.e. the Liu and Layland model) and developed a necessary and suffi-
cient condition for feasibility using workloads, in terms of processor utilization; Nassor
and Bres (1991) extended thisto allow D; < T;. Audsley et al. (1991) defined response
times using arecurrence relation, in which form it was used in other work (e.g. Auddey
et al. 1993a) and also in what is now commonly called the Rate Monotonic Book (Klein
et al., 1993). Lehoczky (1990) used workload analysisto provide two ways to deal with
caseswhere D; > T;, and Tindell (1993) provided amoregeneral analysisusing response
times.

An excellent survey of work on fixed priority scheduling appeared in Auddey et al.
(1995).

2.8. EXERCISES 31
2.8 EXxercises

Exercise 2.1 A rea-time program has four tasks with the following characteristics:

Priority Period Comp.time

T1 1 5 1
T2 2 15 2
T3 3 60 3
T 4 200 7

(a) Determine using a graphical method whether the program will meet its deadlines if
scheduled according to priorities but with no pre-emption.
(b) If scheduled with priorities and pre-emption, what is the response time for task 1,?

Exercise 2.2 Giventhefollowingtask set with prioritiesassigned in rate-monotonic or-
der, check that task 13 meetsits deadline of 36.

Priority Period Comp.time

T1 1 6 2
To 2 18 4
T3 3 36 6

Exercise 2.3 Inthefollowing task set, the response timefor task 14 is smaller than for
task T3:

Period Comp.time Resp. limit

T1 10 1 10
T2 12 2 12
;40 8 40
T4 600 20 30

Choose a suitable allocation of priorities to the tasks and show that the response time
limitsfor all tasks can be met.

Exercise 2.4 For thefollowing task set:

Period Comp.time

T1 100 1
T2 10 4
13 14 6
T4 50 8

check whether there is an assignment of priorities to tasks under which each task will
meet its deadlines.

Chapter 3

Advanced Fixed Priority Scheduling

Alan Burnsand Andy Wellings

I ntroduction

In this chapter, we consider an extended computational model and describe some of the
more advanced methods of analysisthat can be used. Thefeatures of the extended model
permit efficient resource sharing at run-time and the methods of analysis allow effective
prediction of the worst-case timing behaviour of an application.

The resources of asystem include processors and communication media; on some sys-
tems there will also be disks and specialized hardware devices. Chapter 2 considered
ways in which a single processor could be shared between ssimple processes using dif-
ferent scheduling techniques. Inasimilar way, run-time scheduling can be used to share
other resources. There are two aspects to the use of any scheduling technique: the run-
time behaviour it produces, and the methods of analysis available for predicting tim-
ing properties. As before, the computational model will be defined independently of
the scheduling technique. The model defines the real-time software structure while the
scheduling technique defines how this is mapped onto the system at run-time. Not all
scheduling technigues can be used if accurate predictions of the resulting timing proper-
ties are needed.

3.1 Computational model

Most embedded real-timesystems areinherently parallel in nature and the extended com-
putational model allows the definition of concurrent tasks, each of which can be invoked
repeatedly. Tasks may be periodic or sporadic. A periodic task is released by a timer
event and asporadic task by an event originating either from another task or from the en-
vironment of the system (typically as an interrupt). In Chapter 2, we considered events
to be unbuffered and to be lost if they were not processed in time. Here we assume in-
vocation eventsto be persistent: aperiodic task that overrunsinto its next release period
can continue directly with its next invocation.

32

3.1. COMPUTATIONAL MODEL 33

Periodic and sporadic tasks have a minimal inter-arrival time T. Sporadic tasks may
also haveglobal constraints, such asthe maximum number of invocationsin aperiod. For
example, asporadic task may have aninter-arrival timeof 1 msand therestrictionthat no
morethan four invocation events occur in any 10 msinterval. Asbefore, we shall be con-
cerned with the worst-case response time R of atask. For a given scheduling technique,
R represents the predicted |atest possible task completion time, relative to itsinvocation
event. We shall assume that the number N of tasksisfixed. In adistributed system with
many processing nodes, each task isstatically allocated to one node. Tasks may commu-
nicate with each other asynchronously through a protected shared object (PSO) which
ensures mutual exclusion over the shared data. Tasks effectively perform atomic read
and write operations on the shared object; we shall see later how this can be assured by
ascheduling technique. Thisform of asynchronous communication ensuresthat atask’s
behaviour is smple (and hence predictable). Apart from waiting for access to PSOs,
atask will proceed from its invocation event to the completion of that invocation in a
straightforward way. The scheduling technique will ensure that tasks are blocked for the
minimum time when attempting to access PSOs. A task execution must not voluntarily
suspend itself during an invocation. For example, a task which sets up an input opera-
tion from an external device, and which must wait for aminimum timebefore reading the
input value, cannot delay itself. Instead, the operation must be implemented using two
tasks with the delay represented by setting a time offset between their executions. An
alternative to asynchronous communication would be to allow tasks to exchange data di-
rectly, eg. using an Adar endezvous so that a PSO would then not be needed. Asatask
can always be used to implement a PSO, it is clear that thereis no fundamental distinc-
tion between the two approaches. But we shall show that asynchronous communication
allows enough flexibility in program design and permits efficient scheduling.

A software system therefore consists primarily of tasks and PSOs; like tasks, PSOs
may be distributed over the nodes of adistributed system. To deal with thetypical timing
reguirements of real-time systems we add the mechanism of atransaction to link input
and output activities that have associated deadlines. A transaction may be periodic, with
adeadline relative to some initial timing event, or sporadic, with a deadline relative to
an input event. Transactions will be used to reflect end-to-end properties, i.e. from an
input event to an output response. In a distributed system, input and output may be on
different nodes and an end-to-end property may therefore cross node boundaries.

3.1.1 Exampleof transactions

Transactions areimplemented using tasks and PSOs. A simple (non-distributed) transac-
tion may be implemented as a single task but, more typically, a transaction will involve
anumber of tasks related in some precedence order.

For example, consider a ssimple periodic transaction consisting of three tasks, 14, T
and 13. Assume that data is processed by the tasks in the order 14, 15, and t3. Let the
precedence order over the tasks be represented by the operator <.

34 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

ST S

A Periodic Process

A Sporadic Process

[P

s
E A Protected Shared Object
——= A Control Flow (Release of a Sporadic Process
-- =

A Data Flow

Figure 3.1 First implementation (with key)

Then, for theith invocation of each task,
Vi (Tg,0) < (T2,0) < (T3,1) (3.1)

Thus the ith invocation of 14 is completed before the ith invocation of 1, begins, and
likewise for T, and 13. Invocation numbers can often be omitted for straightforward re-
lations.

Figures 3.1, 3.2 (and 3.3) and 3.4 represent three different ways of implementing this
transaction within the computational model.

Inal threeimplementations, T, isaperiodic task (sincethe transaction is periodic); in
Figure 3.1, 1, and 13 are also periodic and have the same period as 14 but their releases
areoffset intime. Let these offset values be represented as O, and O3. In order for (3.1)
to be satisfied, the scheduling technique must ensure

Ry <Oz (3.2
and

Ro+ 0, < O3 (3.3
For the deadline D of the transaction to be met:

O3+R3<D (3.4)

InFigure 3.2, T, and 15 are sporadic tasks released by 1, and T, respectively. 1, writes
to PSO; and then sends an event to T, as its fina action for that invocation. Thisisa

3.1. COMPUTATIONAL MODEL 35

Figure 3.2 Second implementation (showing PSOs)

— — — —

t t N ot
e

v

Figure 3.3 Second implementation (PSOs not shown)

commonly needed pair of operations and there is therefore an advantage in combining
theminto asingle operation; we shall seein Section 3.3 that thishasbeen donein Ada95.
We shall use a combined operation in subsequent diagrams, for example by redrawing
Figure 3.2 as Figure 3.3; note that the arrow denoting control flow now also implies a
possible data flow.

Relation 3.1 issatisfied by definition in this second implementation. To meet thetrans-
action requirement, the following condition must be met:

Ri+ R+ Ry <D (3.5)

The second implementation hasthe advantage that its overall worst-case responsetime
is likely to be less than that provided by the first implementation. This is because the
timer events are spread out (e.g. because the hardware platform may not be able to sup-
port the release of periodic tasks at arbitrary times). Hence O, may be somewhat larger
than Ry, and the scheduling technique may be able to guarantee (3.5) but not (3.4).

Thereis another property of the second implementation which may, or may not, be an
advantage. Not only may the worst-case response time be less but the average- and best-
case response times may also be less. Response times are calculated for the maximum
load, and for certain patternsof invocation theload may be much lessthan the maximum.
Hence, in the second implementation, data could ripple quickly through the system.

Itisnot always possible to guarantee that timing propertiesare strictly met. For exam-
ple, aperiodic event may in fact occur at times either alittle before or alittle later than
its strict period. Thisjitter can have many effects and certain control applications may

36 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

T2

s 1 m

Figure 3.4 Third implementation

become unstable if results are output too early. So, in addition to a deadline, a transac-
tion may need to have a maximum output jitter defined: e.g. to produce output within
theinterva [D <J, D], where J isajitter constant.

Assume, for illustration, that the minimum response time of all tasksis 0. Then the
second implementation has an output bound of [0, R; + Ry + R3], while the first imple-
mentation has amuch tighter bound of [O3, O3 + R3] and thismay makeit conform more
closely to the requirements.

Thethird implementation (Figure 3.4) attemptsto combine the best featuresof thetwo
earlier attempts by keeping the end-to-end response time small without making the tim-
ing conditionstoo rigid. Here T, is sporadic but 13 isperiodic. Thisimplementation has
the same bound on its output as for the second implementation (i.e. [O3, O3+ Rg]) but
has a potentially lower value for Ox:

RI+R < 03 (36)

The advantagesof thethird implementationincreasewith the number of tasksinthetrans-
action. For example, if there areten tasksit is still only thefirst and last tasks that need
to be periodic.

In general, tasks may be associated with morethan one transaction and the precedence
rel ations between tasks can include branching and joining. Evenwiththesimpleexample
described above, it is clear that there are a number of design choices to be made. It is
the role of a design method to provide the means by which atask set corresponding to
a computational model is obtained from the system specification. Design methods will
not be considered herein detail but some references can be found in Section 3.5.

3.1.2 Allocation

To prevent atask from suspending itself while accessing PSOs, the computational model
must impose restrictions on remote actions (i.e. actions from one processing node to an-
other): atask may read or write from alocal PSO, may write to a remote PSO but may
not read from aremote PSO.

To read from aremote PSO would involve suspending the task and would require the
underlying execution environment to support aremote procedure call (RPC) mechanism.
Unfortunately, RPC mechanisms are not usually amenable to timing analysis because of

3.1. COMPUTATIONAL MODEL 37

R1W<@»> RZW

l
W

P

Figure 3.5 Centralized readers and writer

Rl P @ - Copypr >@

Figure 3.6 Distributed readers and writer

the effects of the communications network and the remote processor. By restricting the
model, al that is required from the execution environment is an asynchronous message
transfer feature that can place datain aremote PSO or release aremote sporadic task for
execution.

The disadvantage of this restriction is that it may be difficult to distribute a program
across a set of nodes. For example, to take an extreme casg, if al the tasks in a program
read from one PSO, they would all need to be located on the same node as the PSO. How-
ever, in practice, programsare not often so centralized and simple transformationsto the
program structure can usually make distributed allocation possible.

Consider a program with one PSO that is read by two tasks (R1 and R2) that must be
allocated to different nodes because they interact directly with devices on these nodes.
Clearly, the PSO can only bein one place and so the program structure must be changed
to use two PSOs. Then data can be copied from the original PSO to one that islocal to
the task that does not have direct access. The copying can be done in anumber of ways.
If the two tasks are periodic, an additional periodic task can be used with arelease time,
period and deadline chosen so that datawill appear in the second PSO in timefor it to be
read (locally). This transformation of the program isillustrated in Figures 3.5 and 3.6.
where the outer box depicts a node boundary.

Therestriction over remote access forcesall significant computational eventsto be ex-
plicitly represented in the system description. Analysis can then be applied to al therel-
evant components and the effect of the addition of anew periodictask iseasly analyzed.

38 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

It is not easy to analyze the timing properties of an operating system’s RPC mechanism
which automatically generates task stubs.

3.1.3 Summary

We have informally introduced a computational model that is appropriate for resource
sharing in distributed real-time systems. The main featuresof thismodel are summarized
bel ow.

Extended program model

. A program consists of tasks and Protected Shared Objects (PSOs).

. Tasks and PSOs may be distributed over aphysical system.

. The important timing properties of tasks and PSOs are known.

. A task’s behaviour consists of a potentially unbounded series of invocations, each
released by an invocation event. A task must not voluntarily suspend itself during
an invocation.

. Periodic tasks are released by local timer events.

. Sporadic tasks are released by events originating in either another (possibly re-
mote) task, or from the environment of the system.

. PSOs provide mutually exclusive access to the data shared between tasks.

. Tasks may write to any PSO, but can only read from local PSOs.

. Transactions are defined using precedence rel ations between tasks and are used to
represent end-to-end timing properties.

3.2 Advanced scheduling analysis

In Chapter 2, the exact analysis was based on fixed priority pre-emptive scheduling and
tasks were independent and periodic. Many of these restrictions will now be relaxed.

For thesimple model, the timing attributes of atask consisted of itsperiod T, itsworst-
case execution time C, a deadline D and its priority P. A recurrence relationship was
defined for the worst-case response time (or completion time) R for each task, assuming
that a fixed number N of tasks were executed on the processing node. The recurrence
relation for task 1; was:

R -Gt 3[R xG (3.7)

jehp(iy ')

where hp(i) isthe set of tasks of higher priority than t;, and RO isgiven aninitial value of
C; (athough more efficient initial values can be found). The value R can be considered
to be a‘computational window’ into which C must be accommodated. When R isequal
to R”“, then thisvalueis the worst-case response time, R;, and the goal isto ensure that
thisislessthan D;.

3.2. ADVANCED SCHEDULING ANALYSIS 39

We shall now generalize equation (3.7) so that it can be used for the computational
model described in the previous section:

. Tasksinteract through PSOs (thisrequiresthe use of a“priority ceiling’ protocol).

. Tasks may have sporadic (non-periodic) executions.

. There may bejitter over the release time of atask.

. Task deadlines may take any values—including D > T.

. A task may have internal deadlines and external deadlines that occur before exe-
cution of the task is completed.

. Task priorities should be assigned optimally (even when D > T).

. Account must be taken of the execution time overheads.

Each of these issuesis considered in the following sections.

3.2.1 Worst-case execution time

We have already seen that it is necessary to find the worst-case execution time of atask.
In addition to processing time, it may also be necessary to estimate thetimefor delaysin
communication and disk access.

The worst-case execution time C can be found either by measurement or by analysis.
Measurement ismost useful to validate figures obtained by analysis but when used onits
own it is hard to be sure when the worst-case has been observed. The difficulty in using
analysisisthat an accurate model of the processor (including caches, pipelines, memory
walit states, etc.) must be available.

Techniques used for timing analysis usually require two steps: first decompose the
code of atask into a directed graph of basic blocks which represent straightline code,
then use the processor model to estimate the worst-case execution time.

Oncethetimesfor all the basic blocks are known, the directed graph can be collapsed.
For example, for a smple alternative statement, the two basic blocks can be reduced to
asingle value (i.e. the larger of the two values for the alternative blocks). Similarly,
loops can be collapsed using knowledge about maximum repetition bounds. More so-
phisticated graph reduction techniques can be used if sufficient semantic informationis
available. For asimple example, consider the following code:

for I in 1..10 loop

if Cond then
- 100 time unit basic bl ock
dse
- 10 tinme unit basic bl ock
end if
end loop

With no further information, the total timing ‘cost’ of this fragment would be 10 x
100 + loopoverhead, giving a total of over 1000. But static analysis of the code may
show that Cond is only true for, at most, three iterations, leading to a less pessimistic
timing cost.

40 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

A
T4 |
2 Vo
S
5 12
A
T3 ! J
time——
T task release $ task competion
? PSO request ¢ PSO release

Figure 3.7 Execution sequence without ceiling priorities

3.2.2 Task interactionsand ceiling priority algorithms

When tasks interact through PSOs, fixed priority scheduling can give rise to the phe-
nomenon of priority inversion. Consider threetasks 14, T, and 13 and assumethat 14 has
the highest priority and 13 the lowest. Assume aso that 1, and 13 communicate through
PSO;. However rarely 1, and 13 may competefor accessto PSO, therewill be occasions
for which 13 has gained access to the shared object just as 14 isreleased for execution. 1;
will pre-empt 13 because of itshigher priority but it will also be blocked as 13 has already
obtained exclusive accessto PSO; .

Thisblocking isunavoidablebut it isimportant to bound thedelay and, ideally, to make
it short. If 15 isreleased during the execution of 14, then we have a situation in which
T, is blocked by t3, and 13 is pre-empted by 1,. The blocking will last for the entire
execution time of 1. The condition under which a lower priority process is executing
(i.e. T2) when ahigher priority process (i.e. 1;) is blocked is called priority inversion.
Thisisillustrated in Figure 3.7. A scheduling technique must aim to minimize the time
during which priority inversion occurs.

The solution isto adopt some form of priority inheritance; we describe one method in
this section and refer to othersin Section 3.5.

The method considered here is known as Immediate Ceiling Priority Inheritance
(ICPI). With ICPI, al PSOs are assigned a priority equal to the maximum priority of any
task that usesit. Thisisitsceiling priority. Whenever atask accesses a PSO, its priority

3.2. ADVANCED SCHEDULING ANALYSIS 41

A
[
T1 : :
[
2 v
S
i)
S
o T2
A
[
[
13 1 1
[

time ——>

Figure 3.8 Execution sequence with ceiling priorities

isimmediately raised to this ceiling level. Where a PSO is accessed externaly (from a
remote node), the priority assigned by the execution environment (the operating system)
must be used and, typically, thiswill be higher than any local task priority.

Asatask cannot be pre-empted by another task of equal or lower priority, only onetask
can ever be executing within a PSO.! Thus mutual exclusion, the fundamental property
of aPSO, isguaranteed for single processor systems by thisinheritance protocol. I1n ad-
dition, ICPI has another important property:

. A task may be blocked when it isreleased but only by asingle lower priority task;
onceit hasstarted executing it will not be blocked again (although it may, of course,
be pre-empted by a higher priority task).

When atask isreleased, there may be alower priority task currently executing with a
ceiling priority of equal or higher priority. When this task has left the PSO and had its
priority returned to alower value, the released task will pre-empt it and start executing.
Asatask doesnot voluntarily suspend itself duringitsexecution, nofurther lower priority
task can gain access to any PSOs that the released task may require. Hence it proceeds
through its execution without further blocking. Thisis illustrated in Figure 3.8 which
represents the same behaviour as Figure 3.7, but with ICPI.

1To ensure this safety property, a pre-empted task must be placed at the front of the run queue (for its
processor and itspriority) if it must giveway to a higher priority task. Thisensuresthat it will run before
any other task of the same priority. An alternative isto give the PSO a celling priority higher than any
caling task.

42 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

Asatask isonly blocked at the beginning of itsinvocationitisonly blocked once. And
as atask does not start executing before it is blocked, the context switching overheads
of the protocol are low. Other protocolsinvolve executing the task, context switching to
the blocking task, executing it and then context switching back again.

Thefinal key property of ICPI isthat it ensures that use of PSOs by tasks is deadlock
free. Asatask is not blocked more than once, no circular blocking dependencies can
exigt. Itisnot possible to write a program that will deadlock when executed with fixed
prioritiesand ICPI.

In the analysisthat follows, the maximum blocking factor will be denoted by B, which
iseasly calculated: it isthe maximum timefor which any lower priority task can execute
with aceiling priority equal to or greater than that of the task under consideration:

B = max (max (usage(T;,ohj))) (3.8)
Tj€lp(i) objepso(i)

whereIp(i) isthe set of tasks with lower priority than t;, pso(i) isthe set of PSOswith a
ceiling priority greater than or equal to the priority of T; and usage gives the worst-case
execution time of task T; in object obj.
Recall that theonly way atask can obtainaceiling priority isto accessaPSO. Thebasic
recurrent equation of Chapter 2 can easily be modified to include the blocking value:
RIU-I-l = B +G + lri-‘ C] (3.9
jehp(i) 7

Note that while interference increases as you go down the priority order, blocking does
not: atask can be blocked at most once.

3.23 Sporadictasksand releasejitter

In the ssimple model all tasks were assumed to be periodic and to be rel eased with perfect
periodicity: i.e. if task T; has period T; then it was assumed to be released with exactly
that frequency. Sporadic tasks can be incorporated into the model by assuming that they
have some minimum inter-arrival interval. However, thisis not a realistic assumption.
Consider asporadic task Ts that isreleased by aremote periodic task T, and 1p < Ts; €.
the first two tasks in Figures 3.3 and 3.4 could have this relationship. The period of the
first task is Tp and the sporadic task will have the same period, but it is incorrect to as-
sume that the maximum load (or interference) that ts exerts on low priority tasks can be
represented in equations (3.7) or (3.9) asthat of a periodic task with period Ts = Tp.

To understand the reason for this, consider two consecutive executions of T,. Assume
that the event that releases 15 occurs at the end of the periodic task’s execution. On the
first execution of tp, assume that the task does not complete until its |atest possible time,
i.e. Ry. However, on the next invocation assume thereis no interference on tp so it com-
pleteswithin Cp. Asthisvalue could be arbitrarily small, let it be equal to zero. The two
executions of the sporadic task are then separated not by T, but by Ty <R,. Figure 3.9

3.2. ADVANCED SCHEDULING ANALYSIS 43

Tp

t t+15 t+20

time——=

release of periodic task

completion of periodic task and release of the sporadic task

Figure 3.9 Releases of sporadic tasks

illustrates this behaviour for T, equal to 20, R, equal to 15 and minimum C, equal to
1 (i.e. two sporadic tasks released within six time units). Note that this phenomenon is
of interest only if Tp is remote as, otherwise, the variationsin the release of 15 could be
accounted for by the standard equations.

To represent the interference caused by sporadic tasks upon other tasks correctly, the
recurrence relation must be modified. Let the maximum variation in atask’s release be
called itsjitter, represented by J. (Inthe example above, 15 has ajitter of 15.) Examina-
tion of Figure 3.7 and the way the recurrencerelation was derived suggests that it should
be changed to the following:

R = B +¢C + R'Mrﬂ C (3.10)

jhpii) [T

Ingeneral, periodictasksdo not suffer releasejitter. Animplementation may, however,
restrict the granularity of the system timer which rel eases periodic tasks. Inthissituation
aperiodic task may also suffer release jitter. For example, a period of 10 with a system
granularity of 8 will lead to ajitter value of 6, i.e. the periodic task will be released for
itstime=10 invocation at time=16. If response time R is to be measured relative to the
real release time, then the jitter value must be added to the previous response time:

R = R (3.11)

This assumes that the response time issmaller than T;.

44 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING
3.24 Arbitrary deadlines

When D;, and hence possibly R, can be greater than T;, the analysis must be changed
again. When D; < T, itisonly necessary to consider a single release of each task. The
critical instant, when all higher priority tasks are released at the same time, represents
the maximum interference and hence the response time following a release at the criti-
cal instant must be the worst-case response time. However, when D; > T;, anumber of
releases must be considered.

Assumethat therelease of atask isdelayed until all previous releases of the same task
have been completed. For each potentially overlapping rel ease, define aseparate window
w(q), where q isthe serial number of thewindow (i.e. q=0,1,2,...). Equation (3.9) can
then be extended (ignoring jitter) as follows:

R|n+l(q) = B + (q—l— 1)Ci + ’VR'n_ng)-‘ Cj (3.12)
jehp(i) j

For example, with g = 2, three releases of task t; will occur in the window. For each
value of g, astable value of w(q) can be found by iteration — as in equation (3.7). The

responsetimeis

R(@) = RY(q9) &dT, (3.13)

e.g. with g = 2 the task started 2T; into the window and hence the response time is the
size of the window minus 2T;.

The number of releases that need to be considered is bounded by the lowest value of
g for which the following relation is true:

R(a) < T (3.14)

At thispoint, the task compl etes execution beforeits next rel ease and the succeeding win-
dowsdo not overlap. The worst-case response timeis then the maximum value found for
each q:
_ . 1
R e R(q) (3.15)

Notethat for D < T, relation (3.14) istrue for g = 0 and equations (3.12)and (3.13) can
be simplified into their original form.

To combine the use of arbitrary deadlines with the effect of release jitter, two alter-
ations must be made to this analysis. First, as before, the extent of interference must be
increased if any higher priority tasks have release jitter:

RO+ W G (3.16)

RtYq) = B + (q+1)C + T

jehp(i) {
The other changeisin the structure of thetask: if it is subject to release jitter then two

consecutive windows will overlap if its response time plus the extent of jitter is greater
than the period. To accommodate this, equation (3.13) must be altered:

R(@ = RY9) <qTi +J (3.17)

3.2. ADVANCED SCHEDULING ANALYSIS 45

Figure 3.10 Task execution phases

3.25 Internal deadlines

Aswe shall see shortly (Section 3.2.7), it may be necessary for the model to take account
of the overheads of context switching between tasks and to ‘charge’ this to some task.
With realistic (i.e. non-zero) context switch times, the*deadline’ may well then not be at
the end of the context switch. Moreover, the last observable event may not be at the end
of the task execution and there may be a number of internal actions after the last output
event.

Figure 3.10 gives a block representation of atask execution (excluding pre-emptions
for higher priority tasks). Phase a is the initial context switch to begin the execution
of the task, phase b is the task’s actual execution time up to the last observable event,
phase ¢ represents the internal actions of the task following the last observable event
and, finally, phase d is the cost of the context switch at the end of the task execution.
The ‘real’ deadline of the task is at the end of phase b.

Let CP be the computation time required before the real internal deadline (i.e. phases
a + bonly), and CT the total computation time of the task in each period (i.e. all four
phases). Notethereis no requirement to complete CT by T aslong as CP iscompleted by
D. Hence, an adaptation of the analysisfor arbitrary deadlinesisrequired. If we include
the two phases of computation into equation (3.16) we obtain:

Rl@+) W c’ (318)

R*Yq) = B +0qCf +CP + T

jehp(i) {
Combined with equations (3.17), (3.14) and (3.15), this allows the worst-case response
time (RP) for CP to be calculated (assuming the maximum C interference from early
releases of the task). It can be shown, trivially, that when the utilization of the processor
isless than 100% the response timesfor all tasks are bounded.? What isimportant is that
RP islessthan D;.

3.26 Priority assgnment

One of the consequences of having arbitrary or internal deadlines is that smple algo-
rithms, such as those using rate-monotonic or deadline-monotonic assignment for de-

2Consider a set of periodic tasks with 100% utilization; let all tasks have deadlines equal to the LCM
of the task set. Clearly, withinthe LCM period, no idletime occurs and no task executes for more than it
needs, and hence all deadlines must be met.

46 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

riving priority orderings are no longer optimal. In this section we state a theorem and
provide an algorithm for assigning priorities in these situations.

Theorem 3.1 If task T is assigned the lowest priority and isfeasible then, if afeasible
priority ordering exists for the complete task set, an ordering exists with T assigned the
lowest priority.

If such atask 1 isfound, then the same reasoning can be applied to the task with the
lowest but one priority, etc., and a complete priority ordering is obtained (if one exists).

An implementation in Ada of the priority assignment algorithm is given below. Set
isan array of tasks that is ordered by priority, Set (1) being the highest and Set (N) the
lowest priority. The procedure Task_Test tests whether task K isfeasible at the current
positioninthearray. Thenested loopswork by first putting atask into thelowest position
and checking whether afeasible result is obtained. If thisfails, the next higher priority
position isthen considered, and so on. If a any timetheinner loop failsto find afeasible
task, the whole procedure is abandoned. (Observe that a more compact algorithm can
be used if an extra Swap is performed.) If the test of feasibility is exact (necessary and
sufficient), then the priority ordering isoptimal. Thusfor arbitrary deadlinesand internal
deadlines (without blocking), an optimal ordering can be found.

procedure Assign Pri (Set : in out Process _Set; N : Natural;
X : in out Bool ean) is
begin
for K in reverse 1.. N loop
for Next in reverse 1..K loop
Swap(Set, K, Next) ;
Task_Test (Set, K, OK) ;
Set(K).P := K
exit when CK;
end loop;
exit when not CK;
end loop;
end Assign_Pri;

3.2.7 Overheads

Simple scheduling analysis usually ignores context switch times and queue manipula-
tions but the time for this is often significant and cannot realistically be assumed to be
negligible.

If asecond processor isused to perform context switches (in parallel with the applica-
tion/host processor) there will still be some context switch overhead. And when a soft-
ware kernel isused, if the actual timing of operations modelsis not known asafely large
overhead must be assumed. In addition, the interrupt handler for the clock will usually
also manipulatethe delay queue. Whenthere are no tasks in the delay queuethe cost may
be only afew microseconds but if an application has, say, 20 periodic tasks that have a

3.2. ADVANCED SCHEDULING ANALYSIS 47

common release, the cost of moving al 20 tasks from the delay queue to the run queue
may take hundreds of microseconds.

Context switch times can be accounted for by adding thesetimesto thetask that causes
the context switch. For periodictasks, theworst-casetimefor returning atask tothedelay
gueue and switching back to a lower priority task may depend on the longest possible
size of the delay queue (i.e. on the number of periodic tasks in the application). In most
execution environments, the context switching will be performed by anon-pre-emptable
section of code and will therefore itself give rise to blocking. For example, if a clock
interrupt occurs once alow priority task has begun to suspend itself then the interrupt
will be delayed. If thisinterrupt leads to a high priority task being released then it will
also be delayed. Equation (3.8) should therefore have the form:

Tj€lp(i) objepso(i)
where Cg isthe maximum non-pre-emptible execution time in the kernel.

To take account of the delay queue manipulationsthat occur in the clock interrupt han-
dier (i.e. at one of the top priority levels) adequately, the overheads caused by each pe-
riodic task must be computed directly. It may be possible to model the clock interrupt
handler using two parameters, Cc (the overhead occurring on each interrupt assuming
that tasks are on the delay queue but none are removed), and Cpgg (the cost of moving
one task from the delay queue to the run-queue). Equation (3.7) thus becomes:

n n

R_ﬂ-l—l = G+ Yiehp(i) [%-‘ G + "TSII_K-‘ Ceolk

n

+ Dfepts [%-‘ Cper (3.20)

where ptsisthe set of periodic tasks.

For a sporadic task (released by an interrupt), it is necessary to account for the inter-
rupt handler’sexecutiontime. For most hardware systems, this handler will execute with
apriority higher than the released sporadic task. In fact, it may well be higher than any
application task. To account for this extra overhead, equation (3.20) must have an addi-
tional term included:

n

R_ﬂ-l—l = G+ Yiehp(i) [%1-‘ G + "TSII_K-‘ Ceolk

n n

+ Ytepts ﬁ'—f} CPER+ Y gests W—J CiNT (3.21)

where stsisthe set of sporadic tasks released by interrupts, and Cnt iSsthe system inter-
rupt cost (assuming afixed cost for all interrupts). The other extensionsto equation (3.7)
would have to incorporate these changes similarly.

3.28 Analysisfor system transactions

All these methodsof analysisallow theworst-caseresponsetimesfor each individual task
to be predicted. However, as we noted in the discussion on computational models, the

48 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

timing requirementsusually refer to the end-to-end timefor transactions running through
an entire system. Although some transactions may be realized by a singletask, most are
not. Thefollowing discussion allowsthe system-level timing requirementsto beverified.
Thiswill bedone by examining anumber of examples. Intheseillustrationsit isassumed
that the worst-case response times (R) of the tasks are known.

Casel —asimplecontrol loop

Thesimplest exampleisthat of aperiodictask which readsaninput fromthe environment
and producesacontrol output. Thebasic requirement for thistask istowork at aspecified
rate (i.e. have afixed period) and to deliver its output within aknown bounded time (this
isusualy referred to asitsdeadline, D). With thissimple structure, verificationisneeded
to check smply that R < D.

Case |l —responding to an event using a sporadic task

A deadline can also be placed on the response time of the system to some external event
that manifestsitself as an interrupt. Mapping the interrupt onto the rel ease conditions of
a sporadic task again requires simple verification that R < D.

Case Il —respondingto an event using a periodic task

The external event may be the result of polling. Inthe worst case, the event will occur
just after the periodic polling is over and the next check will bein the next period. Hence
therequiredtestisT+ R < D.

In Cases Il and |1, improvements can be made by using an internal response time
rather than the task’s final response time (see Section 3.2.5).

Case |V —precedence chain on the same processor

Figure 3.3 gave an example of atransaction consisting of three tasks, the last two being
sporadic tasks released by the completion of a predecessor. One way of structuring this
chain on one processor isto assume that all three tasks are released at the same time but
run in the correct order because the earlier tasks have higher priorities. The end-to-end
response time of the complete transaction is therefore equal to the response time of the
final sporadic task, or Rz < D. Note that thisisadifferent formulato that givenin equa-
tion (3.5). The value of Ry is measured relative to the start of the complete transaction
and thereforeincludes R; and Ry.

3.2. ADVANCED SCHEDULING ANALY SIS 49
CaseV —adistributed precedence chain

In the previous example, assume now that communication between the second and third
tasks uses a communication link between independent processors. There still remains
an end-to-end transaction deadline but the analysis is now more complicated. When a
task releases alocal sporadic task for execution, it is appropriate to assume that the re-
sponsetime of the releaser incorporatesthe time needed to rel ease the sporadic task. But
with aremoterelease thisis not the case: thefirst task constructs the rel ease message but
the underlying system software performsthe actual transmission across the network (or
point-to-point link) and the release of the remote task. Assuming that M, is the worst-
case communication delay for thethe second task to rel ease the third, the verification test
isthen R, + M, + Rz < D. Notethat the response timefor the third task is calculated ac-
cording toits priority on its processor, while thefirst and second tasks are assumed to be
on the same processor.

In calculating the response times for the tasks on the second processor it will be nec-
essary to take into account the release jitter of the third task (see Section 3.2.3). If we
assume that the third task can be released arbitrarily closeto thefirst, then J3 = R, + M,.
Thisjitter value can be reduced if the minimum execution and communication times are
known.

The value of M (the message worst-case communication time) must be obtained from
an analysis of the communication medium. Protocols that use priority-based message
scheduling are avail able and with these the analysi s presented in this chapter can be used
directly.

Case VI —a precedence chain using offsets

Figure 3.3 illustrated another means of implementing precedence relationships. In Sec-
tion 3.1.1 it was shown that the deadline test was O3 + Rs < D. In general where tasks
interact asynchronoudly (i.e. viaPSOs) the key question is: how old isthe datawhen the
receiving task actually readsit?

Aswith remote sporadic releases, writing to aremote PSO has a communication cost
that must be added to the data’'s maximum age. It should also be noted that time offsets
can only be used to implement precedence relationshipsif the clocks on the two proces-
sorsare synchronized. Let A bethe maximum drift between any two clocks. If, asbefore,
the second and third tasks are on different nodes, then the offset needed (relativeto the
release of 1;) IsO3 > O, + Ry + My + A

329 Summary
The simple scheduling analysis presented in Chapter 2 has been extended to incorporate

the realistic characteristics of amore general computational model. The main new fea-
tures are listed below:

50 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

. theuseof ICPI toimplement mutual exclusion for PSOsand to provide adeadlock-
free efficient means for tasks to share access to PSOs,

. animproved method of analysisto cater for release jitter and arbitrary deadlines,

. analysisto cater for tasks with precedence relations,

. agenerd priority assignment algorithm,

. anaysisto incorporate kernel overheads,

. analysis of system transactions.

Taken together, they allow thetiming requirementsof realistic applicationsto be verified.

3.3 Introduction to Ada 95

In order to implement the computational model introduced in Section 3.1 it is necessary
to use an implementation language that can support its features, and one such language
isAda
The Adaprogramming language has gone through anumber of changessinceitsinitial

designinthelate 1970s. The current version, known as Ada 95, has a number of features
that make it suitable as the implementation language for real-time systems. In particular
it:

. providesfeaturesto implement tasks and PSOs directly,

. supports pre-emptive priority-based scheduling, and

. permitsdistribution of tasks and PSOs over a system.

Being ageneral purpose programming language, Ada also has a number of other fea-
tures but in the following overview we focus mainly on the ‘real-time’ features.

3.3.1 Tasksand protected objects

Concurrent tasks can be declared statically or dynamically (though static declarationsare
sufficient for the computational model).

A task type has a specification and a body. If direct synchronous communication be-
tween tasksisrequired, then the specification must declare entriesthat can be called from
other tasks. With asynchronous communication, no entries are necessary. Instead pro-
tected objects are used and these are described below. An example of atask type and
some task objects follows:

task type Controll er;
Conl, Con2 : Controller;
task body Controller is
- internal declarations
begin
- code to be executed by each task
end Controller;

This defines two task objects Con1 and Con2. The task body will usually contain aloop

3.3. INTRODUCTION TO ADA 95 51

that will enable the task to execute repetitive actions.

A protected object type definesdatathat can be accessed mutually exclusively by tasks.
For example, the following simple object alows client tasks to read and write a shared
integer dataitem:

protected type Shared is
procedure Read(D : out I nteger);
procedure Wite(D : |nteger);
private
Store : Integer := Sone_lnitial_ Val ue;
end Shar ed;
Si npl e : Shared;
protected body Shared is
procedure Read(D : out | nteger) is
begin
D:= Store;
end Read;
procedure Wite(D : Integer) is
begin
Store : = D
end Wite;
end Shar ed;

In addition to mutual exclusion, a protected object can also be used for conditional
synchronization. A calling task can be suspended until released by the action of some
other task, in the following example by a call to Updat e with a negative value:

protected Barrier is
-- note this defines a single object of an anonynous type
entry Rel ease(V : out | nteger);
procedure Update(V : | nteger);
private
Store : Integer := 1;
end Barrier;
protected body Barrier is
entry Rel ease(V : out Integer) when Store < 0O is
begin
V := Store;
end Rel ease;
procedure Update(V : |nteger) is
begin
Store : =V,
end Updat e;
end Barrier;

AsRel ease isaconditional routine, it is defined as an entry. To makeacall on thispro-
tected object atask would execute

Barrier.Rel ease(Result); -- where Result is of type integer

52 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

To construct asingle processor multi-tasking program, all tasks and obj ects are defined
either in library units or at the topmost level of the main procedure. (In Ada, tasks can
be arbitrarily nested. However, thisis not required for the computational model.)

procedure Mai n is
- declaration of protected objects
- declaration of tasks

begin
null;

end Mai n;

All tasks and protected objects can be assigned prioritiesusing the priority pragma. It
is also possible to use library units to define units of distribution and to define a task’s
call on aremote procedure to be asynchronous, but we shall not deal with that here.

3.3.2 Realising the computational model

The computational model requires periodic and sporadic tasks. A periodic task has a
fixed period which is controlled by a clock (see the Real-Time Annex of the Ada defi-
nition):

with Ada. Real _Ti me; use Ada. Real _Ti ne;
procedure Main is
pragma Task_Di spat ching_Policy(Fifo_ Wthin_Priority);
task Exanpl e Periodic is -- exanple task with priority 10
pragma Priority(10); -- and period 25ns
end Exanpl e_Peri odi c;
task body Exanpl e _Periodic is
Period : Time_Span := MIIliseconds(25);
Start : Tineg;
- other declarations
begin
Start := d ock;
loop
- code of periodic
Start := Start + Period;
delay until Start;
end loop;
end Exanpl e_Peri odi c;
end Main;

Type Ti e is defined as an abstract data type in a predefined package.
A sporadic task needs a protected object to manage its release conditions and thisis
enclosed in a package:

package Exanpl e_Sporadi c is
procedure Rel ease_Spor adi c;
end Exanpl e_Spor adi c;

34. THE MINE PUMP 53

package body Exanpl e_Sporadi c is
task Sporadi c_Thread is
pragma Priority(15);
end Spor adi c_Thr ead;
protected Starter is

procedure Co;

entry Wait;

pragma Priority(15); -- ceiling priority
private

Rel ease_Condition : Bool ean : = Fal se;

end Starter;
procedure Rel ease_Sporadi c is
begin
Starter. CGo;
end Rel ease_Spor adi c;
task body Sporadi c_Thread is
-- declarations
begin
loop
Starter. Wait;
-- code of sporadic
end loop;
end Sporadi c_Thr ead;
protected body Starter is

procedure Go is
begin
Rel ease_Condition : = True;
end Co;
entry WAit when Rel ease_Condition is
begin
Rel ease_Condi ti on : = Fal se;
end Wai t;

end Starter;
end Exanpl e_Spor adi c;

The wai t entry must reset the release condition so that its next caller will be blocked
until Rel ease_Spor adi ¢ is called again. Variations of this basic structure can deal with
bursty rel eases (with the protected object buffering the rel eases) and datacommunication
through the protected object from the task that calls Rel ease_Spor adi ¢ to the sporadic
task.

If the sporadic task is to be released by an interrupt then the Go procedure is mapped
directly onto the interrupt source. An example of thisisgiven in the mine pump example
in the next section.

3.4 Theminepump
Chapter 1 introduced the mine pump control problem. Inthissectionwedevelopadesign

using the computational model defined earlier. A simple decomposition of the system
identifies four major components:

54 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

. the pump controller,

. the environmental monitors (for airflow, methane and carbon monoxide),
. the datalogging subsystem,

. the operator’s subsystem.

The details of the data logging subsystem will be ignored and a protected object will be
used as the interface. Calls to the operator will similarly be mapped onto a protected
object. The operator can enquire about the status of the pump and attempt to turn the
pump on — these operations will be accommodated within the pump controller.

Thetiming requirementsof the environmental monitorshave acyclic behaviour and so
these arerepresented as periodic tasks. The pumpitself isa protected resource and isen-
capsulated within aPSO. Whenever the methane monitor readsacritically high methane
level it will call this PSO to turn the pump off.

The high and low water sensors come into the system as interrupts. It istherefore ap-
propriate to define sporadic tasks as the objects that respond to these interrupts and at-
tempt to either turn on or turn off the pump (viacalls to the pump PSO).

Although this structure provides an adequate design, one piece of functionality is still
missing: after the methane level returnsto low how is the pump turned on again? There
isalso an issue of safety analysis that would normally be applied to this sort of system.
With the current design, the methane monitor and the pump controller are safety-critical.
It could be argued that the fail-silent behaviour of the monitoring subsystem should not
lead to failure (i.e. pump working while methanelevel too high). Thisleads to two extra
elements being added.

. aPSO Met hane_St at us that holdsthe current methane level and thetime at which
the data was read (these values are obtained from the methane monitor),

. aperiodic task that reads the Met hane_St at us PSO and sends control commands
to the pump controller.

With this structure the new periodic task has the responsibility for turning the pump on
again once the methane level islow enough.

Failureof the methanemonitor will lead to afail-safestate. Of course, thisisnot afully
reliable situation as the pump would not be able to operateif the mine wereflooding and
the methane level were low.

Figure3.11 givesapictoria representation of the design. Table 3.1 givesthe details of
thetasksand PSOs (including akey to thelabelsused in Figure 3.11). Note that both spo-
radic tasks are released by the same PSO. The design could be implemented on asingle
processor or adistributed system. Figure 3.12 gives one possible distributed configura-
tion. Note how all the remote actions are legal in the computational model. One advan-
tage of the design of this configuration is that the system fails-silent even when remote
communications are unreliable.

Table 3.1 shows, where appropriate, the periodsand minimum arrival rates of thetasks.
It aso includes the deadlines and priorities of the tasks (and hence the PSOs). A single
processor implementation is assumed and prioritiesare in therange 1...10; unlike the
analysisin Chapter 2, 1 isthelowest and 10 the highest priority which isallocated to the

34. THE MINE PUMP

interrupts

PN

"Is

"t

AMW:J

operator | e .

alarms

Figure 3.11 Design for the mine pump problem

interrupts i

U

Figure 3.12 Distributed design

interrupt handler. The protected shared objects are given a ceiling priority which is one

higher than the maximum priority of the tasks that use them.

56

CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

Table 3.1 Mine control tasks and protected objects

Name Class Label | Symbol T D |P
Methane_Monitor | Periodic | MM ™ 20 10 | 8
Air_Monitor Periodic | AM A 30 20 | 7
COo_Monitor Periodic | CM Tc 30 20 | 6
Operator_Alarm | PSO OoP PO, 9
Methane_Status PSO MS POm 9
Logger PSO LO PO, 9
Safety _Checker Periodic | SC s 35 30 | 5
Controller PSO CT PO. 9
Interrupt_Handler | PSO IH PO 10
High_Sensor Sporadic | HS TH 10000 | 100 | 3
L ow_Sensor Sporadic | LS TL 10000 | 75 | 4

System transactions

The timing requirements of the mine pump system require the following transactions:

1.

2.

Emergency shut down following a high methane value reading (T < POc); this
has a bound of 30 milliseconds.

Recognition of monitor failure, and pump shut down, (ts < POc); thishasabound
of 65 milliseconds.

Turning the pump on again when it is safe (tyy < POm < Ts < POc); the bound is
100 milliseconds.

Turning the pump on (if safe) when thewater ishigh (PO; < T4 < POc); the bound
is 100 milliseconds.

Turning the pump off when the low water level has been reached (PO; < 1, <
PQOc); the bound is 75 milliseconds.

Signalling an alarm if any environmental condition warrantsit (tyy < POg, Ta <
PO, and t¢c < POy); the bound is 50 milliseconds.

Notethat the datalogging actions do not have explicit timing deadlines. Theinterrupts
for high and low water events cannot occur arbitrarily close to each other. It can be as-
sumed that no two interrupts can occur as close asfive seconds or |ess (and hence no two
interrupts from the same source occur within ten seconds).

Given therates at which the monitoring tasks execute, it ispossible to define deadlines
for each task such that al transaction deadlines are met. These deadlinesthen dictate the
appropriate priority levels, values of which are included in Table 3.1. For example, Ty
has aperiod of 20 ms and adeadline of 10 ms; hencein the worst-case PO, will be called
30ms after the methane level goes high.

The deadlines (and hence the priorities) represented in Table 3.1 are not unique; other
allocations are possible. In general, thereis atradeoff between the period and the dead-
line of a monitoring task.

34. THE MINE PUMP 57
34.1 Ada95implementation

The design objects introduced in the previous section can be coded in Ada 95. The fol-
lowing program is for a single processor solution. All the necessary code is included,
apart from the instructions that interact with the hardware; these instructions are repre-
sented as comments as their actual form would depend upon the particular hardware be-
ing used.

Some basic types are first defined in a global package together with constants repre-
senting critical input values. For example, if the methane level from the sensor is above
32, then the pump should be disabled. The time-constant Fr eshness indicates the max-
imum time a data item should reside within PO, without being overwritten by a more
recent reading. Itsvalueisset to T+ D for Ty,

with Ada. Real _Ti me; use Ada. Real _Ti ne;
package Dat a_Defs is
type Status is (On, O f);
type Safety Status is (Stopped, Operational);
type Al arm Source is (Met hane, Air_Fl ow, Carbon_Monoxi de);
type Met hane_Val ue is range 0. . 256;
type Ai r _Val ue is range 0. . 256;
type Co_Val ue is range 0. . 256;
Met hane_Threshol d : constant Met hane Val ue : = 32;

Air_Threshold : constant Air_Val ue ;= 100;
Co_Threshol d : constant Co_Val ue : = 124;
Freshness : constant Ti me_Span := M I|iseconds(30);

end Dat a_Defs;

There are two main protected objects in the program: one gives the current methane
reading, the other controlsthe pump. First consider the ssmple Met hane_St at us object:

protected Met hane_ St atus is
procedure Read(Ms : out Met hane _Value; T : out Tine);
procedure Wite(V : Methane Value; T : Tine);
pragma Priority(9);
private
Current _Val ue : Methane Val ue : = Met hane_Val ue’ Last;
Time_ O Read : Tinme := d ock;
end Met hane_St at us;
protected body Met hane St atus is
procedure Read(Ms : out Met hane Value; T : out Tine) is
begin
Ms := Current_Val ue;
T := Tinme_O_Read;
end Read;
procedure Wite(V : Methane_Value; T : Tine) is
begin
Current _Value : =V,
Time_ O Read := T,
end Wite;
end Met hane_St at us;

58 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

The pump controller is also a protected object. The sporadic tasks that respond to the
high and low water interruptswill call Tur n_on and Tur n_Cf f . The safety controller will
call stop and st art . Only if the status of the pump is on (following a call of Tur n_on)
and the saf ety statusisoperational (i.e. no call of st op) will the pump be actually started
(or restarted). The other subprogram defined in this object is called by the operator mod-
ule

protected Controller is
procedure Turn_On;
procedure Turn_Of f;
procedure St op;
procedure Start;
procedure Current Status(St:out Status;
Safe_St:out Safety Status);
pragma Priority(9);
private
Punp : Status := Of;
Condition : Safety Status := Stopped;
end Controller;
protected body Controller is
procedure Turn_On is
begin
Pump : = On;
if Condition = Qperational then
-- turn on punp
end if;
end Turn_On;
procedure Turn_OF f is
begin
Pump := Of;
-- turn off punp
end Turn_Of;
procedure Stop is
begin
-- turn off punp
Condi tion : = Stopped;
end St op;
procedure Start is
begin
Condition := Operational;
if Punp = On then
-- turn on punp
end if;
end Start;
procedure Current Status(St:out Status;
Safe_St:out Safety Status) is
begin
St = Punp;
Safe_St := Condition;
end Current_Status;
end Controller;

34. THE MINE PUMP 59

For completeness, the two objects that form the interface between the system and the
operator and the data logger are as follows:

protected Operator Al arm is
procedure Al arn{Al : Al arm Source);
pragma Priority(9);

private

end Operator_ Al arm

protected Logger is
procedure Met hane_Log(V : Met hane_Val ue);
procedure Air_Log(V : Air_Value);
procedure Co_Log(V : Co_Val ue);
pragma Priority(9);

private

end .L.ogger ;
The periodic task that executes the safety check has a simple structure:

task Saf ety Checker is
pragma Priority(5);
end;
task body Saf ety Checker is
Readi ng : Met hane_Val ue;
Period : Time_Span := MIIliseconds(35);
Next Start, Last_Tine, New Time : Tineg;
begin
Next Start := d ock;
Last _Tine := Next_Start;
loop
Met hane_St at us. Read(Readi ng, New Ti ne) ;
if Readi ng >= Met hane_Threshol d or
New _Time - Last_Time > Freshness then
Control |l er. Stop;

ese
Controller. Start;
end if;
Next Start := Next_Start + Period,
Last _Tine := New Tine;
delay until Next Start;
end loop;

end Saf ety Checker;

The methane monitor is also a simple periodic task:

task Met hane_Moni tor is
pragma Priority(8);
end;

60 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

task body Met hane Monitor is
Sensor _Readi ng : Met hane_Val ue;
Period : Time_Span := MIIliseconds(20);
Next Start : Tine;
begin
Next Start := d ock;
loop
-- read hardware register into Sensor_Readi ng;
if Sensor_Readi ng >= Met hane_Thr eshol d then
Control |l er. Stop;
Qperator _Al arm Al ar m(Met hane) ;
end if;
Met hane_St at us. Wit e(Sensor _Readi ng, Next _Start);
Logger. Met hane_Log(Sensor _Readi ng) ;

Next Start := Next_Start + Period,
delay until Next Start;
end loop;

end Met hane_Moni t or;

To complete the software for the periodic structures, the tasks for air monitoring and
carbon monoxide monitoring are as follows:

task Air_Monitor is
pragma Priority(7);
end;
task body Ai r_Monitor is
Sensor _Readi ng : Air_Val ue;
Period : Time_Span := MIIliseconds(30);
Next Start : Tine;
begin
Next Start := d ock;
loop
-- read hardware register into Sensor_Readi ng;
if Sensor_Readi ng <= Air_Threshol d then
Operator_Al arm Al arn{ A r _Fl ow) ;
end if;
Logger. Ai r _Log(Sensor _Readi ng);
Next Start := Next_Start + Period,
delay until Next Start;
end loop;
end Air_Mbonitor;
task Co_Moni tor is
pragma Priority(6);
end Co_Monitor;
task body Co_Mbnitor is
Sensor _Readi ng : Co_Val ue;
Period : Time_Span := MIIliseconds(30);
Next Start : Tine;

34. THE MINE PUMP 61

begin
Next Start := d ock;
loop
-- read hardware register into Sensor_Readi ng;
if Sensor_Readi ng >= Co_Threshol d then
Qperator Al arm Al ar m{(Car bon_Monoxi de) ;
end if;
Logger. Co_Log(Sensor _Readi ng) ;
Next Start := Next_Start + Period,
delay until Next Start;
end loop;
end Co_Moni tor;

The two sporadic tasks are closely related and can therefore be managed by the same
protected object:

package Fl ow _Sensors is
task Hi gh_Sensor is
pragma Priority(4);
end Hi gh_Sensor;
task Low Sensor is
pragma Priority(3);
end Low _Sensor;
end Fl ow _Sensors;
package body Fl ow Sensors is
protected | nterrupt_Handl ers is
procedure Hi gh; pragma | nterrupt_Handl er (Hi gh);
procedure Low; pragma | nterrupt_Handl er (Low);
entry Rel ease_Hi gh; entry Rel ease_Low,
pragma Priority(10);
private
H gh_Interrupt, Low Interrupt : Bool ean : = Fal se;
end I nterrupt_Handl ers;
protected body I nterrupt Handl ers is
procedure Hi gh is

begin
H gh_I nterrupt := True;
end Hi gh;
procedure Low is
begin
Low I nterrupt := True;
end Low,
entry Rel ease_Hi gh when Hi gh_Interrupt is
begin
H gh_l nterrupt := Fal se;

end Rel ease_Hi gh;
entry Rel ease_Low when Low_ | nterrupt is
begin
Low_Interrupt := Fal se;
end Rel ease_Low,
end I nterrupt_Handl ers;

62 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

Table 3.2 Worst case execution times

Name Class Symbol | C
Methane_Monitor | Periodic ™ 5.4
Air_Monitor Periodic A 3.3
CO_Monitor Periodic Tc 3.3
Safety _Checker Periodic Ts 35
Low_Sensor Sporadic TL 2.9
High_Sensor Sporadic TH 29
Interrupt_Handler | PSO PO 12
Controller PSO PO:. |14
Operator_Alarm | PSO PO, |01
Methane_Status | PSO PO, |12
Logger PSO PO, 0.8

task body Hi gh_Sensor is
begin
loop
I nterrupt _Handl ers. Rel ease_Hi gh; Controller. Turn_On;
end loop;
end Hi gh_Sensor;
task body Low Sensor is
begin
loop
I nterrupt _Handl ers. Rel ease_Low; Controller. Turn_Of;
end loop;
end Low _Sensor;
end Fl ow _Sensors;

This completes the code for all of the components of the design.

3.4.2 Analysisof theapplication

Once the code has been devel oped it must be analyzed to obtain its worst-case execution
times. Asindicated in Section 3.2.1, these values can be obtained either by direct mea-
surement or by modelling the hardware. None of the code derived is likely to require
extensive computations and so it is reasonable to assume that a Slow speed processor
is adequate. Table 3.2 contains some representative values for the worst-case execution
timesfor each task and PSO in the design. Note that the timesfor each task include time
spent executing within called PSOs. Hence, for example, Ty will cal POy, and PO, in
each period but will also call PO, and PO when the methane ishigh. Thisgives atotal
of 5.4 milliseconds of execution time.

The execution environment imposes its own set of important parameters — these are

34. THE MINE PUMP 63

Table 3.3 Overheads

Name Symbol | C

Context Switch Time Cow 0.2
Clock Period Tolk 5

Clock Overhead Ccok |04
Cost of Single Task Move Ceer | 0.3
Cost of Interrupt Cint | 0.3
Maximum Kernel Blocking Ce 1.1

given in Table 3.3. Note that the clock interrupt is of sufficient granularity to ensure no
release jitter for the periodic tasks.

Adding the context switch times to the task’s own computation times gives an over-
all computational load of 65.5%. The overheads of delay queue manipulations and the
servicing of the timer interrupt add a further load of 12.4%. Hence the total system uti-
lization is 77.9%.

The appropriate equations from Section 3.2 can now be applied to each of the tasksto
obtain their worst-case response times. These values are given in Table 3.4. Note that
the equationsin Section 3.2 must deal with integer values (asthey use ceiling functions);
hence in Table 3.4 the unit of timeis 100 microseconds. The blocking valuein thistable
is 14 time units, on the assumption that whatever operator task calls the controller PSO
will have apriority of lessthan 3. Hencefor all tasks the maximum blocking time comes
from this task (as the computation time of PO is the maximum of all PSOs). Note that
the maximum non-pre-emptivesectioninthekernel islessthan 14 (i.e. is11—from Table
3.4).

We can look at one task in detail to review how its response time value is obtained.
Consider the Ai r _Moni t or which has a computation time of 33 units. Context switch
costs add a further four units (as there are two context switches per task invocation),
which gives atotal C value of 37. Blocking B is 14. One task has a higher priority; its
total computational timeis 58. The interrupt also has a higher priority; this adds three
units. The clock has a period of 50 and hence equation (3.20) gives an initial interfer-
ence of 4+ 3«(number of periodic tasks), which equatesto 16. Taken together, thisgives
afirst value of 37 4 14 4+ 58 + 3+ 16, which equals 128. Within thisinterval the clock
will haveinterrupted two moretimesbut no further periodic taskswill have been released
and hence an extra eight units of interference will need to be added. Thisgives avaue
of 136, which balances the response time equation. Hence Ris 136 (or 13.6 ms).

The final stage of the analysis is to return to the task deadlines. These were given in
Table 3.1 and are repeated in Table 3.4. It is clear that al tasks complete before their
deadlines and hence al transactions are satisfied.

64 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

Table 3.4 Results of schedulability analysis

Name Class Symbol T D |[P|C| R
Methane_Monitor | Periodic ™ 200 100 | 8 | 58| 95
Air_Monitor Periodic Ta 300 200 | 7| 37| 136
CO_Monitor Periodic Tc 300 200 | 6 | 37| 177
Safety _Checker Periodic Ts 350 300 | 539|285
L ow_Sensor Sporadic TL 100000 | 750 | 4 | 33 | 525
High_Sensor Sporadic TH 100000 | 1000 | 3 | 33 | 558

3.5 Historical background

The computational model presented in this chapter is similar to that used in a number of
design methods such as Mascot (Bate, 1986) and HRT-HOOD (Burns& Wellings, 1994).
A formal representation of the model can be found in the semantic descriptions of the
Temporal Access Method (TAM) (Scholfield et al., 1994).

Section 3.2 gave an overview of some recent scheduling results; the derivation of these
equations is described in Burns (1994), Auddey et al. (1993a; 1993b) and Burns et
al. (1993), and detailed descriptions have been provided by Auddey (1993) and Tindell
(1993). Discussion of the inheritance and ceiling protocols can be found in Goodenough
and Sha (1988), Shaet al. (1990) and Baker (1990; 1991). A detailed case study of the
Altitude and Orbital Control System (AOCS) of the Olympus Satellite appearsin Burns
et al. (1993).

Debates over the development of the Ada programming language have raged for a
number of years. Readersinterested in issues relating to the Adatasking model will find
adiscussion in Burns et al. (1987). Real-time issues are discussed extensively in the
Proceedings of the International Wbrkshops on Real-Time Ada | ssues.®

3.6 Further work

Theanalysis presented in thischapter coversalevel of detail and arange of practical con-
cernsthat makeit suitablefor useon ‘real’ systems. Thereis current research inincreas-
ing the flexibility of the analysis and further removing restrictions in the computational
model. For example, the model can be extended to include invocation interruption (i.e.
asynchronously affecting the execution of a periodic task, during execution, to alow it
to respond immediately to a mode change), dynamic allocation and re-allocation to cater
for processor failure.

There has been much attention recently to the use of on-line techniques because, it is
argued, that contemporary systems are too complex for purely off-lineanalysis. On-line

3The proceedings of these workshops, which started in 1987, are published annually in ACM Ada
Letters.

3.7. EXERCISES 65

techniques are based on ‘best-effort” scheduling to make the most effective use of the
system under all possible conditions; they will be described in greater detail in Chapter
4. While priority-based scheduling and best-effort scheduling are often considered to be
irreconcilable, there has been work on defining aframework that can accommodate both
approaches (Auddey et al., 1993c; 1994; Davis et al., 1993). Within such a framework
it would be possible to integrate static analysis, diverse and adaptive software, deadline
variations and software fault-tolerance (Bondavalli et al., 1993).

3.7 Exercises

Exercise 3.1 Verify that the system transaction deadlines for the mine control problem
are satisfied by the period and deadline definitionsin given Table 3.1.

Exercise 3.2 Check the response-time calculations given in Table 3.4. Which valueis
wrong?

Exercise 3.3 In the analysis of the mine control system, what would be the conse-
guences of running the clock at 10 ms (or 20 ms)?

Exercise 3.4 Do asendtivity analysis on the mine control task set. Taking each task
in turn, consider by how much its computation time must increase before the task set
becomes unschedulable. Express this value as a percentage of the original value of the
computation time.

Chapter 4

Dynamic Priority Scheduling

Krithi Ramamritham

I ntroduction

Dynamic scheduling of areal-time program requires a sequence of decisionsto be taken
during execution on the assignment of system resources to transactions. Each decision
must be taken without prior knowledge of the needs of future tasks. Asin the case of
fixed priority scheduling, the system resources include processors, memory and shared
data structures; but tasks can now have arbitrary attributes. arrival times, resource re-
guirements, computation times, deadlines and importance val ues.

Dynamic algorithms are needed for applications where the computing requirements
may vary widely, making fixed priority scheduling difficult or inefficient. Many real-time
applications require support for dynamic scheduling: e.g. in robotics, where the control
subsystem must adapt to a dynamic environment. This kind of scheduling also allows
more flexibility in dealing with practical issues, such as the need to alter scheduling de-
cisions based on the occurrence of overloads, e.g. when

. the environment changes,
. thereisaburst of task arrivals, or
. apart of the system fails.

Inapractical system, it can prove costly to assume that overloads and failureswill never
occur and, at the same time, be inefficient to determine schedulability or a priori to con-
struct a fixed schedule for a system with such variable properties.

Dynamic scheduling has three basic steps: feasibility checking, schedule construction
and dispatching. Depending on the kind of application for which the system is designed,
the programming model adopted and the scheduling algorithm used, all of the steps may
not be needed. Often, the boundaries between the steps may also not be clear.

We shall first generalizethe definitions of transaction and process used in Chapter 3. A
computational transaction will now be assumed to be made up of one or more processes
composed in parallel. A process consists of one or more tasks.

66

INTRODUCTION 67

Feasbility analysis

Feasibility, or schedulability, analysis has been described in Chapters 2 and 3: it is the

process of determining whether the timing requirements of a set of tasks can be satis-

fied, usually under agiven set of resource requirementsand precedence constraints. With

fixed priority scheduling, feasibility analysisistypically done statically, before the pro-

gramisexecuted. Dynamic systems performfeas bility checking on-line, astasks arrive.
There are two approaches to scheduling in dynamic real-time systems:

1. Dynamic planning-based approaches. Execution of atask isbegunonly if it passes
afeasbility test, i.ethat it will complete execution beforeits deadline. Often, one
of the results of the feasibility analysisis a schedule or plan that is used to decide
when atask should begin execution.

2. Dynamic best-effort approaches: Here no feasibility checking is done; the system
triesto ‘do its best’ to meet deadlines but, since feasibility is not checked, atask
may be aborted during its execution.

In a planning-based approach, the feasibility of a set of tasks is checked in terms of a
scheduling policy such as’ earliest-deadline-first’ or ‘ |east-laxity-first’, beforethe execu-
tion of aset of tasks. By contrast, in abest-effort approach, tasks may be queued accord-
ing to policiesthat take account of the time constraints (similar to the kind of scheduling
found in a non-real-time operating system). No feasibility checking is done before the
tasks are queued.

The relative importance of a task and the value given to its completion are used to
take scheduling decisions, whether or not feasibility checking is done. Thisinformation
isusually given as atime-value function that specifies the contribution of atask to the
system upon its successful completion. Figure 4.1 relates value with completion time,
for different value functions.

For hard real-timetasks, the value drops immediately after the deadline and dynamic
algorithms cannot be used: there should bea priori verification that such tasks will meet
their deadlines. Dynamic algorithms are suitable for the tasks in the ‘firm’ and * soft’
categories.

To achieve high system performance, the system must al so consider therelative values
of tasks, or their importance, when determining which tasks to reject and which to exe-
cute. Because a dynamic scheduling algorithm takes decisions without prior knowledge
of thetasks, thetotal valueisnot predictable and the al gorithm must attempt to maximize
the value accrued from tasksthat complete on time. Most dynamic algorithmsdevel oped
so far assume that a value function assigns a positive value to atask that is successfully
completed, and zero to an incomplete task. This correspondsto the curve marked ‘ firm’
inFigure4.1, wherethevaluefor atask remains constant until itsdeadline and then drops
to zero. If al the tasks have the same value, maximizing the accrued value is the same
as maximizing the number of completed tasks.

While achieving maximum value, real-time systems must also exhibit a capability for
‘graceful degradation’. To achievethis, not only must the fact that atask did not meet its
deadline be detected, but the fact that thisis going to occur must be detected as soon as

68 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

hard

T firm
value

soft

time—*

Figure 4.1 Different kinds of value function

possible. Anexception must then be signalled to makeit possiblefor thetask to be substi-
tuted by one or more contingency tasks. Thus on-line schedul ability analysis must have
an early warning feature which provides sufficient |ead time for the timely invocation of
contingency tasks, making it possible for the scheduler to take account of a continuously
changing environment.

Such schedulability analysisis especially important for transactions for which recov-
ery following an aborted partial execution can be complicated. Error handlers are com-
plex in general and abnormal termination may produce inconsistent system states. This
islikely to be the case especially if the transaction involvesinter-processinteraction. In
such situations, it is better to alow atransaction to take place only if it can be guaranteed
to complete by itsdeadline. If such aguarantee cannot be provided, then the program can
perform an aternative action. And to provide sufficient time for executing the alterna-
tive action, a deadline may be imposed on the determination of schedulability. This can
be generalized so that there are N versions of the transaction and the algorithm attempts
to guarantee the execution of the best possible version. ‘Best’ refersto the value of the
results produced by a particular version; typically, the better the value of the result, the
longer the execution time.

Scheduleconstruction

Schedul e construction isthe process of ordering the tasks to be executed and storing this
in aform that can be used by the dispatching step.

Feas bility checking is sometimes performed by checking if thereisaschedule or plan
inwhich all thetaskswill meet their deadlines. For planning-based approaches, schedule
construction isusually adirect consequence of feasibility checking.

In other cases, priorities are assigned to tasks and at run-time the task in execution

4.1. PROGRAMMING DYNAMIC REAL-TIME SYSTEMS 69

has the highest priority. Thisis the case with fixed priority approaches and with some
smple dynamic priority approaches, such as earliest-deadline-first or least-laxity-first,
where feasibility checking involves ensuring that the total processor utilization is below
a bound.

In the remainder of this chapter we will refer to schedule construction simply as
scheduling. Thus, scheduling involves deciding when tasks will execute. The schedule
ismaintained explicitly in the form of aplan or implicitly as the assgnment of priorities
to tasks.

Dispatching
Dispatching is the process of deciding which task to execute next. The complexity and
reguirements for the dispatching step depend on:

1. the scheduling algorithm used in the feasibility checking step,

2. whether aschedule is constructed as part of the schedulability analysis step,

3. the kinds of tasks, e.g. whether they are independent or with precedence con-
straints, and whether their execution is pre-emptive or non-pre-emptive, and

4. thenature of the execution platform, e.g. whether it has one processor or more and
how communication takes place.

For example, with non-pre-emptive scheduling atask is dispatched exactly once; with
pre-emptive scheduling, atask will be dispatched once when it first begins execution and
again whenever it isresumed.

In the remainder of this chapter, we discuss how the timing requirements of transac-
tions can be specified and how user level transactions can be mapped into tasks with
different characteristics including timing constraints, precedence constraints, resource
reguirements, importance levels and communication characteristics. Issues to be con-
sidered for dynamic scheduling are introduced and different ways of assigning priori-
tiesto tasks are considered. The two types of dynamic scheduling approach, best-effort
scheduling and planning-based scheduling, are discussed in detail and, sincetherun-time
cost of adynamic approachisan important practical consideration, several techniquesare
discussed for efficient dynamic scheduling.

4.1 Programming dynamic real-timesystems

The requirementsfor tasks in areal-time system can be quite varied. In this section, we
show how they can be specified from within a program. For dynamic real-time applica-
tions, it should be possible to specify several important requirements:

. Beforeinitiating a time-constrained transaction, it should be possible for the pro-
gram to ask for a guarantee from the run-time system that the transaction will be
completed within the specified deadline.

70 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

A transaction can be guaranteed to complete within its deadline if a schedule can
be created for thistransaction and the other transactionsthat have been previously
guaranteed to meet their deadlines.

. If the system cannot give a guarantee when it is sought, then it should be possible
to choose an aternative activity. When a guarantee is not sought and it is not pos-
sible to meet the timing constraint, it should be possible to take alternative action.
In either case, the aternative may be a timing-error handler that will alow some
corrective action to be taken.

Language constructs to express such constraints are described using aform of pseudo-
code. Inwhat follows, terminalsareshown int ypewriter font,[] enclosesoptiona
itemsand | separates alternatives.

A transaction (shown in italics) refers to a statement. A real-time transaction has a
time constraint such as a periodicity requirement or adeadline.

41.1 Activitieswith deadlines

Timeouts can be associated with any statement using the wi t hi n deadl i ne statement
which has the form

wi thin deadline (d) statement;
[el se statement;]

During execution, if executionof awi t hi n deadl i ne statement startsat timet andisnot
completed by t+ d, thenit isterminated and statement,, if provided, is executed. Hence,
d is the deadline relative to the current time. The effect of this abnormal termination
islocal if statement; does not require any inter-process communication; otherwise, the
other interacting processes may be affected. We discuss thisfurther in Section 4.1.5.

Example 4.1 Air traffic control 1. An air-traffic control system should provide final
clearance for a pilot to land within 60 seconds after clearance is requested. Otherwise
the pilot will abort the landing procedure:

wi t hi n deadl i ne (60) get clearance
el se abort landing

412 Guaranteed transactions

The guar ant ee statement is used to ensure before a transaction is started that it can be
completed within the specified time constraint:

wi thin deadline (gd) guarantee
time_constrained_statement
[el se statement]

4.1. PROGRAMMING DYNAMIC REAL-TIME SYSTEMS 71

where gd is the deadline for obtaining the guarantee. If the guarantee is not possible, or
if it cannot be given within gd, the el se statement, if provided, is executed. Otherwise,
the time-constrained statement is executed.

To provide such a guarantee, the execution time and the resource requirements of the
statement must apriori be determinable(at |east at thetime of the guarantee). Thismakes
it important for the execution timeto liewithin relatively small bounds as resources must
be provided for the worst-case needs. In general, the larger the worst-case needs, theless
likely it will be to obtain a guarantee; further, even if a guarantee can be given for large
bounds, it islikely to affect future guarantees.

Dynamic scheduling makesit possibleto use run-timeinformation about tasks, such as
execution times and resource constraints. Such information can be derived from formu-
las provided by the compiler for evaluation at the time of task invocation. For example,
the calculation of the execution time can then take into account the specific parameters
of the invocation and hence be more accurate (and perhaps less pessimistic) than a stat-
ically determined execution time; such calculations can make use of dataonly available
at run-time, such as the number and values of inputs. Asfor compile-time cal cul ation of
worst-case execution times, run-time calculation aso requires loop iterations and com-
munication times to be bounded. If synchronous communication statements do not have
associated time-constraints, it is necessary to consider the communi cating tasks together
as a transaction when checking feasibility.

Example 4.2 The following statement tries to guarantee that statement;, will be com-
pleted within the next d seconds:

wi thin deadline (gd) guarantee
wi thi n deadline (d) statement;
[else ...]

[el se statement;]

If execution starts at timet, statement, will be executed if it isnot possible to obtain the
guarantee by t + gd. If guaranteed, execution of statement, will start at st and end by t
+d, where &t liesin theinterval (t,t+ gd).

Example4.3 A smple railway crossing. The task controlling a railway signal has to
determine whether a certain track will be clear by the time atrain is expected to reach
there. Thismust be done early enough to give enough timeto stop thetrainif thetrack is
not expected to be clear. Assume that the train will not reach the track before d seconds
and that it takes at most s secondsto stop thetrain (s < d):

wi thin deadline (d<9S guarantee
wi thin deadline (d) clear track
el se ...

el se stop train

72 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING
4.1.3 Start-time-constraints

The following statement attaches start time constraints to transactions with deadlines:

start at (S within deadline (d) statement;
[el se statement;]

If execution of the wi t hi n deadl i ne Statement starts at time t, then execution of
statement; should start at or after t + sand be completed by t + d, whered > s. A smple
extension gives the guaranteed version of this statement.

The value v of atask is specified by attaching the construct val ue v to thewi t hin
deadl i ne statement.

414 Flexibletime-constraints

Thetime-constraints described thusfar areto ensurethat if atransaction isnot completed
within the specified time, it is terminated and timing-error handling isdone. Thisis ap-
propriateif thereis no value in completing the transaction after the specified time.

For many real-time applications, while it may be desirable for al transactionsto meet
the timing-constraints, it may be better, and sometimes necessary, to complete a transac-
tionevenif itisdelayed. Suchtime-constraintswill be called flexible. Thusatransaction
may have a non-zero value up to some point past its deadline; if this point does not liein
afixed interval, the transaction should be completed regardless of how long it takes.

To express flexible time-constraints, an overflow is associated with a time-constraint.
If the overflow is positive, a transaction should be terminated only after the end of the
interval corresponding to the overflow. This corresponds to a soft deadline.

If the overflow has anegative value, it indicates that the transaction must be completed
by the specified deadline but, if possible, within overflow units beforethedeadline. (This
islike asking the system to ‘be nice' to atransaction by trying to complete it before the
deadline)

A deadline-constrained transaction statement is specified as

wi t hin deadline (d)[overflow Statement;
el se statement,

and has the following effect:

. If execution of statement; is not completed by max(d, d+ overflow), processing of
statement; isterminated and statement,, if provided, is executed.

. If overflow is not specified, it isassumed to be zero.

. If aguarantee is requested, it will be first attempted for min(d, d + overflow) and,
if thisis unsuccessful, for max(d, d 4 overflow); if the second attempt is also un-
successful, the el se clause, if specified, will be executed.

. If atime-constrained component of statement, has an overflow, it can increase the
worst-case execution time of statement;.

4.1. PROGRAMMING DYNAMIC REAL-TIME SYSTEMS 73

Example 4.4 Air traffic control 2. An air-traffic control system should provide final
clearance for apilot to land within t; seconds after the request has been made; if thisis
not possible, clearance should be given within another t, seconds or the pilot will abort
the landing procedure:

wi t hi n deadl i ne (t1)(t) clearlanding
el se abortlanding

Itis easy to see that alarge overflow indicates that the transaction has only a nominal
deadline and should be alowed to complete even if the deadlineis past.

4.1.5 Inter-process communication and time-constraints

There are two important considerations when a time-constrained transaction interacts
with other transactions. The first is to find the duration of such interactions so that the
execution time of the transaction can be determined. The second is the effect on other
transactions when atime-constrained transaction is terminated because a specified time-
constraint is not met.

The sender of an asynchronous message does not wait (assuming that buffers do not
overflow), so the time needed for sending a message is bounded. However, for syn-
chronous communication, the sending task is suspended until the receiver responds and
the delay may be unbounded. With timed synchronous communication, the maximum
time that atask can wait for acall to complete is bounded.

The execution of astatement with an associated deadline is abandoned when its dead-
line has expired, and there are a number of consequences when a synchronous send or
receive statement is abandoned by the callee:

. A send that is abandoned before the matching r ecei ve occurswill clearly not af-
fect the sender. If it is withdrawn during the execution of ther ecei ve statement,
thereis no effect on the receiver. It should be possible for the sender to determine
if the message was received or if it was withdrawn while in the process of being
received. A special variablet _i nt er r upt ed can be associated with each task to
indicate if the last send was withdrawn during ther ecei ve.

. A similar variablet _abandoned can be used to indicate if execution of ar ecei ve
statement was abandoned by the receiver.

Example4.5 Termination during process interaction. A resource is managed by a
Manager task. If arequesting task has not received the resource within max_wait time it
will take its request to another provider:

Wit hi n deadl i ne (max_wait)
Manager . get (pi d)
el se get resource fromanother provider

74 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

where pi d istheid of the calling task.

The Manager task may be responding to the get request when the specified timelimit
max_wai t expires. Inthis case, although the request is withdrawn, the Manager contin-
ues with the alocation as if nothing happened and the requester is required to free the
resource after examining the value of variablet _i nt er r upt ed:

Wi t hi n deadl i ne (max_wait)
Manager . get (pi d)

else if (t_interrupted) then Manager.free(pid);
get resource from another provider

Let us now examine what is involved in guaranteeing whether or not a synchronous
send can be completed within adeadline:

wi thin deadline (d) guarantee
wi thin deadl i ne (max_wait) Manager. get (pi d);
el se get resource from another provider;

To providethisguarantee, the scheduler must be abl e to determinewhen the receiver will

actually receive the message. 1n some special cases, it may be possible to determinethis
time but, in general, the delay may depend on a number of factors such as the execution
times of various code segments within the receiver, when these code segments will be
scheduled, etc. Taken together, they makeit all but impossiblefor the sender to determine
dynamically when the receiver will receive the message.

However, in the specia case of a set of interacting tasks participating in a transaction
with a deadline, the transaction can be converted into a set of precedence-related tasks
and started only if they are found to be feasible.

A transaction may be suspended at a number of scheduling points; these occur at the
beginning and end of critical sections, at synchronous communication calls, or where
explicit suspend calls appear in the code. A transaction is executed from one scheduling
point to the next (atask) and it can then be executed without being interrupted for want
of resources or for synchronization.

A task graph containstasksrelated by precedence and communication constraints. Ac-
tivitieswithout internal scheduling pointsreduceto agraph with asingletask. Activities
containing critical sectionsor other scheduling pointswill reduceto task graphswith sev-
eral tasks. During the construction of the task graph, the resources needed for each task
can be determined. The description of atransaction isthen available for the scheduler as
agroup of tasks representing the transaction.

Figure 4.2 shows a transaction with two components A and B which can execute in
parallel and communicate synchronously. Thistransactionis converted into agraph with
five tasks. With this, the two components, and hence the transaction, can be executed
predictably if the corresponding task graph can be feasibly scheduled.

4.2. ISSUESIN DYNAMIC SCHEDULING 75

2 R B,
R

— — Ao Bs

—= Precedence constraint
— Communication

Figure 4.2 Communicating tasks and the corresponding task graph

4.2 Issuesin dynamic scheduling

With static priorities, a task’s priority is assigned when it arrives and fresh evaluation
is not required as time progresses and new tasks arrive. Hence static priorities are well
suited for periodictasksthat execute at all times (but, with the extensions shown in Chap-
ter 3, they can be used for aperiodic tasks as well).

In adynamic system, static feasibility checking isnot possible and dynamic decision
making algorithms must be used. This has severa implications. It is no longer possible
to guarantee that all task arrivalswill be able to meet their deadlines: if the arrival times
of tasks are not known, the schedul ability of the tasks cannot be guaranteed. However, if
the system has only independent, periodic tasks and one processor, static schedulability
analysis can be used even if the scheduling policy is dynamic.

For tasks with a more complex structure, other attributes can be used to assign prior-
ities. This gives dynamic algorithms alot of flexibility and adds to their ability to deal
with awide variety of tasks. But there may be substantial overheads in calculating the
priorities of tasks and in selecting the task of highest priority. When dynamic priorities
areused, therelative prioritiesof tasks can change astime progresses, asnew tasksarrive
or as tasks execute. Whenever one of these events occurs, the priority of all the remain-
ing tasks must be recomputed. This makesthe use of dynamic priorities more expensive
in terms of run-time overheads, and in practice these overheads must be kept as small as
possible.

A shortcoming of static schedulability analysis arises from the assumptions and the
restrictions on which off-line guarantees are based. For example, if thereis anon-zero
probability that these assumptions are unlikely to hold or that restrictions may be vi-
olated, a system using a static approach will not perform as designed and tasks may
miss their deadlines. And, under some situations, effective control of the system can
be lost because of the limited scheduling capability available at run-time. Thus, when
constraints assumed by off-line schedul ability analysisarelikely to be violated, dynamic

76 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

scheduling approaches provide a solution.

Consider avery simple example. If system overloadsare knownto beimpossible, then
the earliest-deadline-first algorithm (EDF) can be used. Since overloads cannot occur,
when atask is pre-empted there is an implicit guarantee that the remainder of the task
will be completed beforeits deadline; without overloads, simple algorithmssuch asEDF
and least-laxity-first (LLF) performvery well. But if overloads are possible, inthe worst
case, EDF and LLF may producezerovalue, i.e. none of the tasksthat arrivewill meetits
deadline (even if, under another scheduling discipline, some tasks may meet their dead-
lines).

An optimal dynamic scheduling al gorithm always produces afeasible schedul e when-
ever aclairvoyant algorithm, i.e. a scheduling a gorithm with complete prior knowledge
of the tasks, can do so. Unfortunately, it is difficult to construct a good on-line algo-
rithm to compete with a clairvoyant algorithm. Competitiveness analyss, involving the
comparison of an on-line algorithm with a clairvoyant algorithm, is one way to predict
the behaviour of adynamic algorithm. However, thisanalysis considers only worst-case
behavioursinvolving all possibletask characteristics. For predictability, planning-based
scheduling isaviablealternative. Here, given aparticular priority assignment policy and
the requirements of a task before it begins execution, a check is made to see whether
thereisaway for the task to meet its deadline. As mentioned earlier, many planning ap-
proaches al so produce aschedul e for task execution as auseful by-product and the added
cost of the checking may be well spent.

4.3 Dynamic priority assignment

Construction of a plan in planning-based approaches and determining which task to ex-
ecute next in best-effort approaches requires assigning priorities to tasks; this raises the
guestion of how prioritiesareassigned. Further, thereisaconflict between priority-based
scheduling and the goal of maximizing resource utilization in areal-time system.

4.3.1 Simplepriority assgnment policies

In a real-time system, priority assignment must be related to the time constraints asso-
ciated with atask, e.g. according to EDF or LLF ordering. For scheduling independent
tasks with deadline constraints on single processors, EDF and LLF are optimal methods,
so if any assignment of priorities can feasibly schedule such tasks, then so can EDF and
LLF

For agiven task set, if tasks have the same arrival times but different deadlines, EDF
generates anon-pre-emptive schedule, while the LLF schedule requires pre-emptions. If
both arrival timesand deadlines are arbitrary, EDF and L LF schedules may both require
pre-emptions. These algorithms use the timing characteristics of tasks and are suitable
when the processor is the only resource needed and tasks are independent of each other.

4.3. DYNAMICPRIORITY ASSIGNMENT 77
4.3.2 Priority assgnment for taskswith complex requirements

Of more practical interest isthe scheduling of tasks with timing constraints, precedence
constraints, resource constraintsand arbitrary valueson multi-processors. Unfortunately,
most instances of the scheduling problem for real-time systems are computationally in-
tractable. Non-pre-emptive scheduling is desirable as it avoids context switching over-
heads, but determining such a schedule is an NP-hard problem even on uniprocessors if
tasks can have arbitrary ready times. The presence of precedence constraints exacerbates
the situation and finding a resource-constrained schedule is an NP-compl ete problem.

Thismakesit clear that it serves no effective purposeto try to obtain an optimal sched-
ule, especially when decisionsare madedynamically. And, with multi-processors, no dy-
namic scheduling algorithm is optimal and can guarantee all tasks without prior knowl-
edge of task deadlines, computationtimesand arrival times. Such knowledgeisnot avail-
able in dynamic systems so it is necessary to resort to approximate algorithms or to use
heuristics, as we shall now see.

As in Chapter 3, atask T isthe unit for scheduling; it is characterized by its arrival
time AT, its absolute deadline D, its value V, its worst-case computation time C and its
resource requirements {RR}. Tasks are assumed to be independent, non-periodic and
non-pre-emptive. A task uses aresource either in shared mode or in exclusive mode and
holds a requested resource as long as it executes. EST isthe earliest start time at which
the task can begin execution (EST is calculated when scheduling decisions are made).

The following condition relates AT, D, C, EST and the currenttime T :

AT<EST<D<&C

Let Pr(t) be the priority of task 1, and assume that the smaller the value of Pr(1), the
higher the priority. There are a number of possible priority assignment policies.

1. Smallest arrival timefirst, or first-come-first served (FCFS): Pr(t1) = AT. FCFSisa
fair policy but it does not take any real-time considerationsinto account. For tasks
with the same priority, FCFS may be a suitable policy.

2. Minimum processing time first (Min_C): Pr(t) = C. In non-rea-time environ-
ments, the smple heuristic Min_C isoften arulefor minimizing average response
times but it isnot usually adequate for real-time systems.

3. Minimum (or earliest) deadline first (Min_D): Pr(t) = D. For tasks needing only
aprocessor resource, Min_D can be a suitable policy.

4. Minimum earliest start timefirst (Min_S): Pr(t) = EST. Thisisthefirst policy to
take resource requirements into account through calculation of EST.

5. Minimum laxity first (Min_L): Pr(t) = D<(EST + C). Like EDF, (Min_L) isop-
timal for tasks that have just processing requirements, Min_L takes into account
the information used in Min_D and Min_S.

6. Minimum value first (Min_V): Pr(1) = V. Min_V considers only the value of a
task.

7. Minimum value density first (Min_VD): Pr(1) = T—g Unlike Min_V, which does
not take the computation time into account, Min_VD considers the value per unit
time when assigning task priorities.

78 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

Table 4.1 Task parameters for Example 4.1

Task 11 1o T3

computation time 9 10 1
resource request | either copy | either copy | both

deadline 9 74 11

8. Min_D + Min_C: Pr(t) = D+ W, x C, where W, is aweighting constant. This
policy considers two task parameters, but resource requirements are ignored.

9. Min_D + Min_S: Pr(t) = D+ W x EST, where W, is aweighting constant. For
tasks having time- and resource-constraints, this policy has been shown to result
in good real-time performance.

10. Min_D +Min_S+Min_VD: Pr(t) = D+ W x EST+ W, x ¥. Thisconsidersthe
value, computation time, deadline and resource requirements of atask.

4.3.3 Priority-based scheduling and resources

Thereisusually aconflict between keeping resources busy and respecting task priorities:
if resources areto be used to thefullest extent possible, there may be task executions that
violate task priorities.

Example 4.6 Greedy scheduling. Assume that the (Min_D + Min_S) heuristicis used
to assign prioritiesto tasks. Let W; = 6. Assume there are two processors, three tasks
and two copies of a resource, each of which is used only in exclusive mode. The task
parameters are listed below in Table 4.1. We first determine the schedule produced by
list scheduling, agreedy approach. Tasks are ordered on alist by decreasing priority and,
when a processor isidle, the list is scanned from the beginning and the first task which
does not violate the resource constraints is assigned to the processor.

Thetask prioritiesare Pr(11) = 9, Pr(12) = 74 and Pr(t3) = 11. So 11 hasthe highest
priority and it isscheduled to start at time=0. Then, because one processor istill idle, list
scheduling isused to find another task that can start at time=0. Recomputing the priorities
of the remaining tasks gives Pr(t,) = 74 and Pr(13) = 65. Although t3 has the higher
priority, since it requires both resources only 1, can start at time=0 and s0 it is chosen.
Finally, T3 isscheduled to start at time=10 when both copies of theresource areavailable.
Thus, tasks are scheduled according to their priority but while the policy is greedy about
keeping the resources fully used.

Suppose we used a pure priority-driven approach, one that is not greedy. After 14 is
scheduled, the remaining task prioritiesare recomputed and 13 will be chosen to be exe-
cuted next at time=9, followed by 1, at time=10.

Thus with list scheduling, the higher priority task t3 will be delayed by one time unit
while, without greed, T, will be delayed by ten time units.

The example shows that though list scheduling keeps resources better utilized, it does
so by delaying the execution of higher priority tasks. Sincethe priority of atask reflects

4.3. DYNAMIC PRIORITY ASSIGNMENT 79

itstime-constraintsand other characteristicsof importance, in real -time systemsit isusu-
ally desirableto take more account of prioritiesthan of the underutilization of resources.
We can attempt to obtain the best of both worlds by adopting pre-emptive priority-
driven scheduling. If thisisdone, then by thetime 1, completes execution, 1, could have
been pre-empted by 13. Unfortunately, the decision to pre-empt may not be simple:

. Theremay betaskswhich, once pre-empted, will need to berestarted, losing all the
computation up to the point of pre-emption. For example, inacommunicating task,
if acommunication isinterrupted it may have to be re-started from the beginning:
the communication line represents an exclusive resource that is required for the
complete duration of the task.

. A task that is pre-empted while reading a shared data structure can resume from
the point of pre-emption only provided the data structure has not been modified.

. A task that is pre-empted while modifying a shared data structure may leaveit in
an internally inconsistent state; one way to restore consistency is to wait for the
pre-empted task to be completed before alowing further use of the resource. An
aternativeisto rollback the changes made by the pre-empted task but, in general,
it isdifficult to keep arecord of all such changes. A rollback can add considerably
to the overhead.

Returning to Example 4.6, 1, uses the resource in exclusive mode. So there are two
possible ways in which list scheduling can be used, depending on the nature of the re-
source:

1. If theresourceislike the communication line, T, can be pre-empted at time=9 and
T3 can begin using it immediately. Thisis equivalent to not having started execu-
tion of T, at al, and alowing 1, to execute ahead of its turn by being greedy has
not helped. But, if T,'s computation timeis less than or equal to that of 14, greed
can beused. Inany case, the execution of 13 will not be more delayed than it would
be for pure priority-driven scheduling.

2. If theresource is amodifiable data structure, 13's execution will be delayed, either
by the need to rollback t1,’s changes or to wait for T, to complete execution. In
either case, 13 will complete later than under pure priority-driven scheduling.

Thissuggeststhat alimited form of list scheduling can be used in which task computa-
tion timesand the nature of theresources, aswell astheir use, isconsidered when making
scheduling decisions. The goal is then to ensure that priorities are not violated when a
greedy policy isused. Another alternativeisto limit the greed so that the algorithm tries
to keep only a specified fraction of each replicated resource busy.

In the examples, we have assumed that the worst-case resource requirementsfor each
task are available. The scheduling a gorithm then takes these resource requirements dur-
ing feasibility checking. Assuming that tasks are non-pre-emptable, the scheduling al-
gorithm will not schedule in parallel two tasks with resource conflicts.

Thereisanother approach to dealing with resource requirementsin which the schedul -
ing algorithm does not explicitly consider resource requirements. Instead, the resource

80 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

requirements of each task are analyzed and also the resource conflicts among the tasks.
Thisalowscalculation of theworst-case blocking timefor each task dueto resource con-
tention, and incorporation of thisinto the task’s worst-case execution time (see Chapter
3). When thisis done, the run-time management of the resources must correspond to the
assumptions made at analysis time. For example, if the worst-case times are derived as-
suming that each resource use is guarded by a semaphore, then semaphores must be used
at run-time.

4.4 Dynamic best-effort approaches
44.1 Best-effort scheduling

In best-effort scheduling, tasks are assigned priorities according to one of the policies of
Section 4.3, and task execution occursin priority order. It isthis requirement to always
execute the highest priority task that necessitates pre-emption: if alow priority task is
in execution and a higher priority task arrives, or becomes eligible to execute, the low
priority task is pre-empted and the processor is given to the new arrival.

With priority-driven pre-emptive scheduling using, say, task deadlines to decide on
prioritiesand without any feasibility checking, atask can be pre-empted at any time dur-
ing its execution. In this case, until the deadline, or until the task finishes, whichever
comes firg, it is not known whether atiming-constraint will be met.

The overall predictability of best-effort approachesis aso difficult to assess. Whereas
real-time scheduling algorithms, such as EDF and LLF, have optimal behaviour aslong
as no overloads occur, extreme performance degradation can occur under overloadsand,
at times, asystem may produce only zero value. Thispotential for very poor performance
under overloadsis the major disadvantage of the dynamic best-effort approaches. But,
since dynamic agorithms must perform well under varying loading conditions, careful
choiceisneeded of thetask to execute and of the task to discard when an overload occurs.
In practice, this requires confidence to be gained using extensive simulation, re-coding
the tasks and adjusting the priorities.

During overloads, tasks with lower values can be shed and there are several ways of
accomplishing this. Tasks of lower importance can beremoved oneat atimeand in strict
order from low to high importance. This incurs higher overheads than a scheme which
chooses any lower valued task, but neither method takesinto account the time gained by
dropping atask. Shedding tasks in the lowest-value-density-first order does, however,
take a task’s computation time into consideration.

Let Sbe an arbitrary task arrival sequence and A an on-line scheduling algorithm that
knows about task T only at itsarrival time AT. Let CA be aclairvoyant algorithm which
givesanideal, optimal, off-lineschedule using information about all thetasksin S Va(S)
is the total value obtained by A and Vca(S) is the total value obtained by CA.

First overload example: For a single processor system, assume that A uses a Sim-
ple strategy to take scheduling decisions: it uses EDF when the system is underloaded,

4.4. DYNAMIC BEST-EFFORT APPROACHES 81

Table 4.2 Task parametersfor first overload example

Tasks | AT C D \Y
T1 0o 2 2 3
To 1 100 101 100

Table 4.3 Task parameters for second overload example
Tasks | AT C D V| Taks|AT C D V
T1 0 10 10 10| T 0O 9 11 9
T2 9 11 20 11 T, 9 10 21 10
13 19 12 31 12 T 19 11 32 11
T, |30 13 43 13| 1, (30 12 44 12
Tg 42 14 56 14 g 42 13 57 13
T6 55 15 70 15 Tg 55 14 71 14
1, |69 16 8 16| t, |69 15 86 15
Tg |84 16 100 16

and it favours the tasks with larger value density during overloads. Let the task request
sequence be

S= {11,132}

with its parameters as specified in Table 4.2.

At time=0, 11 arrives and gets service. At time=1, T, arrives and the system is over-
loaded. Algorithm A favoursthe task T, which hasthe larger value density. Hence, 12 is
rejected and islost. Thetotal value obtained by Ais 3. On the other hand, the total value
obtained by a clairvoyant algorithm can be 100 (v,). The performanceratiois

VA(S) 3
Vea(S) 100

If the computation time, deadline and the value of 1, increase at the same rate, theratio
between Va(S) and Vca(S) goes to zero.

Second overload example: Once again for a single processor system, let A use EDF
when the system is underloaded and assume that it favoursthe task with the larger value
during overloads. Let the task request sequence be

! ! ! ! ! ! !
S= {T17 11,12, 12,13, T3, T4, Ty, 15, T, 16, Tg, 17, T7, Tg, }

with its parameters as specified in Table 4.3.
Notice that the value density of all the tasksis 1. The CA scheduleis

! ! ! ! ! ! !
(T17 15,13, Ty, T, Tg, T7, TS)

giving atotal value of 100. Algorithm Aworksasfollows: t; and T arriveat time=0 and
T, isgiven the processor. T is discarded because A favours the larger valued task during

82 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

overload. (A has no information that T, will arrive, otherwise it would have chosen 17.)
At time=9, 1, and T, arrive and the system is overloaded again: T, gets the processor
because it isthe task with the largest value in the current task set. This pattern continues
until tg arrives at time=84. The current running task 17 has the same value as 1g and
algorithm A does not make the switch. The total value obtained by A is 16 because only
Tg meetsits deadline and all other tasks are lost. The performanceratio is

Va(S _ 16
Vea(S) 100

A task pattern can be constructed in a similar way to give atask arrival sequence for an
arbitrary number of tasks for which the ratio between Va(S) and Vca(S) goesto zero.

These examples demonstrate a phenomenon that is not uncommon in on-line schedul -
ing: an on-line agorithm will at times unavoidably make the wrong decision because it
lacks future knowledge and, in the worst case, this can reduce the value of the result to
zero.

Thereisno optimal agorithm for on-line scheduling to maximize the total task value,
so attention has turned to a new, worst-case bound method, competitiveness analysis,
which provides very good insight into the design of best-effort scheduling algorithms.
To evaluate a particular on-line scheduling algorithm, the worst case of a scheduling
algorithm is compared with al possible competing algorithms, including the idealized
clairvoyant algorithm. The results of such analysis can be useful in handling overloads
effectively.

4.4.2 Competitiveness analysis of best-effort approaches

Assume that tasks are aperiodic, independent and pre-emptable without penalty (it helps
to calculate the bound, though this may not be a realistic value). In a multi-processor
system, a pre-empted task can be resumed on any available processor. Assume that the
system has no information about the tasks before they arrive.

The lower bound, Ba, of an on-line scheduling algorithm, A, is defined as

Va(S)
Vea(S)

where Ba € [0, 1] because VS - VA(S) < Vca(S)

> Ba, foral S

The upper bound, B, is defined as
B> Ba, fordl A

A boundistight if it can be reached.

Suppose atask has avalue equal to its execution time when it completes successfully
and no value otherwise. Itisknown that no dynamic scheduling algorithm can guarantee
acumulative value greater than 0.25 of the value obtainable by a clairvoyant algorithm.

4.5. DYNAMIC PLANNING-BASED APPROACHES 83

(Infact, for an algorithm that always sheds the lowest valued task upon an overload, this
ratio can be as low as zero.) Thus, in the worst case, an on-line agorithm is only able
to complete 0.25 of the work completed by a clairvoyant algorithm and, in fact, such an
algorithm can be constructed, showing the bound to be tight.

Thisresult can be extended to casesin which tasks have different value densities. Let
y be the ratio of the highest and lowest value densities of tasks. The upper bound for the
on-line scheduling is 1/(y+ 1+ 2,/y). Asaspecia casg, if yis 1, the upper bound is
0.25, which is the result mentioned above, and if yis 2, the upper bound is 1/5.828.

With two processors, the upper bound is 0.5 and is tight when all the tasks have the
same value density and zero laxity. Thus, the upper bound doubles and, for the worst
case, istwice the value obtained from two separate single processor systems. For areal-
time system designer, this can provide an important reason for choosing a two processor
system instead of a single processor system.

4.5 Dynamic planning-based approaches

Dynamic planning combinestheflexibility of dynamic scheduling with the predictability
offered by feasibility checking. When atask arrives, an attempt is made to guarantee the
task by constructing a plan for task execution by which all previously guaranteed tasks
continueto meet their timing constraints. A task isguaranteed subject to aset of assump-
tions, for example about itsworst-case execution time and resource needs, and the nature
of the faultsin the system. If these assumptions hold, once atask is guaranteed it will
meet its timing requirements. Thus, predictability is checked with each arrival.

If the attempt to guarantee fails, the task is not feasible and a timing fault is forecast.
If thisis known sufficiently ahead of the deadline, there may be time to take alternative
action. For example, it may be possible to trade off quality for timeliness by attempting
to schedule an aternative task which has a shorter computation time or fewer resource
needs. In adistributed system, it may be possible to transfer the task to a less-loaded
node.

If a node with guaranteed tasks fails, the guarantees cease to hold. For a guarantee to
hold in spite of node failures, atask must be guaranteed on multiple nodes and we shall
discussthis later.

45.1 Algorithmsfor dynamic planning

A dynamic planning a gorithm attemptsto construct afeasible schedule for agiven set of
tasks. This can be viewed as a search for afeasible schedule in atree in which the leaves
represent schedules, of which some are feasible. The root is the empty schedule. An
internal node isapartia schedule for atask set with one more task than that represented
by itsparent. Giventhe NP-completeness of the scheduling problem, it would servelittle
purpose to search exhaustively for afeasible schedule. So the priority Pr of each task is

84 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

used to direct scheduling choices along the most likely path.

The basic algorithm attemptsto schedule atask 1; non-pre-emptively, givenitsarrival
time AT;, deadline D; or period T;, worst-case computation time C; and resource require-
ments {RR }. A task uses aresource R either in shared mode or in exclusive mode and
holds a requested resource as long as it executes. The algorithm computes the earliest
start time, EST;, at which task 1; can begin execution after accounting for resource con-
tention among tasks. Given a partial schedule, the earliest time EAT; at which resource
R is available can be determined. Then the earliest time that a task T; that is yet to be
scheduled can begin execution is

EST; = Max(AT;, EATY)

where u iseither sfor ‘shared’ or efor ‘exclusive’ mode.

The heuristic scheduling algorithm starts at the root of the search tree and repeatedly
tries to extend the schedule (with one more task) by moving to one of the vertices at the
next level in the search tree until afull feasible scheduleis derived. At each level of the
search, the priority can be computed for all the tasks that remain to be scheduled. This
isa

n+(nel)+...+2 = O(n?)

search algorithm, where n is the number of tasks in the set. The complexity can be re-
duced to O(n) if only the k tasks that remain to be scheduled at each level of search are
considered. In both cases, the task with the highest priority is selected to extend the cur-
rent schedule.

While extending the partial schedule at each level of search, the algorithm determines
whether the current partial scheduleis strongly feasible or not. A partial feasible sched-
uleis said to be strongly feasible if all the schedules obtained by extending this current
schedule with any one of the remaining tasks are also feasible. Thus, if a partial feasi-
ble schedule is found not to be strongly feasible because, say, task T misses its deadline
when the current task set is extended by T, then it is appropriate to stop the search since
none of the future extensions involving task T will meet its deadline. In this case, a set
of tasks cannot be scheduled given the current partial schedule. (In the terminology of
branch-and-bound techniques, the search path represented by the current partial schedule
is bounded since it will not lead to a feasible complete schedule.)

However, it is possible to backtrack to continue the search even after a non-strongly
feasible schedule isfound. Backtracking is done by discarding the current partial sched-
ule, returning to the previous partial schedule and extending it with a different task, e.g.
the task with the second highest priority. When backtracking is used, the overheads can
berestricted either by restricting the maximum number of possible backtracks or thetotal
number of re-evaluations of priorities.

The algorithm starts with an empty partial schedule and at each step determines
whether the current partial schedule is strongly feasible and, if so, extends the current
partial schedule by onetask. The following variables are used:

. TR, thetasksthat remain to be scheduled, in order of increasing deadline,

4.5. DYNAMIC PLANNING-BASED APPROACHES 85

TR : = task set to be schedul ed;
partial schedule := enpty; Result := Success;

whileTR# enmpty A Result # Failure loop
if nore than Nig tasks in TR
then TC := first Nig tasks in TR
gse TC := TR endif
EST cal cul ation:
for each task T in TR conpute EST;;
Priority val ue generation:
for each task 1, in TR compute Pr(t);
Task sel ection:
find task min, with highest priority in TC,
WUpdat e partial schedul e or backtrack:
if (partial schedule @min;) is feasible and strongly feasible
partial schedule := (partial schedule &ming);
TR : = TRS ming;
elseif backtracking is all owed and possible
backtrack to a previous partial schedul e;
else Resul t: =Fail ure;
endif;
end loop

where &, & add and renove respectively a task froma schedul e

Figure 4.3 Basic guarantee algorithm

. N(TR), the number of tasksin TR,

. M(TR), the maximum number of tasks considered by each step of scheduling,

. Nrr, theactual number of tasksin TR considered at each step of scheduling, where
Ntr = M(TR), if N (TR) > M (TR), Nrr = N (TR), otherwise, and

. TC, thefirst Ntg tasksin TR.

When attempting to extend the partial schedule by one task:

1. strong-feasibility is determined with respect to tasksin TC,

2. if the partial schedule is strongly feasible, then the highest priority task is chosen
to extend the current schedule.

After atask 1 is selected to extend the current partial schedule, its Scheduled Start Time
SST; isequal to EST;.

Given that only Ntr tasks are considered at each step, the complexity is O(N x
M (TR)) for atask set of size N. If M (TR) is constant (in practice it will be small when
compared to N), the complexity islinearly proportional to N.

Figure 4.3 outlines the structure of the basic guarantee algorithm. It can be seen that
the algorithm uses only priority-based selection at each step of the search. This means
that it may leave some resources idle and, in order to reduce such idle times, while till

86 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

being driven by task priorities, the algorithm can be extended to select the next task and
to keep a specified minimum number of resources busy whenever possible.

We now consider the extensions necessary to deal with periodic tasks, tasks that have
fault-tol erancerequirements, taskswith different importancelevelsand taskswith prece-
dence constraints.

Periodic tasks

There are several ways of guaranteeing periodic tasks when they are executed together
with non-periodic tasks. Assume that when a periodic task is guaranteed, every release
of thetask is guaranteed.

Consider a system with only periodic tasks. A schedule can be constructed using the
basic planning algorithm; given n periodic tasks with periods Ty, ..., Tn, the length of
the schedule isLCM(Tj, ..., Tn). The earliest start time of the jth release of the ith task
is(j 1) x T; and itsdeadlineisj x T;. That is, assume that the deadline of a periodic
task isthe same asits period.

If aperiodictask arrivesdynamically, an attempt can be madeto construct anew sched-
ule. The new task is guaranteed if the attempt succeeds.

Suppose there are periodic and non-periodic tasks in the system. If the resources
needed by the two sets of tasks are digoint, then the processorsin the system can be par-
titioned, with one set used for the periodic tasks. The remaining processors are used for
non-periodic tasks guaranteed using the dynamic planning algorithm.

If, however, periodic and non-periodic tasks need common resources, a more com-
plicated schemeisneeded. If aperiodic task arrivesin a system consisting of previousy
guaranteed periodic and non-periodic tasks, an attempt is madeto construct anew sched-
ule: if the attempt fails, the new task is not guaranteed and itsintroduction has to be de-
layed until either the guaranteed non-periodic tasks complete or itsintroduction does not
affect the remaining guaranteed tasks.

Suppose anew non-periodictask arrives. Given aschedulefor periodic tasks, the new
task can be guaranteed if there is sufficient time in the idle dlots of the schedule. Alter-
natively, applying the dynamic guarantee scheme, anon-periodic task can be guaranteed
if all releases of the periodic tasks and al previously guaranteed non-periodic tasks can
also be guaranteed.

Taskswith fault-tolerancerequirements
If guarantees are required in spite of the possibility of node failures, they must be pro-
vided on multiple nodes. Specifically, if a task is non-periodic and does not share re-
sources with other tasks, or if it isarelease of a periodic task and shares resources only
with other releases of the same task, then guaranteed execution with respect tot fail-stop
node failures can be achieved by guaranteeing the execution of thetask at t + 1 nodes.
When atask does not share resources, the following scheme reduces the overheads of
executingitst+ 1 copies. the start times of its copies are staggered such that theith copy
is guaranteed for a start time of

s+(iel)c

4.5. DYNAMIC PLANNING-BASED APPROACHES 87

and a deadline of
de(t+1si)c

where sand d arethe start time and deadline of the task and ¢ isthe communication delay
between nodes. Asfew task copies as possible should be used, so thefirst copy to com-
plete successfully informsall the others and the resources and time allocated to the other
copies can be reclaimed (see Section 4.6). This assumes that al interactions with the
environment take place when a copy completes successfully. Obvioudly, the schemeis
applicable only when communication delays and task computation times are small com-
pared to task deadlines.

Taskswith different levels of importance

The deadline and importance of atask are sometimes at conflict: tasks with very short
deadlines might be less important than tasks with longer deadlines. For example, read-
ing from a rotating disk may have a relatively short deadline but low importance as a
missed disk read can beretried on the next disk revolution. This makes it more difficult
to choose the next task to be executed. The question of guarantees may also have to be
refined when tasks with differing importance values are present. Suppose atask has been
guaranteed and a task of higher importance arrives. It may be that the new task can be
guaranteed only if the guarantee of the task of lower importance iswithdrawn. Thus the
once-guaranteed—always-guaranteed strategy may mean that the new task is not guaran-
teed even though it has higher importance.

Assume, instead, that tasks are handled using an acceptance, rather than the guarantee
policy. Thisallowsthereection of previously accepted tasks, while the guarantee policy
does not: the acceptance does not imply a guarantee but is conditional upon the non-
arrival of tasksof higher importance which conflict withit. In most applications, meeting
the deadlines of tasks of higher importance takes precedence over guarantees to tasks of
lower importance. It would then be desirable that atask isnot guaranteed until it is clear
that the guarantee will not be withdrawn.

A compromise approach isto allow an acceptance to be withdrawn until the guaran-
tee deadline but not later. This gives some leeway to the system scheduler and allows a
transaction to try alternativesin case one task is not accepted.

There are different ways to choose tasks for rejection so that a new task can be ac-
cepted:

1. removethe tasks of lower importance, one at atime and in order fromlow to high
importance, or
2. removetasks of lower importance, starting with tasks with the largest deadline,

until sufficient resources are rel eased.

Taskswith precedence constraints
Precedence constraints between tasks are used to model end-to-end timing constraints
both for a single node and across nodes (see Chapter 3). Let atask group be a collection

88 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

of simple tasks with precedence constraints and a single deadline. Each task acquires
resources beforeit begins, and releases them upon compl etion. Assume that when atask
group is invoked, the worst-case computation time and resource requirements of each
task can be determined. Thefirst step istofind the set of *eligible’ tasks, i.e those whose
ancestors are al in the partial schedule, and then to apply the basic planning algorithm
to the set of eligible tasks. Priorities are computed only for tasks whose ancestors have
been scheduled.

45.2 Timing of the planning

Asthe number of tasksincreases, so doesthe cost of planning and thereislesstimeavail -
ablefor planning. Thisisthe main reason for the poor performance of planning schemes
during overloads. So when a system overload is anticipated, use of a method that con-
trols scheduling overheadsis essential. Thus, it isimportant to address theissue of when
to plan the execution of anewly arrived task. Two simple approaches are:

1. When atask arrives, attempt to plan its execution along with previously scheduled
tasks: thisisscheduling-at-arrival-timeand all tasksthat have not yet executed are
considered for planning when a new task arrives.

2. Postpone the feasibility check until a task is chosen for execution: this is
scheduling-at-dispatch-time and can be done very quickly for non-pre-emptive
task execution by checking whether the new task will finish by its deadline.

The second approach is less flexible and announces task rejection very late. Conse-
guently, it does not provide sufficient lead time for considering alternative actions when
atask cannot meet itstiming-constraints. Both avoid resource wastage as a task does not
begin execution unlessit is known that it will complete before its deadline.

To minimize scheduling overheads while giving enough lead time to choose aterna-
tives, instead of scheduling tasks when they arrive or when they are dispatched, they
should be scheduled somewhere in between — at the most opportune time. If they can
be scheduled at some punctual point, this can limit the number of tasks to be considered
for scheduling and avoids unnecessary scheduling (or rescheduling) of tasksthat have no
effect on the order of tasks early in the schedule.

Choice of the punctua point must take into account the fact that the larger the mean
laxity and the higher the load, the more tasks are ready to run. The increasing number
of tasks imposes growing scheduling overheads for all except a scheduler with constant
overheads. The punctual point is the minimum laxity value, i.e. the value to which a
task’s laxity must drop before it becomes eligible for scheduling. In other words, the
guarantee of atask with laxity larger than the punctual point is postponed at most until
its laxity reaches the punctual point. Of courseg, if the system is empty atask becomes
eligible for scheduling by default. By postponing scheduling decisions, the number of
tasks scheduled at any timeis kept under control, reducing the scheduling overheads and
potentially improving the overall performance.

4.5. DYNAMIC PLANNING-BASED APPROACHES 89

The main benefit of scheduling using punctual pointsis the reduced scheduling over-
heads when compared to scheduling at arrival time. Thisisdueto the smaller number of
relevant tasks (the tasks with laxities smaller than or equal to the punctual point) that are
scheduled at any given time. Clearly, when the computational complexity of a schedul-
ing algorithm is higher than the complexity of maintaining the list of relevant tasks, the
separation into relevant/irrelevant tasks reduces the overall scheduling cost; that is, the
scheduling becomes more efficient.

Scheduling at the opportune time ensures that a scheduling decision is made earlier
than when scheduling at dispatch time, but not necessarily as early as when scheduling
at arrival time. Consequently, the lead time for alternative actions is adjustable and is
based on design and run-time parameters. Scheduling at an opportune time (i.e. at the
punctual point) is more flexible, more effective and more tolerant of timing errors than
scheduling at dispatch time, primarily due to its early warning characteristics. Hence,
ways of finding the punctual point for different system characteristics are required.

Consider the following scheme for tasks with deadlines that are held on a dispatch
queue, Q1(n), maintained in minimum laxity order, and a variant of the FCFS queue.
When atask arrives, its laxity is compared with that of the n tasks in the queue Q1(n)
and the task with the largest laxity is placed at the end of the FCFS queue. When atask
in Qq isexecuted, the first task on the FCFS queueis transferred to Q;.

Analysis shows that performance to within 5% of the optimal LLF algorithm is
achieved for even small values of n.

A more experimental way to limit the number of scheduled tasksisto haveaHit queue
and a Miss queue: the number of scheduled tasks in the Hit queue is continuously ad-
justed according to theratio of tasks that complete on time (the ‘ hit’ ratio). This method
isadaptive, handles deadlines and values and is easy to implement. However, it does not
define a punctual point.

The weakness of both these approaches isthe lack of analytical methods to adjust the
number of scheduled tasks. The parametersthat control the number of schedul able tasks
must be obtained through simul ation and anewly arrived task can missitsdeadlinebefore
it getsconsidered for execution. By contrast, if the punctual point isderived analytically,
it can be ensured that every task that arriveswill be considered for execution.

The number of schedulable tasks must be controlled using timing-constraints, rather
than by explicitly limiting the number of schedulabletasks; thisensuresthat every task is
considered for scheduling when itslaxity reaches the most opportune moment, the punc-
tual point. The approach is especialy beneficial for systems where tasks have widely
differing values, and rejecting a task without considering it for scheduling might result
in alarge value loss, something that can happen easily when the number of schedulable
tasksis fixed.

Finally, the features of a ‘well-timed scheduling framework’ are summarized below:

. Newly arrived tasks are classified as relevant or irrelevant, depending on their lax-
ity.

. Irrelevant tasks are stored in a D-queue (the delay queue), where they are delayed
until their laxity becomes equal to the punctual point, at which time they become

90 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

relevant.

. Relevant tasks are stored in an S-pool (the scheduling pool) as tasks eligible for
immediate scheduling.

. When atask isput into the S-pool, afeasibility check is performed; if thisis satis-
fied, it istransferred into the current feasible schedule.

It isimportant to observe that apart from reducing the scheduling cost, the separation of
relevant and irrelevant tasks also contributes to reducing the scheduling overheads due
to queue handling operations.

4.6 Practical considerationsin dynamic scheduling
4.6.1 Implementing best-effort scheduling

The implementation mechanismsneeded here are similar to thosefound in priority-based
non-real-time systems, the primary difference being the way in which priorities are as-
signed.

Ready tasks are maintained in aready queue according to their priority order. The set
of taskswaiting for aresource (other than aprocessor) are placed in await queue. When
atask completes execution or when it releases a resource, one or more tasks may move
from the wait queue to the ready queue. This, or the arrival of a high priority task, may
cause the currently running task to be pre-empted. Thisis because these events can lead
to changes in therelative priorities of tasks and task priorities must be re-evaluated and
the ready queue re-ordered according to the new priorities. Dispatching involves pre-
emption, context switching and possibly placing the pre-empted task back in the ready
gueue, according to its priority, for future resumption.

4.6.2 Implementing planning-based scheduling

Here there are two main considerations: feasibility checking and schedule construction.
In a multi-processor system, feasibility checking and dispatching can be done indepen-
dently, allowing these system functionsto run in parallel. The dispatcher works with a
set of tasks that have been previoudly guaranteed to meet their deadlines, and feasibility
checking is done on the set of currently guaranteed tasks plus any newly invoked tasks.

Feasibility checking and schedule construction
One of the crucial issuesin dynamic scheduling isthe cost of scheduling: the moretime
that is spent on scheduling the less there isfor task executions.

Inasingle-processor system, feasibility checking and task executions competefor pro-
cessing time. If feasibility checking is delayed, thereisless benefit from the early warn-
ing feature. However, if feasibility checking is performed immediately after a task ar-
rives, this may lead to guaranteed tasks missing their deadlines. Thus, when tasks are

4.6. PRACTICAL CONSIDERATIONSIN DYNAMIC SCHEDULING 91

guaranteed, some time must be set aside for scheduling-related work and a good balance
must be struck depending on task arrival rates and task characteristics such as computa
tion times.

Oneway isto providefor the periodic execution of the scheduler. Whenever invoked,
the scheduler will attempt to guarantee al pending tasks. In addition, if needed, the
scheduler could beinvoked sporadically whenever these extrainvocationswill affect nei-
ther guaranteed tasks nor the minimum guaranteed periodic rate of other system tasks.

Another alternative, applicable to multi-processor systems, isto designate a‘ schedul -
ing’ processor whose soleresponsibility isto deal with feasibility checking and schedule
construction. Guaranteed tasks are executed on the remaining ‘ application’ processors.
In this case, feasibility checking can be done concurrently with task execution. Recall
that atask is guaranteed aslong as it can be executed to meet its deadline and the dead-
lines of previoudly guaranteed tasks remain guaranteed. Guaranteeing a new task might
require re-scheduling of previoudly guaranteed tasks and so care must be taken to ensure
that currently running tasks will not be re-scheduled.

These considerations suggest that scheduling costs should be computed based on the
total number of tasksin the schedule plus the newly arrived tasks, the complexity of the
scheduling algorithm and the cost of scheduling one task. Tasks with scheduled start
times before the current time plus the scheduling cost are not considered for reschedul -
ing; the remaining tasks are candidates for re-scheduling to accommodate new tasks.

Dispatching
Planning-based schedulers typically use non-pre-emptive schedules. Dispatching de-
pends on whether the tasks are independent and whether there are resource constraints.

If the tasks are independent and have no resource constraints, dispatching can be ex-
tremely simple: thetask to be executed next isthe next task in the schedule, and thistask
can always be executed immediately even if its scheduled start time has not arrived.

On the other hand, precedence constraints and resource constraints may increase the
complexity of dispatching. If tasks haveresource or precedence constraints, the dispatch-
ing process must take these into account. When the actual computationtime of atask dif-
fersfromitsworst-case computation timein anon-pre-emptive multi-processor schedule
with resource constraints, run-time anomalies may occur, causing some of the scheduled
tasks to miss their deadlines. There are two possible kinds of dispatcher:

1. Dispatch tasksexactly according to the given schedule. Inthiscase, uponthe com-
pletion of one task, the dispatcher may not be able to dispatch another task imme-
diately because idletimeintervals may have been inserted by the schedul er to con-
form to the precedence constraints or resource constraints. One way to construct a
correct dispatcher isto use a hardware (count down) timer in order to enforce the
start time constraint.

2. Digpatch tasks taking into consideration the fact that, given the variance in task
execution times, some tasks will complete earlier than expected. The dispatcher
triesto reclaim the time left by early completion and usesit to execute other tasks.

92 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

Clearly, non-real-timetasks can be executed in theidletime dots. Morevaluableisan
approach that improvesthe guarantees of tasksthat have time-constraints. Severa issues
must be considered to achievethis. Resource reclaiming algorithmsused in systems that
perform dynamic planning-based scheduling must maintain the feasibility of guaranteed
tasks, must havelow overheads, asaresource reclaiming algorithmisinvoked whenever
atask finishes, and must have costs that are independent of the number of tasks in the
schedule. They must also be effective in improving the performance of the system.

Complete rescheduling of al remaining tasks is an available option, but, given the
complexity of scheduling, it is usually expensive and ineffective.

A feasible multi-processor schedule provides task ordering information that is suffi-
cient to guarantee the timing and resource requirements of tasks in the schedule. If two
tasks overlap in time on different processorsin a schedule, then it can be concluded that
no matter which of them is dispatched first at run-time, the deadline of the other will
not be affected. On the other hand, if two tasks do not overlap in time, the same con-
clusion cannot be drawn without re-examining resource constraints or without total re-
scheduling.

Assume each task T; isassigned ascheduled start time SST; and a scheduled finish time
SFT; inthe given feasible schedule. Resource reclaiming algorithmsuse thisinformation
to perform local optimization at run-time, while preserving the correct relative ordering
among the scheduled tasks and ensuring the original guarantees. Thislocal optimization
isaccomplished by reasoning only about thefirst task scheduled to execute on each of the
m processors, and there isno need to examine the availability of the resources needed in
order to dispatch a task when reclaiming occurs. Thus, the complexity of the algorithm
is independent of the number of tasks in the schedule and depends only on the number
of processors.

We now describe the basic reclaiming algorithm:

1. Upon completion of atask, the dispatcher identifiesidle intervalson all processors
and resources by computing a function

reclaimable_d = min(SST;) <-current_time

where SST; is the scheduled start time of the current first task for processor i in
the schedule, 1 <1 < m. The complexity of thisis O(m). A positive value of
reclaimable_d indicates the length of the idle period. The cumulative value of
these idle periodsis stored in total reclaimabletime.

2. Compute

actual start time = SST; <total reclaimable time

for the next task 1; scheduled for a processor; the task is dispatched if its actual
start time equals the current time.

Thus the complexity of the basic versionis: O(m) + mx O(1) = O(m).
The Early Start algorithm differs from the basic version by replacing Step 2 with the
following:

4.7. HISTORICAL BACKGROUND 93

Compute the Boolean function
can_start_early = SSTj < ST, 1 <j<m, i #]

where SST; isthe scheduled start time of thefirst task on processor i, SFTj is
the scheduled finish time of the first task on processor | and mis the number
of processors.

Thisfunctionidentifies parallelism between thefirst task on processor i and thefirst tasks
on all other processors. It has acomplexity of O(m). If can_start_early is true the first
task isdispatched and otherwise the actual start time iscomputed asin the basic version.

The second step of the algorithm must be executed for all currently idle processors
whenever a positive value of reclaimabletime is obtained in the first step. Thus, Early
Start has a complexity of O(m) 4+ mx O(m) = O(n?).

Though Early Start has a higher run-time cost, experimental studies show that it per-
forms much better than the basic version for most parameter settings. Only when the
resource conflict probability is very high, or when the system is either extremely over-
loaded or very lightly loaded, does the basic version demonstrate the same effectiveness.

One of the positive outcomes of reclaimingisthat it is possibleto be pessimistic about
the computation times of tasks. Thisis because even if the dynamic guarantees are pro-
vided with respect to worst-case computation times, since any unused timeis reclaimed,
the negative effects of pesssmism are considerably reduced.

4.7 Historical background

A number of books on scheduling theory (Coffman, 1976; Blazewicz et al., 1986) pro-
vide excellent general background. Surveys of work on real-time task scheduling can be
found in Stankovic and Ramamritham (1988; 1993).

Liu and Layland (1973) focused on the problem of scheduling periodic tasks on a
single processor and proposed two pre-emptive algorithms. In addition to the rate-
monotonic agorithm, described in Chapters 2 and 3, they analyzed the earliest-deadline-
first dynamic priority assignment algorithm.

Mok and Dertouzos(1978) and Dertouzosand Mok (1989) studied multi-processor on-
line scheduling of real-timetasks, noting that in most real-world circumstances, optimal
dynamic algorithms do not exist (Hong & Leung, 1988; Chetto & Chetto, 1989; Mok,
1983). Dynamic agorithms that do not a priori know the arrival times, deadlines and
computation times of tasks cannot guarantee optimal performance (Dertouzos & Mok,
1989).

Different types of heuristic for best-effort algorithms are examined in Locke (1985),
including shortest-processing-time-first, earliest-deadline-first, least-laxity-first, first-
come-first-served, an algorithm that randomly chooses the next task to execute and one
that fixes a task’s priority to be its highest possible value. In addition to the standard
highest-priority-first scheduling algorithm, an algorithm which discards tasks with low
value density when an overload is considered likely is aso evaluated. As expected, the

94 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

new algorithm improves performance under overloads. Dealing with overheads, in gen-
era, is acomplex problem and solutions are till in their infancy (Baruah et al., 1992;
Baruah & Rosier, 1991; Wang, 1993).

With deadline and resource constrai nts added to tasks, many heuristic approacheshave
been developed for dynamic planning-based scheduling: see eg. Ramamritham and
Stankovic (1984), Ramamritham et al. (1990), Stankovic and Ramamritham (1991),
Zhao and Ramamritham (1987), Zhao et al. (1987a; 1987b). Extensive s mulation stud-
ies of the heuristics show that those that combine deadline and resource requirements
work well (Zhao & Ramamritham, 1987; Zhao et al., 1987b) according to the perfor-
mance criterion of maximizing the number of guaranteed tasks. Such an agorithm has
been implemented as part of the Spring Kernel (Stankovic & Ramamritham, 1991). Al-
gorithms that attempt to maximize the value of tasks that meet their deadlines can be
found in Biyabani et al. (1988.), Butazzo and Stankovic (1993), Locke (1985) and
Zlokapa (1993).

WEell-timed scheduling and the analytical derivation of punctual points applicable to
planning-based scheduling for smpletask models are discussed in Zlokapa (1993). This
tries to optimize the number of tasks considered for scheduling. Approachesusing sm-
ulation to bound the number of scheduled tasks are presented in Goli et al. (1990) and
Hong et al. (1989); both papers examine the performance of variants of the minimum-
laxity-first scheduling policy —the policy that has been shown to be optimal with respect
to minimizing the long-term, steady-state percentage of tasks that miss their deadlines,
over al work-conserving non-pre-emptive policies (Panwar & Towsley, 1988; Panwar
et al., 1988). Details of resource reclaiming algorithms as well astheir performanceim-
plications are presented in Shen et al. (1993).

Several schemes for dynamic distributed scheduling have been reported in the liter-
ature (Ramamritham et al., 1989; Blake & Schwan, 1991; Ramamritham & Stankovic,
1984; Stankovic et al., 1985). A detailed discussion of scheduling imprecise computa-
tions appearsin Liu et al. (1991; 1994a); they allow the system to trade quality for the
purpose of achieving timeliness.

Though many real-time operating systems assign static priorities to periodic tasks,
for the remaining tasks they usually employ best-effort scheduling (Furht et al., 1991;
Ready, 1986; Holmeset al., 1987; Jensen, 1992). Experimental operating systemsusing
planning-based scheduling include Spring (Stankovic & Ramamritham, 1991), Maruti
(Gudmundsson et al., 1992) and Chaos (Schwan et al., 1990).

4.8 Further work

A comprehensive and integrated set of solutionsfor the real-time scheduling of complex
systemsis still being sought. There are some important open research questions:

. What are good sets of integrated scheduling policies that span processor schedul-
ing, input/output scheduling, communication needs and resource allocation?

4.9. EXERCISES 95

. Can asingle sophisticated scheduling algorithm handle complex task sets cost ef-
fectively, or should tasks be partitioned into equivalence classes with algorithms
tailored to each class? How would such a set of algorithmsinteract?

. What typeof predictability ispossiblefor distributed real-timecomputation? Cana
comprehensive scheduling approach that supports predictable and analyzable dis-
tributed real-time systems be devel oped?

. How can task importance, computation time, tightness of deadline and fault re-
quirements be traded off to maximize value in the system? What are the roles of
the scheduling algorithmsin this analysis?

. What istheimpact of off-line allocation policies on dynamic on-line scheduling?

. Can worst-case performance bounds be determined for the various a gorithms; can
these bounds provide insight into practical techniques for avoiding the worst-case
performance at run-time?

4.9 Exercises
Exercise4.1 Why isdynamic scheduling required in many real-time applications?

Exercise4.2 What are the predictability properties of dynamic priority algorithmsvis-
a-vis static priority algorithms?

Exercise 4.3 Develop agorithmsto trandate atask group deadline into individual task
deadlines.

Exercise 4.4 Develop programming language constructsto support the acceptance pol-
icy in place of the guarantee policy.

Exercise 4.5 Develop aguaranteeversion of thelanguage construct that isused to spec-
ify start time constraints.

Exercise 4.6 What characterizes dynamic best-effort scheduling?
Exercise 4.7 What characterizes dynamic planning-based scheduling?

Exercise 4.8 How are task priorities used in (a) dynamic best-effort scheduling? (b)
dynamic planning-based scheduling?

Exercise 4.9 Why do dynamic priority approaches incur higher overheads than static
priority approaches?

Exercise 4.10 Which incurs higher overheads. dynamic best-effort scheduling or dy-
namic planning-based scheduling? Why? What are the ways in which these overheads
can be reduced?

96 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

Exercise4.11 What is the difference between the interruptions that occur when tasks
communicate and when tasks are pre-empted?

Exercise4.12 Is(Min_L + Min_S) apossible priority assignment policy? Explain the
reasons for your answer.

Exercise 4.13 To reduce searchtimeduring planning-based scheduling it was suggested
that the priority of at most aconstant number of tasksbe computed at each level of search.
What factors influence the choice of this constant?

Exercise 4.14 For greedy scheduling, alimited form of list scheduling was suggested
inwhich task computation times are considered such that prioritiesarenot violated when
agreedy policy isused. An aternativeisto use alimited form of greed in which the al-
gorithm triesto keep x% of each replicated resource busy. Develop theseideasinto fully
fledged scheduling algorithms. Will your algorithmshelp in keeping a certain number of
processors in amulti-processor system busy?

Chapter 5

Assertional Specification and
Verification

Jozef Hooman

I ntroduction

We now introduce aformal framework for the specification and verification of programs
for embedded real-time systems. Such programs are often concurrent programs, or dis-
tributed programs, and the number of possible executionsisso large that exhaustive test-
ing is impossible. However, design faults in the programs can have disastrous conse-
guences and the goal isto devise aformal method whose use will increase confidencein
the correctness of the program.

The number of possible states of acomplex system is usually exponential in the num-
ber of components. To deal with this ' state explosion’, we use an assertional method of
reasoning in which aset of states can be characterized by asingle logical formula. Fur-
ther, to reduce the complexity of the verification task, we use amethod which is compo-
sitional: it allows reasoning about the specifications of components without considering
details of their implementation. This makes it possible to consider a part of the system
as ablack box which is characterized by its specification.

Traditional Hoare logic allows the formulation of convenient and effective composi-
tional rules for sequential composition and iteration in sequentia programs. This logic
is based on triples of the form {p} S {q}, where p is the precondition, S the program
and g the postcondition. We will show how similar triples can be used in a formalism
for the specification and verification of distributed, real-time programs. Thisisachieved
by extending the assertion language in which the precondition and the postcondition are
expressed and by modifying the interpretation of thetriples.

The functional behaviour of a programis expressed in terms of the values of program
variablesbefore and after the execution of the program. To expresstiming, aspecial vari-
ablenowisadded to represent time: placed inthe precondition it denotesthestarting time
of the program; in the postcondition it denotesthe terminationtime. Therelation between
the starting and compl etion times can then be used, for exampl e to specify bounds on the
execution time of aprogram. Also, the real-time interface of the program with the envi-
ronment can be specified using primitives denoting the timing of observable events.

97

98 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Traditional triples were restricted to expressing partial correctness properties of pro-
grams, i.e. properties of terminating computations. Partial correctness is a safety prop-
erty, whichmeansthat it canbefasifiedinfinitetime. Livenesspropertiesare a so needed
(e.g. to specify the progress of a computation, or its termination) and we shall describe
aformalism in which safety and liveness properties can both be described. For exam-
ple, ‘termination within ten timeunits and ‘ communication viachannel ¢ within 25time
units are safety properties because they can be falsified after ten and 25 time units, re-
spectively, but they a so expressthe fact that something must happen. Similarly, thereal-
time safety property ‘ terminationwithinten timeunits impliestheliveness property * ter-
mination’. The interpretation of triples has therefore been adapted to require the post-
condition to hold for terminating and non-terminating computations. Combined with the
timing primitives, this provides a framework in which liveness properties can be speci-
fied.

We shall first formulate a compositional proof system, i.e. a set of rules and axioms
which allow aformal derivation of the modified triples. For each compound program-
ming language construct (such as sequential composition and parallel composition) there
will be arulein which the specification of the construct can be deduced from specifica-
tions of its congtituents (without any further information about the internal structure of
these constituents). The proof system can then be used to verify design stepstakenin the
course of top-down program construction.

In general, the method proceeds according to the following steps.

1. Formulatethetop-level requirements specification of the complete system, includ-
ing the properties of continuous components:

2. Formalize the assumptions about the physical processes in the system.
3. Specify the control requirementsin terms of continuous quantities.

4. Verify Step 3, i.e. show that the specifications of Steps2 and 3lead tothe properties
specified in Step 1.

5. Transform the control strategy (of Step 3) into aspecification interms of adiscrete
interface; thisis usually done using formal specifications of sensors and actuators.

6. Implement the discrete specification of Step 5 using areal -time programming lan-
guage.

5.1 Basicframework

We begin by considering only the parallel composition of processes, without taking ac-
count of their implementation (which may be in hardware or in software). We define the
semantic model used to describe the behaviour of real-time processes and then present a
formalism to specify their properties.

5.1. BASIC FRAMEWORK 99
5.1.1 Parallel processes

Assumethat anumber of processes arecomposed in parallel using the operator ||. Certain
objects (e.g. channels, variables, or physical quantities) of a process can be observed by
its parallel environment.

Let obs(P) bethe set of (representations of) observable objects of process P represent-
ing the interface of P. For instance, if P communicates through channels, then obs(P)
contains the names of these channels, and if P uses shared variables, then the names of
these variables areincluded in obs(P). Define

obs(P;||P2) = obs(P1) U obs(Py)

The actions of a process that affect its interface are called observable actions and the
occurrence of an observable action is an observable event.

Process P will also have local objects (e.g. local variables) and loc(P) denotes the set
of objects of P that are not observable by other parallel processes. For P4 ||P, we assume
that loc(P1)Nloc(P2) = @. Local variables range over avalue domain VAL which isthe
set of real numbersR.

Reasoning about thereal-time behaviour of parallel processes needsinformation about
the progress of actions, i.e. how long the execution of a statement can be postponed. For
example, the execution time of the program x := 0|| y := 1 depends on the allocation of
processes to processors. Assuming that assignment ‘:=" takes one time unit, the program
X:= 0] y:= 1terminatesafter onetimeunit if each processx:=0andy := 1 hasitsown
processor and can execute independently. However, if the two processes are executed
on a single processor, the program will take at least two time units, since then the pro-
cesses have to be scheduled in some order. Thus the real-time behaviour of aconcurrent
program will depend on the number of available processors and the way in which they
are alocated to processes. We shall make the maximal parallelism assumption that each
process has its own processor and local actions are executed as soon as possible.

5.1.2 Semantic model

The timing behaviour of a program is described from the viewpoint of an externa ob-
server with aclock. Thus, although components of a system may have local clocks, the
observable behaviour of the system is described in terms of a single, conceptual, global
clock. Thisglobal timeis not part of the distributed system and it does not impose any
synchronization upon processes. The real-time semantics of programsisdefined using a
function which assigns a set of records to each point of time to represent the observable
events that are taking place at that time.

We use adense timedomain TIME: i.e. between any pair of elementsof TIME thereis
an intermediate value, also in TIME. Such atime domain allows modelling events that
arearbitrarily close to each other; dense timeisalso suitable for the description of hybrid
systems which interact with an environment that has a time-continuous nature (e.g. the
mine pump controller).

100 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Let the non-negative reals be taken as thetime domain: TIME= {t € R | 1 > 0}.
The real-time behaviour of a process P is described using the following components:

. theinitia state (i.e. the values of the local objects at the start of the execution) and
the starting time of P,

. thetimed occurrence of the observable actions of P, and

. If P terminates, the final state (i.e. the values of the local objects at termination)
and the termination time of P (or o, if P does not terminate).

The observed real-time behaviour is modelled by atimed occurrence function, p, which
assignsto each point of time a set of records representing the observable events occurring
at that time. The starting and termination times of programs are defined using a special
variable now. Then a state o assigns a value from TIMEU {} to the variable now and
avalueto each local object.

Example5.1 Consider a system in which we can observe read and write actions on a
shared variable x and send and receive actions on two channels c and d. Then part of an
occurrence function p of this system might be given by

p(3.14)= {send(c,0),read(x,5)}

p(5.1) = {rec(c,0)}

p(6) =0

p(6.3) = {write(x, 7),send(c, 2),send(d, 3)}
p(7.4) = {rec(c,2)}

p(9) = {rec(d,3),write(x,9)}

Of course this does not completely describe p because TIME is a dense domain, but it
shows the events at the moments 3.14, 5.1, 6, etc.

The semantics of aprogram P starting in astate o is denoted by M (P)(0p); itisaset
of pairs of the form (o, p), where o is a state and p atimed occurrence function. op(X)
gives the value of local object x at the start of the execution and op(now) represents the
starting time. Consider apair (o,p) in M (P)(0p). If P terminates, o represents the val-
ues of thelocal objects on termination and o(now) denotesthe terminationtime. When P
does not terminate, we define o now) = co and a(x) isan arbitrary valuefor any x # now.

Function p represents the observable behaviour of P during its execution. Thus, for
op(now) < T < a(now), p(T) represents the observable events of the execution of P at t.
Outsidethisinterval, the occurrence of actionsis not restricted by the semantics of P, so
arbitrary events may occur.

5.1.3 Specifications

Our specifications are based on traditional tripleswith some modifications: adightly dif-
ferent notation isused and the terms * assumption’ and ‘ commitment’ replace * precondi-
tion” and ‘ postcondition’. Formulashavethe structure ((A)) P ((C)), where P isaprocess
and A and C are the assumption and the commitment respectively.

5.1. BASIC FRAMEWORK 101

Assertion A defines the values of local objects at the start of P, the starting time of P,
and the timed occurrence of observable events.

Given assumption A, assertion C defines the commitment of P in terms of the values
of the local objects at termination, if P terminates, the termination time (which is taken
as o« if P does not terminate) and the timed occurrence of observable events.

Unlike the postcondition of atraditional triple, the commitment expresses properties
of terminating and non-terminating computations. The addition of timemakesit possible
for the formalism to be used to express partial correctness and liveness properties.

The assertions A and C in a correctness formula ((A)) P ((C)) are expressed in afirst-
order logic with the following primitives:

. Names denoting local objects, such asx,y, .. ., ranging over VAL.

. Logica variables that are not affected by program execution: logical value vari-
ables v, vg, vy, ... range over VAL and logica time variables t, tg, t1, ... over
TIMEU {oo}.

. A gpecid variable now, ranging over TIMEU {oo}, refers to global time; an oc-
currence of now in assumption A represents the starting time of statement P andin
commitment C it denotes the termination time (using now = oo for non-terminating
computations).

. For observable action O and expression exp which yields a value in TIME, the
boolean primitive O@exp denotes that O occurs at time exp.

Example 5.2 Consider the system described in Example 5.1. We might use write(x, 7)
@6.3 to say that value 7 has been assigned to x at time 6.3 and send(c, 0)@3.14 to say
that value 0 has been sent along channel ¢ at time 3.14.

Let loc(p) be the set of names of the local objects occurring in assertion p. Similarly,
let obs(p) denote the set of observables occurring in p. Timeintervalswill be defined as
conventional intervals, for example

[to,t1) = {te TIME | to <t <ty}
(to,tl) = {t e TIME | <t tl}
Let = denote syntactic equality. Given P@t and a set (usually an interval) | C TIME,

Pduringl =Vtel:P@t
Pinl = dtel:P@t
(-P)@ = ~(P@t), or smply ~P@t instead of (—-P)@t

Thus, =P during | isequivalent to (=P) during | (and aso to =(Pin)).

For functionssuch asf : TIME — VAL we will often use these abbreviationsfor time-
dependent predicates of the form (f > v)@t, (f < v)@t, which holdif f(t) > v, f(t) <v
respectively. Thus (f < 5) during[2,7] holdsif f(t) < 5, forall t € [2,7].

The notation p[exp/var] isused to represent the substitution of expression exp for each
free occurrence of variablevar in assertion p. We assume the usual properties of co. For
instance, foral t € TIME, t < o0, t+ 00 = co+t = co &t = o0, Frequently, Vig,t; < «is
used as an abbreviation for Vig < o, Vt; < oo,

102 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Interpretation

Logical variables areinterpreted using alogical variable environment y, which isamap-
ping which assigns a value from VAL to each logical value variable and a value from
TIMEU {0} to each logical timevariable. Thevalue of expression exp inan environment
y, a state 0 and a mapping p isdenoted by V (exp)(o, p,). It isdefined by induction on
the structure of exp. A few illustrative cases are shown below:

V (t)(o,p.y) = Wt)

V (now)(a, p,y) = o(now)

V (x)(a,p,y) = 0(X)

V (expy +exp2)(0,p,Y) = V (exp1)(0,p,y) + V (exp2)(0, p,Y)

Similarly, we define inductively that an assertion p holdsin atriple (o, p,y), denoted by
(0,p,Y) = p. Two examplesillustrate this:

(0,p.Y)l= O@expiff O € p(V (exp)(0,p.Y))
(07 pvy) |: p1V P2 iff (07 pvy) |: p1 Or (07 pvy) |: P2

Example 5.3 Consider the occurrence function p from Example 5.1. From this,
(0,p,Y) = write(x, 7)@6.3
(0,p,Y) = send(c,0)@3.14
andif o(x) = 2, then
(0,p,Y) = send(c,0)@(x+ 1.14)
Note that
(0,p,y) = ~(send(c,2)@7.4)
and is also written as
(0,p,Y) E —send(c,2)@7.4

To define the formal interpretation of acorrectnessformula ((A)) P ((C)), observe that
assumption A may refer to pointsin time after the starting time. Thus A may contain
assumptions about the occurrence of actions during the execution of P. Therefore, the
same occurrence function will interpret A and C. Further, between the start and the ter-
mination time of P, this occurrence function should correspond to the execution of P, as
represented by the semantics of P.

Definition 5.1 (Validity) For aprogram P and assertions A and C, acorrectnessformula
((A)) P ((C)) isvalid, denoted by = ((A)) P ((C)), iff for any environment y, any state
0o € STATE, and any pair o, p with (o,p) € M (P)(0p) we have

(00, P,Y) = Aimplies(a,p,y) = C

5.1. BASIC FRAMEWORK 103

Examples of specifications

Program F is specified to start at time 6 in a state where local object x has the value 5,
assuming that there is some observable action O at 3. The specification expresses the
property that F terminates between times 15 and 23 in a state where x has the value f (5).
Further, the commitment asserts that O occursat 3:

((x=5Anow=6A0@3)) F ((x =f(5) A 15 < now < 23A O@3))

Specifications can be generalized using logical variables to represent the starting time
and theinitial values of program variables. For instance, to specify that a program FUN
computesf(x) within certain time boundsand leaves x unchanged, logical variablesv and
t can be used:

{(x=vAnow=t< o)) FUN ((y=f(V)AX=VAt+5< now< t+ 13))

Note that logical variables are implicitly universally quantified.
The real-time communi cation interface of anon-terminating program can be specified;
consider, for instance, process L which sends output periodically:

{(x=0Anow=0)) L ((now =00 AVie N: (output,f(i))@T(i)))

Next, consider a program REACT with terminating as well as non-terminating computa-
tions; it terminatesiff it receivesinput O:

{(now = 0))

REACT

{((Vt < now: (input,v)@t — (output,f(v))in [t+ T, t+Ty])
A (NOW < o « Jtg < now : (input, 0)@tp)))

The traditional triple {p} P {q} denoting partia correctness (i.e. if p holdsinitially and
if program P terminates, then g holdsin thefinal state) can be expressed as

{(PANOW < o)) P ((now < oo — Q)

Total correctness of P with respect to p and q (i.e. if p holds initially, then program P
terminates, and q holds in the final state) can be denoted by

{(PANOW < o)) P ((now < oo A Q)

5.1.4 Proof rules

Therule of consequencein the proof systemisidentical to the original rulefor traditional
triples and allows assumptions to be strengthened and commitmentsto be weakened.

Rule 5.1.1 (Consequence)
{(A)) P {Co)), A— Ag,Co— C
{(A) P(C)

104 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

The proof rule for parallel composition has the following general form, using a com-
binator Comb of assertions which will be defined below.

Rule5.1.2 (Parallel Composition)
{(A1)) PL((C1)), ({A2)) P2 ((C2)), Comb(Cy,Cp) —C

(AL A A2)) Pa|P2 ((C))

provided
loc(Cy)Nloc(Py) = Fandloc(Cy) Nloc(Py) = @

i.e. the commitment of one process should not refer to local objects of the other, and
0bs(Aq, C1) Nobsg(P,) C obs(P1) and obs(Ay, Cy) N obs(Py) C obs(P5)

i.e. if an assertion in the specification of one process refers to the interface of another
process, then thisis part of ajoint interface.
Consider three possibilities for Comb:

1. If now does not occur in C; and C, then define

Comb(Cy,Cp) =C1ACy

Without an additional restriction on now theruleis not sound. For example,
{{(now = 0)) P ((now = 2)) and {(now = 0)) P> ((now = 3))

would lead to
{{(now = 0)) P1||P2 {(now = 2 A now = 3))

and hence by the Consequence rule
((now = 0}) Py]|Py((false)

We shall refer to thisversion as the Simple Parallel Composition rule.

2. It is not straightforward to use now in the commitments because, in general, the
terminationtimesof P, and P, will bedifferent. To obtain ageneral rule, substitute
logical variablest; and t, for nowin C; and C, respectively. Then the termination
time of P1||P,, expressed by now in its commitment, is the maximum of t; and t,:

Comb(C,,Cy) = Cq[ty/now] A Cy[tz/now] A now = max(ty, to)

3. Thisdefinition of Comb leads to a sound rule but, for completeness, predicates are
needed to state that process P;, i = 1,2, does not perform any action after its ter-
mination. Define

Comb(Cl, Cz) = Cl[tl/now] A /\OEObS(Pl) -0 durlng [tl, now)
A Ca[ta/now] A Aocobs(p,) O during [to, now)
ANnow = max(ty, tp)

Thisparallel composition ruleis compositional, as a specification of the compound con-
struct P4 ||P» can be derived using only the specifications of the components P; and P,
and their static interface given by loc and obs. Basically, compositionality is achieved
by requiring that the specification of a processrefersonly to its interface.

5.2. THE MINE PUMP 105

inflow

outflow ump wi

Control System

SumpContr

Figure 5.1 The mine pump system

5.2 Theminepump

The function of the mine pump isto prevent flooding in the shaft. But the pump should
not be working when the atmosphere contains too much methane as this could lead to an
explosion.

Let wl beafunction from TIME to the non-negative realsand let wi(texp) represent the
water level inthesump at timetexp. Defineobs(wi(texp)) = {wl}. Theaimistokeep the
water level between certain bounds, say LWL and HWL, as expressed by the commitment

CTL=Vt < oo LWL < W (t) < HWL
Then, the Mine can be specified by
{{(now = 0)) Mine ((CTL))

with obsg(Mine) = {wl}.

The mine consists of two components. Sump and a controller SumpContr (see Fig-
ure 5.1). Sump represents the water level; thereis an inflow of water into the sump and
the function of SumpContr isto remove water (by means of the pump), i.e. control the
outflow so that the water level stays between the specified bounds. At any time, the wa-
ter level isthe sum of theinitial level wi(0) at time 0 and the total inflow, minusthe total
outflow.

Let inflon(texp) denotetheinflow at timetexp, i.e. the amount of water added per unit
of time, and let outflow(texp) denote the outflow at time texp, i.e. the amount of water
removed per unit of time. Assume that these two functions are continuous and range
over the non-negative reals. Define

obs(inflow(texp)) = {inflow} andobs(outflow(texp)) = {outflow}
The water level in the sump is determined by the commitment

CSump; =Vt < o0 1 wWI(t) =wl(0) + /Ot(inflow(x) <outflow(x))dx

106 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

By the continuity of inflow and outflow, wl is a continuous function.
Clearly, CTL can only be achieved if the water level does not change too fast, i.e. if
the inflow is bounded. For some constant AT > 0,

CUMp, = Vt < 00 : 0 < inflow(t) < AT

Further, assume that the initial level is between the bounds LSAM. (Low Water Safety
Level) and HSAML (High Water Safety Level):

CSump3 = LSWML < wi(0) < HSWML

Define Caump = CSump; A Cump, A CSumps. Thenthe physical propertiesof the sump
are specified by

{(now = 0)) Sump {(CSump))

with obs(Sump) = {wl, inflow, outflow}.
The following lemma can be derived by standard mathematical analysis.

Lemma5.1 CSump; implies
Vig,tp < o0 tg <t; — Wi(ty) = wWi(tg) + ftgl(inflow(x) <outflow(x))dx

SumpContr should start to removewater as soon asthewater |evel becomeshigh. Firgt,
we specify that as long as the water level is above HSAML there will be an outflow of at
least Ag\f, allowing areaction delay of 8« time units. The constants AJ\f and s are
non-negative:

CSCy = Vg, t; < 001 (Wl > HSML) during [to, ty]

— (outflow > A during [to + O, ti]

Similarly, as soon as the level reaches a minimum level LSAML no more water should be
removed:

CSCy = Vip,t1 < oo : (Wl < LSAL) during [to, ti]
— (outflow = 0) during [tg + O, t1]

These commitments do not specify the outflow when the water level is between LSAL
and HSAL, or during the reaction periods (of, at most, ds; time units). Thereforewe add

a commitment about the maximal outflow, using a non-negative constant Agy -

CSC3 =Vt < 0 : 0< outflow(t) < AJT
Using CSC = CSC; A CSCy, A CSC3 we have
{(now = 0)) SumpContr ((CSC))
with obs(SumpContr) O {wl, outflow}. Note that

obs{ CSump) N obs(SumpContr)C obs(CSump)
= {wl, inflow, outflow} = obs(Sump)

5.2. THE MINE PUMP 107

and
0bs(CSC) N obs(Sump) = {wl, outflow} C obs(SumpContr)

Since there are no local objects, the specifications of Sump and SumpContr satisfy the
requirements of the Simple Parallel Composition rule and

{{(now = 0)) Sump || SumpContr ((CSump A CSC))

Standard mathematical analysis yields the following lemma.

Lemma 5.2 (Intermediate Value Property) Consider a continuous function f and two
time pointst; and t, with t; < to. Then for any pwithf(t) <p <f(ty) or f(ty) > p >
f(ty) thereexists some tz € [ty,tp] such that f(t3) = pand (U < f) during [ts, tp] or (f <
M) during [tz, to] respectively.

Lemmab.3 If

LSWL > LWL + 3scA g (5.1)
HSML < HWL <3 AT (5.2
AX - p\min (5.3)

then CSump A CSC — CTL.

Proof: Assume (5.1), (5.2), and (5.3). Suppose CSump A CSC. Lett < oo,
First we prove LWL < wi(t) by contradiction. Let

wi(t) < LWL (5.4)

Since the constants are non-negative, (5.1) implies LWL < LSAWL. Thuswi(t) < LSM..

By CSump3 we have LSAM. < wi(0). Using the continuity of wi, Lemma 5.2 implies
that there exists some ts € [0, t] such that wi(ts) = LSWML and (Wl < LSWL) during[ts, t].
Hence, by CSCy, (outflow = 0) during [ts+ s, t]. Using this, CSump; and Lemma5.1,
and CSump, and CSC3, respectively, we obtain

wi(t) = Wi(ts) + J;(inflow(x) <outflow(x))dx

— LSML + [inflow(x)dx < 5% outflow(x)dx & [5_outflow(x)dx
LS < [{=°= outflow(x)dx
LSWL &0 ATEX

>
> out

Hencewl(t) > LSM. <0 Al Thus, by equation (5.1), wi(t) > LWL, which contradicts
(5.4).
Similarly, we prove wi(t) < HWL by contradiction. Let

wi(t) > HWL (5.5)

108 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Since al the constants are non-negative, equation (5.2) implies HWL > HSAL. Thus
wi(t) > HSWL. By CSumpgz, wi(0) < HSWL. Using the continuity of wi, Lemma 5.2
impliesthat there exists some ts € [0, t] such that

Wi(ts) = HSWLand(wl > HSWL) during [ts, t]
Hence, by CSC,,

(outflow > ATy during [ts+ Sec. t1]

Using thisand CSump,; and Lemmab5.1, and CSump, and CSCs, respectively, we obtain

wi(t) = wi(ts) + J(inflow(x) < outflow(x))dx
= HSWL + [inflow(x)dx < /== outflow(x)dx < i, 5 _outflow(x)dx
< HSAL + (tsts) AR* e [5 outflow(x)dx
< HOML + (t ote) AP {t < (ts+ 0sc)) Agut _
— HOWL + Soc AT (1 ts =8c) AT {t &(ts+ Bsc)) A

By (5.3), this gives wi(t) < HSM. + 8- Al and hence, by (5.2), wi(t) < HWL, which
contradicts (5.5). O

Thus, by the Consequence rule, we determine that Sump || SumpContr is a correct im-
plementation of Mine. It remainsto implement SumpContr according toits specification.
Now the specification of SumpContr wasformulated in terms of the continuous variables
wl and outflow. Since our implementation by softwarewill be ‘ discrete’, this continuous
interface must be ‘discretized’. The first step is to refine SumpContr into a component
Pump and a pump control component PumpContr. But we must recall that a pump can
cause an explosion if it operates when the methane concentration in the air is above a
critical level CML. We therefore introduce the primitives

expl @texp to denote that an explosion occurs at time texp, and
mi(texp) to represent the methane level at time texp.

Define obs(expl @texp) = {expl }, obs(ml(texp)) = {ml}.

Thetop-level specification must be altered to expresstherequirement that no explosion
occurs and that if the methane level stays below a safe level SVIL the water level will
stay between the specified bounds. SML, rather than CML, is used to take account of the
reaction time needed to switch the pump off:

CTL; =Vt < oo —expl@t
CTL, =Vt<oo:(m < SML) during[0,t] — LWL < wi(t) < HWL

Let CTL = CTL4 A CTL,. Then the specification of Mineis
{{(now = 0)) Mine ((CTL))

with obs(Mine) = {wl, ml, expl }.
The specification of SumpContr must also be changed: CSC; isreplaced by

5.3. COMMUNICATION BETWEEN PARALLEL COMPONENTS 109

CC, =Vig, g < o0
(Wl > HSWL) during [to, t1] A (ml < SML) during [to, t1]

— (outflow > AJ) during [ty -+ O, ti]

To satisfy CTL; we simply add CSC4 = CTL;. Then we have
CC=CSC; ACSCo,ACSC3 A CSCy

and it iseasy to see that Lemma5.3 is still valid for the modified specifications.

5.3 Communication between parallel components

There are severa waysin which paralel processes can communicate, e.g. using shared
variables or by passing messages along channels. Formal reasoning about concurrent
systems requires a preci se axiomati zation of communication mechanisms. We shall pro-
videthisfor three forms of communication: message passing al ong asynchronous chan-
nels, message passing along synchronous channels and communication using physical
lines.

5.3.1 Asynchronouschannels

Assume that parallel processes communicate by passing messages along unidirectional,
point-to-point channels, each connecting two processes. Channels are asynchronous, so
a sender does not wait for a receiver, but there is no buffering and a message is lost if
thereis no waiting receiver. A receiving process waits until a message is available.

Let CHAN be a non-empty set of channel nhames and ¢ € CHAN, and exp and texp be
expressionsyielding valuesin VAL and TIME respectively:

. send(c, exp)@texp denotes a process that starts sending value exp along channel
C at time texp.

. waitrec(c)@texp statesthat aprocessis waiting to receive amessage along chan-
nel ¢ at time texp.

. rec(c,exp)@texp denotes that a process starts to receive value exp along channel
C at time texp.

Define obs(send(c, exp)@texp) = {send(c)}, obs(waitrec(c)@exp) = {waitrec(c)},
and obs(rec(c, exp)@texp) = {rec(c)}.

A process which startswaiting at timet to receive input along ¢ and either receivesan
input with value v or waits forever, can be specified using the following abbreviation.

awaitrec(c,v)@t =waitrec(c) during [t,)
V (3t € [t,00) : waitrec(c) during [t,t;) Arec(c,v)@t;)

We shall often ignorethe value that is transmitted and use the abbreviations

110 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

rec(c)@t = v :rec(c,v)@t,
send(c)@t = 3v: send(c,v)@t, and
awaitrec(c)@t = Jv : awaitrec(c,v)@.

To specify a process which waits for at most A time units to receive a message the
following abbreviation isintroduced:

awaitsrec(c)@t = (Jtp:t e [to, to+A) Awaitrec(c) during [to, to+ A))
V (3tg € [t,00) : waitrec(c) during [t,t;) Arec(c)@t;)

Similar abbreviations can be defined with general expressionsinstead of v and t and we
will sometimes use (P; A P,)@t instead of P, @t A Po@, etc.

Communication properties
At any point in time, a most one message is transmitted on an asynchronous channel c:

Vit < oo Vvp, Vo send(c, vy)@t A send(C, o) @t — Vi = Vs (ASYN-1)

Since maximal parallelism isassumed, a process waitsonly if it hasto receive input and
no message is available. Assume for simplicity that a message is available to areceiver
as soon as the sender starts to send the message. Then a process can receive a message
along a channel c only if the message is transmitted ssmultaneoudly, i.e.

YVt < o0 VV:rec(c,v)@t — send(c,v)@t (ASYN-2)

There will be minimal waiting if no process waits to receive along channel ¢ a message
that is being transmitted (and henceis available) on c:

Yt < o0 1 =(send(c)@t A waitrec(c)@t) (ASYN-3)

It is not difficult to adapt the framework for more realistic assumptions. For instance,
suppose that A time units pass before a message transmitted by a sender is available for
areceiver. Then ASYN-2 becomes

YVt < oo VVv:rec(c,v)@t — (t > AAsend(c,v)@(t<A))
and ASY N-3 changesto
Yt < 00 : =(send(c)@t A waitrec(c)@(t+ A))

Alternatively, an output may be available during aperiod [t <A, t <A,] and repeated
reading during this period will produce the same value (as for a shared variable). Then
ASYN-2 and ASY N-3 become

YVt < o0 VVirec(c,v)@t
— Jtg € [t t&A,] - send(c, v)@toA —send(c) during (to, t <Ay]

Vt < o0 =(send(c)@t A waitrec(c) during [t+ A, t+ Ay])

5.3. COMMUNICATION BETWEEN PARALLEL COMPONENTS 111

Based on the propertiesASY N-1-ASY N-3, we enunciate afew useful lemmas. Thefirst
says that if amessage is not sent before A, and appears after agap of at least A, and if
the receiver isready to receive before A; and with agap of at most A,, then no message
getslost.

Let

maxsend(c, Ag, Ay) @t= send(c)@t — t > Aj A —send(c) during (t A, t),
minwait(c, A1, Ap) @t =t > Ay — awaitrec(c) in (t <Ay, 1]

Lemma 5.4 [f maxsend(c,A1,Ap) during [0, e0) and minwait(c, Aj, Ap) during [0, o),
then Vt < oo : send(c)@t « rec(c)@.

Proof: Consider t < . By ASYN-2, we haverec(c)@t — send(c)@t. Henceit remains
to prove send(c)@t — rec(c)@t. Suppose send(c)@t. Assuming maxsend(c, Ap, Ap)
during [0,) thisleadstot > A; and—send(c) during (t <Ay, t).

Hence, by ASYN-2, —rec(c) during(t<Ay,t). Sincewe havederivedt > A4, theas-
sumption minwait(c, A1, Ay) during [0, co leadsto awaitrec(c) in (t <Ay, t]. With —rec(c)
during (t<Ay,t) thisimplies awaitrec(c)@t. By send(c)@t and the minimal waiting
property ASY N-3, thisleads to rec(c)@t. O

By the next lemma, if a message is sent at least once every As time units, and the re-
ceiver isready to receive amessage at |east once every A, time units, then thereisacom-
munication at least once every As+ 4, time units.

Lemmab5.5 IfVt<oo:send(c)in|t,t+As)andVt < oo:awaitrec(c)in [t,t+Ar), then
YVt < oo:rec(c)in[t,t+As+ Ar).

Proof: Consider t < . By the assumption, we have awaitrec(c) in [t,t+ Ay).

If rec(c) in [t,t+Ar), thenrec(c) in [t,t+ As+ Ay).

Otherwise, if =(rec(c) in [t,t+Ar)), i.e,, -rec(c) during [t,t+ A), then await rec(c)
@t + A, and assumption send(c) in [t+ A, t+ A 4+ As) leadstorec(c) in [t+ A, t+
Or + D). O

A small variation on the previous lemma defines areceiver that has to wait for ames-
sage for at least Ag time units.

Lemmab5.6 IfVt<oe:send(c)in[t,t4 As)and Vt < oo :awaitsrec(c)in [t t+4y),
thenVt < oo :rec(c) in [t,t4 As+ Ay).

Proof: Consider t < «. By awaitarec(c)in [t,t+Ar), thereisapointt, € [t,t+Ar) to
which one of the following applies:

1. Thereissometp suchthat t, € [to, to+ As) and waitrec(c) during [to, to+As). This
leads to a contradiction with the assumption send(c) in [tg, to+ As) and (ASY N-3).

2. Thereissomet; € [tp,) such that waitrec(c) during [tp,t;) and rec(c)@t;. But
t; >t + Asimplieswaitrec(c) during [t, to + As) and hence there is a contradic-
tion, asin the previous case.

112 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Thuswehavet; < t+As. Sincet <tp <t; <ty +As < t+Ar + As, thenrec(c)@t; leads
torec(c) in [t,t4 As+ Ar). O

Exercise 5.3.1 Provefor an asynchronous channel c,
Vi < o0 : —(rec(c)@t A waitrec(c)@t).

Exercise5.3.2 Asdiscussed above, it might bemorerealistic to assume that for an asyn-
chronous channel ¢ and some A, for all t < o, v, v, and v5:

1. —~(send(c)@t A waitrec(c)@(t+ A))
2. rec(c,v)@t — t > AA send(c,v)@(t <A)

Prove the following by means of these properties:

. If maxsend(c, A1, Ap) during [0, «) and minwait(c,A+ Ay, Ay) during [0, «),
then Vt < oo : rec(c)@t « t > AA send(c)@(t =A).

. If VYt <o :send(c)in[t,t+ As) and Vt < oo : awaitrec(c) in [t t4 Ay),
thenVt € [A,) irec(c) in [t,t+ As+ Ay).

5.3.2 Synchronouschannels

With asynchronous channel, both the sender and the receiver must synchronizeto trans-
mit a message: the first must wait until the other is ready to perform the corresponding
action.

To characterize this mechanism, we use the primitives send, waitrec and rec of the
previous section, together with the primitive waitsend(c) @texp, to denote that a process
iswaiting to send a message on channel ¢ at time texp.

We shall use some more abbreviations:

awaitsend(c, v)@t= waitsend(c) during [t, o)
V (3t € [t,0) : waitsend(c) during [t,t1) A send(c,v)@t;)
awaitsend(c)@t = Jv:awaitsend(c,v)@t

A synchronous channel ¢ hasthe following properties:

YVt < oo Vvq, Vo send(c, vy)@t A send(c, Vo) @t — Vi = Vs (SYN-1)
At any time, at most one message is transmitted on a particular channel.
YVt < o0 VV:rec(c,v)@t « send(c,v)@t (SYN-2)

No messageislost: every message received has been sent and every message sent
will be received.

V1t < oo : ~(Waitsend(c)@t A waitrec(c)@t) (SYN-3)
Minimal waiting: it is not possible for processes to be simultaneously waiting to
send and waiting to receive on a particular channel.

5.3. COMMUNICATION BETWEEN PARALLEL COMPONENTS 113

Vt<oo: —(rec(c)@tA waitrec(c)@t)

A —(send(c)@t A waitsend(c)@t) (SYN-4)
It isnot possible for aprocessto simultaneously be communicating and be waiting
to communi cate.

With a synchronous channel c, the time at which a communication takes place can be
derived from the times at which both partners are ready to communicate.

Lemma5.7 Assume, for tg,ty < oo, awaitsend(c,v1)@t; A awaitrec(c, vo) @ty:

(@ If t; <ty and —rec(c) during[ty,ty), then rec(c, v,)@ty and v = Vs.
(b) If t; <t; and —rec(c) during[to,t1), then rec(c, v,)@t; and vy = vs.

Proof:

(a) By assumption SYN-2, —rec(c) during [t1,t2) leads to —send(c) during [ty,t2).
Together with await send(c, v1)@t; thisimplies await send(c, v1)@t,. Hence this gives
waitsend(c)@t, v send(c)@t,. With ASY N-2, thisleadsto waitsend(c) @t, \ rec(c) @t,.
By SYN-3and SY N-4we obtain —~waitrec(c)@t,. Sinceawaitrec(c, vo)@t,, thisimplies
rec(c, vo)@t,. Hence by ASYN-2, send(c,v,) @ty and by SYN-4, —waitsend(c) @t».
Hence await send(c, v1) @t; leads to send(c, v1) @t,, and thusrec(c, v) @t,, using SY N-
2. Further, by SYN-1we obtainv; = vs.

(b) The proof issimilar. O

Exercise5.3.3 ProvePart (b) of Lemma5.7.

Exercise5.3.4 Prove

awaitrec(c,v)@ty A (—rec(c)) during [ty to) Aty < tp — awaitrec(c, v)@t;

5.3.3 Communication using physical lines

Assume that a program component can set a physical line to avalue and that other com-
ponents are able to read the value of thisline. For aline | and expressions exp and texp
yielding valuesin VAL and TIME, respectively, let [(texp) represent thevalue of linel at
time texp, and read(|, exp) @texp denote that a process starts reading from line | at time
texp.

Let obs(I(texp)) = {I} and obs(read(l, exp) @texp) = {read(l)}. Definethefollowing
abbreviations:

(I <v)@t=I(t) < v, and similarly for other relational operators, and
read(l)@t = Jv: read(l,v)@t

Finally, let the value read from aline be the value of the line:

Vi < o0 Vv read(l,v)@t — I(t) = v (LINE)

114 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

inflow

outflow Sump wi

Pump Pump Control
PumpContr
pch ml

Figure 5.2 Introduction of the mine pump

5.4 Parallel decomposition of the sump control

SumpContr can be decomposed into a number of components executing in parallel.

54.1 Introducingapump

Water ispumped from the sump by aPump whichis controlled by PumpContr. Thiscon-
trol component communicates with the pump by sending messages on the asynchronous
channel pch. Hence SumpContr is refined by PumpContr || Pump (see Figure 5.2). On
channel pch, messages of value 1 and O are used to switch the pump on and off respec-
tively.

First the pump is specified using the following abbreviations:

ON(ty, 1)
OFF(ty,t)

rec(pch, 1)@t; A —rec(pch, 0) during(ty, ty]
rec(pch, 0)@t; A —rec(pch, 1) during(ty, ty]

To specify maximal outflow, let CPump; = CSCs.
Assume that after a period Init the pump is ready to receive inputs periodically every
Period units of time, i.e.

CPump, = minwait(pch, Init, Period) during [0, «)
When the pump receives the value 1 along pch, it produces an outflow of at least ASL[‘

after adelay of at most dp, aslong as no value O isreceived (&, and ASL[‘ are assumed to
be non-negative):

CPumpsz = Vi, ty < o : ON(ty,tp) — (outflow >)\ga[‘) during [ty + Op, to]

54. PARALLEL DECOMPOSITION OF THE SUMP CONTROL 115

The pump will switch off within &, if the value O is received:
CPump, = Vi, ty < o : OFF(ty,t) — (outflow = 0) during [t; + p, t]

There will be no explosion if the methane level is below a critical level CML or if the
pump has been switched off:

CPumps = Vt < oo : (ml(t) < CMLV 3ty < t<Qp : OFF(tp, 1)) — —expl @t
Let CPump = CPump; A CPump, A CPumps A CPumps A CPumps and assume
{{(now = 0)) Pump ((CPump))

with obs(Pump) = {waitrec(pch), rec(pch), ml, outflow, expl } .
PumpContr must contribute towards meeting the commitment of SumpContr. First, it
must not send messages along pch too fast:

CPC; = maxsend(pch, Init, Period) during [0, «)

Then the pump must be switched on (SETON) or off (SETOFF) if the water level ishigh
or low. Let

SETON(ty,t) = send(pch, 1)@ty A —send(pch, 0) during(ty, ty]
SETOFF(t1,ty) = send(pch, 0)@t; A —send(pch, 1) during (ty, ty]

But the pump is switched on or kept running only if the methane level isbelow SVIL:

CPCy= Vg, t1 < 0 :tg+ dpc < tg A (Wl > HSWL) during [to, t1]

A(ml < SML) during [to, t1] — Jta < tg+ dpc : SETON(tp, 1)
CPC3= Vip,t1 < 00 :tg+ 0pc < tg A (W < LSAML) during [to, ty]

— dt, <tg+ 6pc : SETOFF(tz,tl)

The methanelevel cannot be controlled but we make a safety stipulationthat if it isabove
CML the pump should have been off for at least dp:

CPCy =Vt < o :mi(t) > CML — Tty < t 0y 1 SETOFF(t, t)
Define CPC = CPC; A CPCy A CPCg A CPCy, and let
{{(now = 0)) PumpContr ((CPC))

with obs(PumpContr) 2 {ml}.
Now

obs{ CPump)nobs(PumpContr) C obs CPump)
= {waitrec(pch), rec(pch), ml, outflow, expl }
= obs(Pump)

116 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Also,
obs(CPC)Nnobs(Pump)
= {send(pch),wl, m} N {waitrec(pch), rec(pch), ml, outflow, expl }
= {ml} C obs(PumpContr)
So by the Simple Parallel Composition rule

{{(now = 0)) Pump || PumpContr ((CPump A CPC))

Lemmab.8 If
Osc > Opc + Op (5.6)

then CPump A CPC — CSC.

Proof: Assume (5.6). Suppose CPump A CPC. Since CPump, and CPC,, together with
Lemma 5.4, show that for all t < o, send(pch) @t «— rec(pch)@t, we have —send(pch, 0)
during (ty,tp] isequivalent to —rec(pch,0) during (t;,t,], and

th,tz < 00 SETON(tl,tz) — ON(tl,tz) (57)
Similarly,
th,tz < 00 SETOFF(tl,tz) — OFF(tl,tz) (58)

To prove CSCy, notethat tg + 8sc > tg implies [ty + 8, t1] = @. Then (outflow > AJ'Y)
during [to+ O, t1] holds. Next assumety+ 8sc < t1, (Wl > HSWL) during [to,t;], and
(ml < SML) during [tg,t;]. Sincethe assumption (5.6) impliest; > tg+ dsc > to + Opc,
the commitment CPC, shows there exists some t < tg+ Oy such that SETON(ty, t).
Hence, by (5.7), ON(tp, t1). Then CPumpz leadsto (outflow > AJl) during [t -+ 8p, ty].
Sincety < tg+ 8pc We obtain (outflow > AZM) during [t + 8pc + 8p, t1], and this, with
(5.6), gives (outflow > AJ') during [to+ dsc, t]-

To prove CSC,, observethat tg+ dsc > t; implies|ty+ O, t1] = @. Then (outflow = 0)
during [to+ O, t1] holdstrivially. Assumety+ ds: < t; and (Wl < LSAWL) during|to, t1].
Since (5.6) impliest; > tg+ dsc > tg + Opc, CPC3 shows that there exists some ty < tg+
dpc such that SETOFF(t,,t1). Hence, by (5.8), OFF(tz, t1). Then by CPump, (outflow =
0) during [tz + &p,t1]. Sincety < tg+ dpc We obtain (outflow = 0) during [to+ Opc+
dp, t1], and hence by (5.6) (outflow = 0) during [ty + Osc, t1].

CSC; follows from CPump; by definition.

To prove CSCy, i.e. —expl@t, for any t < o, we use CPumps. We must show that
mi(t) < CMLV 3ty <t<0dp : OFF(t,t). Suppose mi(t) > CML. Then by CPC, thereis
somety < t <9y such that SETOFF(tp, t). Hence, by (5.8), OFF(tg, t). O

54. PARALLEL DECOMPOSITION OF THE SUMP CONTROL 117

inflow
outflow wi
Ump
expl Pump wch <
‘7 Wsen
pch WContr mi

Figure 5.3 Introduction of awater level sensor WSens

5.4.2 Introducing sensors

Assume that sensor WSens measuresthewater level and sends the measured valuesalong
asynchronous channel wch to a control unit WContr (see Figure5.3). PumpContr can be
then be refined as WSens || WContr, where sensor WSens measures the water level and
sends the measured values along asynchronous channel wch to a control unit WContr.

Assumethat a specification of thewater level sensor WSensis available. Wethen need
to find a specification of the control unit from which we can prove CPC.

For the sensor WSens assume we are given constants dys and €,s; let the sensor send
values along wch at |east once every dys time units:

CWSens; = Vt < oo send(weh) in [t, t 4 Sus)

Further, assume that the value read by the sensor does not differ by more than g5 from
thereal water level:

CWSens, = Vt < oo : send(wch, V)@t — Veews < WI(T) < V+ Eps
Define CWSens = CWSens; A CWSens, and assume WSens satisfies
{{(now = 0)) WSens ((CWSens))

with obs(WSens) = {wl, send(wch)}.
Next we specify the control component WContr. Asin CPCq, theremust beaminimal
delay between messages sent along pch:

CVVCl = CPCl

WContr should be ready to receive input from the sensor along wch at least once every
Owr time units:

CWC; =Vt < oo > await 5 5, rec(weh) in [t,t 4 wr)

118 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION
Define
(rec(wch) > vp)@t = Vv : rec(weh, v)@t — v > vy

The pump must be switched on if avalue above HSWL <€ has been received from the
water level sensor; itisnot switched off aslong asvaluesabove HSWL <€y arereceived.

CWC3 = Vig,tg < oo
to+ Owe < tyrec(weh, v)@tp AV > HSWL ey
A (rec(wech) > HSWL <€ys) during [to, ti]
A(ml < SML) during [to, t1] — Tty < tg+ dwe : SETON(t, t1)
Similarly, let
(rec(wch) < vp)@t = Vv : rec(weh, v)@t — v < vy
and define

CWC, = Vip, t1 < o itg+ Owe < tg Arec(weh, v)@tg AV < LSWL + €ys
A (rec(weh) < LSWML + gys) during [to, t]
— Jty <tg+ duc: SETOFF(tz,tl)
CWCs = CPCy
Let CWC = CWC; A CWC,; A CWC3 A CWC4 A CWCs, and
{{(now = 0)) WContr {(CWC))

with obs(WContr) O {ml}.
This meets the syntactic requirements of the Simple Parallel Composition rule:

obs{ CWSens) N obs(WContr) C {wl, send(wch)} = obs(WSens)
obs(CWC)nobs(WSens)
= {send(pch), waitrec(wch), rec(wch), m'} N {wl, send(wch)}
= @ C obs(WContr)
Hence,

{(now = 0)) WSens|| WContr ((CWSensA CWC))

Lemmab.9 If

Opc > Ows+ Owr + Owc (5.9

then CWSensA CWC — CPC.

54. PARALLEL DECOMPOSITION OF THE SUMP CONTROL 119

Proof: Suppose (5.9), CWSens and CWC hold. Observe that by Lemma 5.6, CWSens;
and CWC, imply

Yt < oo :rec(wch)in [t,t4 dws+ Owr) (5.10)

Also, CPC; isequivalent to CWC;.

To prove CPC,, assume tg + dpc < tg, (Wl > HSAWL) during [to,t;] and (ml < SML)
during [to,t1]. By (5.10) thereisamoment t3 € [to, to + Ows+ Owr) @nd some v such that
rec(wch, v)@t3. Using property (ASY N-2) thisimplies send(wch, v)@t3;. By CWSens,
we obtain v > Wi(t3) <ews. Since, using (5.9), t3 < tg+ Ows+ Owr < to+ Opc < tg, We
havets € [to, t1] and hence wl(tz) > HSWL. Thusv > HSWL S€ys.

To prove (rec(wch) > HSWL <eys) during [ts, t1], take ty € [ts, t1] with rec(wch, vp)
@t,. Sincety > t3 > to, thisgiveswi(ty) > HSWL. Using (ASY N-2), send(wch,) @t,
and, by CWSens,, thisleads to vp > Wi(ts) <ews > HOM <eys. Hence (rec(wch) >
HSWL <€ys) during [ts, t;]. Notethat, using (5.9),

t34 dwe < to+ Owe + Ows+ Owr < tg+ Opc <ty

Further, tp < t3, so (ml < SML) during [ts, t;]. Hence from CWC; we can conclude that
there exists some tp < t3+ Ay such that SETON(tp,t1). Since tz < to+ Ows + Owr We
obtain t; < tg+ dpc from (5.9).

To prove CPCg, assume tg+ Opc < t3 and (Wl < LSWL) during[t, t1]. By (5.10) there
issomets € [to, to+ dws+ Owr) @nd some v such that rec(wch, v) @t3. By the communica-
tion property (ASY N-2), this implies send(wch, v)@t3. By CWSens,, v < Wl(t3) + ws.
Since, using (5.9), t3 < to+ dus+ dwr < to+ Opc < t1, we have tz € [to, 1] and hence
wWi(t3) < LSWL. Thusby (Wl <LSWL) during [to,t1] we obtain v < LSM. + €ys.

To prove (rec(wch) < LSM. + eys) during [t3, t1], take ty € [t3, t] with rec(wch, vp)
@t,. Sincety > t3 > to, we havewl(t) < LSAWL and (ASY N-2) gives send(wch, vp) @ty,
and hence, using CWSens,, Vo < WI(ty) + ws < LSM + gws. Thus (rec(wech) < LSWML +
gws) during [ts, t1]. Since, by (5.9),

t3+ dwe < to+ Owe + Ows + Owr < tg+ Opc <t

from CWC, we conclude that there exists at, < t3+ dwc such that SETOFF(t,t1). Since
t3 <tp+ Ows+ Owr Weobtaint, < tg+ Opc from (5.9).
CPC, isequivaent to CWCs. O
By Lemma 5.9 and the Consequence rule

{(now = 0)) WSens || WContr ((CWC))

Observe that obs(WSens|| WContr) 2 {ml}. Thus WSens|| WContr refines PumpContr.
To implement WContr, introduce a sensor MSens to measure the methane level ml and
an atmosphere component Air to express assumptions about this methanelevel. Theaim
isto design acontrol component MContr such that Air || MSens|| MContr refines WContr
(see Figure 5.4).
Assume that the air component Air expresses abound on the initial methane level and
abound on the maximal rise of thislevel:

120 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

inflow
outflow wi
Ump
expl Pump weh | \weens
e

pc

och MContr —mOK MSens mi Air

Figure 5.4 Introduction of a methane level sensor MSens

CAir;= ml(0) < SML
CAir,=Vi,th <oty <tp — m|(t2) <:>m|(t1) <)\nm]ax(tz <:>t1)

Let CAir = CAirq A CAIr, and
{{(now = 0)) Air ((CAir))
with obs(Air) = {ml}.
The methane sensor MSens communi cateswith the control component MContr by set-
ting the [ine mOK to O or 1 (asin Section 5.3.3). Let the line mOK be set to 1 if the

methane level is not dangerous, i.e. below the safety level SML, and O otherwise; et
mOK(t) € {0, 1}, for al t € TIME. Start with the following commitment:

CMSens =Vt < oo : mOK(t) = 1 < mi(t) < SML

This requires there to be no delay or uncertainty but it is easy to adapt the specification
for morerealistic assumptions.
Assume that MSens satisfies

{{(now = 0)) MSens({CMSens))

with obs(MSens) = {ml, mOK}.
Component MContr reads line mOK at |east once every Areaq time units:

CMCy= Vit < o : read(mOK) in [t, t+ Aread)
CMC,= CWC;y (i.e. CPCy)

The other commitments of MContr aresimilar to those of WContr with the methanelevel
ml replaced by reading line mOK.

54. PARALLEL DECOMPOSITION OF THE SUMP CONTROL 121

CMCgE CVVC2
CMCy=Wig, tg < 00 tg+Owe <t A rec(wch, V)@to/\V > HSWL €y
A (rec(weh) > HSWL <eys) during [to, t]
A —=read(mOK, 0) during [to, t; — Fto <tg+ dwe : SETON(to, t1)
CMCs= CWC,
CMCs = Vip,t1 < o0 : tp+ Oy < tg Aread(mOK, 0)@to
A —read(mOK, 1) during [tg, t;] — Jty <tp+ Oy : SETOFF(ty, t7)

Define CMC = CMCy; A CMC,; A CMC3 A CMCy A CMCs A CMCg and let MContr be
specified by

{{(now = 0)) MContr ((CMC))
Observe that
obs(CAir) N obs(MSens) C obs(CAir) = {ml} = obsg(Air)
e obs(CMSens)n obg(Air) = {ml} C obs(MSens)
The Simple Parallel Composition rule leads to
{{(now = 0)) Air || MSens((CAir A CMSens))
Similarly, obs(CAir A CMSens) N obs(MContr) C obs(CAir A CMSens) = {ml, mOK}
= obs(Air || MSens) and that obs{CMC) N obs(Air || MSens) = {waitrec(wch), rec(wch)
, send(pch) , read(mOK)} N {ml, mOK} = @ C obs(MContr).

Then the Simple Parallel Composition rule gives

{{(now = 0)) Air || MSens|| MContr ((CAir A CMSensA CMC))

Lemmab5.10 If
(Dread + Omi 4 3p) A < CML <SVIL (5.11)

then CAir A CMSensA CMC — CWC.

Proof: Assume (5.11), CAir, CMSens and CMC. Note that CWC,, CWC,, and CWC,,
are equivalent to CMC,, CMC3 and CMC;5 respectively.
To prove CWC3, assume that

to+ Owe < 1y,

rec(wch, v)@tgp and v > HSWL ey
(rec(wch) > HSWL <eys) during [to, t5] and
(ml < SML) during [to, t1]

122 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

To apply CMC,4, wefirst show —read(mOK, O) duringto, t1]. Consider t3 € [to, t1]. Since
mi(t3) < SML, by CMSens we obtain mOK(t3) = 1. Thus by the communication line
property (LINE), read(mOK, v)@t3 impliesv = 1 and —read(mOK, 0)@ts. This gives
—read(mOK, 0) during [to,t;] and so CMC, leadsto 3t < tg+ dwe : SETON(to, t1].
To prove CWCs, i.e. CPCy, assume ml(t) > CML. Note that (5.11) implies CML >
SMVIL, since all the constants are non-negative. Observe that if AT~ = 0, then by CAir,
we have ml(t) <ml(0) < 0; using CAir;, CML < mi(t) < mli(0) < SML, whichisin
contradiction with CML > SML. Hence, ATt > 0. By CML > SML and CAir; we ob-
tain mli(0) < SML < mi(t). Using Lemma 5.2 (Intermediate Value Property), this im-
plies that there exists ats € [0, t] such that mi(ts) = SML and (ml > SML) during [ts, t].
By CMCy, read(mOK) in [ts,ts + Areaq)- Thus there exists some ty € [ts, ts + Areaq)
such that read(mOK)@to. By CAir, we can derive mi(t) <mi(ts) < AD™(t <ts), thus
A (tets) > mi(t) & SML > CML < SML. With (5.11), we obtain A (t <ts) >
(Dread + Om + Sp) ATy Since Apy™ > 0 and all the constants are non-negative, thisim-
pliest ©ts > Aread, and hence ts+ Areag < t. Then tg € [ts,] and thus mi(tg) > SML. By
CMSens this (and the range of mOK) implies mOK(tg) = 0.
By the line property (LINE), read(mOK, 0)@t,. Further, (ml > SML) during [to,]
leadsto (mOK = 0) during [to, t], and by (LINE) we obtain -read(mOK, 1) during to, t].
Hence, by CMCg, there exists at, < to+ &y such that SETOFF(t,t). Sincet <ts >
Dread+ O + Op, as shown above, we havets+ Argag + Omy < t=0p. Thusty < tg+ Oy <
ts+ Aread + Om < t<:>6p, that is, t, < t<:>6p. O
Hence, by Lemma 5.10, the Consequence rule leads to

((now = 0)) Air || MSens|| MContr ((CWC))

Note that obs(Air || MSens|| MContr) C obs(Air) = {ml}. Thus Air || MSens || MContr
correctly implements WContr.

5.5 Programminglanguage

We shall now describe the main features of a smple language that is sufficiently ex-
pressive for the mine pump control program. To show that programs satisfy an assump-
tion/commitment specification we shall then formulate a compositional proof system.

5,5.1 Syntax of the programming language

We choose a smple real-time concurrent programming language with communication
along asynchronous channels and physical lines (cf. Section 5.3). Explicit timingis per-
formed using adelay statement which suspends the execution for a specified period.

The statements of the programming language and their informal meanings are listed
below, using program variable x, expression e yielding avalue in VAL, boolean expres-
sion b, asynchronous channel ¢ and linel.

5.5. PROGRAMMING LANGUAGE 123

Atomic statements

. skip terminatesimmediately.

. Assignment X := e assigns the value of expression eto the variable x.

. delay esuspends execution for etimeunits; if eisnegativethen delay eisthesame
as skip.

. c!le sends the value of expression e along channel ¢ without waiting for the re-
celver.

. C?X assignsto variablex the value received on channdl ¢; an input statement waits
until amessage isavailable.

. read(l,x) assigns to variable x the value of linel.

Compound statements

. S; S isthe sequential composition of S; and S,.

. if bthen S dse’S; fi denotes choice between S; and S, based on condition b.

. sel cxthen S, or delayethen S, leswaitsto receive amessage on channel c; if
the message comes within e time units, S; is executed otherwise S, is executed.

. while b do Sod repeatedly tests b and executes Sif b istrue and terminatesif bis
fase.

. §||S istheparallel composition of processes S; and S, which must not share vari-
ables.

if bthen Sfi will be used as an abbreviation of if bthen Selse skip fi.

Example 5.4 The select statement can be used to program atime-out. For instance,
sel in?x then out!!f(x) or delay8then alarm!ly les

With this statement, a process waits to receive a message on channel in for at most eight
time units; if a message comes within that time, it executes out!!f(x) and otherwise it
executes alarm!ly.

Let loc(S) bethe set of program variablesof S. Then the set of observablesof S obs(S),
is defined by induction on the structure of S. For input and output it is defined as

obs(c!!e) = {send(c)}
obs(c?x) = {waitrec(c), rec(c)} and
obs(read(l,x)) = {read(l)}

The other observables are easily defined:

obs(skip) = obs(x := e) = obg(delay) = @
obs(S;;)= 0bs(S||S;) = obs(if bthen S else S; fi)
= 0bsg(S;) Uobs(S,)
obs(sel c?xthen S or delayethen S, les)
= {waitrec(c),rec(c)} Uobs(S;) Uobs(S,)
and obs(while b do Sod) = obg(S)

Observe that processes do not share variables: for §;||S, loc(S;) Nloc(S,) = @.

124 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION
5.5.2 Basictiming assumptions

The next step is to make assumptions about the execution time needed for the atomic
statements and the relation between the execution time of acompound statement and the
timing of its components. Since we assume maximal progress, an enabled action will be
executed as soon as possible. The execution of alocal, non-communication, command
or an asynchronous output is never postponed. An input command can cause a process
to wait, but only when no message is available.

We assume that an assignment x := e takes the non-negative time T,. delay e waits
for exactly e time units if e is positive and O otherwise. Each communication takes a
non-negative time Tcomm and read (1, x) takes a non-negative T time unit.

The evaluation of the boolean b in if bthen S, else S, fi or while b do Sod takes
Ty, time units and this has afixed non-zero lower bound to guaranteefinite variability (or
‘non-Zeno-ness).

5.5.3 Proof system

The compositional proof system for thislogic consists of rules and axiomsthat apply to
any statement and rules and axioms for the atomic and compound programming state-
ments. Fresh logical variables are assumed to be used in the rules.

General rulesand axioms

Thefirst axiom saysthat an assumption which satisfies certain restrictionsis not affected
by the execution of any program.

Axiom 5.1 Initial invariance

{(A) S(A)

provided A does not refer to now or the program variables (loc(A) = 9).

Similarly, a variable which does not occur in program Sis not affected by any termi-
nating computations of S

Axiom 5.2 Variable invariance
((A)) S{{(now < o0 — A))

provided now does not occur in A and loc(A) Nloc(S) = @.

A program S never performs an action which does not syntactically occur in S

5.5. PROGRAMMING LANGUAGE 125

Axiom 5.3 Observablesinvariance
{(now=to)) S((/\ —Oduring|to, now))

Ocoset
provided oset isafinite set of observables with oset N obs(S) = 4.

Example5.5 Thefollowing examplesillustrate the invariance axioms.
(a) By thelnitial Invariance axiom, for any program S
{(rec(c,5)@t A send(d,v)@(t+ 7))) S{{rec(c,5)@t A send(d,v)@(t+ 7)))
(b) Applying the Variable Invariance axiom,
((x="5)) while y= 0doc?; d!!f(y)od ((now < 0 — x = 5))

For non-terminating computations, it is not possibleto provein the commitment that pro-
gram variables have a particular value.

(c) By the Observables Invariance axiom,

{{(now = tp)) c?x (((—send(c)) during|ty, now)
A(=rec(d)) during|tp, now)))

since obs(c?x) = {waitrec(c), rec(c)}.
A program which follows a non-terminating computation has no effect.
Axiom 5.4 Non-termination
{((AANOW = o)) S{{AA NOW = o))

The subgtitution rule allows a logical variable in the assumption to be replaced by any
expression provided the variable does not occur in the commitment.

Rule5.5.1 Substitution
{(A) S{(C)
{(Alexp/1])) S{(C))
provided t does not occur freein C.

The rules for conjunction and digunction are identical to those used for traditional
triples.

Rule5.5.2 Conjunction
{(A1)) S{(C1)), ((A2)) S{(C2))
(A AA2) S{(C1ACy)
Rule5.5.3 Digunction
{(A1)) S{(C1)), ((A2)) S{(C2))
{(ALVA)) S((CLV Co))

126 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Axiomatization of the programming constructs
A skip statement terminates immediately and has no effect.

Axiom 55 skip
((A)) skip ((A)

The next axiom for an assignment x := e expresses that to obtain commitment C the
assumption C[e/x, now+ T /now| A now < oo isrequired (thisisthe weakest assumption).
Note that, in addition to the traditional rule, we also update the time to express that the
termination time equals theinitial time plus T, time units.

Axiom 5.6 Assignment
({(Cle/x, now+ Ta/now] A now < o)) X := e ((C))
Example 5.6 Show the correctness of the following triple:

{(x=5Anow=6Arec(c,0)@3))
Xi=X+7
((x=12Anow= 6+ TaArec(c,0)@3))

From the Assignment axiom,

((X+7=12Anow+ Ta = 6+ TaArec(c,0)@3 A now < o))
Xi=X+7
((x=12Anow= 6+ TaArec(c,0)@3))

Then the Conseguenceruleyieldstherequiredtriple, sincex = 5Anow= 6Arec(c,0)@3
impliesx+ 7 = 12Anow+ Ty = 6+ TaArec(c, 0) @3 A now < oo,

The axiom for the delay statement is similar.

Axiom 5.7 delay
{(C[now+ max(0,) /now] A now < o)) delay e {(C))

In the rulefor asynchronous output, c!!e, now in Assumption AA now < o isreplaced
by to, which isthe starting time of the statement, and send(c, e) @ty denotes that it starts
sending at to. For completeness, thereisaterm expressing that no transmission is started
after to until it terminates, i.e. —send(c) during (tp, now), where now is the termination
time, equal to to + Teomm:

Rule5.5.4 Asynchronous output

(AANOW < o)[tg/now| A send(c, e)@tg A —send(c) during (tg, now) A
now = tO —|— Tcomm — C

{(AANOW < o)) clle ((C))

5.5. PROGRAMMING LANGUAGE 127

Similarly, in the rule for the input statement c?x, now in AA now < o is replaced by
to, to represent the starting time. An input statement will need to wait if amessage is not
available, i.e. the corresponding output statement has not begun sending avalue. But to
make the proof system compositional, no assumption should be imposed upon the envi-
ronment. So theruleincludesan arbitrary waiting period (including an infinitewait) and,
if acommunication takes place, any value can be received.

In the rule below, the commitment is split into Cy, representing a non-terminating
computation with infinite waiting, i.e. waitrec(c) during [tp, o), and a commitment C
for the properties of terminating computations; in the latter case thereisapointtintime
at which avalue v isreceived and until that time the statement waits to receive it (thus
also asserting that no message was available earlier). After t, and until the termination
time represented by now, the statement does not wait or start receiving a message, as ex-
pressed by

comm(c, v)(tp,t) =waitrec(c) during [to, t) A rec(c, v)@t
A (—waitrec(c) A —rec(c)) during (t, now).

The valuev is assigned to x at the termination timet + Tcomm.

Rule5.5.5 Input

(AANOW < o)[tg/now] A waitrec(c) during [tg,) A now = oo — Cpt

(AANOW < o)[tg/now] A 3t € [tg,) : comm(c, V)(tg,t) A Now = t+ Tcomm
— C[v/X]

{{(AANOW < 0)) c?X {(Crt vV C))
provided loc(Cyt) = @.
Example 5.7 By the Input rule we can derive

{(now = 5)) c?x ({ (waitrec(c) during[5,) A now = oo)
V (3t e [5,): waitrec(c) during [5,t) A rec(c, x)@t
ANOW = t+ Teomm)))

since

to = 5 A waitrec(c) during [tg, ©) A now = oo
— waitrec(c) during [5,0) A nOW = o

and
to = 5A 3t € [tg,) : comm(c,V)(tg, t) A NOwW = t+ Tcomm
implies

Jt € [5,) : waitrec(c) during [5,t) A rec(c, v)@t A NoW = t+ Teomm

(It [5,) : waitrec(c) during [5,t) A rec(c, X)@t A Now = t+ Teomm)[V/X]

128 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

The following rule defines the effect of reading alinel.

Rule5.5.6 Read
(AA NOwW < o)[tg/now| A read(l, x)@to A now =tog+ Ty — C

{(AANOW < o)) read (1,x) ((C))
The rule for sequential composition is straightforward.

Rule5.5.7 Sequential composition
{(A) S {(B), (B) %(C))
{A) S S (C)

Note that assertion B may describe non-terminating executions of S;. This part of B is
not affected by S, and can beincluded in C, asillustrated in the following example.

Example 5.8 Consider aprogramc?y; y:=y+ 1with

A=now=7and
C=(now = o A walitrec(c) during [7,))
V(3te [7,0):now = t+ Teomm+ TaArec(c,y<1)@t)

To prove ((A)) c?; y:=y+1{((C)), define

B =(now = o A waitrec(c) during [7, o))
V(3te [7,0):now =t+ Teomm+ TaATeC(C,y)@Y)

Note that we can derive ((A)) c?y ((B)) and, using the Non-termination axiom 5.4 and
theDigunctionrule, ((B)) y:=y+1 {(C)). Hencethe Sequential Compositionruleleads

o ((A) c; yi=y+1 (C).

The rule for the choice statement has a delay of Ty, time units added to represent the
time taken to evaluate the boolean expression.

Rule5.5.8 Choice

{(A)) delay Tp ({Ao))
{(AoAD)) S ((C)), (AoA b)) S ((C)

(A) if bthen S dse’S fi ((C))

The select statement sel c?x then S; or delayethen S les hastwo possible outcomes.
First, acommunication on ¢ may occur within e time units after the starting timeto, lead-
ing to assertion A, after which S; isexecuted, leading to C;. Alternatively, there may be
await in order to communicate on ¢ during etime units (assertion Ay) and S; isexecuted,
leading to C..

5.5. PROGRAMMING LANGUAGE 129

Rule5.5.9 Select
(AANOW < o)[tg/now| A 3t € [tg,to+ €) : comm(c, V)(to, t)
A NOW = t—l— Tcomm — A]_ [V/X]
(AANOW < o)[to/now] A waitrec(c) during [to, to+ €)
ANow = tp+ max(0,e) — Ay

(A1) S ((Cr))y ({A2)) S ((Ca))
((AANOW < o)) sel c?x then S; or delayethen Sy les((Cy Vv Cy))

Therulefor thewhile statement has clausesto deal with non-terminating computations
and a delay statement has been included to model the time Ty, taken for the evaluation of
the boolean expression.

Rule5.5.10 Wnhile

{{(I Anow < o)) delay Ty, ((lo))
{{(lo AbANOW <) S((1))
| — 1, loc(l1) =@, (Vg <o Jty >ty 11[ty/now]) — Cpy

(1Y while bdo Sod {{(Cnt A now =) V (Ig A =b)))
Example 5.9 Consider the program
while x# 0doin?x; out!!f(x) od
Clearly this program maintains the relation
YVt < oo VV:rec(in,v)@t — send(out, f(V))@(t + Teomm)

between input and output. Weshall not provethishere (see Section 5.6 for similar proofs)
but, rather, will concentrate in this example on the question of termination. Theaim is
to show

{{(now = 0A X # 0))

while x# 0doin?x; out!!f(x) od

{((now = oo A 3t < oo : Waitrec(in) during [t, «))
V (Now = o0 AVt < o : —rec(in, 0)@t)
V (now < o A 3t < o0 : rec(in, 0)@t)))

Thus the program either

. does not terminate because thereisadeadlock oninput channel in, i.e. the program
walits forever to receive input along in after acertain point in time, or

. does not terminate because it never receives value 0 aong in, or

. terminates because it receives0.

The Whileruleis used to provethis, with

130 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Crnt=(3t < oo : waitrec(in) during [t, o)) V (Vt < oo : —rec(in, 0)@t)
| =(now =00 A3t < oo : waitrec(in) during t,e))
V (NOW < o0 AVE < now, t £ NOW <2Teomm : —rec(in, 0)@t
A (X= 0« rec(in,0)@(Now<2Tcomm)))
lo = now < e AVt < now, t # Now <2Teomm < Tp : —rec(in, 0)@t
A (X= 0« rec(in,0)@(now <2Tcomm < Tp))
l1 = (3t < oo waitrec(in) duringt, o))V (Yt < Now<2Teomm : —rec(in, 0)@t)
To apply the While rule, we must prove the following:
. (I Anow < o)) delay T, ((lo))
Thisformulais easily derived using the proof system.
- {{lo AX# 0ANOW <) in?X; out!!f(x) (1))
Notethat 1o A X £ 0A now < o implies
now < o A ¥t < now : —rec(in, 0) @t
Let B= (now = o A 3t < oo : waitrec(in) during [t, «))
V (NOW < o0 AVt < now, t £ NOW < Teomm : —rec(in, 0) @t
A (X= 0« rec(in,0)@(now<Teomm)))
Then we can easily derive
{(now < o0 AVt < now : —rec(in, 0)@t)) in?x ((B))
((B) out!tf(x) ({1}
which leads to the required formula by the Sequential Composition and Conse-
guence rules:
. | — 11, which holdstrivially. Further note that loc(l;) = @.
. (Vi < ooty >t 1 I4]ta/now]) — Ciy.
Observethat Vt; < oo 3ty > tg 1 11[to/now] isequivalent to Vi < oo Ity >ty :
(3t < oo : waitrec(in) during [t,e)) Vv (Vt < ty 2T eomm : —rec(in, 0)@t)

implying
(3t < oo waitrec(in) during [t,)) Vv (Vt < oo : =rec(in, 0) @t)
i.e., Cnt.
Then the Whileruleleads to
{(IYwhile x=£ 0doin?x; out!!f(x) od {((Cnt ANOW = o)V (IgAX = 0)))
Note that now = 0A X # 0 — 1. Further, (Cot ANow =) Vv (IgAX = 0) isequivalent to

(It < oo - waitrec(in) during [t,) vV Vt < o : —rec(in, 0)@t) A now =)
V(now < o A rec(in, 0) @(now <2Tcomm<Th))

which implies

(now = oo A 3t < oo : waitrec(in) during [t, o))
V(now = 0 AVt < o0 : —rec(in, 0)@t)
V(now < o A3t < oo : rec(in, 0)@t)

Hence the Consequence rule leads to the triple to be proved.

5.6. THE MINE PUMP EXAMPLE: FINAL IMPLEMENTATION 131
5.6 Theminepump example: final implementation

We can now implement component MContr which was specified in Section 5.4.2:
{{(now = 0)) MContr {((CMC))
Recall that CMC = CMCy; A CMC,; A CMC3 A CMCy4 A CMCs A CMCg, with

CMCy = Vt < o :read(mOK) in [t,t + Areaq)
CMC; = Vit < o : send(pch)@t — t > Init A (—send(pch)) during (t <-Period, t)
CMC3 =Vt < oo > await 5 5, rec(weh) in [t,t 4 Owr)
CMCy = Vip,t1 < 0 tg+ e < tg Arec(weh, V) @tg AV > HSWL ey

A (rec(weh) > HSWL <eys) during [to, ty]

A —read(mOK, 0) during [to, t]

— Ity <tg+ duc : Send(pch, 1)@ty A ~send(pch, 0) during (to, ty]
CMCs = Vip,t1 < 0 2 tg+ e < tg Arec(weh, V)@tg AV < LSML + gys

A (rec(weh) < LSML + gys) during [to, t]

— Ity <tg+ dwc : send(pch, 0) @ty A ~send(pch, 1) during (to, ty]
CMCg = Vip, t; < o : tg+ Oy < t3 Aread(mOK, 0)@ty

A —read(mOK, 1) during [to, t1]

— Ity <tg+ Oy & send(pch, 0)@t, A —send(pch, 1) during (to, t;]

To smplify the proof of theimplementation, we rewritethe last three, somewhat com-
plicated, commitments as the conjunction of six simpler assertions. That is, we replace
CMC by

CC=Vt<oo: AL, CCi(t), where
CCy(t) = read(mOK) in [t,t 4 Areaq)

CCy(t) = send(pch)@t — t > Init A (—~send(pch)) during (t <Period, t)
CCs(t) = await , 5, rec(weh) in [t,t+ dwr)
CCy(t) = rec(weh, V)@t AV > HSWM <eys

A —read(mOK, 0) during [t,t 4 dwc] — send(pch, 1) in [t, t + Swc]
CCs(t) = rec(weh, v)@t A v < LSML + gys — send(pch, 0) in [t, t+ dw]
CCg(t) = read(mOK, 0)@t — send(pch, 0) in [t, t+ O]
CCy(t) = send(pch, 1)@t — Jtg € [t SOwe, 1], V:
rec(wch, v)@tg A v > HSWL <eys A —rec(weh) during (to, t)
CCg(t) = send(pch, 1)@t
— Jtg € [t &, 1] : read(mOK, 1) @ty A —read(mOK) during (to, t)
CCy(t) = send(pch, 0)@t
— [(Fto € [t =Ouc, t], V:rec(weh, v)@tp AV < LOM + gys
A —rec(wch) during (to, t))
V(3tg € [t=dm, 1] : read(mOK, 0) @t A —rec(weh) during (to, t))]

Lemmab5.11 If
LSM. <eps < HOM. 4 gys (5.12)
then CC — CMC

132 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Proof: Since, fori =1,2 3,Vt < o : CCi(t) «» CMC; it remainsto prove CMC,4, CMCs,
To prove CMC,4, assume it is given that

to + 6\,\,0 < tl, rec(wch, V) @to
V> HIWL ey, (rec(weh) > HSWL <eys) during [to, t;] and
—read(mOK, 0) during [to, t;]

Asty+ Owce < tg, weobtain —read(mOK;, 0) during [to, to+ dwc]. Hence CCy(tp) implies
send(pch, 1) in [to, to+ dwc), i€ thereisaty € [to, to+ dwc] such that send(pch, 1)@t,. It
remains to show —send(pch, 0) during (tp, t;]. Suppose send(pch, 0)@tz, for somets €
(t2,t1]. Then by CCq(t3) there are two possibilities:

. There exist t4 € [t3 =dwc, t3] and vy with rec(wch, Vo) @t4, Vo < LSWL 4 gys and
—rec(weh) during (ta, t3).
Since rec(wch)@tp and t3 >t > to, thisimpliesthat t4 > tg. Further, t; < t3 <
ty, thusty € [to,t1]. By (rec(wch) > HSWL <€ys) during [to, t1] we obtain vp >
HSWL ey, Using (5.12), thisleads to a contradiction with vg < LSAML + gys.

. Thereissomet, € [t3 &0y, t3] suchthat read(mOK, 0) @t, and —rec(wch) during
(t4,t3). Then, as above, we can show t, € [to,t;], which leads to a contradiction
with —read(mOK, 0) during [to, t1].

To prove CMCs, let tg+ dwe < t1, rec(weh, v)@tg, v < LSM + gy, and (rec(weh) <
LSWL + &ws) during [to,t1]. By CCs(tg), send(pch,0) in [to,to + Owc), i.€, thereisa
ty € [to, to+ dwc] such that send(pch, 0)@t,. It remainsto prove —send(pch,1) during
(t2,11]. Suppose send(pch, 1)@ts, for somets € (to,t1]. Then by CCy(t3) thereexistty €
[t3 0w, t3] @nd v such that rec(wch, Vp) @14, Vo > HSWL <y, and —rec(wch) during
(t4,t3). Asabove, we can provet, € [to,t1]. Then it is easy to see that (rec(wch) <
LSWL + gws) during [to, t1] and (5.12) lead to a contradiction with vp > HSWL <€y

To prove CMCg, assume

to+ Om < t1, read(mOK, 0)@ty, and —read(mOK, 1) during [to, t1]

By CCs(tp) weobtain send(pch, 0) in [to, to+ Om; i.€. thereexistsaty € [to, to+ Oy] With
send(pch, 0)@t,. Itremainsto prove —send(pch, 1) during(ty, t1]. Let send(pch, 1) @ts,
for tz € (tp, t1]. By CCg(t3) there exists

ty € [t3 &0, t3] such thatread(mOK;, 1) @t4 and —read(mOK) during (ts, t3)

Sinceread(mOK) @ty and t3 > ty > to, thisimpliesthat t, > to. Further, t; <tz <t;. Thus
ty € [to, 1] and read(mOK, 1) @t, which contradicts —-read(mOK, 1) during [to,t3]. O

By Lemma 5.11 it remains to implement MContr according to the specification
{{(now = 0)) MContr ({(CC))

We show that component MContr can be implemented by the program:

5.6. THE MINE PUMP EXAMPLE: FINAL IMPLEMENTATION 133

while truedo
sel weh?x then skip or delaydws then x:= timeoutval les;
read (mOK, mOKvar) ;
if mOKvar = 1 A X > HSM. <eys then pchi!l
elseif mOKvar = 0V x < LSAM + gys then pch!!Ofi fi
od

Let Sbe the body of the while construct above, i.e. MContr = while truedo Sod.

The program has a select statement which sets an upper bound of dys on the waiting
period for a message along wch (conform CC3). This allows us to prove CCq, which
specifies a maximum delay between read actions on mOK. An alternative is to obtain
this bound from commitment CWSens; of the water level sensor, but then this informa-
tion would need to have been incorporated in the specification of MContr (e.g. in the
assumption).

To prove ((now = 0)) while truedo Sod ((CC)) we use the While rule with

9
= Al
i=1
where

1 =Vt <now& Ty ©2Tp < Teomm - CCy(t)
I, =maxsend(pch, Init, Period) during [0, NnoW < Teomm|
A (=send(pch)) during (Now < Teomm, NOW)
I3 =Vt < now<max(Teomm, Ta) ©Tr ©2Thp < Teomm : CCa(t)

and
li=Vt<now:CCi(t), i=4,...,9
Letlg= A2 1o, Wwhere

lor =Vt < now T, 3T < Teomm : CCy(t)
lo2 = maxsend(pch, Init, Period) during [0, now < Tcomm< Tp)

A (—send(pch)) during (Now <Teomm < Tp, NOW) A NOW > T,
loz = V't < now <max(Teomm, Ta) < Tr <3Tp < Teomm : CCs(t)
loi=lj,fori=4,...,9

Then it is easy to derive

(1)) delay Ty {{l0))

Letiy =1. Then| — 11 and loc(i1) = @. Further, Vt; < 0 3ty > ty : I4]t,/now] — CC
can be proved rather easily. For instance,

Vi <oodty >ty |1[t2/nOW]
=Vt <oodtp >ty (VE<ty &Ty ©2Tp S Teomm : read(mOK) in [t t+ Aread))

134 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

which implies
Vit < oo :read(mOK) in [t t+ Argaqg), 1.€. VI < 00 : CCy

Then, assuming ((Ig A now < o)) S((I)), the Whilerule leads to
(1Y) while truedo Sod {(CC A now = o))

Sincenow = 0 — | (recall that Teomm > 0), the Consequence rule leads to
{{(now = 0)) while truedo Sod ((CC))

Hence it remainsto prove {{Ig A now < o)) S{(I)). By the conjunction rule, this can be
divided into the proofs of

{(log Anow < o)) S((I;)), fori=1,...,9
Proof of I; requiresthe intermediate assertions A;, B;, C;, and D; where

{(Ii A now < o))

sel weh?x then skip or delaydws then x:=timeoutval les (A)) (1i)
{(A Anow < o)) read (mOK, mOKvar) ((B;)) (2i)
(B Anow < o)) delay Ty {(C) (30)
{((CGi AmOKvar = 1AX> HSM <gps A Now < o)) pchi!l ((I;)) (4i)
(G A (~(mOK = 1) VX < HOM <gys) A Now < o)y delay Ty, ((D;)) (5i)
<<D A (mOKvar =0V X < LSM + gys) A NOw < o)) pcht!0 ((1;)) (61)

The proofs of these invariants have a similar structure and we shall illustrate the basic
idea by giving the proof of Igs, i.e. Vt < now: CCs(t). Define

As = lgs V (YVt < now, t £ NOW<Tcomm : CCs(t)A rec(wceh, X) @(Now < Teomm))
B5 = |05\/(Vi< nOW,t 7§ nowW < Teomm < Tr - CC5(t)
A rec(weh, X) @(Now < Teormm < Tr < Tp))
Cs = lg5 V (YVt < now, t # now < Teonm < Tr & Tp @ CCsh(t)
Arec(weh, X) @(Now < Teormm < Tr < Tp))
Ds = lgs V (VI < now, t £ Now < Teomm < Tr 2Ty, : CCx(1t)
A rec(weh, X) @(Now < Teomm < Tr <2Tp))

Finally, recall that Is =Vt < now: CCs(t). Thenusing i =5, properties (15) to (65) can
be derived provided, for (65),

dwe > Teonm+ Tr + 2Ty
The following constraints are required to prove the other invariants:

lo1: Aread = Tr + 3Tp+ Tcomm+ Ows+ Ta

log: Owr = MaX(Tcomm, Ta) + Tr + 3Tp + Tcomm

loa: dwe > Teomm+ Tr+ Th

log: Omi > Tr + 2Ty

lo7: Owe > Tcomm+ Tr + Tp and timeoutval < HSWL <€y
log: dwe > Tr + Th

5.6. THE MINE PUMP EXAMPLE: FINAL IMPLEMENTATION 135
5.6.1 Conclusion: mine pump example

Finally, we can combine the design steps of the mine pump system and derive the con-
straints that are needed to ensure correctness. The previous section showed a program
which correctly implements MContr with

Dread = Tr +3Tp+ Teomm =+ Ows+ Ta

Init = 3Tp+ Teomm=+ Tr

Period= 3Ty + 2Tcomm+ Tr

Owr = maX(Tcomm, Ta) + Tr + 3Tp+ Tconm
Owe = Tcomm+ Tr+2Tp

O =T +2Tp

and provided
LSWL + gy < timeoutval < HSWL <€ys

The design steps of preceding sectionswere proved to be correct, provided thefollowing
held:

. For Lemma5.3, LM > LWL + 3 Ay s HOWL < HWL 3 A
and A < Mgty -
. For Lemma5.8, dsc > Opc + Op.

. For Lemma5.9, dpc > Ows+ Owr + Owc.
. For Lemma5.10, (Aread + Om + 8p) Amp < CML <SVIL.
. For Lemmab5.11, LSM. <gyws < HSWL + €.

These can be combined into the following list of congtraints:

LM + 2805 < HSM
LSM LWL + (ws + Swr + Swe + 3p) Agi.
HSWL HWL <(3ws + Swr + Swe + 8p) A
AR < gy
(Dread + Bmi -+ 3p) A

CML <SMVL
To represent the reaction time we define an auxiliary parameter

Dreact= dws+ Owr + dwc + Op
= Ows+ Op + MaX(Tcomm, Ta) + 2Tr + 5Tp + 2Tcomm.

AN

IN IV

IN A

To satisfy these requirements, define

LSWL = LWL+ Areact Al (5.13)
HOM. = HWL SAreact A (5.14)
SML = CML <(Aread + Om + Sp) Ay (5.15)

136 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Note that the constraint LSAWL + 2 < HSWL then corresponds to
LWL + Areact Mgt +28ws < HWL &Areact At

out

Combining the constraints leads to the correctness of
{(now = 0)) Sump || Pump|| WSens|| Air || MSens|| MContr ((CTL))
provided

<)\mn
out
LWL + Areact(A g +AT) + 2605 < HWL

out

Ain

where MContr is the program given at the start of this section, with timeoutval such that
LSWL + gws < timeoutval < HSWL <-¢,s (note that by (5.13) such a value exists) and
given the specifications of :

max

. Sump with LSWL and HSWL and a given maximum inflow A; ™,

. Pump with Init = 3Ty + Teomm+ Tr, Period = 3Ty + 2Tcomm+ Tr @nd given values
of &p and minimal outflow A(\y,

. WSensfor given values of dys and gy,

. Air for agiven value of A% and with SVIL as defined above,

. MSenswith SMIL as defined above.

5.7 Further work

The proof system described in this chapter can be extended and used in different ways.
We shall consider briefly afew of these: scheduling, protocol verification and mechanical
verification.

5.7.1 Scheduling

With maximal parallelism, each process hasits own processor. Thismodel can be gener-
alized to multi-programmingwhere several processes share aone processor and schedul -
ing isbased on priorities. Execution on asingle processor is modelled as an interleaving
of the atomic actions of the processes assigned to it. Thisinterleaving can be restricted
by the programmer by assigning priorities to statements. Then a processor only starts
the execution of a statement when no other statement with a higher priority is ready to
execute. In this extended formalism, the correctness of a program is based on a fixed
(priority-based) scheduling agorithm (Hooman, 1991).

It might, however, be more convenient to have an intermediatelevel between schedul-
ing theory and formal top-down system design in which the scheduling strategy isnot yet
fixed but requirements on the scheduler are specified. For instance, the implementation
of the mine pump control system can be splitinto two parts. First we derive aset of tasks
with periods and deadlines of the form

5.7. FURTHER WORK 137

schedule (wch?x) with period € [0, dys|
schedule (read (mOK, mOKvar)) with period € [0, Aread]
schedule (T') with period € [A1,A;] deadline € [0, Ag]
where T =if mOKvar = 1 A x> HSM. <€ys then pchi!l
elseif mOKvar = 0V X < LSWL + gys then pch!!Ofi fi

Scheduling theory (see Chapters 3 and 4) can then be used to construct afeasible schedule
for these tasks.

Alternatively, timing requirements can be specified explicitly by annotating programs
with timing expressions (as was done in the Dedos project (Hammer et al., 1994)). No
assumptions are made about the execution time of statements but with the timing annota-
tions requirements can be expressed for the execution time of statements. Itisthenleft to
a scheduler to guarantee that these timing requirements are satisfied. The formalization
of thisapproach is atopic of current research.

5.7.2 Protocol verification

In Hooman (1993; 1994a), a distributed real-time arbitration protocol based on an algo-
rithm of the IEEE 896 Futurebus specification (IEEE, 1988) for networks of processes
P1||---||Pn using agenera strategy:

1. Formulate atop-level specification for the network P || - - ||Pn, say
(A) Pyl [[Pn (C)
2. Axiomatize the communication mechanism between the processes Py, ..., Py by
an axiom COMAX.
3. Find asuitable specification for each process P, fori = 1,...,n,
(A P (G
in terms of the external communication interface of P; only.
Prove A— A A ... A Ay and Comb(Cy,...,Ch) A COMAX — C.
5. Derive a correct implementation of process P;, for i = 1,....n, using the proof
method extended with rules for domain specific programming constructs.

>

Thisallowsthe devel opment of adistributed program which satisfies the top-level speci-
fication. In Step 4, the protocol is verified at an abstract level using the compositionality
of theparallel compositionrule. Similar verification could be performedin another logic,
e.g. area-timeversion of temporal logic (Abadi & Lamport, 1994) or the duration cal-
culus (Zhou et al., 1991a) (see Chapter 7). The triples find use in Step 5, where their
structure isvery convenient for the formal derivation of programs.

Step 2 requires the communication mechanism to be axiomatized. For this, the as-
sertion language is extended with suitable primitives (e.g. to denote send and receive
actions) and the proof system is given axioms for these primitives (such as the relation
between send and receive actions) and rules to relate communication statements of the
programming language to the corresponding primitives of the assertion language.

138 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Zhou and Hooman (1995) apply the first four steps of the method mentioned above
to an atomic broadcast protocol (Cristian et al., 1989) which requires timing correctness
and fault-tolerance. The reliability of real-time systems requires the use of techniques
that ensure the correct functioning of the system despite failures in some components.
But providing such fault-tolerance usually influences the timing behaviour of a system.
Given this strong relation between real-time and fault-tolerance, it would be desirable to
extend our real-time framework to deal with fault-tolerance (see Chapter 8).

5.7.3 Mechanized support

Most of the work mentioned here has been based on manual, deductive verification but it
isobviousthat for asystem of reasonabl e size some mechanized tool supportisessential.
Thiswould alow proofsto be constructed interactively and checked mechanically so that
simple verification conditions can be discharged automatically.

The Prototype Verification System PVS (Owreet al., 1992) has been used to verify de-
sign steps during top-down design in the assumption—commitment framework presented
in this chapter. The PV'S specification language is a strongly typed higher-order logic.
Specifications are structured into a hierarchy of parameterized ‘theories’ and some theo-
riesare built-in (e.g., reds, lists, sets, ordering relations, etc.). There is a mechanism to
automatically generate theories for abstract datatypes. The PVS system has an interac-
tive proof checker with induction rules, automatic rewriting and decision proceduresfor
arithmetic. PV S proof steps can be composed into proof strategies.

To use the PV S specification language, a dight reformulation (Hooman, 1994b) was
made in the framework to obtain a mixed formalism in which programs and specifica-
tionsareunified (smilar to, e.g. the mixed terms of Olderog (1985) and Zwiers (Zwiers,
1989)). In such aframework, assertional specifications can be freely mixed with con-
structs from the programming language. This makesit possible to formalize the process
of program design and to describe the intermediate stages.

Use of thistool was demonstrated for the top-down derivation of adistributed real-time
control system (achemical batch processing system). Simple detailsare proved automat-
icaly using the PV S decision procedures. Thisimprovesthe speed of the design and the
verification and alows the user to concentrate on the essential structure of proofs. Fur-
ther, the possibility of building hierarchies of parameterized theoriesis also very useful.

5.8 Historical background
58.1 Semantics
The programming language of this chapter and its semantics are to a large extent influ-

enced by thework of Koymanset al. (1988) who defined a denotational real-time seman-
ticsfor the maximal parallelism model. In Huizing et al. (1987), afully abstract version

5.8. HISTORICAL BACKGROUND 139

of this semantics was developed. These semantic models are based on the linear history
semantics of Francez et al. (1984).

The approach was extended to communicating shared resources by Gerber and Lee
(1989; 1990). To obtain a calculusfor shared resources a priority-based process algebra
was presented. The computation model was defined by an operational semanticsinwhich
priorities are not taken into account but were incorporated later using an equivalence.
Global, discrete time is obtained by assuming that all actions take one time unit.

An aternative, topological, approach can be found in Reed and Roscoe (1986), where
the real-time behaviour of CSP programsis defined by means of complete metric spaces
(see Chapter 6).

5.8.2 Hoarelogic

Our formalism is based on classical Hoare triples (Hoare, 1969). These correctness for-
mulae have been used for the specification and verification of many non-real-time pro-
gramming languages. A good survey was given by Apt (1981; 1984) and an extensive
formal treatment can be found in de Bakker (1980).

Usually, verification methods such as that by Manna and Pnueli (1982) for temporal
logic and others by Owicki and Gries (1976), Apt et al. (1980) and Levin and Gries
(1981) for the verification of parallel programsusing Hoare triples, require the complete
program text to be available. In contrast with these methods, we have formulated com-
positional proof systems which alow reasoning with the specifications of components
without knowing their implementation. Compositionality can be considered to be a pre-
requisitefor hierarchical, structured program derivation. A separation of concernsisthen
possible between the use of (and the reasoning about) a module and its implementation
(Dijkstra, 1976; Lamport, 1983). With a compositional proof system, design steps can
be verified during the process of top-down program construction. An overview of the
transition from non-compositional proof methods towards compositional proof systems
can be found de Roever (1985) and Hooman and de Roever (1986; 1990). The compo-
sitional proof system for our modified Hoare triples was inspired by the work of Zwiers
(1989) and preliminary accounts can be found in Hooman (1987; 1990; 1991).

Related work was done by Haase (1981) who introduced real-timeas avariablein the
data space of the program and derived assertions using Dijkstra’s weakest precondition
calculus(Dijkstra, 1976). Bernstein (1987) discusses several ways of modelling message
passing with time-out in the non-compositional framework of Levin and Gries (1981).
A non-compositional approach can be found in Schneider et al. (1992), where alogic
of proof outlines with control predicates is extended to concurrent real-time programs
by adding a primitive to express the time at which a control predicate last became true.
A similar extension of Hoare Logic was given by Shankar (1993) using a more genera
primitive to express the time that has elapsed since an assertion last held.

PVS (Owreet al., 1992) and its predecessor, EHDM, have been used for a number of
applications. EHDM was used to model digital flight-control systems (Rushby, 1993),
for proof of an interactive convergence clock synchronization algorithm (Rushby & von

140 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Henke, 1993) and Byzantine fault-tolerant clock synchronization (Shankar, 1993). An
application of PVS was described by Lincoln and Rushby (1993), where an algorithm
for interactive consistency has been verified.

5.8.3 Reated work

Traditional linear time temporal logic (Pnueli, 1977; Manna & Pnueli, 1982; Owicki &
Lamport, 1982) has been shown to be valuable in the specification and verification of
the non-real-time behaviour of programs. It allows the expression of safety and live-
ness properties by using a qualitative notion of time. For instance, for an assertion ¢,
thislogic can expressthe safety property ‘ henceforth ¢ will hold’ (30 ¢) and the liveness
property ‘eventualy ¢ will hold (& ¢). To specify real-time constraints, a quantitative
notion of time has to be introduced. As aready observed (Pnueli & Harel, 1988; Harel
et al., 1990), there are two main approaches to defining real-time versions of temporal
logic. Inthefirgt, thislogic is extended with a specia variable which explicitly refers
to the value of a global clock, the so-called Explicit Clock Temporal Logic. Descrip-
tions of non-compositional proof methods using Explicit Clock Temporal Logic based
on Manna and Pnueli (1982), can be found in Harel (1988) and Ostroff (1989), where
decision procedures for this logic are given. A compositional proof method using Ex-
plicit Clock Temporal Logic was formulated by Hooman et al. (1991).

An aternative approach uses an extension proposed by Koymans et al. (1983) and
Koymans and de Roever (1985), in which the scope of temporal operatorsisrestricted by
using time-bounds. Then we can express, for instance, ‘ duringthe next seventimeunitsé
will hold’" (O_7¢) and ‘eventually within fivetime units¢ will hold’ (& s¢). Thislogic
iscaled Metric Temporal Logic (MTL), since in genera it extends temporal logic by a
metric point structure with a distance function to measure time; Koymans (1990; 1992)
has a detailed discussion on MTL and several examplesto illustrateits application to the
specification of real-time systems. An early use of temporal operatorswith time-bounds
can befound in Bernstein and Harter (1981), wherea quantitative ‘ leadsto’ operator was
introduced to verify real-time applications. In Koymans et al. (1983) aversion of MTL
was applied to the specification of real-time communication properties of atransmission
medium. A temporal logic with statements about timeinterval s has been used by Shasha
et al. (1984) to prove the correctness of local area network protocols. Hooman (1991)
formulated a compositional proof system for formulae of the form Ssat ¢, where Sisa
program and ¢ a (real-time) property expressed in MTL. This proof system is based on
compositional proof methodsfor classical temporal logic (Barringer et al., 1984; Nguyen
et al., 1986) and a preliminary version, for a simplified language, appeared in Hooman
and Widom (1989).

Logics for reasoning about real-time systems were classified by Alur and Henzinger
(1990) according to their complexity and expressiveness. A tableau-based decision pro-
cedure is given for aversion of metric temporal logic. For decidability, a discrete time
domain is used. In a decidable version of the explicit clock approach (called TPTL),
special variables represent values of aglobal clock and a*freezing' quantification binds

5.9. EXERCISES 141

a variable to the value of the clock in a certain state. In Harel et al. (1990) a decision
procedure and a model checking algorithm are given for a suitably restricted version of
Explicit Clock Temporal Logic. The expressibility of thislogicis shown to be incompa-
rablewith TPTL. Similar to the extension of linear timetemporal logicto MTL, branch-
ing time temporal logic, also called Computation Tree Logic (CTL), can be extended to
real-time by adding time-bounds to the modal operators. For instance, in Emerson et al.
(1989), dgorithmsfor model checking and satisfiability analysisare presented for alogic
with discrete time. It isshown in Alur et al. (1990) that model checking results can be
extended to CTL over adense time domain. Finally, the logic defined by Hansson and
Jonsson (1989) extends CTL with discrete time and probabilities.

Lamport’s temporal logic of actions (TLA) is aformal specification language and a
refinement method to support the top-down design of systems (Lamport, 1994). It has
been extended to real-time by adding a specia variable now to represent time (Abadi &
Lamport, 1994). The extended notation was applied to a hybrid system — the gas burner
—and to asolution of the Byzantine generals problem (Lamport, 1993; Lamport & Merz,
1994).

Zwarico and Lee (1985) adapted Hoare's trace model to real-time. Jahanian and Mok
(1986) defined a real-time logic to analyze safety properties based on a function which
assigns atime-valueto each occurrence of an event. Real-time properties of diding win-
dow protocols were verified by Shankar and Lam (1987) using special state variables,
called timers, to measure the passage of time.

59 Exercises

Exercise 5.1 Consider, for asynchronous channelsin, ¢, and out, the processes
S =in?X; X:=x+1; cllx,
S, =while truedosel c?ythen y:=y+2; out!ly
or delay5then alarm!!1lesod
and the specification

{(now = 0)) §||S, ((rec(in,4)@0 — send(out, 7) € [81,dy]))

Give congtraints on the parameters and determine d; and &, such that this triple can be
derived. Give the main steps of this derivation.

Exercise 5.2 Consider areal-timesystem M which reactsoninput v aong asynchronous
channel in by sending thevaluef;(f;(v)) viaasynchronous channel outinlessthan A time
units. With the parameters A1, Ay, Ag, and A4 we have {waitrec(in), rec(in), send(out)}
C obs(M) and the specification

{((now=0)) M {{(do A1 A C2))

142 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

where

Qo = maxsend(out,A;,Ay) during [0,)
g1 = minwait(in,Az,A4) during [0,)
Qp = Vt<oo:rec(in,v)@t — send(out,fa(f1(Vv))) in [t,t+A)

() Suppose we have an environment E with
{send(in), waitrec(out), rec(out)} C obs(E)
satisfying
((now=0)) E{{(ryArp))
where

ri = maxsend(in,Az,A4) during [0, o)
minwait(out, A1, Ay) during [0, o).

r2
Prove
{(now =0)) M|[E {{q))

withq =Vt < o : send(in,v)@t — rec(out, fa(f1(v))) in [t,t+A).

(b) Implement M by two parallel components M; and M, which compute f; and f,,
respectively, and communicateinternally viathe asynchronouschannel mid. Com-
ponent M1 isgiven by {waitrec(in), rec(in),send(mid)} C obs(M;) and

{(now =0)) M1 ((q1 A ds3))

where gz =Vt < o : rec(in,v)@t — send(mid, fy(v))@(t+ d1). M, isspecified as
{waitrec(mid), rec(mid), send(out)} C obs(M,) and

{(now=20)) M2 ((GoAQaA0s))
where

Qs = Vi< oo:awaitrec(mid)int,t+dp)
05 = Vi< oo:(mid,Vp)@t — send(out,fy(vp))in [t t+ d3)

Prove, under certain requirements on the parameters ,, d,, 03 and A, that

{(now = 0)) M1|[M2 ((do A Q1A G2))

(c) Construct programs that satisfy the specifications of M1 and M, and formulate
the required constraints on the parameters.

Exercise 5.3 Consider an asynchronous channel ¢ and a parameter T ¢ TIME. Prove
the following implication:

5.9. EXERCISES 143
(3t : waitrec(c) during [0,tg) A (rec(c)@tp Vg =T))
A(3ty < T:=send(c) during [0,t1) A send(c, v)@t;) — rec(c,v) in [0, T)

(Informally thissaysthat if aprocesswaitsto receiveinput on c until either amessage has
been received or time T has been reached, and if another process sendsv along ¢ before
T, then visreceived aong cin less than T time units.)

Exercise 5.4 Consider the program S;|| S, with asynchronous channelsin, mid, out and
alarm. For §; we have obs(S;) = {waitrec(in), rec(in), send(mid)} and

{(now = 0)) S {{a1))
with

g1 =Vt < oo:rec(in,v)@t — 3ty < 10: ~send(mid) during [0, t;)
Asend(mid, v+ 1)@ty

S is specified by obg(S;) = {waitrec(mid), rec(mid), send(out), send(alarm)} and
((now = 0)) S, {{d2 A 03 A\ Ga))
with

Jy = Vi< oo:rec(mid,v)@t — send(out,v+ 2)in [t,t4 25)
g3 = dtp: waitrec(mid) during[O,ty) A (rec(mid)@tg V to = 10) and
g4 = waitrec(mid) during[0,0+ 10) — send(alarm)@10

(a) Provethat, under a certain condition on the parameter A,

((now = 0)) SIS, {{r))

with r = rec(in,v)@0 — send(out,v+ 3) in [0,A). Hint: use Exercise 5.3.
(b) Derive programsthat satisfy the specificationsof S; and S,, given certain con-
ditions on the parameters Ta, Tcomm, €tC.

Exercise 5.5 Process P, specified below, used the asynchronous channels in, out and
alarm:

{waitrec(in), rec(in), send(out), send(alarm)} C obs(P)
{(now = 0)) P {(a1 A 02 A O3))

with

g1 =Vt < oo :rec(in,v)@t — send(out, f(v)) in [t,t+ 2)
g2 =Vt < oo awaitrec(in) in [t,t+ 3)and
gz = Vt < oo : waitrec(in) during [t,t 4+ 10) — send(alarm) in [O,t + 11)

Consider the following two possible specifications of the environment E of P:

() Suppose E satisfies the following specification:

144 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

&)

O

Figure 5.5 Watchdog timer network

{send(in), waitrec(out), rec(out), waitrec(alarm), rec(alarm)} C obs(E)
{(now = 0) E {(r1))

withry =Vt < e : send(in)@t — t > 3A (—send(in)) during [t <3,t). Prove

((now = 0)) P||E ((qa))

with s = Vt < o @ send(in,v)@t — send(out,f(v)) in [t,t+ 2).
(b) Now suppose E satisfies

{send(in), waitrec(out), rec(out), waitrec(alarm), rec(alarm)} C obs(E)
{(now = 0)) E ((r2))

)
wherer, = (—send(in)) during [4,17). Then prove
({(now = 0)) P||E {{as))

where gs = send(alarm) in [0, 18).
(c) Derive aprogram satisfying the specification of P, given certain conditions on
the parameters Ta, Tg, Tcomm, EtC.

Exercise 5.6 Design a ‘watchdog’ process W whose job is to check whether the pro-
cesses Py, ..., Py are functioning properly. The network is shown in Figure 5.5, where
rey,...,res, and al are asynchronous channels.

Ignore the actual task to be performed by each P; but assume that it is functioning cor-
rectly iff it sends areset signal to W on channel rg at least once every ten time units.
Aslong as al processes P; send areset signal in time, the watchdog timer W does not
communicate on the alarm channel al. But if W hasto wait for areset signal on apartic-
ular re for ten time units or more, it will send an alarm message on channel al within K
time units. Ignore the behaviour of W after acommunication on al. W can therefore be
specified by

((now = 0)) W {(Cw))

where

5.9. EXERCISES 145

Figure 5.6 Refinement of the watchdog timer network

Cw =Vt < oo :((Ji:waitrec(re) during [t, t+ 10))
— Jtp < t+ 10+ K : send(al)@tp)
A(send(al) @t
— Jie {1,...,n} 3t; < oo : waitrec(re) during [ty, t; + 10))

() Provethat if each P; sends asignal on channel rg at least once every ten time
units then no signal is sent on al. To specify that the P; are functioning properly,
assume

{{(now =0)) P; ((Vt< o :send(re)in [t,t+ 10)))
Then prove that an alarm message never occurs in the network, i.e.
{(now = 0)) Py| - --[|Pn||W ({—send(al) during [0, »)))

(By compositionality, the properties of the network Ps|| - - - || Pn||W can be verified
using the specifications of the components, without knowing their implementa-
tions.)

(b) Design a program to implement the watchdog process W and satisfy the com-
mitment Cy,. Since the reset signals of any of the processes Py, ..., P, may arrive
at the same time, implement W as a parallel composition W= Wj|| - - - |[Wh||A (in
Figure 5.6 the a4, . . ., a, are synchronous channels). Process W is the watchdog
for P; and signals process A via channel g as soon as there is no communication
onre for at least ten time units; process A waitsfor asignal on any of thea;s; after
receipt of asignal it sends a message on al.

Sincethe exact timing requirementsfor W, and A may not be clear at thislevel, use
parameters K; and Ky in their specifications. This leads to

{(now = 0)) W {(Cw))

where

146 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Cw, =Vt < o :(waitrec(rg) during [t, t+ 10)
— (waitsend(a;) vV send(g;)) in [t4 10,t+ 10+ K;))
A((waitsend(a;) v send(a;)) @t
— Ity < oo I waitrec(re) during [to, t; + 10))

Process Ais specified by
{(now = 0)) A ((Ca))
where

Ca =(AjL; waitrec(g) during [0,) A (—send(al)) during [0,))
V(Jie {1,...,n} 3tz < oo AjL; waitrec(ay) during [0, t3)
Arec(a) @tz Asend(al) in [tz t34 Ka))

Prove
{(now = 0)) Wa|[- - - [|Wh[|A ((Cw))

provided certain constraints on K, K; and K5 hold.

Chapter 6

Specification and Verification in Timed
CSP

Steve Schneider

I ntroduction

Communicating sequential processes (CSP) is alanguage designed to describe formally
the patterns of communication behaviour of system components or processes and how
these components may be combined. The theory of CSP enables the formal description
of system specifications and supports their analysis, judging them against the require-
ments. A theory of refinement allows CSP descriptions at a high level of abstraction to
berefined to alevel of description more appropriatefor implementation. Thisallows ab-
stract CSP processes to act as specifications, describing the behaviour expected of any
implementation.

Timed CSPisadirect extension of the original CSP, and includes explicit timing con-
structs enabling the description of quantitative timing behaviour. A theory of timewise
refinement allows mappings between untimed and timed processes. We will use the ab-
breviation CSP to refer to the timed extension of the language.*

6.1 Thelanguage of real-time CSP

The CSP language describes processes in terms of their communication behaviour, re-
moving internal stateinformation that does not affect the communication behaviour. This
abstractionisappropriatefor real-timesystems since they arereactive and interact contin-
ually with their environment. The requirements of such systems are concerned primarily
with the interactions between a component and its environment.

1The reader should be aware that thisis not the usual practice: the timed language is more commonly
caled red-time CSP,

147

148 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP
6.1.1 Eventsand processes

A process is modelled in terms of the possible interactions it can have with its environ-
ment, which may bethought of as another processor set of processes, the‘ outsideworld’,
or a combination of these. The first step in the description of a processis to decide on
the ways in which interactions can take place.

Interactions are described in terms of instantaneous atomic synchronizations, or
events. This kind of synchronization is sufficiently ssmple to model asynchronous and
shared memory communication. A process cooperating with its environment for some
length of timeis described in terms of asingle event occurring at the point at which they
agree to cooperate. A process can be considered as a ‘ black box’ with an interface con-
taining anumber of events through which it interacts with other processes. The set of all
eventsin the interface of a processis called its aphabet. Inthis set, interface events are
treated as synchronizations between the participating processes and not as autonomous
actions under the control of a single process. A process containing an event in itsin-
terface is required to participate in the occurrence of that event. The refusal of asingle
participant to cooperate will block its occurrence.

6.1.2 Computational model

Beforeweformally describethelanguage of CSP and how it isto be understood, we must
make explicit anumber of assumptions concerning the underlying model of computation
and the nature of time:

. Maximal progress. A synchronization event occurs as soon as all participants are
ready to performit.

. Maximal parallelism: Every process has a dedicated processor; processes do not
compete for processor time.

. Finitevariability: No processmay perform infinitely many events, or undergoin-
finitely many state changes, in afiniteinterval of time.

. Real-time: The time domain is taken to be the non-negative real numbers. Thus
itis possible for eventsto occur at any non-negativereal time. Since thereals are
dense, our maximal parallelism assumption above means that thereis no positive
lower bound on the time difference between two independent events occurring at
different times.

. Newtonian time: Time progresses in all processes at the same rate, and all with
respect to the same unique global time frame.

The assumption of maximal progress has close connections with the treatment of pro-
cesses and the events that they may perform. In addition to the eventsin the interface of
aprocess (externa events), a process description may aso include internal events. The
interface of aprocess P will not containitsinterna eventsasthey will be performed by P

6.1. THE LANGUAGE OF REAL-TIME CSP 149

without the participation of its environment. In practice, an internal event usually corre-
spondsto asynchronization between parallel componentsof P. Maximal progressmeans
that an internal event occurs as soon as P isready to performit, and thiswill be as soon
as all the participating components of P are ready.

Externa events, on the other hand, require the participation of the environment of P.
An external event a can occur only when all processes which contain a in their interface
agree to performit. If P isone of a number of such processes which are components of
a composite process R, and the event a is external for R, then the occurrence of a will
be influenced by R's environment. If aisinternal to R, then by maximal progressit will
occur as soon as all the participants, one of which is P, are able to performiit.

6.1.3 The operatorsof CSP

The language of CSP isdefined by the following pseudo Backus—Naur form definitions.

P 1= SIOP|XIP|P;P|a—P| sequential
PDP|P|—|P|P§P| choice
PIIA[A]IP[PI]P] parallel
P\A|f(P)|f~P)]| abstraction
X|uXeP recursion

2 isthe set of all possible events, aisinZ, Ain P(X), tin[0,), f isafunctionX — X
and X isa process variable. CSP processes are terms with no free process variables (i.e.
every processvariableisbound by some p expression). InaCSP process, every recursive
expression is time-guarded to ensure finite variability (i.e. thereissomet > O for which
any execution must take at |east t to reach arecursiveinvocation). Sincetheonly operator

that introduces a delay is the timeout operator é, every occurrence of a process variable
must be guarded by a non-zero timeout.

We shall use the convention that events are written in lower case, and processes are
written in upper case.

Sequential

The process STOP is the deadlocked process, unable to engage in any events or make
any progress (thismight adequately describe asurly waiter in arestaurant who refusesto
serve any customer). It might be used to describe a system which has crashed, or which
has deadlocked: no further events are possible.

The process XKIP is the immediately terminating process. This might describe the
waiter whose shift ends as soon as it starts. No events are performed, but in contrast to
STOP it can signal to its environment that it has terminated, and an appropriate environ-
ment would be able to pass control to another process.

The sequential composition P; Q behavesasP until P terminates, and then behaves as
Q. Thus WAITER;; WAITER, initially behaves as WAITER, until the shift finishes; the

150 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

subsequent behaviour is that of WAITER.

Aswe might expect, KIP; P =P for any P, and STOP; P = STOP; indeed the seman-
ticmodel supportsthese equations. Thefirst equation statesthat since SKIP does nothing
except immediately pass control to P, the resulting behaviour is indistinguishable from
that of P. In the second equation, the deadlocked process STOP does not indicate termi-
nation so P will never be reached and the result is equivalent to STOP.

The prefix processa — P isready to engage in event a (and in no other event). It will
continueto wait until itsenvironment is al so ready to perform a, at which point synchro-
nization on this event will occur. Once the event is performed, the subsequent behaviour
of a— P will bethat of process P. By default, thereis no delay between the occurrence
of a and the beginning of P. A waiter who is prepared to take a customer’s coat before
serving may be described by the process coat — SERVE, where the event coat models
the synchronization between customer and waiter achieved by the removal of the coat.

Welater defineaformof prefix which explicitly introducesadelay: a-L Pisaso ready
initially to engage in a; but once that event is performed, there is adelay of t before it
behaves as P. The waiter who takes ten minutes between removing the coat and serving

would be described by coat 29 SERVE.
The behaviour of awaiter to asingle customer may be described by the following pro-
Cess.

WAITER = tablei coat >, order 2 serve 3
payo'—o>l tip 3, coat — KIP

The waiter is prepared to show a customer to atable, then, after ashort delay, to remove
acoat, then take an order, serve, accept payment, accept atip and finally return the coat.
Observe that each of these eventsindicates areadinessto interact: if the customer is not
ready to order until ten minutesafter the coat istaken, thewaiter will wait; if the customer
isready after only three minutes, the waiter will not yet be ready to interact.

Choice

An external choice P O Qisinitially ready to engage in eventsthat either P or Q isready

to engage in. The first event performed resolves the choice in favour of the component

that was able to perform it, and the subsequent behaviour is given by this component.
A choice offered to the customer between two items on the menu could be modelled

using this choice:

duck 2 SERVE O grouse 2 SERVEy

Here, a choice of two processes, duck 2 SERVEy and grouse 2 SERVE,, is offered to
the customer. Both initia eventsare available, and the choice isresolved at the point the
customer performs one of these events.

Aninternal choice P 1 Q behaves either as P or as Q but, unlike the external choice,
the environment cannot influence the way the choiceis resolved. The choice

duck 2 SERVE, 11 grouse 2 SERVEy

6.1. THE LANGUAGE OF REAL-TIME CSP 151

is not made by the customer, but is made instead by the system (the restaurant in this
case), and the customer hasno influence over which way it isresolved. 1t may beresolved
by always choosing duck, by tossing acoin, by alternating between duck and grouse or by
choosing whichever ischeaper. Any of these approacheswill be acceptableto acustomer
who does not mind which of theitemsiseventually served, aslong asat |east one of duck
or grouse is offered.

The timeout choice P Qinitially behaves as process P. If an event is performed be-
foretimet, then the choice is resolved in favour of P, which continues to execute, and
Qisdiscarded. If no such event is performed, then the timeout occurs at timet, and the
subsequent behaviour is that of Q. An impatient customer may wait five minutes for a
table, but will leave the restaurant if no table becomes available in that time. This may

be described by the process CUST = (table — MEAL) S LEAVE. If the event tableisnot
performed within five units of time (minutesin this case), then the timeout will occur,
since the first process will not have performed any events, and the customer will behave
as the exception process.

Timeout may be used to handle exceptions in a number of ways. It may provide op-
portunitiesfor disagreement. The following fragment from thewedding service provides
an illustration:

(speak_now — DISRUPTION) 5 FOREVER_HOLD_PEACE

The expectation is that the timeout should occur (i.e. that the event speak_now does not
occur), but an opportunity should be provided to prevent it if necessary.

More often, timeout is used to detect errors: if an expected response is not received
within a certain time, some corrective action should be taken.

Parallel
The parallel combination P |[A|B]| Q alowsP to engagein eventsfromtheset A (only),
and Q to engage in events from the set B (only). The processes P and Q must synchro-
nize on al eventsin the intersection AN B of these two interfaces, but other events are
performed independently.

The customer CUST may have a set of possible interactions:

Ac = {table, order, serve, eat, pay, tip, coat}

Although any real customer will have other actions of interest, we are interested in mod-
elling interactionswith the restaurant, and so we have abstracted all activity irrelevant to
the situation we are modelling.

Events of interest in the restaurant might be described by the set

Ar = {table, order, pay, tip, coat, serve, cook}
A waiter who has a table ready will be able to interact with the customer:

CUST |[Ac|Ar]| WAITER

152 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

But, awaiter who has a cigarette before showing a customer to a table may lose the cus-
tomer:

CUST |[Ac|Ar]| CIGARETTE; WAITER

If CIGARETTE takestoo long to terminate, the customer may no longer wish to be shown
to atablebut if it terminates sufficiently quickly, the waiter will be ready before the cus-
tomer walks out. The event table can occur only at times when both participants are pre-
pared to engageinit.

If the processMEAL iseat 1 coat — I P, then the customer CUST (definedinterms
of MEAL) is not prepared to offer atip and requires the return of his coat after eating.
Sincethewaiter isnot prepared to return the coat until atip hasbeen received, theparallel
combination of CUST with WAITER will deadlock: athough each participant is able to
continue on some event, there is no event on which they can they can agree.

The asynchronous parallel combination P ||| Q represents the independent concurrent
execution of P and Q, with no synchronization between them on any events. A number
of separate waiters might be described using this construct:

WAITERS= WAITER ||| WAITER || ... ||| WAITER

Noneof thewaitersinteractswith any other, though they may al interact with acustomer.
In the combination

CUST |[Ac|Ar]| WAITERS

the customer can cooperate with any waiter; the choice between waitersis nondetermin-
istic: any that is prepared to perform table when the customer performsit may be chosen.

Abstraction

The hiding operator P \ A makesthe eventsin the set A internal to the process, thus re-
moving them from the control of the environment. The only participantswill then be the
components of P. From the maximal progress assumption, the internal eventswill occur
as soon as P isready to perform them. In genera, internal events occur as soon as they
areready, unless they are pre-empted because of conflict, such as when thereisachoice
between events.

A print spooler SPOOL and PRINTER communicate via channel print:

SPOOL = in-3 print > SPOOL
PRINTER = print ¥ out — PRINTER

The parallel combination SPOOL |[in, print|print,out]| PRINTER has print asavisible
channel and further processes may participate in it. Since only SPOOL and PRINTER
should participate in that synchronization, we make print internal:

(SPOOL |[in, print|print,out]| PRINTER) \ print

6.1. THE LANGUAGE OF REAL-TIME CSP 153

and the event print will occur as soon as both processes are ready to performiit.

The renaming operators f(P) and f ~1(P) change the names of events through the al-
phabet mapping functionf. Thisallowsageneric pattern of communication to be defined
for use with different events. For example, a waiter responsible for table i might be de-
scribed by a generic WAITER process and a renaming f; which maps any event a to a;.
Thus f1(WAITER) is prepared to show a customer to table 1, but to no other table.

Renaming using theinverse function f ~* allows anumber of eventsto trigger apartic-
ular communication. If function g has g(credit_card) = pay and g(cash) = pay, then the
processg~(WAITER) is prepared to engage in acredit_card event or acash event when-
ever WAITER is prepared to accept a pay event. The function h satisfying h(table) =
table allows h~1(WAITER) to show a customer to any table:

g Y WAITER) = table > coat > order 23 serve ¥

(credit_card oot tip 3 coat — KIP

O casho'—0>1tipi> coat — XKIP)

h-Y(WAITER) = (table; -5 coat > order 2 serve ¥

credit_card %% tip 2, coat — I P)

2 5 20 30
O (table, = coat — order = serve =

credit_card %% tip 2, coat — I P)
O (tablen 2 coat > order 2 serve ¥

credit_card %% tip 2, coat — I P)

Recursion
A recursiveterm u X e P behaves as P, with every occurrence of X in P representing an
immediate recursive invocation. Thus we will have the usua law

UXe P =P[uXeP/X]

Every recursive term of the form X e P that has P must be t-guarded for X for some
t > 0— sothat every occurrence of X in P requiresthe passage of at least t units of time
before it can be reached.

A waiter who deals with customers repeatedly may be described by the recursive pro-
cessu X e WAITER; X, or alternatively by arecursive definition.

RWAITER = table—2> coat >, order 2 serve 3
pay 2% tip 2 coat — RWAITER

154 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP
6.1.4 Generalized operators

The delay process Wait t is atimed form of SKIP which does nothing for t units of time
and then terminates successfully:

Waitt — STOP & SKIP

The timeout choice will wait for t units of time, but the process STOP cannot perform
any event and at timet control is passed to SKIP, which then terminates immediately.
A delayed form of prefixing can be defined as

aLP = a— (\aitt; P)

After the event a, thereis adelay of t before control reaches P.
Generalizing choice to alow infinite choicesis often useful. The prefix choice

aA—> Pa

remains willing to perform any event from set A until oneis chosen. Its subsequent be-
haviour, given by P5, isdependent on that event. Thusaconstruct can bedefined to allow
theinput on channel in of any item xinaset M, and the value x determinesthe subsequent
behaviour:

iN?X:M—Q(X) = a:inM— Py

wherethe set in.M = {in.m| me M} and Pjnm, = Q(m) for every m € M. The atomic
synchronization events here are of the form in.m. The complement is the output prefix
which has the form out!'x — P and thisis simply shorthand for out.x — P.

Thus a one-place delaying buffer might be described by the recursive process

DBUFFER = in -5 out!x — DBUFFER

There isaone-second delay between in? and out!, but no delay is enforced between out!
output and the subsequent in?.

Infinite nondeterministic choice may aso be defined. The process I_I_EJ P, for some
indexing set J may behave as any of its arguments P;. Thus, for example, a nondeter-
ministic delay over some interval | may be defined:

Waitl = |_|t€|V\aitt

The delay may be for any timein theinterval I. If each P; ist-guarded for X, then sois
their infinite choice and if P ist-guarded for X, then Wait I; P is(t+ infl)-guarded for
X.

Alphabet parallel composition generalizes as expected. The process || Pi givesinter-
face A to each process P;. To perform an event a, all processes with ain their interface
must participate.

6.1. THE LANGUAGE OF REAL-TIME CSP 155

A form of parallel composition which allows synchronization on some events and in-
terleaving on others may be defined by the use of event renaming. Define

fa(x) = ax ifxgA
X otherwise

O0a(X) = bx ifxgA
X otherwise

hy) = x ify=axory=Dhx
y otherwise

The process P|[A]| Q synchronizes on eventsin A, and interleaves on all other events.
PI[A]IQ = h(fa(P) [[AUaZ|AUD.Z]| ga(P))
If two runners are defined as

RUNNERL — start-% finish — STOP
RUNNER2 = start -2 finish — STOP

then a race between the two runners may be modelled as
RUNNERL|[start]| RUNNER2

They must both start at the same time (so they synchronize on start) but they may finish
at different times.

Exercise 6.1.1 Write CSP processes which describe the following situations. Decide
first which events are to be used (the alphabet of the process), and then provide a CSP
description:

1. A vending machine which isinitially ready to accept a coin, and is then always
ready to accept a coin within two seconds of the last item being dispensed; and it
offersthe customer the choiceof abiscuit or achocol ate five seconds after insertion
of acoain.

Itsinterface will be the set of events {coin, bisc, choc}.

2. A transmitter which sends a message every five seconds until an acknowledgement
isreceived.

3. Anovenwith atimer set to T which rings after T minutes of being switched on, if
not switched off beforehand.

4. A baby who wakes up nondeterministically between one and eight hours after go-
ing to seep.

5. A baby who needs to be rocked for five minutes to get to sleep. If rocking stops
before then, she cries; otherwise she seeps.

6. A baby who startsto cry if not fed within two minutes of waking.

7. A baby who has all of the above characteristics. (Hint: use aparallel combination
of the CSP processes you have aready defined.)

156 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP
6.2 Observationsand processes

The language of CSP has a formal meaning and the behaviour of a CSP processis pre-
cisely defined. This makes it possible to judge CSP descriptions against specifications
which characterize desired behaviour. Such specifications may be written in alanguage
oriented towards expression of properties (such astemporal logic), or even asa CSP pro-
cess which describes the desired behaviour.

6.2.1 Notation

Let X be the set of events, variablest and t' represent times and range over Rt and vari-
able srange over Traces, the finite and infinite sequences of timed events (t,a). We use
[J to range over sets of timed eventsin IRSET, the set of refusals, defined below.

The following operations will be used on sequences of events: #sis the length of the
sequence s, s; S, denotes the concatenation of s; and s,. The beginning and end of a
sequenceisdefined asfollows: begin(((t,a)) " s) =t, end(s™ ((t,a))) =t first({(t,a))
s) =a, last(s™ ((t,a))) = a. The notation s; < s, meansthat s; is a subsequence of s,
and s; < s meansthat s; isaprefix of s,. The following projections on sequences are
defined by list comprehension, where

(f(X) | x —s,P(x))
isthemaximal subsequence of swhoseelementsall satisfy P, withf applied to each term:

sqat = ((t.a)|(t,a) st <t)
ST (t,a)|(f,a)«—stel)
s|A = ((t,a)|(f.a)—sacA)
saet = ((feta)|(t,a) st >t

The set of events occurring in atrace is extracted by a set comprehension:

os) = {alsi{a}#{)}

s< tisthat part of thetracethat occursno later thantimetand s T | isthe part that occurs
duringinterval |. s| Aisthe subsequence of the trace whose events occur in the set A.
In s&it, thetrace sis moved backward through t units of time (and truncated so no event
occurs before time 0), and a(s) is the set of events which occur in's.

There are similar projections on refusal sets:

O<t = {(ua)|(ua) el u<t}
OlA = {(ua)|(ua) elacA}
Ost = {(usta)|(ua)eu>t}
o(d) = {a|(ua)el}

6.2. OBSERVATIONS AND PROCESSES 157

[0 < tisthe set of eventsin [occurring strictly beforetimet. [0 | Aisthat part of [
containing events from the set A and [<t isthe set [0 moved backward through t units
of time. o(0J) isthe set of events occurring at sometimein .

6.2.2 Observations

The formal semantics of CSP is defined in terms of timed failures. Each timed failure
corresponds to arecord of an execution of the system and consists of a timed trace and
atimed refusal.

Any observation of an execution of a process must include arecord of the events that
were performed and the times at which they occurred. A timed trace is afinite sequence
of timed events from the set [0, «0) x Z such that the times associated with events appear
in non-decreasing orde.

Traces: P(seg®(R* x X))

sc Traces &
((tr,@), (g, @) < s=t1 <1t
A
#s= oo = sup{t | {(t,a)) < S} =

Real-time systems are reactive and it is important to know when a processiswilling to
interact with its environment and when thisis not possible. For deterministic systems,
thisinformation can be obtained from thetrace but for nondeterministic systemsthetrace
information is not sufficient. For example, the traces of

a— STOP and STOPIMa— STOP

are the same but the first must always respond in an environment in which a is ready,
whereas the second may refuse to respond.

We will therefore also record timed refusal information. A timed refusal contains the
events (withtimes) which the processrefused to engage in during an execution. From the
assumption of finite variability, only finitely many state changes are possible in a finite
time. Since aprocess will continue to refuse an event whileit remainsin the same state,
atimed refusal can be considered as a step function from times to sets of events. The
set IRSET isthe set of al such refusals. It isdefined in terms of RSET, those sets which
record refusal information only for some finite time:

RSET : P(R* x)
IRSET : P(R* x %)

0eRSET &
3b;...bner...en iR AL AVP(E) @
0 =Ui([bi,&) xA)
0 e IRSET Vte N[0, 1) x 2 € RSET

158 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

C
b refusal
a
a b a
; » trace
6 1 5 3 7 g~ ume

Figure 6.1 A timed observation

Refusal information at any particular timeisconsidered to be subsequent to the events
recorded in the trace at that time. For example, in the process

a— STOP O b — STOP

the event b cannot be refused before any events have occurred. But when a occurs, the
possibility of b iswithdrawn and so it may thereafter be refused. Thus the step function
may be considered to be closed at the lower end of a step, and open at the upper end.
Further, once a has occurred, it, too, may be refused from that instant onwards since no
further copies of a are possible for the process. Thus a timed event may occur in both a
timed trace and in a corresponding timed refusal.

A singleobservation will consist of a CSPtimed failure, made up of atraces e Traces,
and arefusal set 0 € IRSET from the same execution. The trace and refusal are consid-
ered to bearecord of the behaviour of the processover al time, evenif sand [both end
at some finite time. If (s,00) is an observation of P, then P has some execution during
which the events in s were performed and the events in [J were refused. In contrast to
the untimed failuresmodel for CSP, thisrefusal contains information concerning events
that were refused both during and after the performance of s, whereas an untimed refusal
set contains only information after the end of the trace.

Figure6.1 showsthefirst 5.5 seconds of one possible observation of the recursivepro-
cess.

P =a—-(Wit2,b—P
O
W&it 5; ¢ — STOP)

Initially, event cisrefused over the interval [0,1). At time 1, event a occurs and further
copiesof it arerefused over theinterval [1,3). Event bisrefused over theinterval [2,3),
occurs at time 3 and then further occurrences are refused until time 5. b’s refusals up
to that time therefore consist of the interval [2,5), indicating that the occurrence of b at
time 3 must have been at the instant it was made available. c is refused over the inter-
val [3.5,5.5). During this refusal, another occurrence of a is observed, at time 4. The

6.2. OBSERVATIONS AND PROCESSES 159

diagram corresponds to the timed failure

({(1,a),(3,b),(4,a)), [1,3) x {a}
U[2,5) x {b}
U[0,1) x {c} U[3.5,5.5) x {c})

The refusal set could also be written in the form of a step function:

(((1,a),(3,b),(4,a)), [0,1) x {c}
U[1,2) x {a}

U[2,3) x {a,b}

U[3,3.5) x {b}

U[3.5,5) x {b,c}

U[5,5.5) x {c})

The refusal information is not a complete record of everything the process could have

refused — for example, it could have also refused b over the interval [0, 2) — but it may

be considered as a record of what the process refused in an environment which made

particular offers.
The set of all possible observationsis given by

OBS = TTxIRSET

Any pair (s,) isapossible observation of some execution, so OBSconsists of al pairs.
Processes are associated with subsets of OBS. The notation My, denotes the space of all
such subsets of OBS.

6.2.3 Thesemantic function

The semantic function
Fr1: CSP — My

is defined by giving an equation for each of the operators of the language.
Fr[STOP] = {(().0)|D € IRSET}

No event may ever be performed by the process STOP and any set of events may bere-
fused at any time.

Fn[SKIP] = {((),0)|v ¢a(0)}

U

{({(u,v)),0) [v ¢ o(0 <u)}
The special event v denotes termination in the semantics of processes but it is not an
event in syntactic CSP expressions. There are two possibilities for KIP: either it has
not yet terminated, in which case it cannot refuse to do so (though anything else may
be refused), or it has terminated at time u, in which case it may refuse anything after
termination but could not have refused v before u.

160 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

Fr [P QI ={(s0)|v ¢ a(s) A (sOU([0,) x {v})) € F [P]
V
s=%"SQA Vv €0(sp)
A (sq,0) <u e Fn [Q] A begin(sg) > u
A (s ((u V). 0 <uu([O,u) x {v'})) € Fn [P}

There are two possibilities for an execution of a sequential composition P; Q: either it
isan execution of P, in which case it must have refused to terminate throughout the ex-
ecution, or it is some terminating execution of P followed by an execution of Q; again P
must have refused to terminate throughout its execution until it actually did so.

Frnla—P] = {((),0)la¢gao(0)}
U
{(((u,@) s 0)] agao(d<u)
A (s,O0)eue Fr [P}

The prefix process a — P isunableinitialy to refuse a, which is the first event it must
perform. Either a does not occur, in which case anything except a may be refused, or a
occurs at sometime u, having previously not been refused, and the subsequent behaviour
isthat of P starting at time u rather than at time O.

FnPOQ] = {(0,0)[((),8)¢eFn[PINnFn[Q}
U
{(sO) [s# () A(sD)eFn[PlUFn[Q]
N
((),0 < begin(s)) € Fr [P N Fr [Ql}

Inan external choice P O Q, initial events are availablefrom either process; eventscan be
refused only if both processes are able to refuse them. Once the choice has been resolved
(at thetime of thefirst event) in favour of one of the processes, the subsequent behaviour
isgiven by that process.

FrnPnQ] = Fn[PluFn[Q]

An execution of an internal choice is an execution of one of the component processes.

Frn[P>Q] = {(s.0)|begin(s)<uA(s0)¢e Fn[P]}

{(s,0) | begin(s) = uA ((),0 <u) € Fy [P]
A
(s,0)eucFn[Q}

In an execution of atimeout process P> Q, either P performsitsfirst event before time
u, in which case the execution is smply one of P, or no event occurs beforetime u, and
the timeout passes control to Q. In the second case, the refusal up to time u is governed

6.2. OBSERVATIONS AND PROCESSES 161

by P, and the behaviour after u isthat of Q trandated to start at time u instead of at time
0.

Fn[PI[A[B]| Q] = {(s0)|30p,Uqe
Ol (AUB)=(Up|A)U(LUqlB)
ANs=s| (AUB)
A(s] A Op) e Fq[P]
A(s|B.Og)eFn[Q]}

Inthe parallel combination P |[A|B]| Q, the execution projected onto the set A isdue to
P, and that onto the set B isdueto Q. Where A and B intersect, both P and Q must agree
on eventsin the trace, but if any of them refuses an event the combination will refuseit.

FrlP||Ql = {(s0)|3sp,s0e ses ||l
A (sp,0) € Fr [P]
A (sq,0) € Fr [Q]}

where sp ||| sg isthe set of timed traces consisting of an interleaving of sp and sq: inan
interleaved combination, each event requires the participation of precisely one compo-
nent so both processes must refuse an event for the combination to refuse it.

Fr[P\A] = {(s\AO)|(s0OU([0,»)xA)) e Fy[P]}

In an encapsulated process P \ A, the eventsin A are made interna to the process (they
do not appear in the trace) and no longer require the participation of the environment:
they are autonomous events under the control of P. By the maximal progress assump-
tion, this means they should occur as soon as they are enabled. This corresponds to the
condition that A should be refusible for P over the entire execution: if thiswere not the
case, then there would be some period during which an event from A was enabled but
had not occurred, violating maximal progress.

Frlf(P) = {(f(.0)[(sF7H(D) e Fn [P}
Frlf=%P)] = {(sO)|(f(s).f(0)) € Fn[Pl}

Processes whose alphabets are renamed have similar behaviour, but the names of the
events are transformed by the renaming function f.

Foll1 Pl = (JFnlP]
i€l

The possible executions of a general choice are those of its components.
Frna:A—Pa] = {({),0)[ANo(D) =2}

Uil((wa) s 0) |
acANANo(O<u)=9

A(sO)ste FrP@)]}

162 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

An execution of aprefix choicea: A — P4 takesoneof twoforms: either no event occurs,
in which case nothing in A may be refused, or some event a € A ischosen a sometime
u, in which case no event in A may be refused before u, and the subsequent behaviour is
that of the chosen process P, trandated through u time units.

Therecursive process i X o Pisasolution of the equation X = P; thisisthefixed point
of the semantic mapping corresponding to P with themost timed failures. Thefixed point
will exist for time-guarded recursive equations. Recursive equations may be process def -
initions: the equation P = F(P) defines P to be the process u X o F(X).

Exercise 6.2.1 Consider the process P = (a-% b — STOP) O ¢ — STOP. Which of the
following are failures of P?

L1 ({((1,a)),9) 2.({(3,b),(1,a)),9)

3. ({(6,b),(1,a)),9) 4. (((1,a),(3,b)), 9)

5. ({(1,2),(5,b)),9) 6. ({(1,2),(5,b),(6,c)),9)

7. (((6,¢)),9) 8. ({),9)

9. ((),0,1) x {b}) 10. ({(1,a)),[0,1) x {b})

11. ({(1,a)),(0,1) x {b}) 12. ({(1,2),[0,1) x {a})

13. ({(1,a),(5,b)),[0,10) x {c}) 14. ({(1,a),(5,b)),[1,10) x {c})
15. ({(1,@),(5,b)),[1,2) x {a}) 16. ({(6,¢)),[0,4) x {b})

(((1,0)),[0,2) x {a})

Give a process which has both of the following behaviours:

({),10,2) x {a})
(((1,2),9)

6.3 Specification

A specification is a predicate Son timed failures. It describes the behaviour required of
the system. Process P meets specification S (written P sat §) if Sholdsfor every timed
failurein the semantics of P:

Psat §s0) < V(sO)eFq[P]eSsO) (6.2)
For example, the following specification requires the first event observed to be start:
S 0) = (s= () Vfirs(s) = dart)

In any execution, either no event is observed (the trace will be empty) or the first event
is start.

6.3. SPECIFICATION 163

The requirement that P performs ons and off s alternately is represented by the speci-
fication

Ss0)=Vu<se0<#s | on)<#s|off) <1

In every prefix of the trace s, the number of on eventsis equal to or one more than the
number of off events. The specification says nothing about the presence or absence of
other events.

If on should be availableinitially,

Ss,0)=(s| {on,off} = () = on¢ a(0))

When neither on nor off have yet been performed, P cannot refuse to perform on.
Writing specifications directly as predicates upon traces s and refusals [1 can become
cumbersome. Also, there are many similar specification patternsfor safety, liveness and
commonly occurring assumptions about the environment of the process. It is convenient
to define anumber of specification macrosor idioms as ashorthand for these patternsand
for use with proof rulesto reason about specifications at a higher level of abstraction:

aatt(s) = ((t,a)=<s (6.2
alivet(s0) = aattv(t,a)¢ O (6.3
alivefromtuntil A(s) = [t ,begin(sTIt, oo)lA))x{a}ﬂD 7] (6.4)
aopent(s,J) = aattv(ta) e (6.5
aclosedt(s,J) = -aatt (6.6)

aatl (s0) = dteleaatt (6.7)

aopenl (sJ) = Vteleaopent (6.8
aclosed | (s 0) = -aatl (6.9

Thefirst is straightforward: a at t for a particular execution whenever the timed event
(t,a) appearsin the trace. In alivet, the processis prepared to perform a at timet and
inalivefrom t until Awill remain so until disabled by some event from the set A. Gen-
eraly, theevent aisin the set A: if it is not, then no CSP process could meet the speci-
fication.

a open t states that the event a is open to the process at time t, i.e. the environment
of the process is ready to see a performed. If ais not actually performed at that time,
the process must have been unwilling to perform it because of the maximal progress as-
sumption (so the event appearsin therefusal set). Inaclosed t, the environment was not
ready to perform the event a at timet. The last three definitions are generalizations for
intervals.

For example, if aisinitially available, then

alivefrom Quntil

164 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP
A process which will perform event a whenever it is offered, is specified by
Vteaopent= aatt

No CSP process could meet such a specification, as the implementation must be finitely
variable. A process which performs a when offered if it has not performed one within
the last time unit is specified by

Vte ~(aatt<lt)) Aaopent=aatt

A specification that requires output to be offered from one time unit after input, until it
occurs, might be expressed as

VYteinatt=-outlivefromt+ 1until out

For a process to meet such a specification, all observations of the process must satisfy
the predicate.

Exercise 6.3.1 Formalize the following requirements, using the specification macro
language where appropriate.

out can only occur exactly five units after in.

out cannot occur exactly five units after in.

choc isavailable until choc or bisc occurs.

fire never occurs.

on occurs at time 5.

If the environment offerson at time 5, then it will occur.
If in occurs, then out is enabled five seconds later.
Between any up and down there must be amid.

Deadl ock-freedom.

inisaways available.

© oo NGO~ WDNERE

=
o

Which of these specifications cannot be satisfied by any CSP process?

6.4 Verification

It is possible to prove that a CSP implementation meets a specification by checking that
every timed failure meets the specifying predicate. But it is usually more convenient to
use amore structured approach to verification.

6.4. VERIFICATION 165
6.4.1 Proof rulesfor processes

The semantic equations allow the definition of a set of proof rules using a satisfaction
relation. The equations for a composite process built using an operator can be deduced
from the specifications of the components.

Therulefor delayed prefix has the following form:

Rulel

Psat §s,)

alPsats= () AVtealivet
Vv
s={((t,a)) " s Abegin(s)>t+d
AVt €[0,t)ealivet’ A S <(t+d),0 <(t+d))

If P sat S then for any behaviour of the processa q P, either no event has yet occurred
(itisliveon a) or aoccurred at timet (it islive on a up to t) and the behaviour after time
t + d meets predicate S, since it came from P. No event occurs between t and t 4+ d and
thereisno constraint on the refusal over that interval (so anything could be refused).

A delayed process has asmpler rule:

Rule?2

Psat §s,00)
Wa&it d; P sat begin(s) > d A Ss<d, 0 <d)

No event can occur before d; and the behaviour after d isproduced by P, so it must meet
S but it is shifted by d units of time because P began execution at time d.

The rule for external choice again directly reflects the semantic equation for that op-
erator.

Rule3

Psat §s,)
Qsat T(s,0)

POQsat(Ss0)VvT(sO))
As<Qt=()=SYsat0<xt)AT(sat,0<t)

Any behaviour of P O Q isabehaviour of P or Q and beforethefirst event is performed,
it must be a behaviour of both, since both processes are available.

If P and Q are defined recursively by the functions F and G, arecursion induction rule
can be used.

166 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

Rule4
Xsat S F(X,Y)sat S
VXYe L YetT };‘ AGX,Y)sat T P=F(P,Q)
Q=G(P,Q)
Psat S ST admissible
QsatT

If F and G satisfy the specifications Sand T, respectively, the mutual fixed points of F
and G meet those specifications.

A specification is admissible (or continuous, or closed) if (Vte Ss<t,0 <t)) =
Ss,[0): Sholdsfor an infinite behaviour if it holds for the finite approximations to that
behaviour. For example, the predicate specifying a’s availability from time 0 is admis-
sible, whereas a predicate specifying that there are a finite number of eventsin the trace
is not.

6.4.2 Proof rulesfor macros

The preceding proof rules smply expand the semantic definitions so on their own they
do not offer any advantage over using the semantic equations directly. But use of the
sat operator can reduce the complexity of each stage of verification by breaking alarge
verification into smaller units whose results can be combined using logical operators.

Rule5

Psat S
Psat T

PsatSAT

Rule6

Psat S
S=T

Psat T

Rule 5 uses logical conjunction to combine two smaller verifications. Rule 6 allows a
specification to be weakened, so that unnecessary information about a process can be
removed.

Use of Rule 6 requires showing that S=- T. Since Sand T are written using the speci-
fication macros, rulesare provided for reasoning at thislevel. The soundness of the rules
follows from the definitions in terms of traces and refusals. An advantage of this ap-
proach taken here isthat new macros, and new rules, can be defined to suit particular ap-
plications, and consistency is guaranteed by the underlying model. Some sample rules
follow and they will be used later in the chapter.

6.4. VERIFICATION 167

Rule7

alivet(s,0)
aopent(s,[)

aatt(s D)

If both the process and its environment are willing to perform an event at a particular
time, then it will occur.
The next two rulesfollow directly from the definitions,

Rule8

alivefromtuntil a
aopent+tg

aat [t,t+tg]

Rule9

alivefromtuntil {a, b}
batt = alivefromt until {a, b}

alivefromtuntil a

6.4.3 Proof rulesfor compound behaviours

The rules in this section have specific application for the verification of the mine pump
controller specification and use the parallel operator.

The proof rule for the parallel operator P|[A]| Q relates behaviours of the combined
process with behaviours of P and Q:

Rule 10
Psat §s,)
Qsat T(s,0)

P|[A]|Qsat 3sp,s0,Up,Uq e
S(se, Up) A T(Sq,0q)
A(s,0) € (sp,Up) |[All(se,Uo)

(sp,0p) |[A]|(sg,Uo) isthe set of all compound behaviours of P|[A]| Q that can arise
from those concurrent behaviours of P and Q.

The following rules deduce information about s and [from the component specifica
tions.

168 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

Rule 11

alivet(sp,Up)
(SvD) S (SPvDP) |[A]|(SQ7DQ)
alivet(s,0)

[agA]
If the processes do not synchronize on event a and one of them isliveon a, then so isthe
combination.

Rule 12

alivet(sp,Up)

alivet(sq,Uq)
(s0) € (s, 0p) [[All(sq: Uo)

alivet(s,0)

[ac Al
If they do synchronize on a, then the parallel combination will be ready to participate on
a when both components are.

Rule 13

aopent(s,)
(s.0) € (se.0p) [[All(sq, Tq)

aopent(sp,p)

[a¢ Aag o(sq)]
If Q does not perform event a, and the processes do not need to synchronize on a, then
if the environment offers a to the whole processit is offered to P.

Rule 14

aclosedt(s)
(SvD) € (SPvDP)HA”(SQ?DQ)
aclosed t (sp,p)

If aisnot offered to the combined process, it is not offered to either component.

Rule 15

—aatt(s)
(SvD) € (SPvDP)HA”(SQ?DQ)
—aatt(sp,0p)

If a does not occur in the combined process, it does not occur in either component.
Other rulesallow projectionsof eventsfrom the combined process to the components.

6.5. CASE STUDY: THE MINE PUMP 169
Rule 16

(SvD) € (SPvDP)HA”(SQ?DQ)

sIB=()=>s|B=()AsqlB={)
last(s | B) = b= last(sp | B) = bV last(sg | B) =b

If no events from B have been performed, then they have not been performed by either
component; if b isthelast event that was performed, then it must be the last event per-
formed by one of the components.

Finally, if the set B iscompletely independent of anything Q has performed, and P and
Q do not interact on any events from B, and the specification S depends only on events
from B, then it will betrueif and only if it istrue for P’s contribution.

Rule 17

(s,0) € (sp,0p) [[A]l (s, Oq)
Ss)< Ss|BU|B)

S(S,D){:}S(SP,DP)

[BN(AUO(sQ)U0(HQ)) = 2]

6.5 Casestudy: the mine pump

Using the specificationsin Chapter 1 to describe the problem, we verify the CSP descrip-
tion of the pump used to keep water levels safe in amine.

. The pump is used to remove accumulated water in the mine.
. The pump can be used only when the methane level is not dangerous.
. At most one shift in 1000 should be lost due to dangerous water levels.

The problemisto produceacontrol system for the Pump Motor which meetsthisrequire-
ment.

6.5.1 A CSP pump controller

PumpControl describes relationships between states. In designing a control system to
meet these relationships, it is necessary to decide how and when the changes between
states will occur.

The state-based definitions of Chapter 1 must be converted to event-based (or state-
trangition-based) definitionsin order to consider an implementation which performsstate
trangtions at different points of time. For the system to be in one state at time t; and
another at timet,, theimplementation must change the state at some time between t; and

to.

170 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

The following assumptions capture the relationship between the events that may be
performed within the system and the states of the sensors and actuators as described in
Chapter 1.

A correctly working sensor must give some reading at any time:

HWL1: Vte (water.highopent\V water.low opent)
The readings provided by the sensor are related to the actual water level in the shaft.

HW2: HW(t) = water.high opent A water.low closed t
HW3: —-HW(t) = water.low open t A water.high closed t

The methane level sensor is specified by DM1-DMS3.

DM1: Vte methane.danger opent Vv methane safe open t
DM2: DML(t) = (methane.danger open t A methane.safe closed t)
DM3: —-DML(t) = (methane.safe open t A methane.danger closed t)

The pumping unit is under the control of the system and it may be switched on and off
by sending the messages pump.on and pump.off respectively.
The actuator should be ready to accept any signal sent to it:

PU1: Vtepump.onopent A pump.off opent

The following ‘reality check’ confirmsthat the pump state is on only when the most re-
cent signal sent to it was pump.on. Thisis captured for atrace s as SysPumping(s, t).

PU2: PumpOn(t) < last(s | {pump.on, pump.off } < t) = pump.on
& SysPumping(s, t)

In the following CSP implementation, there is a component to monitor the behaviour
of the water and another the behaviour of the methane:

WATERqy, = water high-% WATER g, (6.10)
O

Wait €; pump.off — WATER,q,,

WATERg, = water.low & WATER g, (6.12)
O

Wait €; pump.on — WATER; 41

METHANEge = methane.danger & METHANEjanger (6.12)
O

Wait €; pump.on — METHANE e

METHANEgange = mMmethane safe &> METHANEge (6.13)
O

Wit €; pump.off — METHANEganger

6.5. CASE STUDY: THE MINE PUMP 171

These components must agree on when the pump isto be switched on, but either of them
can switch it off, independently of the state of the other:

CONTROL = (WATER g |[pump.on]| METHANEge) (6.14)

The delays € and ds will be constrained as we proceed through the verification.

The requirement on the control system CONTROL, based on that given in Chapter 1,
isto ensure PumpControl, the conjunction of the following (where React isthe response
time required for safety):

(1) VA:(HWA -DML) onA = Pumping on (inf A+ React, supA)
(2) VA:DML on A= (-Pumping) on (inf A+ React, supA)

wherePon| =Vt e | : P(t) for intervalsl.
To verify that this CSP implementation meets the specification, it is required that

CONTROL sat Ass=- PumpControl (6.15)
where
Ass = HW1AHW2A HW3 A DM1ADM2ADM3A PULAPU2 (6.16)

We provethisby contradiction: assume that thereis somebehaviour (s, [J) of CONTROL
for which Ass holds but not PumpControl. Let HW and DML be defined as in Chapter
1.

If PumpControl does not hold, then either

1. 3JA:(HWA -DML)onA A =(Pumping on (infA+ React,supd)) (6.17)
or
2. JA: (DML on A) A =((—~Pumping) on (inf A+ React, supA)) (6.18)

To establish that case (1) leads to a contradiction, we will need some preliminary results.
The following specification of CONTROL, that the pump remains on for at least €, will
be useful:

where
SPECoumping = pump.onat t = —~pump.off at [t,t+ €] (6.20)

Thisfollowsfromthefact that WATER and METHANE must both participatein the event
pump.on; since both processes satisfy SPEC,mping: Neither can perform pump.off over
theinterval [t,t+ €.

The process WATER must meet the specification SPEC,yater :

water.high open [T <React, T|(s,)
water.low closed [T <React, T|(s,[0) » = pump.onliveT(s,0) (6.21)
—pump.onat [T <€, T|(s,0)

172 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

Verification of WATER sat SPECyater fOllowsin Section 6.5.2.
Let A be an interval whose existence is asserted by statement (6.17). Then

Jt e (infA+ React, supA),d > 0e (6.22)
(t=0,t+0) C (infA+ React, supA) A =Pumping(t) (6.23)

Now
-Pumping(t) = -SysPumping(s,t) (6.24)

Thereissome T witht < T < t+ & for whichs 1 (t,T] = (). Thus, -SysPumping(s, T),
since the system state remains constant over thisinterval. Further, HW(t') and -DML(t')
fordl t' € [T <React, T]. Then from HW2 and DM3, respectively,

water.high open [T <React, T|(s,0) (6.25)
A water.low closed [T <React, T|(s,[0) (6.26)
and
methane.safe open [T <React, T|(s, U) (6.27)
A methane.danger closed [T <React, T|(s,[0) (6.28)
Now
(s,00) € (sw, Ow) |[pump.on]| (sv, Om) (6.29)

for behaviours (sy, Ow) of WATER and (sy, Om) of METHANE. HW(t), from (6.25)
and so using proof rules 13 and 14:

water.high open [T <React, T](sw, Ow) (6.30)
water.low closed [T <-React, T](sw, Ow) (6.31)

From —~SysPumping(s, T) and (6.20), -pump.on at [T <€, T|(s,00), and so, from proof
rule 15, —pump.onat [T <€, T](sp, Op). In conjunction with (6.30) and (6.31) thisis the
antecedent to SPEC,yater. It follows that

pump.onlive T(sy, Ow) (6.32)
Similar reasoning is used for the specification SPEC ethane for METHANE:

methane.safe open [T <React, T|(s,0)
methane.danger closed [T <-React, T|(s,0) = pump.onliveT(s, 1)

—pump.onat [T <€, T|(s, 0) (6.33)
to obtain
pump.onlive T(sy, Om) (6.34)

pump.onlive T(s,) holds by application of Rule 12.

But from PU1 we have pump.on open T(s,), so from Rule 7 pump.on at T(s,).
Thisisacontradiction, sinces (t, T] = (). So case (1) is not possible.

Case (2) may be similarly shown to yield a contradiction.

Hence PumpControl holdsfor all executions of CONTROL where the sensors operate
correctly:

CONTROL sat Ass=- PumpControl (6.35)

6.5. CASE STUDY: THE MINE PUMP 173
6.5.2 CSP verification

Since WATER is defined to be WATER oy, We need to establish that
WATER oy Sat SPECater (6.36)

Thisisachieved by establishing three specificationsthat moreclosely follow thestructure
of the recursive definition and can be done directly from the proof rules for processes
givenin Section 6.4.1. Lemma6.1 is proved in Section 6.5.3.

Lemma 6.1 WATERsat WL1, where

WL1 = water.lowatt = water.highlivefrom t-+d until water.high (6.37)
s | water.low = () = water.high livefrom O until water.high (6.38)

Lemma 6.2 WATER sat WL2, where

WL2 = water.highattA —water.lowat [t t+d 4 €] (6.39)
= pump.onlivefrom t 4 d’ 4 € until {water.low, pump.on}

Lemma 6.3 WATER sat WL3, where

WL3 = pump.onattA —water.lowat [t,t+€) (6.40)
= pump.on livefrom t 4 € until {water.low, pump.on}

These three lemmas are sufficient to establish that WATER sat SPECater -
First, assume the antecedents of SPECyater:

water.high open [T <React, T|(s,) (6.41)
water.low closed [T <-React, T|(s,0) (6.42)
—pump.onat (T <€, T] (6.43)

Now consider § = s 7 [0, T] | water.low.

If 5 = () then water.high livefrom t; + d until water.high (from WL1) (wherewe say
t = <d).

If 5 # (), thenend(s) = (1, water.low) for somet; < T <React, as water.low closed
[T <React, T]. So water.high live from t; 4+ d until water.high (from WL1). In either
case, from the antecedent water.high open [T <React, T}, if d < React we may deduce
that water.high open T <React+ d. So Rule8yieldswater.highat [t +d, T <React+d|.
Thusthereis somety, € [t 4+ d, T <React 4 d] for which water.high at ty,.

Thisprovidesaconstraint on therelationship between the delay d and thereaction time
React.

Then WL2 and the second antecedent of SPEC,y4ter Yield

pump.on livefrom ty, 4- d' + € until {water.low, pump.on}

Now consider s, = s [th+d +¢€,T] | pump.on.

174 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

If s, = () then pump.onlivefrom t, 4+ d’ 4 € until {water.low, pump.on} implies
pump.on live T. To make thisfinal step werequirethat th,+d +e< T,i.e. d+d 4+ €<
React.

This provides a stronger constraint on the relative values of some of the delays with
respect to React. (The constraint d” + d”’ + € < React is obtained by the corresponding
verification for METHANE.)

If s # (), then end(sp) = (tp, pump.on) for somet, < T <€ (by the third antecedent).
But then pump.on live from tp + € until {water.low, pump.on} follows from WL3. So
the second antecedent and the definition of t, yield pump.onliveT.

The conclusion follows in each case.

6.5.3 Verifying mutually recursive processes

To prove a specification W of the process WATER, we require two satisfiable specifi-
cations, WL and WH. If from the assumptions X sat WL and Y sat WH we can prove
F(X,Y) sat WL and G(X,Y) sat WH (where F and G are the defining equations for the
two processes respectively), then from Rule 4 for mutual recursion WATER,,, Sat WL
and WATERgh sat WH. Since WATER is defined to be WATERqy, We require finally
that WL = W.

Assume the two following satisfiable specifications:

X sat WL (6.44)

Y sat WH (6.45)
Two functions are used in the defining equations of these two processes.

F(X,Y) = (water.high Y) O (Wit &; pump.off — X) (6.46)

G(X.Y) = (water.low % X) O (Waite; pump.on — Y) (6.47)
Then if we can show that

F(X,Y) sat WL (6.48)
and

G(X,Y) sat WH (6.49)

from the two assumptions (6.44) and (6.45), then by recursion induction we may con-
clude WATER o, sat WL A WATERyigh sat WH.

Without knowing anything further about WL and WH, we may still derive the proof
obligationsfor F(X,Y) and G(X,Y).

Using rule 1 for the event prefix we obtain

water.high % Y sat s= () AVt e water.highlivet (6.50)
V
s= ((t,water.high)) s A begin(s) > t+d
A VY € [0,1) » water.high livet
AWH(S &(t+d), 0 <(t+d))

6.5. CASE STUDY: THE MINE PUMP

Using Rule 1 for event prefix (with delay 0) we obtain

pump.off — X sat s= () A Vte pump.offlivet
Vv
s= {((t, pump.off)) s A begin(s) >t
AVT € [0,t) e pump.offlivet A WL(S <t, 0 <t)

Now apply Rule 2 for delay to (6.51):

W\ai tsss>punp). of vty X patmp. off live to(s <€, [<€)
%
begin(s) > ¢€
A s&€ = ((tg, pump.off)) S A begin(s) > to
AV < tg e pump.offlivet (see, 0 <€)
A\ VVL(S’ Sto, U <:>to)
This may be recast in amore usable form using t = ty <€:

Wait €; pump.off — X sat s= () A Vt > € e pump.off livet
%
s= {((t,pump.off)) ~ s Abegin(s) >t>¢
A VT € [€,1) o pump.off livet
AWL(S &t, 0 <t)

Combining (6.50) and (6.53) using Rule 3 we have finally shown that

water.high % Y
O

Wait €; pump.off — X

meets the specification
WL = s={() AVt>0ewater.highlivet A Vt > € e pump.off livet

%

s= ((t,water.high)) ~SAVt' € [0,t) e water.highlivet’
AV € [,) o pump.off livet
A begin(s) >t+d
AWH(S &(t+d),0 <(t+d))

%

s= {(t,pump.off)) "~ SA VYt € [, t) o pump.off livet’
AV € [0,t) o water.high livet'
A begin(s) >t
AWL(S <t, 0 <t)

Using entirely similar reasoning, it may also be derived that

water.low % WATER oy
O

Wait €; pump.on — WATER; 4

175

(6.51)

(6.52)

(6.53)

(6.54)

176 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

meets the specification

WH' = s=() AVtewaterlowlivet A Vt > € e pump.onlivet (6.55)
V
s= ((t,water.low)) " SA V' € [0,t) o water.low livet
AV € [g,1) e pump.onlivet
A begin(s) > t+d
AWL(S (t+d), 0 e(t+d))
V
s={((t,pump.on)) " SAVt € [, 1) e pump.onlivet
AVT €]0,t) e water.lowlivet
A begin(s) >t
AWH(S st 0 t)

Up to thispoint, we have needed to know nothing about the specifications WL and WH!
However, we now need to prove that WL' = WL, and that WH’ = WH. Our choice of
WL and WH should also be strong enough to entail the required specification: for each
Lemma 6.i we want WL = WLI.

To prove Lemma 6.1, we choose WL and WH as follows:

WL = water.lowatt (6.56)
= water.high livefrom t+ d until {water.high, pump.off}
s | water.low = () (6.57)
= water.high livefrom O until {water.high, pump.off}
pump.off at t (6.58)
= water.high livefrom t until {water.high, pump.off}

WH = water.lowatt (6.59)
= water.high livefrom t+ d until {water.high, pump.off}
pump.off at t (6.60)

= water.high livefrom t until {water.high, pump.off}

Then WL’ = WL by straightforward case analysison the three component clauses of WL;
each possibility yields WL. We obtain WH' = WH in asimilar way.

Finally, we show WL = WL1. Using Rule 9 with (6.57) and (6.59) we obtain (6.37);
and using that rule with (6.58) and (6.59) we obtain (6.38). Thus both clauses of WL1
are obtained from the three clauses of WL.

Lemmas 6.2 and 6.3 are established in asimilar way. To prove Lemma 6.2 choose WL
and WH asfollows:

WL = WL2 (6.61)

WH = WL2 (6.62)
A s | water.high= () A —~water.low at [0, €]
= pump.on livefrom € until {water.low, pump.on}

6.5. CASE STUDY: THE MINE PUMP 177

To prove Lemma 6.3, use the following definitions:

WL = WL3 (6.63)
WH = WL3 (6.64)
A's| pump.on= () A ~(water.lowat [0,€))
= pump.on livefrom € until {water.low, pump.on}

To show how a CSP description of the control system for amine pump can be verified
with respect to its specification, states of the system were related to corresponding se-
guencesof eventsthat might be observed until some particular time. The CSP description
produces possible traces which correspond to system states that can be checked against
their requirements. The interaction between the quantities being measured and the inter-
nal states of the system is obtained from the specifications of the sensors.

The proofs presented in this example have been more detailed than would generally
be desirable in a verification of such a system, but they illustrate the foundations of this
method of verification. It would be desirable for much of the routine work to be auto-
mated, so that the insight that SPECyater 1S the property required of WATER in this par-
ticular case could be checked with machine assistance, as could the claim that WATER sat
SPEC ater -

This example confirmsthat one of the most difficult refinement steps in moving from
specification to implementation of real-time systemsis the transition from a state-based
to an event-based description. Thisis a part of the development process that cannot be
avoided, but it can be cumbersome when done rigorously.

The CSP description is an abstract implementation of the process CONTROL, but the
choice of the CSP description was not entirely constrained by the specification in Chap-
ter 1. For example, thereis flexibility in when the pump should be switched off when
the water islow and the methane is safe. We chose to switch it off as soon as possible
(an energy-efficient solution!) but we could have chosen to allow the pump to run for
awhile longer, or even to leave it running until the methane became dangerous. These
possibilities are represented in an alternative description of WATER g,

WATERy = water high -3 WATER g, (6.65)
O

I_Ite[8] Wait t; pump.off — WATER o,
where any delay (and we treat Wait oo as STOP) may be chosen before the pump isto be
turned off. An implementation need not contain this degree of nondeterminism but the
implementor is free to resolve the nondeterminism at a later point in the development
process.

Thischapter hasillustrated how complementary approachesto specification can befor-
mally integrated. Decisionsconcerning therequired maximum power of thepump should
be made by reasoning at the level of the abstract description. The minimum delay React
is determined by the minimum values of delays such as € and d physically allowed in
this CSPimplementation. (If asmaller reaction timeisrequired, then perhaps a different

178 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

implementation should be developed.) The water level HighWater should then be low
enough that the constraint on React can be met; the calculations required to achieve this
are again performed at the most abstract level. A formal approach is required to support
theinterplay between information obtained by calculations at different levels of abstrac-
tion.

6.6 Historical background

The seminal paper on communicating sequential processes (Hoare, 1978) defined a lan-
guagefor describing systems as high-level parallel combinations of low-level communi-
cating sequential components. Subsequently, an abstract process algebra version of the
language was produced, which gaveriseto the failuresmodel (Brookeset al., 1984) and
thefailures/divergences model (Brookes & Roscoe, 1985) for CSP processes. Thisisthe
language presented in the book by Hoare (1985).

Reed (1988; 1990) and Reed and Roscoe (1986; 1987; 1991) developed a hierarchy
of timed and untimed models for CSP. This mathematical hierarchy supports a uniform
treatment of concurrent processes at different levels of abstraction: in reasoning about
complex systems, we may use the simplest semantic model that is sufficient to express
the current requirement, safe in the knowledge that the argument remains valid in the
other models of the hierarchy. The proof system for the timed failures model was pre-
sented in Davis and Schneider (1990), Schneider (1990b) and Davies (1993). It givesa
complete set of rules for verifying process descriptions compositionally, in the style of
therulesgiven here. A moredetailed study of singleand mutual recursionispresentedin
Davis and Schneider (1993), where the metric space approach to the fixed point theory is
reviewed, and anumber of proof techniques for verifying recursively defined processes
aregiven.

Work on providing the specification macro language for timed CSP began with the
presentation of the specification macrosin Davies (1993). Concurrently, the use of tem-
poral logic asaspecification language wasinvestigated by Jackson (1990; 1992), wherea
complete proof system for such specifications was devel oped consistent with the existing
timed semantics. Theatomic statementsare O, (‘aisoffered’) and P, (‘aisperformed’).
These may then be used with standard logic and real-time temporal logic connectives
to write real-time specifications. For example, the specification O(0¢5-Pa = $-50a3)
states that whenever five units of time pass without a being performed it will be offered
at the end of that five unit period.

A theory of timewise refinement was presented in Schneider (1990b; 1994). It pro-
vides away of exploiting the links between various modelsin the hierarchy, notably be-
tween untimed and timed models, to alow results established in untimed models (such
as deadlock-freedom) to be retained provided timing information is added to a process
description in a suitable way.

An operational semantics has been given for the language of timed CSP (Schneider,
1995), describing processes in terms of how they are to be executed, rather than in terms

6.6. HISTORICAL BACKGROUND 179

of the more abstract timed failures that they might exhibit; these two views are consis-
tent. The operational semantics was used to underpin the fixed point theory for a model
of processes in terms of potentially infinite executions (Schneider, 1991; Midoveet al.,
1995) which are more appropriate for specification. Thisisthe model presented here; its
projectionto finite executions yieldsthe original timed failuresmodel, but it also enables
analysis of infinite non-terminating executions.

The theory of timed CSP has aso been extended in other directions. A timed prob-
abilistic model for CSP developed by Lowe (1993) allows descriptions and analysis of
probabilistic aspects of asystem’sbehaviour and extensionsincludean element of broad-
cast concurrency (Davies, 1993; Davies et al., 1992).

CSP has been successfully applied to many examples: the alternating bit protocol,
a diding window protocol (Schneider, 1990b), Fischer’s protocol (Schneider, 1993), a
watchdog timer and arailroad crossing (Davies& Schneider, 1995). It hasalso been used
for other case studies such as the design of control software for aircraft engines (Jack-
son, 1989), real-time robotics (Scattergood, 1990; Stamper, 1990; Wallace, 1991), the
specification of arealistic telephone switching network (Kay & Reed, 1990; Superville,
1991), the verification of alocal area network protocol (Davies, 1993), the specification
of asynchronous neural nets (Gibbins et al., 1993) and the verification of the Futurebus+
distributed arbitration protocol (Howles, 1993).

Research continues both into broadening the theoretical foundationsof timed CSP, and
into its application. One area of current research involves the development of a normal
form, whichwill underpinacomplete set of algebraic lawsfor processes. Thisinturnwill
enabl e the transf ormation of complex processes into other descriptionsthat may be easier
to reason about, or whose validity with respect to a given specification is clear. Another
use concerns new operators such as those included in the language of timed CSP when
case studies demonstrate their utility; a normal form would make it possible to define
these operatorsalgebraically, without the need to giveanew semantic equation. It further
allows a trandation from an appropriate subset of timed CSP into occam (Scott, 1994),
another form of refinement in which properties proved about the timed CSP descriptions
remain valid in the occam programs.

Another area of current research involves extending the language to allow unguarded
recursion. Although no such recursion could ever be implemented, it would allow timed
CSP to be used more cleanly as a specification language, since the need to include an
artificial non-zero time-guard is often distracting when expressing requirements. For ex-
ample, the constraint that the only possible eventsa and b alternateis naturally expressed
asC=puXea— b— X Toconstrain a process P to this aternation it is sufficient to
placeitin paralel: P|[a,b]|C. The requirement that there should be some non-zero de-
lay round the loop is distracting and obscures the intention of the constraint. However,
the semantic model required to handle such instant recursions will be significantly more
complicated than any of the modelsin the existing hierarchy.

The applicability of the theory to the emerging timed LOTOS standard is under inves-
tigation, with encouraging results. It appears that much of the theory developed within
the context of timed CSP is applicable to many of the features suggested for inclusion
within atimed version of LOTOS, and that it may be considered to provide a semantic

180 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

theory for timed LOTOS.

In the longer term, it seems clear that performing large scale verifications will require
some form of machine assistance, perhaps in the form of model-checking (which has
proved extremely successful in untimed CSP (Roscoe, 1994)), or elsein theuse of aproof
assistant. Thetheory isnow sufficiently matureto support investigation into this promis-
ing areafor future research.

6.7 Exercises

Exercise 6.1 Write CSP processes which describethefollowing situations. Decidefirst
which eventsareto be used (theinterface of the process), and then provide a CSP descrip-
tion:

1. A watchdog timer, which will accept up to one reset per second, and raises the
alarmif thereisaten second period in which it is not reset.

2. A talk described by process TALK which will be stopped in 30 minutesif it has not
already finished.

3. A single place lossy channel, which is ready to accept input when empty, and is
prepared to output its contentswhen non-empty. However, it will eraseitscontents
and revert to being empty precisely two seconds after input, if the message has not
already been output.

4. A buffer which inputs messages initially at a maximum rate of one every two sec-
onds; but if no input arrives over a period of 20 seconds then its maximum input
rate reduces to one message every six seconds. It returnsto itsinitia input rate
either when empty, or when the user resets it. The maximum output rate remains
constant at one message per second.

Exercise 6.2 Consider the processes

P = a— STOPOb— STOP
Q — a— STOP&b—s STOP

Show that P and Q are different by giving abehaviour of P that is not abehaviour of Q.
Show also that neither refinesthe other by giving abehaviour of Q that isnot abehaviour

of P. Isa—>S|'OPthe§ameasa3> STOP? Isa—>SKIPthe§ameasa—2> XKIP?

Exercise 6.3 Given the definitions

P — a2b_ STOP
Q = b2c—sropP

R — a— STOPsb—s STOP

Rewrite the following processes so that they contain no parallel operator:

6.7. EXERCISES 181

1. P|[b]|Q

2. P|[a,b,c]|Q
3. Q[[b]IR

4. Ql[a,b]|R

Rewrite P|[b]|Q\ b so that it contains no parallelism or hiding.

Exercise 6.4 A component of the system not presented inthis chapter isan alarm, which
should sound when danger is present:

. Specify formally when the alarm should sound.
. Provide a CSP implementation ALARM which meets this specification.
. Use the proof rulesto establish that ALARM meets the specification.

Exercise 6.5 Itisobservedthatif thewater level oscillates around the high water mark,
then the pump may switch on and off repeatedly. It is decided to introduce a sensor to
detect when the water reaches a lower level, and to leave the pump on until the water
recedes below this point:

. Specify the new sensor: give the assumptions the controller can make about read-
ings fromit.

. Modify the CSP description of the pump controller to reflect the new intention.

. Does your new pump controller meet the original specification?

. Doesi it refine the old pump controller?

Chapter 7

Specification and Verification in the
Duration Calculus

Zhiming Liu

I ntroduction

Theduration calculusisaninterval temporal logic which allowsformal description of the
dynamic propertiesof asystem. It iswell suited for the specification of the requirements
of embedded systems. A distinctive feature of thelogic is that, without explicit mention
of absolute time, it permits reasoning about the durations of different statesin a given
timeinterval.

This chapter introduces the duration cal culus and demonstrates how the behaviour of
asystemis defined in termsof its states. To implement arequirement, assumptions must
be made about the environment of the system and the physical components used in the
implementation. We also illustrate how the specification and the design of the system
can be described in the same notation, and how to reason about the validity of adesign
in relation to the requirement.

The basic duration calculusis described in terms of its syntax and an informal but rig-
orous semantic explanation; the axiomsand rulesare described and their useisillustrated
for proving some theorems. We show how the logic can be used for specification and re-
finement, using the mine pump exampl e, and for the specification of real-time scheduling
of shared processors. Finally, the duration logic is extended into a probabilistic logic to
allow formalization and reasoning about the reliability requirements of a system.

7.1 Modédling real-timesystems

Thefirst step in formalizing the requirements of a system isto agree on asystem model.
The duration cal culus uses a time-domain model in which a system is described by acol-
lection of states which are functions of time. Time is represented by the non-negative
real numbers. A state variable is a function from time to the real numbers; a boolean
state variable takes the values 1 (for true) and O (for false) and can therefore be used in
integrals over time.

182

7.1. MODELLING REAL-TIME SYSTEMS 183

—H>OSensor | | CH Sensor
Water Methane

Monitor
H,OFlag CH,4Flag

Controller

Pump

=

[WH
VTS

Figure 7.1 Physical components of the mine pump

H,O

DangerH,O

HighH,0

DH,0O

HH,0

1
0 t
Figure 7.2 Sample timing diagram for water levels

Consider the diagram in Figure 7.1, showing the components connected to the mine
pump controller. The arcs denote possible interaction between components and labels
denote the information being exchanged: e.g. Water and Methane represent the water
and methanelevelsin the mine shaft. H,OFlag and CH4Flag are boolean state variables.

The water level inside the mine shaft is measured using the sensor H,OSensor. The
pump controller is required to keep the water level below acritical level denoted by the
real constant DangerH»,O. Let the boolean state variable DH,O be set to 1 if the water
level is higher than DangerH,O (Figure 7.2).

In order to work towards an implementation, a water level HighH,O dightly lower

184 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

than the danger level is used to give the control system time to react. Let the boolean
variable HH,O be set to 1 when the water level exceeds HighH,O; when this occurs for
at least aperiod & of time, the monitor setsthe boolean variableH,OFlag (seeFigure7.2).

A high level of methane can make use of the pump hazardous and the control process
must then turn off the pump. The sensor CH4Sensor measures the methane level and the
boolean valued state variable DCH, is set to 1 if the methane level is higher than the
critical level DangerCHy.

As in the case of water levels, let the boolean variable HCH, be set to 1 when the
methanelevel reachesahighlevel HighCH4 whichisdlightly lower than thecritical level
DangerCH,4. Themonitor setsthe boolean variable CH4Flag when the methanelevel ex-
ceeds HighCHy,4 for at least aperiod d of time.

Anaarm Alarmis set when either the water level or the methanelevel stays aboveits
critical level for aperiod o of time.

The pump controller uses the values of H,OFlag and CH,4Flag to decide when to turn
the pump on or off. When the system has been stable for & time unitsin a state in which
H,OFlag A —CHg4Flag holds, i.e. HoOflag is up and CH4Flag is down, the pump must
be turned on. We denote this state by SafePump. When the system has been stable for 6
time unitsin a state in which SafePump does not hold, the pump should be turned off.

Note that when the condition SafePump is changing, nothing is specified about the
pump and it could even be in the process of being switched on or off for up to o time
units.

PumpOn denotesthat the pump ison and water is being pumped out, reducing the wa-
ter level in the mine shaft.

The states H,OFlag, CH4Flag, Alarm, PumpOn, DH,0O, HH,0O, DCH4 and HCH, are
treated as basic state variables, while SafePump is a composite state defined in terms of
the basic state variables H,OFlag and CH4Flag.

Behaviour
A behaviour or trgjectory of asystemisgiven by an assignment, called an interpretation,
of state functionsto the basic state variables.

Observation of abehaviour for abounded interval isillustrated by the timing diagram
in Figure 7.3 where boolean values are represented by 0 and 1.

7.2 Requirements

A requirement is a property expected of the system. A property is expressed as a con-
straint over the system behaviours, i.e. the states of the system over time. For the mine
pump system, the following properties must hold for the water level controller and the
monitor.

Safewater: In any period of up to 1000 shifts, the total time when the water level is
dangerous must not exceed one shift.

7.2. REQUIREMENTS 185

PumpOn
Alarm i

SafePump 4,—‘ ‘

CHJFlag |
HCH, :

DCH4

Horlag L | ||

|
l
HH,0 ﬂ
l
1]]
DH,0 0!

Figure 7.3 Observation of abehaviour

Set flags: The flags H,OFlag and CH4Flag, respectively, must be set (or 1) when the
water or methane levels have been high for at |east a period 4 of time,

Reset flags: The flags H,OFlag and CH,4Flag, respectively, must be cleared (or 0)
when the water or methane levels have not been high for at least a period 6 of time.

Safe water
For an observation of the mine pump system behaviour in a bounded interval [b, €] of
time, the duration of DH,O is measured by theintegral [pDH,O(t)dt, shown shaded in
thetiming diagram in Figure 7.4.

Thisdurationisthetotal timefor whichthewater level isdangerous. Thusthe property
Safewater for an interval [b, €] is

(e<b) < 1000 = [EDH,O(t)dt < 1

To simplify reasoning, it isalways desirableto avoid explicit referenceto timein formu-
las; thus, the use of t and the bounding points b and e together with universal quantifica-
tion over the interval should be avoided. Let the symbol fDH,0 denote the duration of

186 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC
DH,0

0 | | - Time

Figure 7.4 A duration of DH,0O

DH,O0. Let ¢ bethelength of theinterval. Then the property Safewater can be expressed
without explicit mention of time as

(<1000 = [DH,0< 1

For agiven behaviour of the mine pump and a given bounded interval (an observation),
thisformulais either true or false. A formulaholds for a behaviour if it istrue for any
prefix interval [0,t], t > 0, of the behaviour. Thus, the formulatells us that a behaviour
of the mine pump issafe if for any prefix interval [0, t], t < 1000, the duration of DH,O
inthat interval isnot morethan 1. But Safewater does not require the system to be safe
for only the first 1000 shifts. So we need to express this property over any observation
interval [b,e], b > 0.

The modal operator O is used to denote that a formulaholds for any subinterval of a
given observation. The property Safe states that for any subinterval of a given observa-
tion, the duration of DH,O isat most 1.

Safe2 O(¢ < 1000 = [DH,O0 < 1)

The property holdsfor a behaviour when the constraint on DH,O holds for any subinter-
val of any prefix interval, i.e. any bounded interval.

Set flags

The requirement for the water level flag isthat for an observation interval longer than 9,
H,OFlag must be set to 1 when the water level has been high for at least a period & of
time. So the constraint is that HH,O istruefor aperiod & of time, or more.

To express such properties, we need some notation to describe when a state P has been
true in anon-point interval. The operator [-] lifts a state to a predicate (or a property).
For state P, the property [P] holdsfor aninterval [b, €] iff b < e and thereare only finite
many tinthisinterval suchthat P(t) = 0. Theformula|P] can beread as‘Pistruealmost
everywherein thenon-pointinterval’. Thevalueof P isignored at possible pointsof dis-
continuity and these will be afinite set for any finite observation. In particular, we avoid
discussion of the values at end points, making it irrelevant whether we choose closed,
open, or half-open intervals as the durations remain the same. Taking closed intervals
may be intuitively alittle bit clearer, because a point is an interval.

7.2. REQUIREMENTS 187

: : : Time

Figure 7.5 The chop operator

Exercise 7.2.1 Define [P] intermsof [P and (.

The property that HH,O holds for a period & of time can now be written as
[HH2O1 A (¢ = d)

Similarly, if HoOFlag isOin an interval we have [-H,OFlag]|. These two formulascan

be combined to express the property Set flagsusing the binary modal operator chop. The

formula(F,; F,)isreadas‘F, chopF,’: itholdsinaninterval [b, € iff thisinterval can

bedividedinto aninitia subinterval [b, m| inwhich F; holds, and afinal subinterval [m, €]

inwhich F, holds, b < m< e. Thisisillustrated by the timing diagram in Figure 7.5.
The property Set flagsis defined using the chop operator as.

=(([HH20] A€ = d); [~H,OFlag))

which states that it is not the case that the observation starts with DH,O holding for &
units of time followed by the water flag being off for a non-point subinterval.
The property should hold for all observations, so to complete the specification we have

O-([HH,O] A€ =9); [-H2OFlag])
The formulacan be rewritten using an abbreviation: for aformulaF and astate P,
F <= [P] 2 0-(F A(C=1); [-P])

whichisread as‘F for timet leadsto state P'; it is defined by stating that it is never the
case that F holds for timet and P does not then hold. A similar abbreviation reads ‘' F
for up totimet leads to state P' and is defined below:

FSS Pl2o~(FA((<Y); [-P))

Thus F can go to state P only after it has held for up to t time units.
The setting of the flag to indicate a high water level isthen specified as

SetWaterFlag 2 [HH,0] <2 [H,OFlag]

188 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Down flags
Thisproperty isanalogousto Set flags. For thewater flag, it statesthat if the observation
interval islonger than &, the flag H,OFlag must be O if HH,O has been O for &:

ResetWaterFlag 2 [-HH,0] <2 [~H,OFlag]

We can similarly obtain formulasfor SetMethaneFlag, ResetMethaneFlag, SetAlarmand
ResetAlarm and complete the specification of the mine pump monitor.

Exercise 7.2.2 Writeformulasfor the following requirements:

SetMethaneFlag: the flag CH4Flag must be set when the methane level has been high
for aperiod o of time.

ResetMethaneFlag: the flag CH4Flag must be cleared when the methane level has
been not high for a period of time.

SetAlarm: the alarm must be raised when the water level has been dangerous for a
period & of time.

ResetAlarm: the alarm must be turned off when the water level has been below the
critical level for aperiod o of time.

7.3 Assumptions

For adesign to implement arequirement, it is necessary to make assumptions about both
the environment in which the system will operate and the physical properties of theim-
plementation. The assumptions may be madeinitially, or asthe design devel ops.

For the mine pump, assume that each component takes some time to react: e.g. for
smplicity we assume that the monitor takes d time units from the onset of a high water
level to set H,OFlag, the controller also takes d time units to turn on the pump and, as-
suming that thereislimited inflow of water, the pump takes some time, say € time units,
to bring the water level down. Therefore, to meet the safety requirement Safe, the high
water level HighH,O should be set low enough to allow for these reaction times before
water reaches the critical level DangerH,O:

As; £ O([DH,0] = [HH,0])

Thisstatesthat inany non-pointinterval, if thewater level isdangerousitishigh. Further,
after the water level becomes high, it will not reach the critical level for w units of time:

As, 2 ([-HH,0] ; [HH,0] S% [-~DH,0))

w depends on the reaction times of the monitor and the controller, and on the capacity of
the pump. This assumption isvalid only if the rate at which water flows into the mine
shaft is bounded.

7.4. DESIGN 189
7.4 Design

Design involves making choices and taking decisions about how requirements are to be
met. For example, to meet the safety requirement Safe according to the assumptions As;
and Asy, it isnecessary to bring a high water level down within w time units, i.e. before
it reaches the critical level:

O([HH,0] = ¢ < w) or, equivalently, [HH,0] <% [-HH,O]

But this may not always be possible as a high methane level may make it unsafe for the
controller to turn on the pump. The property Safe allows limited occurrences of danger-
ous water levels provided they do not last too long or occur too often. Let

Failure 2 [HH,O] A€ > w

Since each occurrence of Failure takes at least timew and at most time 1, the following
two design decisions can be made:

. A Failure can only occur in an interval not longer than one time unit.

. Any two occurrences of Failure must be separated by at least 1001 time units; in
other words, Failure occurs at most once in any interval that is not longer than
1000.

The first decision can be easily formalized as

Desy 2 O(Failure= ¢ < 1)

The second decision saysthat if an observation interval can be divided into three adja-
cent subintervalssuch that Failure holdsin thefirst and last subintervals, and somewhere
in the middle subinterval Failure does not hold, then the observation interval must be at
least 1001 time unitslong.

This needs some notation to describe a property that holds somewhere in an interval,
and the conventional modal operator < (read as ‘ somewhere’) serves the need. For a
formulaF , OF holdsinaninterval [b, € iff thereisasubinterval [b',€],b<b’ and€ <e,
such that F holdsin [b', €]. Thisisillustrated by the following diagram:

The second design decision then becomes

Des;, 2 O((Failure;; O—Failure; Failure) = ¢ > 1001)

190 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

At al times, if Failure is followed at some time by —Failure and then by Failure, the
length | of the observation interval must be at least 1001.

Let Des; 2 Des;; A Desy,. To verify that Des; guarantees the safety requirement we
must prove the implication

Des, = Safe

But the implication does not hold without the assumptions As; and As, about the high
water level. So what we must prove is that the implication does hold under these as-
sumptions:

As; A Asy A Des; = Safe

Exercise 7.4.1 Give arguments for the validity of thisimplication in the context of the
mine pump.

In general, proving that the conjunction of assumptions and design decisionsimpliesa
requirement is called the verification of the correctness of the design with respect to the
reguirement. Such an implication has the form

AAD=C

where A is the specification of the assumption, D isthe specification of the design, and
C isthe specification of the requirement (i.e. commitment).

Notethat AAD = C isequivalentto D = (A = C). Thus, A = C is sometimes
called the requirement, i.e. ‘the requirement is a commitment under the assumption’.

A design decision can berefined into lower level design decisions. For example, Des;
can be refined into the following control plans:

1. The pump must be on when the water level has been high and the methane level
has been low for & time units:

StartPumpé [SafePump] 2, [PumpOn|

2. The pump must be off when the water level has been low or the methane level has
been high for & time units:

StopPumpé [~SafePump| <:§—> [~PumpOn|

Let Des, 2 SartPump A StopPump. To prove the correctness of this refined design
with respect to Des;, we need the following assumptions (these will be formalized in
Section 7.6):

Asz: assumption about the capacity of the pump.

Asy: assumption about the duration of a high methane level.
Monitor: the full specification of the monitor as an assumption.
Ass: assumption about the choice of the constants w and .

7.5. THE BASIC DURATION CALCULUS (DC) 191
Then, the goal isto prove

Asz A Asy A Ass A Monitor A Des, = Des;

Thiskind of refinement procedure can be repeated until an implementation of the system
isobtained. The correctness of theimplementationisguaranteed by thetransitivity of the
logical implication. For example, the two implications above guarantee the implication

AsA Des, = Safe

where

AsE As; A Asy A Asg A Asy A Ass A Monitor

Theinformal introductionin thissection hasprovided anotation for the specification of
requirements, assumptions and designs of real-time embedded systems. The mine pump
example has been used toillustrate the steps in the formal development of such asystem.
But for formal verification of propertiesand the correctness of a design, we need a set of
axioms and rules.

7.5 Thebasc duration calculus (DC)

The simplicity of temporal logic comes from the remova of explicit time. In Interval
Temporal Logic (ITL), the variablesb and e, denoting the end points of an arbitrary ob-
servation interval [b, €], are removed from expressions such as Safe and SetWaterFlag
(Section 7.2). A variablev is interpreted as a function from intervals to values. A for-
mulain ITL, such asv; < v,, holds for an interval [b, €] under a given interpretation |
of vy and vp; i.e. if [(v1)([b,€]) < I(vp)([b,€]) holdsin the value domain. ITL uses the
modal operator chop to define the usual modalities & and O.

DC develops on ITL by introducing integrals (i.e. durations) of states over intervals
as variablesin the interval temporal logic. Thus, DC adopts primitives such as the chop
operator of ITL. We shall be concerned mainly about the axioms and rules dealing with
integrals of states. But we shall also consider some ITL axioms for the chop operator;
although they will not be called axioms or theorems, they will be used to prove properties
of durations.

751 Time

DC uses continuous time, Time, represented by the set of non-negative real numbers. t,
t1, etc. are assumed to range over the real numbers. A time interval isaclosed interval
[b, €] of the real numbers, i.e. b,e e Timeand b < e and [b, g is the set of time points
frombtoe.

192 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC
75.2 States

A basic state is a state variable. An interpretation | assigns abasic state P to afunction
I(P) from Timetotheset {0, 1} of boolean values. I(P)(t) = 1 meansthat state P is‘ on’
at timet, and I(P)(t) = Othat it is‘off’ at timet, under the interpretation I. In the mine
pump example, DH,O, DCH4, HH,O and HCH,4 are basic states. An observation of a
behaviour of this system, such as the one illustrated by the diagram in Figure 7.3, gives
an interpretation for these states over the observation interval.

Sateswill beranged over by P, Q, Py, Q, etc., and will consist of expressionsformed
by the following rules:

. Each basic state P is a state.
. If Pand Q are states, then so are =P, (PA Q).

A composite stateisinterpreted as afunction from Timeto the set {0, 1} whichis defined
by the interpretation for the basic states and the boolean operators. For example,

SafePump £ HH,0 A —HCH,4
isacomposite state. For an interpretation | and somet € Time,
| (SafePump)(t) = I(HH,0)(t) A =1 (HCHg4)(t)

Thetiming diagramin Figure 7.3 gives an illustration of an interpretation for SafePump.
The conventional boolean operatorsV, = and < can bedefined from — and A intheusual
way. Specifically, the constant state 0 and 1 can bedefined asP A =P and —0 respectively.

7.5.3 Durationterms

The duration of astate P isdenoted by [P. Given an interpretation | of states, the dura-
tion [Pisinterpreted over timeinterval sand denotestheaccumul ated timewhen Pis*on’
withinthetimeinterval. So, for anarbitrary interval [b, €], theinterpretation | ([P)([b, €])
is defined as the integral of the function I(P) over theinterval [b, €], i.e.

I(JP)([b.€]) = [51(P)(t)ct
which isareal number. An interpretation for the duration fDH,0O wasillustrated by the
timing diagram in Figure 7.4.

Let R denote the set of real numbers and be ranged over by logical variables x, y, z,
with or without subscripts. The set of basic duration terms consists of variablesand con-
stants over the real numbers R, such as x and 5, and durations of states, such as [P. A
duration termiseither abasic duration term or an expression formed from duration terms
using the usual operators on real numbers, such as + (addition) and * (multiplication).
For example,

[SafePump and 5 (f[HCH,) ([SafePump)

are duration terms.

7.5. THE BASIC DURATION CALCULUS (DC) 193
75.4 Duration formulas

A basic duration formula is an expression formed from duration terms using the usual
relational operatorson real numbers, such as = (equality) and < (inequality), with their
standard meanings. The set of duration formulas, ranged over by F, G, etc., consists of
expressions formed by the following rules:

. Each basic duration formulais a duration formula.

. If F and G areduration formulas, so are =F , F A G.

. If F isaduration formulaand x is alogical variable over the real numbers, then
Ix.F isaduration formula.

. If F and G areduration formulas, sois(F ; G).

Asbefore, thefirst-order logic operators v, = and <> can bedefined in termsof thegiven
operators — and A; the universal quantifier ¥ can be defined in terms of the given quan-
tifier 3 and the operator — in the usua way.

In these definitions, we use the conventional rules of precedence for each first-order
operator; e.g. - hasthe highest precedence and the precedence of conjunction A ishigher
than that of digunction V. In addition, the precedence of the chop operator ishigher than
that of implication and lower than that of digunction.

A duration formulaF is satisfied by an interpretation | over an interval [b, €] when it
evaluates to true. This satisfaction relation iswritten as

Iv[bve] |:F

For example, if 11 assigns HH,O to 1 over [0, 2], and assigns HCH, to O over [0, 1) and
to 1 over (1, 2], we have

11,[0,2]= (2% [SafePump) = [HH,0 14,[0,1] | [SafePump=1
l1,[1, 2]= [SafePump =0 11,[0.5,1]= [HH,0 = [SafePump

9

Exercise 7.5.1 For the interpretation 11, for HH,O and HCHy, find two subintervals of
[0, 2] such that 3* [SafePump < [HH>O holdsin one subinterval but not in the other.

The ‘chopped’ formula(F ; G) istruefor an interpretation | within interval [b, €] if
thereexissmsuchthat b < m<eand F and G aretruefor | with [b,m| and [m, €] re-
spectively; i.e.

Ib.m =F and I,[me |-G

The timing diagram in Figure 7.5 illustrates the semantics of the chop operator. As an
example, considering again interpretation 1, for HH,O and HCH, over [0, 2], we have

11,0, 2] = ([SafePump = 1) ; (JSafePump = 0)

194 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC
Exercise 7.5.2 Under the interpretation |4, find a subinterval of [0, 2] for which
true; (fSafePump= [1); true
holds but the following formuladoes not hold:
—(true; —([SafePump = [1); true)
Give an informal meaning to these two formulas.

A duration formulais valid if it is true for any interpretation over any bounded time
interval. For example,

[P+ [-P=[1

isvalid. More obvioudly, [P < [1isvalid.

755 Axiomsand rules
We are now in a position to define the axioms and rules with which to calculate the du-
rations of states.
We begin by listing some ssmple theorems of analysis which are sufficiently useful to
be taken as axiomsin the calculus.
Axiom7.1 f0=0.
Axiom 7.2 For an arbitrary state P, [P > 0.
Axiom 7.3 For arbitrary states P and Q, [P+ Q= [(PVQ)+ [(PAQ).

Using these axioms, we can readily prove properties such as the following theorem.

Theorem 7.1 For an arbitrary state P

@ [P+[-P=J1 (b [P</[1

Proof: (a):
[P+ [-P = [(PV-P)+ [(PA-P) Axiom3
= [1+ /0 boolean operations
= [1 Axiom 1

Proof of (b) followsfrom (a) and Axiom 2.

7.5. THE BASIC DURATION CALCULUS (DC) 195

Abbreviations
For any observation interval [b, €], theintegral [1isthelength e<b of the interval.

Definition 7.1 ¢ 2 [1

Noticethat a state P holds almost everywherein anon-pointinterval [b, €] iff theinte-
gral of P over thisinterval equalstheintegral of 1 over thesameinterval. Thusthelifting
operator [-] can be defined in the following way.

Definition 7.2 For an arbitrary state P, [P] 2 ([P=0)A(l>0).
We use [| to denote formulasthat are true only for point intervals.
Définition 7.3 []2 (¢ = 0)

It iseasy then to provethat an observation interval iseither aproper interval or apoint
interval.

Theorem 7.2 1]V][]

This says that the length of any interval is greater than or equals 0. The proof isvery
simple but shows how the definitions can be used.

Theorem 7.3 For any state P
(@ [Pl=(/-P=0) (b) [[=(/P=0)
Exercise 7.5.3 Prove Theorem 7.3.
The following theorem expresses the monotonicity of |.
Theorem 7.4 For any statesPand Q, [P= Q| = (/P < [Q).
To prove thistheorem (and some others), we shall use the following ITL axiom:
IX(V=X)

for any interval variable v. Thus, in DC we can use 3x.([P = x) as an axiom for an
arbitrary state P. We shall refer to thisaxiom as Ax.3 in the following proofs.

Proof:

P=Q] = [(P=Q=/1 Def. 2
= [(-PvQ)=/[1 Def. of =
= [P+ [Q&[(-PAQ)=[1 Axiom3
= [Q&[(-PAQ)=[le[-P AX3
= [Q&f(-PAQ)= [P Th.1(a)
= [P<[Q Axiom 2

a

The conventional modal operators & and O can be defined in terms of the chop oper-
ator,

Definition 7.4 For aduration formulaF
OF étrue; F: true and OF 2 _o-F

196 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Properties of the chop operator
We now present some basic properties of the ITL chop operator which we shall use as
axioms,

Thefirst property, referred to as the chop-unit, isthat the chop operator has | | as unit.
Formally, for an arbitrary duration formulaF :

@ [, FeF O F;[]1<F
The chop operator has false as zero. That is, for an arbitrary duration formulaF :
(@ false F & false (b) F; fase« false

We shall call thisproperty chop-zero. It meansthat nointerval can be split into two subin-
tervals such that false holds for the first or the last subinterval, since fal se does not hold
for any interval.

The chop operator is associative, denoted as chop-associative; i.e. for any duration
formulasF4, F»> and F3

(F1; F2); Fs = Fq; (Fo; Fa)

and both sides of thisformulacan bewritten as F1; F»; Fs.
The chop operator is distributive through digunction; i.e. for any duration formulas
Fl, Fz and F3

Fi; FovRs & (Fi Fo) v(Fy; Fs)
This property is called chop-distributive.

Exercise 7.5.4 Find a counter-example to show that the chop operator does not dis-
tribute through conjunction.

The chop operator is monotonic, referred to as chop-monotonic; i.e. for any duration
formulasF4, F, and F5

D(Fl = Fz) = D((Fl; F3 = Fz; F3)/\(F3; Fl = F3; Fz))

The basic axiom relating the chop operator and the integral operator states that the du-
ration of astate in an interval isthe sum of its durationsin each partition of the interval
into subintervals.

Axiom 7.4 Let P beastate and r, s be non-negative real-numbers:
(JP=r+9) < (JP=r); (JP=9
With these axioms, we can prove properties such as the following theorem.

Theorem 7.5 For astate P and non-negative real numbersr, s, t and u

(F<JP<S(t< P<u)=(rt< [P<stu)

7.5. THE BASIC DURATION CALCULUS (DC) 197

Proof:
r<fP;t< [P & IxIY((fP=X [P=y)A(r<xAt<y)) Ax3
& X IYV([P=x+y)A(r <xAt<Y)) Ax.4
= IXIY((JP=XF+Y)A(r+t<x+Y))
& r+t< [P Ax.3

Proof of [P<s; [P <uissimilar (andisleft asan exercise).
O

The next theorem isabout thearbitrary divisibility of intervals, i.e. the density of time.
Theorem 7.6 For astate P
[P]; [P] & [P]
Exercise 7.5.5 Prove Theorem 7.6.

It is useful to have an induction rule which extends a hypothesis over adjacent subin-
tervals. Such arulerelieson thefinite variability of states and the finiteness of intervals,
so that any interval can be split into afinite aternation of state P and state —P.

Induction rule: For aformulavariable X occurring in the duration formulaR(X), and
state P:

1. If R(]]) holds, and R(XV (X; [P])V (X; [-P])) is provable from R(X), then
R(true) holds.

2. If R([]) holds, and R(XV ([P] ; X) VvV ([-P] ; X)) is provable from R(X), then
R(true) holds.

The following theorem illustrates the use of the induction rules.

Theorem 7.7 For state P:
1. (true; [P])V(true; [-P])V]
2. ([P]; true)Vv ([—P]; true)Vv []

Proof:
(1) Astheinduction hypothesis, let

R(X)éxz>((true; [P])V (true; [-P])V[])

Thenfor X=[]

A

ROTT =T1= ((true; [PV (true; [=P])V[T])
must hold. Now R(XV (X ; [P])V(X; [-P]))is
XV (X5 [P V(X5 [=P]) = ((true; [P])V (true; [=P])V[T])

198 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Assuming that R(X) holds, the following formulas hold since X =- true holds and the
chop operator is monotonic:

X=((true; [P])V(true; [-P])V[])
X; [P] = true; [P] and X; [—P] = true; [-P]

So it must be that R(XV (X; [P])V(X; [-P])). Hence, by theinduction rule, we have
R(true) holdswhich, by definition, is

true= ((true; [P])V (true; [-P])V[])

Thisisobvioudy equivalent to (1).
(2) can be proved symmetrically using the second induction rule.
0

The four axioms and the induction rules can be shown to constitute a sound formal proof
system of durations which is relatively complete with respect to the interval temporal
logic.

7.6 Theminepump

We are now ready to formally verify the correctness of the design of the mine pump sys-
tem. We first summarize the specifications given in Sections 7.1-7.4.

Specification of the safety requirement

For the mine pump system, in any observation interval that is not longer than 1000 time
units the accumulated time when the water level is dangerousis not more than one time
unit. This safety requirement is specified as

Safe2 O(¢ < 1000 = [DH,0 < 1)

Specification of the monitor
The monitor is required to behave in the following way:

1. Thewater flag H,OFlag must be set when the water level has been high for d time
unitsand cleared when it has not been high for that time; likewise for the methane
flag CH4Flag.

2. The darm must be set when either the water level or the methane level has been
dangerousfor & time unitsand cleared when they have both been bel ow the danger
level for & time units.

7.6. THE MINE PUMP 199

The monitor is specified by the following formulas:

SetWaterFlag 2 [HH,O] & [H,OFlag]
ResstWaterFlag 2 [-HH,0] < [-H,OFlag]
SetMethaneFlag 2 [HCH4] < [CH4Flag]
ResetMethaneFlag 2 [=HCH,] < [~CH,Flag]
SetAlarm 2 [DH,0] £ [Aarm

A [DCHg| < [Alarm
ResetAlarm 2 [-DH,0OA =DCHy] &£, [—Alarm]
Monitor 2 SetWater Flag A ResetWater Flag

A SetMethaneFlag A ResetMethaneFlag
A SetAlarmA ResetAlarm

Specification of assumptions
The high water level islower than the dangerous water level; in other words, if the water
level is dangerous, it must also be high:

As; £ O([DH,0] = [HH,O])

Thehighwater level ischosen such that, after it hasbeen reached, thewater will not reach
the critical level within w units of time:

As, 2 ([-HH,0] ; [HH,0]) &% [~DH,0]

The capacity of the pump is sufficient to bring the water level down to alevel lower than
the high level in € units of time:

As; 2 [Pumpon] <& [~HH,O]

If the methane level isstable at alow level for long enough, and the methane level ishigh
for asufficiently short time, it should always be possible to turn on the pump and reduce
the water level before it reaches the dangerouslevel. This stability and boundedness can
be specified, respectively, as

SableCH, = ([HCHy4] ; [-HCHy4] ; [HCH4]) = € > €

BoundCH,4 2 [HCH4] = ¢ < w28

Recall that Safe allows limited occurrences of dangerouswater levels. This meansthat it
allowslimited failurein reducing the high water levels. Sowe do not have to assume that
SableCH,4 and BoundCH,4 always hold, i.e. bad methane levels are sometimes allowed.
Let

BadCH, 2 —(StableCH4 A BoundCHy)

200 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

To constrain bad methane levels, we assume that they will occur only in an interval not
longer than one time unit; any two occurrences of bad methane levels must be separated
by at least 1001 time units. The conjunction of these two constraintsis specified as

Asy 4 O(BadCH, = ¢ <1)
A O((BadCHg4 ; ©—BadCH,4 ; BadCH,) = ¢ > 1001)

Finally, the constants must be chosen in the following way:
Ass 2 (€ > 25+€) A (W> 2§)

Specification of thedesign
Refinements to the safety requirements were made in two stepsin Section 7.4: the first
step was to make the design decision that in any interval not longer than 1000 time units,
the high water level must almost always be reduced within w time units, i.e. before it
reaches the dangerous level:

Des, 2 O(Failure= ¢ < 1)
A O((Failure; O—Failure; Failure) = ¢ > 1001)

where Failure 2 [HH2O] A € > w.
The second step was to decide the control strategies of the pump:

Des, 2 SartPump A StopPump

where
SartPump 2 [SafePump] 2, [PumpOn|
StopPump 2 [—~SafePump| 2, [~PumpOn|

Recal| that SafePump = HH,O A —HCH,.

Proving correctness
We shall state correctness results as theorems and then provide proofs.

Theorem 7.8 As; A As, A Des; = Safe

This theorem is derived from the following lemma:

Lemma7.1

1. (¢ <1000)A Des; = OFailurent <1

vV Failuren(< 1; O-Failure

Vv O=Failure; FailureAn ¢ < 1; O-Failure
2. As AAsy AO—Failuren ([-HHO0] ; true) = [DH,O=0

7.6. THE MINE PUMP 201
Proof: We prove case (2) of the lemma. Recall that

—Failure= [HH,O| = (<w
Therefore, we have to prove that

As; AAs; AO([HH20] = ¢ <w)A([-HH20] ; true) = [DH,O=0

Let A 2 As; A As, A O([HH,0] = ¢ < w). Use the second induction rule with R(X)
defined as

A

R(X) A A ([~HH,0] ; X) = (/DH,0 = 0)

A A /\([—'HHzo—l ; [HH201 ; X) = (fDHzo: 0)
R([1) holdssince A A [-HH,O] = [-DH,0] because of As;. And, by As,,
A /\([—'HHzo—l ; [HH201 A< W) = [—|DH20—|
Using the chop-distributive property and Theorem 7.6:
R(XV ([HH20] ; X)V ([-HH20] ; X))
& AA(([-HH20] ; X)V([-HH20] ; [HH20] ; X)) = (/DH,0 = 0)
A A /\([—'HHzo—l ; [HH201 ; [—|HH20—|) = (fDHzO: O)

We next provethat thisformulaholdsassuming that R(X) holds. Thefirst conjunct comes
directly from R(X). For the second conjunct:

A/\([—'HHzo—l ; [HH201 ; [—|HH20—| ; X)

= [+HH,0]; [HH2O] A (¢ <w); [~HH,O]; X (O-Failure)
= [-DH,0] ; [~HH,0] ; X (As; AASp)
= [DH,0=0; [DH,0=0 (R(X))

= [DH,0=0 (Axiomd)

Hence case 2 of the lemmaisimplied by R(true).

Exercise 7.6.1 Complete the proof of the lemma, and then prove Theorem 7.8.
Theorem 7.9 As3 A Ay A Ass A Monitor A Des, = Des;
This theorem can be proved using the following lemma.

Lemma 7.2 Asz A Ay A O-BadCH4 A Monitor = O—Failure

202 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Proof: Assume that Failure holds, i.e. [HH>O]| A ¢ > w holds. By Monitor we have
[HH2O] A€ > w=- [HHO] A (£ <) ; [HoOFlag] A (¢ > w<0)

L et the consequent (right-hand side) of thisimplication be RH, and let £ 25+ €. Then
from As; we havew > 2¢ > 2a and, since O—-BadCHy,,

(L>w)=
["HCH4| A ({ > Q) ; true (D1)
V. [FHCH4 A (L < a); [HCH4] A({ <we20) ;
["HCH4| A (> a); true (D2)

V. [HCH4] A ({ <w&a2a); [ZHCH4] A (€ > a); true (Ds)
By Monitor, Asz and Des, we have
(D1)ARH = [HHO]A({ <9); [SafePump| A (£ > 0+¢€); true
= (£ <2d); [PumpOn] A (L >€); true
= ((<20+¢€); [-HH,O] ; true
= <>[—|HH20—|
Similarly, it can be proved that Dj A RH = &[-HH0] fori = 2,3. Thisgivesthe obvi-
ous contradiction
[HH201 A\ (ﬁ > W) = <>[—|HH20—|
and so O([HH,O] = ¢ < w) holds.

Exercise 7.6.2 Complete the proof of the lemma and then prove Theorem 7.9.

Theorem 7.8 and Theorem 7.9 have the following corollary which states the correct-
ness of the final design.

Corollary 1 AssA Des, = Safe, where
Ass2 As; A Asy A Asz A Asy A Ass A Monitor

7.7 Specification of scheduling policies

As we have seen in Chapters 2 and 3, real-time programs are often executed on sys-
tems with limited resources (e.g. processors) that must be shared through the actions of
ascheduler. Let areal-time program P with a set of processes be specified by aduration
formulaC (P) and let the scheduling policy (whichisaproperty of the scheduler) be spec-
ified by the duration formula S (which is a constraint on the execution of the program).
Given areal-time property specified by a duration formulaF , we say that execution of
program P under the scheduler Sis feasible with respect to the real-time property F if it
can be proved that the following implication holds:

C(P)AS=F

This means that the time-constraint defined by F is satisfied.
We shall now show how different real-time scheduling policies can be specifiedin DC.

7.6. THE MINE PUMP 203

Processes and processors

For smplicity, assume that a set of processes is allocated statically to n > O processors.
Such an allocation defines a partition of the processes into n classes {PS;, ..., PS}. Let
PS={p1,...,Pm} bean arbitrary class of this partition containing m > 0 processes shar-
ing one processor. For each processp € PS

. p.rdy: is1 when process p isready to run on a processor, otherwiseit is 0.
. p.run: is 1 when process p is running on a processor, otherwiseit is 0.

We assume that when aprocessisrunningitisready, i.e. p.run=- p.rdyisaways 1. This
assumption isillustrated in the following timing diagram.

p.run

prdy | u

Time

Specification
There is aphysical no conflict requirement that at most one process is running on a pro-
Cessor at any time:

0 A([pj.run] = [—py.runi)
k]
or, equivalently,
0 A (f(Pj.runApy.run) = 0)
k]
Assume that if a processis ready, there must be a running process:

\/ pj.rdy] = \/ pj.runy)

This means that the scheduler has no overhead, i.e. takesno timeto initiate execution of
a process on a processor.
A scheduler issaid to make progress if

pr. rdy > d) = pr. run>9'))

where d and &' are constants such that 0 < & < . This saysthat at all timesif the sum
of the ready time of the processesis greater than , the sum of their running times must
be greater than &'. Thus, progresswill always be made in the execution of the processes
interms.

204 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

An extremely fair scheduling policy is one where each process has equal rights and
the processes share the available processor equally; it is unlikely that a scheduler can
implement such a policy strictly:

A prunxy fpirdy) = (5 fpj.run)« [pj.rdy)

J

For non-zero running time and ready time, the ratio between p;’s total running time and
the total running time of all processesis at all times the same as that between p;’s total
ready time and the total ready time of all processes.

A first-come-first-served (or first-ready-first-run) policy isoften used in operating sys-
tems. It is specified as

0 A~ ([pj.rdyA—pi.run] A ([=pi.rdy] ; <[pi.run]))
i

This means that when p; becomes ready and eventually runs there is no other process
that is ready and not running.

Scheduling often makes use of the priorities of processes. Assume that p; has higher
priority thanp; if j > i. A priority-based scheduling policy may then enforcethe condition

O A([pj.rdy] = [—pi.run))

i<j
Note that this may require the use of pre-emption (and perhaps a protocol making use of
priority ceilings— see Chapter 3).

Exercise 7.7.1 Specify a priority-based, non-pre-emptive scheduling policy.

Finally we specify a A-fair policy, where A > O:

([pi.run] ; [pi.rdy A —pj.run] = ¢ > A))
A
A

A

O(([—pi.run] ; [pi.run] ; [pi.rdy A—pi.run]) = ¢ > A)
O(([pi.rdy] A€ > 2mA) = <fpg.run])

In a A-fair policy, a process is guaranteed an execution ‘slice’ of at least A when it is
running; when it isready and not running, it will wait for at most 2mA before running (m
is the number of processes).

We have seen that both programs and scheduling policies can be specified in DC and
the properties of programsand schedulers can be kept separate. Thisallowsadivision of
concerns when a program executed under a particular scheduler has to be shown to meet
hard real-time constraints. The advantage of this approach is that the schedulability of a
program can be considered at the specification level without going into implementation
level details of either the program or the scheduler.

7.8. PROBABILISTIC DURATION CALCULUS (PDC) 205
7.8 Probabilistic duration calculus (PDC)

The requirementsfor an embedded, real-time system include functional and safety prop-
erties. For the mine pump, we proved that the design decisions Des; and Des, guarantee
the requirement Safe. But, in practice, we cannot expect an actual implementation to sat-
isfy thisrequirement at all times. For example, any physical component such as a sensor,
the monitor, or the pump may fail to react in time.

Within any given period, an actual implementation can only satisfy the design deci-
sions with a certain probability. How then can we model the physical limitations of an
implementation? How can we define and reason about the probability of satisfaction of
aduration formula? The solution here, asin other fields, is to analyze the probability of
failure using probability theory.

Assume that we consider not only the correct system behaviours B¢ = {by,...} but
also some incorrect, but plausible, failure behaviours B = {f;,...}. Themode for an
implementationisthen B = B U Bg and probabilities can be assigned to subsets of B. In
this section, we consider how to calculate the probability of a subset specified by some
duration formula D for some finite initial segment [O,t] of the behaviours. This proba-
bilistic extension of DC makes it possible for designers of real-time systems to reason
about and calculate the probability that safety and functionality requirements are satis-
fied in practical implementations.

In the probabilistic duration calculus (PDC), it is assumed that requirements are ex-
pressed asformulasin DC, and that imperfect (i.e. failure-prone) designs can be modelled
using probabilistic automata with fixed transition probabilities. Then discrete Markov
chains can provide the basis for PDC.

The calculus provides anotation and a set of rulesfor determining the probability that
a given duration formula D holds for a given probabilistic automaton over a specified
timeinterval [0, t]. Thisprobability, called the satisfaction probability pu(D)][t], is defined
as the sum of the probabilities of all behaviours of the automaton which satisfy D over
thetimeinterval.

DC uses continuous time represented by non-negative real-numbers. In order to have
a simple, well-understood probabilistic model (see Section 7.8.1), discrete timeis used
in PDC; thus, Timeisthe set of all non-negative integers. For this discrete time domain,
axiom 4 of Section 7.5 must be modified.

For a state P and non-negative integersr, s, t and u:

(r<fP<s); i< [P<u)=(r+t< [P<s+u)
Accordingly, Theorem 7.6 isalso modified; for any state P:
(=>2=([P] < [P]; [P])

No other axioms or rules of DC need to be changed.

In this section, we define the reliability of two simplified versions of the mine pump.
In both cases, we ignore the methane levels. The satisfaction probability p(D)[t] is then
defined as the sum of probabilities of all behaviours that satisfy D in the time interval

206 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

N P12 e
PumpOk negPumpOk
J .

P21
M P22

Figure 7.6 Failure-prone mine pump with unreliable detector

Pu(=1) P2(=0)

[0,t]. When the basic rules of the probabilistic calculus are applied directly, the result
can be arecursive, rather problem-dependent solution. A more systematic solution tech-
niqueisto develop and apply high-level theorems to express the satisfaction probability
of specific important duration formulas in terms of probability matrix products.

7.7.1 Imperfect systems and probabilistic automata

Consider afinite probabilistic automaton as a mathematical model of the behaviour of
an imperfect system in a discrete time domain. Such an automaton is well described by
its transition graph.

Mine pump with failing pump and unreliable detector

For a smple mine pump system, assume that HH,O (i.e. the water level is high) and
activation of the pump are‘on’ at t = 0 and that the HH,O remains ‘on’. The activation
isassumed to be instantaneous, i.e. the pumpis‘on’ at t = 0 or whenever activationisre-
applied. Whenthepumpis‘on’,itmay fail (i.e. go‘off’) at any time. Detection of apump
failure may be delayed by any number of time units, but, once detected, re-activation
takes place immediately.

For this mine pump system, let PumpOn be the only basic state. Thisleadsto atwo-
state model with states PumpOn and —PumpOn. However, since the pump is assumed to
have failed when it is off, Ok (= PumpOn) could also be taken as the basic state and the
system states can then be called Ok and —Ok (see the transition graphin Figure 7.6).

The probabilities of starting in the states Ok and —Ok are p; and p, respectively; ac-
cording to the assumptions, p; = 1 and p, = 0. The probability that the pump remains
‘on’ for onetime unit is py; and that it fails within one time unit is p;o. The probability
that the pump failure remains undetected for one time unit is p,, and the probability that
thefailureisdetected within onetimeunitispy;. These probabilitiesareall non-negative
and are governed by the equations: p; + p, = 1, P11+ P12 = 1, P21 + P22 = 1. Assume,
as for Markov chains, that the transition probabilities are independent of the transition
history.

Mine pump with unreliable activation, unreliable detector and failing pump
Assume now that when the water level ishigh (i.e. HH,O is‘on’), the pump is activated
for avery short period. Detection of pump failure may then be delayed for any number

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 207

of time units. When HH,O is‘on’, the pump may be off on account of activation failure
or pump failure. Assume that when HH,O is*off’, the pump is also off.

The transition graph for this system is shown in Figure 7.7 There are two basic states:
HH,O (water level is high) and PumpOn (pump ison).

At any time, the system isin one of the following mutually exclusive states:

V = {-HH>0 A =PumpOn, HH,0 A PumpOn, HH,0 A =PumpOn}
i.e. we assume that

—HH>O A PumpOn =0
and

—-HH,O A =PumpOn v HH,O A PumpOn v HH,O A =PumpOn = 1
The system probabilities are defined below:

. The system startsin theidle state -HH,O A =PumpOn: p; = 1, po = p3 = 0.

. It remainsidle with probability p;1 for one time unit.

. HH,O becomes ‘on’ (water level becomes high) in one time unit with probability
(p12+ p13) and thepumpisactivated. p;2 isthe probability that activation succeeds
and py3 that it fails.

. HH,O becomes ‘ off’ within one time unit with probability py;.

. The pump remains on for one time unit with probability po,.

. The pump fails within one time unit with probability pys.

. Pump failureis detected in one time unit with probability ps,.

. Pump failure remains undetected for one time unit with probability pss.

Notice that ps; is assumed to be zero. This means that when the pump fails, the water
level cannot be reduced.

These probabilities are non-negative and are related by the following equations: p; +
po+ps=21andpi+p2+piz=1 (i =1,23). Okisnow acomposite state: Ok 2
—=HH,>O Vv PumpOn.

Probabilistic automaton

Weend withagenera definition of aprobabilisticautomaton (PA). First defineaminterm
of aset A of basic states as a conjunction of the statesin A which contains every state in
A or its negation, but not both.

Definition 7.5 A PA isatuple G = (A,V, 1o, T) where the following hold:

. Aisafinite, non-empty set of basic states.
- V={vy,...,vm} isanon-empty set of states, each v; in V isaminterm of A and
V isranged over by v, V, v;, €tc.

208 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

p22

p2(=0
———= HH20 PumpOn

p1(=1) pi3 p3(=0)
— 1 HH20 PumpOn HH20 PumpOn ———

p31(=0)
pl1 p33

Figure 7.7 Mine pump with unreliable activation, unreliable detector and failing pump

. Tp: V—[0,1] iscaled theinitial probability mass function and it satisfies

Z/To(v) =1

where 1o(V) isthe probability that the system startsin state v.

. T: VxV —|[0,1]iscalled thesingle-step probability transition function: for every
veVitsaisfies

> vv)=1

vev

For example, inFigure7.6, A= { Ok}, V = {-0k, Ok}. Theinitial probability massfunc-
tionis 1o(OK) = p; = 1, 19(—~OK) = pp = 0, and the transition probability functionis

T(Ok, Ok) = P11 T(Ok, —|Ok) = P12
T(-0k,Ok) =pp1 T(=0Ok,=Ok) = pyy
7.8.2 Satisfaction probability

For a given automaton G = (A, V, 1p, T), we now define behaviour, satisfaction and sat-
isfaction probability.

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 209

Behaviour
Given a non-negative integer t, the sequence of statesin V,

oll:vi,....w

defines a possible behaviour of G for itsfirst t units of operation. Thus the system per-
formst <1 state transitionssuch that it isin state v; at timei <1, (i=1,...,1t).

For a specified sequence of states, vy, . . ., Vi the probability that the system enters state
vy attime0istp(Vvy), and, giventhat itisin state v; at timei <1, the probability that it is
instatev;, 1 attimei ist(Vv;,viy1). Therefore, 1o and t together determinethe probability
of the behaviour ol for thefirst t time units.

For example, ol = —Ok isabehaviour of length 1 of the PA of Figure 7.6. According
to this, the system starts with -Ok. But 1o(—Ok) = p, = 0, S0 the system cannot start
with —~Ok. So the probability of ol¥ is zero. Let u(o¥) denote the probability of ol¥
with respect to the given PA; then p(olY) = 0.

ol¥ : Ok, Ok, ~Ok, ~Ok, Ok

is another behaviour of this PA, with length 5. For this behaviour,
() = Py * Pra * Pro* Po2 * Por

Ingenerd, if oll = vq,...,w,

t—1

u(ol) = to(vy) + [¥

where p(olY) = 1 whent = 0 and p(oll) = to(v1) whent = 1. Let V! be the set of all
state sequences of V with lengtht. Then, V! definesall the possible behavioursof G with
length t. From the definitions of 15 and 1, it is easy to prove the following theorems.

Theorem 7.10 For any non-negative integer t and any behaviour ol € V! of lengthtt,

o<u(oy<1

Theorem 7.11 For any non-negativeinteger t, ¥ ;i H(0l) = 1.

Thus, for every non-negativeinteger t there is a probability space (Vi u) with V!, the
set of behaviours of length t, as the set of samples.

210 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Satisfaction

A behaviour ol of G determinesthe presence and absence of thebasic statesin V at each
of thefirst t time units, and thus defines an interpretation |y of duration formulaswith
A asthe basic states for thefirst t time units. Thisinterpretation is defined by:

G I

where0<j <t.

Recalling Section 7.2, the satisfaction of aduration formulaD (with A as basic states)
can be defined by a behaviour oll of G.

D is satisfied by oll, denoted by ol! |= D, if and only if there is an interpretation |
which is an extension of | ;5 over [0,1], such that I, [0,t] |= D. Aninterpretation |, over
Timeisan extension of 11 over theinterval [ty,t,] if for every basic state P and any time
point t € [ty, to], 11(P) = I5(P).

For the PA of Figure 7.6, let % 2 Ok, Ok, —Ok, ~Ok, Ok. Then,

ol =r=5 o= fOk=3, of¥ = O([-0K = ¢ < 2)
ol L <3, ol o[-0k = < 1)

where [~ stands for ‘not satisfied’.

Satisfaction probability

The probability that a PA satisfies a duration formula over the time interval [0, t] is the
sum over all behavioursof the probability that abehaviour satisfies the formulaover that
timeinterval. Let D be aduration formula, and let V(D) be a subset of V! (the set of
behaviours of length t) such that each behaviour in that subset satisfies D in [0, t]. Then
the satisfaction probability of D by G within the time interval [0, t], denoted by p(D)]t],
is defined by

s ue
olleVi(D)

H(D)[t]

By Theorems 7.10 and 7.11, this definition guarantees that p(D)[t] is a probability. For
example, for the PA of Figure 7.6, let D 2 0([-OK] = ¢ < 1). Then the behaviours of

length 2 satisfying D are
V(D) = {(Ok, Ok), (Ok, ~Ok), (~Ok, Ok)}

Thuspu(D)[2] = p1* P11+ P1* P12+ P2* P21 = P1a+ P12 =1, sincep; =land p, =0.

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 211
7.7.3 The probabilistic calculus

The probabilistic duration logic is an extension of first-order real arithmetic with the
p(D)s as the only additional functions. For an arbitrary duration formulaD, p(D) be-
longsto N — [0, 1] and assigns to each time point t the satisfaction probability p(D)]t].
In thislogic, a basic probabilistic termis p(D)[t] or a variable x ranging over the rea
numbers. A probabilistic termis a basic probabilistic term, or an expression built from
probabilistic terms using operators on real numbers, such as addition + and multiplica-
tion %, with their standard meanings. A basic probabilistic formulaisan expression built
from probabilistic terms using relational operators, such as equality = and less than <,
with their standard meanings. A probabilistic formulaisabasic probabilistic formulaor
an expression built from probabilistic formulasusing the operatorsof first-order logic and
quantifiers over variables (including t in theterm p(D)[t]). The standard interpretations
are assumed for the operators and quantifiers.
In thislogic, we can write down and reason about probabilistic formulas such as

Vi p(~Safe)[t] < pu(—~Asp)[t] + K(—~Desy)[f]

which asserts that the probability of violating the safety requirement Safe will not be
greater than the sum of the probabilities of violating the assumption and the design de-
cison. Thisformulatellsthe designer that thereisa*trade off” between the design deci-
sionswith respect to the probabilitiesof their violation. It also permitsthese probabilities
to be analyzed separately. Satisfaction probabilities can aso be calculated by reasoning
about formulas such as u(D)[t] = p.

PDC includes the axioms and rules of real arithmetic. In the following, we present
the additional rules for the satisfaction probabilities (i(D)s) and show how to use the
combined axioms and rules to prove simple theorems. We use the abbreviation R(f, g)
to stand for V't : R(f[t], g]t]), where Ris arelation between functionsf and g over Time.

The duration formulatrue defines the set of all behaviours of G for any interval:

AR1 p(true)=1

For any giveninterval, the set of behaviours defined by D and —D forms a partition of
all the behaviours and therefore the sum of their probabilitiesis 1.

AR 2 For an arbitrary duration formulaD, p(D) + p(—D) = 1.
The following axiom formalizes the additivity rule in probability theory.
AR 3 For arbitrary duration formulas D1 and D,
H(D1V D2)+H(D1AD2) = W(Dy1) + u(D2)
The satisfaction probability is monotonic:

AR 4 1f D1 = D holdsin DC, then y(D1) < pu(D2) holdsin PDC.

212 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Therefore, if D1 = D,, then no more behaviours satisfy D1 than satisfy D».
These four axioms and rules follow directly from probability theory. The following
theorem can easily be proved from them.

Theorem 7.12 For arbitrary duration formulas D, D1, D, and Das;:

1. p(false) = 0.

2. 0<wD) <1

3. If D1 & Dy holdsin DC, then u(D1) = p(D>) holdsin PDC.

4. 1f D1 AD2 = Dz holdsinDC, then(pu(D1) = 1) = (u(D2) < u(D3)) holdsin PDC.

Proof: Proofsof (1) —(3) aretrivia. (4) is proved asfollows:

WD) =1 = u(DyVDy) =1 (TH.7.3(2), AR3, ARA)
= H(Dl/\ D2) = H(Dz) (ARB)
= HW(D1AD2) <(D3) (AR4,D3AD; = D3)
= HW(D2) < i(D3)

Duration formulas D and D A (¢ = t) are satisfied by the same behaviours of length t.
AR5 For an arbitrary duration formulaD, u(D)[t] = (D A (€ = t))[t].
Theorem 7.13 (u(¢ =t)[t] = 1) A (UL #£ B)[t] = 0)

A behaviour of lengtht, ol satisfiesadurationformula D if and only if each extension
of ol to abehaviour of length t + t' satisfies the duration formula(D ; ¢ =t').

AR 6 For an arbitrary duration formulaD, u(D; ¢ =t')[t+1t'] = u(D)[t].

Axioms AR3, AR4, AR5, AR6 and Theorem 7.12 can be used to prove the following
theorem.

Theorem 7.14 For arbitrary duration formulas D1 and D, if p(D1) = 0, then
M(Dy1; D2) =0
Exercise 7.8.1 Prove Theorem 7.14.

The axiomsand rules described so far are independent of the Markov propertiesof the
PA defined by the probability space (Vt,). We shall consider here only PAs which are
Markov chains; for these, the following additional axioms and theorems apply.

The initia probability mass function 1, is governed by the next axiom, where we use

the convention [v]? 2 [VIA(L=1).

AR 7 For an arbitrary statev € V, p([v]1)[1] = to(V).

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 213

The transition probability function T is governed by the next axiom.

AR 8 For an arbitrary duration formulaD and statesv;,v; € V,
(DA (true; vi1h); MTH[t+1] = T(vi, V) * W(D A (true; [vi]H)[t
From ARS8 and the equivalence:
(D; [vilh 1Y) < ((B; Tl Y A(trues (T [vTH)
we obtain the following theorem.
Theorem 7.15 For an arbitrary duration formulaD and states v;, v; € V-
u(D; [l (1Mt =T(%.)« u(D; [w 15[t

Thisprovidesaway of calculating the probability of behavioursby choppingtheminto
unit intervals. The following axiom gives away of calculating the probability from the
middle of abehaviour.

Exercise 7.7.2 Prove Theorem 7.15.

AR 9 For arbitrary duration formulas D1 and Dy, and v;, vj, Vi € V.

T(Vi, V) * T(Vj, Vi) * (D1 A (€ = 1); Twi1Y; W hs Do)t

= (Wi, Vi) * (D1 A (C=T); iTh V1% TwdY Do)lt+ 1]

Finally, itispossibleto provethefollowing theorem using axioms AR4, AR7 and AR8
and Theorems 7.13 and 7.14.

Theorem 7.16 For arbitrary duration formulas D, D, and D5, and v,V € V:

1. (To(V) = :
2. (Y(v,V)=0)= (W(Dg; [v]; [V]; D2) =0).

Exercise 7.7.3 Provetheorem 7.16.

214 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC
7.7.4 Example

We can now apply PDC to the ssimple mine pump with an unreliabl e detector and failing
pump (Section 7.7.1). We show how to estimate the satisfaction probability of require-
ment MP which states that the pump must not fail for more than four minutesin any pe-
riod of 30 minutes. Assuming time units of minutes, this safety requirement is specified
inDC as

MP 2 O(1 < 30= [-Ok < 4)

or, equivaently, as

([-Ok > 4) &2 0K]

Assuming that detection of failuresand subsequent recovery works perfectly, the follow-
ing design decisions can be taken:

MP;: Failure should be detected and stopped within one minute:
MP; £ [~0k] < [OK]

MP,: Any two occurrences of failure must be separated by at least 30 minutes:

MP, 2 ([-OK] ; [OK]) &3 [oK]

From Exercise 7.3(4), we have
MP1 A MP, = MP (i.e. -MP = (=MPyV —=MP))
From axioms AR3 and AR4, we then have
H(=MP) < p(=MP1V =MP2) < u(=MP1) + p(=MP2)
where, from DC,
H(=MPq) = p(true; ([=OK] A (€ > 1)); true)
H(=MPy) = p(true; (([-OK]; [~OK]; [-OK])A (¢ < 32)); true)
In what follows, we calculate p(—~MPy)]t] recursively. From DC,
-MP1A (€ <1) & false
Therefore, by Theorem 7.12.1 and Theorem 7.12.3,
t<1= pu(—~MPy)[t]=0
Also,
(-MPy A€ = 2) & [-OK]*; [-OK]*

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 215

but 1o(=0Ok) = 0. Thus p(—=MP;)[2] = 0, by Theorem 7.12 and axioms AR7 and ARS.
For any t > 1, MPy isviolated in the first t + 1 minutes, if and only if MP; has aready
been violated in the first t minutes, or MP; holds for the first t minutes but is violated
during the (t+ 1)th minute. Thisiswritten as

(—|MP1/\€:'[—|— 1) = ((—|MP1/\€:'[); (= 1)
V((MPy; { =1)A-MPL AL =t+1)

where the two termsin the digunction on the right are mutually exclusive. Fort > 2 and
from MP1, the second term on the right-hand side is equivalent to

(MPy; [OK]Y; [=OK]Y; [-OKI) A (C=t+1)
From Theorem 7.12, axioms AR3, AR5 and AR6 and Theorem 7.15 it then follows that
H(-MP)[t+1] = WU(=MP1)[t] + P12 p22* M(MPy; [OK])[t 1]

wheret > 2. To solve this recursive equation, we need an auxiliary recursive equation
for the second p-expression on the right-hand side. Thisis established next.
Fort > 2 and MP; we have

((MPg; [OK|H AL =t+1)
& ((MPg; [OK]Y TOKIY)Y AL =t+1)
V((MPg; [-OK]Y; TOKIHY AL =t+1)
& ((MPg; [OK]Y TOKIY)Y AL =t+1)
V((MPy; TOKY T-0KE; TOKIHY AL =t+1)
Again, the two terms on the right hand side are mutually exclusive. From Theorem 7.12,
axioms AR3 and AR5 and Theorem 7.15 it then follows that
U(MPy; [OKID[t+1] = pag*W(MPg; [OK] L]
+ Pr2* P2z M(MPy; [OK] 1)t 1]
wheret > 2

It is easy to show that u(MPy; [OK]1)[1] and p(MP,; [OK]1)[2] are both 1. These are
theinitial values for the recursion.
In summary, if we introduce the functions P (t) and Q (t) by

{ P(t) £ u(-MPy)[t]
Q (t) £ W(MPy; [~OK])[t

the probability P (t+ 1) that design decision 1 is violated in the observation interval
[0,t+ 1], t > 2, can be calculated by the solution of the mutually recursive equations

P(t+1) =P (t)+ p12* p22#Q (t 1)
Q(t+1) =pu*Q (t)+ pr2* P21+ Q (t=1)
wheret>2; P(2)=0,Q(1)=1andQ (2)=1

216 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

The calculation of p(—MP,)[t] is done similarly. From axiom AR2,

H(=MP2) = 1oU(MP;)
and, in DC,

MP, A€ > 0« (MP, A (trug; [-OK]1)) v (MP A (true; [OK]1))
So by axiom AR3 and Theorem 7.12, we have

H(MP,) = u(MP, A (trug; [-OK]Y)) + u(MP, A (trug; [OK]Y))
Let U(t) and V (t) be functions defined as

U(t) £ u(MP, A (true; [~OK|))(]

{ V (1) £ u(MP A (true; JOKIY))[d

Then, recalling that p; (= 1o(OK)) = 1 and p, (= 1o(—0OKk)) = 0, we can derive the fol-
lowing recursive equations for U(t) and V (t) in the calculus:

U(t—l—l) p22>l<U —|— 11 *p12 if1<t<29
ift<l

1 ift<1
wheret>0and U(0) =V (0)=0

V(t—|—1):{p21*u + 11*V ift>1

Using these mutually recursive equations, we can calculate p(MP;) and then p(—=MP5).
Another way of calculating p(MP;) and pu(MP,) is described in the following section.

775 Matrix-based, calculation-oriented theorems

The simple mine pump example shows that the direct use of PDC rulesin probabilistic
analysis can be rather ad-hoc. This indicates the need for high-level theorems leading
to amore systematic analysis. We now extend PDC with matrices of real numbers and
introduce the single-step transition probability matrix P and the initial state probability
vector p in order to prove some auxiliary theorems using PDC. This will enable us to
state and prove some useful calculation-oriented theorems.

Introducing matrices
Anmx nmatrix M my«n of real numbersisafunction

men {1 m}X{l,,n}@—)R

where m and n range over the positive integers and R is the set of real numbers.

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 217

Mmxn istherefore totally determined by assigning areal number myj to M myn(i,j) for
(i,j) e {1,...,m} x {1,...,n}. Such amatrix is aso written as

M1 ... My

A
men -

M ... Mmn

wheremy; iscalled the (i, j)th element of M, n. When thereis no confusion, M m,.n will
simply be writtenas M.

Let Mm«n denote the set of all mx n matricesand M the set of all matrices of rea
numbers. Operations on matrices are defined in terms of their elements. For example,
the operation of addition ‘' on matricesis defined on Mmyn x Mmyxn by

1>

(M +M)(i,j) = M(i,j) +M'(i.)
where(i,j) € {1,...,m} x {1,...,n}.
Similarly, multiplication *-* is defined on Mpyyn x My, vy by

(Mmyxn - Mnxm(msery (i5]) Z M (i, k)« M'(k,])

where (i,j) € {1,...,m} x {1,...,m}.
Predicates of matrices are defined in terms of predicates of their elements. For exam-
ple, equality ‘=" between two matricesis defined by

Mmen = Mbp w2 (M= A(M=m)A(A (M(i,)) = M'(i,i))
(ij)=(11)

These definitions show that the arithmetic of matrices of real numbersisin first-order
real arithmetic, which isthe basis of the probabilistic calculus.

Auxiliary notation
Definition 7.6 The following notation is needed:

E isthemx midentity matrix (E(i,j) = 1fori =j and E(i,j) = Ofori #]j).

1. isthemx 1 matrix (column vector) in which all elements are 1.

zi isthe 1 x mmatrix (row vector) of zeroswith the ith element changed from O to 1.
h;j isthemx 1 matrix (column vector) of zeros with the 1 in the ith element.

| istheindex set {1,...,m}

l; denotesthe subset | \ {i} of | wherei ¢ I.

218 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Probability matrices and some basic theorems
Definition 7.7 WithV = {v1,...,vm} (Definition 7.5), the single-step transition prob-
ability matrix P isareal mx mmatrix defined by

P11 .- Pim Pij 2 T(vi,v) (0<p;<1)
: where

: : 9
Pm1 --- Prmm % Pi

and the initial state occupation probability vector p isareal 1 x mrow vector defined by

pi

P2 To(v) (0<p<1)

Zpizl
IS

The first theorem iswell known from the theory of Markov chains.

p 2 (P1,...,Pm) Where:

Theorem 7.17 For t > 0 and with PO defined to be the identity matrix E:
Pl o= 1¢

The theorem states that the sum of each row in the tth power of the single-step transition
probability matrix is 1.

Exercise 7.7.4 Prove Theorem 7.17.

Definition 7.8 Let p¥ (t > 0) denote the row vector (pi". ..., p{Y)) defined by p® £
p-P

The following theorem states that p'¥ is the (unconditional) probability, that the sys-

i
tem occupies state v; after the tth transition. Thisis aso well known from the theory of
Markov chains, but it is expressed and proved here in terms of PDC.

Theorem 7.18 Fort > 0,
((true; [v]M[t+2],..., u(true; [vin] Hft+1]) = p

Proof: We useinduction ont:
For t = 0, the result follows from axiom AR7 and the fact that
p= (TO(V1)7 ceey To(Vm))
Assume that the result holds for t = k; then from Theorem 7.15 and the definition of pj;,
utrue; (vlhk+2) = 3 u(true v1% [vilhk+2)
J€l
= Y utrue [v1HKk+1]#T(4,vi)
cl

= S u(trug [vi1Hk+ 1] = pj
el

—

—

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 219

By the induction assumption,
u(true; [vi1hk+1] = pl¥
Therefore, fori eI,

k2 =3 ey
H(true; [vi]5)lk+2] %p, P

By therulesgiven in Section 7.7.5, thisleads to

(u(trug; [va]hHk+2),...,u(true; [vmHik+2) =p®.P
But, by Definition 7.8,

pl.p= (p- pk) P=p. Pl = plktD)

This proves the theorem. -

Theorems 7.17 and 7.18 imply that the initial probability vector p and the single-step
transition probability matrix P are sufficient to determine the distribution p(t). Taken to-
gether, the theorems characterize P! as the t-step transition probability matrix. In the

theory of stochastic processes the elements of P, denoted by pi(jt), are defined by

pl’ £ P[v=yjattimen+t|v=vyatimen] (t>0)

Thelast theorem in this subsection expresses p(true)|t+ 1] (known to be 1) explicitly
interms of p, P and t. The theorem isnot very useful for computation, but it providesa
semantic background for the subsequent computation-oriented theorems.

Theorem 7.19 For anon-negative integer t,
u(true)ft+ 1] =p-P- Lo =1

Exercise 7.7.5 Prove Theorem 7.19.

Example
For atwo-state system such as the ssmple mine pump and for atime interval of length 3

M(true)3 = (prpa)- (Pu Pr)2‘ (i)

P21 P22
= P1P11P11+ P1P11P12 + P1P12P21 + P1P12P22
+ P2P21P11 + P2P21P12 + P2P22P21 + P2P22P22 = 1

This shows that the matrix expression for p(true)[t + 1] can be expanded into a sum of
symbolic products where each product defines the probability of a unique behaviour of
length t + 1 and all such products are represented.

Clearly, the effect of replacing the duration formula true by a more restrictive for-
mulaD must beto eliminateall productsin the sum except those representing behaviours
which satisfy D. For asimpleclass of D formulas, thiseliminationis obtained by replac-
ing certain elements in P or p in the matrix expressions by zeros. Thisisused in the
following theorems.

220 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Computation-oriented theorems

Thefirst theoremis useful for computation of the probability that atransition to a catas-
trophic state does not occur (Case a) or does occur (Case b) within thethefirstt+ 1time
units.

Theorem 7.20 Let pp denote p with element p; replaced by zero and let Pg; denote P
with al elements in column i replaced by zeros; then for a state v; and a non-negative
integer t:

@ WO+ =pp-(P)' L
(0) WOMWD[t+1] =1epp - (Pg)' L
To prove this theorem we need the following lemma.
Lemma 7.3 For astate v; and a non-negative integer t:
(K(D1)[t+1]...., (D)t +1]) = pp - (Pg,)"
where: fork € 1, D 2 (O [vi]) A (true; [vil]).

According to thislemma, the kth element of the row vector pp, - (Px,)t isthe probability
that the system occupies state vy after the tth transition and that state v; does not occur
during thefirst t + 1 time units.

Proof: We useinductionont. Fort = 0we havepp, - (Pg)' = pp, - E = pp,. The result
then follows from AR7 and the fact that

ppi = (TO(V1)7 SRR TO(Vi—l)7 07 TO(Vi_|_1), ceey To(Vm))

Fort > 0, assumethat theresult holdsfor t = n. Thenfort = n4 1 and for the kth element
of the vector:

W((O= 1) A (true; T]))In+2] = u((O-]i]) A (true; [vi 1)+ 2]
ZZH((DﬂVﬂ)/\(UUG V1% v H)in+2)
JE

For k=i thissumis zero by Theorem 7.12 (p(false) = 0). For k # i we can rewrite the
sum, denoted Sum, as follows (notice the parentheses!):

SJmZZH(((DﬂVﬂ)/\(UUGi v1H): vl In+2
JE

By axiom ARS8 we then obtain
Sum= 5 (D) Adtrues [Th)ln+ 2]+ 10 %)
Je

Replacing t(V;, Vk) by pjk and returning to the vector form, thisimplies:
(K(D1)IN+2],....u(Dm)n+2)) = (W(D1)[n+1],....u(Dm)[n+1]) - Py
By the induction assumption, the last expression is equal to
Pp - (Pe))"- Pe, = pp, - (Pe)"™
This proves the lemma.

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 221

Exercise 7.7.6 Prove Theorem 7.20.

Notice, that if statev; isabsorbing (p;; = 1), then Theorem 7.20 givesthe probability that
absorption in this state has occurred (b) or has not occurred (a) withinthefirst t + 1 time
units.

The next theorem is useful for computation of the probability that a transition from
ahazardous state v; to a catastrophic state v; does not occur (case a) or occurs (case b)
within thefirst t 4+ 1 time units.

Theorem 7.21 Let P denote P with element p;; replaced by azero. Then for states v,
v; and anon-negative integer t:

@ w(OE-(l; [vD)[t+1]=p-(Pp)" L
0wl (MD)It+1] =1ep-(Py)' L

The proof of thistheorem follows exactly the same pattern as the proof of Theorem 7.20,

and is omitted. The required lemma, which resembles Lemma 7.3, isas follows.

Lemma 7.4 For states v; and v; and anon-negative integer t:
(R(DD)[t+1].....u(Dm)[t+1]) = p- (Pp,)'

where: for ke 1, D £ (O-([vi]; [V])) A (true; [wid]).

This lemma states that the kth element of the row vector p - (Pr;ij)t isthe probability that
the system occupies state vy after the tth transition and no transition from state v; to state
v; occurs during the first t + 1 time units.

Theorem 7.21 has the following immediate corollary.

Corollary 2 For astate v; and a non-negative integer t:
@ WOE([vi]=(<D)t+1=p-(Pp)'-1
() MO(WTAL>D)[t+1)=1ep-(Py)t-1

The next theorem deals with certain chopped formulas, which generalize and unite ax-
ioms AR2 and AR8. However, before we can state the theorem a definition is needed.

Definition 7.9 For each subset J of theindex set | = {1,....m}, J C I, we define:

1. an auxiliary matrix P; from the single step transition probability matrix P as fol-

lows:
Puu - Pim
Py 2| where pj; = { 8” :H E%
P © P

and J denotes the complement | \ J of J.

222 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

2. acomposite state V; as follows:

2V

jed
Notice that, according to the definition of vj, ([vj] A € = t) represents any sequence
ARRVARTIAD
of elementary states of duration 1 suchthat j; € J fori € {1,...,t}.

The theorem makes use of the auxiliary row vector z; and column vector 1. from Def-
inition 7.7.5.

Theorem 7.22 For an arbitrary index set J C I, an arbitrary duration formulaD and an
arbitrary statev; € V

(8 W(DA(true [W])A(C=K)i [vy])ft+k+1]
— W(D A (true; [w])[K -z~ (Py)*1- 1)

(b) (DA (true; [vi]) A (€ =K); O[va])[t+k+1]
— WD A(true; 1)K - (L& (P 1o)

To prove this theorem, the following notation and lemma are useful:

£ W(D A (true; [vi]))K]

q
andforjel

i &] H(DA(trues () A(E=K); [va]) A (true; [v])[t+k+1] ifjed
q;[]—{ 0 ifjed

We first present the lemma below.

Lemma 7.5 Forqand g;[t] as defined above,
(Qult],..amlt]) = q-7i- (Py)"**

Exercise 7.7.7 Prove Lemma7.5 and Theorem 7.22(a).

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 223

Proof: (Proof of Theorem 7.22(b)) Case (b) is proved from case (a):
q-(1<];- (Pj)t-l—l. l.=0<q-1;- (pj)t—|—l e

= qepDA(true [Vi])A (0= K); [vy])ft+k+1 (Th.17(a)

= WDA(true [W])A (L =K); (€= t+1)[t+k+1] (ARS)
SH(D A (true; [W])A(C=K); [ve])[t+ K+ 1]

— WDA(true V)AL =K); [v5] VOVIDIE+Kk+1] (The(3))
SH(D A (true; [W])A(C=K); [vg])[t+ K+ 1]

= (DA (true; [W])A(C=K); [vg))lt+k+1]
+U(DA(true; [vi])A(C=K); O[va])[t+k+1] (AR3)
SH(D A (true; [W])A(C=K); [ve])[t+ K+ 1]

= WDA(true; [Vi])A (L =K); O[va])[t+k+1]

Application to themine pump example
Consider the smple mine pump of Section 7.7.1 which was analyzed in Section 7.7.4.
Let

Ok ifi=1
-0k ifi=2

v 2 {v1,V2} where: v 2 {

P = (prPp) (Wherep; =1 andp; = 0)
p 2 (P11 P12 >
P21 P22
A simple explicit expression for p(—=MPq)[t+ 1] follows directly from Corollary 2(b) of
Theorem 7.21:

>

t
B ¢ B f P P12 1
H(=MPy)[t+1] =1=p-(Ppy,) - 1c = 1<(p1,P2) (P21 O) (1)

Itismoredifficult to express u(—=MP5)[t+ 1] explicitly by meansof the present collection
of theorems. In DC, we can rewrite =MP, asfollows:

“MP; & O(([-OK]; JOK]; [-OK]) A (¢ < 31))
& Jk:((true; [~OK]) A (£ =K); [OK] A (€ < 29); [-OK]%; true)

224 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC
For agivent, p(—=MPy)[t] isnon-zeroonly if t > k+h+ 1, wherek > 1and 1 < h < 29.
Introducing

hmax = min((t &k 1), 29)

we can express U MP5)[t] by adouble summation over all possible ks and hs (thisis be-
cause we can treat the existential quantification as a digunction over all possible ks and
hs in which the diguncts are mutually exclusive):

H(=MP2)[t]
(by ARG)
t—2 hymax
= Z Z u(true; [~OK]) A (€ =k); [OK] A (€ = h); [-OK][k+h+1]
K=1h=1
(by Theorem 7.22 and Definition 7.7.5)
t—2 hax
= Z Z H(true; [-OK]) A (¢ =k); [OK] A (€ =h))[k+h]-(z1- Py - 1)
—1h=1
(by Theorem 7.22 again)
t—2 hymax
= Zlhzlu (true; [—OK])[K]- (22 P }-1C)-(21-P{2}-1C)
(by Theorem 7.18, Definition 7.7.5 and Definition 7.7.5)
t—2 hymax
= Z S (p-Pthy) (2Pl Lo)- (21 Pz - Lo)
—1h=1

7.9 Historical background

The motivation for DC originally came from the gas burner problem which was chosen
as the main case study of the ProCoS project (Bjarner et al., 1993; He et al., 1994). It
wasthen realized that control engineersuse the propertiesof integralsand differential sof
functions widely in the description of requirements and for reasoning about the designs
of embedded systems. For example, the case study was required to formulate the safety
requirement of the gas burner in terms of variables denoting undesirable but unavoid-
able states such as Leak, which represents the flow of unlit gas from the nozzle: ‘' The
proportion of time when gas leaks is not more than one twentieth of the elapsed time, if
the system is observed for more than one minute’.

A direct formulation of thisrequirement can be obtained using mathematical analys's;
for any interval [b, €] of the real-numbers:

(esb) > 60 = 20/ ELeak(t)dt < (eh)

where Leak isaboolean valued step-function from the real-numbers (representing time).
But at the time of the start of the ProCoS project no calculus, apart from set theory, was
available to express and reason about the properties of integrals or differentials of func-
tions. Set theory isfar too rich and thus difficult to use for system designs.

7.10. FURTHER WORK 225

Working on the formalization of integrals of boolean-valued functions, Zhou et al.
(19914a) developed the duration calculus. Integrals were considered as curried functions
from state functions and intervalsto real numbers:

[S=(1—=R)

where S denotes the set of states (i.e. boolean-valued step-functions) and | the set of
bounded intervalsof real numbers. Moszkowski’sITL (1985), which usesadiscretetime
domain and was devel oped for reasoning about hardware was extended with continuous
time and then adopted as the base logic for DC. Interval functionssuch as [P and [Q
then become interval variablesof ITL.

Aswe have seen in this chapter, DC is alogic for formalizing and reasoning about a
system’s functional and safety properties. It does not provide the means for specifying
and reasoning about the reliability properties of an implementation in which imperfect
components are used. Since perfect components are not used in practice, and thereisno
perfect implementation, there is a need for an extension to deal with probabilities. Liu
et al. (1993c) described a probabilistic duration calculus which is a modal logic about
prefix timeintervals; this did not need reference to the time variable t in a probabilistic
term p(D). The same authors developed a first-order logic (Liu et al., 1994b) for the
calculation of p(D)[t] and thisis the version presented in Section 7.7.

Liu et al. (1993c; 1994b) assume discrete time and model an imperfect implementa-
tion as a finite automaton with fixed history, independent of the transition probabilities.
This makes discrete Markov processes appropriate as the basis for the calculus. In com-
parison with Liu et al. (1993c), the first-order logic in Liu et al. (1994b) is easier to un-
derstand and can be used without loss of expressiveness; the latter also gives moredetails
and adds computation-oriented theorems to the theory, making the cal culus more mech-
anizable and also more accessible to reliability engineers.

7.10 Further work

After itsinitial development, there has been considerable further research on DC: theo-
retical developments of the calculus, extensions and application-related work.

7.10.1 Theoretical work

Assuming finite variability of states, aformal semantics of DC was givenin Hansen and
Zhou (1992). Based on this semantics, they also proved that the axioms and rules pre-
sented here in Section 7.5 congtitute a relatively complete calculus for DC. Results on
decidability and undecidability of DC have appeared in Zhou et al. (1993a) and a proto-
type mechanized proof assistant has been implemented by coding the semanticsof DCin
thelogic of PVS (Skakkebak & Shankar, 1994). An efficient model checking algorithm
for linear duration invariants has been givenin Zhou et al. (1994). An overview on DC
and its extensions can be found in Zhou (1993).

226 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

For PDC, parallel composition of (open) probabilistic automataisdefinedin Liu et al.
(1993a; 1993b). There, refinement of a probabilistic automatainto another through par-
allel composition (or decomposition) isformalized, and some compositiona proof rules
interms of PDC areinvestigated. PDC has been extended by Dang and Zhou (1994) for
continuous time.

7.10.2 Extensions

The basic DC has several extensions, among which are the probabilistic calculi of Liu
et al. (1993c; 1994b). Another extension, called the Extended Duration Calculus (Zhou
et al., 1993b), was designed for the specification and verification of hybrid systemswhich
include continuous and discrete states. Here, the arguments of thelifting operator [-] are
generalized to allow not only boolean-valued functions but also properties like equality
and inequality (we have already seen these used in the mine pump example), continuity,
etc. For example, with formulaslike [Continous(v)] it is possible to assert that function
v is continuous in an interval and with [v = 0] to assert that v is stable (or constant) in
an interval.

Ravn (1994) uses DC and its extensions to investigate both fundamental and practi-
cal issuesinvolved in theformal development of embedded real-time systems, including
hybrid systems. The paper links DC to the mathematical analysis of continuous func-
tions by allowing the initial and final values, b.f and ef, of afunction f to be defined,
aswell asitsduration [f over aninterval. The basic DC has also been extended to the
Mean Value Calculus (Zhou & Xiaoshan, 1994) by replacing integrals of boolean-val ued
functions with their mean values. In this extended cal culus, both durations of states and
point values of states can be expressed, and the latter become significant when a state-
based system requirement isto be refined into acommuni cation-based set of components,
because communications are instant actions.

The basic DC and these extensions are restricted to finite intervals and use the chop
operator as the only means of contracting subintervals to a given interval. The restric-
tion prevents the use of DC for specifying unbounded liveness and fairness properties,
such astwo userswho are served so fairly that they have exactly equal service durations.
To accommodate unbounded liveness and fairness, severa extensions to DC have been
proposed. The first approach to extending DC for specifying unbounded liveness and
fairness was to introduce expanding modalities in DC, while keeping the restriction of
finite intervals. Pandya (1994) defined two weakest inverses of the chop operator. En-
gel and Rischel (1994) generalized the chop operator by introducing backward intervals.
Based on Venema's(1991) interval temporal logic Skakkebaek (1994) added two expand-
ing modalitiesinto DC, which are symmetric and designated as»> and <. Aninterval sat-
isfies D1 > D5 iff there exists ¢ such that ¢ > b, [a, ¢] satisfies D1 and [b, c] satisfies D».

Although these extensions can express liveness and fairness properties, they are till
unable to differentiate syntactically between a finite and an infinite system behaviour.
An infinite behaviour determines a system eternally, while afinite behaviour determines
system states up to some moment in time, possibly allowing arbitrary continuation. Itis

7.11. EXERCISES 227

still difficult to define sequential composition using thesefiniteinterval based extensions
of DC. Zhou et al. (1995) addresses this problem by introducing new states, rather than
new modalities, to indicate termination, refusals or ready syntactically. This resembles
the method used for extending the finite trace based version of CSP (see Chapter 6).

Zhou et al. (1995) mainly investigates a third way of extending DC for liveness and
fairness properties by introducing infinite intervals into the calculus. The extended cal-
culus, called a Duration Calculus with Infinite Intervals (DC'), is a first-order logic of
finite and infinite satisfactions of DC. The basic formulasof DC' are Df and D', where D
isaformulaof DC. D may hold only for finiteintervals, and D' may hold only for infinite
intervals. A finiteinterval satisfiesDf iff theinterval satisfies D intermsof the semantics
of DC. An infiniteinterval satisfies D' iff all its finite prefixes satisfy D in terms of the
semantics of DC. It was shown that DC' could conveniently specify unbounded liveness
and fairness properties, and define sequential compositionin aprogramming languagein
amuch smpler way.

7.10.3 Application work

DC hasbeen used to define and refinerequirementsand designsfor anumber of examples
including agas burner (Ravn et al., 1993), arailway crossing (Skakkebak et al., 1992),
awater level controller (Engel et al., 1993) and an auto pilot (Ravn & Rischel, 1991).
It also has been used to define the real -time semantics of programming languages (Zhou
et al., 1991b; He & Bowen, 1992; Hansen et al., 1993a), to specify real-time scheduling
policies(Zhou et al., 1991b; Zhang & Zhou, 1994) and to specify thereal-timebehaviour
of circuits(Hansen et al., 1992). Applicationsof the extended duration calculusto hybrid
systems can be found in Hansen et al. (1993b) and in Yu et al. (1994a; 1994b).

7.11 Exercises

Exercise 7.1 Provethe following useful formulas:

1. (true; true) < true

2. ([P1]; true) A([P2] ; true) < ([PLAP2] ; true)
3. (F=06)= (OF = <06)

4. OOF & OF

5 O(F AG) & OF AOG

6. O(F ; G)=OF AOG

7. (F =G)=(OF = 0G)

Exercise 7.2 For each formulawith & in Exercise 7.1 find and prove a dual formula
using O.

Exercise 7.3 For the abbreviation [F | PN [P] defined in Section 7.2, prove the fol-

lowing formulas:

228 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Figure 7.8 A protocol over an unreliable medium

L P AL<E = [Py] < [Py]

[Py]
Py] &% [P)A([PLAPS] &% [Ps]) = [Pr] E% [P APs)
[

—

P] < [-P)A(([P] 5 [-P]) 5 [-P]) = o((<t= [P<c)

Exercise 7.4 Specify ascheduling policy that has an overhead of 4 time unitswhenever
aprocess hasto be either placed on a processor for execution or removed from a proces-
sor.

Exercise 7.5 Figure 7.8 illustrates a protocol over an unreliable medium which trans-
mitsamessage fromaprocesscalled Sender to aprocess called Receiver through abuffer.
s, b, mand r are states when the sender, the buffer, the medium and the receiver, respec-
tively, are active; e represents the error state of the medium. Calculate the following
probabilities using the PDC rules:

L ou(fr>0)
H(D1 A D2)|t] where D, 2 (true; [e])A (L =K); [-e] A(L =ky); [€]; true
W(D2)[t] D, 2 (true; [e]) A (¢ = k); true

Exercise 7.6 Use matrix-based theorems to calculate the probabilities of Exercise 7.5.

Chapter 8

Real-time Systems and Fault-tolerance

Henk Schepers

I ntroduction

When a component of a computer system fails, it will usually produce some undesir-
able effects and it can be said to no longer behave according to its specification. Such
a breakdown of a component is called a fault and its consequence is called afailure. A
fault may occur sporadically, or it may be stable and cause the component to fail perma-
nently. Even when afault occurs instantaneoudly, a fault such as a memory fault may
have consequences that manifest themselves after a considerable time.

Fault-tolerance is the ability of a system to function correctly despite the occurrence
of faults. Faults caused by errors(or ‘bugs’) in software are systematic and can be repro-
duced intheright conditions. Theformal methodsdescribed in previous chaptersaddress
the problem of errorsin software and, while their use does not guarantee the absence of
softwareerrors, they do providethe means of making arigorous, additional check. Hard-
wareerrorsmay also be systematic but in addition they can have random causes. Thefact
that a hardware component functions correctly at some time is no guarantee of flawless
futurebehaviour; in Chapter 7, theformal treatment of random faultswas described using
the probabilistic duration calculus. Note that hardware faults often affect the correct be-
haviour of software. One of the reasonsfor introducing dynamic scheduling (see Chapter
4) isto deal with the unexpected computational load imposed when faults do occur.

Of course, itisnot possibleto tolerate every fault. A failure hypothesis stipul ates how
faultsaffect the behaviour of asystem. Anexampleof afailure hypothesisisthe assump-
tion that a communication medium might corrupt messages. With triple modular redun-
dancy, a single component is replaced by three replicas and a voter that determines the
outcome, and the failure hypothesisis that at any time at most one replicais affected by
faults. A failurehypothesisdividesabnormal behaviour, i.e. behaviour that does not con-
form to the specification, into exceptional and catastrophic behaviours. Exceptional be-
haviour conformsto the failure hypothesis and must be tolerated, but no attempt need be
madeto handle catastrophic behaviour (and, indeed, no attempt may bepossible). For ex-
ample, if the communication medium mentioned earlier repeatedly sends the same mes-

229

230 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

sage, then this may be catastrophic for a given fault-tolerance scheme. It isimportant to
note that ‘normal’ behaviour does not mean ‘ perfect’” behaviour: after atime-out occurs,
the retransmission of a message by a sender is normal but it may result in two copies of
the same message reaching its destination. Exceptional and normal behaviours together
form the acceptable behaviour that the system must tolerate. This chapter is concerned
with the following question: can we reason about acceptable behaviour in the same way
that we reason about normal behaviour?

We shall use the compositional proof method of Chapter 5 for reasoning about accept-
able behaviour, and the failure hypothesis of a system will be formalized as a relation
between its normal and acceptable behaviour. Such a relation will alow us to abstract
from the precise nature and occurrence of faults and focus on the abnormal behaviour
that might be caused. Thiswill lead usto a proof rule by which a specification of the ac-
ceptable behaviour can be obtained from the specification of the normal behaviour and a
predicate characterizing the failure hypothesis. Given afailure hypothesisx, P{x stands
for ‘P under X’ and means execution of process P under the assumption X. The accept-
able behaviour of process P under the failure hypothesisx isthe normal behaviour of the
failure prone process P x.

Use of the method will be demonstrated on the mine pump problem. We shall describe
how each component can be affected by malfunctions and then devise ways to tolerate
the failures. Because we haveto be particularly careful, shifts might be missed unneces-
sarily. However, we shall prove that the resulting system is safe, i.e. it will not cause an
explosion.

8.1 Assertionsand correctnessformulae

Let Rbeaspecial variable referring to the timed occurrence function (see Section 5.1.2)
which denotes the observable behaviour of a real-time system. Let MVAR be a set of
logical variables with typical element M ranging over timed occurrence functions. The
boolean primitive O @texp will be considered as an abbreviation of O € R(texp). In ad-
dition, the boolean primitive O @,, texp will be used as an abbreviation of O € M(texp)
andsimilarlyweshal useP duringy | = Vtel-P@yt,andPiny | = dtel-P@yt.

Since R refersto all observables, the unrestricted occurrence of R in assertions leads
to problems when trying to apply the parallel composition rule.

Definition 8.1 (Event projection) If E is aset of observable events and p isa mapping,
theredtrictionp | Eof ptoE at timeTis

(PLE)(T)=p(T1)NE

Defineobs(R | E) = E.

Definition 8.2 (Interval projection) For aninterva | C TIME and amappingp, p | | is
therestriction of p with respect to | and is defined as

8.1. ASSERTIONSAND CORRECTNESS FORMULAE 231

einm={ 57 {15l

&

Let Xy denotetheinitial state value of avariablex and let now nowg denote the starting
time. Then instead of

(x=v>0AnNnow=t< o)) SQRT (X = /VA t+3 < now < t+ 5))
we may write, using nowg to refer to the starting time
(X0 >0 A Nowp < o)) SQRT {(X = \/Xg A NOWg + 3 < NOW < Nowg + 5))

Let var(¢) denote the program variablesin ¢ and vary(¢) the variables x € VAR such
that xo appearsin ¢. Anassertion will beinterpreted with respect to a4-tuple(op, 0, p, y).
The state og gives nowp and the terms Xg their value; the state o, the mapping p and the
environment y are as defined in Chapter 5. The most important cases are:

V [[nowo]|(Go, 0, P, Y) = Go(Nnow)
* V [[]](007 07 pvy) - OO(X)
* V [[]](00707 pvy) = p
V [M](0o,0,p,Y) = (M) for M € MVAR
Furthermore,
. (00,0,p,Y) =3IM- ¢ iff thereis some p such that (Gp,0,p,(Y: M+— D)) = ¢

andif varg(¢) = @then (0p,0,p,Y) = ¢ iff (0,p,y) = ¢ according to the definition (Sec-
tion 5.2.3).

These additions lead to a dightly different definition of the validity of a correctness
formula

Definition 8.3 (Valid correctness formula) If X € VAR* isthelist of all variables x €

var(A) and Xg isthe corresponding list of terms g, the correctness formula ((A)) P ((C))

isvalid, = ((A)) P ((C)), iff for all yand og and any o and p with (o, p) € M [[P](0p):
(00,0.p.Y) | AlXo/X, nowp/now] — C

&

If varg(C) = @ then this reduces to the origina definition. In this chapter, al program
variables are assumed to belocal.

232 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE
8.2 Formalizingafailure hypothesis

A failure hypothesis x of program P is a predicate relating the normal and acceptable
executions of P. To define such a predicate, we extend the assertion language with the
specia variables now,y and Ry, and associate with each term x the term X

R, now and x refer to an observation of P, possibly afflicted by faults. Since our task
is to show that a system tolerates the abnormal behaviour of its components to the ex-
tent expressed by the failure hypothesis, R, now and x refer to an observation of P that is
acceptable with respect to x.

On the other hand, Ry, NOW,y and Xqm refer to a normal observation of p. For ex-
ample, x,m refers to the value of the program variable x in the final state of a normal
execution, while x denotes its value in the final state of an acceptable execution. Note
that the state in which an execution is started is not affected by faults occurring later in
the execution.

For instance, consider theprogram INC : x := X+ 1, which may be subject to astuck-at-
zero-fault in the hardware which does not affect the execution time (i.e. NOW = NOWpyy)
but causes the final value of x to be zero (i.e. X = Xym VX = 0). Thisis defined in the
failure hypothesis SuckAtZero.

StuckAtZero = (X = Xpm V X = 0) A noW = noWpmy A R= Ry
Note: Thisformalization does not depend on what the final value of x ought to be. <&

If the mapping R hasx asan observable, the clause R= R,y will beunrealistic. Insuch
acase, the failure hypothesis should show that there may be atime during the execution
at which x becomesand remainszero. Asmentioned before, inthischapter programvari-
ables are not observable.

Note: We shall assume that communication channels and lines are not prone to failure
and that the axiomatization of their properties, given in Chapter 5, still applies. &

Sentences of the extended assertion language are called transformation expressions,
typically denoted by . Let var,, () denote those variables x € VAR for which thereis
acorresponding X,m in Y. A transformation expression is interpreted with respect to a
tuple:

(007 Onml; O, Pnmi, P, y)

where the state oy IS Used to evaluate the terms Xy, the mapping pnm gives Ry its
value and, as before, the state 0y is used to evaluate the terms X, the state o interprets
the terms x, the mapping p gives R its value and the environment y interprets the logical
variables:

« V [Xim] (00, Onmi, O, Prmi; P, Y) = Onmi(X) for x € VAR
- V[X](Go, Orm, 0, Pami, P, Y) = 0(X) for x € VAR

- V[Rum[(90,0nm- 0, Pnmi, P, Y) = Pnmi

8.2. FORMALIZING A FAILURE HYPOTHESIS 233

* V [[R]](007 O-nmla 07 pnmla pvy) - p
O @y t Will be used as an abbreviation for O € Ry (t), etc.

Since Rymi, NOWhm, and Xy dO Not appear in assertions, thefollowing lemmaistrivial.

Lemma 8.1 (Correspondence) For an assertion ¢,

(007 Onmil» O, Prmi pvy) |: q) iff (007 o, pvy) |: q)
O

Definition 8.4 (Validtransformation expression) A transformationexpression yisvalid,
=, iff for al o, Onmi, O, Prmi, p and Y, it isthe case that (0o, Onmi, T, Prmi, P, Y) = Y-
&

A failure hypothesisx isatransformation expression which respects the communication
and invariance properties defined in Chapter 5. Thus, a failure hypothesis will not a-
low the derivation of properties which violate those defined earlier, e.g. send(c) @3 A
waitrec(c) @3 or now = o — X = 5.

Definition 8.5 (Failure hypothesis) A failure hypothesis x guarantees that the normal
behaviour is part of the acceptable behaviour and thus x is a reflexive relation on the
normal behaviour:

EX — X[Xam /X, N0OWnm /NOW, Ry /R|

where X isalist of the variables x € var(x) and X,y isthe corresponding list of terms
Xnml -

No failure can occur before the program starts execution, or after itstermination. So
X must ensure that R equals R,y beforethe start of the execution and X does not restrict
the behaviour after termination:

|: X — Rl [O, nowo] = Rym l [0, I’IOWO]
and
FX — YM-(M|[0,now]=R|[0,now] — X[M/R])

&

P X represents the execution of program P under the assumption X. The observations of
the failure prone process FP X are those that are related by X to the observations of FP:

M [FPIX](00) = { (0,p) € MOD | thereexistsa(Onm, Pnm) € M [FP](0p)
such that for all y

(007 O'nmla 07 pnmla pv y) |: X }
The set M [FPX]|(0p) represents the acceptable behaviour of FP under the failure hy-

pothesis x, which is the normal behaviour of the failure prone program FP(X.
Transformation expressions can be functionally composed.

234 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

Definition 8.6 (Composite transformation expression) If X € VAR* isthelist of al x €
VAR such that x € var(x1) Nvarpm(X2), Xam 1S the corresponding list of terms X,y and
Visalist of freshlogical value variables of the same length as X, then acompositetrans-
formation expression X11X2 is

X12X2 = Eltvvv M- (Xl[v/xv t/nOW7 M/R] /\XZ[V/Xnmht/nOanh M/an|])

Thus X1 X2 means the application of x; and then x».
Consider the transformation expressionsx1 = (X =Xqm VX=0)A (Y =Yym VY= 3)
andx2 = (Y=Ym VY=1)A(Z=zym V2= 2). By definition,

X1lX2 = V- (X=Xm VX=0)A(V=Yym VV=23)
AN (y=wWy=1A(z2=2zmVZ=2)

that is, X1{X2 = (X=Xm VX=0)A (Y=Y VY=1VYy=3)A(Z=ZmVZ=2)

Theoperator x will also be used to compose assertions and transformation expressions,
eg. ¢x, incommitments. If X € VAR* isalist of all x € varpm(X), Xnm the correspond-
ing list of terms X,y and V isalist of fresh logical value variables of the same length as
X, then the composite expression ¢ x is equivaent to

ALV, M- (¢[V/X t/now, M/R] A X[V/Xami, t/NOWnmi, M/ Rami])

Thisreplaces al terms x,,y that occur in x by logical value variables. And since ¢ isan
assertion, Rymy, NOWyy and the terms X,y do not appear in ¢ and the composite expres-
sion ¢ QX isaso an assertion.

Sincetheinterpretation of assertions has not changed, the validity of acorrectnessfor-
mula ((A)) FP ((C)) remains as defined in Section 8.1.

8.3 A proof rulefor failure prone processes

An assumption Amay refer to actionsthat occur during the execution of aprogram. Since
faults can affect those occurrences, assumptions should not place restrictions on observ-
able events beyond the starting time. Let

NonProphetic(¢) = ¢ — VM- (M | [0,now] =R | [0,now] — ¢[M/R])

Then the acceptable behaviour of aprocessisgiven intermsof itsnormal behaviour and
a predicate representing the failure hypothesis.

Rule. 8.1 (Failure hypothesisintroduction)

((A)) FP ((C)) , NonProphetic(A)
(AN FPIX (CIX))
Soundness and completeness of thisrule are proved in Section 8.5.

8.3. A PROOF RULE FOR FAILURE PRONE PROCESSES 235

Example 8.1 If the program INC terminates after three and within at most five time
units, it can be shown that it satisfies

{(now < o0)) INC ((X = Xp + 1 A nowp+ 3 < NOW < NOWg + 5))
Since NonProphetic(now <), the failure hypothesisintroduction rule gives

{(now < o)) INC{ SuckAtZero ((3t,v- v=Xp+1
ANowp+3<t<nowy+5
A(X=VVXx=0) A now=t)

{((now < o)) INC) SIUCKALZero((X=Xp+1vx=0
ANOWp + 3 < NOW < NOWp + 5))

Example 8.2 Consider the program F with specification

{((true)) F ((Vt < o0, v-rec(in,V) @t
— (—waitsend(out)) during [t, t+ Tcomp)
Aawaitsend(out, f(Vv)) @t+ Teomp))

Suppose, due to faults, that the computation time increases by a factor A. For the sake
of smplicity, let us assume that the individual inputs are far enough apart in time not to
beinfluenced by this (i.e. rec(in, V) @yt < rec(in,v) @t). Then, faultsonly affect the
willingness of the process to perform an out communication, i.e.

(-waitsend(out)) during pm [t1,t2) «» (~waitsend(out)) during [ty,to + A)
and
awaitsend(out, V) @,m t — awaitsend(out,Vv) @t+A)
Formally,
Sow =Vt < o, v-(rec(in, V) @y t < rec(in, v) @t)
A V1, ty < co-(—waitsend(out)) during nm [t1,t2)
— (—waitsend(out)) during [t1,to + A)
AVt < oo v-awaitsend(out,V) @ym t

~ awaitsend(out,V) @t + A

Noticethat thisformalizationistransparent to the original computation timeand the com-
puted function.
Since NonProphetic(true), the failure hypothesis introduction rule yields

236 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

{((true))

FlSow
{(AM-Vt < 0, v-rec(in, V) @y t
—(—~waitsend(out)) duringm [t,t+ Teomp)
Aawaitsend(out, f(V)) @y t+ Tcomp
AVt < oo V- (rec(in, V) @yt < rec(in,v) @t)
A V1, ty < oo (mwaitsend(out)) during m [t1,t2)
— (—waitsend(out)) during [t1,to + A)
AVt < oo v-awaitsend(out, V) @yt
— awaitsend(out,Vv) @t+A))

or, equivalently,

{(true)) F{Sow((Vt < oo, V- rec(in,v) @t
— (—waitsend(out)) during [t,t+ Tcomp+A)
A awaitsend(out, f(Vv)) @t+ Teomp+A))

8.4 Réliability of the mine pump

We shall now look more closely at the components of the mine pump system that are
proneto failure:

. The sensors may provide incorrect readings or readings.

. The pump may break down.

. The pump controller may fail to switch the pump on when the water level ishigh,
or off when the methane level reaches the danger threshold.

. The communication lines between various components may be broken.

Note that there is no observabl e difference between a component with a broken commu-
nication line and a non-responding component. (We do not consider here the communi-
cation errorsthat may occur in practice: see Exercises 8.3 and 8.4 for a number of fault
models that apply to communication media.)

Given these sources of failure, the most important task isto make sure that explosions
do not occur. Therefore, we have to guarantee that the pump is never working when the
methane level is high, even if this means losing a shift. We will successively dea with
unreliable sensors, unreliable pumps and unreliable pump controllers. Finally, we will
demonstrate that with the measures taken the operation of the mineisindeed safe.

8.4.1 Unrdiablesensors

A defective sensor may produce incorrect readings, or no readings at al. So the only
means of failure detection is by replication and comparison. Let each sensor be replaced

84. RELIABILITY OF THE MINE PUMP 237

wchy

wcho @

Figure 8.1 A triplicate water level sensor

alarmg

alarmy

by three sensors, using triple modular redundancy. A ‘voter’ component can then detect
only that asingle sensor or itsline hasfailed since thesefailureswill be indistinguishable.
Figure 8.1 shows the resulting system for awater level sensor. Assume that the line
between the voter and the pump controller can be considered to be fault-free because of
the short distance. For simplicity, assume that the voter never fails.
An unreliable sensor can:

1. send correct readings, and in time,
2. send incorrect readings, but in time, or
3. send noreadingsat all.

(3) occurs aso when the sensor that produced incorrect readings is being replaced. Let
the following abbreviations be used for each of these conditions. For k=1, 2, 3:

SensOK(wehy) @t = R {wehy}(t) = Rym | {wehy}(t)
SensFaulty(wchy) @t= R | {wehy}(t) = @A =send(wchy) @y t

vV send(wchy) @t A send(wehy) @pmy t
SensNC(wchy) @t = R {wchy}(t) =@

Note: These predicates do not exclude each other becauseit isnot always possible to tell
whether or not adevice isin sound working order. <&

Then the failure hypothesis UnRel is

UnRel(wchy) = Vi < oo SensOK(wehy) @t
Vv SensFaulty(wchy) @t
v SensNC(wchy) @t
Awl(t) = wlpm(t)

238 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

(Although this definition is sufficient for our purposes here, it can be easily adapted to
express quantitative requirements, such as the mean time between failures and the mean
timeto repair.)

The voter should produce areading at least once every Ays time units. Since voting
will take some time, we require the sensors to send a reading within the first dys time
units of each Ays period, where dys < Aus:

WSensCy(wchy) = Vi- send(wchy) in[iAws, 1Aws + Ows]

As before, we assume that a correct reading does not differ too much from the actual
level, i.e. that the error is bounded by some value gs:

WSensCy(wchy) = Vit < oo, v- send(wchy, V) @t
— VSEnws S Wl(t) S V4 Ews

Define WSensC(wchy) = WSensCy (wchy) A WSensCy(wcehy). Then, fork= 1,2, 3,
{(now = 0)) WSens ((WSensC(wchy))) (8.1

Because no two sensors are identical, their readings may differ dightly, even when
taken at the sametime. Assume that the voter WSVot takesthe average of thetwo closest
values (the so-called inexact voting). If the reading of one sensor differs substantially
from those of the other two, the voter calls for maintenance on the channel alarmg by
asynchronously sending the identification number of the faulty sensor. Notice that this
method only works provided the voter receives at |east two correct readingsin time.

Failure of a sensor reading to arrive may be dueto a defective sensor, or abrokenline.
Given CWSens,, this absence can easily be detected. A call for maintenance can then be
sent on the channdl alarm,.

During the first dys of each Ays interval, the voter WsVot isawayswillingto receive
one reading from each sensor:

WSWtCy = Vi, ke {1,2,3} waitrec(wchy) during [iAws, iAws+ Ows|
VAtV iAws < t < iDpws+ Ows
Awaitrec(wchy) during [iAws, t)
Arec(wchy, V) @t
A(=rec(wchy)) during (t,iAws + Ows|

We have to assume that there are at least two correct readings for each vote. Then in-
exact voting can be considered as applying a function Inexact\Vote which takes three in-
puts. The result part of the outcome is the average of the two values that are closest to
each another; thedissent part iseither zero or identifiesthe valuethat differssubstantially
from the other two. Let the application of the function take Tnexactvote time units which
issmall enough to guarantee that the voter can produce a reading before the end of the
Ay interval, i.e. dws+ Tinexactvote 1S SMaller than Ays. The voter produces output as soon
aspossible, i.e.

1. if al threereadings get through in time, Tnexactvote tiMe units after the last voteis
received, and

84. RELIABILITY OF THE MINE PUMP 239

2. if only two readings get through in time, T nexactvote timMe units after the dys Win-
dow closes; in this case, by our assumption, these readings are correct. Let the
distinguished value T stand for the missing value when applying Inexact\ote.

Thus:

WSWitC, = Vi, t < oo, v-send(wch, V) @iAws +t
— Htl,tz,tg,vl,VZ,Vg-
Ne—10 <t < Bus
Aj_rec(wehy, Vi) @iAws + ti
AV = result(InexactVote(vy, Vo, V3))
At = max(t1, 12, t3) + Tinexactvote
Vo odty, to, vy, o, K I me

Nee10 <t < Bus
AKETAK#EMAT#mM
Arec(wchy, Vi) @idws+tg
Arec(wchy, Vo) @iAws+ to
Awaitrec(wchm) during [iAws, iAws + Ows|
AV = result(Inexact\Vote(vy, v, T))
At = Ows+ Tinexactvote

The voter callsfor maintenance only when necessary, and then as soon as possible:

1. When one sensor’s reading differs too much from the readings of the other two,
the voter sends this sensor’s identity along the channel alarmg in Tnexactvote tiMe
units after the last voteis received.

2. When one sensor’ sreading does not get through, the voter sendsthiswire' sidentity
along the channel alarm, in Tnovote tiMe units after the dys window closes, where

Tovote < Tinexactvote-
Thisis defined as follows:

WSWitC3 = Vi, t < oo, v send(alarmg,V) @iAws +t
Hﬂtl,tz, t3, V1, Vo, V3-
Nee10 <t < Bws
Ap_qrec(wchy, Vi) @iAws + ty
AV = dissent(InexactVote(vy, Vo, v3)) # 0
At = max(ty, t2,t3) + Tinexactvote
A send(alarmg, V) @iAws +t
— waitrec(wchy) during [iAws, iAws+ Ows|
At = dws+ TNovote

Define WSVBtC = WSVOtC; A WSVOtC, A WSVOtC3 Then,
({(now = 0)) HSVot ((WSVOLC)) (8.2)

It can be shown, after the manner of Chapter 5, that there doesindeed exist avoter W5sVot
for which ((now = 0)) WSVot ((WSWtC)); weleave this as an exercise (Exercise 8.6).
Readings are available from at |east two of the three sensors for each vote:

240 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

UnRel<! = A2 UnRel(wchy)
AViI-TK £ € {1,2,3}-
SensOK (wehy) during [iAws, iDws + Sws)
A SensOK (wehy) during [iAws, iDws + Sws]

Note: If one sensor has already been reported as faulty, it would be possible also to tol-
erate incorrect readings from another sensor if, for example, the voter selects the more
pessimistic of the readings of these two sensors (for the methane level, for instance, this
is the higher reading). <&

The term now does not occur in WSensC(wchy), k= 1, 2,3, so by applying the proof
rule for parallel composition we obtain from (8.1):

{(now = 0)) WSens1||WSensy||WSensg <</\E:1VVSenSC(wchk)>>

Clearly, NonProphetic(now = 0). Hence, by the rule for failure hypothesisintroduction,
we may conclude that

{(now = 0)) (WSensl||WSensz||WSen53)ZUl’lRelSl {(UnrelWSensC)) (8.3
where

UnrelWSensC = IN- (A3, WSensC(wchg))[N/R
AUNRE = N/Rom]

We can now prove that, even in the presence of faults, at least two correct readings are
produced every Ays time units.

Lemma8.2 UnreWSensC — Vi-3Jk#1- (WSC(wchy) A WSC(wch;)) where

WSC(wehy) = send(wehy)in[iAws, iBus + Sugl
AVEE [iDws, iDus+Bug - SENd(wchy, V) @t
— VSEnws S Wl(t) S V4 Ews

Proof: Assume UnreWSensC, i.e. assume that there exists an N such that

(AR WSeNSC(wehi))[N/R) A UNREI <Y [N/ Ry (84)
By (A3_,WSensC(wchy))[N/R], we obtain
vke {1,2,3}- Vi- send(wehy) iny[iBws, iBus -+ Bwg) (85)

AVt < oo v- send(wchg,V) @yt
— VSEnws S Wl(t) S V4 Ews

By UnRel=}[N/Rm], we know that

Vi-dk#£1-V te [iAws, i Dws+ Ows], V- (8.6)
send(wchy, V) @yt < send(wchg, V) @t
Asend(wech,V)@yt < send(wchy,V) @t

84. RELIABILITY OF THE MINE PUMP 241

The lemmafollows from (8.4), (8.5), and (8.6). O
By therulefor parallel composition, and (8.3) and (8.2), we know that for

TripleWSens = ((WSensl||WSensz||WSen53)ZUnRelSl) ||WSVot
it is the case that
{(now = 0)) TripleWSens ((UnrelWSensC A WSVotC))

The next step is to prove that TripleWSens till produces output at least once every
Ays time units, but that the time taken for voting causes the dys window to increase by
T| nexact\/ote tl me UnltS

Lemma8.3 ((now = 0)) TripleWSens ((WSensCi(wch)[dws+ Tinexactvote/ Ows]))
Proof: By the consequence rule, we need to prove that

(UnrelWSensC AWSWOtC) — WSensCi(wch)[Ows + Tinexactvote/ Ows|
Therefore, assume that UnrelWSensC A WSVotC, or, consequently,

Unrel WSensC A WSWtCy A WSVotCo (8.7)
By UnrelWSensC and Lemma 8.2, we obtain

Vi-3dk#£1- send(wchy) in [iAws, iDws+ Owg
Asend(wehy) in o [iDws, 1Dws+ Ows|

By WS\WtC; from (8.7), thisleads to

Vi-dk#£1. rec(wchy) in [iDAws,iDws+ Ows| (8.8)
Arec(uchy) N [iAws, 1Aws+ Ows]
Independently of whether or not

AR_; rec(uchy) in[iBws, iDws + Ows)
holds for a particular i, we know from WS\WtC, in (8.7) and (8.8) that there exists a
t < dws + Tinexactvote SUCh that send(wch) @iAws + t Consequently,
Vi-send(wch)in[iAws, iDws+ Ows + Tinexactvote]
O

The following lemma states that due to delays caused by the voting, the reading error
can increase by as much as Ews = A (38ws + Tinexactvote)-

Lemma 8.4 ((now = 0)) TripleWSens ((WSensCp(wch)[€ws+ Ews/Ews])) -

Proof: We |leavethis as an exercise (Exercise 8.7).
Hence, by Lemmas 8.3 and 8.4:

{(now = 0)) TripleWSens ((WSensC(wch)| 5\Ns‘|‘II£exactVote/6wsa (8.9
Ews+ Ews/Ewsl))
One effect of triple modular redundancy isthat it resultsin less accurate readings. Since

the original requirement isfor at least one reading every Ays time units, the increase of
the dws window is not a problem.

242 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE
8.4.2 Anunreliablepump

If the pump breaks down while running, the outflow drops to zero within some &g time
units. For simplicity, let us assume that dpq equals o, (see Chapter 5). Malfunctioning of
the pump may also mean that there is no outflow when the pump is activated. Suppose
that, due to the space limitations in the mine shaft, the pump cannot be replicated and
that a defective pump must be replaced. During such a replacement, work can continue
in the mine until the water level rises above a limit.

One way to monitor the proper functioning of a pump isto look for areduction in the
water level. But, in practice, the feedback would be too slow to be of much use. So to
detect adefective pump we add awater flow sensor to monitor thepump’soutflow. This
sensor isaso triplicated.

Failureof the pumpto start, or to stop, can be due to abroken control channel. A pump
that will not stop is a hazard as it can burn out if there is no water to pump, or cause
an explosion if the methane level is critical. A broken control channel can be detected
indirectly using the water flow sensors.

Typically, apump is switched on by energizing arelay. To model this, we replace the
channel pch by thelinepln (see Section 5.4.3). Let pln(texp) represent thevoltage level
of thelinepln at timetexp. Assume that thelinepln iseither high (i.e. pln = 1), or low
(i.e.p1ln = 0). Assume aso that thevoltagelevel dropsto zeroif thewireisbroken. This
providesafail-safe system: if the wireisbroken, therelay is not energized and the pump
stops within &y, time units.

Let the maximum outflow of the pump be AJ* (see Chapter 5):

PUMpC; = Vt < - 0 < outflow(t) < Agg.
The delays in switching the relay on or off are usually insignificant when compared to
the pump’sreaction time of dp. Consequently, we can safely assume that the pump starts
within &y time units of the line p1n becoming high:

PumpC, = V1ty,tp <o pln=1during (1,1t

— outflow > Al during [ty + p, o]

Similarly, assume that the pump stops within &y time units after the line p1n becomes
low:

PumpCs = Vig,tp < - pln =0 during (ty,ty]
— outflow =0 during [t; + Op, t3]

We specify that no explosion will occur if the methane level is below the critical level
CML, or if the pump has been switched off (see Chapter 5):

PumpC, = Vt < o ml(t) < CMLV Jtg <t<Qp- pln =0 during [to, t]
— —expl @t

Let PumpC = PumpC; A PumpC, A PumpCg A PumpC, . The perfect pump is then de-
fined as

({{(now = 0)) Pump {(PumpC)) (8.10)

84. RELIABILITY OF THE MINE PUMP 243

The following lemma, which is easily proved by reductio ad absurdum, states that the
pump does not start spontaneoudly.

Lemma85 = PumpC — Vt< . outflow(t) >0
— = (pln =0 during (t<0dp,t])

Define

. PumpOK @t = outflow(t) = outflowpm(t)
. PUmpNOtOK @t = outflow(t) < outflowpym(t) V outflow(t) =0

The way in which specification (8.10) is weakened due to the possible occurrence of
faults must be defined in afailure hypothesis, and this appears below as NoFlow. First,
when a pump breaks down its outflow becomes zero within d, time units. Then, failure
detection and replacement of a defective pump takes at least Trepqir time units and the
new pump produces the same outflow as a normal pump within &y time units:

NoFlow = Vt < oo - (PumpOK v PumpNotOK) @t
Aoutflow(t) = outflowym(t)
— Jtg >t outflow < outflowyy during (t,ty)
— outflow =0 during [t+ Op,t+ Op+ Trepair)
Aty < t- outflow < outflowyy during (tp,t)
— outflow =0 during (t <0p < TRrepair, t <0p]
ApIn(t) = plnpy(t) A expl(t) = explyy(t)

Thus, obs(NoFlow) = {expl,outflow,pln}.

Note: This formalization holds for all behaviours, so it may not be illuminating in re-
spect of specific behaviours. For example, the p1n signal does not change, but thereis
no indication that a defective or disconnected pump reduces the water level. expl does
not change because a pump, whether or not it is defective, can cause an explosion if pln
is high, indicating that it has not been switched off. <&

Since NonProphetic(now = 0), the failure hypothesis introduction rule yields
{{(now = 0)) Pump ¢ NoFlow ((Unrel PumpC)) (8.11)
where

UnrelPumpC = 3N (PumpC[N/R] A NoFIow[N/Rqm])

Although the parameters &, and ASL[‘ have little significance for an unreliable pump, the
outflow is still bounded by A2

out -

Lemma8.6 |=UnredPumpC — Vt< 0o-0< outflou(t) < Aq

244 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

Proof: Suppose UnrelPumpC, i.e. suppose that thereisan N such that

PumpC[N/R] A NoFlow[N/Rqm] (8.12)
Since NoFlow[N/Rym], we may conclude that

Vi< oo-0<outflow(t) < outflown(t) (8.13)
From (8.12), PumpC[N/R], we know PumpC,[N/R], that is,

Vi< o.0<outflown(t) < Apg (8.14)

The lemmafollows from (8.13) and (8.14). O
A more important property to establish is that even an unreliable pump does not start
spontaneoudly.

Lemma 8.7
= UnrelPumpC — Vt < oo (outflow(t) > 0) — —(pln = 0 during (t<0dp,t])

Proof: Assume UnrelPumpC, i.e. assume that there existsan N for which

PumpC[N/R] A NoFIow|N/Rqm] (8.15)
Consider any t such that
outflow(t) >0 (8.16)

Since, by (8.15), NoFlow[N/Ryn], we may conclude that

YVt < oo outflow(t) < outflown(t) (8.17)
and

Vit < o pln(t) = plny(t) (8.18)
By (8.16) and (8.17),

outflown(t) >0 (8.19)

By (8.15), PumpC[N/R]. Conseguently, by (8.19) and Lemma 8.5, we may conclude that
—(pln= 0 duringn (T <3,]), which, by (8.18), yields

- (p]_n =0 during (/t\<:>6p7/t\])

Since faults affect only the outflow, the following lemma.is obvious.

Lemma 8.8 UnrelPumpC — PumpC,

84. RELIABILITY OF THE MINE PUMP 245
8.4.3 Anunrédiablepump controller

The pump controller must monitor the pump’syield to detect afaultin the pump. Assume
that a sensor FSens sets aline £1ow to oneif thereis some outflow from the pump, and
to zero otherwise:

FSensC = Vi< - (flow(t) =1 < outflow(t) > 0)

Assume further that whenever aflow sensor breaks down, the value of the corresponding
line dropsto zero without delay:

. FSensOK @t = flow(t) = flowpm(t)
. FSensNotOK @t = flow(t) =0

The failure hypothesis SensStuckAtZero for the sensor is defined as follows:

SensStuckAtZero = Vt < oo (FSensOK v FSensNotOK) @t
Aoutflow(t) = outflowpm(t)

For reliability, thesensor istriplicated, FSens; = FSens[flow;/flow],i=1,2 3. A voter
FVot sets the value of the line f1ow. Assume that the voting takes exactly Tyge time
units:

FWotC; =flow = 0 during [0, Tyote)
AVt < oo flow(t+ Tyvore) = Majority({f1lowj(t) | j=1,...,3})

Thevalue of theline f1ow iseither zero or one and, provided that at any time at most one
sensor is defective, aline value differing from the majority indicates a defective sensor
or abrokenwire:

FWICy =Vt < 00,i € {1,2,3} - send(alarms,i) @t
—flow # Majority({flowj(t) | j=1,...,3}) @t
At>0—3dt <t
flowj = Majority({flowj(t) | j = 1..3}) during[ty, t)

As before, assume that the voter never fails and that at most one sensor is defective at
any time:

SensStuckAtZero<t = A2, SenstUckAtZero[FSensy/FSens, flowy/f1low]
AVt < oo K|
FSensOK[fLlowy/flow] @t A FSensOK[flow|/flow| @t

In contrast with a single flow sensor FSens, the triple modular redundant flow sensor
TripleFSens = ((FSensl||FSensz||FSen53)ZSenSSZUCkAtZerOSl) |FVot is subject to
adelay Tyge for the time taken for voting, whether or not faults occur.

Lemma8.9 ((now = 0)) TripleFSens ({(¢TFs))
where

246 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE
O1rs =flow = 0 during [0, Tyote)
AVt <oo. (flow(t+ Tyoe) =1 « outflow(t) > 0)
Proof: By therulefor parallel composition, we need to show that

(A2 FSensC[f1ow;/f1ow])) SenstuckAtZero<!
— Vt <o (Majority({flowj(t) | j=1..3})=1 < outflow(t) > 0)

Therefore, assume (A2 FSensC[f 1ow; /£ 1ow]) SensStuckAtZero<? , i.e. that thereexists
an N such that (A2_; FSensC[f1ow; /£ 1ow])[N/R] A SensSuckAtZero<![N/Ryy] Conse-
quently,

YVt < o0-outflown(t) >0 (8.20)
e A2 (FLlow)N(t) = LA A2 £1owi(t) = (£1owj)N(t)
v akl,m-k#£1#m
A flowy(t) = (flowy)n(t) A flow(t) = (flow)N(t) A flowm(t) =0,

and
YVt < o0 outflow(t) = outflown(t) (8.21)

Now consider any t such that Majority({f1owi(T) | i=1,...,3})= 1, which, by defini-
tion, isthe case iff

Fk#£ 1+ (flowg(t) = L A flow(t) = 1) (8.22)

By reductio ad adsurdum we conclude from (8.20) and (8.22) that outflown(t) > O,
which, by (8.21), leads to

outflow(/f) >0

0

The methane level sensors must also be triplicated. This means that we have also to
takeinto account the possible increase of the methanelevel during the delay Tyte Caused
by voting:

MSensC = Vt < oo (mOK(t) =1 « ml(t) < SML STvore AN})

Let MSens; = MSens[m0K; /m0K] fori = 1,2, 3. Since, apart from the names of the com-
munication lines and channels, the votersMvot and FVot behave identically, define

MVot = FVot[mOK;/flow]> ;[alarm,/alarme]
Itislikely that faults affect the sensors MSensandFSens in the sasmeway, i.e.
MSensStuckAtZero<! = SenstuckAtZero=![FSens; /MSens;, m0K; /£1ow |2,
Then the triple modular redundant methane level sensor,
TripleMSens = ((MSens|MSensy|[MSenss)! MSensStuckAtZero=t) || Mvot

conforms to the original specification in Chapter 5.

84. RELIABILITY OF THE MINE PUMP 247

Lemma8.10 ((now = 0)) TripleMSens ({(Vt < oo (mOK(t) = 1 m1(t) < SML)))

Proof: Exercise 8.8.

For the component MContr we shall copy with the appropriate changes the commit-
ments CMC; through CMCg from Section 5.5.2. For instance, CMCg becomes

CMCg = Vig,t1-tg+ 0 < t1
Aread(mOK, 0) @tg A (—read(mOK, 1)) during [to, ;]
— Jtp <tg+ Oy - pln =0 during [to, ;]

In addition, MContr readstheline flow at least once every Areaq time units:
CMC7 = Vt < - read(flow)in(t,t4 Areaq)

If the controller finds that the line £1ow islow while the line p1n has been high for the
last Op + Tote time units, maintenance is notified (by asynchronously sending the value
one along the channel alarm,) after Tyoriow time units, but only once for each period
that the pump is activated:

CMCg = Vt-send(alarmg, 1) @t + TnoFiow
— dt1-t1 < t<:>(6p + TVote)
Apln(ty) =0Apln=1during (t,t]
Aread(flow,0) @t A (—send(alarmg)) during (ty,t]

Despite the use of the excellent techniques propagated in thisbook, itis still possible that
the pump controller software has errors! 1t is also possible that the processor executing
the software fails. This can have serious consequences, as a defective pump controller
may not activate the pump when it should begin pumping out water and it may not switch
the pump off when the methanelevel iscritical. This meansthat incorrect functioning of
the pump controller should be detected and dealt with as soon as possible.

Oneway to dothisisto duplicatethe controller and comparethe outputs: the pump can
then be activated only if both controllers agree on the action. For better fault location, it
ismore sensible to triplicate the controller and use voting to decide on the action.

Assumethat the controller softwareis sufficiently small and smpleto beformally ver-
ified and checked, and that the processor failurerate is not very high. 1t may then be ac-
ceptabl e to select acheaper solution and to use awatchdog timer (cf. Exercise5.9) which
switches the pump off unlessit is regularly restarted by the controller (see Figure 8.2).
Thisprovidesagood low-level check for run-away software and providesafail-safe sys-
tem:

CMCy = Vt < - send(restart,1)in[t, t + Tresart)

Once again we see that, in comparison with the pump controller presented in Chapter 5,
taking the water flow sensor and the watchdog timer into account resultsin an altogether
new component; the restarting of the timer, for instance, isnot the consequence of afault,
but is normal behaviour.

248 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

\WC\h

flow

mOK alarmeontr

restart

ipln

Figure 8.2 A watchdog for the pump controller

WDog has to enable communication through restart sufficiently often:
WDogC; = minwait(restart, Init,Period) during [0, o)

WDog restartsitstimer whenever aoneisreceived onchannel restart. It setsthelinepln
low when thistimer expires (for which areaction time of dwpog is alowed) and notifies
maintenance (by asynchronously sending a one along the channel alarmeiz1):

WDogC, = Wiy, 1o < - tr >t + TResart
Aty =0V rec(restart,1) @ty
A(—rec(restart, 1)) during (t,ty)
—pln =0 during [tl + TRestart + 6\/\ID097 to+ 6\/\IDog)
Asend(alarmesr1, 1) N[ty 4 Trestart, t1 + TRestart + Owbog)

Aslong asthetimer isrestarted at least every Tregart time units, thelines ipln and pln
have the same value.

WDo0gC3 =pln = ipln during [0, Trestart + OwbDog)
AVt < oo-rec(restart,1l) @t
— pln = ipln during [t4 Owpog, t + TRestart + Owbog)

This means that provision must be made to restart the timer at timet = O.

We must assume that the component WDog never fails. And fromthefailure hypothesis
NoRestarts it can be seen that the pump controller never restarts the watchdog timer and,
most important, does not let ip1n become high when thisis not allowed. Define

MContrOK @t = R | {restart,ipln}(t) = Ryy | {restart,ipln}(t)
MContrNotOK @t = - (send(restart) @t)
Aipln(t) = iplnyy(t) V ipln(t) =0

Then

NoRestarts = Vt < co- (MContrOK v MContrNotOK) @t A £1low(t) = flowpm(t)
Awch(t) = wchyy (t) A mOK(t) = mOKm(t)

Let SML = CML <(Aread + Omi + TRestart + Swpog + Op) Ay - From the following lemma
FailSafeContr = (MContr{NoRestarts) || WwDog sets the voltage level on thelinepl n
to low within at least Aread + Om + TRestart + Owbog time units after the methane level is
reported to have exceeded SML.

84. RELIABILITY OF THE MINE PUMP 249

Lemma8.11 ((now = 0)) FailSafeContr{{¢rsc)), Where

brsc = Vo, tg < - to+ Aread + Omi + TRestart + Owpog < t1
AmOK = 0 during [to, t1]

— pln =0 during [to+ Aread + Omi + TRestart + OwWDogs t1]
Proof: There are two cases to consider:

(i) If MContrOK during [tg, to + Aread + Omi] then, according to CMC,, there exists
to (to <t < to+ Aread) SUCh that read(m0K, 0) @t,, which, by CMCg (with appro-
priate changes), implies that there exists t (tg < t3 < tg+ Aread + Om) SUch that

pln = 0 during [tg,to—l—Aread—l— 6m]

Using CMCg once more, pl n normally remainslow up to and including t1, so we
may conclude, based on NoRestarts, that

pln = 0 during [t3,t4]

(if) Accordingtotheworst case scenario, MContrOK during [to, to+ Aread + O] does
not hold because MContr failsat tg + Aread + Omi- AlSO, the timer may not expire
beforetg+ Aread + Om + TRestart; @1d, consequently, p1n isnot set low before

to+ Aread + Omi + TRestart + Owbog

O
Taking account of the maximum increasein the methanelevel inthetime Argaq + Om +
TRestart + Owpog 9ives the following lemma.

Lemma 8.12
{(now = 0)) FailSafeContr ((Vt < co- ml(t) > CML &3pAf™ — pln(t) = 0))

84.4 A safemine

In the presence of faults, it can no longer be guaranteed that the water level staysin be-
tween the specified lower and higher bounds LWL and HWL, even if the methane level
never rises aboveits safe level SML. Let

SafeMine = (Pump!{NOFlow)||TripleWSens|TripleFSens
|TripleMSens||[FailSafeContr

Then it is obvioudly not true that

{{(now = 0)) SafeMine ((Vt < 00-m1 < SML during [0,]
— LWL < wl(t) < HWL))

But although anumber of work-shiftsmay be |ost because the pump fail sto operate when
it should, it can be proved that SafeMine isindeed safe.

250 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

Theorem 8.1 ((now = 0)) SafeMine ((Vt < - - expl @t))
Proof: Two cases need examination:

(i) If m1(t) < cML, then, by Lemma 8.8, not even an unreliable pump can cause an
explosion at timet.

(i) 1f m1(t) > cML, then, considering that the methane level increase is at most A
in unit time, there exists aty < t <8y such that m1 > CML <3, A0 during [to, t]
Hence, by Lemma8.12, p1n = 0 during [to,], which, by Lemma 8.8, allows us
to conclude that — expl @t.

8.5 Soundness and completenessof the new proof rule

In this section we show that the failure hypothesis introduction rule is sound: in other
words, if the correctness formula ((A)) FP ((C)) is derivable, then it isvalid. We show
aso that the ruleis complete: if the correctness formula ((A)) FP ((C)) isvalid, thenitis
derivable.

Theorem 8.2 (Soundness) The failure hypothesisintroduction ruleis sound.
Proof: Assume NonProphetic(A), thét is,

EA — VM- (M|[0,nowp] =R] [0,nowy] — AM/R]) (8.23)
and

= {(A) FP (C) (824)

Consider any og. Let (0, p) € M [[FPIX](0p). Then, fromthe definition of the semantics,
there existsa(0nm, Prnm) € M [[FP][(0p) such that, for dl vy,

(00, Onmi, O, Prmi P, Y) [= X (8.25)
Sincex isafailure hypothess,

p | [0,00(now)] = pnm | [0, Gg(now)] (8.26)
We must prove ((A)) FP{X ((ClX)). Assume that, for any vy,

(00,0.p.Y) | AlXo/X, nowp/now]
i.e. by (8.23),

(00707 pvy) |: VM- M l [07 nOWO] - Rl [07 nOWO]
— A[Xo/ X, nowg/now|[M/R]

8.5. SOUNDNESS AND COMPLETENESS OF THE NEW PROOF RULE 251

Let = (v:M — pm). By (8.26),
(00.0.p. V) [= AlXo/X. nowo/now][M/R

By the substitution lemma, we obtain (g, 0, Pami, Y) = AlXp/ X, nowgy/now]. Since nei-
ther now nor any term x appears in A[Xg/ X, nowgy/now|, thisleadsto, e.g.

(007 O-nmla pnml 9 y) |: A[XO/X7 nOWO/nOW]
Consequently, by (8.24) and the fact that (Gnm, Prmi) € M [FP](00),

(007 O-nmla pnmlay) |: C
Definey = (y: V — Opm(X),t — Oym(now),M — ppy). By the substitution lemma

o~

(00,0,P,Y) = C[V/X,t/now,M/R)] for any & and p, for instance
(00,0,p,Y) = C[V/X,t/now,M/R (8.27)

By (8.25), we know (09, Gnmi, O, Prmi» P, Y) = X- By the substitution lemma, this obvi-
ously leadsto (0o, Onmi, T, Prmi, P, V) = X[V/Xami, t/N0Wnmi, M/Rami]. Since Rymi, NOWpy
or any Xpm are not in X[V/Xnm, t/N0Wnny, M/Rymi], the correspondence lemmavyields

(00,0.P,Y) = X[V/Xomi, t/NOWnmi, M/ R (8.28)
By (8.27) and (8.28),

(00.0.p,Y) |= C[V/X,t/now,M/R| A X[V/Xomi, t/ NOWnmi, M/Rom]
Consequently,

(00,0,p,Y) = IL,V,M-(C[V/X;t/now, M/R| AX[V/Xaml, t/NOWrmi, M/Rami])

(00,0,p,Y) = CIX

O

Asusual when proving compl eteness, we assume that we can prove any valid formula

of the underlying logic. Thus, using - ¢ to denote that assertion ¢ is derivable, we add
the following axiom to our proof theory.

Axiom 8.1 (Relative completeness assumption) For an assertion ¢,
Foif ¢

a

Definition 8.7 (Strongest commitment) An assertion C is called a strongest commit-
ment of the assertion A and the failure prone process FP if, and only if,

(i) = (A)FP(C), and

252 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

(i) Vo- (= {A)FP{¢) =FC—9).

Using the definition of validity, assertion C is a strongest commitment of A and FP if,
and only if,

(i) Y0o,0,p,Y (00,0,p,Y) = AlXo/X,nowp/now] A (0,p) € M [[FP](0p)
= (00707 pvy) |: Cv and
(i) Vo - Voo,0,p,y- (00,0,p,Y) = AXo/ X, nowp/now] A (0,p) € M [[FP](0p)

= (00,0,p.Y) =0
=E=C—¢

Suppose that an assertion sc(A, FP) satisfies

V00,0,p,Y- (Go,0,p,Y) = AXo/X,nowg/now] A (0, p) € M [FP](0o)
< (007 o, pvy) |: SC(A,FP)

This stronger version of (i) also satisfies (ii), because for all y,
VO'0,0', pvy ((00707 pvy) |: l.IJ = (00707 pvy) |: q)) = |: l.IJ - q)

We extend the class of assertions from Section 8.1 to a class of conditions that contains
the strongest commitments. The truth value of a condition with respect to (o, 0,p.Y) is
an extension of the interpretation of assertions with the additional clause

(00,0,p,Y) = Sc(A, FP) iff (00, 0, p,y) = A{Xo/ X, nowp/now]
and (o,p) € M [FP](0o)

The next lemma, which follows directly from the definitions, states that sc(A,FP) isa
semantic characterization of the strongest commitment of A and FP.

Lemma8.13 Forall ¢, if =sc(A FP) « ¢ then ¢ isastrongest commitment of A and
FP. O

Observe that a strongest commitment must be an assertion, and hence sc(A, FP) itself is
not astrongest commitment. Thefollowinglemmashows how the strongest commitment
of Aand FP{x can be expressed in the case of NonProphetic(A).

Lemma 8.14 If NonProphetic(A) then |= sc(A, FPIX) <> SC(A,FP)X.

Proof: Consider any oy, 0, p and y and any A such that NonProphetic(A). By the defi-
nition of sc, (0p, 0,P,Y) E SC(A,FPLY) iff

(00,0,p,Y) = AXo/X, nowp/now] A (a,p) € MFPIX](0o)
From the definition of the semantics of FP (X, we obtain (0, 0,p,Y) = Sc(A,FPLX) iff

(007 07 p7 y) |: A[XO/Xv nOWO/nOW] N EI Onmla pnml :
(Onml ” pnml) S M [[FP]](OO) A (007 O-nmla 07 pnmla pvy) |: X

Equivalently, (0g,0,p,Y) = SC(A,FPLY) iff

8.5. SOUNDNESS AND COMPLETENESS OF THE NEW PROOF RULE 253

30nmi, Pami -+ (00,0, P,Y) = AlXo/X, nowp/now]
A (Onmla pnml) € M [[FP]](OO) A (007 O-nmla 07 pnmla pvy) |: X

Observe that
(8 since neither now nor any term x appearsin A[Xp/X, nowg/nowj,
(00,0,p.Y) = AlXo/X, nowp/now]
impliesthat, for al G,
(00.5,p.Y) = AlXo/X, nowp/now]
(b) by the definition of afailure hypothesis, (0o, Onmi, O, Prmi» P, Y) |= X impliesthat
p | [0,00(now)] = pnmi | [0, Gp(now)]
(c) since NonProphetic(A), and hence NonProphetic(A[Xg/ X, nowg/now),
(00,0,p.Y) = AlXo/X, nowp/now]
implies
(00,0,P,Y) | AlXo/X, nowp/now|
provided p | [0, ap(now)] = p | [0, Gp(now)].
Consequently, (0o, 0,p,Y) = SC(A,FPLYX) iff

EI Onmla pnml . (007 O-nmla pnml 9 V) |: A[XO/Xv nOWO/nOW]
A(Onmi, Prmi) € M [FP])(00)
A (007 Ommi, O, pnmla p7 y) |: X

Then, by the definition of sc, (0g, 0, p,Y) = SC(A FPLX) iff

30mi, Prmi (00, Onmi, Prmi, Y) = SC(A, FP)
/\(007 O'nmla 07 pnmla pv y) |: X

Hence, (00, 0.p.Y) = sc(A FPIX) if, and only if, (00,0, p,Y) [= SC(A FP)UX.
Now we can establish relative completeness.

Theorem 8.3 (Completeness) Thefailurehypothesisintroductionruleisrelatively com-
plete.

Proof: Assume that NonProphetic(A). Assume also that
- {(A)) FP ((Cs)) withsc(A,FP) « Cg

Then, by the failure hypothesisintroduction rule, we obtain - ((A)) FP X ((CslX)) -

254 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

Suppose = ((A)) FPUX ((C)). From sc(A, FP) « Cg and Lemma 8.14, we obtain
= SC(AFPIX) < CsiX
Consequently, by Lemma 8.13 and the definition of a strongest commitment,
= (AN FPIX {(C)) leads to |= Csix — C

Then, by the relative completeness assumption, - Cslx — C.
FromE ((A)) FPIX ((Cstx)) and = Csix — C we obtain, using the consequence rule,

= {(A) FPIX (C)

a

The next lemmastates that sc(A, FP{X) does not impose restrictions on the observable
behaviour after termination; the proof is |eft as an exercise (Exercise 8.9).

Lemma 8.15
= sc(A,FPIX) — VM- (M | [0,now] = R | [0, now] — sc(A,FPIX)[M/R])

8.6 Historical background

Fault-toleranceis the ability of a system to keep functioning correctly, despite faults oc-
curring or having occurred (Laprie, 1985). An elaborate overview of many techniquesto
achieve fault-tolerance can be found in Lee and Anderson (1990). For the greater part,
the account in this chapter of the ways of adding to the reliability of the mine pump are
taken from Burnsand Lister (1991).

A number of formal methods for dealing with fault-tolerance have been proposed in
the literature. Much of the earlier work on thisformalization is state based: in the state
machine approach, the output of severa instantiations of a program, each running on a
distinct processor, is compared. Lamport’s original description (1978) dealt with fault-
free environments only; for a survey of the efforts to generalize the state machine ap-
proach to deal with faults see Schneider (1990a). A well-known application of the state
machine approach is the implementation of fail-stop processors (Schlichting & Schnei-
der, 1983).

In layered architectures, the exception handling concept (see, e.g. Lee and Anderson,
1990) is popular: alayer that provides a service to some higher level layer raises an ex-
ception to signal to that layer when a problem is detected that prevents the completion
of the requested service, and the higher level layer contains handlers to deal with such
exceptions. In a proof system based on Hoaretriples, {p}S{q}, correctness requiresthe
final state to satisfy q and Cristian (1985) used Hoare logic to make the normal and ex-
ceptional domains of execution explicit by partitioning the initial state space (specified
by p) into digoint subspaces for normal and exceptional behaviour by providing a sep-
arate specification for each part. Started in the normal subspace the program terminates

8.6. HISTORICAL BACKGROUND 255

normally, but started in the exceptional subspace the program terminatesby raising an ex-
ception. In Lodaya and Shyamasundar (1990), a proof system is proposed for exception
handling in a concurrent program, such asin Ada-like languages.

Thiskind of fault-tolerance accountsfor processor crashes and the effectsof faultsthat
occur beforetheinvocation of theprogram. Theresulting specificationsareoftentrivially
satisfied by any process that just raises an exception. In Coenen (1993) deontic logic
was proposed to overcome this‘lazy programmer paradox’. All the same, an unreliable
communication medium, for instance, does not rai se an exception if a message becomes
corrupted and ssimply delivers the bad message.

In the formalisms of Joseph et al. (1987) and He and Hoare (1987) the execution of a
process restarts as soon as afault occurs. Hence, afailure prone execution of aprocess P
consists of anumber of partial executions of P that end in failurefollowed by afinal and
completeexecution. Liu (1991) and Liu and Joseph (1992) describe aframework for rea-
soning about programsin the presence of faults and show how program transformations
can be used to derivefault-tolerant behaviour by composi ng specifications of thefault en-
vironment and recovery actions with the program. The incorporation of checkpointing
and backward recovery into a program have been investigated in Liu and Joseph (1993;
1994) which also contain laws for fault-refinement; Peled and Joseph (1994) contains an
extended study of specification and recovery transformationsusing linear temporal logic.

Processes that crash are studied in Peleska (1991): more precisely, a dual computer
systemisproved correct. Such asystem containstwo replicas of the crash prone process,
a‘'master’ and a‘dave’ which shadows the operation of the master and takes over if and
when the master crashes. The failure hypothesisin this case stipulates that at least one
replicaremains active.

The formalism proposed in Cau and de Roever (1993) allows a program to exhibit ar-
bitrary behaviour after afault occurs. Thisapproach resultsin conditional specifications:
aprocess behaves according to its specification aslong as no faults have occurred. Fault-
tolerance is proved by virtue of the system’s failure hypothesis and the available redun-
dancy. This approach is not adequate for dealing with the effects of faults that cannot
be masked. For instance, when verifying a system or protocol which employs an error
detecting code it is crucial to be certain that one valid codeword has not been changed
into another.

The effects of faultsare taken into account by Weber (1989), where heintroducesfault
scenarios which are traces that include, besides records of the system’s input and output
operations, a description of the faults that have occurred. A fault-tolerance property is
expressed as an equivalence between a fault scenario, from which the fault events have
been removed, and a fault-freetrace; this tolerance relation is not el aborated.

In Nordahl (1993), the normal behaviour Syigina Of asystem Sis distinguished from
itsexceptional ‘failuremode’ behaviour §. However, it isnot possible to derive § from
Soriginal @d once in failure mode there is no way back. A similar treatment of normal
and exceptional behaviour can be found in Coenen and Hooman (1993).

The idea of formalizing a failure hypothesis as a relation between the normal and the
acceptable process behaviour wasintroduced in Schepers (1993). The early attemptsto-
wards the compositional specification and verification of distributed fault-tolerant sys-

256 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

temsabstract fromtheinternal state of aprocessaswell asthetiming of itsactions(Schep-
ers & Hooman, 1994; Schepers & Coenen, 1995). Consequently, they do not include
rules for atomic statements or sequential composition and such proof theories are called
network proof theories. Network proof theories for distributed real-time fault-tolerant
systems are given in Schepers and Gerth (1993), where maximal parallelism is assumed
and in Schepers (1994), where the limited resources are shared. The proof theory pre-
sented in this chapter extends these approachesin that it does take the internal state of a
process into account.

8.7 Exercises

Exercise 8.1 For aprocess SORT, where
{(now = 0)) SORT ({(x = min(xo,Yo) Ay = Max(Xo,Yo) A NOW < Agort))

which of the following transformation expressions do not qualify asafailure hypothesis,
and why?

@ %=0AYy=0

(b) now = nowg

(c) O@nowy<1

(d) X=Ynm AY=Xm

(e) now > nownmy A O@NOWnm + 5

Exercise 8.2 For acontinuously observablevariablex, formalize stuck-at-zero memory
faults.

Exercise 8.3 Consider atransmission mediumMEDIUM that waitsto (synchronously) ac-
cept an input message fromaset MSG viaachannel in, and within Ayegium time unitsen-
ablesitsdelivery through the synchronous channel out. Fresh input cannot be accepted
until the previous message has been delivered.

() Specify the normal behaviour of MEDIUM.

(b) Formalize omission.

(c) Formalize corruption. (Hint: if the failure hypothesis does not restrict the output
values, they are arbitrary.)

Exercise 84 Consider the communication medium of Exercise 8.3. In practice, an en-
coding function is used to transform a dataword into a codeword which contains some
redundant bits. Thus the set of datawords is mapped into a small part of a much larger
set of codewords. Codewords to which a dataword is mapped are called valid, and the
encoding ensures that it is very unlikely that due to corruption one valid codeword is
changed into another. Formalizethisdetectable corruption hypothesis. You may assume
that the functions Encode, Decode and Valid are given.

8.7. EXERCISES 257

Exercise 85 Consider Figure 8.1. Assume that the channelswch;, wchy and wchs are
replaced by mediathat are proneto detectable corruption, such asthe onediscussed in the
previous exercise. Design a failure hypothesis that allows that, per vote, at most either
one sensor or one wirefails.

Exercise 8.6 Show, inthe style of Chapter 5, that there exists a voter WEVot such that
{{(now = 0)) WSsVot ((WSWC)). You may assume that the function Inexact\ote is given.

Exercise 8.7 ProvelLemma8.4. Remember to take into account the effect of amissing
or incorrect reading. (Hint: because thevoter all ows each sensor to communicate at most
one reading for each vote and because channels do not buffer messages, the average of
two correct readings differsat most by s+ %6\,\,5)\{2""" from the water level to which the
most recently received reading corresponds. Thisoccurswhen thetwo readings arrive at
the start and the end of the window, respectively, and either both readings are € too high
whilethe water level drops maximally during theinterval, or both readingsare € too low
while the water level rises maximally.)

Exercise 8.8 ProveLemma8.10. (Hint: the proof issimilar to that of Lemma 8.9.)
Exercise 8.9 ProvelLemma8.15.

Exercise 8.10 Show asin Section 8.5, soundness and completeness of the proof rules
of Chapter 5. (Hint: for atomic statements, the strongest commitments follow directly
from the relevant axioms and rules, and the non-termination axiom.)

References

Abadi, M., & Lamport, L. 1994. An old-fashioned recipefor real-time. ACM Trans. on
Prog. Lang. & Syst., 16, 1543-1571.

Alur, R., & Henzinger, T. 1990. Real-timelogics: complexity and expressiveness. Pages
390401 of: Proc. Symp. on Logic in Comp. Sc.

Alur, R., Courcoubetis, C., & Dill, D.L. 1990. Model-checking for real-time systems.
Pages 414-425 of: Proc. Symp. on Logic in Comp. Sc.

Apt, K.R. 1981. Ten years of Hoare's logic: a survey —part I. ACM Trans. on Prog.
Lang. & Syst., 3, 431-483.

Apt, K.R. 1984. Ten years of Hoare'slogic: a survey — part I1: nondeterminism. Th.
Comp. <., 28, 83-109.

Apt, K.R., Francez, N., & de Roever, W.-P. 1980. A proof system for communicating
sequentia processes. ACM Trans. on Prog. Lang. & Syst., 2, 359-385.

Auddey, N.C. 1993. Flexible scheduling in hard real-time systems. Ph.D. thesis, Dept.
of Comp. Sc., University of York, UK.

Auddey, N.C,, Burns, A., Richardson, M.F,, & Wellings, A.J. 1991. Hard real-time
scheduling: the deadline monotonic approach. Pages 127-132 of: Proc. 8th IEEE
Wbrkshop on Real-Time Op. Syst. and Softw.

Auddey, N.C., Burns, A., Richardson, M.F,, Tindell, K.W., & Wellings, A.J. 1993a. Ap-
plying new scheduling theory to static priority pre-emptive scheduling. Softw. Eng.
J., 8(5), 284-292.

Auddey, N.C., Burns, A., & Wellings, A.J. 1993b. Deadline monotonic scheduling the-
ory and application. J. Control Eng. Pr., 1(1), 71-78.

Auddey, N.C., Burns, A., Davis, R.I., Tindell, K.W., & Wellings, A.J. 1995. Fixed pri-
ority scheduling: an historical perspective. J. Real-Time Syst., 8, 173-198.

Baker, T.P. 1990. A stack-based resource alocation policy for realtime processes. In:
Proc. 11th |EEE Real-Time Syst. Symp.

Baker, T.P. 1991. Stack-based scheduling of real-timeprocesses. J. Real-Time Syst., 3(1).

Barringer, H., Kuiper, R., & Pnueli, A. 1984. Now you may compose temporal logic
specifications. Pages 51-63 of: Proc. 16th ACM Symp. on Theory of Comp.

259

260 REFERENCES

Baruah, S., & Rosier, L.E. 1991. Limitations concerning on-line scheduling algorithms
for overloaded systems. Pages 128-132 of: 8th IEEE Workshop on Real-Time Op.
Syst. and Softw.

Baruah, S., Koren, G., Mao, D., Mishra, B., Rosier, A.R.L., Shasha, D.E., & Wang, F.
1992. On the competitiveness of on-line real-time tasks scheduling. J. Real-Time
Syst., 4(2).

Bate, G. 1986. Mascot3: an informal introductory tutorial. Softw. Eng. J., 1(3), 95-102.

Bernstein, A.J. 1987. Predicatetransfer and timeout in message passing. Inf. Proc. Letts.,
24,43-52.

Bernstein, A.J., & Harter, Jr., PK. 1981. Proving real-time properties of programswith
temporal logic. Pages 1-11 of: Proc. 8th Annual ACM Symp. on Op. System Prin-
ciples.

Berry, G., & Gonthier, G. 1992. The ESTEREL synchronous programming language,
design semantics, implementation. Sc. of Comp. Progr., 19(2), 87-152.

Biyabani, S., Stankovic, JA., & Ramamritham, K. 1988.. The integration of deadline
and criticalness in hard real-time scheduling. In: Proc. 9th IEEE Real-Time Syst.
Symp.

Bjarner, D., Langmaack, H., & Hoare, C.A.R. 1993. ProCos | final deliverable. Tech.
rept. ID/DTH DB 13/1. Dept. of Comp. Sc., Technical University of Denmark.
Blake, B.A., & Schwan, K. 1991. Experimental evaluation of a real-time scheduler for

amultiprocessor system. |EEE Trans. Softw. Eng., 17(1).

Blazewicz, J., Cellary, W., Slowinski, R., & Weglarz, J. 1986. Scheduling under resource
constraints — deterministic models. Annals of Op. Res., 7.

Bondavalli, A., Stankovic, JA., & Strigini, L. 1993. Adaptable fault-tolerance for real-
time systems. Tech. rept. ESPRIT BRA 6362 Predictably Dependable Comp. Syst.
2.

Brookes, S.D., & Roscoe, A.W. 1985. An improved failures model for communicating
sequential processes. In: Proc. Pittsburgh Seminar on Concurrency. LNCS 197.
Springer-Verlag.

Brookes, S.D., Hoare, C.A.R., & Roscoe, A.W. 1984. A theory of communicating se-
quential processes. J. ACM, 31(7).

Burns, A. 1994. Preemptive priority-based scheduling: an appropriate engineering ap-
proach. Pages 225-248 of: Son, S.H. (ed), Advancesin Real-Time Systems. Prentice
Hall.

Burns, A., & Lister, A.M. 1991. A framework for building dependable systems. Comp.
J., 34(2), 173-181.

Burns, A., & Wellings, A.J. 1994. HRT-HOOD: a design method for hard real-time sys-
tems. J. Real-Time Syst., 6(1), 73-114.

Burns, A., Lister, A.M., & Wellings, A.J. 1987. A review of Ada tasking. LNCS 262.
Springer-Verlag.

Burns, A., Wellings, A.J., Bailey, C.M., & Fyfe, E. 1993. The Olympus attitude and
orbital control system: acase study in hard-real-time system design and implemen-
tation. Pages 19-35 of: Ada sans frontieres. Proc. 12th Ada-Europe Conf. LNCS
688. Springer-Verlag.

REFERENCES 261

Butazzo, G., & Stankovic, JA. 1993. RED: Robust earliest deadline scheduling. In:
Proc. 3rd Intl. Workshop on Resp. Comp. Syst.

Cau, A., & de Roever, W.-P. 1993. Specifying fault-tolerance within Stark’s formalism.
Pages 392401 of: Proc. 23rd Symp. on Fault-Tolerant Comp. | EEE Comp. Society
Press.

Chetto, H., & Chetto, M. 1989. Some results of the earliest deadline scheduling algo-
rithm. |EEE Trans. on Softw. Eng.

Coenen, J. 1993. Top-down development of layered fault-tolerant systems and its prob-
lems— A deontic perspective. Annals of Maths. and Al, 9, 133-150.

Coenen, J., & Hooman, J. 1993. Parameterized semantics for fault-tolerant real-time
systems. Pages 5178 of: VWytopil, J. (ed), Formal Tech. in Real-Time and Fault-
Tolerant Syst. Kluwer Academic Publishers.

Coffman, E.G. (ed). 1976. Computer and Job-shop Scheduling Theory. John Wiley &
Sons.

Crigtian, F. 1985. A rigorous approach to fault-tolerant programming. 1EEE Trans. on
Softw. Eng., SE-11(1), 23-31.

Cristian, F., Aghili, H., Strong, R., & Dolev, D. 1989. Atomic broadcast: from simple
message diffusion to Byzantine agreement. Research Report RJ5244. IBM Almaden
Research Center.

Davies, JW. 1993. Specification and Proof in Real-Time Systems. Cambridge University
Press.

Davies, JW., & Schneider, SA. 1990. Factorising proofs in timed CSP. In: Proc.
5th Intl. Conf. on the Mathematical Foundations of Prog. Semantics. LNCS 442.
Springer-Verlag.

Davies, JW., & Schneider, S.A. 1993. Recursion induction for real-time processes. For-
mal Asp. of Comp., 5(6).

Davies, JW., & Schneider, S.A. 1995. Real-time CSP. In: Rus, T., & Rattray, C. (eds),
Theories and Experiences for Real-Time System Development. AMAST Seriesin
Comp., vol. 2. World Scientific.

Davies, JW., Jackson, D.M., & Schneider, S.A. 1992. Broadcast communication for real -
time processes. In: Vytopil, J. (ed), Proc. Symp. on Real-Time and Fault-Tolerant
Syst. LNCS 571. Springer-Verlag.

de Bakker, J. 1980. Mathematical Theory of Program Correctness. Prentice Hall Inter-
national.

de Roever, W.-P. 1985. The quest for compositionality — A survey of assertion-based
proof systems for concurrent programs, Part |: Concurrency based on shared vari-
ables. Pages 181-207 of: Proc. IFIP Working Conf. 1985: The role of abstract
modelsin computer science. North-Holland.

Dertouzos, M.L., & Mok, A.K.-L. 1989. Multiprocessor on-line scheduling of hard-real -
timetasks. |EEE Trans. on Softw. Eng., 15(12).

Dijkstra, E.W. 1976. A Discipline of Programming. Prentice Hall.

Emerson, E., Mok, A.K.-L., Sistla, A.P, & Srinivasan, J. 1989. Quantitative temporal
reasoning. Workshop On Automatic Verification Methods for Finite State Syst.,
Grenoble, France.

262 REFERENCES

Engel, M., & Rischel, H. 1994. Dagstuhl seminar specification problem — a duration
calculus solution. Personal communication.

Engel, M., Kubica, M., Madey, J,, Parnas, D.L., Ravn, A.P, & van Schouwen, A.J. 1993.
A formal approach to computer systems requirements documentation. Pages 452—
474 of: Grossman, R.L., Nerode, A., Ravn, A.P, & Rischel, H. (eds), Hybrid Sys-
tems. LNCS 736. Springer-Verlag.

Francez, N., Lehman, D., & Pnueli, A. 1984. A linear history semantics for distributed
programming. Th. Comp. Sc., 32, 25-46.

Furht, B., Grostick, D., Gluch, D., Rabbat, G., Parker, J.,, & Roberts, M. 1991. Real-time
Unix Systems. Kluwer Academic Publishers.

Gerber, R., & Lee, 1. 1989. Communicating shared resources. a model for distributed
real-time systems. Pages 68—78 of: Proc. 10th |EEE Real-Time Syst. Symp.

Gerber, R., & Leeg, 1. 1990. CCSR: acalculusfor communicating shared resources. Pages
263-277 of: CONCUR 90. LNCS 458. Springer-Verlag.

Gibbins, P, Kay, A., & Schneider, S.A. 1993. Asynchronous perceptrons in real-time
CSP. ESPRIT CONCUR?2 project deliverable.

Goli, P, Kurosg, J., & Towdey, D. 1990. Approximate minimum laxity scheduling al-
gorithms for real-time systems. Tech. rept. University of Massachusetts, Amherst,
Dept. of Comp. and Inf. Sc.

Goodenough, JB., & Sha, L. 1988. The priority ceiling protocol: A method for mini-
mizing the blocking of high priority Adatasks. Chap. 8(7), pages 2031 of: Proc.
2nd Intl. Workshop on Real-Time Ada Issues, ACM Ada Letts.

Gudmundsson, O., Mosg, D., Ko, K., Agrawala, A., & Tripathi, S. 1992. Maruti, an en-
vironment for hard real-timeapplications. In: Agrawala, A., Gordon, K., & Hwang,
P. (eds), Mission Critical Operating Systems. 10S Press.

Haase, V.H. 1981. Real-time behaviour of programs. |EEE Trans. on Softw. Eng., SE-
7(5), 494-501.

Hammer, D., Luit, E., van Roosmalen, O., van der Stok, P, & Verhoosel, J. 1994. Dedos:
A distributed real-time environment. 1EEE Parallel & Distr. Technology, Syst. &
Applications, 2(4), 32-47.

Hansen, M.R., & Zhou, C.C. 1992. Semanticsand compl eteness of the duration calculus.
Pages 209-225 of: de Bakker, JW., Huizing, K., de Roever, W.-P, & Rozenberg,
G. (eds), Real-time: Theory in Practice, 1991. LNCS 600. Springer-Verlag.

Hansen, M.R., Zhou, C.C., & Staunstrup, J. 1992. A real-time duration semantics for
circuits. In: Proc. 1992 ACM/S GDA Workshop on Timing Issues in Specification
and Synthesis of Digital Systems. Princeton, NJ, March 18-20.

Hansen, M.R., Olderog, E.-R., Schenke, M., Franzle, M., v. Karger, B., Miller-Olm, M.,
& Rischel, H. 1993a. A duration calculus semantics for real-time reactive systems.
Tech. rept. OLD MRH 1/1. Oldenburg Universitét.

Hansen, M.R., Pandya, PK., & Zhou, C.C. 1993b. Finite divergence. Tech. rept. Rep.
15. UNU/IIST, Macau.

Hansson, H., & Jonsson, B. 1989. A framework for reasoning about time and reliability.
Pages 102-111 of: Proc. |EEE Real-Time Syst. Symp.

REFERENCES 263

Harel, D. 1987. Statecharts: avisual formalism for complex systems. Sc. Comp. Prog.,
8, 231-274.

Harel, E. 1988. Temporal analysisof real-time systems. Master’s Thesis. The Weizmann
Ingtitute of Sc., Rehovot, Isradl.

Harel, E., Lichtenstein, O., & Pnueli, A. 1990. Explicit clock temporal logic. Pages
402-413 of: Proc. Symp. on Logic in Comp. Sc. |EEE.

Harter Jr., PK. 1987. Response timesin level structured systems. ACM Trans. Comp.
Sys., 5(3), 232-248.

He, J., & Bowen, J. 1992. Timeinterval semantics and implementation of areal-timepro-
gramming language. In: Proc. 4th Euromicro Workshop on Real-Time Syst. |[EEE
Comp. Society Press.

He, J, & Hoare, C.A.R. 1987. Algebraic specification and proof of adistributed recovery
algorithm. Distr. Comp., 2, 1-12.

He, J, Hoare, CA.R., Fanzle, M., Muller-Olm, M., Olderog, E., Schenke, M., Hansen,
M.R., Ravn, A.P, & Rischel, H. 1994. Provably correct systems. Pages 288-335
of: Langmaack, H., de Roever, W.-P, & Vytopil, J. (eds), Proc. Symp. on Formal
Tech. in Real-Time and Fault-Tolerant Syst. LNCS 853. Springer-Verlag.

Hehner, E.C.R. 1989. Real-time programming. Inf. Proc. Letts., 30, 51-56.

Hoare, C.A.R. 1969. An axiomatic basis for computer programming. Comm. ACM,
12(10), 576-580, 583.

Hoare, C.A.R. 1978. Communicating sequential processes. Comm. ACM, 21(8).

Hoare, C.A.R. 1985. Communicating Sequential Processes. Prentice Hall International.

Holmes, V.P, Harris, D., Piorkowski, K., & Davidson, G. 1987. Hawk: An operating
system kernel for a real-time embedded multiprocessor. Tech. rept. Sandia National
Labs.

Hong, J, Tan, X., & Towdey, D. 1989. A performance analysis of minimum laxity
and earliest deadline scheduling in areal-time systems. |EEE Trans. on Comp.,
C-38(12).

Hong, K.S., & Leung, J.Y-T. 1988. On-line scheduling of real-timetasks. In: Proc. 9th
|EEE Real-Time Syst. Symp.

Hooman, J. 1987. A compositional proof theory for real-time distributed message pass-
ing. Pages 315-332 of: Parallel Architectures and Languages Europe. LNCS 259.
Springer-Verlag.

Hooman, J. 1990. Compositional verification of distributed real-time systems. Pages
1-20 of: Proc. Workshop on Real-Time Syst. — Theory and Applications. North-
Holland.

Hooman, J. 1991. Specification and Compositional Verification of Real-Time Systems.
LNCS 558. Springer-Verlag.

Hooman, J. 1993. Specification and verification of adistributed rea -timearbitration pro-
tocol. Pages 284—293 of: Proc. 14th |EEE Real-Time Syst. Symp.

Hooman, J. 1994a. Compositional verification of avistributed real-time arbitration pro-
tocol. J. Real-Time Syst., 6(2), 173-205.

264 REFERENCES

Hooman, J. 1994b. Correctness of real-time systems by construction. Pages 1940 of:
Langmaack, H., de Roever, W.-P, & Vytopil, J. (eds), Formal Tech. in Real-Time
and Fault-Tolerant Syst. LNCS 863. Springer-Verlag.

Hooman, J., & de Roever, W.-P. 1986. The quest goes on: a survey of proof systems
for partia correctness of CSP. Pages 343-395 of: Current Trends in Concurrency.
LNCS 224. Springer-Verlag.

Hooman, J., & de Roever, W.-P. 1990. Design and verification in real-time distributed
computing: an introduction to compositional methods. Pages 37-56 of: Protocol
Soecification, Testing and \erification, 1X. North-Holland.

Hooman, J., & Widom, J. 1989. A temporal-logic based compositional proof system
for real-time message passing. Pages 424441 of. Parallel Architectures and Lan-
guages Europe. LNCS 366. Springer-Verlag.

Hooman, J., Kuiper, R., & Zhou, P. 1991. Compositional verification of rea-time sys-
tems using explicit clock temporal logic. Pages 110-117 of: Proc. 6th Intl. Work-
shop on Softw. Specification and Design. |EEE.

Howles, F. 1993. Distributed arbitration in the Futurebus protocol. M.Sc. thesis, Oxford
University.

Huizing, C., Gerth, R., & de Roever, W.-P. 1987. Full abstraction of a real-time denota-
tional semanticsfor an occAM-like language. Pages 223-237 of: Proc. 14th ACM
Symp. on Principles of Prog. Languages.

Hung, D.V., & Zhou, C.C. 1994. Probabilistic duration calculus for continuous time.
Tech. rept. UNU/I1ST Report 25. UNU/I1ST, Macau.

|EEE. 1988. Standard backplane and bus specification for multiprocessor architectures:
Futurebus. |EEE.

Jackson, D.M. 1989. The specification of aircraft engine control software in timed CSP.
M.Sc. thesis, Oxford University.

Jackson, D.M. 1990. Specifying timed communicating sequential processes using tempo-
ral logic. Tech. rept. TR-5-90. Programming Research Group, Oxford University.

Jackson, D.M. 1992. Logical verification of reactive software systems. D.Phil thess,
Oxford University.

Jahanian, F., & Mok, A.K.-L. 1986. Safety analysis of timing properties in real-time
systems. |EEE Trans. on Softw. Eng., SE-12(9), 890-904.

Jensen, D. 1992. The kernel computational model of the Alphareal-time distributed op-
erating system. In: Agrawala, A., Gordon, K., & Hwang, P. (eds), Mission Critical
Operating Systems. 10S Press.

Joseph, M. 1985. On aproblemin real-time computing. Inf. Proc. Letts, 20(4), 173-177.

Joseph, M., & Pandya, PK. 1986. Finding response timesin a real-time system. Comp.
J., 29(5), 390-395.

Joseph, M., Moitra, A., & Soundarargjan, N. 1987. Proof rules for fault-tolerant dis-
tributed programs. Sc. Comp. Prog., 8, 43-67.

Kay, A., & Reed, JN. 1990. A specification of atelephone exchangein timed CSP. Tech.
rept. TR—19-90. Programming Research Group, Oxford University.

REFERENCES 265

Klein, M.H., Ralya, T.A., Pollak, B., Obenza, R., & Harbour, M.G. 1993. A Practi-
tioner’s Handbook for Real-time Analysis. a guide to rate monotonic analysis for
real-time systems. Kluwer Academic Publishers.

Koymans, R. 1990. Specifying real-time properties with metric temporal logic. J. Real-
Time Syst., 2(4), 255-299.

Koymans, R. 1992. Specifying Message Passing and Time-Critical Systems with Tem-
poral Logic. LNCS 651. Springer-Verlag.

Koymans, R., & deRoever, W.-P. 1985. Examplesof areal-timetemporal |ogic specifica-
tion. Pages 231-252 of: The Analysisof Concurrent Systems. LNCS 207. Springer-
Verlag.

Koymans, R., Vytopyl, J., & de Roever, W.-P. 1983. Real-time programming and asyn-
chronous message passing. Pages 187-197 of: Proc. 2nd ACM Symp. on Principles
of Distr. Comp.

Koymans, R., Shyamasundar, R.K., deRoever, W.-P, Gerth, R., & Arun-Kumar, S. 1988.
Compositional semantics for real-time distributed computing. Inf. & Comp., 79(3),
210-256.

Kramer, J., Magee, J.,, Sloman, M.S., & Lister, A.M. 1983. CONIC: an integrated ap-
proach to distributed computer control systems. Proc. |IEE (Part E), 180(1), 1-10.

Lamport, L. 1978. Time, clocks, and the ordering of events in a distributed system.
Comm. ACM, 21(7), 558-565.

Lamport, L. 1983. Specifying concurrent program modules. ACM Trans. on Prog. Lang.
& Syst., 5(2), 190-222.

Lamport, L. 1993. Hybrid systemsin TLA™. Pages 77-102 of: Workshop on Theory of
Hybrid Systems. LNCS 736. Springer-Verlag.

Lamport, L. 1994. The temporal logic of actions. ACM Trans. on Prog. Lang. & Syst.,
1(3), 872-923.

Lamport, L., & Merz, S. 1994. Specifying and verifying fault-tolerant systems. Pages
41-76 of: Langmaak, H., de Roever, W.-P, & VWytopil, J. (eds), Formal Tech. in
Real-Time and Fault-Tolerant Syst. LNCS 863. Springer-Verlag.

Laprie, J.C. 1985. Dependabl e computing and fault-tolerance: conceptsand terminology.
Pages 2-11 of: Proc. 15th Symp. on Fault-Tolerant Comp. IEEE Comp. Society
Press.

Lee, PA., & Anderson, T. 1990. Fault-Tolerance: Principles and Practice. Springer-
Verlag.

Lehoczky, J. 1990. Fixed priority scheduling or periodic task sets with arbitrary dead-
lines. Pages 201-209 of: Proc. 11th IEEE Real-Time Syst. Symp.

Lehoczky, J., Sha, L., & Ding, Y. 1989. The rate-monotonic scheduling algorithm: exact
characterisation and average case behavior. Pages 261-270 of: Proc. 10th IEEE
Real-Time Syst. Symp.

Leveson, N. 1995. Safeware: System Safety and Computers. Addison-Wesley.

Levin, G.M., Gries, D. 1981 A proof techniquefor communicating sequential processes.
Acta Informatica, 15, 281-302.

266 REFERENCES

Lincoln, P, & Rushby, J. 1993. The formal verification of an algorithm for interactive
consistency under a hybrid fault model. Pages 292—-304 of: Comp. Aided Verif. 93.
LNCS 697. Springer-Verlag.

Liu, C.L., & Layland, J.W. 1973. Scheduling algorithmsfor multiprogramminginahard-
real-time environment. J. ACM, 20(1), 40-61.

Liu, JW.S,, Lin, K., Shih, W,, Yu, A., Chung, J., & Zhao., W. 1991. Algorithms for
scheduling imprecise calculations. |EEE Comp., 24(5), 58-68.

Liu, JW.S,, Shih, WK, Lin, K.J,, Bettati, R., & Chung, J.Y. 1994. Imprecise computa-
tions. In: Proc. |IEEE.

Liu, Z. 1991. Fault-tolerant programming by transformations. Ph.D. thesis, University
of Warwick.

Liu, Z., & Joseph, M. 1992. Transformation of programs for fault-tolerance. Formal
Asp. Comp., 4, 442—-469.

Liu, Z., & Joseph, M. 1993. Specification and verification of recovery in asynchronous
communicating systems. Pages 137-165 of: Vytopil, J. (ed), Formal Techiquesin
Real-Time and Fault-Tolerant Systems Kluwer Academic Publishers.

Liu, Z., & Joseph, M. 1994. Stepwise development of fault-tolerant reactive systems.
Pages 529-546 of: Langmaak, H., de Roever, W.-P, & VWytopil, J. (eds), Formal
Tech. in Real-Time and Fault Tolerant Syst. LNCS 863. Springer-Verlag.

Liu, Z., Nordahl, J., & Sgrensen, E.V. 1993a. Composition and refinement of probabilis-
tic real-time systems. Pages 3140 of: Gorski, Janusz (ed), Proc. 12th Intl. Conf.
on Comp. Safety, Reliability and Security. Springer-Verlag.

Liu, Z., Nordahl, J., & Serensen, E.V. 1993b. Compositional design and refinement of
probabilistic real-time systems. In: IMA Conf. on Maths. of Dependable Syst.

Liu, Z., Ravn, A.P, Sgrensen, E.V., & Zhou, C.C. 1993c. A probabilistic duration calcu-
lus. Pages 29-52 of: Kopetz, H., & Kakuda, Y. (eds), Responsive Comp. Syst. Dep.
Comp. and Fault-Tol. Syst., vol. 7. Springer-Verlag.

Liu, Z., Ravn, A.P, Sgrensen, E.V., & Zhou, C.C. 1994b. Towards a calculus of systems
dependability. High Integrity Syst., 1(1), 49-75.

Liu, Z., Joseph, M., & Janowski, T. 1995. Verification of schedulability for real-time
programs. Formal Asp. of Comp., 7(5), 510-532.

Locke, C.D. 1985. Best-effort decision making for real-time scheduling. Ph.D. thesis,
Carnegie-Mellon University, Pittsburgh, PA.

Lodaya, K., & Shyamasundar, R.K. 1990. Proof theory for exception handling in atask-
ing environment. Acta Inf., 28, 7-41.

Lowe, G. 1993. Probabilitiesand prioritiesin timed CSP. D.Phil thesis, Oxford Univer-
Sity.

Mahony, B.P, & Hayes, 1.J. 1992. A case-study in timed refinement: amine pump. |EEE
Trans. on Softw. Eng., 18(9), 817-826.

Manna, Z., & Pnudli, A. 1982. Verification of concurrent programs. atempora proof
system. Pages 163-255 of: Foundationsof Comp. Sc. 1V, Distr. Syst.: Part 2. Math-
ematical Centre Tracts, vol. 159.

Midove, M.W., Roscoe, A.W., & Schneider, S.A. 1995. Fixed points without complete-
ness. Th.Comp. <., 138.

REFERENCES 267

Mok, A.K.-L. 1983. Fundamental design problems of distributed systems for the hard
real-time environment. Ph.D. thesis, Dept. of Electrical Eng. and Comp. Sc., M.I.T,
Cambridge, MA.

Mok, A.K.-L., & Dertouzos, M.L. 1978. Multiprocessor scheduling in a hard real-time
environment. In: Proc. 7th Texas Conf. on Comp. Syst.

Moszkowski, B. 1985. A temporal logic for multi-level reasoning about hardware. |EEE
Comp., 18(2).

Nassor, E., & Bres, G. 1991. Hard real-time sporadic task scheduling for fixed priority
schedulers. Pages 44-47 of: Proc. Intl. Workshop on Responsive Comp. Syst.
Nguyen, V., Demers, A., Gries, D., & Owicki, S. 1986. A model and temporal proof

system for networks of processes. Distr. Comp., 1(1), 7-25.

Nordahl, J. 1993. Design for dependability. Pages 65-89 of: Dependable Computing
and Fault Tolerant Systems, 8. Springer-Verlag.

Olderog, E.R. 1985. Process theory: semantics, specification and verification. Pages
509-519 of: ESPRIT/LPC Advanced School on Current Trends in Concurrency.
LNCS 194. Springer-Verlag.

Ostroff, J. 1989. Temporal Logic for Real-Time Systems. Advanced Softw. Devel opment
Series. Research Studies Press.

Owicki, S., & Gries, D. 1976. An axiomatic proof techniquefor parallel programs. Acta
Inf., 6, 319-340.

Owicki, S., & Lamport, L. 1982. Proving liveness properties of concurrent programs.
ACM Trans. on Prog. Lang. & Syst., 4(3), 455-495.

Owre, S., Rushby, J., & Shankar, N. 1992. PVS: A prototype verification system. Pages
748-752 of: 11th Conf. on Automated Deduction. LNAI 607, Springer-Verlag.
Pandya, PK. 1994. Weak chop inverses and liveness in duration calculus. Tech. rept.

Computer Science Group, TIFR, India,. TR-95-1.

Panwar, S.S., & Towdey, D. 1988. On the optimality of the step rule for multiple server
gueues that serve customers with deadlines. Tech. rept. COINS 88-81. University
of Massachusetts Amherst, Dept. of Comp. and Inf. Sc.

Panwar, S.S., Towsley, D., & Wolf, JK. 1988. Optimal scheduling policiesfor aclass of
queues with customer deadlines until the beginning of service. J. ACM, 35(4).
Peled, D., & Joseph, M. 1994. A compositional framework for fault-tolerance by speci-

fication transformation. Th. Comp. Sc., 128, 99-125.

Peleska, J. 1991. Design and verification of fault-tolerant systems with CSP. Distr.
Comp., 5, 95-106.

Pnueli, A. 1977. Thetemporal logic of programs. Pages 46-57 of. Proc. 18th Symp. on
Foundations of Comp. Sc.

Pnueli, A., & Harel, E. 1988. Applications of temporal logic to the specification of real-
time systems. Pages 84-98 of: Joseph, M. (ed), Formal Tech. in Real-Time and
Fault-Tolerant Syst. LNCS 331. Springer-Verlag.

Ramamritham, K., & Stankovic, JA. 1984. Dynamic task scheduling in distributed hard
real-time systems. |EEE Softw,, 1(3), 65-75.

268 REFERENCES

Ramamritham, K., Stankovic, JA., & Zhao, W. 1989. Distributed scheduling of tasks
with deadlines and resource requirements. Pages 1110-23 of: |IEEE Trans. on
Comp., vol. 38(8).

Ramamritham, K., Stankovic, JA., & Shiah, P. 1990. Efficient scheduling algorithmsfor
real-time multiprocessor systems. |EEE Trans. on Parallel and Distr. Syst., 1(2),
184-94.

Ravn, A.P. 1994. Design of embedded real -time computing systems. Tech. rept. ID/DTH.

Ravn, A.P, & Rischel, H. 1991. Requirements capture for embedded real-time sys-
tems. Pages 147-152 of: Proc. IMACSMCTS 91 Symp. on Modelling and Control
of Techn. Syst., Villeneuve d’ Ascq, France 7-10, 1991, vol. 2. IMACS.

Ravn, A.P, Rischel, H., & Hansen, K.M. 1993. Specifying and verifying requirements
of real-time systems. |EEE Trans. Softw. Eng., 19(1), 41-55.

Ready, J. 1986. VRTX: A real-time operating system for embedded microprocessor ap-
plications. |EEE Micro, 8-17.

Reed, G.M. 1988. A uniform mathematical theory for distributed computing. D.Phil
thesis, Oxford University.

Reed, G.M. 1990. A hierarchy of modelsfor real-time distributed computing. In: Proc.
5th Intl. Conf. on the Mathematical Foundations of Prog. Semantics. LNCS 442.
Springer-Verlag.

Reed, G.M., & Roscoe, A.W. 1986. A timed model for communicating sequential pro-
cesses. Pages 314-323 of: Proc. 13th Intl. Coll. on Automata, Languagesand Prog.
LNCS 226. Springer-Verlag.

Reed, G.M., & Roscoe, A.W. 1987. Metric spaces as models for real-time concurrency.
In: Proc. Workshop on the Mathematical Foundations of Prog. Languages Seman-
tics. LNCS 298. Springer-Verlag.

Reed, G.M., & Roscoe, A.W. 1991. A study of nondeterminismin real-time concurrency.
In: Proc. 2nd UK—Japan CSWorkshop. LNCS 491. Springer-Verlag.

Roscoe, A.W. 1994. Model-checking CSP. In: Roscoe, A.W. (ed), A Classical Mind:
Essays in Honour of C.A.R. Hoare. Prentice Hall International.

Rushby, J. 1993. A fault-masking and transient-recovery model for digital flight-control
systems. Pages 109-136 of: Vytopil, J. (ed), Formal Tech. in Real-Timeand Fault-
Tolerant Syst. Kluwer Academic Publishers.

Rushby, J., & von Henke, F. 1993. Formal verification of algorithmsfor critical systems.
|EEE Trans. on Softw. Eng., 19(1), 13-23.

Scattergood, B. 1990. The description of a laboratory robot in timed CSP. M.Sc. thesis,
Oxford University.

Schepers, H. 1993. Tracing fault-tolerance. Pages 91-110 of: Dependable Computing
and Fault Tolerant Systems, 8. Springer-Verlag.

Schepers, H. 1994. Compositional reasoning about responsive systems with limited re-
sources. J. Real-Time Syst., 7(3), 291-313. Reprinted in M.Malek (Ed.), Responsive
Computing, Kluwer Academic Publishers, 1994, 65-87.

Schepers, H., & Coenen, J. 1995. Trace-based compositional refinement of fault-tolerant
distributed systems. Pages 309-324 of: Dependable Computing and Fault-tolerant
Systems, 9. Springer-Verlag.

REFERENCES 269

Schepers, H., & Gerth, R. 1993. A compositional proof theory for fault-tolerant real-
timedistributed systems. Pages 34-43 of: Proc. 12th Symp. on Reliable Distr. Syst.
|EEE Comp. Society Press.

Schepers, H., & Hooman, J. 1994. A trace-based compositional proof theory for fault
tolerant distributed systems. Th. Comp. Sc., 128, 127-158.

Schlichting, R.D., & Schneider, F.B. 1983. Fail-stop processors. an approach to design-
ing fault tolerant computing systems. ACM Trans. on Comp. Syst., 1(3), 222-238.

Schneider, F.B. 1990a. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Comp. Surveys, 22(4), 299-3109.

Schneider, F.B., Bloom, B., & Marzullo, K. 1992. Putting timeinto proof outlines. Pages
618-639 of: Workshop on Real-Time: Theory in Practice. LNCS 600. Springer-
Verlag.

Schneider, S.A. 1990b. Correctness and communication of real-time systems. D.Phil
thesis, Oxford University.

Schneider, S.A. 1991. Unbounded non-determinismintimed CSP. ESPRIT SPEC project
deliverable.

Schneider, S.A. 1993. Fischer’s protocol in timed CSP. ESPRIT CONCUR2 project
deliverable.

Schneider, SA. 1994. Timewise refinement for communicating processes. In: Proc.
9th Intl. Conf. on the Mathematical Foundations of Prog. Semantics. LNCS 802.
Springer-Verlag.

Schneider, S.A. 1995. An operational semantics for timed CSP. Inf. & Comp., 116(2).

Scholfield, D.J., Zedan, H.S.M., & He, J. 1994. A specification-oriented semantics for
real-time systems. Th. Comp. Sc., 131, 219-241.

Schwan, K., Geith, A., & Zhou, H. 1990. From ChaosP®® to Chaos'®: A family of real-
time kernels. Pages 82-91 of: Proc. 11th |EEE Real-Time Syst. Symp.

Scott, B.G.O. 1994. Trandating timed CSP processes to occam2. In: Proc. 1994 World
Transputer Congress. 10S Press.

Sha, L., Rakumar, R., & Lehoczky, J.P. 1990. Priority inheritance protocols. An ap-
proach to rea-time synchronisation. |EEE Trans. on Comp., 39(9), 1175-1185.

Shankar, A.U., & Lam, S.S. 1987. Time-dependent distributed systems. proving safety,
liveness and real-time properties. Distr. Comp., 2, 61-79.

Shankar, N. 1993. Verification of real-time systems using PVS. Pages 280-291 of:
Comp. Aided Verif. '93. LNCS 697. Springer-Verlag.

Shasha, D.E., Pnudli, A., & Ewald, W. 1984. Temporal verification of carrier-senselocal
area network protocols. Pages 54-65 of: Proc. 11th ACM Symp. on Principles of
Prog. Languages.

Shen, C., Ramamritham, K., & Stankovic, JA. 1993. Resource reclaiming in multipro-
cessor real-time systems. |EEE Trans. on Parallel and Distr. Syst., 4(4), 382—-397.

Skakkebak, JU. 1994. Liveness and fairness in duration calculus. Pages 283-298 of:
Jonsson, B., & Parrow, J. (eds), CONCUR "94: Concurrency Theory. LNCS 836.

Springer-Verlag.

270 REFERENCES

Skakkebak, JU., & Shankar, N. 1994. Towards a duration calculus proof assistant in
PVS. Pages 660-679 of: Langmaack, H., de Roever, W.-P, & Vytopil, J. (eds),
Formal Tech. in Real-time and Fault-Tolerant Syst. LNCS 863. Springer-Verlag.

Skakkebak, J.U., Ravn, A.P, Rischel, H., & Zhou, C.C. 1992. Specification of embed-
ded real-time systems. In: Proc. Euromicro Workshop on Real-time Syst. |EEE
Comp. Society Press.

Stamper, R. 1990. The specification of AGV control softwareintimed CSP. M.Sc. thesis,
Oxford University.

Stankovic, JA., & Ramamritham, K. 1988. Hard Real-Time Systems. Tutorial Text.
|EEE Comp. Society Press.

Stankovic, JA., & Ramamritham, K. 1991. The Spring kernel: A new paradigm for hard
real-time operating systems. |EEE Softw., 8(3), 62—72.

Stankovic, JA., & Ramamritham, K. 1993. Advancesin Hard Real-Time Systems. |EEE
Comp. Society Press.

Stankovic, JA., Ramamritham, K., & Cheng, S. 1985. Evaluation of a flexible task
scheduling algorithm for distributed hard real-time systems. |EEE Trans. on Comp.,
C-34(12), 1130-43.

Superville, S. 1991. Specifying complex systems with timed CSP: a decomposition and
specification of a telephone exchange system which has a central controller. M.Sc.
thesis, Oxford University.

Tindell, K.W. 1993. Fixed priority scheduling of hard real-time systems. Ph.D. thesis,
Dept. of Comp. Sc., University of York, UK.

Turski, W.M. 1988. Time considered irrelevant for real-time systems. BIT, 28, 473-486.

Venema, Y. 1991. A modal logic for chopping intervals. J. Logic of Comp., 1(4), 453~
796.

Wallace, A.R. 1991. ATCSP case study of a flexible manufacturing system. M.Sc. thesis,
Oxford University.

Wang, F. 1993. Issues Related to Dynamic Scheduling in Real-Time Systems. Ph.D.
thesis, University of Massachusetts.

Weber, D.G. 1989. Formal specification of fault-tolerance and its relation to computer
security. ACM Softw. Eng. Notes, 14(3), 273-277.

Wirth, N. 1977. Towards a discipline of real-time programs. Comm. ACM, 20(8), 577—
583.

Yu, H., Pandya, PK., & Sun, Y. 1994a. A calculus for hybrid sampled data systems.
Pages 716-737 of: Langmaack, H., de Roever, W.-P, & Vytopil, J. (eds), Formal
Tech. in Real-time and Fault-Tolerant Syst. LNCS 863. Springer-Verlag.

Yu, X., Wang, J., Zhou, C.C., & Pandya, PK. 1994b. A formal design of hybrid systems.
Pages 738-755 of: Langmaack, H., de Roever, W.-P, & Vytopil, J. (eds), Formal
Tech. in Real-time and Fault-Tolerant Syst. LNCS 863. Springer-Verlag.

Zheng, Y., & Zhou, C.C. 1994. A formal proof of the deadline driven scheduler. Pages
756775 of: Langmaack, H., de Roever, W.-P, & Vytopil, J. (eds), Formal Tech. in
Real-time and Fault-Tolerant Syst. LNCS 863. Springer-Verlag.

Zhao, W., & Ramamritham, K. 1987. Simple and integrated heuristic algorithms for
scheduling tasks with time and resource constraints. J. Syst. & Softw., 7, 195-205.

REFERENCES 271

Zhao, W., Ramamritham, K., & Stankovic, JA. 1987a. Preemptive scheduling under
time and resource constraints. |EEE Trans. on Comp., C-36(8), 949-60.

Zhao, W., Ramamritham, K., & Stankovic, JA. 1987b. Scheduling tasks with resource
requirementsin hard real-time systems. | EEE Trans. on Softw. Eng., SE-12(5), 567—
77.

Zhou, C.C. 1993. Duration calculii: Anoverview. Pages 256-266 of: Bjarner, D., Broy,
M., & Pottosin, 1.V. (eds), Proc. Formal Methods in Prog. and Their Application.
LNCS 735. Springer-Verlag.

Zhou, C.C., & Xiaoshan, L. 1994. A mean-value duration calculus. Pages 431451 of:
Roscoe, A. W. (ed), A Classical Mind: EssaysinHonour of C. A. R Hoare. Prentice
Hall International .

Zhou, C.C., Hoare, CA.R,, & Ravn, A.P. 1991a. A calculus of durations. Inf. Proc.
Letts., 40(5).

Zhou, C.C., Hansen, M.R., Ravn, A.P, & Rischel, H. 1991b. Duration specificationsfor
shared processors. Pages 21-32 of: Vytopil, J. (ed), Formal Tech. in Real-time and
Fault-Tolerant Syst. LNCS 571. Springer-Verlag.

Zhou, C.C., Hansen, M.R., & Sestoft, P. 1993a. Decidability resultsfor duration calculus.
Pages 58-68 of: Enjalbert, P, Finkel, A., & Wagner, K.W. (eds), Proc. STACS 93.
LNCS 665. Springer-Verlag.

Zhou, C.C., Ravn, A.P, & Hansen, M.R. 1993b. An extended duration calculus for hy-
brid real-time systems. Pages 36-59 of: Grossman, R.L., Nerode, A., Ravn, A.P,
& Rischel, H. (eds), Hybrid Systems. LNCS 736. Springer-Verlag.

Zhou, C.C., Zhang, J., Yang, L., & Li, X. 1994. Linear durationinvariants. Pages 86-109
of: Langmaack, H., de Roever, W.-P, & VWytopil, J. (eds), Formal Tech. in Real-time
and Fault-Tolerant Syst. LNCS 863. Springer-Verlag.

Zhou, C.C., Dang, V. H., & Li, X. 1995. A duration calculuswithinfiniteintervals. Pages
16-41 of: Reichel, H. (ed), Fundamental s of Computation Theory. 10th Intl. Conf.,
Dresden, Germany. LNCS 965. Springer-Verlag.

Zhou, P, & Hooman, J. 1995. Formal specification and compositional verification of an
atomic broadcast protocol. J. Real-Time Sys., 9(6), 119-145.

Zlokapa, G. 1993. Real-time systems. well-timed scheduling and scheduling with prece-
dence constraints. Ph.D. thesis, University of Massachusetts.

Zwarico, A., & Lee, |. 1985. Proving a network of real-time processes correct. Pages
169-177 of: Proc. 6th IEEE Real-Time Syst. Symp.

Zwiers, J. 1989. Compositionality, Concurrency and Partial Correctness. LNCS 321.

Springer-Verlag.

| ndex

Abadi, M., 137, 141

abnormal behaviour, 229, 232

abstraction, 147, 163, 178
acceptable behaviour, 232
Ada, 33, 35, 50, 64, 255
mine pump, 56
priority, 46
Aghili, H., 137
Agrawala, A., 94
Alur, R., 140
Anderson, T., 254
Apt, K.R,, 139
Arun-Kumar, S., 138
assertional reasoning, 97
asynchronous, 148, 179
communication, 33
Auddey, N.C., 30, 64
automated verification, 138
axiomatic proof, 13
axiomatization, 126
axioms
DC, 194, 198

Baker, T.P, 64
Barringer, H., 140
Baruah, S., 93

basic state, 192

Bate, G., 64

behaviour, 147, 167, 209
Bernstein, A.J.,, 139, 140

272

Berry, G., 13
Bettati, R., 94
Biyabani, S., 94
Bjarner, D., 224
Blake, B.A., 94
Blazewicz, J., 93
blocking factor, 42
Bloom, B., 139
Bondavdli, A., 64
Bowen, J., 227
Bres, G., 30
Brookes, S.D., 178
Burns, A., 14, 30, 64, 254
Butazzo, G., 94

catastrophic behaviour, 229

Cau, A., 255

Celary, W., 93

checkpoint, 255

Cheng, S., 94

Chetto, H., 93

Chetto, M., 93

chop operator, 187, 191, 193, 196, 198

chop-monotonic, 196, 198

Chung, J.Y., 94

Coenen, J., 255

Coffman, E.G., 93

commitment, 190

communication, 73, 109, 147, 148
asynchronous, 50, 64, 73, 109

INDEX 273

lines, 113 specification, 156, 162-167,171, 173,

synchronous, 50, 73, 112 174, 177-179
competitiveness analysis, 76, 82 synchronization, 148
completeness, 234, 250 termination, 150, 159
compositional proof system, 98 tick event, 159
correctness formula, 101 timed events, 156158
Courcoubstis, C., 140 timed failure, 158
Crigtian, F., 137, 254 timed failures, 157, 162, 178, 179
critica instant, 24 timed refusals, 157-160, 165
CSP 147 timed trace, 157, 158

abstraction, 178 timed traces, 161

alphabet, 148, 153, 161 timeout choice, 151, 154

asynchronous’ 148, 152 timewise refinement, 178

behaviour, 147, 150, 151, 154, 156, trace, 156, 161, 162, 177

158, 160-162, 165, 167,171, 179 trace events, 156

choice, 152, 161 verification, 164-169

communication, 147, 148, 153

computational model, 148 Bi?ds\é: 62296 4

deadlock, 149, 150, 152, 178

events, 148_1571 160, 162, 165, 168, Davies, J., 178, 179

Davis, R.I., 30, 64

177 DC
exception, 151 axioms, 194, 196, 225
external choice, 150, 160, 165 behaviour, 184
external events, 148, 149 induction rule, 197
failures, 158, 178 probabiligtic, 205
hiding, 152 semantics, 225, 227
implementation, 164, 170, 171, 177 de Bakker, J., 139
infinite behaviour, 179 de Roever, W.-P, 138-140, 255
infinite choice, 154 deadline, 38
infinite traces, 156 external, 39
internal events, 148 internal, 39, 45
macros, 166 deadline-constrained transaction, 72
mine pump, 167, 169, 177 deadlines, 70
nondeterministic choice, 154 deadlock, 149
observation, 156-158, 164 Demers, A., 140
operators, 149 deontic logic, 255
prefix choice, 162 Dertouzos, M.L., 93
processes, 148 Dijkstra, E.W., 139
proof rules, 165 Dill, D.L., 140
recursion, 153, 165, 174, 179 Ding, Y., 30
refinement, 177, 179 dispatching, 66, 69, 91
refusals, 148, 156158, 163 Dolev, D., 137

semantics, 159 dual computer system, 255

274

duration, 185, 192
duration calculus, 182
duration formula, 193
dynamic planning, 83
dynamic priority, 76

early warning, 68
Emerson, E., 140

Engel, M., 226, 227
environment, 148

Esterel, 13

event projection, 230
events, 148, 150

Ewald, W., 140

exception handling, 254, 255
exceptional behaviour, 229
execution time, 38

fail-safe, 242, 247
fail-stop processor, 254
failure, 205-207, 214, 229
detection, 236, 243
hypothesis, 229, 230, 232-234, 237,
245, 255
proof rule, 234
fault, 229
refinement, 255
transformations, 255
fault-tolerance, 86, 229
correctness, 231
software, 65
faults
hardware, 229
random, 229
software, 229
systematic, 229
feasibility analysis, 66
feasibility checking, 66, 90
feasible, 46, 202
finitevariability, 124, 148, 149, 157, 197
Fischer’s protocol, 179
flexible time-constraints, 72
Francez, N., 138, 139
Franzle, M., 227

INDEX

Furht B., 94
Futurebus+, 179

Geith, A., 94

Gerber, R., 139
Gerth, R., 138, 255
Gibbins, P, 179
Gluch, D., 94

Goli, P, 94

Gonthier, G., 13
Goodenough, J., 64
grateful degradation, 67
Gries, D., 139, 140
Grostick, D., 94
guarantees, 70
Gudmundsson, O., 94

Haase, V.H., 139

Hammer, D., 137

Hansen, K.M., 227

Hansen, M.R., 225

Hansson, H., 140

Harbour, M.G., 30

Harel, D., 13

Harel, E., 140

Harris, D., 94

Harter, PK., 30, 140

Hayes, 1.J.,, 14

He, J.,, 64, 137, 227, 255

Hehner, E.C.R,, 13

Henzinger, T., 140

Hoarelogic, 97

Hoare triple, 97, 139, 254

Hoare, CA.R., 12, 137, 139, 141, 178,
224, 226, 254, 255

Holmes, V.P, 94

Hong, J., 94

Hong, K.S.,, 93

Hooman, J., 137-140, 255

Howles, F, 179

HRT-HOQOD, 64

Huizing, C., 138

Hung, D.V., 226

|EEE868 Bus, 137

INDEX

implementation, 11, 147, 182, 183, 188,
191, 204, 205, 225

infinite choice, 154

inter-arrival time, 33, 42

internal choice, 150

interval projection, 230

interval temporal logic, 182, 191

Jackson, D.M., 178, 179
Jahanian, F., 141
Janowski, T., 12

Jensen, D., 94

jitter, 42

Jonsson, B., 140
Joseph, M., 12, 30, 255

Karger, B.V., 227

Kay, A., 179

Klein, M.H., 30

Ko, K., 94

Koren, G., 93
Koymans, R., 138, 140
Kramer, J, 14

Kubica, M., 227
Kuiper, R., 140
Kurosg, J,, 94

Lam, S.S, 141

Lamport, L., 137, 139-141, 254
Langmaack, H., 224
Laprie, J.C., 254

layered architecture, 254
Layland, JW., 12, 30, 93
Lee I., 139,141

Lee PA. 254

Lehman, D., 138
Lehoczky, J., 30

Leung, J.Y-T, 93
Leveson, N., 14

Levin, G.M., 139

Li, X., 225, 226
Lichtenstein, O., 140
Lin, K., 94

Lin, K.J, 94

Lincoln, P, 139

275

Lister, A.M., 14, 254
Liu, C.L., 12, 30, 93
Liu, JW.S,, 94

Liu, Z., 12, 225, 226, 255
liveness, 98, 163
load relation, 23
Locke, C.D., 93,94
Lodaya, K., 254
LOTOS, 179

Lowe, G., 179

Luit, E., 137

Lustre, 13

Madey, J., 227
Magee, J., 14
Mahony, B.P, 14
Manna, Z., 139, 140
Mao, D., 93
Markov chains, 205
Marzullo, K., 139
Mascot, 64
master-dave, 255
maximal progress, 148
maximum parallelism, 148
Merz, S, 141
minepump, 5-11, 14, 53, 105, 169, 183~
186, 188, 191, 192, 198, 205, 206,
216, 223
reliability, 236
Mishra, B., 93
Midove, M.W.,, 178
Moitra, A., 255
Mok, A.K.-L., 12, 93, 140, 141
Mosg, D., 94
Moszkowski, B., 224
Mdller-Olm, M., 227

Nassor, E., 30

Nguyen, V., 140
non-periodic, 86
nondeterministic choice, 154
Nordahl, J., 226, 255

Obenza, R., 30
observation interval, 191

276

Olderog, E.R., 138, 227
Ostroff, J., 140
Owicki, S., 139, 140
Owre, S, 138, 139

Pandya, PK., 30, 226, 227
Panwar, S.S., 94
parallel composition, 99
Parker, J., 94
Parnas, D.L., 227
PDC, 205
axioms, 211, 212
Peled, D., 255
Peleska, J., 255
periodic, 32
periodic tasks, 86
Piorkowski, K., 94
planning-based, 83
Pnuedli, A., 138-140
Pollak, B., 30
pre-emption, 204
priority, 76
allocation, 45
ceiling, 39, 40, 42, 64
inheritance, 40, 64
inversion, 40
pragma, 52
priority ceiling, 204
probabilistic duration calculus, 205
probabilistic logic, 182
programming language, 122
proof rules, 103
proof system, 124
punctual point, 88, 94

Rabbat, G., 94

Rajkumar, R., 64

Ralya, T.A., 30
Ramamritham, K., 93, 94
rate-monotonic, 24

Ravn, A.P, 137, 224-227
reactive, 147

Ready, J., 94

real-time behaviour, 100

INDEX

recovery, 214
backward, 255
transformation, 255
recurrence relation, 38, 43
recursion, 149, 153, 178, 179
Reed, G.M., 139, 178
Reed, JN., 179
refinement, 147, 177, 182, 191, 226
relative completeness, 253
requirements, 3, 182, 189, 191, 200, 205,
224, 227
functional, 3
non-functional, 3
safety, 6
response time, 26, 33, 38
restart, 255
Richardson, M.F,, 64
Rischel, H., 226, 227
Roberts, M., 94
Roscoe, A.W., 139, 178, 180
Roser, A.R.L., 93
Rushby, J., 138, 139

safety, 3, 54, 98, 163
satisfaction, 210
satisfaction probability, 210
Scattergood, B., 179
schedulability analysis, 66
schedul e construction, 66, 68, 90
scheduler, 11, 202—204
scheduling, 13, 32, 64, 136, 182
best-effort, 65, 67, 80, 90, 93
clairvoyant, 76
deadline-monotonic, 45
earliest-deadline, 76, 77, 93
exact analysis, 24
first-come-first-served, 77, 93, 204
fixed priority, 38, 40
greedy, 78
heuristic, 94
least-laxity, 76, 93, 94
list, 78
messages, 49
minimum-earliest-start-time, 77

INDEX

minimum-processing-time, 77

minimum-value, 77
minimum-value-density, 77
optimal, 76

overheads, 46

periodic, 93
planning-based, 67, 90, 94
policy, 202, 204, 227
pre-emption, 19
pre-emptive, 79

priority, 19, 204
priority-based, 65

rate monotonic, 23
rate-monotonic, 45
reclaiming, 92

recurrence relation, 28

shortest-processing-time-first, 93

static, 18

well-timed, 89, 94
scheduling fault-tolerance, 86
scheduling point, 74
Schenke, M., 227
Schepers, H., 255
Schlichting, R.D., 254
Schneider, F.B., 139, 254
Schneider, SA., 178, 179
Scholefield, D.J., 64, 137
Schwan, K., 94
Scott, B.G.O., 179
semantics

chop, 193
sensors, 117
Sestoft, P, 225
Sha, L., 30, 64
Shankar, A.U., 141
Shankar, N., 138, 139, 225
Shasha, D.E., 93, 140
Shen, C., 94
Shiah, P, 94
Shih, W., 94
Shih, WK., 94
Shyamasundar, R.K., 138, 254
Signal, 13
Sigtla, A.P, 140

Skakkebak, J.U., 225, 227
Sloman, M.S., 14
Slowinski, R., 93
software

fallures, 247
Soundarargjan, N., 255
soundness, 234, 250

specification, 7, 10, 11, 100, 147, 162,
177,179, 182, 187, 190, 191, 204

mine pump, 188
sporadic, 32
Spring, 94
Srinivasan, J., 140
Stamper, R., 179
Stankovic, J., 64
Stankovic, JA., 93, 94
start-time constraints, 72
state machine, 254
Statecharts, 13
Staunstrup, J., 227
Strigini, L., 64
strong synchrony, 13
Strong, R., 137
strongly feasible, 84
Sun, Y., 227
Superville, S., 179
synchronization, 148
synchrony hypothesis, 13
Sarensen, E.V., 225, 226

Tan, X., 94

task graph, 74

task precedence, 87

task value, 72

time domain, 99

timeinterval, 191

time-value function, 67

Timed CSP, 147
language, 147-155

timeout choice, 154

timewise refinement, 147

timing, 124

timing fault, 83

Tindell, K.W., 30, 64

278

Towdley, D., 94

trace, 156

transaction, 33, 66

transformation expression, 232-234

Tripathi, S., 94

triplemodular redundancy, 229, 237, 245,
246

Turski, WM., 13

unreliable controller, 245
unreliable pump, 242
unreliable sensors, 236
utilization, 21, 45

van der Stok, P, 137

van Roosmadlen, O., 137

van Schouwen, A.J., 227
Verhoosdl, J., 137
verification, 11, 164, 190, 191
von Henke, F,, 139

Vytopil, J., 140

Walace, A.R., 179
Wang, F., 93

Wang, J., 227

watchdog timer, 247
Weber, D.G., 255
Weglarz, J., 93

Wellings, A., 30
Wellings, A.W., 64
Widom, J., 140

Wirth, N., 12

within deadline statement, 72
Wolf, JK., 94
worst-case, 16, 33, 38, 39

Yang, L., 225
Yu, A., 94
Yu, H., 227
Yu, X., 227

Zedan, H.SM., 64, 137
Zhang, J., 225

Zhang, Y., 227

Zhao, W., 94

Zhou, C.C., 137, 224-227
Zhou, H., 94

Zhou, P, 140

Zlokapa, G., 94

Zwarico, A., 141

Zwiers, J., 138, 139

INDEX

