
Short Guide to Java Applet

Programming

Revision 1.1

August 01, 2010

by

Aloysius Indrayanto

 (C) 2010 AnemoneSoft.com

This document is multi-licensed under the Creative Commons Attribution Share-Alike (CC-BY-SA)

license version 3.0 and the GNU Free Documentation License (GNU FDL) version 1.3 or later.

Short Guide to Java Applet Programming Page 1 of 22

1. Introduction
Java is a programing language that has a similar syntax with C/C++. However, unlike

C/C++, it has a simpler object model and fewer low-level functionality. Java was originally

developed by James Gosling at Sun Microsystems (which is now a subsidiary of Oracle

Corporation). The first version of Java was released in 1995. Java applications are compiled into

bytecode and meant to be run on a Java Virtual Machine (JVM). The same bytecode can be run

on any JVM that complies with the Java implementation standard. Hence, Java applications can

be run in any platform and operating system that are supported by the JVM. Java installation

package basically comes in two big flavors:

• The Java Runtime Environment (JRE) that includes the JVM, some tools, and runtime

libraries needed to run Java applications. This product is aimed at end users.

• The Java Development Kit (JDK) that includes both the JRE and development tools

(compiler, archiver, console, etc.). This product is aimed at Java developers.

In May 2007, Sun released most of its Java technologies under the GNU General Public License.

Java standard is now controlled through the Java Community Process.

The word “applet” usually refers to a small application that performs a specific task.

However, it can also refer to an application which is embedded in another application to enhance

the main application. An applet can run as an independent application as well as within the

context of a larger application. The word applet was most likely first used by the scripting

language AppleScript in year 1993.

A Java applet is a Java bytecode which is embedded in an HTML page. A Java applet can

run in a web browser using a JVM or in an AppletViewer (a stand-alone tool for testing applets).

Java applets were introduced from the very first version of Java in 1995. Java applets are usually

developed by using the Java programing language. However, it is also possible to use other

languages (such as Jython, Ruby, and Eiffel) that compile into standard-compliant Java bytecode.

Some advantages of a Java applet are listed below:

• It is cross platform. An applet can run on any browser and operating system that are

supported by the JVM.

• JRE is mostly backward-compatible. Hence, an applet developed using an older version

of Java usually will still work correctly with newer JRE.

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 2 of 22

• An applet can distribute works between servers and clients. Hence, reducing the load on

the server and make the application more scalable with the number of clients.

• A browser normally load and caches the latest version of an applet. Hence, the server

does not need to support all previous versions of the applet because the application will

be automatically updated.

• An unsigned applet has no access to the local machine. It can only access the originating

server. This would make an applet safer to run than a standalone application in local

machine. However, in case access to the local machine is mandatory, a signed applet can

be used.

• A Java applet is quite fast because it is compiled into bytecode and run by a JVM (not run

as an interpreted language).

Some disadvantages of a Java applet are listed below:

• It requires the Java plugin (and hence the installation of the JRE). If an applet requires a

newer JRE than one installed in the system (or even a specific version of JRE), the user

will need to first download and install the needed JRE before running the applet.

• Installing the Java plugin in some platforms and browsers may be more difficult than it

looks.

• Each browser would have its own applet-related bugs.

• The restrictions on unsigned applets may cause difficulties to achieve some tasks.

Please refer to the appendix for the methods to install Java plugin for FireFox and SeaMoneky in

Linux. Other browsers (at least Google Chrome and Opera) seem to be able to find the plugin

automatically, copy the settings from FireFox, or even provide a GUI interface to select/find the

appropriate plugin. In Windows, FireFox should be able to automatically find the Java plugin

from the installed JRE.

2. Requirements
A basic knowledge in programming using Java will be needed to understand the topic

discussed in this tutorial. A system with an installation of Apache Web Server (HTTPD) version

2.2.x, Java Development Kit (JDK) version 1.6.x (Java Standard Edition 6), and a recent enough

browser that can execute Java applet will be needed to run the code snippets.

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 3 of 22

3. “Hello World” Applet
The code snippet below shows a simple example of how to embed a Java applet in an

HTML page.

<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'
 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'>

<html xmlns='http://www.w3.org/1999/xhtml' lang='en' xml:lang='en'>

 <head></head>

 <body>
 <applet width='320' height='240' codebase='HelloWorld/' code='HelloWorld.class'>
 </applet>
 </body>

</html>

tut01.html

The codebase attribute basically specify the CLASSPATH of the Java applet. In the example

above, all the Java classes will be inside the 'HelloWorld' directory which is under the

directory that contains the HTML file. The code attribute specify the main class of the applet

(the class to be executed). The code snipped below shows the source code of the applet.

Remember that a Java source file must has the same name with the public class defined in it.

import java.applet.*;
import java.awt.*;

public class HelloWorld extends Applet {
 // To suppress warning message
 private static final long serialVersionUID = 1L;

 // Size of the applet
 private int _width, _height;

 // Initialize the applet
 public void init()
 {
 _width = getSize().width;
 _height = getSize().height;
 setBackground(Color.black);
 }

 // Draw the content of the applet
 public void paint(Graphics g)
 {
 g.setColor(Color.green);
 g.drawString("Hello world from Java Applet!", 50, 50);
 }
}

HelloWorld.java

Compile the code using the command 'javac -Xlint HelloWorld.java'. The resulting class

file 'HelloWorld.class' will be stored in the same directory. When executed in a browser, the

output would be similar to:

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 4 of 22

It is recommended to configure the JDK/JRE to always show the Java console when running an

applet (please refer to the appendix). The console can be used to display exception messages,

reset the JRE cache, etc. The picture below shows a typical Java console.

Explanation:

• An applet's main class must always extend the Applet class.

• The variable serialVersionUID is defined so that the -Xlint compiler option will not

produce the warning message:

warning: [serial] serializable class HelloWorld has no definition

of serialVersionUID

Basically, if there is no real need to serialize the applet object, one can set the variable

with any numerical value. It is recommended to always use the -Xlint compiler option

to enable all Java's recommended warnings so that one can write a cleaner code.

• Our applet class overrides the method init() from the Applet class. This method will

be called when the browser initializes an applet. In this example, it simply acquire the

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 5 of 22

size of the applet by using the getSize() method and set the background color to black

by using the setBackground() method.

• Our applet class also overrides the method paint() from the Applet class. This method

will be called whenever the browser wants to redraw the applet. In this example, it only

draw a simple text using green color at coordinate (50, 50).

It is possible to develop an applet's main class that can also be run as a stand-alone Java

application. This approach can be useful if a developer wants to develop a small utility that needs

to be run both from the web and as a local application. However, for online game development,

this approach may be not a good idea because it may add unnecessary complication as well as

reducing the maintainability and security of the application. The code snippet below shows the

needed modifications to the previous code snippet to make it capable of being run as a stand-

alone Java application. Note that the applet's main class has been renamed to HelloWorldST.

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

import java.net.URL;
import java.net.MalformedURLException;

class HelloWorldST_AppletStub implements AppletStub {
 private Applet _applet;

 public HelloWorldST_AppletStub(String argv[], Applet a)
 { _applet = a; }

 public void appletResize(int width, int height)
 { _applet.resize(width, height); }

 public AppletContext getAppletContext()
 { return null; }

 public java.net.URL getCodeBase()
 {
 try { return new URL("file://"); }
 catch(MalformedURLException e) { return null; }
 }

 public java.net.URL getDocumentBase()
 { return getCodeBase(); }

 public String getParameter(String p)
 { return null; }

 public boolean isActive()
 { return true; }
}

public class HelloWorldST extends Applet {
 ...
 ...
 ...

 // To indicate if the applet has ben run as a stand-alone Java application
 private static boolean _standAlone = false;

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 6 of 22

 ...
 ...
 ...

 // Draw the content of the applet
 public void paint(Graphics g)
 {
 g.setColor(Color.green);
 if(_standAlone)
 g.drawString("Hello world from Java!", 50, 50);
 else
 g.drawString("Hello world from Java Applet!", 50, 50);
 }

 // This main() method allows the applet to be run as a stand-alone Java application
 static public void main (String argv[])
 {
 // Size of the applet
 final int WIDTH = 320;
 final int HEIGHT = 240;

 // Instantiate the applet and applet-stub class
 final Applet applet = new HelloWorldST();
 final AppletStub appletStub = new HelloWorldST_AppletStub(argv, applet);
 applet.setStub(appletStub);
 appletStub.appletResize(WIDTH, HEIGHT);

 // Generate a top-level frame to contain the applet
 Frame frame = new Frame("Hello World");
 frame.addWindowListener(
 new WindowAdapter()
 {
 // Ensure the applet is uninitialized if the frame is closed
 public void windowClosing(WindowEvent event)
 {
 applet.stop();
 applet.destroy();
 System.exit(0);
 }
 }
);

 // Show the frame
 frame.setResizable(false);
 frame.setVisible(true);

 // Get the frame's insets
 final Insets fi = frame.getInsets();
 final int wo = fi.left + fi.right;
 final int ho = fi.top + fi.bottom;

 // Set the frame's initial position and the frame's size
 frame.setBounds(50, 50, WIDTH + wo, HEIGHT + ho);

 // Add the applet to the frame and start the applet
 frame.add("Center", applet);
 _standAlone = true;
 applet.init();
 applet.start();
 }
}

HelloWorldST.java

Explanation:

• The first modification is the addition of the HelloWorldST_AppletStub class that

implements the AppletStub class. When an applet is run by a browser, it is the browser's

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 7 of 22

responsibility to supply the implementation of the AppletStub class. In this example, a

very basic implementation of the class is used. There cannot be an applet context if an

applet is run as a stand-alone application, hence, the getAppletContext() method will

always return null. Due to the applet is run as a local application, the getCodeBase()

method will always return 'file://'.

• The second modification is the addition of the _standAlone variable to indicate if the

application is run as an applet or as a stand-alone application. This variable is used by the

modified paint() method to draw a different text if the application is run as a stand-

alone application.

• The third modification is the addition of the main() method in the applet class that

allows the applet to be run as a stand-alone application. The jobs of this method are to

instantiate the applet and applet stub objects, preparing the containing window, and

starting the applet. The implementation of this method would be quite similar for all

hybrid application. One would only need to change the required size of the applet (via the

WIDTH and HEIGHT variables) and the title of the window (the 'Hello World' string in

this example).

The applet above can be run as a stand-alone application by using the command 'java

HelloWorldST'. The result would be similar to the pictures below.

An applet can accept parameters from the HTML page by using the <param/> tag. It is

possible to write a better applet stub class so that one can pass parameters from the command

line in case the applet is executed as a stand-alone application. The modified applet stub class is

shown below.

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 8 of 22

class HelloWorldST_Ex_AppletStub implements AppletStub {
 private Applet _applet;
 private Hashtable<String, String> _parameters;

 public HelloWorldST_Ex_AppletStub(String argv[], Applet a)
 {
 _applet = a;

 _parameters = new Hashtable<String, String>();
 for(int i = 0; i < argv.length; ++i) {
 try {
 StringTokenizer parser = new StringTokenizer(argv[i], "=");
 String name = parser.nextToken().toString();
 String value = parser.nextToken("\"").toString().substring(1);
 _parameters.put(name, value);
 }
 catch(NoSuchElementException e) {}
 }
 }

 public void appletResize(int width, int height)
 { _applet.resize(width, height); }

 public AppletContext getAppletContext()
 { return null; }

 public java.net.URL getCodeBase()
 {
 try { return new URL("file://"); }
 catch(MalformedURLException e) { return null; }
 }

 public java.net.URL getDocumentBase()
 { return getCodeBase(); }

 public String getParameter(String p)
 { return _parameters.get(p); }

 public boolean isActive()
 { return true; }
}

4. Animation in Java Applet – “Bouncing Ball” Applet
The code snippets below show a simple example of how to implement animation with

double buffering in Java applet.

<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'
 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'>

<html xmlns='http://www.w3.org/1999/xhtml' lang='en' xml:lang='en'>

 <head></head>

 <body>
 <applet width='320' height='240' codebase='BouncingBall/' code='BouncingBall.class'>
 </applet>
 </body>

</html>

tut02.html

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 9 of 22

import java.applet.*;
import java.awt.*;

public class BouncingBall extends Applet implements Runnable {
 // To suppress warning message
 private static final long serialVersionUID = 1L;

 // Size of the applet
 private int _width, _height;

 // Backbuffer
 private Image _bbImage;
 private Graphics _bbGraph;

 // Animation thread
 private Thread _threadHandle = null;
 private boolean _threadSuspended = false;

 // Animation data
 private int _xPos = 10, _xSpd = 5;
 private int _yPos = 10, _ySpd = 5;

 // Initialize the applet
 public void init()
 {
 _width = getSize().width;
 _height = getSize().height;
 setBackground(Color.black);

 _bbImage = createImage(_width, _height);
 _bbGraph = _bbImage.getGraphics();
 }

 // Start the applet
 public void start()
 {
 // Create the thread if it is not yet exist
 if(_threadHandle == null) {
 _threadHandle = new Thread(this);
 _threadSuspended = false;
 _threadHandle.start();
 }

 // Resume the thread if it is currently suspended
 else if(_threadSuspended) {
 _threadSuspended = false;
 synchronized(this) {
 notify();
 }
 }
 }

 // Stop the applet
 public void stop()
 { _threadSuspended = true; }

 // Draw the content of the applet
 public void paint(Graphics g)
 { update(g); }

 // Update the content of the applet
 public void update(Graphics g)
 { g.drawImage(_bbImage, 0, 0, this); }

 // Thread procedure
 public void run()
 {
 try {
 while (true) {
 // Check if the thread should suspend itself
 if(_threadSuspended) {
 synchronized(this) {
 while(_threadSuspended) wait();

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 10 of 22

 }
 }
 // Draw the ball
 _bbGraph.setColor(Color.black);
 _bbGraph.fillRect(0, 0, _width, _height);
 _bbGraph.setColor(new Color(0, 64, 0));
 _bbGraph.fillOval(_xPos , _yPos , 20, 20);
 _bbGraph.setColor(new Color(0, 128, 0));
 _bbGraph.fillOval(_xPos + 2, _yPos + 2, 16, 16);
 _bbGraph.setColor(new Color(0, 207, 0));
 _bbGraph.fillOval(_xPos + 4, _yPos + 4, 12, 12);
 _bbGraph.setColor(new Color(0, 255, 0));
 _bbGraph.fillOval(_xPos + 6, _yPos + 6, 8, 8);
 // Update the ball's position
 _xPos += _xSpd;
 _yPos += _ySpd;
 if(_xPos < 0) { _xPos = 0; _xSpd = -_xSpd; }
 if(_xPos > _width - 20) { _xPos = _width - 20; _xSpd = -_xSpd; }
 if(_yPos < 0) { _yPos = 0; _ySpd = -_ySpd; }
 if(_yPos > _height - 20) { _yPos = _height - 20; _ySpd = -_ySpd; }
 // Repaint and sleep
 repaint();
 _threadHandle.sleep(50);
 }
 }
 catch(InterruptedException e) {}
 }
}

BouncingBall.java

Compile the code using the command 'javac -Xlint BouncingBall.java'. The result would

be similar to the picture below.

Explanation:

• The animation is implemented using thread. Hence, our class will need to both extend the

Applet class and implement the Runnable class.

• The init() method creates a new back buffer image and then acquiring its graphics

context. Animation with double buffering can be done by drawing only to a back buffer

image/graphics context, and after all the drawing processes finishes, blit the back buffer

to the front buffer (the applet).

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 11 of 22

• The start() method initializes a new animation thread in case the thread is not exist yet.

If the thread already exists, it simply resume the thread. This approach is necessary

because browsers may suspend an applet's thread if the user navigate away from the page.

• The stop() method just set the _threadSuspended flag to true.

• The paint() method simply forwards the call to the update() method.

• The update() method will simply blit the back buffer to the front buffer. It is necessary

to blit from within the update() method and not from the paint() method to prevent

flicker.

• The run() method is the heart of the animation. It basically contains an infinite loop with

an exception handler.

◦ First, it checks if it will need to suspend the animation thread by checking if the

_threadSuspended flag has been set to true.

◦ If the thread does not need to be suspended, it will clear the back buffer and draw

several circles to form a ball.

◦ Next, it will update the ball's position.

◦ It will then order the applet to repaint itself by calling the repaint() method.

◦ Finally, it will sleeps for about 50 milliseconds to delay the animation. Note that

in a real application, one would want to use a variable sleeping time.

4.1. Adding Sound Effect

All unsigned applets cannot access local files. Therefore from this section onwards, you

will need to host the HTML and applet classes in a web server. It is recommended to always use

a local (personal) web server when developing an applet-based application so that one can be

sure that the applet will be executed as if it is in a real deployment environment (the internet).

The first step to add sound effects is to create an audio player class that utilizes features

from javax.sound.sampled. However, it is important to understand that the current Java sound

library (Java Standard Edition 6) has some limitations:

• In some platforms, it opens the system audio device exclusively. No other application can

play audio until the first Java application closes the system audio device.

• A developer would need to write a custom mixer to play multiple audio files at the same

time (for mixing the sound effects).

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 12 of 22

The code snippet below shows a simple audio player class that can only play audio files which

are encoded in plain PCM (Pulse-Code Modulation). The method to write a custom mixer will

not be discussed in this tutorial.

class AudioPlayer implements Runnable {
 private static final int INIT_BUFFER_SIZE = 1024 * 16;
 private static final int READ_BUFFER_SIZE = 1024 * 128;

 private byte[] _buff = null;
 private Mixer _mixer = null;
 private AudioFormat _af = null;
 private DataLine.Info _dli = null;
 private Thread _th = null;

 public AudioPlayer(String urlAudio)
 {
 try {
 // Open the audio
 URL url = new URL(urlAudio);
 AudioInputStream ais = AudioSystem.getAudioInputStream(url.openStream());

 // Get mixer, format, and data line
 _mixer = AudioSystem.getMixer(null);
 _af = ais.getFormat();
 _dli = new DataLine.Info(SourceDataLine.class, _af);

 // Allocate the initial audio buffer
 _buff = new byte[INIT_BUFFER_SIZE];

 // Read the audio data
 byte[] readBuff = new byte[READ_BUFFER_SIZE];
 int totCount = 0;
 while(true) {
 // Read and check for end of stream
 int readCount = ais.read(readBuff, 0, readBuff.length);
 if(readCount <= 0) break;
 // Resize the audio buffer (if needed)
 if(totCount + readCount > _buff.length) {
 // Allocate a new buffer
 byte[] newBuff = new byte[_buff.length +
 Math.max(INIT_BUFFER_SIZE, readCount)];
 // Copy data
 System.arraycopy(_buff, 0, newBuff, 0, _buff.length);
 // Swap buffer
 _buff = newBuff;
 }
 // Copy data to the audio buffer
 System.arraycopy(readBuff, 0, _buff, totCount, readCount);
 totCount += readCount;
 }

 // Truncate the audio buffer to fit the full size of the audio stream
 if(totCount < _buff.length) {
 // Allocate a new buffer
 byte[] newBuff = new byte[totCount];
 // Copy data
 System.arraycopy(_buff, 0, newBuff, 0, totCount);
 // Swap buffer
 _buff = newBuff;
 }
 }
 catch(MalformedURLException e) {
 System.out.printf("MalformedURLException\n");
 System.out.printf("%s\n", e.getMessage());
 }
 catch(IOException e) {
 System.out.printf("IOException\n");
 System.out.printf("%s\n", e.getMessage());
 }

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 13 of 22

 catch(UnsupportedAudioFileException e) {
 System.out.printf("UnsupportedAudioFileException\n");
 System.out.printf("%s\n", e.getMessage());
 }
 }

 public void run()
 {
 SourceDataLine line = null;

 try {
 line = (SourceDataLine) _mixer.getLine(_dli);
 line.open(_af);
 line.start();
 line.write(_buff, 0, _buff.length);
 line.drain();
 }
 catch(LineUnavailableException e) {
 System.out.printf("LineUnavailableException\n");
 System.out.printf("%s\n", e.getMessage());
 }
 catch(Exception e) {
 System.out.printf("Exception\n");
 System.out.printf("%s\n", e.getMessage());
 }

 if(line != null) line.close();
 line = null;
 _th = null;
 }

 public void play()
 {
 if(_buff.length <= 0 || _th != null) return;

 _th = new Thread(this);
 _th.start();
 }
}

Explanation:

• On initialization the class' constructor opens the given URL as an audio stream.

• It then will acquire the system's default mixer, the format of the audio stream, and

construct a data-line information object related to the format of the audio stream.

• Next, it will prepare a buffer and copy the entire audio stream to the buffer. If the final

buffer size is larger than the whole length of the audio data, the buffer will be truncated.

It is important to copy the audio data to local buffer so that the application will not need

to re-request the audio data from the server.

• The run() method is meant to be run in a separated thread to feed the audio device with

data. It basically will open a line, start the line, write data into the line, wait until the

playback completed, and finally close the line.

• The play() method simply creates a new thread and start it (only if the audio is properly

loaded and the thread is not yet running).

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 14 of 22

The code snippet below shows the needed modifications to the original bouncing ball applet to

make it capable of playing sound effect.

import java.applet.*;
import java.awt.*;

import java.lang.Math;

import java.net.URL;
import java.net.MalformedURLException;
import java.io.IOException;

import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.AudioInputStream;
import javax.sound.sampled.AudioFormat;
import javax.sound.sampled.Mixer;
import javax.sound.sampled.DataLine;
import javax.sound.sampled.SourceDataLine;
import javax.sound.sampled.UnsupportedAudioFileException;
import javax.sound.sampled.LineUnavailableException;

class AudioPlayer implements Runnable {
 ...
 ...
 ...
}

public class BouncingBallWS extends Applet implements Runnable {
 ...
 ...
 ...

 // Animation data
 private int _xPos = 10;
 private int _yPos = 10;
 private int _xSpd = 5;
 private int _ySpd = 5;
 private AudioPlayer _ap = null;

 // Initialize the applet
 public void init()
 {
 _width = getSize().width;
 _height = getSize().height;
 _codeBase = getCodeBase().toString();

 setBackground(Color.black);

 _bbImage = createImage(_width, _height);
 _bbGraph = _bbImage.getGraphics();

 _ap = new AudioPlayer(_codeBase + "../cling.wav");
 }

 ...
 ...
 ...

 // Thread procedure
 public void run()
 {
 try {
 while (true) {
 ...
 ...
 ...

 // Update the ball's position and play audio (if needed)
 boolean pAud = false;
 _xPos += _xSpd;
 _yPos += _ySpd;

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 15 of 22

 if(_xPos < 0) { _xPos = 0; _xSpd = -_xSpd; pAud = true; }
 if(_xPos > _width - 20) { _xPos = _width - 20; _xSpd = -_xSpd; pAud = true; }
 if(_yPos < 0) { _yPos = 0; _ySpd = -_ySpd; pAud = true; }
 if(_yPos > _height - 20) { _yPos = _height - 20; _ySpd = -_ySpd; pAud = true; }
 if(pAud) _ap.play();
 // Repaint and sleep
 repaint();
 _threadHandle.sleep(50);
 }
 }
 catch(InterruptedException e) {}
 }
}

BouncingBallWS.java

Explanation:

• The first modification is adding more import statements to load support for network, I/O,

and sound.

• The second modification is a new private member variable _ap that will be initialized in

the constructor of the applet's main class. It is important to generate the audio stream

URL using the string returned by the getCodeBase() method rather than hard-coding the

URL. This would allow specifying path relative to the CLASSPATH of the applet (the

codebase attribute of the <applet></applet> tag).

• The final modification is in the animation thread procedure. Anytime the ball hits the

edge of the screen (applet's window), a flag is set so that an audio effect will be played.

4.2. Making It a Stand-Alone Application

It is quite simple to convert the previous code snippet so that it can be run both as an

applet and as a stand-alone application. There are only three modifications that need to be done:

• Adding an applet stub class.

• Modifying the AudioPlayer class constructor to open the audio URL as a local file if the

URL protocol is 'file://'.

• Adding a main() method to the applet's main class.

Please refer to 'HelloWorldST.java' for the details of the applet stub class and the main()

method. The code snippet below shows the necessary modifications to the previous code snippet

to make it capable of being run as a stand-alone Java application. Note that the applet's main

class has been renamed to BouncingBallWSST.

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 16 of 22

class BouncingBallWSST_AppletStub implements AppletStub {
 ...
 ...
 ...
}

class AudioPlayer implements Runnable {
 ...
 ...
 ...

 public AudioPlayer(String locAudio)
 {
 try {
 // Open the audio
 URL url = new URL(locAudio);
 AudioInputStream ais = null;
 if(url.getProtocol() == "file")
 ais = AudioSystem.getAudioInputStream(new File(url.getPath()));
 else
 ais = AudioSystem.getAudioInputStream(url.openStream());

 ...
 ...
 ...
}

public class BouncingBallWSST extends Applet implements Runnable {
 ...
 ...
 ...

 // To indicate if the applet has ben run as a stand-alone Java application
 private static boolean _standAlone = false;

 ...
 ...
 ...

 // This main() method allows the applet to be run as a stand-alone Java application
 static public void main (String argv[])
 {
 ...
 ...
 ...

 // Generate a top-level frame to contain the applet
 Frame frame = new Frame("Bouncing Ball");
 ...
 ...
 ...
 }
}

BouncingBallWSST.java

The result would be similar to the picture below.

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 17 of 22

4.3. Playing Ogg Vorbis and MP3 Audio

Playing Ogg Vorbis and MP3 audio streams have been made easy by using

plugins/libraries from http://www.tritonus.org/plugins.html and http://www.jcraft.com/jorbis. The

code snippet below shows the necessary modification to the AudioPlayer class so that it can

load compressed audio stream. The name of the audio file is now also obtained from the

clingAudioFile applet parameter.

 ...
 ...
 ...

 public AudioPlayer(String urlAudio)
 {
 try {
 // Open the audio
 URL url = new URL(urlAudio);
 AudioInputStream sis = AudioSystem.getAudioInputStream(url.openStream());
 AudioFormat sfm = sis.getFormat();

 // Get mixer, format, and data line
 _mixer = AudioSystem.getMixer(null);
 _af = new AudioFormat(AudioFormat.Encoding.PCM_SIGNED,
 sfm.getSampleRate(),
 16, // 16 bits per samples
 sfm.getChannels(),
 sfm.getChannels() * 2, // 16 bits are 2 bytes
 sfm.getSampleRate(),
 false // Little endian
);
 _dli = new DataLine.Info(SourceDataLine.class, _af);

 // Convert the audio
 AudioInputStream ais = AudioSystem.getAudioInputStream(_af, sis);

 ...
 ...
 ...
 }

 ...
 ...
 ...

 public void init()
 {
 ...
 ...
 ...

 _ap = new AudioPlayer(_codeBase + getParameter("clingAudioFile"));
 }

 ...
 ...
 ...

BouncingBallWS_Decode.java

Decompressing/decoding a compressed audio format to plain PCM can simply be done by

chaining two audio streams. The first one is used to read the audio data from the URL, the

second one is used to convert (decompress/decode) the audio stream to the desired format.

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 18 of 22

The code snippets below demonstrate the usage of the archive attribute to load the

needed libraries and the <param/> tag to define the name of the audio file. The libraries needed

to play Ogg Vorbis audio files are a bit different than the libraries needed to play MP3 audio

files.

<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'
 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'>

<html xmlns='http://www.w3.org/1999/xhtml' lang='en' xml:lang='en'>

 <head></head>

 <body>
 <applet width = '320'
 height = '240'
 codebase = 'BouncingBallWS_Decode/'
 code = 'BouncingBallWS_Decode.class'
 archive = 'jorbis-0.0.17.jar,
 tritonus_share-0.3.6.jar,tritonus_jorbis-0.3.6.jar'>
 <param name='clingAudioFile' value='../cling.ogg'/>
 </applet>
 <div>
 Using Ogg Vorbis plugin/library from
 http://www.tritonus.org/plugins.html
 and http://www.jcraft.com/jorbis.
 </div>
 </body>

</html>

tut02ws_ovb.html

<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'
 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'>

<html xmlns='http://www.w3.org/1999/xhtml' lang='en' xml:lang='en'>

 <head></head>

 <body>
 <applet width = '320'
 height = '240'
 codebase = 'BouncingBallWS_Decode/'
 code = 'BouncingBallWS_Decode.class'
 archive = 'javalayer.jar,
 tritonus_share-0.3.6.jar,tritonus_mp3-0.3.6.jar'>
 <param name='clingAudioFile' value='../cling.mp3'/>
 </applet>
 <div>
 Using MP3 plugin/library from
 http://www.tritonus.org/plugins.html.
 </div>
 </body>

</html>

tut02ws_mp3.html

There seems to be bugs either in the libraries or in the JRE (or both). Only one audio format can

be played by the same instance of JRE. If you run the Ogg Vorbis code snippet first and then run

the MP3 code snippet, the second one will not run (it will produce error), and vice versa. One

would need to restart the browser each time one wants to play different audio formats.

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 19 of 22

5. Using the <embed></embed> Tag
It is easy (and recommended) to replace the <applet></applet> tag with the newer

<embed></embed> tag as shown in the code snippet below.

<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'
 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'>

<html xmlns='http://www.w3.org/1999/xhtml' lang='en' xml:lang='en'>

 <head></head>

 <body>
 <embed type = 'application/x-java-applet'
 width = '320'
 height = '240'
 codebase = 'BouncingBallWS_Decode/'
 code = 'BouncingBallWS_Decode.class'
 archive = 'jorbis-0.0.17.jar,
 tritonus_share-0.3.6.jar,tritonus_jorbis-0.3.6.jar'
 pluginspage = 'http://java.com/en/download/index.jsp'
 clingAudioFile = '../cling.ogg'>
 </embed>
 <div>
 Using Ogg Vorbis plugin/library from
 http://www.tritonus.org/plugins.html
 and http://www.jcraft.com/jorbis.
 </div>
 </body>

</html>

tut02ws_ovb_embed.html

If an applet needs a specific version of JRE (for example Java Standard Edition 5), the type

attribute can be extended to 'application/x-java-applet;version=1.5'. The pluginspage

attribute should point to the URL from where users can download the needed plugin.

It is clear that using the <embed></embed> tag is a bit more complicated. However, it

provides more features (the type and pluginspace attributes). The <embed></embed> tag is part

of the new HTML 5 standard. Unless, there is a need to support very old browsers, using the

<embed></embed> tag is strongly recommended. Try it for yourself to convert all the code

snippets in this tutorial to use the <embed></embed> tag.

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 20 of 22

Appendix

====================================
Installing Java Plugin for x86 Linux
====================================

 * For Firefox 2.0 or later and SeaMonkey 1.0 or later.
 * Firefox 3.1 and later need JRE 1.6.0_10 or later.

 For Older Firefox

 Create a symbolic link to libjavaplugin_oji.so (located in the 'plugin/i386/ns7'
 directory of your JRE installation) in your Mozilla plugins directory. Examples:

 cd /usr/lib/firefox-3.6/plugins
 ln -s /usr/java/jre1.6.0_20/plugin/i386/ns7/libjavaplugin_oji.so .

 cd /usr/lib/firefox-3.6/plugins
 ln -s /usr/java/jdk1.6.0_20/jre/plugin/i386/ns7/libjavaplugin_oji.so .

 cd /usr/lib/firefox-3.6/plugins
 ln -s /usr/java/latest/jre/plugin/i386/ns7/libjavaplugin_oji.so .

 Please adjust the Firefox and Java plugins directories as needed.

 For Firefox 3.1 and later

 Create a symbolic link to libnpjp2.so (located in the 'lib/i386' directory
 of your JRE installation) in your Mozilla plugins directory. Examples:

 cd /usr/lib/firefox-3.6/plugins
 ln -s /usr/java/jre1.6.0_20/lib/i386/libnpjp2.so .

 cd /usr/lib/firefox-3.6/plugins
 ln -s /usr/java/jdk1.6.0_20/jre/lib/i386/libnpjp2.so .

 cd /usr/lib/firefox-3.6/plugins
 ln -s /usr/java/latest/jre/lib/i386/libnpjp2.so .

 Please adjust the Firefox and Java plugins directories as needed.

=======================================
Installing Java Plugin for x86_64 Linux
=======================================

 * Available from JRE 1.6.0_12 or later.
 * For Firefox 3.0 or later and pre-release versions of SeaMonkey 2.0.

 Create a symbolic link to libnpjp2.so (located in the 'lib/amd64' directory
 of your JRE installation) in your Mozilla plugins directory. Examples:

 cd /usr/lib64/firefox-3.6/plugins
 ln -s /usr/java/jre1.6.0_20/lib/amd64/libnpjp2.so .

 cd /usr/lib64/firefox-3.6/plugins
 ln -s /usr/java/jdk1.6.0_20/jre/lib/amd64/libnpjp2.so .

 cd /usr/lib64/firefox-3.6/plugins
 ln -s /usr/java/latest/jre/lib/amd64/libnpjp2.so .

 Please adjust the Firefox and Java plugins directories as needed.

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 21 of 22

===
Configuring Java to Always Show the Console
===

 * Run any of the commands:
 /usr/java/jre1.6.0_20/bin/jcontrol
 /usr/java/latest/bin/jcontrol
 /usr/java/jdk1.6.0_20/bin/jcontrol

 * Go to the 'Advanced' tab.

 * Expand the 'Java Console' section.

 * Select 'Show Console'.

 * Click 'Apply' and then 'OK'.

 AnemoneSoft.com

Short Guide to Java Applet Programming Page 22 of 22

References

http://en.wikipedia.org/wiki/Java_(programming_language), July 30, 2010

http://en.wikipedia.org/wiki/Java_Development_Kit, July 30, 2010

http://en.wikipedia.org/wiki/Java_applet, July 30, 2010

http://en.wikipedia.org/wiki/Applet, July 30, 2010

http://en.wikipedia.org/wiki/AppleScript, July 30, 2010

http://www.oracle.com/technetwork/java/index.html, July 30, 2010

http://download.oracle.com/javase/tutorial/java/index.html, July 30, 2010

http://profs.logti.etsmtl.ca/mmcguffin/learn/java, July 30, 2010

 AnemoneSoft.com

