
© 2012 Marty Hall

Layout ManagersLayout Managers
Arranging Elements in Windows

Originals of Slides and Source Code for Examples:
http://courses.coreservlets.com/Course-Materials/java.html

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.3

© 2012 Marty Hall

For live Java EE training, please see training courses
at http://courses.coreservlets.com/. at http://courses.coreservlets.com/.

JSF 2.0, PrimeFaces, Servlets, JSP, Ajax (with jQuery), GWT,
Android development, Java 6 and 7 programming,

SOAP-based and RESTful Web Services, Spring, Hibernate/JPA, g
XML, Hadoop, and customized combinations of topics.

Taught by the author of Core Servlets and JSP, More
Servlets and JSP and this tutorial Available at public

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

Servlets and JSP, and this tutorial. Available at public
venues, or customized versions can be held on-site at your

organization. Contact hall@coreservlets.com for details.

Topics in This Section

• How layout managers simplify interface
d idesign

• Standard layout managers
Fl L B d L C dL G idL– FlowLayout, BorderLayout, CardLayout, GridLayout,
GridBagLayout, BoxLayout

• Positioning components manuallyPositioning components manually
• Strategies for using layout managers

effectivelyy

5

Layout Managers

• Assigned to each Container
– Give sizes and positions to components in the window
– Helpful for windows whose size changes or that display

on multiple operating systemson multiple operating systems

• Relatively easy for simple layouts
– But, it is surprisingly hard to get complex layouts with a , p g y g p y

single layout manager

• Controlling complex layouts
– Use nested containers (each with its own layout manager)
– Use invisible components and layout manager options

Write your own layout manager– Write your own layout manager
– Turn some layout managers off and arrange

some things manually6

© 2012 Marty Hall

Simple LayoutSimple Layout
Managersg

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.7

FlowLayout

• Default layout for Panel, JPanel, and Applet
• Behavior

– Resizes components to their preferred size
Pl i l f i h b– Places components in rows left to right, top to bottom

• Rows are centered by default

• ConstructorsConstructors
– FlowLayout()

• Centers each row and keeps 5 pixels between entries in a row and
between rows

– FlowLayout(int alignment)
• Same 5 pixels spacing, but changes the alignment of the rows
• FlowLayout.LEFT, FlowLayout.RIGHT, FlowLayout.CENTER

– FlowLayout(int alignment, int hGap, int vGap)
• Specify the alignment as well as the horizontal and vertical spacing between

components (in pixels)
8

FlowLayout: Example

public class FlowTest extends Applet {
bli id i it() {public void init() {
// setLayout(new FlowLayout()); [Default]
for(int i=1; i<6; i++) {

add(new Button("Button " + i));
}

}}
}

9

BorderLayout

• Default for Frame, JFrame, Dialog, JApplet
• Behavior

– Divides the Container into five regions
E h i i id tifi d b di• Each region is identified by a corresponding
BorderLayout constant
– NORTH, SOUTH, EAST, WEST, and CENTER

NORTH d SOUTH h f d h i h f h– NORTH and SOUTH respect the preferred height of the
component

– EAST and WEST respect the preferred width of the S a d W S espect t e p e e ed w dt o t e
component

– CENTER is given the remaining space

I ll i i f fi t• Is allowing a maximum of five components
too restrictive? Why not?

10

BorderLayout (Continued)

• Constructors
– BorderLayout()

• Border layout with no gaps between components

– BorderLayout(int hGap int vGap)– BorderLayout(int hGap, int vGap)
• Border layout with the specified empty pixels between

regions

• Adding Components
– add(component, BorderLayout.REGION)(p , y)
– Always specify the region in which to add the component

• CENTER is the default, but specify it explicitly to avoid
confusion with other layout managersconfusion with other layout managers

11

BorderLayout: Example

public class BorderTest extends Applet {
public void init() {public void init() {

setLayout(new BorderLayout());
add(new Button("Button 1"), BorderLayout.NORTH);
add(new Button("Button 2") BorderLayout SOUTH);add(new Button(Button 2), BorderLayout.SOUTH);
add(new Button("Button 3"), BorderLayout.EAST);
add(new Button("Button 4"), BorderLayout.WEST);
add(new Button("Button 5"), BorderLayout.CENTER);add(new Button(Button 5), BorderLayout.CENTER);

}
}

12

GridLayout

• Behavior
– Divides window into equal-sized rectangles based upon

the number of rows and columns specified
• Items placed into cells left-to-right top-to-bottom basedItems placed into cells left to right, top to bottom, based

on the order added to the container

– Ignores the preferred size of the component; each
component is resized to fit into its grid cellcomponent is resized to fit into its grid cell

– Too few components results in blank cells
– Too many components results in extra columnsy p

13

GridLayout (Continued)

• Constructors
– GridLayout()

• Creates a single row with one column allocated per
componentp

– GridLayout(int rows, int cols)
• Divides the window into the specified number of rows and• Divides the window into the specified number of rows and

columns
• Either rows or cols (but not both) can be zero

– GridLayout(int rows, int cols,
int hGap, int vGap)

• Uses the specified gaps between cells

14

GridLayout, Example

public class GridTest extends Applet {
public void init() {public void init() {

setLayout(new GridLayout(2,3)); // 2 rows, 3 cols
add(new Button("Button One"));
add(new Button("Button Two"));add(new Button(Button Two));
add(new Button("Button Three"));
add(new Button("Button Four"));
add(new Button("Button Five"));add(new Button(Button Five));
add(new Button("Button Six"));

}
}}

15

CardLayout

• Behavior
– Stacks components on top of each other, displaying the

top one
– Associates a name with each component in window– Associates a name with each component in window

Panel cardPanel;
CardLayout layout new CardLayout();
cardPanel setLayout(layout);cardPanel.setLayout(layout);
...
cardPanel.add("Card 1", component1);
cardPanel add("Card 2" component2);cardPanel.add(Card 2 , component2);
...
layout.show(cardPanel, "Card 1");
layout.first(cardPanel);y ();
layout.next(cardPanel);

16

CardLayout, Example

17

© 2012 Marty Hall

GridBagLayout

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.18

GridBagLayout

• Behavior
– Divides the window into grids, without requiring the

components to be the same size
• About three times more flexible than the other standardAbout three times more flexible than the other standard

layout managers, but nine times harder to use

– Each component managed by a grid bag layout is
associated with an instance of GridBagConstraintsassociated with an instance of GridBagConstraints

• The GridBagConstraints specifies:
– How the component is laid out in the display area

– In which cell the component starts and ends

– How the component stretches when extra room is available

– Alignment in cells

– Java 5 introduced SpringLayout, with similar power but
much less complexity

19

GridBagLayout: Basic Steps

• Set the layout, saving a reference to it
GridBagLayout layout = new GridBagLayout();GridBagLayout layout = new GridBagLayout();
setLayout(layout);

• Allocate a GridBagConstraints object
GridBagConstraints constraints =GridBagConstraints constraints
new GridBagConstraints();

• Set up the GridBagConstraints for
component 1component 1

constraints.gridx = x1;
constraints.gridy = y1;
constraints.gridwidth = width1;

t i t idh i ht h i ht1constraints.gridheight = height1;

• Add component 1 to the window, including
constraints

(1)add(component1, constraints);

• Repeat the last two steps for each remaining
component20

GridBagConstraints

• Copied when component added to window
– Thus, can reuse the GridBagConstraints

GridBagConstraints constraints =
new GridBagConstraints();g

constraints.gridx = x1;
constraints.gridy = y1;
constraints.gridwidth = width1;
constraints.gridheight = height1;
add(component1, constraints);
constraints.gridx = x1;
constraints.gridy = y1;
add(component2, constraints);

21

GridBagConstraints Fields

• gridx, gridy
– Specifies the top-left corner of the component
– Upper left of grid is located at

(gridx gridy)=(0 0)(gridx, gridy)=(0,0)
– Set to GridBagConstraints.RELATIVE to

auto-increment row/column
GridBagConstraints constraints =

new GridBagConstraints();
constraints.gridx =
GridBagConstraints.RELATIVE;

container.add(new Button("one"),
constraints);

container.add(new Button("two"),
constraints);

22

GridBagConstraints Fields
(Continued)(Continued)
• gridwidth, gridheight

– Specifies the number of columns and rows the
Component occupies

constraints gridwidth = 3;constraints.gridwidth 3;
– GridBagConstraints.REMAINDER lets the

component take up the remainder of the row/column
• weightx, weighty

– Specifies how much the cell will stretch in the x or y
direction if space is left overdirection if space is left over

constraints.weightx = 3.0;
– Constraint affects the cell, not the component (use fill)
– Use a value of 0.0 for no expansion in a direction
– Values are relative, not absolute

23

GridBagConstraints Fields
(Continued)(Continued)
• fill

S ifi h d l h i ll h h– Specifies what to do to an element that is smaller than the
cell size
constraints.fill = GridBagConstraints.VERTICAL;

– The size of row/column is determined by the
widest/tallest element in it

– Can be NONE, HORIZONTAL, VERTICAL, or BOTH
• anchor

– If the fill is set to GridBagConstraints.NONE, then
the anchor field determines where the component isthe anchor field determines where the component is
placed
constraints.anchor = GridBagConstraints.NORTHEAST;

C b NORTH EAST SOUTH WEST NORTHEAST– Can be NORTH, EAST, SOUTH, WEST, NORTHEAST,
NORTHWEST, SOUTHEAST, or SOUTHWEST

24

GridBagLayout: Example

25

GridBagLayout: Example

public GridBagTest() {
setLayout(new GridBagLayout());y (g y ());
textArea = new JTextArea(12, 40); // 12 rows, 40 cols
bSaveAs = new JButton("Save As");
fileField = new JTextField("C:\\Document.txt");
bOk = new JButton("OK");bOk = new JButton("OK");
bExit = new JButton("Exit");
GridBagConstraints c = new GridBagConstraints();
// Text Area.
c.gridx = 0;
c.gridy = 0;
c.gridwidth = GridBagConstraints.REMAINDER;
c gridheight = 1;c.gridheight = 1;
c.weightx = 1.0;
c.weighty = 1.0;
c.fill = GridBagConstraints.BOTH;
c.insets = new Insets(2,2,2,2); //t,l,b,r
add(textArea, c);
...

26

GridBagLayout: Example
(Continued)(Continued)

// Save As Button.
c.gridx = 0;g ;
c.gridy = 1;
c.gridwidth = 1;
c.gridheight = 1;
c weightx = 0 0;c.weightx = 0.0;
c.weighty = 0.0;
c.fill = GridBagConstraints.VERTICAL;
add(bSaveAs,c);

// Filename Input (Textfield).
c.gridx = 1;
c gridwidth = GridBagConstraints REMAINDER;c.gridwidth = GridBagConstraints.REMAINDER;
c.gridheight = 1;
c.weightx = 1.0;
c.weighty = 0.0;
c.fill = GridBagConstraints.BOTH;
add(fileField,c);
...

27

GridBagLayout: Example
(Continued)(Continued)

// Exit Button.
c.gridx = 3;g ;
c.gridwidth = 1;
c.gridheight = 1;
c.weightx = 0.0;
c weighty = 0 0;c.weighty = 0.0;
c.fill = GridBagConstraints.NONE;
add(bExit,c);

// Filler so Column 1 has nonzero width.
Component filler =
Box.createRigidArea(new Dimension(1,1));

c gridx = 1;c.gridx = 1;
c.weightx = 1.0;
add(filler,c);

...
}

28

GridBagLayout: Result

Without Box filler at (2 1)With Box filler at (2 1)

29

Without Box filler at (2,1)With Box filler at (2,1)

© 2012 Marty Hall

Strategies for UsingStrategies for Using
Layout Managersy g

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.30

Disabling the Layout Manager

• Behavior
– If the layout is set to null, then components must be
sized and positioned by hand

• Positioning components
• component.setSize(width, height)
• component.setLocation(left, top)

– or
• component setBounds(left top• component.setBounds(left, top,

width, height)

31

No Layout Manager: Example

setLayout(null);
B tt b1 B tt ("B tt 1")Button b1 = new Button("Button 1");
Button b2 = new Button("Button 2");
...
b1.setBounds(0, 0, 150, 50);
b2.setBounds(150, 0, 75, 50);
...
add(b1);
add(b2);
...

32

Using Layout Managers
EffectivelyEffectively

• Use nested containers
– Rather than struggling to fit your design in a single

layout, try dividing the design into sections
– Let each section be a panel with its own layout manager– Let each section be a panel with its own layout manager

• Turn off the layout manager for some
containers

• Adjust the empty space around components
– Change the space allocated by the layout manager
– Override insets in the Container
– Use a Canvas or a Box as an invisible spacer

33

Nested Containers: Example

34

Nested Containers: Example

public NestedLayout() {

setLayout(new BorderLayout(2,2));

textArea = new JTextArea(12,40); // 12 rows, 40 cols(,) ,
bSaveAs = new JButton("Save As");
fileField = new JTextField("C:\\Document.txt");
bOk = new JButton("OK");
bExit = new JButton("Exit");

add(textArea,BorderLayout.CENTER);

// Set up buttons and textfield in bottom panel.
JPanel bottomPanel = new JPanel();
bottomPanel setLayout(new GridLayout(2 1));bottomPanel.setLayout(new GridLayout(2,1));

35

Nested Containers, Example

JPanel subPanel1 = new JPanel();
JPanel subPanel2 = new JPanel();JPanel subPanel2 new JPanel();
subPanel1.setLayout(new BorderLayout());
subPanel2.setLayout

(new FlowLayout(FlowLayout.RIGHT,2,2));(y (y , ,))

subPanel1.add(bSaveAs,BorderLayout.WEST);
subPanel1.add(fileField,BorderLayout.CENTER);
subPanel2.add(bOk);
subPanel2.add(bExit);

b tt P l dd(bP l1)bottomPanel.add(subPanel1);
bottomPanel.add(subPanel2);

add(bottomPanel BorderLayout SOUTH);add(bottomPanel,BorderLayout.SOUTH);
}

36

Nested Containers: Result

37

Turning Off Layout Manager for
Some Containers: ExampleSome Containers: Example

• Suppose that you wanted to arrange a column of
buttons (on the left) that take exactly 40% of the widthbuttons (on the left) that take exactly 40% of the width
of the container
setLayout(null);
int width1 = getSize() width*4/10;int width1 = getSize().width*4/10;,
int height = getSize().height;
Panel buttonPanel = new Panel();
buttonPanel.setBounds(0, 0, width1, height);
buttonPanel.setLayout(new GridLayout(6, 1));
buttonPanel.add(new Label("Buttons", Label.CENTER));
buttonPanel.add(new Button("Button One"));
...
buttonPanel.add(new Button("Button Five"));
add(buttonPanel);
Panel everythingElse = new Panel();a e e e yt g se e a e ();
int width2 = getSize().width - width1,
everythingElse.setBounds(width1+1, 0, width2, height);

38

Turning Off Layout Manager for
Some Containers: ResultSome Containers: Result

39

Adjusting Space Around
ComponentsComponents

• Change the space allocated by the layout
manager
– Most LayoutManagers accept a horizontal spacing

(hGap) and vertical spacing (vGap) argument(hGap) and vertical spacing (vGap) argument
– For GridBagLayout, change the insets

• Use a Canvas or a Box as an invisible
spacer
– For AWT layouts, use a Canvas that does not draw or

h dl t “ t ” t fhandle mouse events as an “empty” component for
spacing.

– For Swing layouts, add a Box as an invisible spacer to g y , p
improve positioning of components

40

© 2012 Marty Hall

Wrap-Up

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.41

Drag-and-Drop
Swing GUI BuildersSwing GUI Builders

• Free
M ti (“N tB GUI B ild ”) b ilt i t N tB– Matisse (“NetBeans GUI Builder”) built into NetBeans

• Also available in MyEclipse. Not in regular Eclipse.

– WindowBuilder Pro
• Originally a commercial product then bought and released for free by• Originally a commercial product, then bought and released for free by

Google. For Eclipse.
– http://code.google.com/javadevtools/download-wbpro.html

• Commercial
– JFormDesigner

• jformdesigner.com

– Jvider
• jvider.com

– SpeedJG
• wsoftware.de

– Jigloo
• http://www.cloudgarden.com

/jigloo/
42

Other Layout Managers

• BoxLayout
– Lets you put components in horizontal or vertical rows

and control the sizes and gaps. Simple, but useful.

• GroupLayout• GroupLayout
– Groups components into hierarchies, then positions each

group. Mostly designed for use by GUI builders.g p y g y

• SpringLayout
– Alternative to GridBagLayout that lets you give complex

i f h Al l i lconstraints for each component. Almost exclusively
designed for use by GUI builders.

43

Summary

• Default layout managers
A l d P l Fl L– Applet and Panel: FlowLayout

– Frame and Dialog: BorderLayout
• Preferred sizesPreferred sizes

– FlowLayout: honors all
– BorderLayout:

North/South honors preferred height• North/South honors preferred height
• East/West honors preferred width

– GridLayout: ignores preferred sizes
G idB L t• GridBagLayout
– The most complicated but most flexible manager

• Design strategy• Design strategy
– Use nested containers, each with relatively simple layout

44

© 2012 Marty Hall

Questions?Questions?

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.45

