
© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Handling Mouse and
Keyboard Events

3

Originals of Slides and Source Code for Examples:
http://courses.coreservlets.com/Course-Materials/java.html

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live Java EE training, please see training courses
at http://courses.coreservlets.com/.

JSF 2, PrimeFaces, Servlets, JSP, Ajax (with jQuery), GWT,
Android development, Java 6 and 7 programming,

SOAP-based and RESTful Web Services, Spring, Hibernate/JPA,
XML, Hadoop, and customized combinations of topics.

Taught by the author of Core Servlets and JSP, More
Servlets and JSP, and this tutorial. Available at public

venues, or customized versions can be held on-site at your
organization. Contact hall@coreservlets.com for details.

Topics in This Section

• General asynchronous event-handling
strategy

• Event-handling options
– Handling events with separate listeners
– Handling events by implementing interfaces
– Handling events with named inner classes
– Handling events with anonymous inner classes

• The standard AWT listener types
• Subtleties with mouse events
• Examples

5

General Strategy

• Determine what type of listener is of interest
– 11 standard AWT listener types, described on later slide.

• ActionListener, AdjustmentListener, ComponentListener,
ContainerListener, FocusListener, ItemListener,
KeyListener, MouseListener, MouseMotionListener,
TextListener, WindowListener

• Define a class of that type
– Implement interface (KeyListener, MouseListener, etc.)
– Extend class (KeyAdapter, MouseAdapter, etc.)

• Register an object of your listener class
with the window
– w.addXxxListener(new MyListenerClass());

• E.g., addKeyListener, addMouseListener
6

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Using Separate
Listener Classes

7

Handling Events with a Separate
Listener: Simple Case

• Listener does not need to call any methods
of the window to which it is attached

import java.applet.Applet;
import java.awt.*;

public class ClickReporter extends Applet {
public void init() {

setBackground(Color.YELLOW);
addMouseListener(new ClickListener());

}
}

8

Separate Listener: Simple Case
(Continued)
import java.awt.event.*;

public class ClickListener extends MouseAdapter {
public void mousePressed(MouseEvent event) {

System.out.println("Mouse pressed at (" +
event.getX() + "," +
event.getY() + ").");

}
}

9

Generalizing Simple Case

• What if ClickListener wants to draw a circle
wherever mouse is clicked?

• Why can’t it just call getGraphics to get a
Graphics object with which to draw?

• General solution:
– Call event.getSource to obtain a reference to window or

GUI component from which event originated
– Cast result to type of interest
– Call methods on that reference

10

Handling Events with Separate
Listener: General Case

import java.applet.Applet;
import java.awt.*;

public class CircleDrawer1 extends Applet {
public void init() {

setForeground(Color.BLUE);
addMouseListener(new CircleListener());

}
}

11

Separate Listener: General Case
(Continued)
import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class CircleListener extends MouseAdapter {
private int radius = 25;

public void mousePressed(MouseEvent event) {
Applet app = (Applet)event.getSource();
Graphics g = app.getGraphics();
g.fillOval(event.getX()-radius,

event.getY()-radius,
2*radius,
2*radius);

}
}12

Separate Listener: General Case
(Results)

13

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Implementing a Listener
Interface

14

Review of Interfaces: Syntax

• Shape interface
public interface Shape {

public double getArea(); // No body, just specification
}

• Circle class
public class Circle implements Shape {

public double getArea() { some real code }
}

• Note
– You can implement many interfaces

• public class MyClass implements Foo, Bar, Baz { … }

15

Review of Interfaces: Benefits

• Class can be treated as interface type
– public interface Shape {

public double getArea();
}

– public class Circle implements Shape { … }
– public class Rectangle implements Shape { … }

Shape[] shapes =
{ new Circle(…), new Rectangle(…) … };

double sum = 0;
for(Shape s: shapes) {

sum = sum + s.getArea(); // All Shapes have getArea
}

16

Source Code for MouseListener
and MouseAdapter (Simplified)

public interface MouseListener {
public void mouseClicked(MouseEvent e);
public void mousePressed(MouseEvent e);
public void mouseReleased(MouseEvent e);
public void mouseEntered(MouseEvent e);
public void mouseExited(MouseEvent e);

}

public abstract class MouseAdapter
implements MouseListener {

public void mouseClicked(MouseEvent e) {}
public void mousePressed(MouseEvent e) {}
public void mouseReleased(MouseEvent e) {}
public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent e) {}

}
17

Case 2: Implementing a Listener
Interface
import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class CircleDrawer2 extends Applet
implements MouseListener {

private int radius = 25;

public void init() {
setForeground(Color.BLUE);
addMouseListener(this);

}

18

When you implement an interface, Eclipse can stub out the methods
for you. R-click inside the class, Source, Override/Implement Methods.

Implementing a Listener
Interface (Continued)
public void mouseEntered(MouseEvent event) {}
public void mouseExited(MouseEvent event) {}
public void mouseReleased(MouseEvent event) {}
public void mouseClicked(MouseEvent event) {}

public void mousePressed(MouseEvent event) {
Graphics g = getGraphics();
g.fillOval(event.getX()-radius,

event.getY()-radius,
2*radius,
2*radius);

}
}

19

Adapters vs. Interfaces:
Method Signature Errors

• What if you goof on the method signature?
– public void mousepressed(MouseEvent e)
– public void mousePressed()

• Interfaces
– Compile time error

• Adapters
– No compile time error, but nothing happens at run time

when you press the mouse
• Solution for adapters (and overriding in

Java 5+ in general): @Override annotation
– Whenever you think you are overriding a method, put

“@Override” on the line above the start of the method.
• If that method is not actually overriding an inherited

method, you get a compile-time error.
20

@Override Example

public class CircleDrawer1 extends Applet {
@Override
public void init() {
setForeground(Color.BLUE);
addMouseListener(new CircleListener());

}
}

public class CircleListener extends MouseAdapter {
private int radius = 25;
@Override
public void mousePressed(MouseEvent event) {
Applet app = (Applet)event.getSource();
Graphics g = app.getGraphics();
g.fillOval(event.getX()-radius,

event.getY()-radius,
2*radius,
2*radius);

}
}

21

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Using Inner Classes
(Named & Anonymous)

22

Review of Inner Classes

• Class can be defined inside another class
– Methods in the inner class can access all methods and instance

variables of surrounding class
• Even private methods and variables

• Example
public class OuterClass {

private int count = …;

public void foo(…) {
InnerClass inner = new InnerClass();
inner.bar();

}

private class InnerClass {
public void bar() {

doSomethingWith(count);
}

}
}

23

Case 3: Named Inner Classes

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class CircleDrawer3 extends Applet {
public void init() {

setForeground(Color.BLUE);
addMouseListener(new CircleListener());

}

24

Named Inner Classes
(Continued)

• Note: still part of class from previous slide

private class CircleListener
extends MouseAdapter {

private int radius = 25;

public void mousePressed(MouseEvent event) {
Graphics g = getGraphics();
g.fillOval(event.getX()-radius,

event.getY()-radius,
2*radius,
2*radius);

}
}

}25

Case 4: Anonymous Inner
Classes

public class CircleDrawer4 extends Applet {
public void init() {

setForeground(Color.BLUE);
addMouseListener

(new MouseAdapter() {
private int radius = 25;

public void mousePressed(MouseEvent event) {
Graphics g = getGraphics();
g.fillOval(event.getX()-radius,

event.getY()-radius,
2*radius,
2*radius);

}
});

}
}26

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Summary of
Approaches

27

Event Handling Strategies:
Pros and Cons

• Separate Listener
– Advantages

• Can extend adapter and thus ignore unused methods
• Separate class easier to manage

– Disadvantage
• Need extra step to call methods in main window

• Main window that implements interface
– Advantage

• No extra steps needed to call methods in main window

– Disadvantage
• Must implement methods you might not care about

28

Event Handling Strategies:
Pros and Cons (Continued)

• Named inner class
– Advantages

• Can extend adapter and thus ignore unused methods
• No extra steps needed to call methods in main window

– Disadvantage
• A bit harder to understand

• Anonymous inner class
– Advantages

• Same as named inner classes
• Even shorter

– Disadvantage
• Much harder to understand

29

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Event Handler Details
and Examples

30

Standard AWT Event Listeners
(Summary)

31

Adapter Class
Listener (If Any) Registration Method

 ActionListener addActionListener
 AdjustmentListener addAdjustmentListener
 ComponentListener ComponentAdapter addComponentListener
 ContainerListener ContainerAdapter addContainerListener
 FocusListener FocusAdapter addFocusListener
 ItemListener addItemListener
 KeyListener KeyAdapter addKeyListener
 MouseListener MouseAdapter addMouseListener
 MouseMotionListener MouseMotionAdapter addMouseMotionListener

 TextListener addTextListener
 WindowListener WindowAdapter addWindowListener

Standard AWT Event Listeners
(Details)

• ActionListener
– Handles buttons and a few other actions

• actionPerformed(ActionEvent event)

• AdjustmentListener
– Applies to scrolling

• adjustmentValueChanged(AdjustmentEvent event)

• ComponentListener
– Handles moving/resizing/hiding GUI objects

• componentResized(ComponentEvent event)
• componentMoved (ComponentEvent event)
• componentShown(ComponentEvent event)
• componentHidden(ComponentEvent event)

32

Standard AWT Event Listeners
(Details Continued)

• ContainerListener
– Triggered when window adds/removes GUI controls

• componentAdded(ContainerEvent event)
• componentRemoved(ContainerEvent event)

• FocusListener
– Detects when controls get/lose keyboard focus

• focusGained(FocusEvent event)
• focusLost(FocusEvent event)

33

Standard AWT Event Listeners
(Details Continued)

• ItemListener
– Handles selections in lists, checkboxes, etc.

• itemStateChanged(ItemEvent event)

• KeyListener
– Detects keyboard events

• keyPressed(KeyEvent event) -- any key pressed down
• keyReleased(KeyEvent event) -- any key released
• keyTyped(KeyEvent event) -- key for printable char released

34

Standard AWT Event Listeners
(Details Continued)

• MouseListener
– Applies to basic mouse events

• mouseEntered(MouseEvent event)
• mouseExited(MouseEvent event)
• mousePressed(MouseEvent event)
• mouseReleased(MouseEvent event)
• mouseClicked(MouseEvent event)

– Release without drag. Do not use this for mousePressed!
– Applies on release if no movement since press

• MouseMotionListener
– Handles mouse movement

• mouseMoved(MouseEvent event)
• mouseDragged(MouseEvent event)

• MouseInputListener
– Combines MouseListener and MouseMotionListener

• In javax.swing.event package, not java.awt.event
• You have to call both addMouseListener and

addMouseMotionListener, so it does not save much
35

Standard AWT Event Listeners
(Details Continued)

• TextListener
– Applies to textfields and text areas

• textValueChanged(TextEvent event)

• WindowListener
– Handles high-level window events

• windowOpened, windowClosing, windowClosed,
windowIconified, windowDeiconified, windowActivated,
windowDeactivated

– windowClosing particularly useful

36

Example: Simple Whiteboard

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class SimpleWhiteboard extends Applet {
protected int lastX=0, lastY=0;

public void init() {
setBackground(Color.WHITE);
setForeground(Color.BLUE);
addMouseListener(new PositionRecorder());
addMouseMotionListener(new LineDrawer());

}

protected void record(int x, int y) {
lastX = x; lastY = y;

}37

Simple Whiteboard (Continued)

private class PositionRecorder extends MouseAdapter {
public void mouseEntered(MouseEvent event) {

requestFocus(); // Plan ahead for typing
record(event.getX(), event.getY());

}

public void mousePressed(MouseEvent event) {
record(event.getX(), event.getY());

}
}
...

38

Simple Whiteboard (Continued)

...
private class LineDrawer extends MouseMotionAdapter {

public void mouseDragged(MouseEvent event) {
int x = event.getX();
int y = event.getY();
Graphics g = getGraphics();
g.drawLine(lastX, lastY, x, y);
record(x, y);

}
}

}

39

Simple Whiteboard (Results)

40

Whiteboard: Adding Keyboard
Events

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class Whiteboard extends SimpleWhiteboard {
protected FontMetrics fm;

public void init() {
super.init();
Font font = new Font("Serif", Font.BOLD, 20);
setFont(font);
fm = getFontMetrics(font);
addKeyListener(new CharDrawer());

}

41

Whiteboard (Continued)

...
private class CharDrawer extends KeyAdapter {

// When user types a printable character,
// draw it and shift position rightwards.

public void keyTyped(KeyEvent event) {
String s = String.valueOf(event.getKeyChar());
getGraphics().drawString(s, lastX, lastY);
record(lastX + fm.stringWidth(s), lastY);

}
}

}

42

Whiteboard (Results)

43

Mouse Events: Details

• MouseListener and MouseMotionListener
share event types

• Location of clicks
– event.getX() and event.getY()
– You can also use the MouseInfo class for mouse position

• Double clicks
– Determined by OS, not by programmer
– Call event.getClickCount()

• Distinguishing mouse buttons
– Call event.getModifiers() and compare to

MouseEvent.Button2_MASK for a middle click and
MouseEvent.Button3_MASK for right click.

– Can also trap Shift-click, Alt-click, etc.

44

Combining Listeners:
Spelling-Correcting Textfield

• KeyListener corrects spelling during typing
• ActionListener completes word on ENTER
• FocusListener gives subliminal hints

45

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Wrap-Up

46

Summary

• General strategy
– Determine what type of listener is of interest

• Check table of standard types

– Define a class of that type
• Extend adapter separately, implement interface, extend

adapter in named inner class, extend adapter in
anonymous inner class

– Register an object of your listener class with the window
• Call addXxxListener

• Understanding listeners
– Methods give specific behavior.

• Arguments to methods are of type XxxEvent
– Methods in MouseEvent of particular interest

47

Preview of Later Topics

• Whiteboard had freehand drawing only
– Need GUI controls to allow selection of other drawing

methods

• Whiteboard had only “temporary” drawing
– Covering and reexposing window clears drawing
– After cover multithreading, we’ll see solutions to this

problem
• Most general is double buffering

• Whiteboard was “unshared”
– Need network programming capabilities so that two

different whiteboards can communicate with each other

48

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questions?

49

JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.

