
© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Basic Object-Oriented
Programming in Java

2

Originals of Slides and Source Code for Examples:
http://courses.coreservlets.com/Course-Materials/java.html

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live Java EE training, please see training courses
at http://courses.coreservlets.com/.

JSF 2.0, PrimeFaces, Servlets, JSP, Ajax (with jQuery), GWT,
Android development, Java 6 and 7 programming,

SOAP-based and RESTful Web Services, Spring, Hibernate/JPA,
XML, Hadoop, and customized combinations of topics.

Taught by the author of Core Servlets and JSP, More
Servlets and JSP, and this tutorial. Available at public

venues, or customized versions can be held on-site at your
organization. Contact hall@coreservlets.com for details.

Topics in This Section

• Similarities and differences between Java
and C++

• Object-oriented nomenclature and
conventions

• Instance variables (fields)
• Methods (member functions)
• Constructors
• Example with four variations

4

“Object-oriented programming is an exceptionally bad idea which could only have
originated in California.” -- Edsger Dijkstra, 1972 Turing Award winner.

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Basics

5

Object-Oriented Programming in
Java

• Similarities with C++
– User-defined classes can be used like built-in types.
– Basic syntax

• Differences from C++
– Methods (member functions) are the only function type
– Object is the topmost ancestor for all classes
– All methods use the run-time, not compile-time, types (i.e. all Java

methods are like C++ virtual functions)
– The types of all objects are known at run-time
– All objects are allocated on the heap (always safe to return objects

from methods)
– Single inheritance only

• Comparisons to C#
– C# very similar to Java in OOP. For details, see

http://www.harding.edu/fmccown/java1_5_csharp_comparison.html
6

Object-Oriented Nomenclature

• “Class” means a category of things
– A class name can be used in Java as the type of a field or

local variable or as the return type of a function (method)

• “Object” means a particular item that
belongs to a class
– Also called an “instance”

• Example
String s1 = "Hello";

– Here, String is the class, and the variable s1 and the value
"Hello" are objects (or “instances of the String class”)

7

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Instance Variables

8

Overview

• Definition
– Data that is stored inside an object. “Instance variables”

can also be called “data members” or “fields”.

• Syntax
public class MyClass {

public SomeType field1, field2;
}

• Motivation
– Lets an object have persistent values.

• It is often said that in OOP, objects have three
characteristics: state, behavior, and identity. The instance
variables provide the state.

9

In any class that also has methods, it is
almost always better to declare instance
variables private. We will show how and why
in the next tutorial section.

Ship Example 1:
Instance Variables

public class Ship1 { (In Ship1.java)
public double x, y, speed, direction;
public String name;

}

public class Test1 { (In Test1.java)
public static void main(String[] args) {
Ship1 s1 = new Ship1();
s1.x = 0.0;
s1.y = 0.0;
s1.speed = 1.0;
s1.direction = 0.0; // East
s1.name = "Ship1";
Ship1 s2 = new Ship1();
s2.x = 0.0;
s2.y = 0.0;
s2.speed = 2.0;
s2.direction = 135.0; // Northwest
s2.name = "Ship2";
...

10

Instance Variables: Example
(Continued)

...
s1.x = s1.x + s1.speed

* Math.cos(s1.direction * Math.PI / 180.0);
s1.y = s1.y + s1.speed

* Math.sin(s1.direction * Math.PI / 180.0);
s2.x = s2.x + s2.speed

* Math.cos(s2.direction * Math.PI / 180.0);
s2.y = s2.y + s2.speed

* Math.sin(s2.direction * Math.PI / 180.0);
System.out.println(s1.name + " is at ("

+ s1.x + "," + s1.y + ").");
System.out.println(s2.name + " is at ("

+ s2.x + "," + s2.y + ").");
}

}

11

Instance Variables: Results

• Compiling and running in Eclipse
– Save Test1.java
– R-click, Run As Java Application

• Compiling and running manually
DOS> javac Test1.java
DOS> java Test1

Output:
Ship1 is at (1,0).
Ship2 is at (-1.41421,1.41421).

12

Example 1: Major Points

• Java naming conventions
• Format of class definitions
• Creating classes with “new”
• Accessing fields with

“variableName.fieldName”

13

Java Naming Conventions

• Start classes with uppercase letters
– Constructors (discussed later in this section) must exactly

match class name, so they also start with uppercase letters

public class MyClass {
...

}

14

Java Naming Conventions

• Start other things with lowercase letters
– Instance vars, local vars, methods, parameters to methods

public class MyClass {
public String firstName, lastName;

public String fullName() {
String name =

firstName + " " + lastName;
return(name);

}
}

15

Objects and References

• Once a class is defined, you can declare
variables (object reference) of that type

Ship s1, s2;
Point start;
Color blue;

• Object references are initially null
– The null value is a distinct type in Java and is not equal

to zero
– A primitive data type (e.g., int) cannot be cast to an object

(e.g., String), but there are some conversion wrappers

• The new operator is required to explicitly
create the object that is referenced

ClassName variableName = new ClassName();
16

Accessing Instance Variables

• Use a dot between the variable name and the field
variableName.fieldName

• Example
– For example, Java has a built-in class called Point that has x and
y fields
Point p = new Point(2, 3); // Build a Point object
int xSquared = p.x * p.x; // xSquared is 4
int xPlusY = p.x + p.y; // xPlusY is 5
p.x = 7;
xSquared = p.x * p.x; // Now xSquared is 49

• Exceptions
– Can access fields of current object without varName

• See upcoming method examples
– It is conventional to make all instance variables private

• In which case outside code can’t access them directly. We
will show later how to hook them to outside with methods.17

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Methods

18

Overview

• Definition
– Functions that are defined inside a class. “Methods” can

also be called “member functions”.

• Syntax
public class MyClass {

public ReturnType myMethod(…) { … }
}

• Motivation
– Lets an object calculate values or do operations, usually

based on its current state (instance variables).
• It is often said that in OOP, objects have three

characteristics: state, behavior, and identity. The methods
provide the behavior.

19

If you want code that uses your class to access
the method, make it public. If your method is
called only by other methods in the same class,
make it private. Make it private unless you
have a specific reason to do otherwise.

Ship Example 2: Methods

public class Ship2 { (In Ship2.java)
public double x=0.0, y=0.0, speed=1.0, direction=0.0;
public String name = "UnnamedShip";

private double degreesToRadians(double degrees) {
return(degrees * Math.PI / 180.0);

}

public void move() {
double angle = degreesToRadians(direction);
x = x + speed * Math.cos(angle);
y = y + speed * Math.sin(angle);

}

public void printLocation() {
System.out.println(name + " is at ("

+ x + "," + y + ").");
}

}
20

Methods (Continued)

public class Test2 { (In Test2.java)
public static void main(String[] args) {
Ship2 s1 = new Ship2();
s1.name = "Ship1";
Ship2 s2 = new Ship2();
s2.direction = 135.0; // Northwest
s2.speed = 2.0;
s2.name = "Ship2";
s1.move();
s2.move();
s1.printLocation();
s2.printLocation();

}
}
• Compiling and Running: (R-click, Run As in Eclipse)

javac Test2.java
java Test2

• Output:
Ship1 is at (1,0).
Ship2 is at (-1.41421,1.41421).

21

Example 2: Major Points

• Format of method definitions
• Methods that access local fields
• Calling methods
• Static methods
• Default values for fields
• public/private distinction

22

Defining Methods
(Functions Inside Classes)

• Basic method declaration:
public ReturnType methodName(Type1 arg1,

Type2 arg2, ...) {
...
return(somethingOfReturnType);

}

• Exception to this format: if you declare the
return type as void
– This special syntax that means “this method isn’t going to

return a value – it is just going to do some side effect like
printing on the screen”

– In such a case you do not need (in fact, are not permitted),
a return statement that includes a value to be returned

23

Examples of Defining Methods

• Here are two examples:
– The first squares an integer
– The second returns the faster of two Ship objects, assuming that a

class called Ship has been defined that has a field named speed
// Example function call:
// int val = square(7);

public int square(int x) {
return(x*x);

}

// Example function call:
// Ship faster = fasterShip(someShip, someOtherShip);

public Ship fasterShip(Ship ship1, Ship ship2) {
if (ship1.speed > ship2.speed) {

return(ship1);
} else {

return(ship2);
}

}
24

Calling Methods

• The term “method” means “function associated
with an object” (I.e., “member function”)
– The usual way that you call a method is by doing the following:

variableName.methodName(argumentsToMethod);

• For example, the built-in String class has a
method called toUpperCase that returns an
uppercase variation of a String
– This method doesn’t take any arguments, so you just put empty

parentheses after the function (method) name.

String s1 = "Hello";

String s2 = s1.toUpperCase(); // s2 is now "HELLO"

25

Accessing External and Internal
Methods

• Accessing methods in other classes
– Get an object that refers to instance of other class

• Ship s = new Ship();
– Call method on that object

• s.move();

• Accessing instance vars in same class
– Call method directly (no variable name and dot in front)

• move();
• double d = degreesToRadians()

– For local methods, you can use a variable name if you want, and
Java automatically defines one called “this” for that purpose. See
constructors section.

• Accessing static methods
– Use ClassName.methodName(args)

• double d = Math.cos(Math.PI/2);
26

Calling Methods (Continued)

• There are two exceptions to requiring a variable
name for a method call
– Calling a method defined inside the current class definition

• Use “methodName(args)” instead of “varName.methodName(args)”

– Functions (methods) that are declared “static”
• Use “ClassName.methodName(args)”

• Calling a method of the current class
– You don’t need the variable name and the dot
– For example, a Ship class might define a method called

degreeesToRadians, then, within another function in the same class
definition, do this:

double angle = degreesToRadians(direction);

• No variable name and dot is required in front of
degreesToRadians since it is defined in the same class as the
method that is calling it

27

Static Methods

• Also “class methods” (vs. “instance methods”)
– Static functions do not access any non-static methods or fields

within their class and are almost like global functions in other
languages

• You call a static method through the class name
ClassName.functionName(arguments);

– For example, the Math class has a static method called cos that
expects a double precision number as an argument

• So you can call Math.cos(3.5) without ever having any object
(instance) of the Math class

• Note on the main method
– Since the system calls main without first creating an object, static

methods are the only type of methods that main can call directly (i.e.
without building an object and calling the method of that object)

28

Method Visibility

• public/private distinction
– A declaration of private means that “outside” methods

can’t call it – only methods within the same class can
• Thus, for example, the main method of the Test2 class

could not have done
double x = s1.degreesToRadians(2.2);

– Attempting to do so would have resulted in an error at compile time

– Only say public for methods that you want to guarantee
your class will make available to users

– You are free to change or eliminate private methods
without telling users of your class

• private instance variables
– In next lecture, we will see that you almost always make

instance vars private and use methods to access them29

Declaring Variables in Methods

• Format
– When you declare a local variable inside of a method, the

normal declaration syntax looks like:

Type varName = value;

• The value part can be:
– A constant
– Another variable
– A function (method) call
– A constructor invocation (a special type of function

prefaced by new that builds an object)
– Some special syntax that builds an object without

explicitly calling a constructor (e.g., strings)30

Declaring Variables in Methods:
Examples

int x = 3;
int y = x;

// Special syntax for building a String object
String s1 = "Hello";

// Building an object the normal way
String s2 = new String("Goodbye");

String s3 = s2;
String s4 = s3.toUpperCase(); // Result: s4 is "GOODBYE"

// Assume you defined a findFastestShip method that
// returns a Ship
Ship ship1 = new Ship();
Ship ship2 = ship1;
Ship ship3 = findFastestShip();

31

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Constructors

32

Overview

• Definition
– Code that gets executed when “new” is called

• Syntax
– “Method” that exactly matches the class name and has no

return type (not even void).
public class MyClass {

public MyClass(…) { … }
}

• Motivation
– Lets you build an instance of the class, and assign values

to instance variables, all in one fell swoop
– Lets you enforce that all instances have certain properties
– Lets you run side effects when class is instantiated

33

Example: No User-Defined
Constructor

• Person
public class Person1 {

public String firstName, lastName;
}

• PersonTest
public class Person1Test {

public static void main(String[] args) {
Person1 p = new Person1();
p.firstName = "Larry";
p.lastName = "Ellison";
// doSomethingWith(p);

}
}

34

It took three lines of code to make a properly
constructed person. It would be possible for a
programmer to build a person and forget to assign a
first or last name.

Example: User-Defined
Constructor

• Person
public class Person2 {
public String firstName, lastName;

public Person2(String initialFirstName,
String initialLastName) {

firstName = initialFirstName;
lastName = initialLastName;

}
}

• PersonTest
public class Person2Test {
public static void main(String[] args) {
Person2 p = new Person2("Larry", "Page");
// doSomethingWith(p);

}
}

35

It took one line of code to make a properly
constructed person. It would not be possible for a
programmer to build a person and forget to assign a
first or last name.

Ship Example 3: Constructors

public class Ship3 { (In Ship3.java)
public double x, y, speed, direction;
public String name;

public Ship3(double x, double y,
double speed, double direction,
String name) {

this.x = x; // "this" differentiates instance vars
this.y = y; // from local vars.
this.speed = speed;
this.direction = direction;
this.name = name;

}

private double degreesToRadians(double degrees) {
return(degrees * Math.PI / 180.0);

}
...

36

Constructors (Continued)

public void move() {
double angle = degreesToRadians(direction);
x = x + speed * Math.cos(angle);
y = y + speed * Math.sin(angle);

}
public void printLocation() {
System.out.println(name + " is at ("

+ x + "," + y + ").");
}

}

public class Test3 { (In Test3.java)
public static void main(String[] args) {
Ship3 s1 = new Ship3(0.0, 0.0, 1.0, 0.0, "Ship1");
Ship3 s2 = new Ship3(0.0, 0.0, 2.0, 135.0, "Ship2");
s1.move();
s2.move();
s1.printLocation();
s2.printLocation();

}
}

37

Constructor Example: Results

• Compiling and running in Eclipse
– Save Test3.java
– R-click, Run As Java Application

• Compiling and running manually
DOS> javac Test3.java
DOS> java Test3

• Output
Ship1 is at (1,0).
Ship2 is at (-1.41421,1.41421).

38

Example 3: Major Points

• Format of constructor definitions
• The “this” reference
• Destructors (not!)

39

Constructors

• Constructors are special functions called when a
class is created with new
– Constructors are especially useful for supplying values of fields
– Constructors are declared through:

public ClassName(args) {
...

}

– Notice that the constructor name must exactly match the class name
– Constructors have no return type (not even void), unlike a regular

method
– Java automatically provides a zero-argument constructor if and only

if the class doesn’t define it’s own constructor
• That’s why you could say

Ship1 s1 = new Ship1();
in the first example, even though a constructor was never
defined

40

The this Variable

• The this object reference can be used inside any
non-static method to refer to the current object

• The common uses of the this reference are:
1. To pass a reference to the current object as a parameter to other

methods

someMethod(this);

2. To resolve name conflicts
• Using this permits the use of instance variables in methods

that have local variables with the same name

– Note that it is only necessary to say this.fieldName when you have a local variable
and a class field with the same name; otherwise just use fieldName with no this

41

Destructors

42

This Page Intentionally Left Blank

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Example: Person Class

43

Idea

• Goal
– Make a class to represent a person’s first and last name

• Approach: 4 iterations
– Person with instance variables only

• And test case

– Add a getFullName method
• And test case

– Add a constructor
• And test case

– Change constructor to use “this” variable
• And test case
• Also have test case make a Person[]

44

Iteration 1: Instance Variables

Person.java

public class Person {
public String firstName, lastName;

}

PersonTest.java

public class PersonTest {
public static void main(String[] args) {

Person p = new Person();
p.firstName = "Larry";
p.lastName = "Ellison";
System.out.println("Person's first name: " +

p.firstName);
System.out.println("Person's last name: " +

p.lastName);
}

}

45

Iteration 2: Methods

Person.java

public class Person {
public String firstName, lastName;

public String getFullName() {
return(firstName + " " + lastName);

}
}

PersonTest.java

public class PersonTest {
public static void main(String[] args) {

Person p = new Person();
p.firstName = "Bill";
p.lastName = "Gates";
System.out.println("Person's full name: " +

p.getFullName());
}

}

46

Iteration 3: Constructors

Person.java

public class Person {
public String firstName, lastName;

public Person(String initialFirstName,
String initialLastName) {

firstName = initialFirstName;
lastName = initialLastName;

}

public String getFullName() {
return(firstName + " " + lastName);

}
}

PersonTest.java

public class PersonTest {
public static void main(String[] args) {

Person p = new Person("Larry", "Page");
System.out.println("Person's full name: " +

p.getFullName());
}

}

47

Iteration 4: Constructors with
the “this” Variable (and Arrays)

Person.java

public class Person {
public String firstName, lastName;

public Person(String firstName,
String lastName) {

this.firstName = firstName;
this.lastName = lastName;

}

public String getFullName() {
return(firstName + " " + lastName);

}
}

PersonTest.java

public class PersonTest {
public static void main(String[] args) {

Person[] people = new Person[20];
for(int i=0; i<people.length; i++) {

people[i] =
new Person(NameUtils.randomFirstName(),

NameUtils.randomLastName());
}
for(Person person: people) {

System.out.println("Person's full name: " +
person.getFullName());

}
}

}
48

Helper Class for Iteration 4

public class NameUtils {
public static String randomFirstName() {

int num = (int)(Math.random()*1000);
return("John" + num);

}

public static String randomLastName() {
int num = (int)(Math.random()*1000);
return("Smith" + num);

}
}

49

To Do: Later Iterations

• Use accessor methods
– Make instance variables private and use getFirstName,

setFirstName, getLastName, setLastName

• Document code with JavaDoc
– Add JavaDoc-style comments so that online API for

Person class will be useful

• Use inheritance
– Make a class (Employee) based on the Person class.

Don’t repeat the code from the Person class.

• Next lecture
– Covers all of these ideas, then shows updated code

50

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Wrap-Up

51

Summary

• Conventions
– Class names start with upper case
– Method names and variable names start with lower case
– Indent nested blocks consistently

• Example class
public class Circle {

public double radius; // We’ll make this private next lecture
public Circle(double radius) { this.radius = radius; }
public double getArea() { return(Math.PI*radius*radius); }

}

• Example usage
Circle c1 = new Circle(10.0);
double area = c1.getArea();

52

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questions?

53

JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.

