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Agenda

• Approaches for animation
– Redraw everything in paint
– Have routines other than paint draw directly on window
– Override update and have paint do incremental updating 
– Double buffering 

• Reducing flicker in animations
• Implementing double buffering 
• Animating images 
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Multithreaded Graphics:
Alternative Approaches

• Redraw everything in paint
– Simple and easy, but if things change quickly it is slow and can 

result in a flickering display

• Have routines other than paint directly do drawing 
operations
– Easy, efficient, and flicker-free, but results in “transient” drawing 

that is lost next time the screen is redrawn

• Override update and have paint do incremental 
updating 
– Eliminates the flicker and improves efficiency somewhat, but 

requires the graphics to be non-overlapping

• Double buffering 
– Most efficient option and has no problem with overlapping graphics. 
– More complex and requires additional memory resources
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Redraw Everything in paint

• Idea
– Have user actions change non-graphical data structures, 

then call repaint. 
– The repaint method sets a flag that tells the event-

handling process to call update.
– The standard update method clears the screen and then 

calls paint.
– The paint method completely redraws everything.

• Advantage
– Easy

• Disadvantages
– Flickers, slow.
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Redrawing Everything in paint: 
Example

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

/** An applet that draws a small circle where you click. 
*/

public class DrawCircles extends Applet {
private ArrayList<SimpleCircle> circles;

public void init() {
circles = new ArrayList<SimpleCircle>();
addMouseListener(new CircleDrawer());
setBackground(Color.WHITE);

}
...
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Redrawing Everything in paint:
Example (Continued)

/** When you click the mouse, create a SimpleCircle,
*  put it in the list of circles, and tell the system
*  to repaint (which calls update, which clears
*  the screen and calls paint).
*/

private class CircleDrawer extends MouseAdapter {
public void mousePressed(MouseEvent event) {
circles.add(new SimpleCircle(event.getX(), 

event.getY(), 25));
repaint();

}
}
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Redrawing Everything in paint:
Example (Continued)
/** This loops down the available SimpleCircle objects,
*  drawing each one.
*/

public void paint(Graphics g) {
for(SimpleCircle circle: circles) {
circle.draw(g);

}
}

}
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Redrawing Everything in paint: 
Example (Continued)

public class SimpleCircle {
private int x, y, radius;

public SimpleCircle(int x, int y, int radius) {
setX(x);
setY(y);
setRadius(radius);

}

/** Given a Graphics, draw the SimpleCircle
*  centered around its current position.
*/
public void draw(Graphics g) {
g.fillOval(x - radius, y - radius,

radius * 2, radius * 2);
}
...

}
11

Redrawing everything in paint:  
Result
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By storing results in a permanent data structure and redrawing the whole structure every 
time paint is invoked, you cause the drawing to persist even after the window is covered 
up and reexposed



Have Other Routines Draw 
Directly on Window

• Idea
– Arbitrary methods (i.e., other than paint) can call 

getGraphics to obtain the window’s Graphics object
– Use that Graphics object to draw
– Drawing lost if

• Window covered up and reexposed
• The update method called (e.g., via repaint)

• Advantage
– Fast

• Disadvantage
– Temporary
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Drawing Directly on Window: 
Example

public class Rubberband extends Applet {
private int startX, startY, lastX, lastY;  
...
private void drawRectangle(Graphics g, int startX, 

int startY, int stopX, int stopY ) {
int x, y, w, h;
x = Math.min(startX, stopX);
y = Math.min(startY, stopY);
w = Math.abs(startX - stopX);
h = Math.abs(startY - stopY);
g.drawRect(x, y, w, h);

}
...

private class RectRecorder extends MouseAdapter {
public void mousePressed(MouseEvent event) {
startX = event.getX();
startY = event.getY();
lastX = startX;
lastY = startY;

}14



Drawing Directly on Window: 
Example (Continued)

public void mouseReleased(MouseEvent event) {
Graphics g = getGraphics();
g.setColor(Color.BLUE);
drawRectangle(g, startX, startY, lastX, lastY);

}
}

private class RectDrawer extends MouseMotionAdapter {
public void mouseDragged(MouseEvent event) {
int x = event.getX();
int y = event.getY();
Graphics g = getGraphics();
g.setXORMode(Color.LIGHT_GRAY);
drawRectangle(g, startX, startY, lastX, lastY);
drawRectangle(g, startX, startY, x, y);
lastX = x;
lastY = y;

}
}

}
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Drawing Directly on Window: 
Result
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By retrieving the Graphics object, methods other than paint
can draw directly on the window



Override update and Have 
paint do Incremental Updating

• Idea
– Have repaint (which triggers update) avoid clearing the 

screen each time by overriding update as follows:

public void update(Graphics g) {
paint(g);

}
– Then, assuming objects don’t overlap, erase each object 

at its old location by drawing over it in the background 
color then drawing it at the new location

• Advantages
– No flicker, faster

• Disadvantage
– Fails for overlapping images17

Incremental Updating: 
Bounce Applet

public class Bounce extends Applet implements Runnable,
ActionListener{

private ExecutorService taskList;
private volatile boolean running = false;
private ArrayList<MovingCircle> circles;
private int width, height;
private Button startButton, stopButton;

public void init() {
taskList = Executors.newFixedThreadPool(5);
setBackground(Color.WHITE);
width = getSize().width;
height = getSize().height;
circles = new ArrayList<MovingCircle>();
startButton = new Button("Start a circle");
startButton.addActionListener(this);
add(startButton);
stopButton = new Button("Stop all circles");
stopButton.addActionListener(this);
add(stopButton);

}18



Bounce Applet (Continued)

public void actionPerformed(ActionEvent event) {
if (event.getSource() == startButton) {

if (!running) {
// Erase any circles from previous run.
getGraphics().clearRect(0, 0, getSize().width,

getSize().height);
running = true;
taskList.execute(this);

}
int radius = 25;
int x = radius + randomInt(width - 2 * radius);
int y = radius + randomInt(height - 2 * radius);
int deltaX = 1 + randomInt(10);
int deltaY = 1 + randomInt(10);
circles.add(new MovingCircle(x, y, radius, deltaX, deltaY));

} else if (event.getSource() == stopButton) {
running = false;
circles.clear();

}
repaint();

}
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Bounce Applet (Continued)

/** Each time around the loop, call paint and then take a
*  short pause. The paint method will move the circles and
*  draw them.
*/

public void run() {
while(running) {
repaint();
pause(100);

}
}
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Bounce Applet (Continued)

/** Skip the usual screen-clearing step of update so that
*  there is no flicker between each drawing step.
*/

public void update(Graphics g) {
paint(g);

}

/** Erase each circle's old position, move it, then draw it
*  in new location.
*/

public void paint(Graphics g) {
for(MovingCircle circle: circles) {

g.setColor(getBackground());
circle.draw(g);  // Old position.
circle.move(width, height);
g.setColor(getForeground());
circle.draw(g);  // New position.

}
}
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Incremental Updating: 
MovingCircle Class

public class MovingCircle extends SimpleCircle {
private int deltaX, deltaY;
...
public void move(int windowWidth, int windowHeight) {

setX(getX() + getDeltaX());
setY(getY() + getDeltaY());
bounce(windowWidth, windowHeight);

}

private void bounce(int windowWidth, int windowHeight) {
int x = getX(), y = getY(), radius = getRadius(),

deltaX = getDeltaX(), deltaY = getDeltaY();
if ((x - radius < 0) && (deltaX < 0))

setDeltaX(-deltaX);
else if ((x + radius > windowWidth) && (deltaX > 0))

setDeltaX(-deltaX);
if ((y -radius < 0) && (deltaY < 0))

setDeltaY(-deltaY);
else if((y + radius > windowHeight) && (deltaY > 0))

setDeltaY(-deltaY);
}
...

}22



Incremental Updating, Result
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Incremental updating from paint can be flicker free and 
relatively fast, but it does not easily handle overlapping items

Option 4: Double Buffering

• Idea
– Draw into an off-screen pixmap, then draw that pixmap on window

• Outline
1. Override update to simply call paint 

• This prevents the flicker that would normally occur each time 
update clears the screen before calling paint

2. Allocate an Image using createImage
• Note that since this image uses native window-system support, 

it cannot be done until a window actually appears
3. Look up its Graphics object using getGraphics

• Unlike with windows, where you need to look up the Graphics
context each time you draw, with images it is reliable to look it 
up once, store it, and reuse the same reference thereafter

4. For each step, clear the image and redraw all objects onto it
• Dramatically faster than drawing onto a visible window

5. Draw the offscreen image onto the window 
• Use drawImage

24



Double Buffering: Pros & Cons

• Advantages
– Much faster
– Can easily handle overlapping objects

• Disadvantages
– More complex
– Memory requirements for offscreen pixmap
– Sometimes less incremental update of display
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Double Buffering: Example

public class DoubleBufferBounce extends Applet
implements Runnable, ActionListener {

private ExecutorService taskList;
private volatile boolean running = false;
private ArrayList<MovingCircle> circles;
private int width, height;
private Image offScreenImage;
private Graphics offScreenGraphics;
private Button startButton, stopButton;

public void init() {
taskList = Executors.newFixedThreadPool(5);
setBackground(Color.WHITE);
width = getSize().width;
height = getSize().height;
offScreenImage = createImage(width, height);
offScreenGraphics = offScreenImage.getGraphics();
offScreenGraphics.setColor(Color.BLACK);
circles = new ArrayList<MovingCircle>();
...

}26



Double Buffering: Example

public void run() {
while(running) {

for(MovingCircle circle: circles) {
circle.move(width, height);

}
repaint();
pause(100);

}
}

public void update(Graphics g) {
paint(g);

}

public void paint(Graphics g) {
offScreenGraphics.clearRect(0, 0, width, height);
for(MovingCircle circle: circles) {

circle.draw(offScreenGraphics);
}
g.drawImage(offScreenImage, 0, 0, this);

}
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Double Buffering: Result
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At the expense of memory and some complexity, double buffering allows fast, 
flicker-free updating of possibly overlapping images



Array-Based Animation

• Idea
– Load a sequence of images into an array 
– Start a thread to cycle through the images and draw to the 

graphics object
• Each time the thread loops through the while loop, the 

array index is incremented and repaint (which triggers 
update) is called to update the images on the screen 

– Stop the animation by setting a flag
• In an applet, end the animation from the applet’s stop 

method
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Array-Based Animation: 
Example

public class ImageAnimation extends Applet {
private static final int NUMDUKES  = 2;
private Duke[] dukes; // Duke has array of images
private int i;

public void init() {
dukes = new Duke[NUMDUKES];
setBackground(Color.white);

}

public void start() {
int tumbleDirection;
for (int i=0; i<NUMDUKES ; i++) {
tumbleDirection = (i%2 == 0) ? 1 :-1;
dukes[i] = new Duke(tumbleDirection, this);
dukes[i].start();

}
}

...
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Animation Example (Continued)

public void update(Graphics g) {
paint(g);

}

public void paint(Graphics g) {
for (i=0 ; i<NUMDUKES ; i++) {
if (dukes[i] != null) {
g.drawImage(Duke.images[dukes[i].getIndex()],

200*i, 0, this);
}

}
}

public void stop() {
for (int i=0; i<NUMDUKES ; i++) {
if (dukes[i] != null) {
dukes[i].setState(Duke.STOP);

}
}

}
}31

Animation Example (Continued)

public class Duke extends Thread {
...
public static Image[] images;
private static final int NUMIMAGES = 15;
private static Object lock = new Object();
private int state = RUN;

public Duke(int tumbleDirection, Applet parent) {
this.tumbleDirection = tumbleDirection;
this.parent = parent;
synchronized(lock) {

if (images == null) {  // If not previously loaded.
images = new Image[ NUMIMAGES ];
for (int i=0; i<NUMIMAGES; i++) {

images[i] = parent.getImage( parent.getCodeBase(),
"images/T" + i + ".gif");

}
}

}
}
...
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Animation Example (Continued)

public void run() {
while (checkState()!=STOP) {
index += tumbleDirection;
if (index < 0) {
index = NUMIMAGES - 1;

} else if (index >= NUMIMAGES) {
index = 0;

}

parent.repaint();

try {
Thread.sleep(100);

} catch (InterruptedException e) {
break;   // Break while loop.

}
}

}
} 
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Animation: Result
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Duke is a registered trademark of Sun Microsystems, Inc.
All restrictions apply (http://www.sun.com/policies/trademarks/).

Used with permission.



Summary

• Options for fast-changing graphics
– Redraw everything in paint
– Have routines other than paint directly do drawing 

operations
– Override update and have paint do incremental updating 
– Double buffering

• Animation can be achieved by cycling through 
a sequence of images
– Usually in conjunction with double buffering
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