
Signed Applet Tutorial

by Larry Siden

Introduction

While volunteering on a pro-bono project at Menlo Innovations my colleagues and I encountered a

problem. A team had developed a Java applet in which a user types in a URL and clicks a button. The

applet then downloads the web page specified by the URL and extracts any links (i.e.) and

displays them. While we tested this in our development environment's applet viewer everything seemed to

work fine. But when we tried to use the applet in a browser and connect to Google, it seemed to hang.

Opening the Java console window revealed

java.security.AccessControlException: access denied (java.net.SocketPermission

www.google.com connect,resolve)

Background

Java virtual machines run applets under a different security regime than applications. By default,

applications are implicitly trusted. The designers of the JVM specification assumed that users start

applications at their own initiative and can therefore take responsibility for the application's behavior on

their machine. Such code is considered to be trusted. Applets, on the other hand, are started automatically

by the browser after it downloads and displays a page. Users cannot be expected to know what applets a

page might contain before they download it, and therefore cannot take responsibility for the applet's

behavior on their machine. Applets, therefore, are considered by default to be untrusted. Among other

restrictions, an applet cannot, by default, open a socket referred to by a URL who's domain different from

the domain of the page that contains the applet. This is part of the security architecture that browsers

employ to protect users' computing resources from malicious or faulty applets.

The JVM's security policy is set by a the file $JAVA_HOME/jre/lib/security/java.policy. Here is an

excerpt from the one found on my computer:

// Standard extensions get all permissions by default

grant codeBase "file:${java.home}/lib/ext/*" {

permission java.security.AllPermission;

};

// default permissions granted to all domains

grant {

// allows anyone to listen on un-privileged ports

permission java.net.SocketPermission "localhost:1024-", "listen";

...

};

It's syntax is described by Default Policy Implementation and Policy File Syntax . The first grant

construct permits any code that lives in the directory $JAVA_HOME/lib/ext/* to do anything. Such code

is considered to be trusted. This makes sense only if this directory and its children are not writable to

ordinary users.

When I create an applet and test it with Eclipse's VM, Eclipse creates a file named java.policy.applet in

Signed Applet Tutorial http://www-personal.umich.edu/~lsiden/tutorials/signed-applet/signed...

1 of 5 23/3/2012 11:43 PM

the project root directory. Here are the contents:

/* AUTOMATICALLY GENERATED ON Tue Apr 16 17:20:59 EDT 2002*/

/* DO NOT EDIT */

grant {

 permission java.security.AllPermission;

};

As you can see, there is no codebase parameter here. This grant construct allows code from any codebase

permission to do anything. Eclipse's authors assume that Eclipse users can take responsibility for the

behavior of applets that they write and test on their own machines. So this explains why my team did not

encounter any security exception when we ran the applet from Eclipse. Eclipse ran the JVM in the same

working directory where it created the file java.policy.applet seen above. In this environment, the applet

could do anything it asked to.

In order to recreate this scenario at home, I wrote a simple applet at home that produces the same

behavior our team encountered. To download the entire project, type:

cvs -d :pserver:guest@lsiden.homeip.net:/cvsroot login

cvs -d :pserver:guest@lsiden.homeip.net:/cvsroot checkout Signed-Applet

This will create a directory called Signed-Applet under the current working directory. The CVS archive

is not writable for user guest.

This small applet produces the same behavior by requesting SocketPermission as described above to

connect to any port in the domain www.google.com. Because of the security policy, the actual domain is

irrelevant, since it is different from localhost. This is exactly what our team's applet was doing under the

hood when it called URL.getContent() which is shorthand for URL.openConnection().getContent().

URLConnection.openConnection()makes exactly this call:

System.getSecurityManager().checkPermission(new

SocketPermission("www.google.com", "connect"));

which throws the SocketException that we were seeing in the Java Console window. SocketException

is a subclass of IOException.

Digital Certificates

The solution to this conundrum is to create obtain a digital certificate and use it to sign the applet. When a

well-behaved browser downloads a page that contains a signed applet, before running the applet it

displays a certificate in a message box.

Signed Applet Tutorial http://www-personal.umich.edu/~lsiden/tutorials/signed-applet/signed...

2 of 5 23/3/2012 11:43 PM

 This certificate claims

that the applet comes from the party named within and contains the digital signature of a certificate

authority. In the above example, the certificate holder is a party named "Duke" and the issuer is Netscape.

The certificate contains identifying information about the certificate holder and the certificate issuer, or

trusted authority. A certificate authority is a third party that is trusted to verify a certificate applicant's

credentials. When the authority is satisfied with its applicant's credentials, it issues it a digitally signed

certificate.

(In this instance the certificate makes no claims as to the trustworthiness of either the certificate holder or

the certificate issuer. It is for demonstration purposes only. If your computer contains sensitive data, you

should not trust this certificate.)

The certificate authority may also have its own certificate that was generated by an even more trusted

authority that verfied its credentials. Each certificate will refer to the certificate of its issuing authority.

This may continue for several levels and is called a chain of trust. The chain of trust ends with a top-level

authority that issues its own certificate based on its own reputation. The chain of trust in this example

extend up only one level.

Signed Applet Tutorial http://www-personal.umich.edu/~lsiden/tutorials/signed-applet/signed...

3 of 5 23/3/2012 11:43 PM

The image on the right is what appears on the user's screen when they click the button labelled 'More

Details'. Every certificate contains a numeric hash or digest of the certificate contents, which can be seen

in the bottom right pane. A user can use the digest if he/she choses to contact the authority to verbally

confirm the validity of the certificate. The user could ask the authority for the digest of the certificate it

issued and compare the response with the digest displayed on his/her screen.

Despite the robustness of public/private key encryption, and the thoroughness of the specification, digital

certificates have yet to be universally adopted as a means of establishing trust when conducting business

transactions. For a critique on digital certificates, see The Emperor's New Clothes: The Shocking Truth

About Digital Signatures and Internet Commerce by Jane K. Winn.

Certificate authorities typically charge a fee for the service of validating their clients' credentials.

However, for testing and demo purposes, we may create a self-signed certificate. The information given in

a self-signed certificate has not been validated by a trusted third party.

The following section will cover the basic steps to creating a signed applet.

How To Create a Signed Applet

Package the applet into a JAR file. The applet must be in a JAR file before a certificate can be

attached to it. Use the jar JDK utility. If the applet was previously referenced with the help of a

codebase attribute in <applet> tag, replace the codebase attribute with the archive attribute. The

value of the archive attribute is a URL of a JAR file.

1.

Create a public/private key pair. The command for this is

keytool -genkey

keytool is another SDK utility. It will prompt you for a password to your keystore and for the

remaining parameters, one of which is alias, whose value is the name of the key. The keystore is a

file that contains your public/private key-pairs, and the public-keys of others with whom you

exchange information. See the documentation in the above link.

2.

Signed Applet Tutorial http://www-personal.umich.edu/~lsiden/tutorials/signed-applet/signed...

4 of 5 23/3/2012 11:43 PM

Create a certificate for the key you created in the previous step.

keytool -selfcert

Again, keytool will prompt you for a keystore password and remaining parameters. This certificate

is now self-signed by you, meaning that it has not been validated by any third party. This is suitable

for demo purposes, and may be acceptable to yourself and those who know you because if there is

any doubt that the certificate is really yours they can always call you up and ask you for the digest

to verify that it is really you and not some impostor that created the certificate. However, if this

applet were to be widely distributed, and you wanted it to be accepted by those who do not know

you personally, you would certainly want to pay a modest fee to obtain a certificate that is validated

by a trusted certificate authority. The procedure for this is straightforward, but beyond the scope of

this simple tutorial.

3.

Run jarsigner associate this certificate with the JAR file that contains your applet. You will need to

give the name of the public key of the certificate you just created. This creates a digest for each file

in your JAR and signs them with your private key. These digests or hashes, the public key, and the

certificate will all be included in the "WEB-INF" directory of the JAR.

4.

Your applet is now signed. The next time you or someone else downloads it in it's page the browser will

present a dialog box displaying the credentials you just created for it and asking the user permission to run

it. If he/she chooses not to, the applet will throw the same AccessControlException that we saw in the

Java Console window the first time we tried to run it in our browser. The difference is that now the user

gets to make an informed decision as to whether or not they trust your applet to not harm his/her system.

You will only need to generate the public/private key-pair once, but you will definitely want to automate

the steps that create and sign the JAR file, because you will need to repeat those every time you modify

anything in your code. You will most likely do this in your ant build-file, which is beyond the scope of

this tutorial.

Links

Security and the Java Platform1.

JDK(TM) 1.1.x - Signed Applet Example2.

Signed Applets, Browsers, and File Access3.

Digital Certificates Guide4.

RFC 24595.

The Emperor�s New Clothes: The Shocking Truth About Digital Signatures and Internet

Commerce

Signed Applet Tutorial http://www-personal.umich.edu/~lsiden/tutorials/signed-applet/signed...

5 of 5 23/3/2012 11:43 PM

